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Abstract

Experiments involving games have two dimensions of difficulty for subjects in the
laboratory. One is understanding the rules and structure of the game and the other
is forming beliefs about the behavior of other players. Typically, these two dimensions
cannot be disentangled as belief formation crucially depends on the understanding of the
game. We present a variation of the Two Player Guessing Game (Grosskopf and Nagel,
2008) which turns an otherwise strategic game into an individual decision-making task.
This allows us to perform a within subject analysis of the decisions made for the same
experiment, with and without strategic uncertainty. The results show that subjects with
a better score at the individual decision making task form more accurate beliefs of other
player’s choices, and, additionally, better-respond to these beliefs. We also show that those
who score higher at our individual task modify their beliefs based on the population they
play against. This suggests that out of equilibrium play is mostly driven by a limited
understanding of the game mechanics.
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1 Introduction

Subjects in laboratory experiments consistently deviate from equilibrium behavior (Camerer,

2003). Many models of bounded rationality try to explain these deviations through errors

in belief formation (e.g., Nagel (1995); Ho et al. (1998); Weizsäcker (2003)). A simpler

explanation is that subjects may just not understand the rules of the game. Generally,

when analyzing deviations from equilibrium behavior, one would expect both of these ef-

fects to play a role. However it is typically hard (if not impossible) to distinguish between

the two, as correct belief formation crucially depends on a correct understanding of the

rules of the game. With the help of a novel experiment, we are able to disentangle these

two effects, thus improving the understanding of why subjects deviate from equilibrium

behavior.

An extensive literature has attempted to analyze both belief formation and under-

standing the rules of the game. Costa-Gomes and Crawford (2006) present subjects with

a series of two-player dominance-solvable games and conclude that most subjects under-

stand the games, but play out of equilibrium solutions due to their “simplified models of

others’ decisions.” In Costa-Gomes and Weizsäcker (2008) the authors look at subject’s

actions and their stated beliefs, and find that subjects rarely best respond to their stated

beliefs. However, Rey-Biel (2009) observes that in simplified versions of the games studied

in Costa-Gomes and Weizsäcker (2008), Nash Equilibrium is a better predictor of subject

behavior than any other model based on level-K reasoning.

Another strand of the literature focuses on whether subjects understand the rules

of the game. Using two-person guessing games, Chou et al. (2009) find that subjects

are surprisingly unable to understand the experimental setup they are put in. By using

different sets of instructions for the same game, and by introducing hints, they show that

subjects do not deviate from equilibrium because of cognitive biases, but rather due to

a lack of game form recognition, which they define as the relationships between possible

choices, outcomes and payoffs.

In this experiment, we use a “one-player guessing game” which allows us to measure

how well subjects understand the “mechanics” of the two-player guessing game (Grosskopf

and Nagel, 2008). By comparing subjects’ behavior in this “game” with behavior in a

two-player guessing game, we can analyze to what extent the understanding of the rules
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of the game determines beliefs and their best-responses.1

The experimental results show that subjects who score higher at the one-player guess-

ing game play values closer to the Nash Equilibrium in the two-player guessing game, and

are better at best-responding to their beliefs. Additionally, we show that subjects who

score high at the one-player guessing game change their beliefs according to the popu-

lation they face. This suggests that out of equilibrium play is not only the result of a

limited ability to form correct beliefs, but that it also results from the inability of subjects

to fully understand and solve the game they are participating in.

2 Experimental Design

The experiment consists of four different parts: Subjects first play the one-Player guessing

game (1PG), followed by the two-player guessing game (2PG). After this, we elicit their

beliefs about other subject’s two-player guessing game play. A subset of subjects then

completed an additonal belief elicitaton task (“What-if” Belief Elicitation). At the end

of the experiment, all subjects are asked to answer a battery of cognitive ability tests.

2.1 The One-Player Guessing Game (1PG)

The one-player guessing game was first introduced in Bosch-Rosa et al. (2017) and allows

to test whether subjects can solve the two-player guessing game introduced by Grosskopf

and Nagel (2008) free of any strategic concerns.

