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Summary: This study proposes the measurement error robust Euler equation approaches to estimate

households’ preference parameters before and after a large-scale disaster, namely the Great East Japan

Earthquake of 2011. Our finding supports other studies using hypothetical and experimental data that

suggest experiencing a large-scale disaster changes individuals’ risk and time preferences. Furthermore,

revealed households consumption and asset allocation behavior fitted in a life-cycle consumption model

exhibits that a large-scale disaster affects households facing different future risks of similar disasters

differently even if they are not physically damaged by the disaster.
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1 Introduction

To evaluate a policy that focuses on recovery from a large-scale disaster, understanding not only indi-

vidual economic behavior but also household behavior after the disaster is important. A growing body

of the literature finds that an individual’s preference parameters such as risk and time preferences

change after experiencing an unexpected natural disaster.1 In the literature, two main approaches

elicit preference parameters. The first approach uses data collected from field experiments, such as in

the studies presented by Eckel, El-Gamal, and Wilson (2009), Cameron and Shah (2015), Sawada and

Kuroishi (2016), and Cassar, Healy, Kessler, and Carl (2017). The second approach elicits preference

parameters from hypothetical questions, for example Callen (2015), Goebel, Krekel, Tiefenbach, and

Ziebarth (2015), and Hanaoka, Shigeoka, and Watanabe (in press). There are three important open

questions in the literature. First, since experiments and hypothetical questions target individuals’ deci-

sions rather than those of households, whether and how natural disasters affect households’ preference

parameters are not evident. Second, there may be gaps between respondents’ behaviors in hypotheti-

cal or experimental settings and their actual economic behaviors. Third, no clear lines exist between

affected and not affected by a disaster, which makes the definition of the treatment controversial. In

addition, preference parameters in a specific context may offer a stronger measure for that particular

context (see Rabin, 2000, Rabin & Thaler, 2001, Cox & Sadiraj, 2006, Schechter, 2007, Dohmen et al.,

2011), which suggests, for example, that preference parameters elicited in a financial context such as a

lottery, game, or bet scenario may have less predictive power in another context. To reveal households’

preference parameters with respect to consumption and saving allocation plans, it is thus preferable

to investigate them in a consumption and saving context.

This study empirically investigates how preference parameters such as relative risk aversion and the

time discount factor are affected by a large-scale disaster by using household panel data that reveals

actual households’ consumption and saving behaviors. We adopt life-cycle consumption models, in

which risk and time preferences determine consumption, saving, and the other asset allocation plans

of economic agents.2 We propose a new identification strategy for preference parameters in life-

1While preference parameters are typically treated as constant over time (e.g., Stigler & Becker, 1977), a large
number of studies have questioned the time- and event-invariant parameter assumption. For example, Fehr and Hoff
(2011) summarize that preference parameters are not only variable over time but also affected by the event a person has
experienced.

2The risk preference parameter we use in this study is the Arrow–Pratt measure of relative risk aversion. This
measure has been used as the risk aversion parameter in both experimental and hypothetical settings. In the literature
using hypothetical questions, Cramer, Hartog, Jonker, Praag, and Mirjam (2002) show an approximation procedure
for the Arrow–Pratt absolute measure of risk aversion, which is adopted, for example, by Hanaoka et al. (in press) in
the natural disaster context. In the literature on field experiments, the Arrow–Pratt measure of relative risk aversion
is used by Cameron and Shah (2015) by adopting the estimation method proposed by Schechter (2007). Sawada and
Kuroishi (2016) also use the Arrow–Pratt measure estimated by using the log-linearized intertemporal consumption
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cycle consumption models because of the measurement errors that exist in consumption data (see, for

example, Runkle, 1991 who confirms the existence of measurement errors in consumption data when

testing the permanent income hypothesis). Since neglected measurement errors may seriously inhibit

the ability to obtain consistent parameter estimates, one needs an econometric approach that delivers

parameter estimates robust to measurement errors under plausible assumptions. In particular, under

our approach, measurement errors can be arbitrarily correlated with any other variables including

true consumption. Since it seems to be implausible to assume independence between latent true

consumption and its measurement error in economic data (e.g., Bound & Krueger, 1991, Bound, Brown,

Duncan, & Rodgers, 1994, Chen, Hong, & Tamer, 2005), allowing arbitrary dependency between them

is an important and challenging task.

By using Keio Household Panel Survey (KHPS) data and the Great East Japan Earthquake that

occurred in March 2011, we find that the disaster affects households’ risk and time preference pa-

rameters even if households did not lose properties because of the disaster. Moreover, the observed

effect is heterogeneous with respect to a household’s future risk of being hit by severe earthquakes. In

particular, households facing a high risk of earthquakes become risk averse compared with households

facing a low risk of earthquakes. This result is consistent with German evidence reported by Goebel

et al. (2015) and Bauer, Braun, and Kvasnicka (2017) in the sense that the Great East Japan Earth-

quake affected the risk attitudes of households facing the risk of a similar disaster in the future even if

they did not directly experience the disaster themselves. For instance, Goebel et al. (2015) find that

the Great East Japan Earthquake affected the risk attitudes of Germans, while Bauer et al. (2017),

using German housing price data, find that the prices of houses close to nuclear power plants declined

significantly. Our result is also consistent with Ishino, Kamesaka, Murai, and Ogaki (2012) and Sekiya

et al. (2012), who analyze the earthquake from a psychological perspective. Our simulation shows

that the risk and time preference parameters estimated from data before the earthquake can severely

underestimate the consumption expenditure of households after the disaster.

This study contributes to the literature technically and empirically as follows. Its technical con-

tribution is that we propose a new identification strategy for the preference parameters in life-cycle

consumption models when consumption is contaminated by dependent measurement errors. It reveals

the set of parameters characterized by moment inequalities evaluated with the observed consumption,

to which the true parameters belong. The only assumption required in this study is weak stationarity

of measurement errors. In addition to the stationarity, existing works assumes independence between

Euler equation.
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measurement errors and other variables in the model and/or parametric distribution of measurement

errors. For example, Alan and Browning (2010) develop a simulation-based approach in which they

assume the distribution of expectation errors to be a mixture of two log-normals. Alan, Attanasio, and

Browning (2009) propose exact generalized method of moments (GMM) approaches, called GMM-LN

estimator, in which the log-normality of measurement errors is assumed (see, also Ventura, 1994). Alan

et al.’s (2009) so called GMM-D estimator exploits the first-order condition of the utility maximization

problem with respect to consumption that is two periods ahead (see also Chioda, 2004). By using two

Euler equations, they show that measurement errors are differenced out in the Euler equation if they

are independent of all other variables including consumption. The recent approach of Gayle and Kho-

runzhina (2017) also uses information on additional time periods that comes from habit formation in

preferences. Their independence assumption is mild in the sense that they only assume independence

between the growth rates of consumption and measurement errors. Without habit formation, however,

this approach fails to identify the time discount factor.

Therefore, parameter set identified by our methods can be used as the test for assumptions set

on existing methods. Testing the independence and distributional assumptions are important because

they might be unreasonable in life-cycle consumption models. For example, measurement errors seem

to depend on the level of consumption or the wealth of households. For example, the accuracy of

the consumption measurement depends on the wealth of households, when poorer households tend

to grasp their expenditure more clearly than wealthy households. Since a 10% measurement error at

a high level of consumption is larger than that at a low level, households with higher expenses may

have a much larger measurement error than those with lower expenses. Confidence sets for parameters

satisfying moment conditions can be inferred by existing methods such as Chernozhukov, Hong, and

Tamer (2007).

Preference parameters in life-cycle consumption models have been widely studied by using house-

hold panel data (see Attanasio & Weber, 2010 and the references therein). To the best of our knowledge,

however, this is the first study adopting such models that focus on the impact of natural disasters on

preference parameters. This study also contributes to the literature by revealing heterogeneous im-

pacts of a disaster to households’ preference parameters. We allow preference parameters to depend

on households’ future earthquake risks rather than how those households are affected by a specific dis-

aster. This is because the extent to which a natural disaster affects households’ preferences may also

depend on the initial level of preference parameters. Households that face a similar future earthquake

risk may tend to have similar risk preferences through residential sorting. In addition, We exclude
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possibilities of other paths such as belief updates and substantial income and property damage through

which the economic behavior of households changes.

The remainder of this paper is organized as follows. In Section 2, we present the empirical back-

ground of the study. Section 3 presents the economic model. Sections 4 and 5 describe the analytical

strategy and our estimator. All proofs for the propositions in these Sections are given in Appendix.

In Section 6, we present the data. The empirical results are presented in Section 7. The conclusion

and policy implications of the study are discussed in Section 8.

2 Empirical Background and Our Strategy

2.1 Hypothetical Questions and Field Experiments

The design of hypothetical questions and field experiments enables researchers to elicit a variety of

deep parameters. These are widely adopted to study the effect of a large-scale disaster on preference

parameters to identify the causal effect. However, at least three arguments remain controversial and

not yet settled. First, households may face different budget constraints compared with individuals

participating in experiments or responding to questionnaires. Economic decisions are often budget

constrained, and a household’s decision is made following agreement between its members. Even if

just one member of the household increases his/her consumption, the other members may have to

decrease their amount under the household’s budget constraints. As a result, an individual change

in the risk aversion parameter may not affect consumption in the economy. Therefore, it would be

informative to analyze household data to derive households’ preference parameters to understand their

decisions and the consumption path of an economy after large-scale disasters.

