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ABSTRACT. We examine the relation among measures of credit expansion, measures of
financial market stress, and standard macroeconomic aggregates. We use a form of struc-
tural VAR with monthly data on 10 variables. The model explains observed variation as
driven by 10 mutually independent disturbances. We identify the shocks from variation
across time in their relative variability. One of them emerges as representing monetary
policy. We find two distinct financial stress shocks, suggesting that attempts to create a
one-dimensional index of financial stress may be misguided. Our results are consistent
with the finding by others of a negative reduced form relation between household credit
expansion and future output growth at certain frequencies and lags. Most variation in
credit growth is nonetheless positively associated with output growth. We find the output
growth decline following househould credit innovations to be explained by the monetary
policy response to the inflation and initial positive output growth that accompanies the
credit expansion. In pseudo-out-of-sample forecasting tests, neither credit aggregates nor
rate spreads provide much advance warning of the 2008-9 crisis, though they do help in
recognizing the severity of the recession once it has begon.

I. INTRODUCTION

In the long run, credit aggregates tend to expand with GDP, and indeed expand faster

than GDP, so that the ratio of credit to GDP is larger in rich countries and tends to grow

over time. In studies of economic development, the ratio of credit to GDP is sometimes

used as a measure of “financial depth,” which is thought to contribute positively to eco-

nomic growth.1 On the other hand a number of recent studies, among them Mian, Sufi

and Verner (2017), Schularick and Taylor (2012), and Jordà, Schularick and Taylor (2014),

claim to have demonstrated a predictive relation between rapid growth of credit and fu-

ture low GDP growth or higher likelihood of crisis.

Monetary policy has strong effects on GDP growth and also, unsurprisingly, strong

effects on credit growth and on spread variables that measure financial stress. Monetary

Date: December 6, 2017.
This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License. http://creativecommons.org/licenses/by-nc-sa/3.0/.
1Some early perspectives on this topic are found, for example, in Shaw (1973), McKinnon (1973), and Gold-
smith (1969). A summary of the related literature is available in World Bank (2012), p.23-25.
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policy also plausibly responds to rapid credit growth or contraction and to changes in

spreads. To understand the policy implications of correlations or predictive regressions

relating financial variables to GDP growth, it is essential that we understand the extent to

which these correlations are generated by, or mediated by, monetary policy itself.

The structural VAR literature on monetary policy effects succeeded in separating two

channels of relation between inflation and interest rates — policy-generated changes in

interest rates tend to reduce inflation, while interest rates on average endogenously rise

with inflation to compensate investors for inflation-generated losses. For the reasons

we have listed here, it seems likely that there are multiple causal channels connecting

spreads, credit aggregates and business activity, and that some of these channels oper-

ate with opposite signs. It therefore seems appropriate to estimate a multiple equation

model connecting these variables and to imitate if possible the structural VAR literature’s

approach to unraveling feedbacks in the data.

Much of the existing empirical literature in this area has used short lists of variables and

has not attempted to distinguish several channels of interaction between financial vari-

ables and the macroeconomy, including the one modulated by monetary policy. Studies

of the predictive power of credit growth have primarily used single-equation projection

methods (e.g., Mian, Sufi and Verner (2017), Jordà, Schularick and Taylor (2014), and

Jordà, Schularick and Taylor (2015)) or binary outcome (i.e., crisis or no crisis) predictive

models (e.g., Schularick and Taylor (2012) and Drehmann and Juselius (2014)).2 Studies

focused on the information in credit spreads have looked extensively at single-equation

models (e.g., Lopez-Salido, Stein and Zakrajsek (2015), and Krishnamurthy and Muir

(2016)) and reduced form multi-equation models (Gilchrist, Yankov and Zakrajšek (2009)

and Gilchrist and Zakrajšek (2012)). Gertler and Karadi (2015) and Caldara and Herbst

(2016) introduce credit spread variables into structurally identified, multiple-equation

2Mian, Sufi and Verner (2017) is unique among these for using data outside of identified “crisis episodes.”
It also contains a small-scale multivariate example, with three variables (real GDP, household credit to
GDP ratio, and business credit to GDP ratio), but does not endogenize interest rate dynamics or separately
identify monetary policy.
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frameworks with monetary policy. But these authors have a narrower focus on identi-

fying and interpreting monetary policy shocks, relative to the rest of the system, and do

not discuss the role of credit aggregates. 3

There have been other studies in this area based on fully interpreted structural dynamic

stochastic general equilibrium models, which of course have included estimated effects

of monetary policy.4 These DSGE models, though, have not considered as many finan-

cial variables jointly as we consider here and have imposed more, and more arguable,

identifying restrictions than we impose here.

Our model uses monthly data on industrial production (IP), the personal consumption

expenditure deflator (P) household credit (HHC) business loan credit (BC), money supply

(M1), the federal funds rate (R), a commodity price index (PCM), the 10 year over 3-month

Treasury term spread (TS), the Gilchrist and Zakrajšek (2012) corporate bond spread (GZ)

and the 3-month Eurodollar over Treasury spread (ES).5 The sample period runs from

January 1973 to June 2015.

We use the identification-through-heteroskedasticity approach pioneered in economics

by Rigobon (2003). This approach assumes that the pattern by which disturbances feed

through the economy is stable across time, but that the relative sizes of the independent

sources of structural disturbance in the system vary across historical periods. We began

modeling time variation in disturbance variance because it is so clearly needed to accu-

rately describe financial variables and some macroeconomic variables. We discovered as

we proceeded that we obtained stable, interpretable results from this assumption alone,

without the need for the short or long run restrictions on dynamics usually applied to

structural VAR’s. Details of the model specification are in Section II below.
3Krishnamurthy and Muir (2016) does look at both aggregates and spreads in the same framework. But
their main specifications, single-equation models which can include interactions (non-linear transforma-
tions) of credit growth and credit spreads, do not solve the endogeneity problem.
4Christiano, Motto and Rostagno (2014), for instance, estimate a monetary DSGE model based on the con-
tract enforcement friction of Bernanke, Gertler and Gilchrist (1999) and find that “risk shocks” which can
be measured in observed credit spreads drive a significant portion of U.S. business cycle dynamics. The
model uses data on credit spreads (BAA-AAA) and firm credit in addition to “standard” macro aggregates.
Del Negro and Schorfheide (2013) provide a detailed comparison of the forecasting performance of this
model, a standard Smets and Wouters (2007) DSGE model, and various reduced-form models.
5Details of the data and their sources are laid out in Section III below.
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Here is a qualitative summary of our results. Details and quantitative results are in

Section III below.

One of our 10 shocks, indeed the one with the most widespread effects across variables

in the system, we interpret as a monetary policy shock. Responses to it match what is

usually assumed about the responses to a monetary policy shock in SVAR models.6 This

shock produces a sustained and non-trivial increase in the interbank spread (ES) variable.

There are shocks, distinct from the monetary policy shock, that move the GZ corporate

bond and Eurodollar spread variables, and then later move IP in the opposite direction.

These fit the idea that disturbances that originate in financial markets can have macroe-

conomic effects.