In essence, subjects play the role of both players in a two-player guessing game, i.e.

they play the two player guessing game “against themselves”. Accordingly, each subject

(i) picks two numbers xi ∈ [0, 100] and yi ∈ [0, 100] and is paid depending on the absolute

distance of each chosen number to the “target value” which is two thirds of the average of

both numbers. The further away each chosen number is from this target value, the lower

is the payoff. Formally the experimental payoff for choosing number xi and yi is:

π1PG
i (xi) = 1e− 0.05e

∣∣∣∣xi − 2

3

xi + yi
2

∣∣∣∣ (1)

1For convenience we will henceforth refer to the one-player guessing game as a game, even though
strictly speaking it is not one.
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π1PG
i (yi) = 1e− 0.05e

∣∣∣∣yi − 2

3

xi + yi
2

∣∣∣∣ (2)

Subjects are paid for both choices, so their combined payoff is:

Π1PG
i = max

[
π1PG
i (xi) + π1PG

i (yi), 0
]

(3)

The payoff function is maximized at (yi = 0, xi = 0). This solution can be found

through logical induction by starting with a random value x0,i, and then calculating the

“best response” which is y′1,i = 1
2
x0,i. Following this, a “best response to the best response”

can be calculated (x′1,i = 1
2
y′1,i) and so on until reaching the fixed point (x′∞,i = 0,

y′∞,i = 0).

By turning the two-player guessing game into an algebraic problem with no strategic

uncertainty, we can separate those subjects who can solve the mathematical problem asso-

ciated with the guessing game from those who cannot. Furthermore, our payoff structure

allows us to rank every subject in the experiment according to their understanding of the

game (i.e., their payoff in the 1PG).

2.2 The Two-Player Guessing Game (2PG)

The two-player guessing game that we use is an adaptation of the one presented in

Grosskopf and Nagel (2008), and recently used in Nagel et al. (2016). Subjects are

matched in pairs and asked to simultaneously pick a number zi ∈ [0, 100]. In Grosskopf

and Nagel (2008) the winner is whoever picks the number closer to 2/3 of the average of

both numbers, so unlike the games with N > 2 subjects, now zi = 0 is a (unique) weakly

dominant strategy. In our version of the game, the payments are based on the (absolute)

distance of each individual pick to 2/3 of the average of both numbers. Formally, the

payment for player i depends on the choices of player j and her own in the following

way:2

Π2PG
i = max

[
2e− 0.10

∣∣∣∣(Xi −
2

3

zi + zj
2

)∣∣∣∣ , 0] (4)

This small change in payoffs dramatically changes the game as now the equilibrium is

reached through iterated deletion of weakly dominated strategies, and zero is no longer a

2Note that we limited the minimum payoff to zero in order to avoid potential losses for the subject.
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weakly dominant strategy. Now the best response is to choose 1/2 of the number a player

thinks its counterpart chooses.

We opted for this modification of the original game for two reasons. First, it allows

us to de facto ask subjects for a point estimate of their belief about the other subject’s

choice, and secondly, and more important, it makes the game comparable to the 1PG.

2.3 Belief Elicitation

After subjects had played the 1PG and the 2PG (with no feedback in both cases) we

elicited their beliefs about the other players’decisions in the two-player guessing game.

Similar to Lahav (2015), subjects were asked to distribute a total of 19 “tokens” into 20

“bins”.

Each token represented a subject in the session (each session consisted of 20 subjects),

and each bin had a range of 4 integers that players could play in the 2PG (i.e. the first

bin had the range [0,4], the second [5,9], and so on).3.

To incentivize subjects, we used a linear scoring rule that paid e0.10 for each token

that overlapped with the choice of any other subject in the 2PG.4 Formally, define ΠB
i as

the payoff for subject i, bij as the number of tokens that she deposited in bin j, and p−ij

as the number of subjects other than player i that chose a value that falls within bin j in

the 2PG. Then the payoff for belief formation for subject i is:

ΠB
i =

20∑
j=1

0.10e ∗min [bij, p−ij] (5)

.

The resulting distribution of beliefs provides an estimate of what subjects think about

other subjects’ choices, and also allows to analyze how capable subjects are to best respond

to their own beliefs.5

3Figure 10 in AppendixC contains a screenshot of the experiment interface used to elicit beliefs

4For instance, if a subject put three tokens in the bin “5-9” and in her session only 2 subjects had
actually played any value within this range, then she would get paid a total of 20 cents for the tokens
allocated in that bin. If, on the other hand, she placed 5 token in the bin “0-4” and 10 subjects had
played a value in this range, then she would be paid 50 cents for the tokens allocated in that bin.

5There is some discussion about how to best incentivize subjects to state their true beliefs. In partic-
ular, there is mixed evidence on whether incentive compatibility matters or not (Schotter and Trevino,
2014). Methods to elicit beliefs beyond first moments, such as ours, are typically difficult for subjects to
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2.3.1 ”What if” Belief Elicitation

Since there could be some influence of having played the 1PG on the beliefs about the

2PG plays, we additionally elicited beliefs about 2PG plays from subjects who had not

played the 1PG before. Again, subjects were asked to distribute 19 tokens across the

strategy space. The only difference was that, this time, subjects were asked to guess the

choices of 19 subjects that had played the 2PG ”a couple of weeks ago, without having

previously played the 1PG”. Beliefs were incentivized as above. A subset of 40 subjects

participated in this task.

