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Abstract

Are less productive firms in developing countries disproportionately affected by climate
change both along the intensive and extensive margin? This paper provides an answer
in the context of Indonesia using gridded daily weather data and the Indonesian firm-level
survey, the Statistik Industri. In a heterogeneous firm model with capital-biased productiv-
ity, I incorporate the thermal stress channel and illustrate how less productive firms decides
on production and re-optimize factor intensity as temperature increases. Empirically, I high-
light the presence of survival bias intrinsic to firm-level intensive margin analysis. I found
that: First, under heat shocks, the initially less productive firms are more likely to exit.
Second, on the aggregate, resources reallocate from less to more productive firms within
industries. Among surviving firms,, we observe factor substitution from unskilled to skilled
workers, and firms switching from domestic to foreign intermediate input when temperature
increases. The initially more productive firms that survived also incur output gain under
heat shocks possibly due to shifts in market structure and/or selection. These evidence high-
light the importance of incorporating the manufacturing sector in the damage functions of
traditional Integrated Assessment Models such as DICE/FUND. It also provides a potential
explanation as to why poor countries are more affected by temperature shocks from the
perspective of firm size distribution.
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1 Introduction

Future climate change shifts the annual distribution of daily weather outcomes and increases

the frequency of extreme heat waves. To assess climate change damages and devise policies for

adaptation, there is considerable interest in understanding how temperature shocks affect local

economic activities, and in particular, industrial production. Such an assessment is perhaps es-

pecially pressing for less-developed countries where the adverse consequences of climate change

concentrate (World Economic Outlook, IMF, 2017).

In this paper, I show that there is important within-industry heterogeneity in how manufacturing

firms are affected by climate change in the context of Indonesia, and that the initially less pro-

ductive firms incur significantly more damage. Further, results on differential firm exit highlight

the presence of survival bias in firm-level intensive margin analysis. On the combined extensive

(firm exit) and intensive margin (firm output), temperature shocks lead to a within-industry

resource redistribution from the initially less to more productive firms. I illustrate the intuition

for this result building on a heterogeneous firm model with capital-biased technology based on

Burstein and Vogel (2016), and incorporate temperature shocks through the labor productivity

channel.

Given the ample evidence at the aggregate-level on the disproportional impact of climate change

on less-developed countries 1, one important challenge lies in identifying the sources of such het-

erogeneity in damages (Hsiang, Oliva, and Walker, 2017). In this paper, I show in a simple

model that heterogeneity in productivity across firms within sectors give rise to individual dam-

age functions based on initial firm-level attributes, which alone could generate differences in

observed damages even without variations in exposure to heat shocks or non-linear effects.

The model (Burstein and Vogel, 2016), incorporating a mechanism of ”capital-biased produc-

tivity”, captures the empirical fact that more productive firms within each sector are also less

labor intensive. This approach derives different individual damage functions addressing impor-

tant within sector firm heterogeneity and the strong correlation between firm-level attributes.

Intuitively, the initially less productive firms within each industry, which experience significantly

1Dell, Jones and Olken (2012), Burke, Hsiang, and Miguel (2015a), Jones and Olken (2010)
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more damage from heat shocks, are also the initially most labor intensive. Regional temperature

shocks and associated labor productivity decrease lead to a rise in the zero-profit cutoff pro-

ductivity level, and push the least productive firms to exit the market. On the aggregate, heat

shocks reshuffle industrial output from less productive to more productive firms within sectors.

The firm-level survey in Indonesia offers an opportunity to test predictions on differential firm

exit and within industry resource reallocation. Indonesia is an important developing economy

which is vulnerable to extreme weather conditions. As is the case for many developing countries

heavily integrated into the world market, manufacturing production is an important part of

national income for Indonesia. According to the World Bank National Accounts data, man-

ufacturing value-added takes up 21% of annual GDP for Indonesia in 2014. Firm production

technologies are widely different in terms of productivity, capital and labor intensity. This paper

exploits the rich variations in kabupaten-level exposure to heat shocks and within industry firm

productivity differences to examine heterogeneous dose-responses to temperature shocks across

Indonesian manufacturing firms.

Unlike more advanced economies, the manufacturing sector in Indonesia may be less adapted to

temperature shocks due to low air conditioner penetration. Using data from the World Bank’s

Living Standards Measurement Surveys (LSMS), an EPA report 2 estimates a 2.7% residential

air conditioner saturation rate in 1997 for Indonesia, whereas the saturation rate was 72% for

the U.S in 2001 and 85% for South Korea in 2000. These data point to a relatively low air

conditioner penetration rate at the initial period of our analysis in Indonesia, as one may expect

in a developing country context.

In terms of mechanisms, a key motivation for this paper comes from recent empirical evidence

suggesting a significant negative relationship between temperature and labor productivity. Heat

leads to fatigue, lower performance in physical tasks, and poorer decision making. Higher tem-

perature is also associated with lower measured and self-reported work performance, as well as

substantial change in labor supply 3.

2Auffhammer (2011)
3Zander et al.(2015), Graff-Zivin and Neidell (2014), Niemela et al.(2002), Seppanen, Fisk, and Lei (2006),

Kjellstrom et al.(2009), Park (2017)
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Using daily micro-data from selected Indian plants, Somanathan et al., (2014) and Adhvaryu et

al., (2016) show labor productivity significantly decreases with temperature in a manufacturing

setting. While there are many other channels through which heat shocks could affect manufac-

turing firms 4, I offer evidence that the direct physiological channel is important for firm-level

outcomes in the Indonesian context. When excluding all ISIC sectors which primarily use agri-

cultural input, I found slightly more magnified results on resource reallocation. Consistent with

the hypothesis that manual labor are more affected by thermal stress than skilled labor, we

also observe that less productive firms which survived substitute unskilled workers with skilled

workers.

This paper is also closely related with the recent literature examining the impact of temperature

shocks on manufacturing firm-level outcomes. Deschenes et al., (2017) found large negative ef-

fects of temperature on Chinese firm-level manufacturing output, mainly driven by decreases in

total factor productivity. Somanathan et al., (2014) found a 2.8 % decrease in Indian firm-level

manufacturing output per one degree (Celsius) change in average annual temperature. Colmer

(2017) found that higher temperature leads to a net increase in manufacturing output in flexible

labor markets and have no significant impact in rigid labor markets in India.