Second, for respondents, answering hypothetical questions or attending experiments can be a special

experience that biases their economic attitudes and behaviors. Several studies insist that the risk

measures obtained by hypothetical survey questions or experiments are reliable predictors of actual

risk-taking behaviors (e.g., Anderson & Mellor, 2009,Barsky, Juster, Kimball, & Shapiro, 1997,Donkers,

Melenberg, & Van Soest, 2001,Dohmen, Falk, Huffman, & Sunde, 2012). However, collecting data by

using hypothetical questions or experiments has also been criticized because of the gaps that appear

between respondents’ answers to the hypothetical questions and their actual economic behaviors as

well as bias of respondents’ behaviors that might arise from the special experimental environment.3

3For example, on the use of hypothetical questions, when evaluating non-market goods such as environmental goods,
Hausman (2012) finds that when researchers elicit respondents’ willingness to pay through questionnaires, there is a
huge difference between their answers and the actual payment for the goods. One main reason for this difference is that
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Third, field experiments are problematic for analyzing the effect of disasters when the treatment

is difficult to define. To identify the causal effect, experimental studies divide the target population

into treated and untreated groups. However, severe disasters may affect people not only physically,

but also mentally. For example, as noted in the Introduction, Goebel et al. (2015) and Bauer et

al. (2017) find that the Great East Japan Earthquake affected German risk attitudes, implying that

seemingly uninvolved respondents are still affected when researchers define a large-scale disaster as the

treatment.4

2.2 The Great East Japan Earthquake and Related Studies

The Great East Japan Earthquake hit the eastern coast of Japan on March 11, 2011. The earthquake

caused a tsunami, which caused more than 15, 800 deaths, 2, 500 missing persons, 6, 000 injuries,

450, 000 evacuations, and the Fukushima nuclear accident. The disaster caused power outages and

water shortages not only on the eastern coast of Japan but also in the areas surrounding Tokyo. These

events were repeatedly broadcasted across Japan. Therefore, the Great East Japan Earthquake may

have affected not only the households living in those areas hit by the disaster but also the entire

population of Japan.

Sawada and Kuroishi (2016) investigate how risk and time preference parameters are differently

affected by the level of housing damage. The authors conduct a field experiment after the disaster

and find that the disaster affected the present bias parameter negatively. Hanaoka et al. (in press)

focus on the link between individuals’ hypothetically elicited risk aversion parameters and the seismic

intensity of the earthquake experienced by them, finding that men who experience an earthquake

of large seismic intensity become risk tolerant. Goebel et al. (2015) analyze the risk and political

attitudes of Germans by using a questionnaire and find that the Great East Japan Earthquake and

the subsequent disaster affected the risk attitudes of Germans. Bauer et al. (2017) find a significant

causal decline in the prices of houses close to nuclear power plants in the wake of the Great East Japan

answers to hypothetical questions do not change respondents’ lives in the real world. Studies that use experimental
data are less likely to suffer from this hypothetical bias problem because researchers can modify the rewards given to
participants according to their behavior in the experiment. However, experimental studies are still not free from bias.
The special experimental environment can bias respondents’ behaviors. For example, an experimental environment in
which respondents earn and use money may make subjects behave differently from their daily lives because it does not
necessarily reflect real-world consumption, saving, and budget constraints. In addition, respondents can change their
behavior strategically to control the result of the experiment if they recognize the purpose of the study.

4From this view of the effect of a large-scale disaster, our study does not intend to identify the causal effects by
defining treated and untreated households. To identify the causal effects of experiencing large-scale disasters, some
authors focus on the causal change in household behavior that is theoretically related to preference parameters. For
example, Berlemann, Steinhardt, and Tutt (2015) report that suffering from a flood causes individuals’ saving to decrease.
However, to understand the economy after a large-scale disaster, structural parameters would be more informative (e.g.,
Heckman, 2010).
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Earthquake. This result indirectly supports the non-behavioral findings of Goebel et al. (2015) because

if Germans changed their risk parameters as Goebel et al. (2015) point out, the shape of the housing

price function should vary after the disaster. Ishino et al. (2012) and Sekiya et al. (2012) suggest that

the psychological impact of the earthquake was not limited to individuals who physically experienced

the disaster, showing that it also affected individuals facing future risks of similar large-scale disasters.

Overall, although no studies directly analyze the preference parameters before and after the disaster

by using household data, research adopting hypothetical questionnaires, experiments, and the analysis

of housing price data implies that the disaster changed Japanese households’ preference parameters.

2.3 Our Strategy

To focus on the finding that the Great East Japan Earthquake affected individuals facing future risks of

similar large-scale disasters discussed above, we allow the preference parameters to vary with respect to

the future earthquake risk of households. To allow these preference parameters to differ for households

living in different potential earthquake risk areas, we use the localized moment restrictions directly

implied by the Euler equation and adopt the local GMM estimator developed by Lewbel (2007). By

localizing the moment conditions, we only assume that households that have similar characteristics

hold the same information and the same prediction about their future.

To derive the earthquake risk measures, we use the data on probabilistic earthquake hazards pub-

lished by the Japan Seismic Hazard Information Station (JSHIS). We adopt the probabilities that a

location will be hit by a Japan Meteorological Agency (JMA) seismic intensity larger than 5 upper

earthquake in the next 30 years.5 Figure A.1 shows the relationship between the probabilistic seismic

hazards of 2009 and 2012. Although the reported future risks faced by each household are not the

same across these two years, the observed change in the future earthquake risk between before (2009)

and after (2012) the earthquake is small. Since each household’s future earthquake risk differs little

across 2009 and 2012, the local moments capture the same households across these years, indicating

that comparing the parameter estimates in 2009 and 2012 at a specific future risk is possible. Note that

our estimation strategy allows belief (i.e., perceived risk) updates, meaning that preference changes do

not come from updated perceived risk.

By exploiting the advantage of using household survey data, we focus on households whose prop-

erties are undamaged and examine how their preference parameters are affected by the earthquake.

In particular, we estimate the preference parameters before and after the earthquake. We use short

5See the Data section for more details.
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periods of data to avoid confusing the effect of the earthquake with other shocks. Chamberlain (1984)

and Hayashi (1985) find that the use of short-period panel data requires imposing a complete market

assumption to apply the Fubini theorem on the orthogonality condition.6 The assumption that all

households in Japan hold the same information and the same prediction about their future is, how-

ever, a strong one. Hence, introducing heterogeneous preference parameters depending on the future

earthquake risk faced by households moderates this assumption.

3 Economic Model

To understand the extent to which households’ tastes change through their preference parameters,

we specify households’ behavior by using life-cycle consumption models. We assume that a household

chooses the intertemporal allocation of consumption and investment that maximizes its expected utility,

is not subject to liquidity constraints, and has an additive budget over time. Further, utility is

intertemporally additive, that is, it has no habit formation specification.

At time t, household i chooses (non-durable) current and future consumption Ci,t and investment

plan Qi,t =
∑N
j=1Ai,j,t, which is a summation of N assets Ai,j,t, to maximize the expected utility func-

tion given information set It available at time t. Households’ expected utility maximization problem

is

maxE

[ ∞∑
t=0

βtU(Ci,t, ωi, γ)

∣∣∣∣∣ Ii,t
]
,

s.t. Qi,t+1 ≤ Qi,t(1 +Ri,t) +Wi,t − Ci,t (1)

where 0 < β < 1 is the discount factor, and U(·) represents a strictly concave utility function with the

household fixed effect ωi and utility curvature parameter 0 < γ <∞. The household’s returns Ri,t at

time t consist of the weighted average returns of its assets, where the weight is quantity. Wt is labor

income at time t.

The first-order condition of the maximization problem is

E

[
β(1 +Ri,t+1)

U ′(Ci,t+1, ωi, γ)

U ′(Ci,t, ωi, γ)
− 1

∣∣∣∣ Ii,t] = 0, (j = 1, . . . , N) (2)

6We set up the intertemporal optimization problem faced by each household. The Euler equation describes each
household’s consumption and saving path. The limitation of such data, however, restricts us to summing over time to
obtain the sample analogue of the Euler equation. Individual households’ intertemporal allocations of consumption and
saving are modeled by Runkle (1991), for example.
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where U ′(·) is the first derivative of U(·) with respect to consumption. Households decide their in-

tertemporal allocation of consumption and saving to hold the first-order condition.

Specifically, we assume the utility function to be the constant relative risk aversion (CRRA) type:

U(Ci,t, ωi, γ) = (1− γ)−1(C1−γ
i,t − 1) exp(ωi). Since γ represents the Arrow–Pratt measure of relative

risk aversion under CRRA utility, we call it the risk parameter.7 The first derivative of the utility

function is U ′[Ci,t, ωi, γ] = C−γi,t exp(ωi). Then, the first-order conditions (2) become

E
{
β(1 +Ri,t+1) (Ci,t+1/Ci,t)

−γ − 1
∣∣∣ Ii,t} = 0, (i = 1, . . . , N). (3)

The information set at time t consists of all the variables known by households, that is, Ii,t =

{Ri,s, Ci,s, Zi,s, νi,s}ts=t0 , where Zs is a vector of the variables observable by the researchers, νi,s

represents the variables observable by the households but not the researchers, and t0 is the initial

period.

3.1 Belief Updates

The main question we consider concerns the occurrence of unexpected events such as natural disasters

that influence the behaviors of economic agents. There are two potential paths through which an

unexpected event affects household behaviors. Facing an influential unexpected event may first change

the subjective beliefs in the occurrence frequency of such events. Second, it may change the preference

parameters such as the discount factor β and risk averseness γ in utility. When an unexpected event

changes the subjective beliefs and preference parameters, the optimal consumption path chosen to

satisfy the first-order condition (3) before such an unexpected event is no longer optimal after the

event.8

In this study, we allow our model to be flexible with respect to the belief update to focus on the

preference parameters. We assume that households have homogeneous subjective beliefs about the

future state, according to which they build their expectations. Households are adaptive to unexpected

7Assuming CRRA-type utility may be too restrictive, since all households are assumed to have identical preference
parameters. We moderate this assumption by considering the varying coefficients model in which we allow the preference
parameters to differ across households’ characteristics.