Several shocks generate substantial movement in household and business credit, and

all but two of them move IP, if at all, in the same direction as the credit aggregates. This

fits the idea that most movements in credit aggregates accompany expansion of activity

and do not predict future slowdowns. There is a disturbance that moves HHC up, and

then with a delay moves IP down, and another that moves BC up, and then with a de-

lay moves IP down. But the downward movement in IP is small and barely statistically

significant in both cases. There may be periods where these shocks are important, so that

the credit expansion does predict future contraction in business activity, but a quantitative

model that can identify such “bad” credit expansions and thereby allow a policy response

would have to be multivariate to separate this component of credit growth. These distur-

bances increase inflation as well as credit, and initially increase IP, so it is natural that

monetary policy responds to them by increasing interest rates. Our model implies that if

the shocks were accompanied by monetary policy holding interest rates fixed, the decline

in IP following the shocks would disappear, though of course at the cost of increased

inflation.

6Though we pick the shock we label “monetary policy” by looking at the sign and shape of its impulse
responses, this is not the same as the frequently applied “sign restriction” approach to SVAR identifica-
tion. Sign restriction identification does not lead, even asymptotically, to point identification of responses,
whereas our approach, if its assumptions are correct, does provide point identification.
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We can also consider whether a monetary policy maker, who could identify a credit

shock that predicted a future output decline, could use that knowledge to suppress the

effect of the credit expansion. Since contractionary monetary policy is estimated to have

negative effects on both credit and output growth, suppressing the credit expansion would

only increase the subsequent output decline. Suppressing the predicted output decline

via expansionary monetary policy would be feasible, but of course would increase, not

decrease, the credit expansion.

In Section IV we conduct pseudo-out-of-sample forecasting experiments to see what

predictive value arises from including the spread and credit aggregate variables in the

system. We find that the model gives little advance warning of the 2008-9 crash, whether

or not the financial variables are included, but that the model tracks the course of the

recession considerably better when they are included7. Most of the improved tracking of

the crisis period comes from including the spread variables, not the credit aggregates.

The limited predictive value for credit aggregates in our system may appear difficult to

reconcile with the results of previous studies with smaller models that have found sub-

stantial predictive value for credit aggregates in forecasting future business activity or

future crises. In Section V we show that results in the literature, where in smaller mod-

els credit expansion predicts slow or negative future output growth, are not inconsistent

with our model. Our model implies that these small-model results are misleading if in-

terpreted causally.

In Section VI we summarize variations on our model that we have investigated to check

robustness of results, though the details of most of these variations appear in the online

appendix.

II. MODELING FRAMEWORK

This section describes our empirical approach. The first two parts introduce our multi-

variate time series models, and the third part describes our Bayesian estimation method.
7This is similar to the conclusion of Del Negro and Schorfheide (2013), who compare a New Keynesian
DSGE model with and without financial frictions of the form in Christiano, Motto and Rostagno (2014) and
Bernanke, Gertler and Gilchrist (1999).
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II.1. The Basic Model. We specify structural vector auto-regressive (SVAR) models with

variances changing at exogenously specified dates. They can be described by the system

of dynamic stochastic equations

A0yt =
p

∑
j=1

Ajyt−j + C + εt (1)

where yt is an n× 1 vector of observed variables, A0 is an n× n matrix which determines

simultaneous relationships, the Aj are n× n matrices of coefficients at each lag j, C is an

n × 1 vector of constants, and εt is a vector of independent shocks. In the base model,

these are Gaussian (normally distributed).

We exogenously separate the time span {1 . . . T} into M subperiods and set

E
[
εtε
′
t
]
= Λm if t is in period m ∈ {1 . . . M} (2)

where Λm is a diagonal matrix. The variance of the structural shocks changes across

periods, but the dynamic relationship among the variables, as determined by A0 and

the Aj, remain fixed. In different terms, the impulse responses to structural shocks will

have the same shape across variance periods, but their scales will vary. Our choice of

variance regimes in estimated models (discussed in Section III and presented in Table 2)

is motivated by observed variation in the time series and outside knowledge about policy

changes.

We could fairly easily have allowed for regime changes to evolve as a Markov-switching

stochastic process, as in Sims and Zha (2006). However, so long as the regimes are per-

sistent, few in number, and well-determined by the data, inference about the model’s dy-

namics is not likely to be strongly affected by conditioning on the regime switch dates as

if known. Of course it is plausible that the variance regime switches are not only random,

but endogenously determined. Allowing for that would greatly complicate the model

and, since the regime switches are few in the data, might leave the nature of the regime

switch endogeneity ill-determined by the data. We leave this to future research.
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Our set-up can also be illustrated in the reduced form,

yt =
p

∑
j=1

Bjyt−j + D + ut (3)

with

E
[
utu′t

]
= A−1

0 Λm

(
A−1

0

)′
if t is in period m ∈ {1 . . . M} (4)

Some normalization is required, as we could multiply the rows of A0 and Λ by scale

factors without changing the implied behavior of the data. We impose the restriction

1
M

M

∑
m=1

λm,i = 1 ∀i ∈ {1 . . . n}

where λm,i is the ith diagonal element of Λm. This makes the cross-period average struc-

tural variance 1 in each equation. It can be shown that, given such a normalization and

the technical condition that each pair of equations differs in variance in at least one pe-

riod, we can uniquely identify all n2 parameters of A0 (up to flipping the sign of an entire

row, or permuting the order of rows).8 Thus the variance switching eliminates the need

for arguable linear restrictions on the (Ai)
p
i=0, such as “short-run” restrictions on contem-

poraneous responses in A0 or “long-run” restrictions on the sums of coefficients in the

(Ai)
p
i=1. Avoiding such restrictions on A0, while still maintaining full identification, is a

particularly appealing feature for a model including financial time series which would

plausibly react to all shocks immediately at the monthly or lower frequency.

While under the model’s assumptions the impulse responses of the system will be con-

sistently estimated in large enough samples, the model does not give names to the shocks

8The intuition is that if Σj is the reduced form residual covariance matrix for period j, the expression

Σ−1
i Σj = A′0Λ−1

i Λj

(
A−1

0

)′
has the form of an eigenvalue decomposition, with the columns of A′0 the eigenvectors. As long as the
eigenvalues, the diagonal elements of Λ−1

i Λj, are unique (i.e., there is no k, l such that λj,k/λi,k = λj,l/λi,l),
the rows of A0 are therefore uniquely determined up to scale once we know Σi and Σj.
A more formal proof of this can be found, for instance, in Lanne, Lütkepohl and Maciejowska (2010).
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that drive it. In our later analysis, we pick out one of our 10 estimated shocks as a mone-

tary policy shock, and two others as reflecting disturbances originating in financial mar-

kets. Our choices of names for these shocks reflect a priori assumptions about what shocks

with these names should look like, in terms of the responses they generate. This is similar

in spirit to the “sign restriction” approach to SVAR identification. However sign restric-

tions on impulse responses by themselves do not provide point identification, whereas

our approach does allow point identification.

Aside from flexible identification of impulse responses, another benefit of our method is

efficiency. For the same reasons as standard GLS (Generalized Least Squares), our method

prevents periods of large shocks from inefficiently dominating the likelihood.

