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Abstract

Why is agricultural productivity so low in poor countries? We assess the quantitative role of
geography and land quality for agricultural productivity differences across countries using high-
resolution micro-geography data and a spatial accounting framework. Our rich spatial data provide
in each plot of land covering the entire globe actual yields for 18 crops and their potential yields,
which measure the maximum attainable output for a crop given soil quality, climate conditions,
terrain topography, and level of inputs. While there is considerable heterogeneity in land quality
across space, even within narrow geographic regions, we find that low agricultural productivity
in poor countries is not due to poor land endowments. If countries produced the current crops
in each location according to potential yields, the rich-poor agricultural yield gap would virtually
disappear, from more than 200 percent to less than 5 percent. We also find evidence of additional
improvements in productivity attainable through the spatial reallocation of production and changes
in crop choices.
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1 Introduction

Understanding the large differences in output per worker across rich and poor countries is a funda-

mental issue on the research agenda in economics. It is now well understood that the cross-country

differences in real agricultural output per worker are considerably larger than those at the aggregate

level, particularly when comparing rich to poor countries.1 Why are poor countries so much more

unproductive in agriculture compared to the rest of the economy relative to rich countries?

There are two broad possible explanations for the rich-poor disparity in real agricultural produc-

tivity. First, due to institutions, constraints, frictions, or policies, poor countries make different

economic choices in agriculture than rich countries, that affect either the level of inputs and tech-

nology used or their allocation across farmers. Second, due to unfortunate endowments, featuring

poor land quality, rugged geography, and arid lands, poor countries have a natural disadvantage in

agriculture. Which of these two broad explanations is the source of low agricultural productivity

in poor countries has dramatically different implications for policy. Whereas the vast majority of

research has focused on the first set of explanations of distorted economic decisions affecting pro-

ductivity in poor countries, it remains an essential issue to assess the importance of geography.2

In this paper, we assess the quantitative importance of geography and land quality for agricultural

productivity differences across countries.

We use high-resolution micro-geography data from the Global Agro-Ecological Zones (GAEZ)

project, which provides actual yields (physical output per unit of land) by crop on each 10 by

10 kilometer plot of land covering the entire globe. Importantly, the data also reports for each plot

potential yields for all the main crops, including those crops not actually produced on a plot. The

1See, for instance, Gollin et al. (2002) and Restuccia et al. (2008).
2Some of the explanations include: low intermediate input use Restuccia et al. (2008); poor transport infrastruc-

ture Adamopoulos (2011); misallocation of labor between agriculture and non-agriculture Restuccia et al. (2008),
selection Lagakos and Waugh (2013), misallocation of factors across farms within agriculture Adamopoulos and
Restuccia (2014), international transport frictions Tombe (2015), idiosyncratic risk Donovan (2016), among others.
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data on potential yields by crop are generated by combining plot-specific land quality attributes

with established crop-specific agronomic models. We develop a simple spatial-accounting framework

that allows us to aggregate up from the plot-crop–level resolution to the country–level. The analysis

imposes minimal structure, using the detailed data through a series of relevant counterfactuals to

determine to what extent low land productivity in poor countries is the result of unfortunate geog-

raphy or the result of economic choices given their geography, in terms of what crops are produced,

how they are produced, and where they are produced within the country. While we find evidence of

considerable heterogeneity in land quality, even within narrow geographic regions, our main finding

is that, at the aggregate level, low agricultural productivity in poor countries is not due to poor

land quality and geography. If both rich and poor countries produced according to their potential

yields given their internal distribution of land quality, the rich-poor agricultural yield gap would

virtually disappear, from more than 200 percent to less than 5 percent. Our evidence indicates that

the yield gap is primarily due to low efficiency at the plot level. Crop choices within plots and the

location of crop production within a country play a secondary role.

A distinctive feature of agriculture is that it is an activity that takes place across space, using

location-specific inputs such as soil quality, climate conditions, and terrain topography.3 These

inputs could matter not only for what yield a farmer gets for any crop harvested, but also for

what crops are planted on each plot (see e.g. Holmes and Lee, 2012) and what plots are used for

agricultural production. Traditional measures of land quality in cross-country comparisons, such

as the percentage of agricultural land classified as arable or cropland, or the percentage of arable

land or cropland that is irrigated face two main problems. First, they can be affected by economic

decisions and hence are not exogenous. Second, they are average measures for the whole country

and may confound important within-country spatial variation in land quality. To the best of our

knowledge, our paper is the first systematic quantitative assessment of the role that differences

3In contrast to agriculture, the quality of land is less of a factor for manufacturing plants or service-sector
establishments.
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in geography and land quality play in understanding agricultural productivity differences across

countries using explicitly spatial micro-geography data.

Given the data from GAEZ, the measure of agricultural productivity that we focus on is real

agricultural output per unit of cultivated land, also known as land productivity or yield. We

consider two types of yield measures. First, the average yield over groups of crops, measured as the

total value of crops—evaluated at a common set of international crop prices from the FAO—over the

total amount of cultivated land. Second, physical output in tonnes per unit of land for individual

crops. Our data permit us to construct the average and the individual crop yields both at the

plot-level and the country-level. The upside of our first measure is that it allows us to construct

summary measures of overall agricultural productivity across plots and countries. The upside of our

second measure is that it allows us to compare the same good across plots and countries (“apples

for apples”) without the need for aggregation using international prices.

We develop a simple quantitative spatial-accounting framework to decompose economy-wide aggre-

gate agricultural productivity, measured as the aggregate value of output per hectare (yield), into

the contributions of: (i) within plot and produced-crop efficiency, and (ii) across-plot-crop efficiency.

In particular, we consider a world in which each country consists of a given number of plots. Each

plot can produce any of a given number of crops. However, plots are heterogeneous with respect

to their inherent suitability in producing each crop. In the data we capture a plot’s suitability

in producing a given crop by its potential yield from GAEZ. We show that a country’s aggregate

yield—the ratio of the real value of its output to the total harvested land—can be expressed as a

weighted average of the crop-plot yields valued at common prices, where the weights are the crop-

plot land shares. If the actual yields are used in this expression this reproduces the economy-wide

aggregate yield.