Motivated by the salience of within-industry heterogeneity among Indonesian manufacturing

firms, I show theoretically that an increase in temperature leads to differential exit across firms

within each sector, pushing out the initially less productive firms. On the aggregate, heat shocks

also generate resource redistribution from less to more productive firms within industries. How-

ever, these predictions do not suggest that temperature increases are welfare enhancing. One

degree (Celsius) increase in yearly average temperature away from the kabupaten mean leads to

a significant 10.37% decrease in aggregate output for less productive firms, but only a marginally

significant gain for more productive firms. Like many other developing countries, Indonesia has

a firm size distribution with a heavy left tail, suggesting heat shocks would likely be welfare

reducing to the manufacturing sector on the aggregate, despite of its pro-competitive effect.

4Such as: the agricultural income and local demand channel (Burke and Emerick, 2016), the agricultural
input/output linkage channel (Acemoglue, et al., 2012), the sectoral labor reallocation channel (Colmer, 2017).
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Empirically, instead of focusing on firm-level intensive margin changes alone, this paper shows

that heat shocks lead to differential firm exit, highlighting the presence of survival bias for

intensive margin analysis in the Indonesian context. A positive and significant coefficient of

temperature on firm-level output in the unbalanced panel could result from selection and/or

shifts in market structure, accompanied by significant losses for firms that exit. Also distinct

from existing work on climate change heterogeneity at the firm-level, I focus on heterogeneity

across firms within sectors consistent with firm-level empirical facts. This approach simultane-

ously addresses the silence of the strong correlation between firm-level attributes and allows us

to examine resource reallocation within sectors.

Findings in this paper offers a potential explanation for why poor countries are more affected

by climate change from the perspective of firm size distribution. The development literature

documented the prevalence of small firms in less developed countries using cross-country micro

data5. A number of studies in the climate change literature estimate an approximate 2 percent

industrial output loss per 1◦C increase in temperature, but only in poor countries. 6 Account-

ing for the non-linear effect of temperature could explain this disproportional impact, given

the strong negative correlation between baseline income and baseline temperature. (Burke et

al., 2015) Results in this paper suggest that less productive firms, which are more prevalent in

poor countries, may be more vulnerable due to underlying productivity-specific damage func-

tion when temperature increases. The aggregate loss may be larger for countries whose firm size

distribution is skewed to the left in the absence of adaptation.

Section 2 introduces data sources and relevant empirical facts. Section 3 outlines a simple het-

erogeneous firm model with temperature shocks and comparative statics. Section 4 presents the

main empirical strategies and results on differential firm exit and within industry resource real-

location. I also present descriptive results on factor substitution and intensive margin changes

conditional on survival. Section 5 discusses underlying mechanism. Section 6 concludes.

5(Hsieh and Olken, 2014) (Poschke, 2017)
6Dell, Jones and Olken (2012), Jones and Olken (2010)
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2 Data Background and Empirical Facts

2.1 Data Background

This paper relies on four data sources. The main data on firm-level outcomes come from the

Indonesian Large and Medium-scale Manufacturing Survey, or the Statistik Industri (SI). This

is a establishment-level survey conducted by the Indonesian BPS and answered yearly by all

manufacturing firms with more than 20 employees, which allows for the construction of a firm-

level panel. I explore variables on employment, value-added output, domestic and foreign input,

industry category and other firm-level balance sheet information through the period 2001-2012.

Each establishment in the SI is matched with an Indonesian administrative 2-level regency, or

kabupaten. I then use GIS data from the GADM database of Global Administrative Areas to

obtain the coordinates of the centroid of each kabupaten. The matched panel gives variations

at the kabupaten-by-year level for both weather and firm outcomes, which I exploit later in the

empirical section.

Daily weather variables from 2001-2012 are obtained from NASA’s Prediction of Worldwide

Energy Resource (POWER) database, which provides global coverage on a 1◦ latitude by 1◦

longitude grid. I calculate the yearly average temperature based on the daily average air tem-

perature for each kabupaten. I also obtain daily weather outcomes on relative humidity, and

cumulative precipitation to add as controls.

Finally, to transform the yearly nominal value-added output reported in the SI to real output

values, I use the GDP deflator from the World Bank National Accounts data.

2.2 Empirical Facts

In this section, I first describe data patterns in the Statistik Industri which motivates the het-

erogeneous firm model with capital-biased productivity in Section 3. Second, I show descriptive

facts on the spatial distribution of regional temperature variations and industrial clusters.
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A key contribution of this paper is to show how within-industry firm heterogeneity condition

firms’ responses to regional temperature shocks. Before diving into formal analysis, I present

facts on the salience of heterogeneity across firms within each sector.

Table 1 gives the standardized coefficients from regressions of within-industry firm productivity

on a series of firm-level covariates using the SI. Each cell represents a single regression, where

standard errors are clustered at the firm-level. Firm productivity is measured as value-added

per employee, ranked in terciles within each firm’s two-digit ISIC industry code. Focusing on

Column 3, which uses pre-period productivity in 2001, we see that more productivity firms

have higher output, measured by both value-added and total sales, are less labor intensive, have

higher skilled to unskilled labor ratio, and pay higher average wages. They are also more likely

to be exporters.7

Figure 1 illustrates how firm labor intensity, measured by total wage bill over total value-added

output, varies within and across industries. On the x-axis, firms in each industry were put into

ten productivity bins using their value-added per employee in 2001 ranked within respective two-

digit ISIC industry codes. Firm-level labor intensity decreases as within-industry productivity

measure increases. This suggests that within-industry firm heterogeneity gives rise to important

sources of variations in labor intensity.

In Section 3, I adopt a heterogeneous firm model developed by Vogel and Burstein (2016) with

capital-biased productivity motivated by these facts. Intuitively, heat shocks working through

the labor productivity channel would have heterogeneous response from firms with different ini-

tial (within-industry) productivity draws, along with other firm-level covariates.