II.2. Non-normality in the error distribution. The previous section’s correction for het-

eroskedasticity will work best if volatilities mainly change between persistent episodes

or regimes. But it does not allow for the possibility of a few isolated large disturbances

or outliers. For instance, the bankruptcy of Lehman Brothers in October 2008 and the

650 basis point drop in the Federal Funds rate from April to May 1980 generate outliers

of around 6 standard deviations that do not disappear when we allow variance-regime

switches. To guard against such large shocks distorting inference, we consider a specifi-

cation in which structural errors εt have Student t distributions.9

In the model notation, we can introduce random parameters ξi,t such that

εi,t ∼ Normal (0, λi,tξi,t) (5)

9We also estimated a version of the model assuming a finite scale-mixture of normals as the distribution
of the residuals. That model produced very similar results to those we display and discuss from the t-
distributed errors model, and had lower likelihood. (Both the t and mixture-of-normals models had much
higher likelihood than models that assumed Gaussian errors.) The mixture-of-normals assumption has
been used in the time series literature to better model large movements in macro variables. Lanne and
Lütkepohl (2010) introduce a maximum likelihood approach to estimating a discrete normal mixture SVAR
model, and Chiu, Mumtaz and Pinter (2015) describe a Bayesian Gibbs sampling algorithm with an appli-
cation to a model with stochastic volatility for U.S. data. Chib and Ramamurthy (2014) present a Gibbs
sampling method for estimating a DSGE model with t-distributed shocks and Cúrdia, Del Negro and
Greenwald (2014) find that the assumption improves the fit of a New Keynesian DSGE model that already
includes low-frequency volatility changes.
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We can also think of these objects as shocks which capture, in a simple way, a high-

frequency component of volatility that has no persistence across time or correlation across

equations.

Giving the ξit an inverse-gamma distribution, i.e.

ξi,t ∼ Inverse Gamma(shape = α/2, rate = 2/α) . (6)

implies that each εi,t has an independent Student-t distribution with α degrees of freedom

and unit scale.10 We chose the degrees of freedom of the t distribution to be 5.7, by fitting

the sample distribution of residuals for the Gaussian-errors model. 11

II.3. Econometric Methodology. Equations (1) and (2), combined with the normalization

of variances, describe a model with n2 free parameters in A0, (M − 1)n free parameters

in the Λm, and n2p free parameters in the Aj. The model with t-distributed disturbances

has another nT parameters.12 We use Bayesian methods to update beliefs about the pa-

rameters conditional on observed data {y1 . . . yT} and initial conditions {y−p−1 . . . y0}.

For A0 we specify independent Gaussian priors on all elements, centered around 100

times the identity matrix, with standard deviation 200. For λ·,i = {λ1,i . . . λM,i}, the vec-

tor of variances in each equation i, we put a Dirichlet prior (with α = 2) on λ·,i/M. This

restricts each of the relative variances to lie in [0, M] (where M = 10 in our main model),

centers the prior on equal variances, and enforces our normalization that for each struc-

tural shock the relative variances average to one across periods. We use a variation of the

“Minnesota prior” described in Sims and Zha (1996) on the reduced form parameters in

the matrices Bj and D of equation (3). These priors, described in more detail in Appendix

10The appendix reports results from an an alternative case with ξi,t as independent k-multinomial, so that
the distribution is a finite mixture of normals.
11All that matters to the likelihood is the shape of these distributions, not their scale, since A0 can absorb
differences in scale. However because our prior on A0 is not scale invariant, results might have been slightly
different if we had used the fitted scale for the t-distributed shocks (.78), instead of the unit scale..
12As mentioned previously, the ξit can equally well be called parameters or shocks. The fact that there
are so many of them does not mean they cause difficulties in estimation, because each has a specified
distribution. This is a special case of the general point that Bayesian inference treats parameters and shocks
symmetrically. They are all unknown objects with distributions.
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1, center belief loosely around independent random walks in each variable. They also

imply that constant terms should not interact with near unit roots to imply rapid trend

growth and that, if the dynamics are stationary, initial conditions should not be too far

from the model’s implied unconditional means. Conditional on A0, these priors imply

Gaussian priors on the Aj matrices.

In the case with normal structural shocks, we sample from the posterior distribution for

these parameters in a two-step process that exploits the fact that, conditional on knowing

A0 and {Λ1 . . . ΛM}, we can treat (1) as a system of n independent linear regressions

which can be estimated with weighted least squares. In the first step of the sampling

process, we use a Random Walk Metropolis algorithm to sample the elements of A0 and

{Λ1 . . . ΛM} using the likelihood integrated over the Aj (which is available analytically).

Then, after drawing a large MCMC sample from the marginal posterior distribution of

A0 and {Λ1 . . . ΛM} we can, for each of the A0, Λ draws, sample from the coefficients in

the Aj which have a known conditional normal distribution.

The model with t-distributed shocks requires a more involved method, a (non-standard)

Metropolis-in-Gibbs algorithm. The first part of the algorithm, a Monte Carlo update of

A0 and {Λ1 . . . ΛM} conditional on the ξi,t and integrated over the
(

Aj
)p

j=1, is just as in

the normal shocks model. But now we need to draw
(

Aj
)p

j=1 after each draw of (A0, Λ)

to form implied normalized residuals εi,t. The ξi,t, conditional on the εi,t are distributed

independently across i and t, allowing us to draw directly from their exact conditional

posterior distribution. The process is repeated recursively. Appendix 2 describes the me-

chanics of the both algorithms in more detail, and Appendix 3 reports diagnostic evidence

of its convergence to randomly sampling the model posterior.

For a given set of model parameters, we could change the sign of the coefficients in

an equation (a row of (A0, A1, . . . )) or change the order of the equations (permute the

rows of (A0, A1, . . . )), without changing the implied distribution of the data. The like-

lihood maximum therefore recurs through the parameter space at every permutation or
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IP Industrial production
P Personal consumption expenditures price index
HHC Sum of commercial bank real estate and consumer

loans
BC Commercial bank commercial & industrial loans
M1 M1 money supply
R Federal funds rate
PCM CRB/BLS spot (commodity) price index
TS Term spread of 10 year over 3 month Treasuries
GZ Gilchrist and Zakrajšek (2012) bond spread
ES “TED spread” of 3-month Eurodollars over 3 month

Treasuries
TABLE 1. Data series used in model estimation.

sign change of the parameters. This means that a complete MCMC sampling of the pos-

terior distribution would show identical impulse response distributions for all shocks, all

centered at zero response — but only if the prior itself were invariant to permutations of

the orderings or signs of the equations.