We use this expression for the aggregate yield to construct counterfactual yields for each country. In

our main result we assess the role of production efficiency by keeping the crop-plot land shares fixed
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to the actual ones but allowing the corresponding crops to be produced according to their potential

yields rather than their actual. We find that if countries produced according to potential rather

than actual in each crop-location, the aggregate yield disparity between the richest and poorest 10

percent of countries would drop from 214 percent to 5 percent. In other words, the productivity

disparity would virtually disappear. Next, we assess the productivity improvements that would

result from the spatial reallocation of crop production exploiting locations’ comparative advantages

but holding the country-level land share of each crop to its actual level. While we find that spatial

reallocation would raise productivity in both rich and poor countries, such a reallocation would not

disproportionately affect poor countries. Finally, we assess the effects of overall efficiency, where

each plot in each country is allowed to produce the highest value yielding crop. We find that

if countries produced in each plot the highest yielding crops then the rich-poor aggregate yield

disparity would drop further and turn to a gain of 23 percent (i.e., the rich to poor ratio falls to

0.77-fold). The implication of this counterfactual is that poor countries produce systematically lower

yielding crops given their land quality. From the overall reduction from the 3.14-fold actual yield

gap to the counterfactual 0.77-fold yield gap, 80 percent is accounted for by improved production

efficiency within each crop-plot. Our findings suggest that poor land quality is not the source of

low agricultural productivity in poor countries. Instead, it is the economic choices made by poor

countries in terms of what is produced, how it is produced, and where it is produced given their

geography, that lies behind their low productivity problem.

Our paper contributes to the growing literature studying real agricultural productivity differences

across countries. One branch of this literature, including Restuccia et al. (2008), Adamopoulos

(2011), Lagakos and Waugh (2013), Adamopoulos and Restuccia (2014), Tombe (2015), Donovan

(2016) among others, has used quantitative models to assess the contribution of particular factors

that can affect either the level of inputs used in agriculture or their allocation. Another branch of

this literature has focused on measuring sectoral agriculture to non-agriculture productivity gaps

across countries (Herrendorf and Schoellman 2013, Gollin et al. 2014b) or cross-country agricultural
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productivity disparities (Prasada Rao 1993, Restuccia et al. 2008, Gollin et al. 2014a). While our

paper is also about measurement, we differ from the above literature in two important ways. First,

we focus on measuring the role of land quality and geography for real agricultural productivity gaps.

Second, we use spatially explicit micro-geography data to measure actual and potential agricultural

yield gaps across countries.

Importantly, our paper is also related to the literature that studies cross-country differences in ag-

gregate land quality indices and their effect on agricultural productivity. While traditional measures

of land quality, such as the Peterson Index, were subject to the criticism that they included compo-

nents that were not exogenous, more recent efforts have focused on measures that are affected less

by economic decisions. For instance, Wiebe (2003) constructs a land quality index which utilizes

soil and climate properties to classify a country’s cropland (a much more narrow concept of land,

already used for agricultural production). Wiebe and Breneman (2000) use the same underlying

data to construct a complementary measure of land quality: the share of a country’s cropland that

is not limited by major soil or climate constraints to agricultural production (cropland in the highest

three land quality classes). This measure is a fraction and ranges from 0 to 1. They include this

measure in a regression to study the effect of land quality on agricultural labor productivity. We

differ from these approaches in two ways: (a) we exploit the explicit spatial nature of the micro-

geography data in GAEZ, and (b) we use an accounting framework which allows us to assess the

contributions of land quality in accounting for real agricultural productivity.

We are not the first economists to use the GAEZ data. Nunn and Qian (2011) use an earlier

version of the GAEZ data to assess the suitability of Old World regions for the cultivation of the

potato, in order to estimate the effect of the potato on population and urbanization. Costinot et al.

(2016) use the GAEZ data to study the effects of projected climate change on aggregate output

through the evolution of comparative advantage and the accompanying adjustments in production

and trade. Costinot and Donaldson (2012) use the GAEZ data to test the Ricardian theory of
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comparative advantage. Costinot and Donaldson (2016) use it to study the gains from economic

integration within the United States. Donaldson and Storeygard (2016) provide an excellent general

survey on the use of high-resolution spatial data in economics. To the best of our knowledge, our

paper is the first to exploit the GAEZ data to study the macro-level implications of land quality

endowments for cross-country differences in real agricultural productivity, an issue that is paramount

for understanding the foundation of poverty across the world.

The paper proceeds as follows. The next section describes the GAEZ data in some detail and

provides some observations on land quality dispersion across countries. In Section 3 we outline the

spatial accounting framework, describe our counterfactuals, and present our main findings. Section

4 performs robustness analysis with respect to the level of inputs used in the calculations of potential

yields across countries. We conclude in Section 5.

2 Data

We first describe the details of the data we use and then use some of the data to characterize the

differences in land characteristics across countries.

2.1 Description

We use micro-geography data from the Global Agro-Ecological Zones (GAEZ) project, developed by

the Food and Agricultural Organization (FAO) in collaboration with the International Institute for

Applied Systems Analysis (IIASA); and aggregate cross-country income data from the Penn World

Table (PWTv8). GAEZ is a standardized framework for the characterization of climate, soil, and

terrain conditions relevant for agricultural production. GAEZ combines state-of-the-art established
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agronomic models by crop, that account for science-based biophysical growing requirements for

each crop, with high resolution spatial data on geographic attributes. This information is used to:

(a) classify land according to its suitability for the production of specific crops, and (b) calculate

the potential yield that could be attained for each crop in each spatial cell. GAEZ also provides

spatially detailed land utilization data as well as actual crop-specific production information in each

spatial cell.

The information in GAEZ is available at the 5 arc-minute resolution. To picture it, imagine super-

imposing a grid of about 9 million cells or pixels covering the entire world. Figure 1 displays a

grid map of the Montreal and Toronto area in Canada, based on cells of different resolutions, where

the pink grid represents a 5-arc min; the blue grid a 30-arc min; and the black grid a 60-arc min.

While the size of each cell is constant at 5 arc-minutes in the data, it is not constant in terms of

squared kilometers or hectares, as the mapping from arc-minutes to square kilometers depends on

the distance from the equator (latitude). As a rough approximation the size of each cell can be

described as 10× 10 kilometers.

For each cell in the grid, GAEZ reports data on the following location-specific geographic attributes

that are important for agricultural production: (1) soil quality, which includes depth, fertility,

drainage, texture, chemical composition; (2) climate conditions, which include temperature, sun-

shine hours, precipitation, humidity, and wind speed; and (3) terrain and topography, which include

elevation and slope. In addition, for each crop GAEZ classifies each cell according to the extent of

its soil, terrain, climate constraints for the production of that crop. The same information is used to

construct a crop-specific suitability index, which summarizes biophysical limitations in producing

each crop. Most importantly for our purposes, GAEZ calculates a potential yield for each crop in

each cell, measured as the maximum possible output (in tons) per hectare that can be attained

in the cell given the crop’s production requirements, the cell’s characteristics, and assumptions

about water supply conditions and cultivation practices. Therefore, potential yields represent total
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Figure 1: Grid Resolution Example Montreal-Toronto Area

Notes: The pink grid represents a 5-arc min; the blue grid a 30-arc min; and the black grid a 60-arc min.

factor productivity estimates given quantity and quality of inputs. Potential yields are calculated

pixel-by-pixel for all major crops, including those not actually produced in a particular cell.