7A large body of empirical and theoretical trade literature has highlighted the importance of considering firm
heterogeneity in response to changes in trade barriers and product market shocks. (Bernard and Jansen, 1999)
(Melitz, 2003) (Chaney, 2008) (Bernard et al., 2012)
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Table 1: Standardized coefficients of productivity on firm characteristics

Productivity (V.A./employee) Obs

(1) (2) (3)*
Total V.A. .3732** .3659** .3732** 72,153

(.1670) (.1646) (.1670)

Total Sales .3387*** .3276*** .1474*** 72,076
(.1020) (.0998) (.0378)

Exporter status .1032*** .1276*** .1603*** 56,862
(.0091) (.0101) ( .0111)

Capital/Prd employee 0.0271 .0257 .0206** 71,756
(.0238) (.0230) (.0085)

Nonprd/Prd employees .0891*** .0764*** .0667*** 72,132
(.0194) (.0174) ( .0136)

Labor Intensity (Wage bill/V.A.) -.2916*** -.2811*** -.2406*** 72,153
(.0099) (.0095) (.0060)

Wages/employee .4256*** .4123*** .2681*** 72,153
(.0355) (.0388) (.0114)

2-digit industry F.E. No Yes No

(a)This table shows standardized coefficients from a regression of firm productivity
(measured by V.A. per employee) on firm characteristics. (b)The first 2 columns use
current period productivity (c)*Column 3 uses pre-period productivity, ranked within
2-digit ISIC codes. (d)Errors are clustered at the firm-level (e)*p<0.10, **p<0.05,
***p<0.01
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To illustrate the variation in temperature by kabupaten, Figure 2 plots the daily mean tem-

perature averaged from 1997-2011. Figure 3 plots the difference in yearly average temperature

between 2012 and 1997. Many regencies in the East Java region where manufacturing firms

are clustered have a higher average temperature baseline, and experienced warming through the

sample period. In the empirical analysis, I explore year-to-year temperature shocks by kabu-

paten, defined as deviations from the kabupaten, and year-by-island mean temperature.

Finally, Figure 4 shows geographic firm size distribution. Firms are categorized into quantiles

within their respective two-digit ISIC industry according to their average value-added output

through the sample period. There is a cluster of small firms in the East Java region. In the

empirical analysis, I include region or firm fixed effects to exclude initial spatial sorting.

Figure 2
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Figure 3: Yearly average temperature difference between 2012 and 1997

Figure 4: Firm size distribution by quantiles within two-digit ISIC industry
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3 The Model

I begin with a model where firms are monopolistically competitive and derive how firms with

different productivity draws optimally choose their factor intensity under temperature shocks.

To echo the empirical facts on within-industry firm productivity and labor intensity reported

in the previous section, I adopt a production function developed by Burstein and Vogel (2016)

where more productive firms are also less labor intensive.

To the original production function, I add an element of temperature shocks faced by the firm

modeled as a change in labor productivity. This modeling choice is motivated by the empirical

literature on thermal stress and labor productivity impact discussed earlier. There are many

other channels through which manufacturing firms could be affected by heat shocks. Section 5

offers a brief discussion of mechanisms and offer empirical support that the direct thermal stress

channel is important in the Indonesian context. In this section, focusing on the direct physio-

logical channel, I show how within-industry firm heterogeneity in productivity could condition

their responses to heat shocks.

3.1 Temperature Shocks

Temperature shocks influence manufacturing production through changes in labor productivity.

In this section, I assume that heat exposure negatively impact production (or unskilled) workers

more than skilled workers, and labor productivity more than capital productivity.

Specifically, temperature enters the firm’s production function through labor productivity F (T ),

which is modeled flexibly to allow for possible nonlinear relationship between temperature and

labor productivity. Numerous empirical studies suggest that F (T ) is single-peaked, with a

global maximum at the ideal body temperature point t0, although the value of t0 could differ

by population and geographic characteristics.

3.2 Demand

As in Melitz (2003), the representative consumer has CES utility over a continuum of goods,

each produce by a single firm, indexed by ω.
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U = [

∫
ω∈Ω

q(ω)σdω]1/σ (1)

Consumption varieties has the elasticity of substitution σ. Here I assume that consumption goods

are substitutes, i.e. σ > 1. Solving the consumer’s utility maximization problem, we can de-

rive the demand function for an individual variety ω, given by q(ω) = p(ω)−σRP σ−1 = Γp(ω)−σ.

R is the national income, and P is the national price index. For now in the partial equilibrium

analysis, both are assumed to be fixed and taken as exogenous under regional temperature

shocks. In addition, I assume that there’s a numeraire good in an outside agricultural sector

which fixes wage.

3.3 Production

Firms face monopolistic competition and each produces variety (ω, j) where j is the industry

index. There are two factors of production, capital k, and labor l. Let ρ denote the elasticity of

substitution between factors. I assume for now that factors are substitutes with the elasticity

ρ > 1. Each industry j faces a sector total factor productivity A(j).

In order to produce, firms have to incur a fixed cost f . Upon entry, each firm has a productivity

draw, from an i.i.d. distribution of random variables z(ω, j) = u−θ, where u is exponentially

distributed with mean and variance 1.

To capture the empirical fact that more productive firms are also less labor intensive, I employ a

production function with ”capital-biased productivity” proposed by Burnstein and Vogel (2016).

y = A(j)z(ω, j) ∗ [α
1
ρ

j (z(ω, j)
φ
2 k)

ρ−1
ρ + (1− αj)

1
ρ (z(ω, j)

−φ
2 F (T )l)

ρ−1
ρ ]

ρ
ρ−1 (2)

αj is the industry input elasticity. z(ω, j) represents within industry productivity. Both

αj ∈ (0, 1) and φ ∈ [−2, 2] shape the labor-intensity of production.

In addition to the firm’s initial productivity draw z(ω, j), temperature shapes labor productivity

through F (T ). Beyond the ideal body temperature point, increases in temperature reduces
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effective labor. The production function given in equation 2 deviates from the classic CES

production function by incorporating the ”capital-biased productivity” mechanism, assuming

φ(ρ−1) > 0. This is reflected in the equilibrium condition that firms with a higher productivity

draw z(ω, j) also has a higher capital to labor ratio.

3.4 Price-Setting

The production function given in equation 2 has constant returns to scale and a constant

variable cost c(r, w, z). The firm therefore sets its price p, maximizing profit according to:

pq(ω) − cq(ω) − f = Γp1−σ − c(r, w, z)p−σ − f . From the profit function, we can derive the

optimal price: p(ω)∗ = σ
σ−1c. As in the Melitz model, we also have that optimal price is a

constant mark-up of the constant variable cost.

It is worth noting that in the monopolistic competition setting with CES preferences the price

of a variety (ω, j) does not depend on the number of competing firms in the market. The price

elasticity of demand for any variety also does not respond to changes in the number or prices of

competing varieties.