Our prior, because it puts positive prior means on the diagonal elements of A0, is not

invariant to permutations and scale changes of equation coefficients. As a result, we find

no indication that our posterior sampling scheme is distorting results by not eliminating

draws that are permutations or sign-switches of each other. Nonetheless these methods,

if applied on data for which identification did not emerge as strongly, might need to test

for and eliminate permuted or sign-switched models.13

This probability model implies prior and posterior distributions for all (potentially non-

linear) transformations of the coefficients, including the reduced form coefficients Bj and

the impulse response functions for variable i to each shock j. In all reported results, fol-

lowing Sims and Zha (1999), we report horizon-by-horizon 68% and 90% posterior den-

sity regions as “error bands.”
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III. DATA AND RESULTS

Our main specification uses monthly data on 10 time series (listed in Table 1) from

January 1973 to June 2015. We include data from the 1970s because they are a valuable

source of variation in the time series and because correction for time-varying variance can

account for what otherwise might be interpreted as regime change in monetary policy

(e.g., as in Sims and Zha (2006)). The lag length p in our model is set to 10.

Our measures of “household” and “business” credit are based on the Federal Reserve’s

weekly surveys of U.S. commercial banks.14 These data are different from the quar-

terly and annual series, based on a more comprehensive survey of lenders and catego-

rized based on the borrower type (including “households and non-profits,” “nonfinancial

noncorporate business,” and “nonfinancial corporate business”), used in some other re-

search.15 Appendix 7.2 includes a more detailed discussion of the differences. Although

our “household credit” series includes commercial real estate loans (which cannot be sep-

arately identified for the entire sample in the data) and our “business credit” data seems

to have more high-frequency variation than the corresponding quarterly series, we be-

lieve these data capture the majority of the low-frequency behaviors that are critical for

existing empirical evidence of their forecasting power.16

The inclusion of three credit spreads (of interest rates over short-term Treasuries) is

meant to capture several possible dimensions of credit market stress: the term spread

captures inflation expectations and uncertainty about future movements in fundamentals,

the bond spread captures tightness in business financing, and the TED spread captures

tightness in bank financing. The first was also expected to, along with the Federal Funds

rate, M1, and commodity prices, provide a sharper identification of a monetary policy

13This is a special case of the kind of normalization issue discussed by Hamilton, Waggoner and Zha (2007).
14These are published in the H.8 “Assets and Liabilities of Commercial Banks in the United States” release.
15In particular, the cross-country database, assembled by the Bank of International Settlements uses these
quarterly data.
16One practical complication is dealing with breaks in the credit series introduced by changes in accounting
standards or major entrances to or exits from the commercial bank industry. Our spcific calculations for
eliminating these breaks, which are particularly large in the real estate credit series, are detailed in the
Appendix 7.1.
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Start End Description
1 Jan 1973 Sep 1979 Oil crisis, stagflation, and Burns Federal Reserve
2 Oct 1979 Dec 1982 Volcker disinflation
3 Jan 1983 Dec 1989 Recovery from early 1980s recession
4 Jan 1990 Dec 2007 Great Moderation and Greenspan Federal Reserve
5 Jan 2008 Dec 2010 Great Recession
6 Jan 2011 Jun 2015 Zero Lower Bound, Recovery from Great Recession

TABLE 2. Dates for variance regimes in full model specification.

Model MDD
Gaussian, full data 51768.38
t, full data 52490.13

TABLE 3. Marginal data densities (marginal likelihoods) for two models of
the full data sample (1973:1 to 2015:6). Differences between values are log
Bayes factors, or log posterior odds with equal prior weights on each model.

Shock Jan 1973 –
Sep 1979

Oct 1979 –
Dec 1982

Jan 1983 –
Dec 1989

Jan 1990 –
Dec 2007

Jan 2008 –
Dec 2010

Jan 2011 –
Jun 2015

1 1.255 1.336 0.767 0.807 1.306 0.610
2 0.856 0.946 0.902 0.875 1.190 1.119
3 0.676 0.533 0.413 1.700 1.675 0.934
4 0.814 0.950 1.179 1.165 1.241 0.622
5 0.319 0.645 0.482 0.595 2.190 1.721
6 1.031 4.147 0.585 0.109 0.087 0.004
7 1.275 0.832 0.760 0.722 1.729 0.575
8 0.940 2.553 0.864 0.521 0.781 0.375
9 0.764 0.484 0.533 0.717 2.823 0.632

10 1.565 1.917 0.543 0.286 1.707 0.009
TABLE 4. Posterior median relative variances for each of ten shocks in six
periods, from a model with t-distributed innovations.

shock, as policy-generated rises in the short rate might be expected to have little effect on,

or even lower, long rates, if the monetary tightening does succeed in lowering inflation.

We separate the full sample into six variance regimes described in Table 2. From the

standpoint of estimation efficiency, we expect the separate treatment of the Volcker disin-

flation and Great Recession to discourage overfitting of high monetary policy and finan-

cial stress variations respectively by allowing the model to “down-weight” these periods’

residuals.
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Table 3 displays estimates of the marginal data densities of the model with Gaussian

distributed shocks and the model with Student’s t distributed shocks.These are reported

in a log points scale, so a difference of over 100 is extremely strong evidence (i.e., more

than an e100 odds ratio) in favor of the better model. The t model clearly fits much better

than the model with Gaussian errors.17

Figures 1 to 4, in four 5 by 5 “blocks,” show the impulse response over five years of all

10 variables to the model’s orthogonal structural shocks, scaled to draws from a unit-scale

t distribution with 5.7 degrees of freedom. Since the diagonal of Λi is normalized to sum

to one across regimes, these responses are a kind of average across regimes.

The model, despite the lack of any identifying zero restrictions on coefficients, fits rec-

ognizable monetary policy (number 6) and credit spread (9-10) shocks with significant

long-term real consequences. Shock 6 is the only one that has an immediate positive R

response, a delayed negative IP response, a negative (though ill-determined) long run

P response, negative responses of M1 and the two credit aggregates, and a negative re-

sponse of the term spread (as would be expected if the shock raises current interest rates

and lowers expectations of future inflation).

The ninth and tenth shocks are the most important sources of variation in the GZ spread

and the ES spread, respectively. The two spreads do not tend to move together in re-

sponse to these shocks, and the two have different patterns of effects on other variables.

Both depress IP. Both depress P, though in the case of shock 10 this effect is statistically

weak. Shock 9, which immediately impacts the GZ spread, has a strong delayed effect

in depressing BC, but modest and indeterminate-signed effect on HHC, while shock 10,

which immediately impacts ES, strongly depresses HHC with ill-determined effect on

BC. Shock 10 produces an expansionary movement in R, while shock 9 does not. These

patterns seem to fit an interpretation that distinguishes a banking credit shock (10) from a

non-bank financial disturbance (shock 9). All the effects of these shocks on other variables

17See Appendix section 3.4 for more details.
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are delayed, while their effects on the spread variables are immediate. This fits an inter-

pretation that they reflect disturbances originating in financial markets, with monetary

policy at most (with shock 10) trying to partially offset their effects.