There are two key ingredients that go into the GAEZ estimation of potential yields for each crop in

each cell. First, the detailed micro-geography characteristics on soil quality, climate, and topography

outlined above for that particular cell. Second, crop-specific agronomic models that reflect each

crop’s biophysical requirements for growth. The parameters of the agronomic models capture how

a particular set of geographic conditions maps into any given crop’s yield. These parameters are

based on well tested field and lab experiments by agricultural research institutes, are established

in the agronomic literature, and are updated to reflect the latest state of scientific knowledge. We
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stress that the agronomic model parameters are not based off a regression analysis of observed

choices on outputs and inputs across countries, regions, or farms, an analysis that would be subject

to serious endogeneity issues.

Potential yields are reported for alternative configurations of water supply conditions (irrigated,

rain-fed, and total which includes both rain fed and irrigated) and type of cultivation practices

(input intensity use and management).4 The idea is that the resulting yield for each crop on each

plot would depend not only on the “endowment” of land quality and geography but also on the set

of complementary inputs applied by the farmer. For this reason, we control for water supply and

cultivation practices by keeping them constant across cells and countries. In our main results, we

assume total water supply conditions and mixed level of inputs, which assumes high inputs on the

best land, intermediate inputs on moderately suitable land, and low inputs on marginal land. This

allows for a consistent quantification of potential land productivity around the world. We then show

that as long as assumptions on complementary inputs are held constant across countries, choosing

alternative assumptions does not alter our main conclusions.

Potential yields in GAEZ are calculated for both average historical climate conditions (with the

baseline reference period being 1960-1990), individual historical years 1901-2009, as well as projected

future climate conditions based on a number of climate models. In our analysis, we use potential

yields based on the average historical climate conditions, as they iron-out year-to-year idiosyncratic

weather shocks.

The GAEZ database also provides at the 5 arc-minute resolution, for the year 2000, data on crop

choice, actual production, actual area cultivated, and actual yield, i.e., tons of production per

4Low level of inputs (traditional management) assumes subsistence based farming, labor intensive techniques,
no application of nutrients, chemicals, pesticides. Intermediate level of inputs (improved management) assumes
partly market oriented farming, improved varieties with hand tools and/or animal traction, some mechanization,
medium labor intensity, use of some fertilizer, chemicals, pesticides. High level of inputs (advanced management)
assumes mainly market oriented farming, high yield variety seeds, fully mechanized with low labor intensity, optimum
application of nutrients, chemicals, pesticides as well as disease and weed control.
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hectare of the crop actually planted. The actual production data for each cell are estimated us-

ing a flexible iterative rebalancing methodology that sequentially down-scales regional agricultural

production statistics. The actual production data at the cell level are available for all major crops.

In addition, the database contains land cover data that classify land in each cell in terms of urban,

cultivated, forest, grassland and woodland, water bodies, and other uses.

The data set we work with has global coverage, consisting of 162 countries. In 2000, the countries

in our sample account for 87 percent of the world production of cereal in terms of acreage and 81

percent of the value of crop production.5 The count of grid cells (pixels) per country varies widely,

from as low as 5 (Antigua and Barbuda) to as high as 421168 (Russia). The median country in

our data set comprises of 2827 cells. A complete list of the countries in our data set, along with

their cell counts, and their GDP per capita (from the Penn World Table) are provided in Table 6

in the Appendix. Our analysis focuses on 18 main crops and commodity groups, that cover the

majority of produced crops across the world.6 In 2000 these crops accounted for 83 percent of the

entire world production of crops in terms of acreage, and 60 percent in terms of value of production

(based on data from FAOSTAT).

GAEZ provides the information for each variable in raster (grid cell) files, which we work with in

ArcGIS. To aggregate cell-level information to administrative units, such as regions, provinces, and

countries, we use shape files from the World Borders data set of “Thematic Mapping.”7

5Based on data from FAOSTAT, available through http://www.fao.org/faostat/en/#data.
6The crops in our data set are: wheat, rice, maize, sorghum, millet, other cereals (barley, rye, oat, and other

minor cereals), tubers (white potato, sweet potato), roots (cassava, yam and cocoyam), sugarcane, sugarbeets, pulses
(chickpea, cowpea, dry pea, grams, pigeon-pea), soybean, sunflower, rapeseed, groundnut, oilpalm, olive, cotton.

7Available through http://thematicmapping.org/downloads/world_borders.php.

11

http://www.fao.org/faostat/en/#data
http://thematicmapping.org/downloads/world_borders.php


2.2 Land Characteristics across the World

We use the micro-geography data from GAEZ to illustrate the diversity of some key land quality

and geography characteristics across the world. We first illustrate these characteristics in a series of

graphs constructed using ArcGIS, and then summarize them across countries in Table 1. Figure 2

classifies the entire earth’s soil at the 5 arc-minute resolution according to its nutrient availability,

which captures soil properties such as texture (e.g., clay, silt, sand), organic carbon content, acidity

(pH), and the sum of sodium, calcium, magnesium and potassium. Nutrient availability is an

important indicator of soil fertility, particularly in environments with low application of intermediate

inputs. The classification determines how constrained the soil in each cell is in terms of its nutrient

content, ranging from no/slightly constrained (index value of 1) to very severely constrained (index

value of 4).

Figure 3 documents the median altitude within each cell for the whole world. Altitude is an

important indicator of terrain suitability for agricultural production, as it affects solar radiation,

oxygen availability as well as temperatures and moisture. The altitude varies tremendously across

the world, with a high of 6500 meters to a low of -415.

Figure 4 and 5 document mean annual temperature (in degrees Celsius) and annual precipitation

(in mm) at the pixel-level. Temperature is an example of an indicator of thermal regimes, while

rainfall is an example of an indicator of moisture regimes. Both thermal and moisture regimes are

important measures of agro-climatic conditions and serve as key inputs into the GAEZ methodology

in constructing crop-specific potential yields by cell. Again, these maps illustrate the wide diversity

of agro-climatic conditions across the world.

It is not surprising that there is such wide variation in land quality characteristics across the world.

Even within narrow geographic regions some locations are naturally advantaged in terms of one

or more characteristics, while others are naturally disadvantaged. The importance of a naturally
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Soil Fertility
Constraints

No or slight

Moderate

Severe

Very severe

Mainly non-soil

Premafrost zone

Water bodies
Ü

0 6,400 12,8003,200 Kilometers

Source: Soil Resources, Land Resources, GAEZ.

Figure 2: Soil Fertility

advantageous geographic environment for agricultural production at the plot level is ubiquitous.

However, agricultural productivity differences between the developed and developing world are often

framed at the country level. As a result, we are interested in whether the land quality characteristics

vary systematically across rich and poor countries and whether the differences in land quality have

a substantial impact in accounting for the agricultural productivity differences we observe across

these countries.