For now, I continue the baseline model with the settings in Melitz (2003), the optimal quantity

produced is:

q(ω) = Γ(
σ

σ − 1
c)−σ = Gc−σ (3)

where G = Γ( σ
σ−1)−σ = RP σ−1( σ

σ−1)−σ and the firm’s profit is π(ω)∗ = 1
σ−1Gc

1−σ − f .

3.5 Expenditure Minimization

To derive the firm’s optimal factor choices, I solve the following expenditure minimization prob-

lem. A firm in industry j, producing variety ω, faces the following cost minimization problem

upon entry:

min
k,l

e = wl + rk + f, s.t : y = x (4)

From the equilibrium condition of the cost minimization problem, I derive the capital-to-labor

ratio equation which illustrates the ”capital-biased productivity” mechanism in the production
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function.

k(ω, j)

l(ω, j)
= (

r

w
)−ρ

αj
1− αj

z(ω, j)φ(ρ−1)F (T )1−ρ (5)

Here we see that when φ(ρ − 1) > 0 as assumed before, firms with a higher productivity draw

z(ω, j) will have a higher capital to labor ratio in equilibrium, thus productivity is capital-

biased. Assuming factors are substitutes, or ρ > 1, we see that the firm’s capital to labor ratio

increases as temperature shocks decrease labor productivity. The equilibrium-level of capital to

labor ratio is shaped by both industry parameters, φ and ρ, as well as the within industry firm-

specific productivity, z(ω, j), which is the key parameter for comparative statics and empirical

analysis.

3.6 The Zero Profit Cutoff Condition

Next, I look at how temperature shocks impact firm exit and regional productivity cutoffs. From

optimal price-setting, we know that each firm has the maximized profit π(z) = 1
σ−1Gc(z, T )1−σ−

f . We can show that c(z, T ) is monotonically decreasing in z, and monotonically increasing in T .

For any fixed temperature T , there exist a unique productivity cutoff z∗ such that π(z∗) = 0,

so that any firm with a productivity draw z < z∗ will immediately exit and never produce. The

zero cutoff productivity z∗ is given by the condition:

c(z∗) = [
f(σ − 1)

RP σ−1( σ
σ−1)−σ

]
1

1−σ = [
f(σ − 1)

G
]

1
1−σ (6)

3.7 Comparative Statics

Prediction 1: Less productive firms are more likely to exit under heat shocks.

Intuitively, as temperature increases in a region and everything else staying the same, unit cost

of production also increases. From equation 6 we see that the marginal firm which satisfies

the zero profit cutoff condition has a fixed unit cost c(z∗). Since unit cost as a function of the

productivity cutoff c(z∗) is pinned down by deep parameters in the model and has to remain

the same, the productivity cutoff z∗ must increase. Absent of significant adaptation behavior,
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less productive firms in a region-year which experienced temperature shocks will be more likely

to exit through the physiological channel.

Prediction 2: Less productive firms will have larger percentage output loss from heat shocks.

Prediction 3: As temperature increases, firms will re-optimize factors by switching from capital

to labor, or from unskilled workers to skilled workers

So far in the model, we have used k to represent capital and l to represent labor. When capital

adjustment cost is high, firms may substitute unskilled workers with skilled workers as long as

the former is more negatively affected by heat shocks than the later. Empirical observations

support this claim in two ways. First, there is evidence that the performance of manual tasks is

more impacted than cognitive tasks under thermal stress 8. Second, skilled workers may operate

in environment with better climate control, as suggested by Indian factory-level evidence from

Somanathan et al,. (2015).

From Table 1, we know that firms with larger within-sector productivity is associated with higher

skilled-to-unskilled worker ratio. We could substitute the ”capital-biased mechanism” with a

”skill-biased mechanism”, where the two factors of production are skilled and unskilled labor.

Taking log on both sides of equation (5) and assume that factors are substitutes, or ρ > 1, we

see that the skilled to unskilled worker ratio will increase as temperature increases.

8In a study using matadata, Ramsey (1995) found that for perceptual motor tasks, performance is lowered
with high temperature exposure, although no dominant effect of thermal level was found on mental/cognitive
tasks.
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4 Empirical Results

4.1 Firm Exit

Are less productive firms more likely to exit under temperature shocks? Prediction 1 derived

from the zero profit condition in section 3.7 suggests that as temperature increases and labor

productivity decreases, firms who continue to produce need to have a higher initial productivity

draw. This subsection examines the empirical evidence for this prediction in a discrete time

hazard framework.

To construct a panel of firm exit typical for hazard analysis, I treat the first year that a firm is

in the survey as its entry year and last year in the survey as the exit year. The sample period of

analysis is from 2001-2012. I start with all firms that are present in the initial year, 2001, and

look at exit outcomes thereafter. The binary variable on exit takes a value of zero if a firm does

not exit in the next period, and one otherwise.

Firms were put into three bins according to their initial within-sector productivity. Initial pro-

ductivity bins were obtained by ranking each firm’s value-added per worker in the year 2001

within their respective two-digit ISIC industry codes. This is therefore a measure which reflects

within-industry productivity. I define the year 2001 as the pre-period and examine the effects

of subsequent regional temperature shocks on firm exit. Exit behavior exhibits duration depen-

dence, so that the likelihood of exit depends on the elapsed time that the firm has been in the

sample.

4.1.1 Empirical Strategy

The empirical framework I use is a discrete time hazard model. The probability of firm exit in

any period is a function of the elapsed duration of the firm’s survival τ , the initial productivity

bin that the firm belongs to, pdtysi , and the temperature facing the firm in the current period,

tempi,τ+1. Each spell is represented as a sequence of (0, 1) observations.
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P (tij = τ + 1 | tij > τ, pdtysi ∗ tempi,τ+1, pdty
s
i ∗ raini,τ+1, pdty

s
i ∗ humidityi,τ+1, pdty

s
i ∗ age2001

i , θjt)

= g(τ, pdtysi ∗ tempi,τ+1, pdty
s
i ∗ raini,τ+1, pdty

s
i ∗ humidityi,τ+1, pdty

s
i ∗ age2001

i , θjt)

(7)

Exit is a binary variable that takes the value of one if the firm exits in the next period and

zero otherwise. pdtysi are dummies for whether firm i’s initial productivity rank is in the sth

tercile within their industry, with s = 1, 2, 3. tempi,τ+1 measures the temperature faced by

firm i in period τ + 1. Duration dummies τ are included to nonparametrically model duration

dependence. This yields a cross-section regression where I look at how current period temper-

ature influences firm exit across time-invariant productivity bins, controlling for other covariates.

