RESERVE REQUIREMENTS AND OPTIMAL CHINESE STABILIZATION POLICY

CHUN CHANG, ZHENG LIU, MARK M. SPIEGEL, JINGYI ZHANG

Abstract. We build a two-sector DSGE model to study reserve requirement adjustments, a frequently-used policy tool for macro-stabilization in China. State-owned enterprises (SOEs) are financed by government-guaranteed bank loans, which are subject to reserve requirements, while private firms rely on unregulated off-balance sheet financing. Increasing reserve requirements reallocates resources to more productive private firms, raising aggregate productivity, but also raises the incidence of SOE bankruptcy. Optimal reserve requirement adjustments are complementary to interest rate adjustments for shocks that result in inefficient relative price fluctuations, such as sector-specific productivity shocks, but only yield modest additional welfare gains under aggregate productivity shocks.

Date: June 12, 2017.

Key words and phrases. Reserve requirements, China, off-balance sheet loans, shadow banking, financial accelerator, reallocation, aggregate productivity, welfare.

Chang: Shanghai Advanced Institute of Finance, Shanghai Jiao Tong University; Email: cchang@saif.sjtu.edu.cn. Liu: Federal Reserve Bank of San Francisco; Email: Zheng.Liu@sf.frb.org. Spiegel: Federal Reserve Bank of San Francisco; Email: Mark.Spiegel@sf.frb.org. Zhang: Shanghai Advanced Institute of Finance, Shanghai Jiao Tong University; Email: jyZhang.11@saif.sjtu.edu.cn. For helpful comments, we thank Kaiji Chen, David Cook, Jonathan Ostry, Haibing Shu, Michael Zheng Song, Jian Wang, Shang-Jin Wei, Tao Zha, Feng Zhu, Xiaodong Zhu, and seminar participants at the 2017 Asian Meeting of the Econometric Society, the Federal Reserve Bank of San Francisco, Fudan University, the IMF, the NBER Chinese Economy Meeting, Conference on “Business Cycles, Financial markets, and Monetary Policy” in Beijing, the University of Toronto and Bank of Canada Conference on the Chinese Economy, the Central Bank of Chile Conference on the Chinese Economy, Chinese University of Hong Kong, Hong Kong University of Science and Technology, George Washington University, Zhejiang University, and the HKIMR. We also thank Andrew Tai for research assistance and Anita Todd for editorial assistance. The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System.
I. Introduction

China’s central bank, the People’s Bank of China (PBOC), frequently uses reserve requirements (RR) as a policy instrument for macroeconomic stabilization. Since 2006, the PBOC has adjusted the required reserve ratio at least 40 times. Changes have also been substantial. For example, during the tightening cycles from 2006 to 2011, the required reserve ratio increased from 8.5 percent to 21.5 percent (see Figure 1).

The literature has argued that the increases in RR during the financial crisis period have been associated with the desire for PBOC to reduce the costs of sterilization under China’s tightly controlled capital account (Chang, Liu and Spiegel, 2015b). Many emerging market economies use RR as a policy instrument for stabilizing domestic activity (Federico, Vegh and Vuletin, 2014). As these economies typically have open capital accounts, adjusting RR can help mitigate potentially disruptive capital flows (Montoro and Moreno, 2011).

RR adjustments may also have allocative impacts. Under China’s existing financial system, the Chinese government provides explicit or implicit guarantees for loans to State-owned enterprises (SOEs) (Song, Storesletten and Zilibotti, 2011). As a result, SOEs enjoy a borrowing advantage on formal bank loans over private firms (POEs). In contrast, POEs, particularly small and medium-sized private firms, largely rely on off-balance sheet lending by commercial banks and informal financial intermediaries or shadow banks for financing (Lu, Guo, Kao and Fung, 2015). Since on-balance sheet bank loans to SOEs are subject to RR regulations, but off-balance sheet banking activities are not, raising RR inhibits SOE financing and encourages the reallocation of capital from the SOE sector to the POE sector. Empirical evidence shows that private firms in China are on average more productive than SOEs (Hsieh and Klenow, 2009; Hsieh and Song, 2015). Thus, all else equal, reallocating capital from SOEs to private firms can raise aggregate productivity.\(^1\)

In this paper, we develop a DSGE model in which intermediate goods are produced by firms in two sectors—an SOE sector and a POE sector—using the same production technology, with POEs having higher average productivity. The intermediate goods produced by the two sectors are imperfect substitutes. Final goods production uses a composite of the sectoral intermediate goods and also capital and labor as inputs. To incorporate financial frictions, we build on the framework of Bernanke, Gertler and Gilchrist (1999) (BGG) with costly state verification. Firms in each sector face aggregate and idiosyncratic productivity shocks. They need to finance working capital with both internal net worth and external debt. As in BGG, there is a threshold level of idiosyncratic productivity, above which firms repay the

\(^1\)Although SOE productivity is lower on average, firm-level evidence indicates substantial within-sector heterogeneity in productivity. For example, Brandt (2015) shows that, in SOE-dominant industries, both SOEs and POEs have lower productivity than firms in industries with less SOE presence.
loan at the contractual rate, and earn nonnegative profits. Firms with productivity below the threshold level, however, will default. In the event of a default, the lender pays a cost to liquidate the project.

To capture the unique features of China’s financial system, we deviate from the BGG framework in several dimensions: First, we assume that bank lending activity is segmented. On-balance sheet loans are provided to SOE firms only, while POE firms can obtain funding only through banks’ off-balance sheet activity.\(^2\)

Second, the government provides guarantees on bank loans to SOEs. In the event of an SOE default, the government covers the bank’s loan losses. This guarantee reduces SOE funding costs and leaves SOE loans risk-free for banks, although government bailouts of SOE defaults are socially costly. In contrast, off-balance sheet loans to private firms are not guaranteed, and the financial frictions facing POEs mimic those in the standard BGG environment. In particular, the loan rate offered to POEs includes a default premium (or credit spread) that compensates the lender for expected bankruptcy losses. This assumption implies that the BGG financial accelerator mechanism is muted for the SOE sector by the government guarantees. In contrast, the POE sector exhibits dynamics quite similar to firms under the standard BGG framework, and is therefore more sensitive to macroeconomic shocks. Furthermore, government guarantees of SOE loan losses drive a wedge between the relative price of intermediate goods produced in the SOE sector and the relative productivity of that sector, and such guarantees may also lead to inefficient fluctuations in the relative price, especially when the economy is buffeted by sector-specific productivity shocks.

Third, on-balance sheet loans are subject to reserve requirement regulations, which require that a fraction of on-balance sheet activity be held as reserves at the central bank. Since

\(^2\)The strict separation between lending sources of SOEs and POEs in our model is a simplification, since both types of firms in reality can obtain funding from both on- and off-balance sheet loans, and there is even some lending to POEs by the SOEs themselves. Still, the characterization is not that far from empirical reality, as the substantive majority of on-balance sheet lending is toward SOEs and the POE sector primarily depends on off-balance sheet borrowing from commercial banks and shadow banks (Elliott, Kroeber and Qiao, 2015). Chang, Chen, Waggoner and Zha (2015a) provide evidence that China’s credit policy favors capital-intensive (or heavy) industries at the expense of labor-intensive (or light) industries. Although not all heavy industries are state-owned, Chang et al. (2015a) find that the share of SOEs in capital-intensive industries has increased steadily since the large-scale SOE reform in the late 1990s. One could alternatively interpret our external financing dichotomy as illustrative of the implications of preferential treatment by the Chinese government across other firm types, as in this case of favorable treatment of capital-intensive firms.
banks do not earn any interest on reserves in our model, RR policy drives a wedge between the deposit interest rate and the lending rate.\(^3\)

Our model implies that raising RR discourages on-balance sheet lending activity and reallocates capital from SOEs to POEs. This reallocation mechanism associated with RR adjustments is consistent with empirical evidence from Chinese data, as we show in Section III below.