In order to examine the cross-country variation in land quality attributes in Table 1 we summarize

mean soil, terrain, and climate conditions for rich and poor countries – ordered by their real GDP

per capita, as well as the countries at the top and bottom end of the distribution of that charac-

teristic across the world. For soil quality conditions we present “fertility,” which captures nutrient
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Median Altitude

High : 6563

Low : -415 Ü
0 6,400 12,8003,200 Kilometers

Source: Terrain Resources, Land Resources, GAEZ.

Figure 3: Median Altitide

availability (same indicator as in Figure 2) and is measured as an index from 1 (unconstrained) to

4 (constrained), and “depth,” which captures rooting conditions, and is also measured as a 1 to

4 index. The terrain conditions we report are “slope,” measured as an index between 0 and 100,

and “altitude” which measures mean elevation in meters (same as in Figure 3). The slope of a plot

is important, as it can affect for example the farming practices employed (standard mechanization

can be difficult on steep irregular slopes) and the extent of topsoil erosion. The climatic conditions

we report are “temperature,” measured in degrees Celsius (as in Figure 4), and “precipitation,”

measured in mm (as in Figure 5). The first two columns report the averages of these attributes

across countries in the richest and poorest 10% of the 162 countries in our sample, while the third

column reports the rich-to-poor ratio of the attribute. The fourth and fifth columns report the

averages over the countries with the top and bottom 10% of the cross-country distribution of each
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Mean Annual
Temperature

High : 31.2

Low : -30.52 Ü
0 6,400 12,8003,200 Kilometers

Source: Thermal Regimes, Agro-Climatic Resources, GAEZ.

Figure 4: Mean Temperature

attribute, and the last column reports the top-to-bottom ratio.

The mean of each attribute differs around 10 to 15 percent in each case between rich and poor

countries, except altitude where rich countries have 42 percent the mean altitude of poor countries

and temperature with rich countries having about half the mean temperatures of poor countries. To

put things in perspective, compare the rich-poor ratio (column 3) to the top-bottom ratio (column

6). The variation in mean attributes across rich and poor countries is considerably more compressed

compared to the variation across the world in each attribute regardless of income. For instance, the

average altitude, precipitation, and temperature between the countries at the top and bottom 10%

in each case is a factor difference of more than 10-fold, whereas fertility, depth and slope a factor

of more than 2.5-fold. As a result the unconditional cross-country variation dwarfs the rich-poor
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Annual
Precipitation

High : 5440

Low : 0 Ü
0 6,400 12,8003,200 Kilometers

Source: Moisture Regimes, Agro-Climatic Resources, GAEZ.

Figure 5: Annual Precipitation

variation in each of the attributes.

We also note that even though there is considerable dispersion of land quality and geographic

attributes across the globe, there is also considerable heterogeneity observed even within countries.

Interestingly though, the internal dispersion of land quality attributes within rich and poor countries

is also not systematically different. For example, the mean of the standard deviations of soil fertility

is 1.12 in rich countries whereas it is 1.02 in poor countries.

To summarize, we find some variation between rich and poor countries in terms of soil, terrain, and

climate attributes, but the variation is very small when compared to the variation in each attribute

across the world. Nevertheless, what matters for aggregate agricultural productivity is how the

dispersion in geographical attributes translates into differences in productivity across countries.
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Table 1: Differences in Mean Geographical Attributes

(country obs. = 164)

Rich 10% Poor 10% Ratio Top 10% Bottom 10% Ratio

Soil Quality
Fertility (1-4 index) 2.37 2.19 1.08 3.32 1.10 3.02
Depth (1-4 index) 2.19 1.93 1.14 3.40 1.07 3.18

Terrain Conditions
Slope (0-100 index) 72.0 78.5 0.92 96.1 37.9 2.54
Altitude (meters) 342.8 824.0 0.42 1799.4 53.97 33.34

Climate Conditions
Temperature (◦C) 12.3 23.2 0.53 27.5 2.6 10.78
Precipitation (mm) 899.6 1074.9 0.84 2515.8 123.4 20.4

Notes: Top and bottom 10% refer to the average of the highest and lowest attributes in the country distribution for

each attribute, whereas Rich and Poor 10% refer to the average attributes of the richest and poorest countries in

terms of real GDP per capita.

We note that agricultural productivity is the result of all geographical conditions combined and

differences in a single attribute may not matter that much. For instance, it may be that substantial

variation in a given geographical attribute only translates into minor differences in productivity

across countries. We are interested in whether all these geographic attributes taken together con-

tribute to systematically different growing conditions across countries and whether these differences

account for a substantial portion of the observed productivity gaps. For this reason, in the next

section we work with potential yields by plot and crop, as a summary measure of how dispersion

in geographical attributes translates into productivity differences—a measure of TFP in this con-

text since potential yields control for the level of farm inputs such as water and farming practice

conditions.
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3 Accounting Framework

3.1 The Primitives

We consider a world that comprises a fixed number of administrative units indexed by u ∈ U ≡

{1, 2, ..., U}. These units are countries in our analysis but in general could be lower administrative

units within a country such as provinces, states, or counties. Each administrative unit u comprises

a finite number Gu of grid cells (or pixels) of fixed size—in the GAEZ data the grid cell resolution

is 5 arc-minutes. Note that while the size of a cell in arc-minutes is constant, it is not constant in

terms of hectares as the mapping from arc-minutes to hectares depends on the distance of the cell

from the equator. We index grid cells by g ∈ Gu ≡ {1, 2, ..., Gu}. Cells can be aggregated up to

various levels of administrative units (regions, countries, states, counties etc.) using a mapping of

cells to administrative boundaries in ArcGIS. Each grid cell can produce any of C crops, indexed

by c ∈ C ≡ {1, 2, ..., C}.

Cells are heterogeneous with respect to their land characteristics and as a result differ in the

productivity of the land across crops. In particular, a key object reported in the GAEZ data is the

potential yield or land productivity (tons per hectare) of each cell if it were to produce crop c. We

denote the potential yield from producing crop c in grid cell g in unit u by ẑcgu. Note that for each

cell g in unit u there are C such numbers, each of which reflects the inherent productivity of that

cell in producing crop c.

In practice, the land in each cell can be used for crop production or some other activity (could be

agricultural such as raising livestock or non-agricultural, or some other land cover category). If a

portion of the land in a cell is used for crop production, it may produce one or several specific crops

which may differ from the crops in which the cell has the highest potential yield. We denote by

ycgu the real output (in tons) and by `cgu the amount of cultivated land in hectares of crop c, grid
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g, and unit u. We denote by zcgu the actual yield which is just the ratio of real output to land,

zcgu = ycgu/`
c
gu. For the purpose of aggregation, in any unit u and grid g, we set the amount of

output and land used to zero if there is no production of a given crop c.