To the baseline hazard model, I add in a set of fixed effects to control for other variations in the

data possibly correlated with regional average temperature. Year*Industry fixed effects control

for product demand shocks. Year*Island fixed effects control for island-specific business cycles.

Industry*Island fixed effects control for island-specific industry specializations. Because of the

inclusion of these fixed effects, the regional variations in temperature I am exploiting are tem-

perature shocks, measured as deviation from the year-by-island, year-by-industry average.

To address the fact that firms with different initial productivity ranks and initial age may have

distinct exit probability, I include a firm’s initial productivity by age-in-2001 bins, pdtysi ∗age2001
i ,

to control for the main effects on exit. Finally, I control for productivity-bin-specific relative hu-

midity and rainfall. Standard errors are clustered two-way, at the firm-level and kabupaten*year

level.
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4.1.2 Results

I begin by presenting the results on exit patterns for firms in different initial productivity bins.

Table 2 shows the coefficients on the interaction terms of firm’s initial productivity bins with

temperature and humidity. The interaction terms with rainfall are controlled for but omitted

from the reported table. All coefficients are multiplied by 100. Pdtybin12001 corresponds to

firms with the smallest initial productivity tercile ranking, measured by value-added per worker

in 2001 within their respective two digit ISIC industry codes.

Table 2: Differential firm exit under heat shocks (main)

(1) (2) (3)
exit exit exit
b/se b/se b/se

Pdtybin12001*Temperature 1.1586** 1.1687** 1.4018***
(0.571) (0.549) (0.529)

Pdtybin22001*Temperature 0.2891 0.3626 0.5114
(0.470) (0.452) (0.440)

Temperature 2.0434*** 2.1497*** 1.9731***
(0.476) (0.561) (0.535)

Pdtybin12001*Humidity 0.2311 0.2380 0.2654*
(0.151) (0.145) (0.145)

Pdtybin22001*Humidity -0.0217 -0.0054 0.0175
(0.120) (0.117) (0.117)

Humidity 0.4088*** 0.5833*** 0.5305***
(0.128) (0.178) (0.173)

Observations 108187 108187 108187
Year*Industry FE Yes Yes Yes
Year*Island FE Yes Yes
Industry*Island FE Yes
Bin*Age2001 Yes Yes Yes
Clustering Firm, KabuXYear Firm, KabuXYear Firm, KabuXYear
Y(mean): pdtybin1 9.81 9.81 9.81
Y(mean): pdtybin2 8.11 8.11 8.11
Y(mean): pdtybin3 7.29 7.29 7.29

(a) *p<0.10, **p<0.05, ***p<0.01 (b) PdtybinS2001 ∗ Temperature are the interaction terms
of the firm’s pre-period within-industry productivity ranks and yearly average temperature (c)
Controls for rainfall, BinsXRain, BinsXAge2001 and duration dummies are omitted from the
table. (d) All coefficients are multiplied by 100

Column (1) - (3) demonstrates a cascade of specifications with increasingly more restrictive fixed

effects. The temperature variation exploited here are deviations of the annual average kabupaten
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temperature from the year-by-island, year-by-industry averages. Pdtybin32001 is omitted from

the regression, so that the interpretation for the main effect on temperature is for firms with the

largest initial productivity. Pdtybin2001
1 ∗ Temperature gives the differential exit propensity for

firms in smallest initial productivity bin.

We focus on estimates from the preferred specification in column (3), where year*industry,

year*island and industry*island fixed effects are all included. We see that an increase in yearly

average temperature makes it more likely for all firms to exit. Moreover, exit propensity for

firms with the smallest initial productivity is significantly higher under heat shocks, consis-

tent with earlier theory prediction. In particular, one degree Celsius increase in average yearly

temperature from the year-by-island, year-industry mean increases the probability of exit for

firms in the largest productivity bin by 1.97%, and for firms in the smallest initial productivity

bin by 3.37%. This corresponds to a 27.02% increase in exit propensity relative to the base-

line average firm exit rates (7.29%) for firms with the largest initial productivity, and 34.35%

increase in exit propensity relative to the baseline (9.81%) for the initially least productive firms.

These results suggest that temperature shocks have significant impact on manufacturing firm

exit in the context of Indonesia, and that these extensive margin effects are larger for firms

with the smallest initial within-industry productivity. Importantly, a firm exit in this paper is

defined as the firm exiting the survey. Given that the Statistik Industri only contains firms with

more than 20 employees, this could mean the firm is either going out of business, downscaling

to below 20 employees, or becoming informal.

Intensive margin analysis conducted at the firm-level in the Indonesian context is therefore

subject to survival bias. In the following subsection, I present aggregate-level results aiming to

mitigate selection concerns.

4.2 Resource Redistribution: Combined Effects

Do temperature shocks redistribute value-added output from less productive to more productive

firms? The answer involves a combination of the extensive margin changes (which firms are more

likely to exit), and the intensive margin changes (how output changes for each surviving firm).
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The extensive margin results in section 4.1 suggest that less productive firms are more likely to

exit under regional heat shocks. In this subsection, I aggregate firms within each productivity

bin, industry and kabupaten to examine the differential net effect of heat shocks on firms’ com-

bined margins, and within-industry resource reallocation.

I start with the full sample of the unbalanced panel, covering the years 2001-2012. Contrary to

the regressions on exit propensity, I include not only firms that were in the sample in 2001 but

also firms that entered later into the survey. This means the extensive margin changes will now

account for both firm entry and exit. Value-added output for each year measured in the Indone-

sian rupiah is adjusted using the GDP deflator from the World Bank National Account Database.

To construct the time-invariant productivity tercile cutoffs for each two-digit ISIC industry, I

first rank the annual productivity for each firm within their industry, and take the average of

tercile cutoffs across all years for each industry. Each firm is then placed in a productivity tercile

based on its productivity in the first available year since 2001. This gives us the firm-specific,

time-invariant initial productivity ranking within the industry a firm belongs to.