More importantly, our model also implies that the transmission mechanism from RR adjustments differs from the conventional transmission mechanism of monetary policy through interest-rate changes. While an interest-rate change tends to stimulate or contract activities in both the SOE and the POE sectors, an adjustment in RR has different impacts on the two sectors.\(^4\) Thus, adjusting RR can be an important policy tool for stabilizing China’s macroeconomic fluctuations, especially under sector-specific shocks, since appropriate RR adjustments are effective for stabilizing inefficient relative-price fluctuations stemming from government guarantees of SOE debts.

We study a calibrated version of our model to illustrate the tradeoff from adjusting required reserves. We first examine the steady-state effects of the RR ratio. Our analysis demonstrates that an increase in the steady-state RR ratio under our calibration improves aggregate TFP by reallocating resources toward the more productive POE sector, but it also raises the incidence of SOE bankruptcies. As a consequence, there is an interior optimal steady-state level of the RR ratio that maximizes social welfare.

We then examine the implications of a simple reserve requirement rule for macroeconomic stability and social welfare when the economy is buffeted by either an aggregate TFP shock or a productivity shock specific to one of the two sectors.\(^5\) We compare the stabilizing performances of simple RR and interest rate rules, where the policy instrument (the nominal deposit rate or the RR ratio) reacts to fluctuations in inflation and the real GDP gap.

\(^3\)We set the interest rate on reserves to zero for simplicity. The actual current interest rate paid on required reserves in China is 1.62%, far below the 2.74% one-year government bond rate or the 3.26% PBOC bill rate, implying that RR do act as a tax on banking activity.

\(^4\)However, as we show below, our model implies that the financial accelerator mechanism is active in the POE sector in our model but muted in the SOE sector because of government guarantees of SOE debts. This implication raises the scope for heterogeneity in the impact of interest rate adjustments across the two sectors as well.

\(^5\)An example of such sector-specific shocks in China could be the government restructuring of SOEs in the late 1990s, which led to significant improvement in the relative productivity of SOEs (Hsieh and Song, 2015). Another example of such a sector-specific productivity shock would be a shock to China’s industrial sector (such as an energy price shock), which as argued above might be privy to superior government guarantees similar to that for the SOEs in our model (Chang et al., 2015a).
We then search for optimal rule coefficients that maximize the representative household’s welfare.\footnote{We restrict the planner’s problem to simple rules because the model proved too complex to solve for the full Ramsey equilibrium numerically.}

Compared to our benchmark economy in which the monetary authority follows a Taylor rule with standard weights and maintains a constant RR ratio, we find that adjusting either the optimal RR rule and the optimal interest rate rule over the course of the business cycle can improve welfare. Moreover, adjusting both instruments optimally yields further welfare gains, suggesting that the two policy instruments are complementary tools for macroeconomic stabilization.

However, the magnitudes of the additional welfare gains obtained from adjusting both reserve requirements and interest rates relative to those obtained from optimally adjusting interest rates alone are dependent on the sources of the shocks to the economy. Gains are particularly pronounced for situations calling for reallocations of resources across sectors, as under a sector-specific productivity shock. For an aggregate TFP shock, we find that the welfare gains from adjusting the deposit rate optimally are almost equivalent to that achieved when both instruments can be adjusted. In contrast, in the case of a productivity shock to the SOE sector alone, the potential gains from reallocation of resources across sectors are more sizable. As a result, the gains from optimally adjusting both instruments for the single-sector productivity shock are substantively larger.

\textbf{II. Related literature}

Our work is related to the literature on shadow banking. It is well known that shadow banking involves a tradeoff between reduced intermediation costs and increased risks to financial and macroeconomic stability (Gorton and Metrick, 2010; Verona, Martins and Drumond, 2013; Elliott et al., 2015). China’s shadow bank lending increased by over 30 percent per year between 2009 and 2013, largely financed off-balance sheet by commercial banks in the forms of wealth management products and entrusted loans. Hachem and Song (2015), Chen, Ren and Zha (2016), and Wang, Wang, Wang and Zhou (2016) discuss the underlying factors that drive the expansion in shadow banking activity in China. Funke, Mihaylovski and Zhu (2015) discuss the role of shadow banks in Chinese monetary policy transmission.

Our work is also related to the earlier literature on sectoral preferences of China’s macroeconomic policy. For example, Brandt and Zhu (2000) examine the implications of commitment by the Chinese government for maintaining employment in its less efficient state sector. They find that the cost of fulfilling this commitment has implications for monetary...
policy and inflation. In a closely related study, Song et al. (2011) examine China’s transition dynamics in a two-period overlapping generations model with SOEs and POEs. As in our paper, these authors postulate that SOEs have lower productivity, but enjoy superior access to bank credit. Their model’s transition dynamics explain some puzzling characteristics of the Chinese economy, such as high growth being accompanied by high saving rates.

However, our model differs from the earlier literature in three dimensions: First, we investigate an infinite-horizon DSGE model, which accommodates the study of both the steady-state equilibrium and business cycle dynamics. Second, we model financial frictions in the spirit of Bernanke et al. (1999) (BGG). Third, we study the implications of RR policy relative to the conventional interest rate policy in an environment with nominal rigidities and financial frictions. In this second-best environment, we find that RR policy is useful for not just steady-state reallocation, but also for business cycle stabilization.

III. The reallocation effects of reserve requirement policy: Some evidence

Our model implies that an increase in reserve requirements reallocates capital from SOEs to POEs because it raises the relative cost of on-balance sheet banking activity. In this section, we provide illustrative evidence that this reallocation mechanism in the model is consistent with empirical evidence at both the micro level and the macro level.

III.1. Firm-level evidence. We first present some firm-level evidence that demonstrates the disproportionate sensitivity of SOEs relative to POEs to changes in RR policy based on China’s equity market data. Our model suggests that an increase in RR directly raises the cost of external financing for SOEs, since they borrow primarily through on-balance sheet channels. An increase in RR should have a smaller adverse impact on POE activity, since POEs borrow mainly through off-balance sheet activity.

We consider the announcement effects of changes in RR policy on the relative stock returns of SOE firms by estimating the regression model

\[\sum_{h=-H}^{H} R_{j,t+h}^e = a_0 + a_1 \Delta RR_{t-1} + a_2 SOE_{jt} \times \Delta RR_{t-1} + a_3 SOE_{jt} + bZ_{jt} + \varepsilon_{jt}. \]

(1)

In this equation, the left-hand-side variable \(R_{j,t}^e \) denotes risk-adjusted excess returns for firm \(j \) in period \(t \), defined as \(R_{j,t}^e = R_{jt} - \hat{\beta}_j R_{mt} \), where \(R_{jt} \) denotes the firm’s stock return, \(R_{mt} \) the market return, and \(\hat{\beta}_j \) the firm’s “market beta” (i.e., the estimated slope coefficient in the regression of the firm’s return on a constant and the market return). It is measured as cumulative risk-adjusted excess returns within the window of time from \(H \) days before to \(H \) days after a given date \(t \). \(\Delta RR_{t-1} \) denotes changes in RR. \(SOE_{jt} \) is a 0-1 dummy variable indicating whether the firm is an SOE; that is, whether the firm is directly controlled by
the state or has the state as its majority shareholder. Z_{jt} is a vector of control variables, including firm size, book-to-market value ratio, industry fixed effects, and year fixed effects. ε_{jt} denotes regression errors.