2.4 Cognitive Ability

Gill and Prowse (2016) show that subjects who score higher in a Raven Test (Raven, 1960)

choose numbers closer to equilibrium, earn more, and converge quicker to equilibrium in a

three-player guessing game. Since we are interested in studying the ability of subjects to

solve the guessing game, we also tested the cognitive ability of our subjects. In particular,

all subjects answered a Raven Test and played “Race-to-60,” a variant of the Race game

(see e.g. Gneezy et al. (2010), Levitt et al. (2011)).6 The Raven Test is a multiple choice

test in which subjects must pick an element that best completes a missing element in a

matrix of geometrical shapes.7 The score of this test has been found to correlate with

measures of strategic sophistication and the ability of subjects to solve novel problems

(Carpenter et al. (1990)). It is increasingly used in economic research due to its simplicity

and the lack of required technical skills.8

Since logical induction is a central element of the guessing games, we test this ability

with the “Race-to-60” game. In this game, each participant and a computerized player

sequentially choose numbers between 1 and 10, which are added up. Whoever is first

understand. Using a non-linear scoring rule would introduce an additional level of complexity. Hence,
while not incentive compatible for risk neutral subjects, we opted for this approach because we believe it
provides the best compromise between tractability for subjects and incentivization efficacy.

6While in Gill and Prowse (2016) subjects go through all 60 matrices of the original Raven Test, in
our case subjects just took part in three of the hardest blocks of 12 matrices.

7Figure 11in AppendixC contains a screenshot of the experiment interface.

8Another important reason why we prefer the Raven test over alternatives such as the Cognitive
Reflection Test (Frederick (2005)) is that we have found out that many of our subjects have seen the
CRT outside of the lab, while the Raven test is not as known. Additionally, we hypothesize that previous
experience with Raven matrices distorts the measure less than previous experience with the CRT.
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to push the sum to or above 60 wins the game. The game is solvable by backward

induction, and the first mover can always win.9 Subjects always move first and therefore,

independently of the computer strategic sophistication, they can always win the game.10

3 Results

A total of 80 subjects participated in this experiment. All subjects were recruited through

ORSEE (Greiner, 2004) and were mostly undergraduate students with a variety of back-

grounds, ranging from anthropology to electrical engineering or architecture. Sessions

lasted one and a half hours and were run at the Experimental Economics Laboratory of

the Berlin University of Technology. The experiment was programmed and conducted

with the software z-Tree (Fischbacher, 2007). All results are listed in this section except

the cognitive ability results which can be found in Appendix A.

3.1 The One Player Guessing Game

In Figure 1 we present the results of the 1PG in a scatter plot. Recall that in this case

subjects have to pick two numbers, (xi, yi); the first number is depicted on the horizontal

axis, the second on the vertical axis. In light blue we show those subjects that fully solved

the game (0,0). The diagonal dashed line marks the points where a subject picked the

same number for xi and yi. This is an important indicator as in this task there are two

ways in which a subject (that has not fully solved the game) can improve her payoffs; by

picking numbers closer to zero, and/or by picking numbers that are closer to each other.11

In Figure 1 we cans see how subjects who play numbers closer together, also play num-

bers closer to the origin. A Spearman test confirms the correlation between higher average

of both choices and the distance between them (Spearman ρ=0.83, p-value <0.001). We

can therefore confidently use the payoffs of the 1PG as a measure of the understanding

9By picking numbers such that the common pool adds up to the sequence : [5; 16; 27; 38; 49; 60] the
first mover can always win this game.

10As in Bosch-Rosa et al. (2017) the backward induction ability of the computer increased with the
rounds of the game. In the first round the computer could do only one step of backward induction, in
the second it could do two, in the third three, and so on.

11An example for the first case would be picking twice 66, or twice 33. In the former case the subject
would get e0, in the second e.90. For the second case, imagine a subjects has to decide between the pair
(10, 56), and the pair (32, 34), both average 33, but the former pays e0.35 and the latter e0.90.
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Figure 1: Scatter plot of the choices made by each subject. In light blue the choices made by those that
fully solved the game (0,0). See Figure 13 in Appendix C for a zoom in plot depcting only the choices
from [0,50].

of the structure of the guessing game, as those subjects with high payoffs played both

numbers that were close to each other, and to zero. Therefore, from now on, we will use

the payoff in the 1PG as a measure of “understanding” of the mechanics of the guessing

game.