Similarly for the purpose of aggregation of different crops in a location we denote by pc the inter-

national price of each crop which we treat as common across space and countries. Note also that

the size of each vector is C × 1, corresponding to the total number of crops in the GAEZ project

which is 18 crops. In each cell g all the vectors have non-zero elements only for the crops actually

produced. The only vectors that have all non-zero elements for every crop are the potential yield

and the common international price. The potential yield vector is specific to each cell g and unit u.

3.2 Aggregate Variables

We denote with upper case letters aggregate variables. There are different levels of aggregation that

are of interest but for the purpose of illustration we focus on aggregating to the administrative unit

level (country). We denote by Lu the amount of land used in agricultural production and it is given

by

Lu =
∑
c∈C

∑
g∈Gu

`cgu.

We denote by Yu the amount of real agricultural output produced given by

Yu =
∑
c∈C

∑
g∈Gu

pcycgu,

where the aggregation is done using common relative prices. Given these aggregates, we define the

actual aggregate yield Zu by the ratio of aggregate real output to land used, that is

Zu =
Yu

Lu

=

∑
c∈C

∑
g∈Gu

pczcgu`
c
gu

Lu

=
∑
c∈C

∑
g∈Gu

pczcgu
`cgu
Lu

. (1)
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The aggregate yield is a weighted average of the yields in every crop and location in a given country.

Equation (1) is the key equation in our accounting analysis as it provides the basis for assessing the

key determinants of low agricultural productivity in poor countries, that is, whether the differences

in aggregate yields arise from low actual yields of each crop in each location (i.e., low zcgu), from

not producing in the highest yielding locations across space, or from the low yielding crop mix in

each location.

3.3 Counterfactuals

We construct a set of counterfactuals on aggregate potential yields for each administrative unit u

by exploiting the set of potential yields by crop at the cell level g and the spatial distribution of

production by crop across cells.

Production efficiency The main counterfactual is to assess the impact on the aggregate yield

gap between rich and poor countries of producing at the potential yield for each crop and each

location. This counterfactual can be understood in equation (1) by simply replacing the actual

yield zcgu for each crop for each cell by its potential counterpart ẑcgu (highest attainable TFP given

water and farming inputs). Hence, in this counterfactual only the yield changes, while the weights

represented by the share of cultivated land of a crop in each location are kept constant `cgu/Lu.

Aggregate yield in this counterfactual is defined as,

Zcf
u =

∑
c∈C

∑
g∈Gu

pcẑcgu
`cgu
Lu

.

If the cross-country differences in the actual yield are similar under the production efficiency coun-

terfactual, then production efficiency at the crop/location level is not an important determinant of

the actual yield differences. But if instead, the cross-country differences under production efficiency
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are negligible then geography and land quality are not important determinants of actual yield gaps

across rich and poor countries.

Spatial allocation of crops We assess the extent to which reallocation of agricultural production

of the different crops to the most productive locations across space can raise aggregate output.

This counterfactual combines production efficiency with a reallocation of crops across space. In

particular, for each crop, we choose the locations with the highest potential yields keeping constant

the amount of cultivated land for that crop, i.e., Lc
u =

∑
g∈Gu

`cgu. To implement this counterfactual

we first rank all the cells within each country according to the potential yields of a given crop. Then

we reallocate production from actual production locations to the highest yielding cells, such that

the sum of their land area is equal to the country-wide land area devoted to the production of that

crop. Formally, we solve the following problem

max
{`cgu}

∑
c∈C

∑
g∈Gu

pcẑcgu`
c
gu, (2)

subject to ∑
c∈C

`cgu ≤ Lgu, g = 1, 2, ...Gu; (3)

∑
g∈Gu

`cgu ≤ Lc
u, c = 1, 2, ...C; (4)

`cgu ≥ 0, g = 1, 2, ...Gu; c = 1, 2, ...C. (5)

The objective is to maximize the total amount of output across all plots and crops, subject to three

sets of constraints. The first set of constraints restricts that land allocated to the production of the

different crops cannot exceed what is available in each plot. The second set of constraints indicates

that land allocated to crop c in each location cannot exceed the total in the data. The third set of

constraints allows for the possibility that not all crops are produced in all plots.
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Efficient spatial allocation The last counterfactual is to assess the extent to which countries

may not be producing the highest yielding mix of crops in each location given their land endowment

characteristics. The counterfactual involves computing the aggregate yield in each country by

picking the crop in each location that maximizes output. Formally, we solve for `gu in equation

(2) subject to only the first and third set of constraints, that is equations (3) and (5). This

counterfactual involves production efficiency, reallocation of crops across space, and changes in

crop choices in order to maximize aggregate output, that is this is the allocation that generates

the maximum attainable output in each country given the total amount of land. The difference

between this counterfactual and the production efficiency counterfactual represents the contribution

to the aggregate yield of crop-mix choices and the spatial reallocation of production, whereas the

difference with the spatial reallocation is the contribution of crop choice changes to the aggregate

yield.

3.4 Results

Using plot-specific production and land use data by crop within countries we calculate for each

country aggregate output per hectare (actual yield) using FAO international crop prices (Geary-

Khamis dollars per tonne) for the year 2000. In Figure 6 we plot for 162 countries the aggregate

yield against real GDP per capita, both in logs. The aggregate yield varies systematically with the

level of development, with the correlation in logs being 0.58. The 10% richest countries have an

average yield that is 3.1 times higher than the average in the 10% poorest countries in our sample.

To what extent are these yield differences the result of differences in land quality and geography

across rich and poor countries? We now address this question using our spatial accounting frame-

work, through the set of counterfactual experiments outlined in Section 3.
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Figure 6: Actual Yield across Countries

Production efficiency We ask what the aggregate yield within each country would be if on each

plot and for each produced crop, output was produced according to its potential yield (efficient

TFP) rather than its actual yield, holding the set of crops and the allocation of land across crops

fixed to their actual values? We call the constructed yield for each country the aggregate potential

yield. Figure 7 documents the potential yield for each country by real GDP per capita. While there

is substantial variation in potential yields across countries—the ratio of the top to bottom 10% of

countries in the potential yield distribution is a factor of 3—the differences are not systematically

related to the level of development. For example, the disparity in the aggregate potential yield

between Senegal and Tajikistan, two low income countries, is roughly the same as the aggregate po-

tential yield disparity between Finland and the Netherlands, two high income countries. Unlike the

actual yields, Figure 7 illustrates that there is only a slight positive relationship between potential

yields and GDP per capita, with a correlation in logs of only 10 percent.