The third and fourth shocks start with an impulse to household credit and to business

credit (net of inflation), respectively. They lead to persistent long-term declines in out-

put and seem to match the “excessive credit growth” story demonstrated empirically by

Mian, Sufi and Verner (2017), Schularick and Taylor (2012), and others. Perhaps surpris-

ingly, since they used annual panel data for many countries, the responses we find to

shocks 3 and 4 are quantitatively quite similar to the responses to household and firm

credit found by Mian, Sufi and Verner. We find the output response with 68% confidence

bands is in both cases barely significantly less than zero at the five-year or smaller hori-

zon, but, as in the Mian-Sufi-Verner estimates, they are substantively non-trivial. How-

ever, several other shocks to which the credit variables respond substantially (shocks 1,

6, 9 and 10) move output and credit in the same direction. Over medium and long hori-

zons, observed credit growth is as likely to result from these shocks as from the model’s

third and fourth shocks. Distinguishing “good” from “bad” credit growth, then, requires

observing all ten variables in this model.

Note that shocks 3 and 4 also elicit a positive movement in R, which is not surprising

given that they are associated with rising inflation and, in the case of the third shock,

initially rising output. If we accompany this shock with a sequence of shock-6 values that

suppress this R response, we find that the inflation and credit expansion are somewhat

greater and there is no output decline. In other words, the model implies that the decline

in output that follows this type of credit expansion can be accounted for by the systematic

monetary policy contraction that the credit shock elicits. Figure 5 shows the responses to

the third and fourth shocks, and to those shocks with policy keeping the interest rate

constant. (The figure omits responses that were nearly the same for the two patterns of

shock.)
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Though shocks 3 and 4 are followed by future declines in output growth, they are

not followed by substantial movements in the spread variables GZ and ES. The spread

shocks, on the other hand, are followed by substantial declines in credit aggregates. Our

interpretation is that the credit expansions generated by shocks 3 and 4 are followed with

a delay by slow growth due to monetary tightening, not financial market distress.

The seventh shock accounts for a substantial component of variation in P. Its immediate

effect is to increase commodity prices, and to some degree to increase the GZ spread. The

effect on commodity prices is persistent. With some delay, P (the PCE deflator) moves up

and IP moves down by a non-trivial, but statistically marginal, amount. Neither BC nor

HHC moves much. This looks like a “supply shock” originating in commodity markets.

These core impulse response results seem largely robust to the alternative error specifi-

cations. We provide full impulse response plots for versions of the model with Gaussian

errors and with errors modeled as a finite scale mixture of Gaussian errors in the appendix

section 4.1.

The picture is also very similar if we estimate with data only up to December 2007. Full

impulse responses from this sample period are plotted in the supplemental Appendix,

section 4.2. In particular, the identification of monetary policy and spread effects is very

stable. There is weak (within 68%, but not 90% bands) evidence of an output response to

household and business credit expansion shocks. These effects are of comparable magni-

tude to the estimated credit effects in the model estimated on the full dataset.

Our results suggest that the variances of these shocks change substantially among pe-

riods. Table 4 reports the variances of each of the ten structural shocks in the posterior

mode t-errors model, over the full sample. 90% probability bands for these relative vari-

ances are quite tight, mostly within 0.8 to 1.2 times the posterior median estimate. In

general, there is strong evidence of time-varying variance. Several of the shocks spike

in variance during the financial crisis (period 5). The sixth shock, which we identify as

a monetary policy shock, has a considerably inflated variance in the Volcker disinflation

period and almost zero variance in the most recent period (near the zero lower bound).
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Month εit dyi,t Month εit dyi,t
Shock 1 Shock 6

9/2008 -9.875 -0.043 5/1980 -22.627 -0.067
12/1974 -6.259 -0.027 3/1980 10.409 0.031
1/1983 5.160 0.022 2/1981 -10.135 -0.030
4/1980 -5.015 -0.022 5/1981 9.312 0.028

Shock 2 Shock 7

9/2005 5.492 0.007 8/1976 -4.222 -0.066
1/1990 3.820 0.005 7/1975 4.096 0.064

11/2005 -3.748 -0.005 7/1974 3.901 0.060
11/2008 -3.453 -0.005 2/1974 3.777 0.059

Shock 3 Shock 8

12/1999 7.068 0.015 8/1974 -7.157 -0.014
9/2008 5.922 0.012 6/1981 6.261 0.012

10/2003 -5.861 -0.012 11/2008 5.871 0.011
10/2002 4.933 0.010 4/1980 4.411 0.008

Shock 4 Shock 9

10/2008 5.247 0.019 10/2008 18.275 0.023
12/1986 5.216 0.019 1/2009 -7.844 -0.010
9/2007 4.454 0.016 9/2008 7.183 0.009

11/1999 4.283 0.016 7/2002 6.771 0.009
Shock 5 Shock 10

10/2001 -9.766 -0.047 10/2008 10.840 0.019
8/2011 8.507 0.041 7/1974 8.950 0.016
9/2001 8.431 0.041 9/2008 7.739 0.014
9/2008 6.773 0.033 12/1973 7.148 0.013

TABLE 5. Four largest residuals for each shock in the main model. Point
estimates are posterior medians.

Table 5 lists the 4 largest posterior median shocks for each equation. These are in stan-

dard deviation units and not scaled by the corresponding λ values. They thus show the

biggest shocks, not the biggest “surprises” for the model.

The biggest of these, in shock 6, reflects a sudden easing of monetary policy in May

1980, during the recession of that year. The Federal Funds rate fell from 18 per cent to

11 percent in that month, but soon started rising again. There were also large values for

shock 6 in March 1980, February 1981, and May 1981. These were all during the period of

Volcker unborrowed reserve targeting, which has a high value of λ for shock 6. That is,

though large, these shocks occur in a period the model has identified as a high-variance

period.
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The second and third largest shocks were in the two financial stress indicators, shocks

9 and 10, at the time of the Lehman collapse in October 2008.

Shock 1, which accounts for much of the variance in output and looks like a “demand”

shock, was sharply negative in September 2008, reflecting the large decline in industrial

production as the crisis took hold.

The September 2001 attack on the US shows up in shock 5, which looks like an accom-

modated money demand shock. The shock is sharply negative in October 2001 as the Fed

withdrew its temporary liquidity accommodation. It was nearly as large and positive in

the previous month.

Shock 7, the PCM shock, takes on large values in 1974-5.

The largest of these shocks all correspond to events that were recognizably unusual as

they occurred. But they tend to come from periods with large values of λit, so they are not

necessarily the biggest surprises. Looking at the largest surprises — the εit/
√

λit values

— is useful because it is these residuals that have the biggest impact on model fit. Also

the size and distribution across variables of these large surprises casts some doubt on our

assumption of i.i.d. t-distributed scaled shocks. We discuss the surprises in the appendix

section 5.

The remainder of this section reviews the model dynamics of key shocks in greater

detail.