Surprisingly, only a minority (≈31%) of subjects is able to fully solve the task, i.e.

pick zero for both numbers.

Result 1: Only 31% of our subjects fully understand the one-player-guessing game.

While not directly comparable, these numbers are better than those of Grosskopf and

Nagel (2008) where only 10% of their subjects play the (weakly) dominant strategy of

choosing zero. The authors hypothesized that subjects performed poorly because they

were either not realizing how much influence they had in the game, or were trying to

find a fixed point. In our case looking for a fixed point is precisely what subjects should

do, and it is unequivocal that they are in full control of the game. Therefore, neither

of their reasons can explain our subjects’ poor performance. Note, however, that if we

relax the criteria of what it means to “understand” the task to picking both numbers less
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Figure 2: Distribution of choices in the 2PG.

than two, then 30 subjects do so which increases to 37.5% the percentage of subjects that

“understood” the game.

3.2 The Two Player Guessing Game

Figure 2 shows the distribution of choices played in the 2PG. The distribution appears

to be rather different compared to the typical distribution one sees with guessing game

“first timers.” The mass of the distribution is close to zero with 40% of subjects playing

the Nash Equilibrium. The mean is of 13.47 and the median choice is 2. These low

numbers could be the result of two phenomena: introspective learning from having played

the 1PG, a change in beliefs normally formed when playing against subjects with no

experience given that now the pool of subjects has experience. In section 3.4.1 we show

that these low numbers are, in general, a consequence of introspective learning and not

a shift in beliefs. So while most subjects are not able to fully solve the 1PG, there are
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Figure 3: Distribution of choices in the 2PG (vertical axis) and payoff in the 1PG (horizontal axis).

large learning effects derived from thinking about it. Interestingly, the distribution has

no typically observed “spikes” at the values 25 and 12.5. These values have significance

as they would result from level-1 and level-2 reasoning respectively.12

3.3 Relationship between the 1PG and the 2PG

Figure 3 shows the decisions of subjects in the 2PG on the vertical axis, and their payoffs

for the 1PG on the horizontal axis. The negative correlation between both is apparent:

subjects who earn higher payoffs in the 1PG play lower numbers in the 2PG (Spearman

ρ=0.74, p-value <0.001). Moreover, of the subjects who fully solved the 1PG (light blue

dots in Figure 3), 96% (24/25) chose zero in the 2PG.

Result 2: Subjects with a better understanding of the structure of the game (i.e.

higher payoffs in the 1PG) play numbers closer to the Nash Equilibrium.

But, is playing numbers near the Nash Equilibrium the best strategy in the 2PG? To

answer this question we construct Π̄2PG
i . This variable represents the payoff that each

12Notice that these values are different from the usual 33 and 22 in usual Guessing Games, as in the
Two Player Guessing Game subjects need to take into account the weight that their own choice carries
in the final outcome.
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Figure 4: Relationship of payoff in the 1PG (Π1PG
i ) and Π̄2PG

i (left panel). The red line is a fitted
quadratic function. The right panel shows the relationship of choice in the 2PG (zi) and Π̄2PG

i . In both
panels the light blue dots refer to subjects that fully solved the 1PG.

subject i would have gotten had she played against the average choice of all other subjects

j except herself (i.e., j 6= i). Formally Π̄2PG
i is defined as:

Π̄2PG
i = 2e− 0.10

∣∣∣∣∣zi − 2

3

zi +
∑N

j 6=i zj/(N − 1)

2

∣∣∣∣∣ (6)

Figure 4 illustrates the relationship of Π̄2PG
i with both, the payoffs of the 1PG (Π1PGi,

left panel) and choice in the 2PG (zi, right panel). Both graphs show a non-monotonic

pattern (see Figure 14 in Appendix C for a close-up of Figure 4). On the left we see how

subjects who performed very poorly in the 1PG have a low Π̄2PG
i . At the the same time,

subjects who fully solved the 1PG don’t have the highest Π̄2PG
i . This is because they play

the Nash Equilibrium, when payoffs would have been maximized by playing a number

close to 9 as can be seen in the right plot. Regressing Π̄2PG
i on Π1PGi and (Π1PGi)

2

we get a coefficient which is significantly different from zero and negative for the squared

term. This gives statistical support to the fitted quadratic function (red line) in Figure 4.

Result 3: The relationship between ability to solve the 1PG and payoffs in the 2PG

follows a non-monotonic pattern.
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Π̄2PG
i

Π1PG
i 5.519∗∗∗

(0.904)

(Π1PG
i )2 -1.565∗∗∗

(0.353)

Constant -3.389∗∗∗

(0.500)
N 80
adj. R2 0.580
Joint test p-value 0.000

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1: Regression of PayOSi on PaymentSelfi and PaymentSelf2
i .