23



AFG

AGO

ALB

ARE

ARG

ARM

ATG

AUS

AUT

AZE

BDI

BEL

BEN

BFA

BGD BGR

BHS

BIH

BLR

BLZ
BOL

BRA

BRN

BTN

BWA

CAF

CAN

CHE

CHL

CHN

CIV

CMR

COG
COL

CRI

CUB

CYP

CZE DNK

DOM

DZA

ECU

EGY

ERI

ESP

EST

ETH

FIN

FJI

FRA

GAB

GBR

GEO

GERGHA

GIN

GMB

GNB

GNQ

GRC

GTM

GUY

HND

HRV

HTI

HUN
IDN

IND

IRL

IRNIRQ

ISR

ITA
JAM

JOR

JPN

KAZ

KEN

KGZ

KHM KOR KWT

LAO

LBN
LBR

LBY

LKA
LSO

LTU
LUX

LVA

MAR

MDA

MDG

MEX

MKD

MLI

MLT
MNE

MNG

MOZ

MRT

MWI

MYS

NAM
NER

NGA NIC

NLD

NOR

NPL
NZL

OMN

PAK
PAN

PER

PHL

PNG

POL

PRI

PRT

PRY

QAT

ROM

RUS

RWA

SAU
SDN

SEN

SGP

SLB

SLE

SLV

SOM

SUR
SVK

SVN

SWE

SWZ

SYR

TCD

TGO THA

TJK
TKM

TUN

TUR TWN

TZA

UGA

UKR URY
USA

UZB

VENVNM

VUT

YEM

ZAF

ZAR ZMB
ZWE

6
6.

5
7

7.
5

8
Po

te
nt

ia
l Y

ie
ld

 (l
og

, I
nt

.$
 p

er
 H

ec
ta

re
)

6 7 8 9 10 11
Real GDP per Capita (log, 2000)

ρ = 0.1035, N = 162

Figure 7: Potential Yield across Countries

We now focus attention on the differences between rich and poor countries. In Panel A of Table 2,

we report the results of the production efficiency counterfactual for the average of the richest 10%

of countries, the average of the 10% poorest countries, and their ratio. The first column reports the

aggregate actual yield, the second column the aggregate potential yield, and the third column the

yield ratio between the aggregate potential to actual for each group of countries. Panel B reports

the results for cereal crops only. The results are striking. Production efficiency would increase the

aggregate yield in all countries but much more so in poor compared to rich countries—compared to

actual yields, the potential yield is only 65 percent higher in rich countries whereas it is 393 percent

higher in poor countries. In other words, if countries produced the crops they are producing on

the plots they are actually producing them but according to the their potential yields, then the

aggregate yield disparity between rich and poor countries would drop from the actual 3.14-fold to

only 1.05-fold, that is the productivity disparity would virtually disappear. A similar result arises
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for the subgroup of cereal crops which covers a set of crops produced in most countries of the

world such as wheat, rice, maize, sorghum, millet, and others, in Panel B of Table 2. Although the

magnitude difference of the actual yield is larger for this subgroup of crops (4.6-fold vs. 3.1 for all

crops), the potential disparity is once again substantially reduced to 24% (versus 5% for all crops),

echoing a similar message.

Table 2: Production by Potential Yield

Panel A: All Crops
(country obs. = 162)

Actual Yield Potential Yield Ratio
Rich 10% 739.5 1,220.0 1.65
Poor 10% 235.5 1,160.6 4.93
Ratio 3.14 1.05 1/2.99

Panel B: Cereal Crops
(country obs. = 160)

Actual Yield Potential Yield Ratio
Rich 10% 672.5 1,108.7 1.65
Poor 10% 145.7 893.8 6.14
Ratio 4.61 1.24 1/3.72

Notes: Rich and Poor refer to the highest and lowest decile of the world income distribution, where income is Real

GDP per capita in 2000 (PWT 6.3). Actual and potential yields are measured as total real gross output per hectare in

international prices (GK $/ha). Each country-level yield is constructed by aggregating up from the GAEZ pixel-level

information at the 5 arc-minute resolution (roughly 10-by-10 km). Potential yield assumes mixed level of input use

for every pixel. The yield gap refers to the ratio of potential to actual yield.

We have used a common set of crop prices to aggregate yields in all locations and countries, however,

the conclusions from the production efficiency counterfactual remain when focusing on individual

crops for which we only use the physical measure of productivity. Table 3 reports the production

efficiency counterfactual for each of the three most representative crops produced across the world:

wheat, rice, and maize; where the yield is measured as output in tonnes per unit of land, a physical

measure of productivity. The rich-poor disparity in the actual yield differs across crops with 6.53-
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fold and 5.11-fold disparities for maize and rice but only 2.53-fold disparity for wheat. Producing

these crops according to potential yields would reduce the rich-poor ratio to 1.60-fold in the case

of maize and 1.22-fold in the case of rice. In the case of wheat the rich-poor disparity drops to

0.86-fold. Despite these differences across individual crops, the main message remains the same:

poor countries are producing much further away from their potential yield than rich countries, and

if all countries produced at their potential the rich-poor yield gap would be all but eliminated.

These results point to low efficiency in producing each crop in each plot as a key factor for the

agricultural productivity differences between rich and poor countries, rather than differences in

land quality.

The pattern of our results is not specific to rich and poor countries. Figure 8 documents the yield

ratio—the ratio of potential to actual yield—against real GDP per capita in logs for the entire set

of countries in our sample. As is clear, the yield ratio is indeed systematically negatively correlated

with the level of development, with a correlation coefficient of -0.64 in logs. That is, conditioning

on the set of crops each country produces on each plot, developing countries produce much further

away from their potential than developed countries.

We find that poor countries not only have on average larger potential to actual yield ratios but also

higher dispersion in yield ratios across plots compared to rich countries, Figure 9 documents the

standard deviation of (log) potential to actual yield ratios across locations in each country against

the level of income per capita.

Spatial efficiency A fact of poor and developing countries is the prevalence of large rural popu-

lations, often operating at subsistence levels and that face poor infrastructure, conditions that may

lead farmers to produce crops that are not necessarily suitable to the geographical characteristics

of the land they operate, see for instance Adamopoulos (2011), Gollin and Rogerson (2014), and

26



Table 3: Production by Potential Yield

Panel A: Wheat
(country obs. = 107)

Actual Yield Potential Yield Ratio
Rich 10% 2.71 5.50 2.03
Poor 10% 1.07 6.43 6.00
Ratio 2.53 0.86 1/2.96

Panel B: Rice
(country obs. = 103)

Actual Yield Potential Yield Ratio
Rich 10% 6.64 8.28 1.25
Poor 10% 1.70 7.72 4.54
Ratio 3.91 1.07 1/3.65

Panel C: Maize
(country obs. = 141)

Actual Yield Potential Yield Ratio
Rich 10% 8.56 13.56 1.58
Poor 10% 1.31 8.48 6.47
Ratio 6.52 1.60 1/4.08