The parameter of interest is a_2, the coefficient of the interaction term. It captures the relative effects of RR changes on the stock returns of SOEs. If an increase in RR reduces the relative stock returns for SOE firms, then we should observe that $a_2 < 0$.

We estimate the model in equation (1) using daily data from nonfinancial firms listed in the Shanghai and Shenzhen stock exchanges for the period from 2005 to 2015. Under China’s current regulations, a change in RR policy is not to be signaled or leaked before the actual announcement. Thus, within a relatively short window of time around the announcement date, changes in RR policy are likely to contain some surprise component that can potentially affect stock returns.

Table 1 shows the estimation results for three different window lengths around the RR change announcements: the same day of the announcement ($H = 0$), a three-day window ($H = 1$), and a five-day window ($H = 2$). The regression results show that the estimated value of a_2 is negative and statistically significant at the 99% level for all 3 different window lengths. The negative estimates of a_2 are also economically significant. For example, on the same day of the RR policy change, a one percentage point increase in the required reserve ratio would reduce the daily stock return of an average SOE firm relative to a non-SOE firm by about 0.12%. This corresponds to a 2.43% reduction in SOE relative monthly returns, or an annualized reduction of about 33%.

There is reason to believe that the potential losses from reallocation of capital from SOEs to POEs would be stronger during the latter portion of our sample. In China, the demand for off-balance sheet loans expanded rapidly following the large-scale fiscal stimulus plan that was announced in November 2008 and implemented in 2009-2010, because local governments needed to raise funds to finance new investment projects partly supported by the central government’s stimulus funds. Since the capital reallocation mechanism in our model works through credit reallocation between on-balance sheeting lending and off-balance sheeting activity, we would expect a stronger role for the reallocation channel in the sample after the fiscal stimulus plan was adopted.

7This calculation is based on 20 trading days per month. The PBOC typically changes in the required reserve ratio by 50 basis points, although in some occasions, the size of the change can be as large as 100 basis points.

8Cong and Ponticelli (2017) find evidence that China’s large-scale fiscal stimulus exacerbated credit allocation between SOEs and POEs since new credit under the stimulus was allocated more toward SOEs.
To investigate this possibility, we next split our sample into two sub-samples: the pre-stimulus period (2005-2008) and the post-stimulus period (2009-2015). Our results are shown in Table 2. The estimates of \(a_2 \) are not significantly different from zero in the pre-stimulus period, but become significantly negative in the post-stimulus sample. Moreover, the value of \(a_2 \) estimated in the post-stimulus sample is about twice as large (in absolute terms) as our full-sample estimate in Table 1. Our results therefore indicate that the greater sensitivity of SOE equity values to RR increases stems primarily from the post-stimulus period, when shadow banking activity was expanding rapidly.

III.2. Some VAR evidence. Our firm-level evidence suggests that the profitability of SOEs is more sensitive to reserve requirement changes than POEs. We now present some macro evidence that supports the reallocation mechanism of our DSGE model. The reallocation mechanism implies that an increase in RR would directly raise the SOE borrowing costs and thus lead to a decline in the share of SOE investment spending in aggregate investment.

We estimate a Bayesian vector-autoregression (BVAR) model to examine the dynamic effects of a shock to the RR ratio. The BVAR model includes four variables: the RR ratio, the three-month nominal deposit rate, real GDP (in log units), and the share of SOE fixed investment in aggregate business fixed investment, in that order for Choleski identification. The time-series data that we use are taken from Chang et al. (2015a), with a sample range from 1995:Q1 to 2013:Q4. The BVAR is estimated with four quarterly lags and with Sims-Zha priors.

Figure 2 shows the estimated impulse responses following a positive shock to the RR ratio in our BVAR model. The impulse responses suggest that, following an increase in RR, the share of SOE investment falls significantly, while real GDP and the nominal interest rate both rise in the short run. Since capital moves from the less productive SOE sector to the more productive POE sector, the reallocation can raise aggregate productivity and overall output, although if capital adjustment is costly, as in our model, the net impact is ambiguous. Moreover, the increase in RR directly reduces aggregate demand by cutting SOE borrowing for any given allocation of resources. Thus, we would expect only a modest net increase in real GDP following the shock to RR, as we find empirically.

Overall, our macro evidence from the BVAR model and the firm-level evidence from the equity market data both support the reallocation mechanism featured in our DSGE model below.

To conserve space, we display here only the estimation results for the one-day and three-day windows. The results for the five-day window are similar. In particular, the estimate of \(a_2 \) is insignificant in the pre-stimulus period but becomes large and significantly negative in the post-stimulus sample.

The qualitative results do not change if RR is ordered last.
IV. The model

The economy is populated by a continuum of infinitely lived households. The representative household consumes a basket of differentiated goods purchased from retailers. Retailers produce differentiated goods using a homogeneous wholesale good as the only input. The wholesale good is itself a composite of intermediate goods produced by two types of firms: SOEs and POEs. The two types of firms have identical production technologies ex-ante except that the average productivity of SOEs is assumed to be lower than that of POEs.

Firms face working capital constraints. Each firm finances wages and rental payments using both internal net worth and external debt. Following Bernanke et al. (1999), we assume that external financing is subject to a costly state verification problem. In particular, each firm can observe its own idiosyncratic productivity shocks. Firms with sufficiently low productivity relative to their nominal debt obligations will default and be liquidated. The lender suffers a liquidation cost when taking over the project to seize available revenue.

We generalize the BGG framework to a two-sector environment with SOEs and POEs that have access to different sources of external financing. We assume that SOEs only borrow through formal on-balance-sheet loans. As is effectively the case in China, we also assume that these loans are backed by government guarantees. In contrast, POEs only borrow through off-balance-sheet loans, which are neither regulated nor backed by the government. While banks face no default risk on the guaranteed loans to SOEs, they face expected default costs for off-balance sheet loans extended to POEs, as in the BGG framework.\footnote{Our framework is a simplification made to allow for solution of the model. The off-balance sheet lending in our model represents the more diverse and complex set of nonbank financing activity in China, including private loans and corporate bonds. Our framework could be extended to allow separate non-banks to borrow from commercial banks off-balance sheet and then extend loans to POEs. Finally, large and profitable Chinese private firms typically have no difficulties accessing bank loans, but rely more on non-bank channels for finance, such as equity and bond markets. In the, consistent with our assumptions, the bulk of on-balance sheet commercial bank lending goes to SOEs, allowing for the reallocation mechanism highlighted in our model.}

We assume that intermediate goods produced by SOEs and by POEs are imperfect substitutes, to ensure positive demand for SOE goods in the steady state despite their lower productivity. As we show below, financial frictions stemming from government guarantees of SOE loans can drive a wedge between the relative price and relative productivity of the SOE sector, causing inefficiencies in resource allocation in both the steady state and over the business cycles.\footnote{In what follows, we focus on describing the main features of the model and we relegate detailed derivations of the equilibrium conditions in an appendix available at the web site http://www.frbsf.org/economic-research/files/wp2016-10_appendix.pdf}
IV.1. Households. There is a continuum of infinitely lived and identical households with unit mass. The representative household has preferences represented by the expected utility function

$$U = E \sum_{t=0}^{\infty} \beta_t \left[\ln(C_t) - \frac{\Psi H_t^{1+\eta}}{1 + \eta} \right],$$

(2)

where E is an expectation operator, C_t denotes consumption, and H_t denotes labor hours. The parameter $\beta \in (0, 1)$ is a subjective discount factor, $\eta > 0$ is the inverse Frisch elasticity of labor supply, and $\Psi > 0$ reflects labor disutility.