8Formally, we define belief as the conditional distribution of the future state of the world. Suppose, for simplicity,
that the future state of the world considered at time t is discrete and finite, which we denote as st ∈ {1, 2, . . . , S}.
Then, one’s belief is the conditional probability of the future state is P (st|It), where information set It includes all the
information about the economic variables that are consequences of the realized state at time t. Equation (3) can be

rewritten as
∑S
st=1

[
β(1 +Rt+1)(Ct+1/Ct)−γ − 1

]
P (st|It) = 0, for i = 1, . . . , N, where future variables Rt+1 and Ct+1

are considered to be P -measurable real-valued functions defined on future states. A belief update caused by an event
at time t indicates that the belief of a future state considered after the event at a certain time period is different from
that considered in a state in which no such an event had taken place. From the above representation of the first-order
condition, it is obvious that a future consumption path chosen without a belief update is different from that chosen with
such an update.
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events in the current time period that change their subjective beliefs about future states, which means

that they adjust the allocation path after experiencing such an unexpected event.

Note that the observed data on the economic variables reflect the actual beliefs and preferences

of households. Thus, under our model assumptions and given homogeneous subjective beliefs, the

preference parameters can be obtained without any knowledge of the belief. Estimating the preference

parameters before and after an unexpected event implicitly allows the beliefs to be different. Then, the

preference differences captured by the estimation before and after the event are not the consequence

of neglecting the possibility of a belief update.

4 Constant Coefficients Model

In this section, we consider the identification and estimation of the econometric model of the Euler

equation (3) under which the preference parameters are implicitly assumed to be constant across all

households. We moderate this assumption by allowing heterogeneous preference parameters in the

next section.

Our baseline econometric model is implied by (3): for any observable subset of information set, say

Zi,t ∈ Ii,t, the law of iterated expectations yields

E
{
β(1 +Ri,t+1) (Ci,t+1/Ci,t)

−γ − 1
∣∣∣Zi,t} = 0, (i = 1, . . . , N). (4)

4.1 Measurement Error

Estimators based on the baseline econometric model (4) are not consistent when consumption data

are contaminated by measurement errors. Thus, we explicitly define an econometric representation

of the Euler equation by replacing unobserved true consumption with the observed consumption and

measurement errors to deal with this problem.

Let true consumption, Ci,t, be observed with multiplicative error ηi,t, so that the observed consump-

tion is given by Cobs
i,t = Ci,tηi,t. The multiplicative measurement error of consumption is standard in

the literature of life cycle consumption models. For notational simplicity, we denote the measurement

error of log consumption by εi,t ≡ logCobs
i,t − logCi,t = log ηi,t.

Assumption 1 (Measurement error). For each household, εi,t is weak stationary.

Assumption 1 does not require any independence between the errors and other variables. For

example, it allows measurement errors to depend on the level of consumption, demographic charac-
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teristics, and even unobservable households’ characteristics. Stationarity assumption also allows serial

correlation of measurement errors that occurs if the household tends to over- or under-report the level

of consumption. In existing methods, serial correlation of measurement errors are not allowed except

in Gayle and Khorunzhina (2017).

Under Assumption 1, we can transform (4) into moment inequalities expressed in terms of the

observed consumption:

E

[
log β + log(1 +Ri,t+1)− γ log

(
Cobs
i,t+1

Cobs
i,t

)
+ log g(Zi)− logE[g(Zi)]

]
≤ 0, (5)

for any measurable transition function g(·). The derivation of (5) is shown in the proof of Proposition

1 below.

Assumption 1 does not allow measurement errors to have time trend, which occurs when experi-

ences of responding questionnaire mitigate measurement errors over time. Thus, we make an alterna-

tive assumption that arrows time trend in measurement errors. Inequality (5) can be derived under

Assumption 2 below instead of Assumption 1.

Assumption 2. For each household, E(ηi,t/ηi,t+1) exist and E(ηi,t/ηi,t+1) ≤ 1 for all t.

Assumption 2 does not require stationarity in ηi,t, so that ηi,t are allowed to have any form of

time trend. The cost of allowing errors to have a time trend is the restriction that expectation of (the

inverse of) the growth in measurement errors is smaller than one, that is the case when measurement

errors tend to increase over time. The restriction on the growth in measurement errors depends on the

definition of the measurement error. If one assume a multiplicative variant of Berkson measurement

error, say, Ci,t = Cobs
i,t ηi,t, the restriction become that E(ηi,t+1/ηi,t) is smaller than one, that is the

case when measurement errors tend to decrease over time.

4.2 Identification

We now discuss the identification of preference parameters, that is, the discount factor β and risk

parameter γ in (4). In particular, we show that the true parameters satisfying the baseline moment

conditions (4), if they exist, belong to an informative parameter set consistent with the moment

inequalities defined in (5).

Let θ = {β, γ}. For notational simplicity, we define ρi,t(θ) = β(1 + Ri,t+1) (Ci,t+1/Ci,t)
−γ

and

ρobsi,t (θ) = β(1+Ri,t+1)
(
Cobs
i,t+1/C

obs
i,t

)−γ
. Then, our baseline model (4) can be expressed by E(ρi,t(θ)−

11



1|Zi,t) = 0, and the moment inequality (5) is E{log ρobsi,t (θ) + log g(Zi,t)− logE[g(Zi,t)]} ≤ 0. Let the

true preference parameter vector be θ0 ≡ {β0, γ0}, that is, θ0 = {θ : E[ρi,t(θ)− 1|Zi,t] = 0}.

For the identification, we need the following assumptions in addition to Assumption 1 or 2.

Assumption 3 (Completeness). E[ρi,t(θ)− 1|Zi,t] = 0 implies ρi,t(θ)− 1 = 0 almost surely (a.s.) for

some t.

Assumption 4 (Rank). E[(1, Ci,t+1/Ci,t)
′(1, Ci,t+1/Ci,t)] has full rank for all t.

The completeness restriction in Assumption 3 is satisfied, for example, when the joint distribu-

tion of {Ci,t, Ci,t+1, Ri,t+1} belongs to exponential families. Other sufficient conditions can be found,

for example in Hu and Shiu (2017). Although the completeness assumption seems to be restrictive,

existing works such as Gayle and Khorunzhina (2017) also assume completeness to identify the pref-

erence parameters in the Euler equation with habit-formed utility (see also the references in Gayle &

Khorunzhina, 2017).

The rank condition in Assumption 4 requires the consumption growth rates to vary across house-

holds. The rank condition is violated, for example, when all households have equivalent consumption

growth rates, meaning that the second moment of the consumption growth rate is equal to the square

of its first moment.

Proposition 1. Suppose Assumptions 1, 3, and 4 hold. Then, θ0 is identified if E(ρi,t(θ0)−1|Zi,t) = 0.

For any measurable function g(·), θ0 belongs to the set of parameters satisfying (5).

Proposition 2. Proposition 1 hold under Assumptions 2, 3, and 4.

The first statement in Proposition 1 about the identification of the preference parameters is not

new. For example, Gayle and Khorunzhina (2017) shows the identification of the parameters in the

Euler equation under habit forming utility by assuming the completeness and rank restrictions. We

show the identification results to clarify the true parameter in which we are interested.

The second part of Proposition 1 states that the true parameter vector satisfying the Euler equation

is consistent with the moment inequality (5). The results of Propositions 1 and 2 are useful in at least

two senses. First, the parameter set satisfying these inequalities pins down the potential parameter

space that contains the true parameters, which is obtained by using the information provided by the

data and weak assumption on measurement errors. These initial results may help proceed further

research, for example, by determining the initial optimization values. Second, our results can be used

as a sensitivity analysis of other approaches, when a set of those assumptions used in such approaches
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nest our assumption set on the measurement errors. For example, one can check whether the point

estimates of Alan et al. (2009) belong to the parameter set obtained by using our approach.

4.3 Estimation

We adopt the method developed by Chernozhukov et al. (2007) to derive the 95% confidence set for

the preference parameters γ and β that satisfy the moment inequality (5).

Let mi(θ) be the vector of the moment functions and ΘI denote the parameter values that

satisfy the moment restrictions, that is, ΘI = {θ : E[mi(θ)] ≤ 0}. In our case, the moment re-

striction is (5). The confidence region is denoted as Cn(c) ≡ {θ ∈ Θ : nQn(θ) ≤ c}, where

Qn(θ) ≡ ‖max(n−1
∑n
i=1mi(θ), 0)‖2 and c is a consistent estimate of the α-quantile of supθ∈θI nQn(θ).

We follow the subsampling method of Chernozhukov et al. (2007) to obtain c, and calculate it by using

Bn = 100 draws of subsamples of size b = n/2.9 We begin with a starting value ĉ0 of c.10 We compute

supθ∈Cn(c0) bQj,b(θ) for each subsample j = 1, . . . , Bn, where Qj,b(θ) denotes the criterion function

evaluated by using the jth subsample. Then, we calculate ĉ1 as the α-quantile of these quantities.

Similarly, we calculate ĉ2 and ĉ3. The critical value is set to be c = min(ĉ1, ĉ2, ĉ3).

5 Varying Coefficients Model

We moderate the assumption of homogeneous preference parameters by using the localized Euler

equation. For the localizing variables, say, Wi, we adopt different variables according to the aim of our

analysis. These are the earthquake risk faced by household i and the seismic intensity that household

i experienced during the Great East Japan Earthquake.