III.1. The Credit Channel of Monetary Policy. The sixth ordered shock of the model,

the impulse responses of which are collected in Figure 6, satisfies the description of a

monetary policy shock in the initial impulse to the Federal Funds rate, initial decrease

in the 10 year over 3 month Treasury term spread, and persistent negative impact on

output. At the 68% level, there is still substantial uncertainty about the responses of both

consumer and commodity prices, but point estimates from the posterior mode model

show persistent declines. This identification comes despite the lack of any identifying

restrictions on contemporaneous responses (or the monetary policy reaction function).
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The model provides substantial evidence that the effect of short rate movements is am-

plified by corresponding movements in interest rate spreads. In particular, the 3-month

Eurodollar spread over Treasuries increases about 1 basis point per 4 in the Federal Funds

rate and decays over a similar horizon. There is relatively little evidence, in contrast, that

the bond premium moves in the short run (i.e., within the first 6 months) and no evidence

that the effect persists longer. The general finding of financial amplification of mone-

tary policy shocks is consistent with the empirical results of Gertler and Karadi (2015)

and a variety of theoretical models which suggest that risk premia should move in re-

sponse to monetary policy (e.g., Drechsler, Savov and Schnabl (2016) and Brunnermeier

and Sannikov (2016)). Our empirical result is focused, however, on inter-bank credit con-

ditions separate from firm-level credit conditions. This is concurrent with our broader

empirical point that the information content of credit spreads in the multi-variate model

is multi-dimensional — movements in different spreads forecast different macro-financial

dynamics and, potentially, relate to different economic mechanisms.

III.2. Spread Spikes and Early Warning. Three independent shocks, ordered eight to ten,

can be identified by sharp increases in spreads at t = 0, but only the the latter two (the re-

sponses to which are plotted in Figure 7) have significant output effects. The output effect

is larger and more significant for the ninth shock, associated with an initial surge in the

corporate bond spread and a long-term contraction in business credit. The tenth shock,

in contrast, begins with a shock to the inter-bank lending rate (of comparable magnitude

to the impulse following a monetary policy shock), a significant long-term contraction in

household credit, and a modestly significant short-term output contraction.

The fitting of two independent stress shocks suggests the importance of a multidimen-

sional approach to measuring financial stress. In their long-run macro implications, the

two shocks can be distinguished by sharply different implications for credit aggregates

and prices. The “bond spread shock” is associated with a persistent reduction in the con-

sumer and commodity price level and a significant decline in loans to businesses. The

“inter-bank shock,” in contrast, has no long-term price effect and predicts a significant
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long-term contraction in household, not business, credit. It also seems to pick up some

delayed monetary loosening, potentially in response to the generated recession.

In the historical record, inter-bank shocks have almost as high a variance in the early

sample (1973 to 1982) as they do in the financial crisis (Table 4). With post-2009 interbank

rates very close to short rates at zero, this channel almost completely shuts down in the

final variance period. The corporate bond spread shock, in contrast, is by some margin

highest variance during the 2008 financial crisis.

Taken together, the impulse response and the estimated variances suggest that the

macro importance of spread shocks—closely related to the forecasting value of the spread

variables—is concentrated during certain high variance episodes and largest at short hori-

zons. Interest rates react to shocks 9 and 10 by falling, as would be expected from a mon-

etary policy easing. Because the response of IP to monetary policy is slower and more

persistent than its response to shocks 9 and 10, it is not clear that monetary policy could

do more to mitigate the output decline without creating more instability.

III.3. Credit Growth and Recessions. Our main model offers some support, within 68%

error bands, of the hypothesis that excessive growth in household credit can forecast

negative long-term real output growth (Figure 8). The shape of our estimated output

responses to shocks three and four, with a short-term output boost and long-term con-

traction, are similar to those found in a small-system (household credit to GDP, business

credit to GDP, and real GDP) VAR by Mian, Sufi and Verner (2017). In our model the

response to shock, 3 which raises HHC by about 1 per cent over five years, is a small

increase in IP, on the order of 0.1 per cent, that lasts less than a year, followed by a de-

cline that reaches -0.1% after five years. Mian, Sufi and Verner (2017) find a larger initial

rise of about 0.2%, over two years, but also a subsequent decline that reaches about -

0.1% after five years. Our estimates show a five-year negative response to the BC shock

(4) that is similar in size and statistical significance to the estimated response to HHC,

though without the initial positive response. This also is consistent with the Mian, Sufi

and Verner (2017) business credit estimated responses. All these results have fairly wide
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error bands, so there is no statistically sharp difference between the models. This might

not have been expected, since their results use an international panel of annual data and

a smaller model, while we use monthly US data and a big model.

However, as mentioned earlier in the qualitative discussion of results, our model im-

plies that the decline in output growth following this shock can be entirely accounted for

by the rise in interest rates it elicits. The response of the system to shock 3 or shock 4, com-

bined with a sequence of shock 6 values that keep the interest rate constant, eliminates

the decline in output (Figure 5).

A different way to assess the economic significance of credit shocks in our model is

to calculate the share of forecast errors that are explained by each shock (Figure 9).18 The

importance of third and fourth shocks for explaining credit variation starts very high (as it

has by far the largest contemporaneous impact on credit) but decays over time. Over five

years, these shocks explain 20% and 24% respectively of forecast error variance household

and business credit. The remainder of credit variation over these horizons is explained by

the other shocks in the model, which are all associated with credit and output moving in

the same direction, or with output scarcely moving at all. Over five years, the same “bad

credit shocks” explain 1.4% and 1.6%, respectively, of forecast error variance in industrial

production.

In the period 1990-2007, when the variance of the credit shocks is relatively high and

the variance of others relatively low, the two credit shocks explain a higher fraction of

five-year-ahead variance in the two aggregates (49.5% for household credit and shock 3,

and 37.6% for business credit and shock 4) and a higher percentage of output variation

at the same horizon (4.1% and 3.2% respectively). These numbers are still economically

quite small.

18These are the squared impulse responses scaled to sum to one for each response variable in each period.
Precisely, the variance decomposition of variable i is, for each j and each time horizon s, the proportion of
s-step ahead forecast error variance in variabale i attributable to shock j.
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IV. CREDIT CONDITIONS AND FORECASTING

So far we have demonstrated that credit variables have an interesting interpretation

within the model. But are they practically helpful to include, and could this have been

realized before the 2008 financial crisis? We find that information in spreads can be use-

ful for short-term forecasting at the onset of a crisis. The model with spreads does not,

however, provide much advanced warning of a crisis or any clear advantage in “normal”

times outside of recessions.

IV.1. Forecasting in the Recent Financial Crisis. We first focus on the 2007-08 financial

crisis and its immediate aftermath. At each month between January 2007 and December

2010, we estimate (posterior modes of) models with and without credit variables using

data only up to that point and then calculate 12-month forecasts. This “pseudo-out-of-

sample forecasting” exercise offers a dimension in which to compare models with dif-

ferent data lists and gives a sense of how much changing the emphasized data in macro

models would have helped in real time.We focus on the Gaussian errors specification, de-

spite its fitting more poorly than the t model, because it seems to capture the main model

dynamics and is much easier to do recursive computations with.

Figures 10, 11, and 12 plot posterior mode forecasts from our (Gaussian error) model

with 10 variables, a version without the credit aggregates, and a version without the

spreads, respectively, at 3-month intervals from January 2007 to October 2010. The model

without spreads (Figure 12) never fully “accepts” the crisis, predicting a return to near

pre-crisis growth rates at each point during the deepest contraction. The models with

spreads (with or without credit aggregates) give slightly less optimistic forecasts in early

2008, at which point the bond and inter-bank spreads have elevated slightly over mid-

2000s levels. But the most obvious improvement is the models’ ability to grasp the sever-

ity of the crisis during the deepest fall from mid 2008 to mid 2009. This observation is

consistent with the previous section’s analysis of impulse responses, which suggested

that the model could identify spread shocks which have macro effects within the first few
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months. The spreads provide little advance warning of severe recession but do enhance

recognition of the severe recession, and its likely persistence, once it is underway.