The household faces the sequence of budget constraints

$$C_t + I_t + \frac{D_t}{P_t} = w_t H_t + r_t^k K_{t-1} + R_{t-1} \frac{D_{t-1}}{P_{t-1}} + T_t,$$

(3)

where I_t denotes capital investment, D_t denotes deposits in banks, w_t denotes the real wage rate, r_t^k denotes the real rent rate on capital, K_{t-1} denotes the level of the capital stock at the beginning of period t, R_{t-1} is the gross nominal interest rate on household savings determined from information available in period $t-1$, P_t denotes the price level, and T_t denotes the lump-sum transfers from the government and earnings received from firms based on the household’s ownership share.

The capital stock evolves according to the law of motion

$$K_t = (1 - \delta) K_{t-1} + \left[1 - \frac{\Omega_k}{2} \left(\frac{I_t}{I_{t-1}} - g_I \right) \right]^2 I_t,$$

(4)

where we have assumed that changes in investment incur an adjustment cost reflected by parameter Ω_k. The constant g_I denotes the steady-state growth rate of investment.

The household chooses C_t, H_t, D_t, I_t, and K_t to maximize (2), subject to the constraints (3) and (4).

IV.2. Retail sector and price setting. There is a continuum of retailers, each producing a differentiated retail product indexed by $z \in [0, 1]$. The retail goods are produced using a homogeneous wholesale good, with a constant-returns technology. Retailers are price takers in the input market and face monopolistic competition in their product markets. Retail price adjustments are subject to a quadratic cost, as in Rotemberg (1982).

The production function of retail good of type z is given by

$$Y_t(z) = M_t(z),$$

(5)

where $Y_t(z)$ denotes the output of the retail good and $M_t(z)$ the intermediate input.
The final good for consumption and investment (denoted by Y^f_t) is a Dixit-Stiglitz composite of all retail products given by

$$Y^f_t = \left[\int_0^1 Y_t(z)^{(\epsilon-1)/\epsilon} \, dz \right]^{\epsilon/(\epsilon-1)},$$

(6)

where $\epsilon > 1$ denotes the elasticity of substitution between retail goods.

The optimizing decisions of the final good producer lead to a downward-sloping demand schedule for each retail product z:

$$Y^d_t(z) = \left(\frac{P_t(z)}{P_t} \right)^{-\epsilon} Y^f_t,$$

(7)

where $P_t(z)$ denotes the price of retail product z.

The zero-profit condition for the final good producer implies that the price level P_t is related to retail prices by

$$P_t = \left[\int_0^1 P_t(z)^{(1-\epsilon)} \, dz \right]^{1/(1-\epsilon)}.$$

(8)

Each retailer takes as given the demand schedule (7) and the price level P_t, and sets a price $P_t(z)$ to maximize profit. Price adjustments are costly, with the cost function given by

$$\frac{\Omega_p}{2} \left(\frac{P_t(z)}{\pi P_{t-1}(z)} - 1 \right)^2 C_t,$$

where Ω_p measures the size of the adjustment cost and π is the steady-state inflation rate. Retailer z chooses $P_t(z)$ to maximize its expected discounted profit

$$E_t \sum_{i=0}^{\infty} \beta^i \Lambda_{t+i} \left[\left(\frac{P_{t+i}(z)}{P_{t+i}} - p_{w,t+i} \right) Y^d_{t+i}(z) - \frac{\Omega_p}{2} \left(\frac{P_{t+i}(z)}{\pi P_{t+i-1}(z)} - 1 \right)^2 C_{t+i} \right],$$

(9)

where p_{wt} is the relative price of the wholesale good (expressed in consumption units) and $Y^d_{t+i}(z)$ is given by the demand schedule (7).

We focus on a symmetric equilibrium in which $P_t(z) = P_t$ for all z. The optimal price-setting decision implies that

$$p_{wt} = \frac{\epsilon - 1}{\epsilon} + \frac{\Omega_p \, Y_t}{\epsilon \, Y_t} \left[\left(\frac{\pi_t}{\pi} - 1 \right) \frac{\pi_t}{\pi} C_t - \beta E_t \Lambda_{t+1} \left(\frac{\pi_{t+1}}{\pi} - 1 \right) \frac{\pi_{t+1}}{\pi} C_{t+1} \right].$$

(10)

IV.3. The wholesale goods sector. The wholesale goods used by retailers as inputs are a composite of intermediate goods produced by firms in the SOE sector and the POE sector. Denote by Y_{st} and Y_{pt} the products produced by SOE firms and POE firms, respectively. The quantity of the wholesale good M_t is given by

$$M_t = \left(\phi Y_{st}^{\sigma_{m-1}} + (1 - \phi) Y_{pt}^{\sigma_{m-1}} \right)^{\sigma_m^{-1}} \sigma_{m-1},$$

(11)
where $\phi \in (0, 1)$ measures the share of SOE goods and $\sigma_m > 0$ is the elasticity of substitution between goods produced by the two sectors.

Denote by p_{st} and p_{pt} the relative price of SOE products and POE products, respectively, both expressed in final consumption good units. Cost-minimizing by the wholesale good producer implies that

$$Y_{st} = \phi^{\sigma_m} \left(\frac{p_{st}}{p_{wt}} \right)^{-\sigma_m} M_t, \quad Y_{pt} = (1 - \phi)^{\sigma_m} \left(\frac{p_{pt}}{p_{wt}} \right)^{-\sigma_m} M_t. \quad (12)$$

The zero-profit condition in the wholesale sector implies that the wholesale price is related to the sectoral prices through

$$p_{wt} = \left(\phi^{\sigma_m} p_{st}^{1-\sigma_m} + (1 - \phi)^{\sigma_m} p_{pt}^{1-\sigma_m} \right)^{\frac{1}{1-\sigma_m}}. \quad (13)$$

IV.4. The intermediate goods sectors. We now present the environment in the SOE and POE intermediate goods sectors. We focus on a representative firm in each sector $j \in \{s, p\}$.

A firm in sector j produces a homogeneous intermediate good Y_{jt} using capital K_{jt} and two types of labor inputs— household labor H_{jt} and entrepreneurial labor H_{et}^{e}, with the production function

$$Y_{jt} = A_{jt} \omega_{jt} (K_{jt})^{1-\alpha} \left[(H_{jt}^{e})^{1-\theta} H_{jt}^{\theta} \right]^{\alpha}, \quad (14)$$

where A_{jt} denotes productivity of firms in sector j, and the parameters $\alpha \in (0, 1)$ and $\theta \in (0, 1)$ are input elasticities in the production technology. The term ω_{jt} is an idiosyncratic productivity shock that is i.i.d. across firms and time, and is drawn from the distribution $F(\cdot)$ with a nonnegative support. We assume that the idiosyncratic productivity shocks are drawn from a Pareto distribution with the cumulative density function $F(\omega) = 1 - \left(\frac{\omega}{\omega_m} \right)^k$ over the range $[\omega_m, \infty)$, where $\omega_m > 0$ is the scale parameter and k is the shape parameter.

Productivity A_{jt} contains a common deterministic trend g^t and a sector-specific stationary component A_{jt}^m so that $A_{jt} = g^t A_{jt}^m$. The stationary component A_{jt}^m follows the stochastic process

$$\ln A_{jt}^m = (1 - \rho_j) \ln \bar{A}_j + \rho_j \ln A_{jt-1}^m + \epsilon_{jt}, \quad (15)$$

where \bar{A}_j is the steady-state level of A_{jt}^m, $\rho_j \in (-1, 1)$ is a persistence parameter, and the term ϵ_{jt} is an i.i.d. innovation drawn from a log-normal distribution $N(0, \sigma_j)$.