Instead of the constant risk parameters γ and β, we suppose that the risk parameters are a function

of W . The utility maximization problem conditioned by Ii,t and Wi,t yields the Euler equation:

E[β(w)(1 +Ri,t+1)(Ci,t+1/Ci,t)
−γ(w) − 1|Ii,t,Wi,t = w] = 0, which directly implies

E{[β(w)(1 +Ri,t+1)(Ci,t+1/Ci,t)
−γ(w) − 1]|Zi,t,Wi,t = w} = 0, (6)

9Since there is no general theory to choose the size of the subsample, we follow Gayle and Khorunzhina (2017).
Another example is n/4, which is used by Ciliberto and Tamer (2009).

10We randomly choose 100 sets of the initial parameter values, which we denote Θ̄. The starting value ĉ0 is chosen
to be infθ∈θ̄ nQn(θ). Attanasio and Weber (2010) review the literature on consumption-based estimates of the relative
risk aversion parameter and show estimates that range between 1 and 3. Less empirical evidence has been accumulated
for the discount factor, since it is not identified by using the conventional log-linear method. According to Alan et al.,
2009, who provide a rare example, β is around 0.95, and it is not plausible for β to be close to zero. Therefore, each
θ ∈ Θ̄ is randomly chosen from [0.5, 1] for β and [1, 3] for γ.
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for Zi,t ∈ Ii,t. Equation (6) is the localized variant of the baseline model (4). Note that equation

(6) is directly implied by the first-order condition (3) as long as the localizing variable Wi is in the

household’s information set. Otherwise, the population of interest should be those with a localizing

variable equal to w.

We derive the moment inequalities evaluated by the observed consumption when consumption is

contaminated by multiplicative measurement errors. In particular, we derive the moment restriction

under Assumption 1 or 2, in which neither independence restriction nor distributional assumptions

are set on the measurement errors. Under Assumption 1 or 2, we can transform (6) into moment

inequalities expressed in terms of the observed consumption:

E

{
log β(w)(1 +Ri,t+1)− logE[g(Zi,t)|Wi,t = w]− γ(w) log

(
Cobs
i,t+1

Cobs
i,t

)
+ log g(Zi,t)

∣∣∣∣∣Wi,t = w

}
≤ 0.

(7)

The derivation of (7) is shown in the proof of Propositions 3 and 4.

The identification of the preference parameters that satisfy (6) is analogous to that in the constant

coefficients model described above. In particular, we show that the true parameters satisfying (6), if

they exist, belong to an informative parameter set consistent with the moment inequality defined in

(7).

Let θ(w) = {β(w), γ(w)}. Then, our baseline moment restriction (6) can be expressed by E[ρi,t(θ(w))−

1|Zi,t,Wi,t = w] = 0, and the moment inequality (7) can be expressed by E{log ρobsi,t (θ(w))+log g(Zi,t)−

logE[g(Zi,t)|Wi,t = w]} ≤ 0. Let the true preference parameter vector be θ0(w) ≡ {β0(w), γ0(w)},

that is, θ0(w) = {θ(w) : E[ρi,t(θ(w))− 1|Zi,t,Wi,t = w] = 0}.

The identification of the varying coefficients model is given in Propositions 3 and 4 below. To

identify the varying coefficients model, we need the following assumption, which is a localized variant

of Assumption 3.

Assumption 5 (Local Completeness). E[ρi,t(θ(w)) − 1|Zi,tWi,t = w] = 0 implies ρi,t(θ(w)) − 1 = 0

a.s. for some t.

Proposition 3. Suppose Assumptions 1, 4, and 5 hold. Then, θ0(w) is identified if E[ρi,t(θ(w)) −

1|Wi,t = w] = 0. Moreover, θ0(w) belongs to the set of parameters satisfying (7).

Proposition 4. Proposition 3 holds under Assumptions 2, 4, and 5.

The 95% confidence set for the preference parameters γ and β that satisfy the moment inequality
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(7) can be derived by adopting the method developed by Chernozhukov et al. (2007). The derivation

of the confidence set is the same as that in the constant coefficients model explained above except that

the conditional expectation is estimated by using non-parametric kernel methods.

6 Data

6.1 Data Sources

Five data sources are used in this study. The first is KHPS data, which include household behavior

and information on households’ assets. The second data source is the average interest rates of deposits

posted at financial institutions by type of deposit from 2007 to 2015. These data are available from

the website of the Bank of Japan. The third data source is the average price and yield of securities,

which is published by the Tokyo Stock Exchange. The fourth is the probabilistic seismic hazard data

published by the JSHIS. The fifth data source is the observed seismic intensity caused by the Great

East Japan Earthquake.

The KHPS is a panel survey of household behavior and social attitudes that has been conducted

since 2004. The survey respondents of the KHPS are selected by two-stage stratified sampling. The

number of survey respondents was 4, 005 in 2004. The KHPS added new cohorts in 2007 and 2012

(1, 419 respondents in 2007 and 1, 012 respondents in 2012). The survey subjects of the KHPS are men

and women aged 20 to 69. The KHPS data consist of information on households’ consumption, saving,

security, debt, socio-demographic characteristics, and city of residence. The survey is conducted in

January, and respondents are asked to report consumption details for January and their current saving,

security, debt, and socio-demographic characteristics.

6.2 Data Used in the Study

The findings of Sekiya et al. (2012), Ishino et al. (2012), Goebel et al. (2015), and Bauer et al. (2017)

imply that the Great East Japan Earthquake affected not only those individuals who experienced the

earthquake, tsunami, and nuclear accident but also who did not. To analyze the indirect effect of

the disaster, we do not limit our focus to households living in eastern Japan. Our data thus covers

households across Japan.

We are interested in the effect of experiencing an earthquake on the preference parameters. From

our economic model, households that have different statuses are assumed to face different future wage

paths. Therefore, we focus on households expected to face a similar economic environment. First, we
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focus on data on nuclear families with at least one child from 2007 to 2015. We retain those households

with a working age head during the sample periods, namely a household head no older than 51 and no

younger than 16 in 2007. Second, following Attanasio and Weber (1995) and Vissing-Jørgensen (2002),

we drop observations for which the observed income and consumption growth ratio is less than 0.2

or above five (73 households) to exclude obvious reporting and coding errors. Third, we exclude any

households that may be liquidity constrained in the sample periods. Following Alan et al. (2009), we

also exclude households that have no saving (186 households). Fourth, we remove households whose

properties were substantially damaged by the earthquake (one household).11

While the exclusion of households with an abrupt consumption growth ratio is standard in the

literature, such an exclusion according to income and properties may be non-standard. Under the

permanent income or risk-sharing hypotheses, unexpected income shocks do not affect household con-

sumption. However, empirical studies using Japanese datashow skeptical evidence of the risk-sharing

hypothesis, especially when households are liquidity constrained. For example, Kohara, Ohtake, &

Saito, 2006, Ichimura, Sawada, & Shimizutani, 2008, and Sawada & Shimizutani, 2008 provide em-

pirical evidence using Japanese data, while Ogaki & Zhang, 2001 and Zhang & Ogaki, 2004) test the

risk-sharing and permanent income hypotheses. Therefore, we concentrate on those households whose

economic environment was not substantially affected by the earthquake and who were not liquidity

constrained.

We remove households that did not submit the questionnaire at least once from 2007 to 2015. The

original sample size was 2, 864 for 2007, 3, 691 for 2008, 3, 422 for 2009, 3, 207 for 2010, 3, 030 for 2011,

2, 865 for 2012, 3, 568 for 2013, 3, 305 for 2014, and 3, 124 for 2015. The number of households that

submitted all questionnaires in the period is 2, 658. The number of nuclear family households that

satisfy the conditions stated above is 278. The first and second panels of Table 1 present the summary

statistics of the household characteristics in 2009 and 2012, respectively.

6.3 Consumption

For the composition of consumption, we follow Hall (1978) and the empirical evidence presented by

Khvostova, Larin, and Novak (2016) and Gayle and Khorunzhina (2017). Our consumption includes

non-durable consumption and services, which is a standard definition used in time-separable utility

models (e.g., Attanasio & Weber, 1995, Vissing-Jørgensen, 2002, and Alan, 2012). Household con-

sumption is the sum of expenditure on food consumed at home and away from home, lighting, heating,

11In particular, we exclude households whose houses fully or partially collapsed.
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Table 1: Summary statistics of the data used in the study

mean median std.dev min max
2009
Age of the household head 42.04 5.73 42 29 52
Number of children 2.01 0.69 2 1 5
Saving 606.49 712.37 400 20 5252
Annual Income 816.24 397.67 736 179 4065

2012
Age of the household head 45.04 5.73 45 32 55
Number of children 2.03 0.71 2 1 5
Saving 694.96 832.19 460 5 6940
Annual Income 822.47 330.52 750 180 1900

Consumption Rate
C2009/C2008 1.050 0.337 1.009 0.102 2.903
C2010/C2009 1.025 0.293 0.980 0.481 2.767
C2013/C2012 1.054 0.297 1.019 0.374 3.000
C2014/C2013 1.062 0.271 1.013 0.402 2.186

Return
R2009 -0.002 0.009 0.002 -0.046 0.002
R2010 -0.014 0.032 0.001 -0.172 0.001
R2012 0.032 0.073 0.000 0.000 0.401
R2013 0.001 0.003 0.000 0.000 0.015

water, fuel, public transport, and communication services. Data on consumption are deflated by using

the consumer price index at the prefecture level.12

In contrast to a large number of studies that use Panel Study of Income and Dynamics (PSID)

such as Shapiro (1984), Runkle (1991), Alan et al. (2009), and Alan and Browning (2010), we do not

focus on food consumption. A notable reason is that the utility function we adopt does not have a

habit formation specification, meaning that current consumption affects utility only in the current

period. Gayle and Khorunzhina (2017) use the PSID and show that habit formation is an important

determinant of food consumption patterns. Alternatively, Khvostova et al. (2016) use Russian panel

data that contain rich information on non-durable consumption other than food and find that habit

formation is not significant. Therefore, we follow the results of Khvostova et al. (2016) to compose

consumption.13

12https://www.e-stat.go.jp/SG1/estat/eStatTopPortal.do.
13A growing body of the literature has offered empirical evidence of habit formation for consumption. The existence

of habit formation is inconclusive, however, and may depend on the types of consumption and data sets used. For
example, Dynan (2000) finds no habit formation on foods by using the PSID, Carrasco, Labeaga, and J David (2005)
and Browning and Collado (2007) show habit formation for food but a non-significant habit pattern in transport by
using Spanish panel data, Leth-Petersen (2007) shows habit formation for gas for heating by using Danish panel data,
and Guariglia and Rossi (2002) show habit patterns in food consumption by using British panel data. However, the
empirical results of Khvostova et al. (2016) and Gayle and Khorunzhina (2017) are obtained by adopting measurement
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The third panel of Table 1 shows the descriptive statistics for the growth rates of consumption.