Notes: Rich and Poor refer to the highest and lowest decile of the world income distribution, where income is real

GDP per capita in 2000 (PWT 6.3). Actual and potential yields are measured as tons per hectare. Each country-level

yield is constructed by aggregating up from the GAEZ pixel-level information at the 5 arc-minute resolution (roughly

10-by-10 km). Potential yield assumes mixed level of input use for every pixel. The yield gap refers to the ratio of

potential to actual yield.
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Figure 8: Potential to Actual Yield Ratio across Countries
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Figure 9: Within-Country Dispersion of log Potential to Actual Yield Ratio
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Table 4: Spatial Efficiency—Reallocation of Crops across Space

All Crops
(country obs. = 162)

Aggregate Yields Ratio Spatial
Actual Potential Spatial to Potential

Rich 10% 739.5 1,220.0 1,446.0 1.19
Poor 10% 235.5 1,160.6 1,359.4 1.17

Ratio 3.14 1.05 1.06 –

Adamopoulos and Restuccia (2014). To assess the relevance of reallocation across space we ask:

How would the aggregate yield change if we reallocated the production of individual crops across

cultivated plots according to where they exhibit the highest yield in the country, holding the total

land allocated to each crop in the country at its actual level?

Table 4 reports the results of this counterfactual. Spatial reallocation has a positive effect on

aggregate output, with an increase of around 20 percent, but the magnitude of the effect is similar

among rich and poor countries and, as a result, spatial reallocation does not help reduce the

aggregate productivity ratio between rich and poor countries beyond the potential efficiency effect.

Total efficiency With this counterfactual we ask, how would the aggregate yield change if in each

plot in each country the highest yielding crop was produced, holding the amount of cultivated land

in each plot constant? This experiment allows us to construct for each country a counterfactual

potential aggregate yield that reflects the potential yield for each crop and plot as well as the output

maximizing crop choice on each plot. Countries to produce in each plot the crop that yields the

highest return, given their local growing conditions and the (international) relative prices of crops.
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Table 5 reports the results of this counterfactual for all crops. If countries shift their crop mix to

the highest yielding crops, plot-by-plot, then the aggregate yield disparity between rich countries

would drop from the actual 3.14-fold to 0.77-fold. In other words, by adjusting crop mix to the

most suitable one for their geographic characteristics poor countries would be about 30% more

productive than rich countries.

Table 5: Total Efficiency Counterfactual

All Crops
(country obs. = 162)

Aggregate Yields Ratio Total
Actual Potential Total to Potential

Rich 10% 739.5 1,220.0 2,498.3 2.05
Poor 10% 235.5 1,160.6 3,254.7 2.80

Ratio 3.14 1.05 0.77 –

Figure 10 shows that the total efficiency yield is essentially flat across the income distribution, with

a correlation coefficient in logs of 0. Figure 11 documents the ratio of the total efficiency yield

to the potential yield indicating a slight negative slope indicating that the spatial-crop mix choice

generates higher productivity gains in poor compared to rich countries.

To quantify the contribution of production efficiency versus changes in the crop mix choice, we note

that the reduction of the actual yield gap from 3.14-fold to 0.77-fold arises from a reduction of the

actual yield gap from 3.14 to 1.05 from production efficiency and then to 0.77 from the crop mix

choice,

3.14×
prod. efficiency︷︸︸︷

0.33︸ ︷︷ ︸
1.05

×
total efficiency︷︸︸︷

0.73 = 0.77.

This implies that around 80 percent of the reduction in the aggregate yield gap (log(0.33)/ log(0.25))
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Figure 10: Total Efficiency Yield across Countries
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Figure 11: Total Efficiency to Potential Yield across Countries
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is due to production efficiency within each crop-plot, while the remaining 20 percent is due to

improvements in the crop mix choice in each location.

This counterfactual points to poor countries producing systematically lower yielding crops given

their internal land quality characteristics.

4 Robustness

We evaluate the sensitivity of our results of potential yield across countries using different assump-

tions about input levels. Recall that an important element in the cross-country comparisons we

make is that the level of inputs is kept the same in all countries, so the differences in the potential

yields for each crop and location reflect only variation in the geographical attributes of the land in

each location. But it may be that the geographical endowments in poor countries are less conducive

to the use of certain inputs and if so using the mixed level of inputs in our baseline may bias our

results.

We do our evaluation of potential yields across countries for each available level of inputs in the

GAEZ database, namely low, intermediate, and high, under rain-fed conditions. We calculate the

aggregate potential yield in each country for the three most prevalent crops across the world: wheat,

maize, and rice. We report in Figure 12 the ratio of potential yields with high inputs to low inputs

in the left panel and for the ratio of high inputs to intermediate inputs in the right panel. Panel

A in Figure 12 reports the ratio of potential yields for wheat, Panel B for maize and Panel C for

rice. While there are discrepancies between the aggregate potential yields with different input levels

within countries, these discrepancies are not systematically correlated with income. The main take-

away from this figure is that our main finding of a weak relationship between potential yields and

real GDP per capita across countries is present under alternative input level assumptions.
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Figure 12: Potential Yield in Different Crops by Input Levels

Panel A: Wheat
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Panel B: Maize
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Panel C: Rice
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5 Conclusions

That land quality and geography matter for agricultural production at the micro-level is ubiquitous

as argued by both agronomists (e.g, Doorenbos and Kassam, 1979; Steduto et al., 2012, GAEZ)

and agricultural economists (e.g., Sherlund et al., 2002; Di Falco and Chavas, 2009; Fuwa et al.,

2007; Jaenicke and Lengnick, 1999). Using detailed micro-geography data, in this paper we quantify

the macro-level consequences of land quality for agricultural productivity, measured as output per

hectare (yield). In particular, we examine to what extent differences in agricultural yields across

countries are the result of natural advantages/disadvantages or the result of economic choices. We

find that land quality differences cannot justify the agricultural productivity gaps between rich

and poor countries. If farming practices were the same around the world then land quality would

not be a constraint on farmers in poor countries. Instead we trace the problem to what crops are

produced, where they are produced within the country, and most importantly how efficiently they

are produced.

Our analysis illustrates that there are large gaps between actual and potential yields in poor coun-

tries, much larger than in rich countries. The implication is that using existing technologies and

improving allocations can increase agricultural productivity by 5-fold. These seem like sizeable

unrealized gains in productivity. One possibility is that the technologies agronomists treat as easily

localized (in the calculation of potential yields) cannot be profitably implemented everywhere in

the developing world. The other possibility is that there are constraints that prevent the adoption

of modern technologies and frictions that prevent markets from efficiently allocating resources in

developing countries. More work is needed to understand the importance of each one of these ex-

planations. While a large body of recent work has been studying the constraints and frictions that

impact agricultural productivity, with mounting evidence of their importance, much less work has

been done on understanding the localization of agricultural technologies in developing countries.