3.4 Subjective Beliefs

To analyze whether ability to understand the structure of the game (measured by the pay-

off in the 1PG) influences belief formation, we plot Π1PG
i against the number of correctly

guessed tokens in the left panel of Figure 5. Again, in order to avoid noise due to session

specific outliers, we compute the number of correct tokens by comparing individual beliefs

to the distribution of 2PG choices over all sessions (for more details see Appendix B).

A clear pattern arises in which subjects who score higher in the 1PG get guess a larger

number of correct tokens (Spearman ρ=0.583, p-value<0.000).

Result 4: Subjects with a better understanding of the structure of the game (i.e.,

higher payoffs in the 1PG) have more accurate beliefs.

On the right panel of Figure 5 we plot the distribution of tokens (horizontal axis)

against the payoff in the 1PG (vertical axis). While subjects who score low in the 1PG

spread out their tokens across most of the strategy space, subjects who performed better

expect their counterparts to play numbers closer to the Nash Equilibrium (Spearman

ρ=-0.513, p-value<0.001).

An interesting question is whether choices in the 2PG are best responses to the stated

beliefs (i.e., the token distribution). To analyze this question we compute the choice in

the 2PG that would maximize the payoff of a subject conditional on her stated beliefs

being correct (Equation 7):
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Figure 5: Payoff in the 1PG vs. number of correct tokens (left panel) and number of tokens assigned to
the different bins (right panel). The purple line on the left panel is a linear fit to the data.

z∗i (B) = arg max
z̃i

20∑
j=1

bij
19

[
2− 0.10

∣∣∣∣z̃i − 2

3

C + b̄j
2

∣∣∣∣] , (7)

where z∗i (Bi) is the choice of subject i that maximizes her payoffs given her beliefs

Bi = (bi1, bi2, ..., bi20), bij is the number of tokens that subject i put in bin j, and b̄j is

the average value of the bin (so for example, for the first bin [0,4], b̄1 = 2, for the second

[5,9], b̄2 = 7, etc.).13 We then create an individual variable ∆z∗i = |zi − z∗i (Bi)| which is

the absolute difference between actual choice of subject i in the 2PG minus the optimal

choice conditional on her stated beliefs. Figure 6 illustrates the relation of ∆z∗i and the

payoffs for the 1PG (left panel) and 2PG (right panel). It is clear that the lower ∆z∗i , the

higher Π1PG
i (Spearman ρ=-0.27, p-value=0.015). Similarly, the lower is ∆z∗i the higher is

Π̄2PG
i (Spearman ρ=-0.32, p-value=0.003). These results imply that those subjects that

scored higher in the 1PG (i.e., that have a better understanding of the guessing game

mechanics) are better able to best respond to their own beliefs. Additionally we find that

13We pick this instead of the lowest value of the bin, because it is a more stringent test to our ”high
ability” subjects.
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Figure 6: Difference between actual choice and optimal choice conditional on beliefs (∆z∗i ) vs. payoff in
the 1PG (Π1PG

i , left panel) and payoff against the average choice in the 2PG (Π̄2PG, right panel). In
both panels the light blue dots refer to subjects who fully solved the 1PG.

more accurate best responses to own beliefs result in higher payoffs in the strategic 2PG.

Result 5: Subjects with a better understanding of the structure of the game (i.e.,

higher payoffs in the 1PG) choose numbers closer to the best response of their beliefs and

get a higher payoff in the 2PG.

3.4.1 “What-if” Beliefs

Because there could be some influence of having played the 1PG on the beliefs for the

2PG we asked 40 subjects to guess the choices of 19 subjects that had played the 2PG

”a couple of weeks ago, without having previously played the 1PG”. From now on we will

refer to this distribution as the WI distribution.

Figure 7 illustrates the token allocations for both the original belief elicitation task

and the WI task. The differences are small, with the WI distribution slightly shifted

away from the Nash Equilibrium. Yet, a different picture arises when looking at the

data at an individual level. Comparing the mean of the first belief elicitation task B̄B,i)

to the mean of the WI distribution (B̄W,i) a Wilcoxon matched-pairs signed-ranks test

14
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Figure 7: Distribution of beliefs and “what-if’ beliefs.

shows differences within subject (p-value=0.039), this same test also shows individual

level differences across the variances of both distributions (p-value¡0.01). Furthermore, if

we use a one-sided Sign test of matched pairs for the difference in means and variance

(∆Bi = B̄W,i − B̄B,i) and ∆σ2
i = σ2

W,i − σ2
B,i respectively), we see how for both cases

the values are positive and different from zero (p-value/¡0.02). In Appendix C, Figure

15 shows how most subjects shift the mean of their distribution away from the Nash

Equilibrium, while increasing the variance in the WI distribution.