The mean consumption rates are stable over time, showing that consumption is smoothed. When we

examine the subtle difference before and after the earthquake, we find that the consumption growth

rate before 2011 is slightly lower, which suggests that households show risk tolerance and/or lower

discounting behavior.

6.4 Household-Specific Returns

Household-specific returns Ri,t are calculated by using the average interest rates of deposits data,

average price and yield data, and households’ saving and asset amounts included in the KHPS data.

The average interest rates of deposits data show the average interest rate of the Bank of Japan’s

clients.14 We calculate households’ interest rates for deposits by using the average interest rates of

deposits data, which include the average interest rates for three deposit amounts: less than 300, 000

JPY, from 300, 000 to 1, 000, 000 JPY, and more than 1, 000, 000 JPY. Households’ interest rates for

deposits are calculated as

ri,saving,t = 1{savingi,t < 300, 000 JPY}r(300, 000, t)

+ 1{300, 000 JPY ≤ savingi,t < 1, 000, 000 JPY}r(1, 000, 000, t)

+ 1{1, 000, 000 JPY ≤ savingi,t}r(1, 000, 000+, t), (8)

where r(300, 000, t) is the average interest rate for a deposit for which the amount is less than 300, 000

JPY when time is equal to t, r(1, 000, 000, t) is the average interest rate for a deposit for which the

amount is more than 300, 000 but less than 1, 000, 000 JPY when time is equal to t, and r(1, 000, 000+, t)

is the average interest rate for a deposit for which the amount is less than 1, 000, 000 JPY when time

is equal to t.

The average price and yield data published by the Tokyo Stock Exchange consist of average yield

for securities traded in the first and second sections of the Exchange. In this study, we use the annual

average price and yield of securities, say, ri,security,t, which are the weighted average of the monthly

average price and yield as the return to securities.

error-robust methods, which are not used in other works. They are also the earliest studies using the exact Euler equation
non-linear GMM method that no distributional assumption on the measurement errors is set. Therefore, we follow their
results.

14These include city banks, regional banks, the second association of regional banks, trust banks, credit unions, and
the Shoko Chukin bank. City banks include Mizuho Bank, Bank of Tokyo-Mitsubishi UFJ, Sumitomo Mitsui Banking
Corporation, Resona Bank, and Saitama Resona Bank. Regional banks are member banks of the Regional Banks
Association of Japan. Trust banks are those that in addition to banking businesses operate trust businesses based on
the Act on Provision, etc. of Trust Business by Financial Institutions and are not categorized as city or trust banks.
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Then, individual return Ri is calculated as

Ri,t = ri,saving,t
Ai,saving,t

Ai,saving,t +Ai,security,t
+ ri,security,t

Ai,security,t
Ai,saving,t +Ai,security,t

, (9)

where Ai,saving,t is household i’s saving at time t and Ai,security,t is household i’s securities at time t.

The fourth panel of Table 1 shows the descriptive statistics of individual returns.

6.5 Future Earthquake Risk

The effect of the shock caused by the Great East Japan Earthquake can differ depending on the future

earthquake risks faced by households. To capture this difference, we allow the discount rate and risk

preference parameters to differ with respect to earthquake risk.

Table 2: JMA seismic intensity scale

JMA seismic intensity
5 Upper 6 Lower

Human perception Many people find it difficult to It is difficult to remain standing.
and reaction move; walking is difficult without

holding onto something stable.
Wooden houses
High earthquake resistance Slight cracks may form in walls.

Low earthquake resistance Cracks may form in walls. Cracks are more likely to form
in walls.
Large cracks may form in walls.
Tiles may fall, and buildings
may lean or collapse.

Reinforced-concrete buildings
High earthquake resistance Cracks may form in walls,

crossbeams, and pillars.

Low earthquake resistance Cracks may form in walls, Cracks are more likely to form
crossbeams, and pillars. in walls, crossbeams, and pillars.

Source: http://www.jma.go.jp/jma/en/Activities/inttable.html

To measure the future earthquake risk, we use the probabilistic seismic hazard data published by

the JSHIS. We adopt the probabilities that a location will be hit by a JMA seismic intensity larger

than 5 upper (hereafter 5 upper) earthquake and JMA seismic intensity larger than 6 lower (hereafter

6 lower) earthquake in the next 30 years as the earthquake risk for each household. JMA seismic

intensity is the measure of the seismic intensity at a particular location, which ranges from 0 to 7. The

value is mainly related to land acceleration caused by the earthquake. Table 2 describes the seismic

intensity 5 upper and 6 lower.
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We use the probabilistic seismic hazard data of the JSHIS. The JSHIS website provides a user-

friendly digital hazard map of these data, which can be accessed by households. Moreover, earthquake

risks are routinely announced in Japan. Therefore, it is reasonable to assume that households have

sufficient information about earthquake risks.15 Since the KHPS data provide information on the city

in which respondents live, we calculate the probabilistic seismic hazard for each household by using

the Geographic Information System of the University of Tokyo.16 Figure A.2 presents the geographic

distributions of future earthquake risks.

Figure A.3 illustrates mean consumption. The left-hand figure shows the mean consumption con-

ditional on the probability of being hit by a 5 upper future earthquake risk, while the right-hand figure

shows that conditional on a 6 lower risk. These figures show that the change in consumption before

and after the earthquake is heterogeneous. Households that face a lower earthquake risk decrease their

consumption, while those that face a higher risk increase their consumption on average. This finding

suggests that the heterogeneous effects of earthquakes on the preference parameters vary according to

the future earthquake risks faced by households.

7 Results

In this section, we present the estimation results for the constant and varying coefficients models. We

use the number of children and earthquake risks (5 upper and 6 lower) as instrumental variables.

We first present the estimation results of the GMM-D and GMM-LN estimators proposed by Alan

et al. (2009) to study the average effect of the disaster. Then, we present the results of the localized

GMM-D and GMM-LN estimators to study the heterogeneity of the disaster’s impact. In the local

GMM analysis, the 5 upper probabilistic seismic hazard measure is adopted as the localizing variable.

GMM-D and GMM-LN are measurement error-robust estimators derived from the moment con-

ditions (4) and (6). The GMM-D estimator assumes measurement errors to be stationary and inde-

pendent of all components in the information set including the lagged value of measurement errors,

consumption, interest rate, and instruments. In addition to stationarity and independence, the GMM-

LN estimator requires the measurement error to follow a normal distribution with the same variance

across households. To check the validity of these assumptions on the measurement errors, we present

15It may be more appropriate to use the subjective future earthquake risk perceived by households, because the
perception of objective risk would differ across households. It would thus be interesting to investigate whether future
risk perception relative to objective risk can explain the risk aversion parameter with respect to consumption and
investment allocation. This is left for future research.

16http://newspat.csis.u-tokyo.ac.jp/geocode/.
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the confidence sets derived from the moment inequalities (5) and (??) for the constant coefficients

models and (7) and (??) for the varying coefficients models. Note that our moment inequality ap-

proaches require milder assumptions on the measurement errors. Therefore, when the GMM-D and

GMM-LN estimates lie outside the confidence sets, we can conclude that the results are unreliable.

The bandwidths for the non-parametric kernel estimation of the localized models are obtained by

using an iteration procedure. First, the parameters for a specific value of the localizing parameter

W = w are obtained from the local GMM estimation, which we denote θ̂1(w). In particular, we adopt

continuously updating GMM (CUGMM) to obtain the estimates, as suggested by Hansen, Heaton, and

Yaron (1996). Second, the local GMM objective function is regarded as a function of the bandwidths

by plugging θ̂1(w), and we find bandwidths that minimize the objective function. We denote the

minimizer by ĥ1. Third, we obtain θ̂2(w), which is the local CUGMM estimates by using ĥ1. Iterating

the second and third steps derives bandwidth ĥM and the following local CUGMM estimator θ̂M+1(w).

We iterate M = 10 times to obtain our results.

Table 3: Estimation of Euler equation

β̂ γ̂ ν̂ value
2009 2012 2009 2012 2009 2012 2009 2012
(1) (2) (3) (4) (5) (6) (7) (8)

GMM-D 0.990 0.990 2.639 7.607 0.185 0.000
(0.079) (0.385) (0.628) (0.704) reject accept

GMM-LN 0.990 0.990 3.204 5.251 0.028 0.024 0.520 0.000
(0.112) (0.137) (0.610) (0.528) (0.013) (0.013) reject accept

Note: Standard errors are in parentheses. Tests in columns (7) and (8) are rejected when the

test statistics exceed 0.073 and 0.017, respectively.