In order to account for both the intensive and extensive margin changes for firms in each pro-

ductivity tercile, I aggregate the value-added output for firms in each productivity bin, region,

industry and year so that the new unit of analysis is at the productivity bin*region*industry

level. Given the results on exit, analysis for the intensive margin at the firm-level would be

subject to selection bias. Aggregating to the productivity bin-by-region-by-industry level would

lessen this concern. Within each productivity tercile, both firm exit and output reduction will

show up as a decrease in the aggregate value-added output.
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4.2.1 Empirical Strategy

The combined effect of temperature shocks on firms in each productivity tercile is estimated

with the following fixed effects model:

yit = α0 +
∑
s

α1sPdtyBin
initial
is ∗ Temperatureit +

∑
s

α2sPdtyBin
initial
is ∗Humidityit

+
∑
s

α3sPdtyBin
initial
is ∗Rainit + βsPdtyBin

initial
is ∗ t+ θi + σjt + γrt + εit

(8)

Here we are interested in how the aggregate value-added output at the region-industry level for

firms in each productivity tercile is impacted by temperature shocks. I control for bin*region*industry

fixed effects, and focus on the changes across years for the within estimator. The outcome

of interest, yit, measures the log of value-added output, or percentage changes in output.

PdtyBininitialis are dummies for whether the aggregate-level observation i’s initial productiv-

ity rank is in the sth tercile within their industry, with s = 1, 2, 3. Temperatureit measures the

average annual temperature for observation i in year t.

Similar to the specification in 4.1.1, I also include a rich set of fixed effects to control for concur-

rent shocks which may be correlated with the observed weather variations. I add Year*Industry

fixed effects, to control for year-specific unobserved heterogeneity related to industry demand

or factor prices. Year*Island fixed effects control for year-specific regional business cycles. The

identification of α1s comes from the differential impact of temperature on the aggregate output

of firms in different productivity bins.

To exclude the possibility that the differential impact on the combined margin is driven by

weather variables other than temperature, I control for productivity-bin-specific annual cumu-

lative rainfall, and annual average relative humidity. Finally, I allow for differential time trends

for each productivity bin. Standard errors are clustered at the bin*kabupaten*industry level.
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4.2.2 Results

Table 3 presents the combined effects of temperature shocks on aggregate value-added out-

put. The three specifications with increasingly restrictive fixed effects yield numerically similar

estimates. We focus on the preferred specification in column 3, where shocks are defined as

temperature deviation from the year-industry, year-island, and kabupaten average. Firms in the

smallest productivity tercile experienced a significant percentage decrease in aggregate value-

added output as temperature increases, while firms in the largest productivity tercile experienced

a marginally significant percentage increase.

Across specifications in columns 1-3, we observe that heat shocks redistribute value-added out-

put on the aggregate, from the least productive firms, to the most productive firms in each

industry. In particular, one degree (Celsius) increase in yearly average temperature from the

kabupaten, year-industry, year-island average leads to a 10.37% percentage loss in aggregate

output for firms in the smallest initial productivity tercile. This negative impact results from a

combined intensive and extensive margin changes. Firms in the largest productivity bin incur

a marginally significant percentage increase of 6.85% in aggregate output per 1◦C increase in

temperature. Since the SI only include medium and large establishments with employment more

than 25, I do not observe the effects on the smallest firms.

Comparing these results with previous studies in the literature 9 which consistently find a 2.5%

percent decrease in aggregate industrial output per 1 degree (Celsius) increase in yearly tempera-

ture, we see that the magnitude of impact from temperature shocks on the least productive firms

may be much larger than the industry aggregate. Changes in aggregate output and per capital

income under temperature shocks could be accompanied with substantial resource reshuffling

within each industry.

9Dell, Jones and Olken (2012), Jones and Olken (2010)
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Table 3: Temperature Shocks and Combined Effects on Output
(1) (2) (3)

ln(vlad) ln(vlad) ln(vlad)
b/se b/se b/se

Pdtybin1initial*Temperature -0.1049*** -0.1037*** -0.1037***
(0.035) (0.038) (0.038)

Pdtybin2initial*Temperature -0.0321 -0.0323 -0.0323
(0.032) (0.035) (0.035)

Pdtybin3initial*Temperature 0.0666* 0.0685* 0.0685*
(0.035) (0.038) (0.038)

Pdtybin1initial*Humidity -0.0338*** -0.0373*** -0.0373***
(0.007) (0.009) (0.009)

Pdtybin2initial*Humidity -0.0155* -0.0190* -0.0190*
(0.008) (0.010) (0.010)

Pdtybin3initial*Humidity 0.0142** 0.0108 0.0108
(0.007) (0.009) (0.009)

Observations 31329 31329 31329
Year*Industry FE Yes Yes
Year*Island FE Yes Yes
Kabu*Bin*Industry FE Yes Yes Yes
Bin*time Yes Yes Yes
Clustering bin*kabu*year bin*kabu*year bin*kabu*year

Given the results on temperature shocks and firm exit, one important motivation for conducting

the combined margin analysis on the aggregate level is to mitigate concerns of selection bias,

which arises in firm-level intensive margin analysis for the Indonesian context. In the next sub-

section, I present firm-level intensive margin results using the original unbalanced panel, and

provide suggestive evidence that the ”selected” firms behave differently due to changes in market

structure and/or better adaptation behavior.

4.3 Factor Substitution and Intensive Margins

The remaining analysis uses the unbalanced panel and conduct analysis at the firm-level. First,

we look at evidence for factor substitution within firms under temperature shocks. Second, I

present results on firm-level output and suggest that selection bias is an important consideration

when interpreting these estimates.
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4.3.1 Factor Substitution

Taking logs on both side, I transform the equilibrium condition in equation 5 to the following

equation which directly relates capital to labor ratio with labor productivity F (T ):

ln[
k

l
]it = β0 + θ1F (T )it + ri + εit (9)

Both the industry-specific input elasticity αj and the firm-specific productivity draw z(ω, j) are

absorbed in the firm-fixed effect term ri. As discussed previously, θ1 = σ(ρ − 1) is assumed to

be larger than zero under the ”capital-biased productivity” mechanism.

Absent of adaptation behavior such as air-conditioner installation, a degree increase in temper-

ature would lead to the same percentage change in the capital to labor ratio for all firms. In

other words, firm-level heterogeneity does not necessarily lead to different factor substitution

behavior under temperature shocks. However, if the initially more productive firms have higher

air-conditioner penetration rate, the same temperature shock would lead to a smaller decrease

in labor productivity F (T ) for these firms. As a result, we would observe less factor substitution

for more productive firms as temperature increases.