Firms face working capital constraints. In particular, they need to pay wage bills and capital rents before production takes place. Firms finance their working capital payments through their beginning-of-period net worth N_{jt-1} and through borrowing, B_{jt}. The working capital constraint for a firm in sector $j \in \{s, p\}$ is given by

$$\frac{N_{jt-1} + B_{jt}}{P_t} = w_j H_{jt} + w_j^{e} H_{jt}^{e} + r_t^{k} K_{jt}. \quad (16)$$

where w_j^{e} denotes the real wage rate of managerial labor in sector j.
Under constant returns to scale, cost-minimizing factor demand implies that a firm’s revenue is a linear function of its net worth, as in Bernanke et al. (1999).

IV.5. Financial intermediaries and debt contracts. Financial intermediation takes place through a continuum of competitive representative commercial banks, which we model in terms of single representative bank. At the beginning of each period t, the bank obtains household deposits D_t at interest rate R_t. It lends B_{st} on-balance sheet to the SOE sector, and B_{pt} off-balance sheet to the private sector. On-balance-sheet (SOE) loans are subject to reserve requirements, but off-balance-sheet (POE) loans are not. In addition, SOE loans are guaranteed by the government and the bank does not face default risk on these loans. In contrast, the interest rate charged to POEs contains a credit spread that reflects the bank’s expected losses due to default, as in the BGG framework.

Since the government guarantees repayments of SOE loans, there is no default risk on bank loans and the bank charges a risk-free loan rate of R_{st}. The bank earns zero profits on SOE loans in equilibrium. However, the reserve requirements drive a wedge between the loan rate and the deposit rate such that

\[(R_{st} - 1)(1 - \tau_t) = (R_t - 1),\]

where R_{st} represents the interest rate on SOE loans.

The bank is also competitive in off-balance sheet lending, with funding costs given by $R_{pt} = R_t$ as this activity is not subject to reserve requirements.

Since the lender can only observe a borrower’s realized returns at a cost, it charges a state-contingent gross interest rate Z_{jt} ($j = s, p$) on all loans to cover monitoring and liquidation costs. Under this financial arrangement, firms with sufficiently low levels of realized productivity will not be able to make repayments. There is therefore a cut-off level of productivity $\bar{\omega}_{jt}$ such that firms with $\omega_{jt} < \bar{\omega}_{jt}$ choose to default, where $\bar{\omega}_{jt}$ satisfies

\[\bar{\omega}_{jt} \equiv \frac{Z_{jt}B_{jt}}{\tilde{A}_{jt}(N_{j,t-1} + B_{jt})},\]

where the term \tilde{A}_{jt} is given by

\[\tilde{A}_{jt} = p_{jt}A_{jt}\left(\frac{1 - \alpha}{\eta_t}\right)^{1-\alpha}\left[\left(\frac{\alpha(1 - \theta)}{w_{jt}}\right)^{1-\theta}\left(\frac{\alpha\theta}{w_t}\right)^{\theta}\right]^\alpha.\]

We interpret \tilde{A}_{jt} as the rate of return on the firm’s investment financed by external debt and internal funds.

If the firm defaults, the lender pays a liquidation cost and obtains the revenue. In the process of liquidating, a fraction m_j of output is lost. Furthermore, the government is assumed to cover a fraction l_j of the loan losses financed by lump-sum taxes collected from
the households, where \(l_s = 1 \) and \(l_p = 0 \) such that the government covers the entire loss to banks for SOE defaults but nothing for POE defaults.

We now describe the optimal contract. Denote by \(f(\bar{\omega}_{jt}) \) and \(g(\bar{\omega}_{jt}) \) the share of sector-\(j \) income that goes to the borrower and the lender, respectively.

The optimal contract is a pair \((\bar{\omega}_{jt}, B_{jt})\) chosen at the beginning of period \(t \) to maximize the borrower’s expected period \(t \) income,

\[
\max \tilde{A}_{jt}(N_{j,t-1} + B_{jt}) f(\bar{\omega}_{jt})
\]

subject to the lender’s participation constraint

\[
\tilde{A}_{jt}(N_{j,t-1} + B_{jt}) g_j(\bar{\omega}_{jt}) \geq R_{jt} B_{jt}.
\]

Following Bernanke et al. (1999), we assume that a manager in sector \(j \in \{s, p\} \) survives at the end of each period with probability \(\xi_j \), so that the average lifespan for the firm is \(\frac{1}{1-\xi_j} \). The \(1 - \xi_j \) fraction of exiting managers is assumed to be replaced by an equal mass of new managers, so that the population size of managers stays constant. New managers have start-up funds equal to their managerial labor income \(w^e_{jt} H^e_{jt} \). For simplicity, we follow the literature and assume that each manager supplies one unit of labor inelastically and the managerial labor is sector specific (so that \(H^e_{jt} = 1 \) for \(j \in \{s, p\} \)).

The end-of-period aggregate net worth of all firms in sector \(j \) consists of profits earned by surviving firms plus managerial income

\[
N_{jt} = \xi_j \tilde{A}_{jt}(N_{j,t-1} + B_{jt}) f(\bar{\omega}_{jt}) + P_t w^e_{jt} H^e_{jt}.
\]

IV.6. Government policy. The government conducts monetary policy by following a Taylor-type rule, under which the nominal deposit rate responds to deviations of inflation from target and changes in the output gap. The government’s interest-rate rule is given by

\[
R_t = \bar{R} \left(\frac{\pi_t}{\bar{\pi}} \right)^{\psi_{rp}} \left(\frac{\tilde{GDP}_t}{\tilde{GDP}} \right)^{\psi_{ry}},
\]

where \(\bar{R} \) and \(\bar{\pi} \) denote the steady-state interest rate and inflation rate, respectively, and the parameters \(\psi_{rp} \) and \(\psi_{ry} \) are the response coefficients. The term \(\tilde{GDP}_t \) denotes the output gap, defined the deviation of real GDP from its trend.

In the benchmark economy, we assume that the government fixes the required reserve ratio at \(\tau_t = \bar{\tau} \). We also consider an alternative reserve requirement policy under which the government varies \(\tau_t \) in response to fluctuations in inflation and output gap (Section VI.2).

Government spending consists of an autonomous component, \(G_t \), which is a constant fraction of real GDP and the SOE bailout costs.
IV.7. Market clearing and equilibrium. In an equilibrium, the markets for final goods, intermediate goods, capital and labor inputs, and bonds all clear.