7.1 Results of the Constant Coefficients Model

Table 3 presents the estimation results for the preference parameters in the Euler equation of the

constant coefficients models. The estimated values and standard deviations of the parameters are

presented in columns (1)–(6). In columns (7) and (8), the values of the test statistics for the 95%

confidence set and test results are shown. Figure A.4 illustrates the relationship between the confidence

set and estimated parameter values. For the 95% confidence sets derived from the moment inequalities,

the estimated parameters of the GMM-D and GMM-LN estimators are not included in the set in 2009.

After the earthquake, the GMM-D and GMM-LN parameters are included in the confidence set.

However, it is not possible to compare the parameters before and after the earthquake because both

the 2009 and the 2012 results are not accepted according to the test for measurement errors. To study
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the heterogeneity and analyze households that do not violate the confidence set, we therefore conduct

a local GMM analysis to examine the difference in detail.

7.2 Results of the Varying Coefficients Model

7.2.1 Estimation results

We adopt the future earthquake risk (5 upper) variable as the localizing variable and estimate the

parameters at equally spaced 99 points in the [0.01, 0.99] interval.

Table 4: Test for measurement error

localizing points [0.01, 0.24] [0.25, 0.49] [0.50, 0.74] [0.75, 0.99]
(1) (2) (3) (4)

local GMM-D
2009 0.00 0.08 1.00 1.00
2012 1.00 1.00 1.00 1.00

local GMM-LN
2009 0.32 0.24 1.00 1.00
2012 1.00 1.00 1.00 1.00
Note: Proportion of localizing points where estimated parameters are included

in 95% confidence set.

Table 4 presents the summary statistics of the test for measurement errors.17 We calculate the

proportion of localizing points where the estimated parameters are included in the 95% confidence

set. For example, column (1) shows the proportion of localizing points in the interval [0.01, 0.24] (24

points) where the estimated parameters are included in the 95% confidence set. The specification

of local GMM-D and GMM-LN is rejected for about half the localizing points in 2009. However, in

the interval [0.50, 0.99] in columns (3) and (4), the estimated parameters are included in the 95%

confidence sets at all localizing points. In this interval, our moment inequality does not reject the

additional distributional assumptions imposed on the GMM-D and GMM-LN estimators. Therefore,

we concentrate on the results localized at the points in the [0.50, 0.99] interval.

Figure A.5 presents the estimation results of GMM-D. The discount factor parameters β in the left-

hand panel of Figure A.5 suggest that households whose risk runs from 0.7 to 0.8 had a lower discount

rate in 2009. In 2012, the discount factor of these households increased. However, the 95% confidence

intervals of the estimated discount factor overlap, which suggests that the change in parameter might

not be statistically significant. Overall, it is difficult to conclude that a subpopulation changed its

discount factor because the observed parameter changes are small compared with the standard errors.

17Complete results are provided in the Appendix.
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For the risk aversion parameters of GMM-D in the right-hand panel of Figure A.5, households

whose future earthquake risk is above 0.5 become risk averse after the earthquake. Figure A.5 shows

that the 95% confidence intervals in 2009 and 2012 do not overlap for most households. In particular,

in 2012, households whose earthquake risk runs from 0.8 to 0.9 had high γ̂ values compared with

households whose risk is outside this interval. The estimated values suggest that earthquakes make

most households risk averse. In particular, households facing a higher risk of earthquakes became more

risk averse than other households.

Figure A.6 presents the estimation results of GMM-LN. The estimated value of GMM-LN is similar

to that of GMM-D. There are few differences in the discount factors before and after the earthquake

(see the left-hand panel of Figure A.6). From the risk aversion parameter in the right-hand panel

of Figure A.6, households facing a high risk of a future earthquake became more risk averse than

other households. The only exception is that the 95% confidence intervals for households facing a

[0.95, 1.0] risk overlap. An additional difference is the smaller standard error of GMM-LN compared

with GMM-D.

The varying coefficients model thus reveals the heterogeneous effects of the disaster on households’

parameters. The estimated values suggest that the parameter changes of some subpopulations are

larger than others. The estimated parameter change suggests that households living in regions at risk

of an sivere earthquake are more risk averse than those living in safer areas. In other words, households

facing a relatively high earthquake risk are more affected by earthquakes compared with others. The

observed parameter change is consistent with the empirical results reported by Goebel et al. (2015)

and Bauer et al. (2017). Hence, our results support the findings of studies that report a change in

the time or risk preference parameters. While other unexpected events occurred in 2011 could have

made households risk averse, the observed heterogeneity of the risk preference change, which was also

observed in Germany, suggests that the disaster affected risk preferences to some extent.

We next conduct a simple simulation study. We compare the conditional mean of actual con-

sumption with that of predicted consumption for 2013. To calculate the conditional mean, we adopt

earthquake risk as the localizing variable as before. We predict the non-durable consumption of each

household by using the Euler equation with an estimated value of β and γ before and after the earth-

quake, the actual amount of non-durable consumption in 2012, and the interest rates. Figure A.7

presents the conditional mean of actual and predicted consumption expenditure. Overall, these pre-

dictions overestimate the actual consumption of households whose risk score is around 0.5, while they

underestimate the actual consumption of households whose risk score is around 0.9 regardless of the
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information adopted in the prediction. In the GMM-D setup presented in the upper three panels of

Figure A.7, the parameters after the earthquake (the middle panel) predicts the consumption expen-

diture of households precisely when risk scores run from 0.6 to 0.8. By contrast, the parameters before

the earthquake (the left panel) severely underestimates the consumption of households whose risk score

is around 0.6 and above 0.8. A similar tendency is also observed for the GMM-LN prediction in the

lower three panels of Figure A.7. However, there is little difference in the predicted consumption for

the GMM-LN prediction. To sum up, although the predictions using parameters after the earthquake

do not uniformly dominate those based on parameters beforehand, the parameters after the earthquake

can be used to avoid the serious under- or overestimation of consumption after the disaster.

8 Conclusion

In this study, we analyzed the risk preference parameters and discount factors before and after the Great

East Japan Earthquake to answer the three main questions that hypothetical data and experimental

studies reporting evidence of preference changes fail to address sufficiently. These questions are (i) is it

sufficient to analyze individual-level data, (ii) do studies that use hypothetical questions or experiments

provide reasonable results, and (iii) does a large-scale disaster affect only those individuals who directly

suffer from it? To answer these three questions, we adopted household panel data and a structural

model to estimate the preference parameters. Further, to analyze the effect of the disaster and avoid

confusing parameter changes caused by it and other macroeconomic shocks, we used a local GMM

estimator. Our results are robust to the measurement error of reported consumption. While the

parameters based on constant coefficient models are not included in the 95% confidence set derived

from the measurement error-robust moment inequality approach, we found one subpopulation that

does not violate the moment inequality. We then limited ourselves to analyze the localizing points

where the moment inequality is not violated, finding that households globally became risk averse after

the Great East Japan Earthquake. However, households living in high-risk areas became drastically

risk averse, whereas those living in very high-risk areas did not show such a drastic change in risk

averseness. Our results are thus consistent with those of existing works such as Goebel et al. (2015)

who adopt a questionnaire to elicit risk aversion.

In addition, we observed preference parameter changes, again consistent with existing works. While

Hanaoka et al. (in press) find a subpopulation who become risk tolerant after the Great East Japan

Earthquake, we found one that became risk averse. Our result is nevertheless consistent with Hanaoka
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et al. (in press) in the sense that both studies show evidence that a subpopulation changed its risk

parameter after the Great East Japan Earthquake. Although such parameter changes caused by large-

scale disasters have been reported by studies based on hypothetical questions, no research has thus far

provided evidence of a preference change by using structural models and household behavioral data.

Further, the observed sign of the parameter change is consistent with Goebel et al. (2015), who find

that the disaster affected risk attitudes in Germany. The similarity between our result and those of

Goebel et al. (2015) and Hanaoka et al. (in press) provides a suggestion to the first research question

above (question (i)). Studying individual data may be insufficient to predict changes in households’

risk preferences. In answer to question (ii), hypothetical questions or experiments are useful when

researchers are interested in whether a large-scale disaster affect respondents’ minds. However, the

effect of the disaster on questionnaire responses and behavior in experiments is not always the same as

real-life economic behavior. Additional evidence would thus be required. In answer to question (iii), a

large-scale disaster affects not only those individuals who suffer from it directly, but also individuals

facing a high risk of a similar disaster.

The policy implications of our findings are clear. Since preference parameters can change after

a large-scale disaster even if the disaster does not damage households’ lives or property directly,

policymakers must consider preference changes after a large-scale disaster when evaluating the effect

of a policy implemented after its occurrence. Our simulation results suggest that predictions based

on parameters derived from ex-ante analyses can seriously underestimate household consumption after

a disaster. Additionally, both our results and existing works such as Hanaoka et al. (in press) and

Goebel et al. (2015) suggest that policymakers can improve recovery policy by accounting for the

characteristics of the target population. Specifically, households facing a high risk of a similar disaster

become more risk averse compared with others. However, for households whose risk score is around 0.5,

the parameters estimated before the earthquake provide a slightly better prediction of consumption

expenditure.

Our results also suggest that experimental social sciences studies may be biased. It is common to

consider that unexpected events such as natural disasters do not affect untreated objects, except for

objects theoretically proven to interact with the treated objects such as land prices and neighboring

households. However, our results suggest that a huge disaster can affect seemingly untreated individual

or household behavior differently. Therefore, ignoring the indirect effect of such unexpected events can

bias the analysis.