I take the original unbalanced panel and construct initial productivity bins following the pro-

cedure described in section 4.2. To test whether firms adjust factor inputs under temperature

shocks, and whether these adjustment responses differ across firm productivity bins, I estimate

the following firm fixed-effect model:

yit = α0 +
∑
s

α1sPdtyBin
initial
is ∗ Temperatureit +

∑
s

α2sPdtyBin
initial
is ∗Humidityit

+
∑
s

α3sPdtyBin
initial
is ∗Rainit + βsPdtyBin

initial
is ∗ t+ ηi + σjt + γrt + εit

(10)

This specification is essentially the same as equation (8) for the combined margins, but without

aggregating to the bin*kabupaten*industry level. The fixed effect ηi is therefore at the firm level.

Standard errors are clustered two-way, at the firm and kabupaten-by-year level. The outcome of

interest, yit, measures the log of capital intensity or alternatively, skill intensity. Capital inten-

sity is defined as the firm’s estimated capital over the number of production workers. Capital
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each year is adjusted using the GDP deflator from the World Bank. Skill intensity is measured

as the firm’s number of skilled (non-production) workers over the number of unskilled (produc-

tion) workers.

Here I use the the terms skilled workers/non-production workers, and unskilled workers/production

workers inter-changeably. Although the production/nonproduction division does not map per-

fectly into skill levels, previous research using the SI showed that the average level of education

attainment is much higher for nonproduction workers than production workers. 10

In addition to firm fixed effects, I include year*island, year*industry, industry*island fixed ef-

fects, and productivity bin specific rainfall, humidity and time trends as before. Column (1)

and (2) in Table 4 show results on two kinds of factor substitution within firms: switching from

unskilled workers to skilled workers, and switching from unskilled workers to capital. Figure 5

plots the coefficients on the interaction terms of a firm’s initial productivity and temperature,

corresponding to the specification in column 1. We observe significant factor switching from

unskilled to skilled workers, but only for firms with the smallest initial productivity. There

is no evidence for factor substitution from unskilled labor to capital, possibly because of non-

negligible capital adjustment cost.

10See for example, Amiti and Cameron (2011)
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Figure 5: Factor substitution to skilled labor

Table 4: Temperature Shocks and Firm-level Factor Substitution
(1) (2) (3)

lmp ratio lCaptoProd lrawimp ratio
b/se b/se b/se

Pdtybin1initial*Temperature 0.0565*** 0.0124 0.0837**
(0.020) (0.024) (0.041)

Pdtybin2initial*Temperature 0.0024 0.0232 0.0560
(0.016) (0.023) (0.035)

Pdtybin3initial*Temperature -0.0045 0.0368 0.0550**
(0.015) (0.029) (0.028)

Pdtybin1initial*Humidity 0.0095** 0.0036 0.0120
(0.004) (0.005) (0.008)

Pdtybin2initial*Humidity -0.0017 0.0048 0.0113
(0.003) (0.005) (0.007)

Pdtybin3initial*Humidity -0.0073** 0.0056 0.0026
(0.003) (0.006) (0.006)

Observations 212197 153435 35406
Year*Industry FE Yes Yes Yes
Year*Island FE Yes Yes Yes
Bin*Time Yes Yes Yes
Firm FE Yes Yes Yes
Clustering Firm, KabuXYear Firm, KabuXYear Firm, KabuXYear
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Evidence from the physiological literature suggests that heat exposure may impact the perfor-

mance of manual tasks more than cognitive tasks. 11 Another possible explanation is that skilled

workers may work in conditions with better climate control, as suggested by Indian factory-level

evidence from Somanathan et al,. (2015) To the extent that the negative labor productivity

shock is larger for manual task workers than for cognitive task workers, firms would adapt to

heat shocks by switching to skilled workers.

A unique feature of the Statistik Industri is that it includes variables on imported raw materials

and total raw materials, which allows us to look at firm switching from domestic to imported in-

termediate inputs. These measures have been previously exploited in Amiti and Konings (2007)

to examine the effects of input tariff reduction on firm productivity. Column (3) in Table 4 shows

the differential impact of temperature shocks on log(imported input/total input). One degree

(Celsius) increase in yearly average temperature relative to the year*industry, year*island, kabu-

paten mean leads to a 8.37% increase in the imported input ratio for the initially least productive

firms, and a 5.5% increase for the initially most productive firms. This evidence suggests that

temperature shocks may also operate through an agricultural channel and influence domestic

input prices, in addition to the physiological channel this paper focuses on.

4.3.2 Intensive Margins

To look at firm-level changes on the intensive margin, I follow the exact same specification in

equation (10). The outcome of interest yit is log(value-added output), or the percentage change

in output. This estimator is identified through within-firm output changes for firms in different

productivity bins under temperature shocks, conditional on being observed in the SI (survival).

Figure 6 illustrates how value-added output changes as temperature increases for firms in dif-

ferent productivity bins. This corresponds to column (3) in Table 5, where firm fixed effects,

year-industry fixed effects and year-island fixed effects are all present. We see the surviving firms

with the largest initial productivity increased their value-added output as temperature increases

11In a study using matadata, Ramsey (1995) found that for perceptual motor tasks, performance is lowered
with high temperature exposure, although no dominant effect of thermal level was found on mental/cognitive
tasks.
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while the initially least productive firms incur a smaller, marginally significant loss.

Figure 6: Firm-level value-added output

Table 5: Temperature Shocks and Firm-level Output
(1) (2) (3)

ln(vlad) ln(vlad) ln(vlad)
b/se b/se b/se

Pdtybin1initial*Temperature -0.0234 -0.0363* -0.0394*
(0.019) (0.021) (0.020)

Pdtybin2initial*Temperature 0.0245 0.0083 0.0075
(0.015) (0.018) (0.017)

Pdtybin3initial*Temperature 0.1294*** 0.1173*** 0.1143***
(0.018) (0.020) (0.019)

Pdtybin1initial*Humidity -0.0089** -0.0162*** -0.0159***
(0.004) (0.005) (0.005)

Pdtybin2initial*Humidity 0.0052* -0.0024 -0.0024
(0.003) (0.004) (0.004)

Pdtybin3initial*Humidity 0.0286*** 0.0212*** 0.0204***
(0.004) (0.004) (0.004)

Observations 238889 238889 238889
Year*Industry FE Yes Yes
Year*Island FE Yes Yes
Bin*Time Yes Yes Yes
Firm FE Yes Yes Yes
Clustering Firm, KabuXYear Firm, KabuXYear Firm, KabuXYear
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Comparing the previous aggregated combined margin results in Table 3, column (3), with the

firm-level intensive margin results in Table 5, column (3), some interesting patterns emerge. The

negative impact of a heat shock on the initially least productive firms decreases from 10.37%

to a marginally significant 3.94%. The firm-level intensive margin analysis also yields a larger,

more significant impact on the initially most productive firms.