The final goods market clearing implies that

\[Y_t^f = C_t + I_t + G_t + \frac{\Omega_p}{\pi} \left(\frac{\pi_t}{\pi} - 1 \right)^2 C_t + \tilde{A}_s \frac{N_{s,t-1}}{P_t} + B_{st} m_s \int_0^{\pi_s} \omega dF(\omega) \]

\[+ \tilde{A}_p \frac{N_{p,t-1}}{P_t} + B_{pt} m_p \int_0^{\pi_p} \omega dF(\omega). \]

(24)

Intermediate goods market clearing implies that

\[M_t = \left(\phi Y_{st}^{\frac{\sigma_m}{\sigma_m - 1}} + (1 - \phi) Y_{pt}^{\frac{\sigma_m}{\sigma_m - 1}} \right)^{\frac{\sigma_m}{\sigma_m - 1}}. \]

(25)

Factor market clearing implies that

\[K_{t-1} = K_{st} + K_{pt}, \quad H_t = H_{st} + H_{pt}. \]

(26)

Bond market clearing implies that

\[B_{st} + B_{pt} = (1 - \tau_t) D_t. \]

(27)

For convenience of discussion, we define real GDP as the final output net of the costs of firm bankruptcies and price adjustments. In particular, real GDP is defined as

\[GDP_t = C_t + I_t + G_t. \]

(28)

We define a measure of aggregate TFP (based on aggregate output) as

\[\tilde{A}_{Y,t} = \frac{Y_t^f}{(K_{st} + K_{pt})^{1 - \alpha} H_t^{\alpha \theta}}. \]

(29)

V. Calibration

We solve the model numerically based on calibrated parameters. Five sets of parameters need to be calibrated. The first set are those in the household decision problem. These include \(\beta \), the subjective discount factor; \(\eta \), the inverse Frisch elasticity of labor supply; \(\Psi \), the utility weight on leisure; \(\delta \), the capital depreciation rate; and \(\Omega_k \), the investment adjustment cost parameter. The second set are those in the retailers’ decision problem, including \(\epsilon \), the elasticity of substitution between differentiated retail products; and \(\Omega_p \), the price adjustment cost parameter. The third set includes parameters in the decisions for firms and financial intermediaries. These include \(g \), the average trend growth rate; \(\omega_m \) and \(k \), the scale and the shape parameters for the idiosyncratic shock distribution; \(\alpha \), the capital share in the production function; \(\theta \), the share of labor supplied by the household; \(\psi \), the share of SOE products in the intermediate good basket; \(\sigma_m \), the elasticity of substitution between SOE products and POE products; \(\tilde{A}_s \) and \(\tilde{A}_p \), the average productivity of the SOE firms and
POE firms, respectively; m_s and m_p, the monitoring costs for SOE firms and POE firms, respectively; and ξ_s and ξ_p, the survival rates of managers for SOE firms and POE firms, respectively. The fourth set of parameters are those in government policy, which include $\bar{\pi}$, steady-state inflation (as well as the inflation target); $\bar{\tau}$, the steady-state required reserve ratio; ψ_{τ_p} and ψ_{τ_y}, the Taylor rule coefficients on inflation and output gap, respectively; and l_s and l_p, the fractions of debts guaranteed by the government for SOEs and POEs, respectively. The fifth set are parameters in the technology shock processes, including ρ_j and σ_j, the persistence and standard deviation of the productivity shocks to each sector $j \in \{s, p\}$. Table 3 summarizes the calibrated parameter values.

A period in the model corresponds to one quarter. We set the subjective discount factor to $\beta = 0.995$. We set $\eta = 2$, implying a Frisch labor elasticity of 0.5, which lies in the range of empirical studies. We calibrate $\Psi = 18$ such that the steady state value of labor hour is about one-third of total time endowment (which itself is normalized to 1). For the parameters in the capital accumulation process, we calibrate $\delta = 0.035$, implying an annual depreciation rate of 14%, as in the Chinese data. We have less guidance for calibrating the investment adjustment cost parameter Ω_k. We use $\Omega_k = 1$ as a benchmark, which lies in the range of empirical estimates of DSGE models (Christiano, Eichenbaum and Evans, 2005; Smets and Wouters, 2007).

For the parameters in the retailers’ decision problems, we calibrate the elasticity of substitution between differentiated retail goods ϵ at 10, implying an average gross markup of 11%. We set $\Omega_p = 22$, implying an average duration of price contracts of about three quarters.13

For the technology parameters, we set the steady-state balanced growth rate to $g = 1.0125$, implying an average annual growth rate of 5%. We assume that the idiosyncratic productivity shocks are drawn from a Pareto distribution with the cumulative density function $F(\omega) = 1 - (\frac{\omega_m}{\omega})^k$ over the range $[\omega_m, \infty)$. We calibrate the scale parameter ω_m and the shape parameter k to match empirical estimates of cross-firm dispersions of TFP in China’s data. In particular, Hsieh and Klenow (2009) estimated that the standard deviation of the logarithm of TFP across firms is about 0.63 in 2005. Since ω is drawn from a Pareto distribution, the logarithm of ω (scaled by ω_m) follows an exponential distribution with a standard deviation of $1/k$. To match the empirical dispersion of TFP estimated by Hsieh and Klenow (2009),

13Log-linearizing the optimal pricing decision equation (10) around the steady state leads to a linear form of Phillips curve relation with the slope of the Phillips curve given by $\kappa = \frac{\epsilon - 1}{\Omega_p} C \bar{Y}$. Our calibration implies a steady state ratio of consumption to gross output of about 50%. The values of $\epsilon = 10$ and $\Omega_p = 22$ imply that $\kappa = 0.2$. In an economy with Calvo-type price contracts, the slope of the Phillips curve is given by $(1 - \beta \alpha_p)(1 - \alpha_p)/\alpha_p$ where α_p is the probability that a firm cannot re-optimize prices. To obtain a slope of 0.2 for the Phillips curve in the Calvo model, α_p must be set equal to 0.66, which corresponds to an average duration of price contracts of about three quarters.
we set $k = 1/0.63$. To keep the mean of ω at one then requires $\omega_m = \frac{k-1}{k}$. These results in $k = 1.587$ and $\omega_m = 0.37$. We normalize the scale of SOE TFP to $\bar{A}_s = 1$ and calibrate the scale of POE TFP parameter at $\bar{A}_p = 1.42$, consistent with the TFP gap estimated by Hsieh and Klenow (2009).

We calibrate the labor income share to $\alpha = 0.5$, consistent with empirical evidence in Chinese data (Brandt, Hsieh and Zhu, 2008; Zhu, 2012). Out of the total labor income, we calibrate the share of household labor to $\theta = 0.9$; accordingly, the managerial labor share is 0.1. We calibrate $\psi = 0.45$, so that the steady-state share of SOE output in the industrial sector is 0.3, as in the data. We set the elasticity of substitution between SOE output and POE output to $\sigma_m = 3$, which lies in the range estimated by Chang et al. (2015a).

For the parameters associated with financial frictions, we follow Bernanke et al. (1999) and set the liquidation cost parameters to $m_s = m_p = 0.15$. We set the SOE manager’s survival rate to $\xi_s = 0.97$, implying an average term for the SOE manager of around eight years. We set the POE manager’s survival rate to $\xi_p = 0.69$, implying an average term of about nine months. These survival rates are chosen to yield the steady state outcome that the annual bankruptcy ratio is 0.25 for SOEs and 0.10 for POEs. These numbers match the annual fraction of industrial firms that earns negative profits reported by China’s National Bureau of Statistics’s (NBS) Annual Industrial Survey.

For the monetary policy parameters, we set the steady-state inflation target $\bar{\pi}$ to 2% per year. We calibrate the steady-state required reserve ratio to $\bar{\tau} = 0.15$. We set the Taylor rule parameters to $\psi_{rp} = 1.5$ and $\psi_{ry} = 0.2$.

For the fiscal policy parameters, we assume that the government provides complete guarantees for SOE debt, but no guarantees for POE debt ($l_s = 1, l_p = 0$). Furthermore, we set the government consumption to GDP ratio at 0.14%, which corresponds to the sample average in the Chinese data from 2001 to 2015.

Finally, for the technology shock parameters, we follow the standard real business cycle literature and set the persistence parameter to $\rho_j = 0.95$ and the standard deviation parameter to $\sigma_j = 0.01$ for $j \in \{s, p\}$. In our quantitative analysis below, we consider two separate cases: one with an aggregate TFP shock, so that the two sectoral shocks are perfectly correlated; and the other with sector-specific TFP shocks, so that the two shocks are uncorrelated.