Finally, we discuss the limitations of this study and future research directions. First, we focused on
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nuclear households that have at least one child. Whether the Great East Japan Earthquake and other

large-scale disasters affect households with different characteristics in the same manner is unclear. Sec-

ond, our strategy did not identify the causal change induced by the Great East Japan Earthquake even

though the observed heterogeneity after the disaster implies causality. Therefore, developing a method

that can identify the causal change in the structural parameters of economic models would be ideal

(e.g., Heckman, 2010). Third, we used short-period panel data to estimate the parameters by using

the Euler equation to focus on the effect of the earthquake. While we moderated the assumption by

adopting localized moment conditions, it would be ideal to use long-term panel data in the estimation.
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Appendix

Proof of Propositions 1 and 2

Proof. We first show the identification of θ0. Consider that θ̄0 ≡ {β̄0, γ̄0} also satisfies E(ρi,t(θ̄0) −

1|Zi,t) = 0. Then, Assumption 3 implies ρi,t(θ0) = ρi,t(θ̄0) a.s. Taking the logs of both sides yields

log(β0/β̄0) − (γ0 − γ̄0) log
(
Ci,t+1/Ci,t

)
= 0 a.s. Multiplying log

(
Ci,t+1/Ci,t

)
for both sides yields

log(β0/β̄0) log
(
Ci,t+1/Ci,t

)
− (γ0 − γ̄0)[log

(
Ci,t+1/Ci,t

)
]2 = 0 a.s. Then, the rank restriction in As-

sumption 4 implies β0 = β̄0 and γ0 = γ̄0.

We now show that θ0 belongs to the parameter set satisfying (5). Applying the law of iterated

expectations to (4) yields E{[ρi,t(θ0) − 1]g(Zt)} = 0 for any measurable transition function g(·). Ac-

cording to the definition of measurement errors in consumption, we have logCi,t+1/Ci,t = logCobsi,t+1−

logCobsi,t + log (ηi,t/ηi,t+1). Under Assumption 1, we have E[log (ηi,t/ηi,t+1)] = E(εi,t − εi,t+1) = 0 and

under Assumption 2 we have E[log (ηi,t/ηi,t+1)] ≤ logE[(ηi,t/ηi,t+1)] ≤ 0. By using these and from

the concavity of the logarithm function and Jensen’s inequality, we obtain

logE[ρi,t(θ0)g(Zi,t)] = logE[g(Zi,t)]

E[log β0(1 +Ri,t+1)− γ0 log (Ci,t+1/Ci,t) + log g(Zi,t)] ≤ logE[g(Zi,t)]

E[log β0(1 +Ri,t+1)− γ0 log
(
Cobs
i,t+1/C

obs
i,t

)
− γ0 log (ηi,t/ηi,t+1) + log g(Zi,t)] ≤ logE[g(Zi,t)]

E[log β0(1 +Ri,t+1)− γ0 log
(
Cobs
i,t+1/C

obs
i,t

)
+ log g(Zi,t)− logE[g(Zi,t)]] ≤ 0.

This shows that θ0 belongs to the parameter set satisfying (5).

Proof of Propositions 3 and 4

Proof. We first show the identification of θ0(w). Consider that θ̄0(w) ≡ {β̄0(w), γ̄0(w)} also satisfies the

baseline local moment restriction, that is, E[ρi,t(θ̄0(w)) − 1|Zi,t,Wi,t = w] = 0. Then, Assumption 5

implies ρi,t(θ0(w)) = ρi,t(θ̄0(w)) a.s. Taking the logs of both sides yields log(β0(w)/β̄0(w))− (γ0(w)−

γ̄0(w)) log
(
Ci,t+1/Ci,t

)
= 0 a.s. Multiplying log

(
Ci,t+1/Ci,t

)
for both sides of this equation yields

log(β0(w)/β̄0(w)) log
(
Ci,t+1/Ci,t

)
− (γ0(w) − γ̄0(w))[log

(
Ci,t+1/Ci,t

)
]2 = 0 a.s. The rank restriction

in Assumption 4 implies β0(w) = β̄0(w) and γ0(w) = γ̄0(w).

We now show that θ0(w) belongs to the parameter set satisfying (7). Applying the law of iterated

expectations to (6) yields E{[ρi,t(θ(w)) − 1]g(Zi,t)1[Wi,t = w]} = 0 for any transition function g(·),

where 1[Wi,t = w] is the indicator function taking one if Wi,t = w and zero otherwise. According to
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the definition of measurement errors in consumption, we have logCi,t+1/Ci,t = logCobsi,t+1 − logCobsi,t +

log (ηi,t/ηi,t+1). Under Assumption 1, we have E[log (ηi,t/ηi,t+1)] = E(εi,t − εi,t+1) = 0 and under

Assumption 2 we have E[log (ηi,t/ηi,t+1)] ≤ logE[log (ηi,t/ηi,t+1)] ≤ 0. From the concavity of the

logarithm function and Jensens inequality, we obtain

logE{ρi,t(θ0(w))g(Zi,t)1[Wi,t = w]} = logE{g(Zi,t)|Wi,t = w]}

E{log β0(w)(1 +Ri,t+1)g(Zi,t)1[Wi,t = w]− γ0(w) log (Ci,t+1/Ci,t)} ≤ logE[g(Zi,t)|Wi,t = w]

E{log β0(w)(1 +Ri,t+1)g(Zi,t)1[Wi,t = w]− γ0(w) log
(
Cobs
i,t+1/C

obs
i,t

)
− γ0(w) log (ηi,t/ηi,t+1)}

≤ logE[g(Zi,t)|Wi,t = w]

E{log β0(w)(1 +Ri,t+1)g(Zi,t)− γ0(w) log
(
Cobs
i,t+1/C

obs
i,t

)
− logE[g(Zi,t)|Wi,t = w]|Wi,t = w} ≤ 0,

This shows that θ0(w) belongs to the parameter set satisfying (7).

Supplemental Tables

Tables A.1 and A.2 present estimation results of localized GMM-D and GMM-LN estimators. Figures

A.5 and A.6 are made by using the results shown in Tables A.1 and A.2, respectively. Tables presents

estimation results for discount factors for 2009 and 2012 (β09 and β12, respectively) and risk parameters

for 2009 and 2012 (γ09 and γ12, respectively). SE in tables stands for standard errors. Table A.2 also

shows results of additional parameters for 2009 and 2012 (ν09 and ν12, respectively). The first column

in each tables shows the localizing points.
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Table A.1: Local GMM D Estimation of Euler Equation. Bandwidth selected by iteration.

β09 SE β12 SE γ09 SE γ12 SE
0.50 0.990 0.106 0.990 0.392 2.896 0.848 8.340 0.670
0.51 0.990 0.107 0.990 0.391 2.879 0.868 8.328 0.668
0.52 0.990 0.107 0.990 0.390 2.852 0.892 8.316 0.666
0.53 0.990 0.107 0.990 0.388 2.823 0.906 8.303 0.663
0.54 0.990 0.105 0.990 0.387 2.793 0.909 8.291 0.661
0.55 0.990 0.103 0.990 0.386 2.767 0.902 8.281 0.659
0.56 0.990 0.101 0.990 0.385 2.747 0.892 8.272 0.657
0.57 0.990 0.100 0.990 0.384 2.733 0.882 8.266 0.655
0.58 0.990 0.099 0.990 0.383 2.723 0.874 8.264 0.654
0.59 0.990 0.098 0.990 0.383 2.716 0.867 8.268 0.653
0.60 0.990 0.097 0.990 0.382 2.712 0.862 8.280 0.652
0.61 0.990 0.097 0.990 0.382 2.709 0.857 8.305 0.652
0.62 0.990 0.096 0.990 0.383 2.709 0.853 8.351 0.654
0.63 0.990 0.098 0.990 0.386 2.723 0.864 8.436 0.658
0.64 0.990 0.096 0.990 0.386 2.711 0.845 8.419 0.657
0.65 0.990 0.096 0.990 0.387 2.713 0.842 7.533 0.697
0.66 0.990 0.095 0.990 0.387 2.716 0.839 7.529 0.696
0.67 0.990 0.095 0.990 0.386 2.720 0.836 7.525 0.696
0.68 0.848 0.142 0.990 0.386 3.641 0.887 7.521 0.695
0.69 0.432 0.241 0.990 0.385 5.839 1.418 7.517 0.694
0.70 0.871 0.191 0.990 0.385 3.499 1.228 7.513 0.693
0.71 0.881 0.193 0.990 0.385 3.446 1.268 7.510 0.693
0.72 0.892 0.193 0.990 0.385 3.384 1.302 7.507 0.692
0.73 0.904 0.190 0.990 0.384 3.310 1.334 7.503 0.691
0.74 0.918 0.186 0.990 0.380 3.224 1.368 7.555 0.674
0.75 0.933 0.179 0.990 0.231 3.126 1.401 7.439 0.470
0.76 0.949 0.170 0.990 0.369 3.014 1.436 9.164 0.687
0.77 0.965 0.158 0.990 0.297 2.883 1.467 9.721 1.962
0.78 0.983 0.140 0.990 0.285 2.726 1.477 9.727 1.866
0.79 0.990 0.094 0.988 0.277 3.005 0.613 9.758 1.810
0.80 0.990 0.053 0.990 0.272 2.735 0.496 9.773 1.784
0.81 0.990 0.067 0.990 0.218 2.750 0.560 9.928 1.419
0.82 0.990 0.065 0.989 0.218 2.706 0.598 9.921 1.440
0.83 0.990 0.073 0.990 0.213 2.863 0.599 9.980 1.413
0.84 0.990 0.075 0.990 0.215 2.870 0.631 9.925 1.451
0.85 0.990 0.061 0.990 0.206 2.386 0.580 10.000 1.418
0.86 0.990 0.058 0.979 0.225 2.547 0.546 10.000 1.555
0.87 0.990 0.079 0.990 0.215 2.970 0.614 9.936 1.499
0.88 0.990 0.084 0.986 0.245 2.780 0.617 9.845 1.744
0.89 0.990 0.103 0.990 0.242 3.092 0.633 9.799 1.752
0.90 0.990 0.049 0.990 0.235 2.637 0.431 9.807 1.692
0.91 0.990 0.083 0.990 0.235 2.749 0.619 9.835 1.715
0.92 0.990 0.042 0.990 0.131 2.488 0.366 6.494 0.488
0.93 0.990 0.061 0.990 0.295 2.518 0.555 7.556 0.511
0.94 0.990 0.061 0.990 0.133 2.505 0.559 6.459 0.477
0.95 0.990 0.062 0.990 0.298 2.500 0.564 7.567 0.507
0.96 0.990 0.063 0.990 0.297 2.498 0.572 7.514 0.506
0.97 0.990 0.064 0.990 0.289 2.497 0.583 7.334 0.504
0.98 0.990 0.021 0.990 0.215 0.098 0.335 7.357 0.465
0.99 0.990 0.086 0.990 0.241 2.884 0.759 7.248 0.472
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Table A.2: Local GMM LN Estimation of Euler Equation. Bandwidth selected by iteration.