In Figure 8 we plot the change in mean (∆Bi) in the vertical axis, and the payoff

for the 1PG (Π1PG) in the horizontal axis. Any value above the horizontal dotted line

indicates a relative shift away from the NE for the WI distribution. As it is clear from

the graph, the correlation between high payoff in the 1PG and a positive ∆Bi is positive

and close enough to significance (p-value=0.0503). On the other hand this correlation

seems not to be fully monotonic as the Spearman rank test is not significant (Spearman

ρ=0.262, p-value=0.101).

Result 6: There is a weak correlation between high payoffs in the 1PG and shifting

beliefs for the “what-if” case away from the Nash Equilibrium.
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4 Conclusion

In laboratory experiments, subjects usually deviate from Nash Equilibrium. These devi-

ations can be the result of either subjects not understanding the game setup correctly or

from not forming the correct beliefs about the strategies of their counterparts. One strand

of the literature has tried to explain these deviations as errors in belief formation (e.g.,

Costa-Gomes and Crawford (2006); Ho et al. (1998)). Yet, some recent research shows

that subjects might not be fully understanding the experimental environment. Weizsäcker

(2003) suggests that using less abstract environments might help subjects build better be-

liefs, while Chou et al. (2009) show that subjects appear to have little understanding of

the two-player guessing game.

In this paper we use an individual decision-making task that allows uncoupling subject

understanding of the mechanics of the game from her belief formation. Disentangling

these two dimensions, we can establish the extent that each one of them contributes to

the out-of-equilibrium play in experimental setups.

We find that subjects who have a better understanding of the game play closer to

16



the Nash Equilibrium, are better at best-responding to their own beliefs, and modify

their beliefs (correctly) depending on the pool of subjects they are facing. This result is

inconsistent with models of the Level-k type (e.g., Costa-Gomes and Crawford (2006))

which assume that agents fully understand the mechanics of the game and only play out

of equilibrium due to flaws in their belief formation. Our findings suggest, otherwise, that

out of equilibrium play is not only the result of a limited ability to form correct beliefs,

but that it also results from the inability of subjects to fully understand and solve the

game they are participating in.
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Figure 9: Normalized results for Race to 60 (horizontal axis) and Raven Test (vetical axis). The dashed
lines mark the median result for each test.

A Cognitive Ability

As described in section A all subjects were asked to solve thirty-six matrices from the

Raven Test, and took part in six rounds of Race-to-60. The normalized results of these

two measures are plotted in Figure 9. Most subjects performed well at the Raven test

(median of twenty nine solved matrices), but not in the Race-to-60 game (median of

one won round). Interestingly, the lower right quadrant of the scatter plot is completely

empty. This implies that while a good score in the Race-to-60 game requires a good score

in the Raven Test, the opposite is not true. The correlation between both measures of

cognitive ability is positive and significant, as well as with the payments for the 1PG and

2PG (see Table 2).

Raven Race Payment 1PG Payment 2PG Difference Change

Raven 1
Raven 0.290*** 1
Payment 1PG 0.225*** 0.321*** 1
Payment 2PG 0.235*** 0.294*** 0.344*** 1
Difference -0.228*** -0.222*** -0.407*** -0.523*** 1
Change -0.051 0.116 0.000 0.334*** -0.136 1

Table 2: Correlations
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(1) (2) (3) (4)
Correct 1PG Π1PG

i Π̄2PG
i ∆z∗i

Raven 0.706∗∗ 0.390 1.217 -9.371
(0.279) (0.326) (0.756) (8.084)

Race 0.505∗∗∗ 0.548∗∗∗ 0.814∗ -9.594∗∗

(0.163) (0.190) (0.440) (4.708)

Constant -0.409∗ 1.176∗∗∗ -0.172 20.90∗∗∗

(0.208) (0.243) (0.563) (6.014)
N 80 80 80 80
adj. R2 0.226 0.133 0.086 0.074

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Linear regression of cognitive ability measures on Correct 1PG, Π1PG
i , Π̄2PG

i , ∆z∗i and ∆Bi.

In the first column of Table 3 we report a linear probability model where the binary

dependent variable is having solved the 1PG. In the second column, we report a linear

regression with the payment in the 1PG as the dependent variable.14 In both cases, the

independent variables are the (normalized) cognitive ability test scores. The results show

an interesting asymmetry; subjects that fully solve the 1PG scored high both at the the

Race-to-60 and the Raven test, while only backward induction seems to have an effect on

the payoff for the 1PG.15

Result: Both a high score at the Raven test and Race-to-60 game are important to

fully solve the 1PG, while only Race-to-60 seems to matter for the 1PG payoff.