\footnote{Chang et al. (2015a) estimate that the elasticity of substitution between SOE and POE outputs is about 4.53 if annual output data are used. The estimated elasticity is about 1.92 if monthly sales are used to measure output.}
VI. Quantitative results

We next investigate the implications of adjusting reserve requirements (τ) for the steady-state equilibrium and aggregate dynamics, and its impact on productivity and welfare.

VI.1. Optimal steady-state reserve requirements. We begin by exploring how steady-state equilibrium allocations and welfare depend on the required reserve ratio. We focus on the deterministic steady-state equilibrium, in which all exogenous shocks are turned off. As SOEs borrow from banks on-balance sheet through loans subject to reserve requirement regulations, an increase in reserve requirements diverts resources from SOEs to POEs. Moreover, since POEs are on average more productive than SOEs, this resource reallocation raises aggregate TFP. However, an increase in reserve requirements also raises the incidence of SOE bankruptcies, which require socially costly bailout, implying a tradeoff.

This tradeoff is illustrated in Figure 3, which displays the relations between the steady-state required reserve ratio (τ) and the levels of several macroeconomic variables. The figure also shows the welfare gains associated with different values of τ relative to the steady-state level of $\tau = 0.15$. Consistent with the mechanism described above, an increase in τ reduces SOE output relative to POE output. As resources are reallocated from SOEs to POEs, aggregate TFP rises. However, with increased funding costs, the incidence of SOE bankruptcies rises, which leads to an increase in costly bailouts.

The tradeoff between efficiency gains and bankruptcy losses implies that there should be an interior optimum for the required reserve ratio that maximizes social welfare. Under our calibration, this is indeed the case. As shown in the lower-right panel of Figure 3, the representative household’s steady-state welfare has a hump-shaped relation with τ and reaches its maximum at $\tau^* = 0.34$.

VI.2. Optimal simple policy rules. We have shown that reserve requirement policy plays an important role in reallocationg resources between SOEs and POEs in the steady state. We now examine the effectiveness of reserve requirement policy for macroeconomic stabilization over the business cycle.

The central bank can adjust the nominal deposit rate or the required reserve ratio (or both) to stabilize macroeconomic fluctuations. We assume that the central bank follows simple rules and adjust the relevant policy instrument(s) (R or τ) to respond to fluctuations in inflation and the output gap.

As a benchmark, we assume that the central bank follows the standard Taylor rule for the nominal deposit rate and keeps the required reserve ratio constant at its steady state level.
Relative to this benchmark policy regime, we evaluate the performance of three counterfactual policy regimes for macroeconomic stability and social welfare: an optimal interest rate rule, an optimal reserve requirement rule, and jointly optimal rules for both instruments.

Specifically, the interest rate rule is given by Eq (23), which we rewrite here in logarithmic form:

\[
\ln \left(\frac{R_t}{R} \right) = \psi_{rp} \ln \left(\frac{\pi_t}{\bar{\pi}} \right) + \psi_{ry} \ln \left(\frac{\bar{GDP}_t}{GDP} \right),
\]

(30)

The reserve requirement rule takes a similar form:

\[
\ln \left(\frac{\tau_t}{\tau} \right) = \psi_{rp} \ln \left(\frac{\pi_t}{\bar{\pi}} \right) + \psi_{ry} \ln \left(\frac{\bar{GDP}_t}{GDP} \right),
\]

(31)

where the parameters \(\psi_{rp} \) and \(\psi_{ry} \) measure the responsiveness of the required reserve ratio to changes in inflation and output gap.

In addition to our benchmark weights, we consider three alternative policies: Under the optimal interest rate rule, the reaction coefficients \(\psi_{rp} \) and \(\psi_{ry} \) in (30) are set to maximize the representative household’s welfare, while the required reserve ratio is kept at the benchmark value (i.e., \(\tau_t = \tau \)). Under the optimal reserve requirement rule, the reaction coefficients \(\psi_{rp} \) and \(\psi_{ry} \) are set to maximize welfare, while the interest rate follows the benchmark Taylor rule in (30), with \(\psi_{rp} = 1.5 \) and \(\psi_{ry} = 0.2 \) fixed. Under the jointly optimal rule, all four reaction coefficients \(\psi_{rp}, \psi_{ry}, \psi_{rp}, \) and \(\psi_{ry} \) are optimally set to maximize welfare.

We measure welfare gains under each counterfactual policy relative to the benchmark model as the percentage change in permanent consumption that would leave the representative household indifferent between living in an economy under a given optimal policy rule and in the benchmark economy.\(^{15}\) Denote by \(C_b^t \) and \(H_b^t \) the allocations of consumption and hours worked under the benchmark policy regime. Denote by \(V^a \) the value of the household’s welfare obtained from the equilibrium allocations under an alternative policy regime. Then, the welfare gain under the alternative policy relative to the benchmark is measured by the constant \(\chi \), which is implicitly solved from

\[
E \sum_{j=0}^{\infty} \beta^j \left[\ln(C_{t+j}^b(1+\chi)) - \Psi \frac{(H_{t+j}^b)^{1+\eta}}{1+\eta} \right] = V^a.
\]

\(^{15}\)We examine the implications of persistent, but temporary, shocks under our alternative policy regimes from identical steady states to allow for consistent welfare comparisons.
VI.2.1. Macroeconomic stability and welfare under alternative policy rules. To study the implications of alternative policy rules for macroeconomic stability and social welfare, we consider two sources of shocks: First, we evaluate equilibrium dynamics given different combinations of policy tools under an aggregate TFP shock. Next, we consider sector-specific TFP shocks where the ability of reserve requirement policy to reallocate resource across the two sectors is likely to result in greater welfare gains.

We first consider the case with an aggregate TFP shock. Table 4 shows the macroeconomic volatilities under four different policy regimes. It also shows welfare gains for each alternative policy rule relative to the benchmark regime. When the reserve requirement rule is optimized, the required reserve ratio τ_t increases with the output gap but decreases with inflation (column 2). A positive shock to aggregate TFP raises real GDP and lowers inflation. To stabilize output, the central bank raises reserve requirements. The increase in τ reduces aggregate demand and thus, all else equal, reduces inflation. However, an increase in τ can also alleviate the decline in inflation by raising SOE funding costs, and thereby intermediate and final goods prices. Thus, while the positive TFP shock tends to lower inflation, the aforementioned cost-channel tends to raise inflation. The net effects then depend on parameter calibration. Under our calibration, an increase in τ mitigates the decline in inflation. Table 4 shows that the optimal reserve requirement rule is better able to stabilize both real GDP and inflation fluctuations than the benchmark policy, under which the required reserve ratio is held constant. The optimal reserve requirement rule also leads to a modest welfare gain relative to the benchmark policy (about 0.24% of consumption equivalent).

The optimal interest rate rule is more aggressive against inflation fluctuations than the benchmark policy, but assigns a smaller weight to output gap (column 3). In particular, when we hold τ constant as in the benchmark regime and choose the inflation and output coefficients in the Taylor rule to maximize social welfare, we find that the optimal coefficients become 7.42 for inflation and 0.07 for output gap. The optimal interest rate rule produces better macroeconomic stability and higher welfare than either the benchmark policy or the optimal reserve requirement rule. Indeed, the welfare gain obtained by moving from the benchmark regime to the optimal interest rate rule is sizable, at about 1.18% of consumption equivalent.