β09 SE β12 SE γ09 SE γ12 SE ν09 SE ν12 SE
0.50 0.990 0.098 0.990 0.091 2.839 0.714 4.435 0.563 0.028 0.014 0.022 0.007
0.51 0.990 0.084 0.990 0.084 2.601 0.685 3.997 0.638 0.027 0.014 0.024 0.008
0.52 0.990 0.097 0.990 0.084 2.703 0.703 4.033 0.635 0.026 0.015 0.024 0.008
0.53 0.990 0.091 0.990 0.081 2.561 0.708 3.165 0.681 0.024 0.016 0.026 0.010
0.54 0.951 0.132 0.990 0.084 3.161 0.786 3.665 0.651 0.020 0.014 0.025 0.009
0.55 0.954 0.114 0.990 0.134 2.751 0.735 5.415 0.527 0.017 0.016 0.025 0.012
0.56 0.960 0.107 0.990 0.139 2.678 0.737 1.444 1.588 0.017 0.016 0.024 0.049
0.57 0.957 0.107 0.954 0.188 2.572 0.738 1.547 1.848 0.014 0.017 0.010 0.032
0.58 0.990 0.080 0.990 0.135 2.381 0.622 5.397 0.527 0.020 0.017 0.025 0.012
0.59 0.990 0.084 0.990 0.168 2.492 0.618 1.509 1.877 0.021 0.016 0.025 0.053
0.50 0.990 0.098 0.990 0.136 2.886 0.609 5.385 0.526 0.024 0.014 0.024 0.012
0.61 0.990 0.080 0.990 0.136 2.389 0.603 5.378 0.526 0.020 0.017 0.024 0.012
0.62 0.865 0.234 0.990 0.083 3.695 1.262 4.292 0.616 0.019 0.016 0.024 0.008
0.63 0.990 0.081 0.990 0.137 2.325 0.887 5.363 0.526 0.030 0.017 0.024 0.012
0.64 0.947 0.192 0.990 0.137 3.009 1.422 5.359 0.526 0.025 0.020 0.024 0.012
0.65 0.990 0.083 0.990 0.137 2.309 0.843 5.351 0.526 0.030 0.018 0.024 0.012
0.66 0.984 0.090 0.990 0.138 2.368 0.898 5.344 0.526 0.029 0.018 0.024 0.012
0.67 0.883 0.183 0.990 0.138 3.711 1.342 5.337 0.526 0.020 0.013 0.024 0.012
0.68 0.990 0.076 0.990 0.138 2.496 0.650 5.331 0.525 0.029 0.014 0.024 0.012
0.69 0.990 0.179 0.990 0.139 2.522 2.176 5.324 0.525 0.028 0.029 0.024 0.013
0.70 0.990 0.061 0.990 0.139 2.113 0.687 5.317 0.525 0.025 0.016 0.024 0.013
0.71 0.990 0.171 0.990 0.139 2.470 2.074 5.310 0.525 0.027 0.028 0.024 0.013
0.72 0.990 0.171 0.990 0.139 2.471 2.048 5.303 0.525 0.027 0.028 0.024 0.013
0.73 0.990 0.177 0.990 0.140 2.484 2.093 5.297 0.525 0.027 0.029 0.024 0.013
0.74 0.990 0.101 0.990 0.140 2.412 1.142 5.292 0.525 0.026 0.018 0.024 0.013
0.75 0.990 0.115 0.990 0.135 2.772 0.979 5.092 0.521 0.027 0.016 0.023 0.013
0.76 0.990 0.104 0.990 0.123 2.723 0.862 5.154 0.518 0.026 0.015 0.017 0.011
0.77 0.990 0.104 0.990 0.138 2.737 0.845 5.579 0.559 0.026 0.015 0.019 0.009
0.78 0.990 0.107 0.990 0.118 2.773 0.841 4.772 0.561 0.026 0.015 0.022 0.010
0.79 0.990 0.108 0.990 0.120 2.797 0.830 5.191 0.558 0.026 0.015 0.020 0.012
0.80 0.990 0.110 0.990 0.130 2.821 0.823 5.827 0.587 0.026 0.015 0.015 0.007
0.81 0.990 0.113 0.990 0.083 2.847 0.817 10.000 0.508 0.026 0.015 0.010 0.007
0.82 0.990 0.118 0.990 0.425 2.936 0.834 7.336 0.725 0.026 0.015 0.017 0.019
0.83 0.990 0.111 0.990 0.380 2.830 0.784 7.665 0.678 0.026 0.015 0.015 0.017
0.84 0.990 0.112 0.990 0.162 2.976 0.772 10.000 0.867 0.026 0.014 0.017 0.004
0.85 0.990 0.114 0.990 0.150 2.977 0.756 6.295 0.938 0.026 0.014 0.026 0.006
0.86 0.990 0.116 0.990 0.166 2.995 0.762 7.609 0.714 0.026 0.014 0.016 0.005
0.87 0.990 0.117 0.990 0.152 3.007 0.766 6.699 0.654 0.026 0.014 0.016 0.006
0.88 0.990 0.117 0.990 0.148 3.019 0.772 6.604 0.670 0.026 0.014 0.015 0.006
0.89 0.990 0.113 0.990 0.185 3.018 0.772 10.000 0.796 0.027 0.013 0.015 0.003
0.90 0.990 0.099 0.615 0.160 2.907 0.724 10.000 0.962 0.027 0.013 0.015 0.004
0.91 0.990 0.133 0.990 0.197 3.206 0.775 10.000 0.737 0.026 0.014 0.015 0.003
0.92 0.990 0.077 0.784 0.238 2.794 0.651 9.991 0.993 0.028 0.012 0.014 0.005
0.93 0.990 0.131 0.990 0.229 3.220 0.787 4.852 1.903 0.027 0.014 0.022 0.012
0.94 0.990 0.098 0.990 0.211 2.885 0.730 5.101 2.112 0.028 0.014 0.023 0.009
0.95 0.552 0.444 0.990 0.209 10.000 1.793 5.120 2.150 0.014 0.006 0.023 0.009
0.96 0.990 0.214 0.986 0.208 3.281 1.764 5.132 2.152 0.029 0.022 0.023 0.008
0.97 0.990 0.233 0.984 0.208 3.275 1.952 5.117 2.169 0.029 0.024 0.023 0.008
0.98 0.990 0.237 0.990 0.205 3.274 1.993 5.104 2.174 0.029 0.024 0.023 0.008
0.99 0.990 0.239 0.989 0.204 3.276 2.005 5.139 2.177 0.029 0.024 0.022 0.008
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Figure A.1: Relationship between the future earthquake risk measured in 2009 and 2012. The left-
hand figure shows the probability of suffering a JMA seismic intensity larger than 5 upper earthquake
in the next 30 years. The right-hand figure shows the probability of suffering a larger than 6 lower
earthquake.
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Figure A.2: Geographical distribution of future earthquake risks. The left-hand figure describes the
probability that a location suffers an earthquake of JMA seismic intensity larger than 6 lower in the
next 30 years. The right-hand figure describes the probability that a location suffers an earthquake of
JMA seismic intensity larger than 5 upper in the next 30 years.
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Figure A.3: Average consumption conditional on the risk of being hit by a large-scale earthquake.
The left-hand figure describes the local average consumption conditional on the probability that a
household suffers an earthquake of JMA seismic intensity larger than 6 lower in the next 30 years.
The right-hand figure describes the local average consumption conditional on the probability that a
household suffers an earthquake of JMA seismic intensity larger than 5 upper in the next 30 years.
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Figure A.4: 95% confidence sets and estimated parameter values.

Figure A.5: Estimation results of the local GMM-D estimator.
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Figure A.6: Estimation results of the local GMM-LN estimator.

Figure A.7: Conditional mean estimation of consumption with respect to earthquake risk. The upper
(lower) three panels are the results from the GMM-D (GMM-LN) setup. The black solid line is
estimated by using actual consumption in 2013. The dotted red lines and dashed blue lines are
predictions of 2013 consumption, calculated by using the estimated preference parameters before and
after the disaster, respectively.
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