The addition of credit aggregates seems considerably less important. With or with-

out credit aggregates, the model is quicker to recognize a persistent downturn. While

forecasts of IP are little affected by excluding credit aggregates, the model without them

consistently predicts that interest rates will start reverting to positive values from the zero

lower bound, though this seems to have limited effects on forecasted output or consumer

prices.

IV.2. Forecasting Power in the Entire Sample. We generalize the exercise of the previous

section by calculating forecasts with versions of the main model, the no spreads model,

and the no credit model estimated up to each month from October 1979 to June 2015.19

We focus on root mean squared error (RMSE) for forecasts of all variables common to the

models.

Figures 13 and 14 display the evolution of these RMSE for the base model with all

variables (blue), a model without spreads (red), and a model without credit aggregates

(green). As suspected from the previous section, the models with spreads does a signif-

icantly better job predicting output just before and during the 2007-2009 financial crisis

and recession. The model’s internal projections for the Federal Funds rate are quite a bit

better at the zero lower bound, though this comes at the cost of one set of very poor fore-

casts right around the final major reduction in the rate in late 2008. Any advantages in

forecasting the price level and credit aggregates in the crisis are less obvious.

Outside the recent financial crisis, and potentially the early 1980s and early 2000s reces-

sions, the no spread model seems to perform just as well if not better. We might suspect

that a formal or informal comparison of models before 2008 would not clearly support

the inclusion of the financial variables, even if the estimated dynamics from such a model

19The truncation at the beginning of the sample comes from the requirement of having two variance regimes
to identify the parameters. Unfortunately, this cuts out some interesting macreconomic turbulence in the
1970s.
Additionally, for the period October 1979 to December 1982, we use models with six lags because of the
smaller availability of data.
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look like they have “economically interesting” transmissions from spreads to macro vari-

ables. Alternatively, the model with spreads might only be better for forecasting when

economic conditions worsen.20

The model without credit aggregates, but with credit spreads, seems to match the full

model quite closely throughout the sample. One exception seems to be the early part

of the 1981-1982 recession and the subsequent uptick in growth around 1984. In several

periods, including post-recession growth in the early 90s and 2010s, the no credit model

is significantly better at predicting output. In general there is no clear pattern of the model

with credit aggregates, after including spreads, doing a better job of forecasting the timing

or severity of U.S. recessions.

V. ACCOUNTING FOR THE PREDICTIVE POWER OF CREDIT IN SMALL MODELS

There is a recent literature that claims to show that credit expansion predicts nega-

tive growth and/or financial crises. Our model does not suggest that credit expansion

predicts financial crises and shows the negative association of credit growth with future

output growth as a small component of the overall relation between credit and output.

But our model does not contradict the earlier results with smaller models. It is compatible

with them.

As we have already observed, the responses to shocks three and four in our model

lie within error bands of the responses to credit-to-gdp-ratio shocks in Mian, Sufi and

Verner (2017). Those authors also estimate single-equation regressions of growth in real

output over the next three years on growth in credit in the past three years, finding that a

one-standard-deviation increase in 3-year household credit growth predicts a 2.1% lower

growth rate of output in the subsequent three years. they find no such effect with business

credit. When we replicate those regressions using our data, we find that a one standard

deviation increase in the three-year growth rate of BC predicts a 1.7 percentage point

20These nuances could be captured formally by taking posterior forecasts averaged across an “ensemble” of
models, the weights on which change over time (for instance, with some approximation of posterior odds).
To capture them within the model might require some more complex (and possibly endogenous) modeling
of regime switching.



FEEDBACKS: FINANCIAL MARKETS AND ECONOMIC ACTIVITY 25

Proportion of negative effects

Household Credit Business Credit

without lagged IP 0.55 0.56
with lagged IP 0.53 0.57

Proportion of economically significant negative effects

Household Credit Business Credit

without lagged IP 0.29 0.31
with lagged IP 0.30 0.33

TABLE 6. Probability, in simulated draws of coefficients and data from the
posterior distribution under the t-distributed errors model, of a negative or
“economically significant” effect of previous 3-year credit growth on subse-
quent three-year output growth. An economically significant effect is one
that makes a one-standard-deviation change in credit growth produce a 2
percentage point or larger change in output growth rate.

decline in the subsequent three year growth rate of output. We find no such predicted

effect from increased household credit growth. 21

So our data show a similarly strong negative effect of three-year credit expansion on

output growth, but shifts the strong effect from household to business credit. It could be,

though, that even though the data are in this way consistent with the MSV results, the

large monthly model misses this aspect of the data.

To check this, we can replicate those regressions on data simulated from our model,

and we find that with substantial probability our results from simulated data are of sim-

ilar size and sign to those found in the actual data. The results are in Table 6. To form

the table we used three-year forward differences of the log of real output (IP) as the de-

pendent variable, three-year backward differences in real credit (credit over price level)

over output as the main independent variable, and lags of first differences of log output

as an extra independent variable. In equation form, with yt denoting log IP, hct the ratio

of household credit deflated by PCEPI to IP, and bct the ratio of business credit deflated

21When we substitute flow of funds data on business credit and household credit for the our HHC and BC,
the effects of HHC and BC increases by one standard deviation are both negative, with HHC producing a
1.6 percentage point decline and business credit a 0.6 percentage point decline.
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by PCEPI to IP,

yt+3 − yt = α + βh(hct − hct−3) + βb(bct − bct−3) +
k

∑
i=1

γi(yt−i+1 − yt−i) .

Table 6 reports probabilities for βh and βb. The results “with lagged IP” set k = 3; other-

wise we set all γi ≡ 0.

In these simulated draws from our model’s data distribution we find the probability of

credit growth coefficients smaller than 0 to be over .5 and negative enough that a one stan-

dard deviation increase in credit growth reduces output growth by 2 percentage points

or more with probability about .3. Note that in the simulated data, it is about equally

likely that the BC or the HHC predictive effect will be large and negative. These suggests

that, according to our model, this one-equation model could suggest strong predictive

power when the fully specified structural model attributes a limited causal role to credit

innovations.

VI. ROBUSTNESS

We have tried a number of variants on our model to check robustness of our results.

These are described in detail in the appendix. Our checks include estimating quarterly

models, estimating models with triangular cholesky identification, looking for nonlin-

earity via various nonlinear transformations of the data, and varying the assumption on

error distributions. Details of these experiments are in the appendix. Of course the model

we present as our main model is itself the result of experiments like this, where we have

adopted specifications when we found them fitting better. As a result, the robustness

checks in the appendix do not cast doubt on our main specification.

VII. CONCLUSION

Credit conditions, monetary policy, and real activity interact dynamically through mul-

tiple channels. To study these interactions, we construct and estimate structural multiple-

equation models that are identified without strong a priori assumptions. Our analysis
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distinguishes impulses and feedbacks that focused study of individual channels might

miss.