One important consideration in interpreting these large, positive impact of heat shocks on firm-

level output is the presence of survival bias. In section 4.1, I show that heat shocks lead to

firm exit and the attrition is differentially higher for the initially less productive firms. In other

words, looking at the intensive margin changes at the firm-level would only give us the treat-

ment effect on firms what survived. These firms are likely to be better adapted to temperature

shocks. Further, as we have seen previously how heat shocks lead to firm exit and shifts in mar-

ket structure, the positive impact could also occur as the surviving firms gain larger market share.

5 Mechanisms

Main results in this paper are motivated by micro-level evidence of the physiological channel,

that is, the negative labor productivity impact of temperature shocks on manufacturing workers.

However, there are many other potential mechanisms through which variations in temperature

could affect manufacturing firms. For example, heat shocks could lead to changes in agricultural

income and generate local demand shocks (Burke and Emerick, 2016). Higher temperature may

affect manufacturing firms through input/output linkages with agriculture (Acemoglue, et al.,

2012). Heat shocks could also lead to sectoral labor reallocation through influencing crop yields

(Colmer, 2017). In this section, I offer suggestive evidence that the physiological channel is one

of the channels at work in driving the main empirical results.
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5.1 Agricultural Input Linkages

A large strand of literature found significant negative impact of temperature shocks on agri-

cultural yields in both OECD and developing countries. 12 If higher temperature raises the

price of agricultural raw materials, upstream manufacturing firms could face higher cost, reduce

their output or exit. To make sure that previous results are not solely driven by changes in raw

material prices, I exclude two-digit ISIC sectors which primarily use agricultural input.

Table 6 gives a breakdown of the 2-digit industry codes for all manufacturing firms in the SI.

As a robustness check, I exclude firms that are in industries 31, 32, 33 and 34, producing food,

textile, wood and paper products. The remaining sectors mainly use raw materials from the

metals and minerals sector, which is less affected by temperature shocks.

Table 6: Excluding Sectors Using Agricultural Input

12(Fisher et al. 2012) (Guiteras, 2009)(Schlenker and Lobell, 2010)(Lobell, Schlenker, Costa-Roberts, 2011)
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In Table 7, I implement the same fixed effects model as in equation (8), excluding the four indus-

tries which mainly use agricultural input. These coefficients are comparable to previous results

in Table 4. One degree (Celsius) increase in yearly average temperature from the kabupaten,

year-industry, year-island average leads to a 12.91% percentage loss in aggregate output for firms

in the smallest initial productivity tercile. Effects on firms with the largest initial productivity

is statistically insignificant. These results show that the resource reallocation on the aggregate

combined margins does not solely operate through linkages with agriculture.

Table 7: Temperature Shocks and Combined Effects on Output (Robustness)
(1) (2) (3)

ln(vlad) ln(vlad) ln(vlad)
b/se b/se b/se

Pdtybin1initial*Temperature -0.0837* -0.1246** -0.1291**
(0.051) (0.055) (0.055)

Pdtybin2initial*Temperature 0.0131 -0.0360 -0.0395
(0.053) (0.056) (0.056)

Pdtybin3initial*Temperature 0.0627 0.0211 0.0129
(0.055) (0.059) (0.059)

Pdtybin1initial*Humidity -0.0300*** -0.0488*** -0.0485***
(0.011) (0.013) (0.013)

Pdtybin2initial*Humidity 0.0070 -0.0117 -0.0121
(0.013) (0.014) (0.014)

Pdtybin3initial*Humidity 0.0208* 0.0029 0.0009
(0.011) (0.012) (0.013)

Observations 12849 12849 12849
Year*Industry FE Yes Yes
Year*Island FE Yes Yes
Kabu*Bin*Industry FE Yes Yes Yes
Bin*Time Yes Yes Yes
Clustering bin*kabu*year bin*kabu*year bin*kabu*year

5.2 Agricultural labor reallocation

Temperature shocks could affect manufacturing firm outcomes through shifting labor supply.

Jayachandran (2006) and other papers 13 suggest that negative weather shocks would drive

down agriculture wages and lead to outmigration. When inter-sectoral mobility is high and

13(Gray and Muller, 2012) (Feng, Oppenheimer, and Schlenker, 2012) (Feng, Krueger and Oppenheinmer, 2010)
(Munshi, 2003)
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inter-regional mobility is low, if temperature shocks push workers out of agriculture, it could

potentially lead to an increase in manufacturing labor supply. As a result, manufacturing firms

could experience positive impact from temperature shocks due to lower factor prices. (Colmer,

2017)

Since the inter-sectoral labor reallocation mechanism is beneficial to the manufacturing sector

through the provision of lower wage agricultural labor, it is unlikely to be contributing to the

differential exit and combined margin resource reallocation results earlier. In a related project,

I exploit the Brazilian employer-employee matched labor records (RAIS) which track formal

workers across jobs to directly examine the existence of the labor reallocation channel and its

heterogeneous impact on the incumbent manufacturing workforce.

6 Conclusion

There is significant within-industry heterogeneity in climate change impact among manufactur-

ing firms. The initially less productive firms are more likely to exit as temperature increases.

Analysis on the combined margins implies that value-added output reallocate from the initially

less to more productive firms within each industry. Among surviving firms,, we observe fac-

tor substitution from unskilled to skilled workers, and firms switching from domestic to foreign

intermediate input. The initially more productive firms that survived also incur output gain

under heat shocks possibly due to shifts in market structure or selection.

In developing countries such as Indonesia where electrification capacity and per capita income

remain relatively low, air conditioners are not widely installed for manufacturing. Firm size

distribution in poorer countries also tends to be more skewed to the left, where less productive

firms are dis-proportionally impacted by heat shocks. As a result, these heterogeneous impact

of heat shocks are not necessarily welfare-enhancing despite of being pro-competitive.

The significant extensive margin changes under temperature shocks highlights the presence of

selection bias intrinsic to the intensive margin analysis at the firm-level in the Indonesian context,

which could potentially lead to underestimation of climate change impact if ignored.
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