Additionally, in column 3 Π̄2PG
i is regressed on both measures of cognitive ability, and

only Race-to-60 is marginally important to score high in the 2PG. In column 4 ∆z∗i is the

dependent variable, and this time the coefficient for Race-to-60 is highly significant and

negative. This means that backward induction abilities are central for a subject to be able

to best respond to her own beliefs. On the other hand, in column 5 we see how neither

performing well at the Raven test or at the Race-to-60 game imply a higher measure of

∆Bi.

14A Tobit model for the 1PG payoff gives the same results.

15The Variance Inflation Factor discards any severe case of multicollinearity between both regressors.
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B Normalization

The way in which we create the “generic” distribution for each subject is by adding all

2PG choices (except hers) for each bin that were played in her order. This results in a

distribution of 79 choices across the 20 possible bins. We then normalize this to look like

a distribution made by 19 subjects by multiplying the resulting number in each bin by

19/79.

C Extra Graphs and Figures

Figure 10: Distribution Screen. Subjects were provided with N-1 tokens to distribute across the 20 bins
provided in the screen. The check button counted for them the amount of tokens they had deposited at
any moment. Subjects could use less than 19 tokens, but never more.
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Figure 11: Raven Test Screen
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Figure 12: Zoom-in depicting only choices [0, 50] of Figure 1. In light blue the choices made by those
that fully solved the 1PG.
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D Instructions

The instructions below are translated from the original German instructions. The in-

structions were distributed sequentially, each of the following subsections at a time. After

reading instructions, subjects completed the tasks, and then received instructions for

the following task. Subjects were given time to carefully read the instructions and ask

questions.

D.1 Overview

Today’s experiment consists of a sequence of questionnaires and games. After each game

or questionnaire, you receive instructions for the next game or questionnaire. In total, the

experiment will last about 1.5 hours. For your participation your will receive a show-up

fee of 5e. Depending on how you answer/play the questionnaires/games you can earn

money on top of that. After you have finished all questionnaires and games, your final

payoff will be shown on your screen. You will then receive a receipt, which you please fill

out with the shown payoff and your name and address. After this you will be called to

the adjoining room to receive your payment.

You will now receive the specific instructions for the first game.

D.2 Task 1

In this task, you have to pick two numbers (named X and Y) between 0 and 100 (both

inclusive). Your payment for this task depends on how close these two numbers (X and Y)

are to the so called ”target number”. The closer your numbers are to the target number,

the higher your payment.

Caclulation of the target number The target number depends on your picked num-

bers. It is calculated as the mean of both numbers (X and Y), multiplied by two thirds:

target number =
2

3

(
X + Y

2

)
Your payment Your Payment depends on absolute distance of your numbers to the

target number. For each number, if the number is exactly equal to the target number, you

receive 1e. Should you not hit the target number exactly, some money will be deducted.
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For each absolute unit distance of your numbers to the target number, 0.05e will be

deducted:

payment for X = 1e− 0.05e |X − target number|

payment for Y = 1e− 0.05e |Y − target number|

Because only the absolute difference between your number and the target number

is used to calculate your payment (indicated with by the vertical bars “|”), it does not

matter whether you deviate upwards or downwards - only the absolute difference counts.

Please note that your payment can not become negative. Should your payment according

to the above formula become negative, you will receive 0e instead.

You have four minutes time to pick both numbers. After you have chosen your num-

bers, please confirm your choice by clicking the red “continue” button. Otherwise, your

answer will not be recorded.

D.3 Task 2

This task is similar to the previous task. This time, however, you will play against another

person in this room, who will be matched with you randomly. This time, you choose only

one number between 0 and 100 (both inclusive). The other person also chooses a number

between 0 and 100. Your payment now depends on how close your number is to the so

called “target number”. The closer your number is to the target number, the higher your

payment.

Caclulation of the target number The target number depends your number, and

the number stated by the other person. It is calculated as the mean of both numbers,

multiplied by two thirds:

target number =
2

3

(
your number + other player’s number

2

)
Your payment Your Payment depends on absolute distance of your numbers to the

target number. If your number is exactly equal to the target number, you receive 2e.
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Should you not hit the target number exactly, some money will be deducted. For each

absolute unit distance of your number to the target number, 0.1e will be deducted:

payment = 2e− 1e |your number− target number|

Because only the absolute difference between your number and the target number

is used to calculate your payment (indicated with by the vertical bars “|”), it does not

matter whether you deviate upwards or downwards - only the absolute difference counts.