Our main model includes ten independent shocks that are identified by substantially

changing volatilities across exogenously specified regimes. The data strongly favor addi-

tional corrections for fat tails in the distributions of the structural innovations, though the

main qualitative conclusions are the same without them. Further refining (and possibly

endogenizing) a model specification for volatility remains a task for future research, but

addressing the issue in some way greatly improves model fit and affects implied dynam-

ics.

Monetary policy is identified without any timing restrictions and seems to be ampli-

fied through inter-bank credit spreads. Two other model shocks look like “stress shocks”

which originate in the financial sector and propagate to the real economy after several

months of delay. The distinction between these shocks, which start with impulses to cor-

poate bond spreads and interbank rate spreads respectively, is potentially very important

for emerging research on the role of lending frictions and risk premia in the macroe-

conomy. A related takeaway for forecasters is that one-dimensional metrics of financial

conditions may be insufficient for capturing risks for the real economy.

While these credit spread shocks do have strong real effects, they do not provide more

than a few months of “advance warning” of an output contraction. In recursive-out-

of-sample forecasts around the 2008 financial crisis, including additional credit spread

variables only improves forecasts in a narrow window at the beginning of the downturn.

Across the entire data sample, there is no clear evidence that including credit variables

improves forecasting performance.

Credit aggregates in this model mainly move “passively” in the same direction as out-

put. Two shocks generate opposite movements in household (real estate plus consumer)

or business credit and output, but in all periods the magnitude of these effects is rela-

tively small. They are accompanied by rising interest rates, and if monetary policy offsets

that rise, the effect of the credit shocks on output would disappear. To the extent that this
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effect is quantitatively important, a multivariate model is necessary to properly separate

it from other effects. Our results demonstrate how multiple time-series analysis, without

strong a priori restrictions, can shed light on complex interactions among policy, financial

markets, and the real economy.
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Gilchrist, Simon, and Egon Zakrajšek. 2012. “Credit Spreads and Business Cycle Fluctu-

ations.” American Economic Review, 102(4): 1692–1720.

Gilchrist, Simon, Vladimir Yankov, and Egon Zakrajšek. 2009. “Credit market shocks

and economic fluctuations: Evidence from corporate bond and stock markets.” Journal

of Monetary Economics, 56(4): 471 – 493.

Goldsmith, Raymond. 1969. Financial Structure and Development. Yale University Press.

Hamilton, James D., Daniel F. Waggoner, and Tao Zha. 2007. “Normalization in Econo-

metrics.” Econometric Reviews, 26(2-4): 221–252.
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FIGURE 1. (1/4) Impulse responses to the ten orthogonal structural shocks
in the model with t distributed errors over 60 months, with 68% (dark blue)
and 90% (light blue) posterior uncertainty regions. Scaled to an “average”
period with unit scale. Variables are in the order listed in Table 1.
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FIGURE 2. (2/4) Impulse responses to the ten orthogonal structural shocks
in the model with t distributed errors over 60 months, with 68% (dark blue)
and 90% (light blue) posterior uncertainty regions. Scaled to an “average”
period with unit scale. Variables are in the order listed in Table 1.
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FIGURE 3. (3/4) Impulse responses to the ten orthogonal structural shocks
in the model with t distributed errors over 60 months, with 68% (dark blue)
and 90% (light blue) posterior uncertainty regions. Scaled to an “average”
period with unit scale. Variables are in the order listed in Table 1.
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FIGURE 4. (4/4) Impulse responses to the ten orthogonal structural shocks
in the model with t distributed errors over 60 months, with 68% (dark blue)
and 90% (light blue) posterior uncertainty regions. Scaled to an “average”
period with unit scale. Variables are in the order listed in Table 1.
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FIGURE 6. Impulse responses to the 6th ordered (monetary policy) shock,
with 68% (dark blue) and 90% (light blue) posterior uncertainty regions.
Scaled to an “average” period with unit scale. Variables are in the order
listed in Table 1.



Figures 38

IP

−0.010

−0.005

0.000

0.005

9 10

P

−0.005

0.000

0.005

0.010

HHC

−0.02

−0.01

0.00

0.01

BC

−0.02

−0.01

0.00

0.01

0.02

M1

−0.01

0.00

0.01

0.02

R

−0.002

0.000

0.002

0.004

9 10

PCM

−0.02

0.00

0.02

TS

−0.002

−0.001

0.000

0.001

0.002

GZ

−0.0005

0.0000

0.0005

0.0010

ES

0.0000

0.0005

0.0010

0.0015

FIGURE 7. Impulse responses to the 9th (bond spread) and 10th (inter-bank
spread) ordered shocks, with 68% (dark blue) and 90% (light blue) posterior
uncertainty regions. Scaled to an “average” period with unit scale. Vari-
ables are in the order listed in Table 1.
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FIGURE 8. Impulse responses to the 3rd (household credit) and 4th (firm
credit) ordered shocks, with 68% (dark blue) and 90% (light blue) posterior
uncertainty regions. Scaled to an “average” period with unit scale. Vari-
ables are in the order listed in Table 1.
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FIGURE 9. Forecast variance decompositions in the t-distributed errors
model for IP, prices, household credit, and business credit over 60 months,
with 68% (dark blue) and 90% (light blue) posterior uncertainty regions.
Scaled to an “average” period with unit scale. Variables are in the order
listed in Table 1.



Figures 41

2007 2008 2009 2010 2011 20124.
35

4.
50

4.
65

IP

2007 2008 2009 2010 2011 2012

4.
56

4.
60

4.
64

P

2007 2008 2009 2010 2011 20128.
20

8.
35

8.
50

HHC

2007 2008 2009 2010 2011 20127.
0

7.
2

7.
4

BC

2007 2008 2009 2010 2011 20127.
2

7.
4

7.
6

M1

2007 2008 2009 2010 2011 2012−
0.

02
0.

02
0.

06
R

2007 2008 2009 2010 2011 20125.
6

6.
0

6.
4

PCM

2007 2008 2009 2010 2011 2012−
0.

01
0.

02
0.

05

TS

2007 2008 2009 2010 2011 20120.
00

0.
06

0.
12

GZ

2007 2008 2009 2010 2011 2012−
0.

01
0.

02
0.

05

ES

FIGURE 10. Posterior mode forecasts, from a model with all ten variables,
estimated up to points in and around the Great Recession.
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FIGURE 11. Posterior mode forecasts, from a model without the two credit
aggregates, estimated up to points in and around the Great Recession.
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FIGURE 12. Posterior mode forecasts, from a model without the three credit
spreads, estimated up to points in and around the Great Recession.
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FIGURE 13. Root mean squared error (RMSE) for 6-month forecasts from
rolling estimations of the Gaussian errors model with all variables (blue),
no credit spreads (red), and no credit aggregates (green). NBER recessions
are shaded.
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FIGURE 14. Root mean squared error (RMSE) for 24-month forecasts from
rolling estimations of the main model with all variables (blue), no credit
spreads (red), and no credit aggregates (green). NBER recessions are
shaded.
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