GAEZ has been following a variety of approaches for “ground-truthing” and verifying the results

36



of their crop suitability analysis, but more needs to be done in terms of further validation. At

the same time further research is needed to understand what factors constrain the choices of farm-

ers in the developing world, preventing them from better exploiting their land and environmental

endowments.
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A Country Sample

Table 6 lists all 162 countries in our data set, along with the corresponding country code, the

number of cells covering the country, and the level of real GDP per capita in 2000.
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Table 6: Countries

Country Code Cell Count GDP per capita

Afghanistan AFG 9000 327
Albania ALB 444 3177
Algeria DZA 30751 5276
Angola AGO 14988 2901
Antigua and Barbuda ATG 5 14522
Argentina ARG 40080 12519
Armenia ARM 451 4333
Australia AUS 100208 30240
Austria AUT 1447 31574
Azerbaijan AZE 1311 3722
Bahamas BHS 160 24593
Bangladesh BGD 1759 1794
Belarus BLR 4057 12188
Belgium BEL 558 29693
Belize BLZ 271 7910
Benin BEN 1374 1336
Bhutan BTN 523 2817
Bolivia BOL 13284 3346
Bosnia and Herzegovina BIH 836 5798
Botswana BWA 7297 7219
Brazil BRA 101847 8391
Brunei Darussalam BRN 65 48210
Bulgaria BGR 1754 6374
Burkina Faso BFA 3262 1121
Burundi BDI 312 706
Cambodia KHM 2184 1764
Cameroon CMR 5470 2448
Canada CAN 244154 31471
Central African Republic CAF 7287 918
Chad TCD 15448 1445
Chile CHL 11199 14309
China CHN 136881 4076
Colombia COL 13318 6620
Congo COG 4032 3835
Costa Rica CRI 609 9463
Cote d’Ivoire CIV 3795 2761
Croatia HRV 919 9775
Cuba CUB 1381 7636

Note: The cell count of each country is from GAEZ, and refers to the number of 5-arc minute cells covering the

country. GDP per capita is from the PWTv8.
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Country Code Cell Count GDP per capita

Cyprus CYP 129 20275
Czech Republic CZE 1419 16044
Democratic Republic of the Congo ZAR 27327 312
Denmark DNK 898 30468
Dominican Republic DOM 598 7559
Ecuador ECU 2996 4894
Egypt EGY 13029 4690
El Salvador SLV 253 5192
Equatorial Guinea GNQ 314 8820
Eritrea ERI 1469 668
Estonia EST 1015 10405
Ethiopia ETH 13365 892
Fiji FJI 230 5784
Finland FIN 9008 26402
France FRA 9266 27311
Gabon GAB 3056 8504
Gambia GMB 132 1289
Georgia GEO 1099 4310
Germany GER 6608 29051
Ghana GHA 2819 1359
Greece GRC 1970 20708
Guatemala GTM 1326 5530
Guinea GIN 2908 3235
Guinea-Bissau GNB 403 657
Guyana GUY 2475 2457
Haiti HTI 336 1655
Honduras HND 1360 3062
Hungary HUN 1590 13025
India IND 40163 2687
Indonesia IDN 22138 4151
Iran (Islamic Republic of) IRN 22489 8049
Iraq IRQ 6069 5403
Ireland IRL 1334 31389
Israel ISR 285 22356
Italy ITA 4774 27142
Jamaica JAM 135 7877
Japan JPN 5488 28341
Jordan JOR 1220 4329
Kazakhstan KAZ 47485 7641
Kenya KEN 6800 1943
Korea, Republic of KOR 1434 18597
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Country Code Cell Count GDP per capita

Kuwait KWT 225 36146
Kyrgyzstan KGZ 3098 3310
Lao People’s Democratic Republic LAO 2847 1777
Latvia LVA 1371 8119
Lebanon LBN 144 7505
Lesotho LSO 414 1770
Liberia LBR 1125 492
Libyan Arab Jamahiriya LBY 21221 14674
Lithuania LTU 1325 8566
Luxembourg LUX 47 63392
Madagascar MDG 7353 965
Malawi MWI 1425 1032
Malaysia MYS 3856 14178
Mali MLI 15355 1108
Malta MLT 6 19442
Mauritania MRT 12944 2085
Mexico MEX 25084 10339
Mongolia MNG 26562 2008
Montenegro MNE 214 4877
Morocco MAR 5529 4574
Mozambique MOZ 9647 1245
Namibia NAM 10397 5531
Nepal NPL 1944 1783
Netherlands NLD 677 31927
New Zealand NZL 4206 21437
Nicaragua NIC 1538 2058
Niger NER 14499 811
Nigeria NGA 10772 1275
Norway NOR 8617 41777
Oman OMN 3849 23752
Pakistan PAK 11827 2696
Panama PAN 888 7124
Papua New Guinea PNG 5470 2194
Paraguay PRY 5062 4556
Peru PER 15324 4975
Philippines PHL 3538 3955
Poland POL 5882 10834
Portugal PRT 1381 19606
Puerto Rico PRI 113 25955
Qatar QAT 142 61389
Republic of Moldova MDA 576 2420
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Country Code Cell Count GDP per capita

Romania ROM 3958 6151
Russia RUS 421168 8305
Rwanda RWA 293 994
Saudi Arabia SAU 25034 19207
Senegal SEN 2372 1732
Sierra Leone SLE 863 1171
Singapore SGP 7 35424
Slovakia SVK 858 11844
Slovenia SVN 341 19043
Solomon Islands SLB 334 1318
Somalia SOM 7490 480
South Africa ZAF 16282 8441
Spain ESP 7727 24945
Sri Lanka LKA 793 4603
Sudan SDN 30052 1546
Suriname SUR 1706 7490
Swaziland SWZ 228 6587
Sweden SWE 11321 27174
Switzerland CHE 704 34414
Syrian Arab Republic SYR 2672 2446
Taiwan TWN 464 21513
Tajikistan TJK 2120 1902
Thailand THA 6227 7058
The former Yugoslav

Republic of Macedonia MKD 396 6358
Togo TGO 682 984
Tunisia TUN 2186 7572
Turkey TUR 11699 6428
Turkmenistan TKM 7077 8716
Uganda UGA 2834 1094
Ukraine UKR 10587 5644
United Arab Emirates ARE 908 38604
United Kingdom GBR 4857 27032
United Republic of Tanzania TZA 11088 681
United States USA 160841 39241
Uruguay URY 2467 11426
Uzbekistan UZB 6960 1477
Vanuatu VUT 157 5607
Venezuela VEN 10758 10553
Viet Nam VNM 3970 2407
Yemen YEM 5148 1129
Zambia ZMB 9045 1038
Zimbabwe ZWE 4813 4528
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