Please note that your payment can not become negative. Should your payment according

to the above formula become negative, you will receive 0e instead.

Since the payoff of the other player is calculated in the same way, s/he also has the

incentive to state the closest number possible to the target number.

You have four minutes time to pick your number. After you have chosen your number,

please confirm your choice by clicking the red “continue” button. Otherwise, your answer

will not be recorded.

D.4 Task 3

Reminder: in the previous task every participant was asked to pick a number between 0

and 10 (both inclusive). The payment for this game depended on how close this number

was from the target number (mean of the numbers of both players, multiplied by two

thirds).

In this task we would like to ask you to estimate how the other 19 participants who

are participating in this experiment, behaved in the previous game. For this purpose,

you receive 19 “token”, that you can distribute in a number of bins (see screenshot below

[Figure 10]).

Each token represents your estimate for one participant. The bins represent an interval

for your estimation. To distribute tokens into bins, you type the number of participants,

who you estimate to play a number in the interval of the respective bin, into the respective

field on your screen. If you believe that no participant played a number in any interval,

you can leave the field empty (or type in 0).

Example: You believe that 5 participants chose numbers between 75 and 79, and 14

participants chose numbers between 20 and 24. In this case you type “14” in the field

20-24 and “5” in the field 75-79.

28



For each token that coincides with a decision of a participant, you receive 0.20e.

Example: You have put 5 tokens in a bin, and 2 participants have actually played

numbers in this bin. In this case, you receive 2*0.20e. If 5 people have actually played

numbers in this bin, you receive 5*0.20e. If you estimate all 19 participants correctly,

you receive 19*0.2e=3.80e.

Note: because it is difficult to keep track of how many tokens you have already dis-

tributed, we have built in a “check-button”, that sums up all distributed tokens. Should

not all 19 tokens be distributed, or more 19 tokens distributed, a pop up will tell you this.

If you are happy with your distribution, and have distributed 19 token, you can finish

this task by clicking “Ok”.

D.5 Task 4

[Only a subset of 40 subjects participated in this task]

A few weeks ago, we conducted an experiment with 20 participants, who also solved

Task 2. The participants received the exact same instructions as you, however, they have

not solved Task 1 before they solved Task 2. That means, they played directly against

another player, without picking two numbers before in Task 1.

We would like to ask you, similarly to the previous task, to estimate how these par-

ticipants have played in Task 2. Again you receive 19 token, that you can distribute in a

number of bins.

Since 20 participants took part in this experiment, but you have 19 tokens, we will

randomly choose 19 participants from these 20 participants.

Again, for each correctly placed token, you receive 0.20e.

D.6 Task 5

In this task, you see a puzzle on every screen: a matrix containing 8 graphical entries and

one empty field. There are 8 given option to complete the puzzle - only one is correct. For

each puzzle, you have to select one of the 8 options. To this, you type in the corresponding

number, and confirm by clicking OK.

[screenshot of Figure 11]
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In total you will complete 36 such puzzles, divided into 3 blocks of 12 puzzles. Within

each block you can move back and forth between puzzles, and correct previously stated

answers. You have 5 minutes to solve each of the first two blocks, and 8 minutes for the

remaining block. The remaining time will be displayed in the header of your screen. After

you have completed all puzzles, or the time runs out, you have to confirm your answers

by clicking “send answers”. If you do not confirm your choices, they will not be recorded.

For each correctly answered puzzle, you earn 0.10e.

D.7 Task 6

This task consist of the game “Race to 60”, that you play repeatedly against the computer.

Your task is to win this game as often as possible against the computer.

In this game, you and the computer player state numbers between 1 and 10 sequen-

tially. The numbers are added up, and whoever is first to push the sum of all stated

numbers to or above 60 wins the game.

The game functions as follows: You start the game by stating a number between 1

and 10 (both inclusive). Then the game continues as follows:

1. The computer chooses a number between 1 and 10. This number wil be added to

your number.

2. The screen shows the sum of all numbers chosen so far. If the sum is smaller than

60, you again choose a number between 1 and 10, which again will be added to all

previously stated numbers.

This will be repeated until the sum of all numbers is greater or equal to 60. Whoever

states the number that pushes the sum to or above 60, wins the game. You will play this

game 6 times against the computer, and you have 90 seconds time for each repetition.

For each game won, you receive 0.50e.

Your payment This is the last game for today’s experiment. After completing this

game, you will receive a questionnaire that you please complete. After that, your payments

will be summarized on the screen. You then receive a receipt, that you please fill out.

After you have done that, an experimenter will come to your place to check if everything

is in order. After that you can go to the adjoining room to receive your payment.
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