Under the jointly optimal policy rule, the central bank can use the nominal interest rate to stabilize macroeconomic fluctuations and adjust the required reserve ratio to reallocate resources between the two sectors. The jointly optimal rule achieves better macroeconomic stability and higher social welfare than the benchmark policy. It also modestly outperforms each individual optimal rule in terms of welfare, although the gains relative to the optimal
interest rate rule are small, because the aggregate TFP shock does not directly move the relative price of sectoral goods.

If the economy is hit by sector-specific shocks, however, optimal cyclical adjustments in reserve requirements could play a more important role in stabilizing macroeconomic fluctuations and improving welfare. For example, consider the case of an SOE-specific productivity shock. The quantitative results for macroeconomic volatilities and welfare gains under alternative policy rules for this case are shown in Table 5. As before, the individually optimal τ rule and R rule are both effective for improving macroeconomic stability and welfare relative to the benchmark policy regime. Moreover, as in the case with an aggregate TFP shock, the optimal R rule leads to a greater welfare gain than the optimal τ rule.

In contrast to the case with an aggregate TFP shock, moving from the individually optimal R rule to the regime with jointly optimal rules under SOE-specific TFP shocks results in larger welfare gains. A similar set of results are obtained in the case with POE-specific TFP shocks, as shown in Table 6. These results suggest that, even when the interest rate rule is optimized, the central bank can still adjust reserve requirements to alleviate inefficient fluctuations in the relative prices of sectoral goods caused by sector-specific shocks. As expected, the complementarities between the two policy instruments (R and τ) are greater when the economy is hit by a sector-specific shock than in the case with an aggregate TFP shock.

VI.2.2. The economic mechanism. To help understand the economic mechanism underlying our quantitative results, we next examine the impulse responses of several key macroeconomic variables and sector-level variables following a positive TFP shock.

Figure 4 displays the impulse responses of real GDP, inflation, the nominal deposit rate, and the required reserve ratio following a positive shock to aggregate TFP under the benchmark policy and the three alternative policy regimes. Figure 5 shows the impulse responses of output, leverage, the bankruptcy rate, and the credit spread in each sector.

We begin with the impulse responses in the benchmark model (the black solid lines in the figures). Figure 4 shows that a positive TFP shock raises real GDP and lowers inflation. Under the benchmark policy regime, the nominal deposit rate declines to accommodate the fall of inflation while the required reserve ratio stays constant.

Figure 5 shows that the TFP shock raises output in both sectors. Since SOE debts are guaranteed by the government and free from default risk, the loan rate to SOEs is a constant markup over the deposit rate, with the wedge determined by the required reserve ratio τ. Thus, neither the SOE credit spread nor the SOE leverage ratio respond to changes in macroeconomic conditions under our calibration (with the idiosyncratic productivity shocks drawn from a Pareto distribution), shutting off the financial accelerator mechanism of the
BGG framework for the SOE sector. However, the bankruptcy rate in the SOE sector declines with increased TFP.

In the POE sector, however, there are no loan guarantees. Default risks are internalized through a credit spread. The BGG financial accelerator mechanism is therefore realized and the TFP shock raises POE leverage and output. The increase in loan demand by POE firms leads to an increase in the loan interest rate and thus an increase in the credit spread; the increases in leverage and the credit spread in turn raise the bankruptcy rate of POE firms despite their productivity improvements.

We consider the three counterfactual policy regimes: 1. An optimal reserve requirement rule (the red dashed lines), with interest rates following a Taylor rule with standard weights; 2. An optimal interest rate rule, with reserve requirements fixed (the blue dashed line); and 3. Optimal weights for both interest rate and reserve requirement rules (the magenta dashed line).

As shown in Figure 4, the optimal reserve requirement rule modestly outperforms the benchmark policy in stabilizing real GDP and inflation responses to the shock, while the optimal interest rate and jointly-optimal rules do far better in stabilizing inflation. Under the optimal interest rate and joint rules, the real interest rate declines more than in the benchmark case following a positive technology shock. The greater reduction in the real interest rate amplifies consumption responses, but dampens the increases in saving and investment. The net effects lead to a more muted increase in real GDP. Since equilibrium inflation does not fall much in response to a productivity improvement, the central bank does not need to cut the nominal interest rate much.

Finally, under the jointly optimal policy rule the central bank responds to the TFP shock by raising the required reserve ratio and lowering the nominal interest rate. The rise in \(\tau \) dampens the expansion in aggregate demand and thus, all else equal, contributes to lowering inflation. However, an increase in \(\tau \) also pushes up the funding costs for firms and thereby contributes to inflation. At the same time, the interest rate reduction unambiguously feeds inflation. The technology improvement leads to a much more muted decline in inflation on impact; and over time, inflation rises above steady state, reflecting the joint effects of higher funding costs with a higher \(\tau \) and greater aggregate demand with a lower \(R \). The jointly optimal rule is more effective than either individual optimal rule in stabilizing real GDP fluctuations.

At the sectoral level (Figure 5), the increase in \(\tau \) leads to a greater expansion of POE output relative to SOE output than under the benchmark rule. This is because \(\tau \) acts as a tax on formal banking activity and its increase shifts credit and capital from SOEs to POEs. The policy responses under the optimal reserve requirement rule also lead to larger increases
in POE leverage, credit spreads, and the incidence of bankruptcy relative to the benchmark regime, although the differences in these financial variables’ responses from those under the benchmark regime are relatively small under our calibration.

Similarly, the optimal interest rate rule dampens the increase in SOE output and amplifies the POE output increase in the short run. Since POE firms are more sensitive to changes in the real interest rate, the responses of leverage, credit spreads, and the bankruptcy rate in the POE sectors are also amplified modestly. Overall, however, it can be seen that both SOE and POE output fluctuations are more muted under the optimal interest rate rule than they are under the reserve requirement rule.

Finally, under the jointly optimal policy rule, the increase in τ reallocates capital from SOEs to POEs as under the reserve requirement rule. However, at the same time, the greater reduction in the real interest rate helps raise POE output relative to SOE output even more since POEs are more sensitive to changes in the interest rate than the SOEs through the financial accelerator mechanism. By reducing the share of expansion in SOE output, the jointly optimal policy also reduces government bailout costs by lowering the SOE bankruptcy rate. As a result, it increases welfare relative to both individual policy tool rules. However, as shown in Table 4, the gains relative to the optimal interest rate rule for a general TFP shock are quite modest.

We next consider the dynamics under sector-specific TFP shocks, shown in Figures 6 and 7. These figures show the impulse responses of the four aggregate variables (real GDP, inflation, the nominal interest rate, and the required reserve ratio) to a positive SOE-specific TFP shock and a positive POE-specific TFP shock, respectively. The responses of real GDP, inflation, and the nominal interest rate under the alternative policy rules are similar to those following a positive aggregate TFP shock (see Figure 4).

In contrast, the responses of the required reserve ratio τ to sector-specific shocks are different from those we obtain for an aggregate TFP shock. In particular, following an improvement in SOE TFP, the required reserve ratio under the individually optimal τ rule rises (Figure 6). The increase in τ, as discussed above in the context of the aggregate TFP shock, helps alleviate the decline in inflation through the cost channel, since the interest rate rule cannot be optimized to stabilize inflation. However, the increase in τ reallocates capital from SOEs to POEs, despite the improvement in the relative SOE productivity. This tradeoff leads to a more subdued increase in τ than that following an aggregate TFP shock. Under the jointly optimal rules, however, the central bank adjusts the nominal interest rate more aggressively to stabilize inflation fluctuations, leading to more muted inflation responses to the SOE TFP shock. Thus, the central bank can adjust τ to improve resource allocations. In particular, the central bank optimally reduces τ following an improvement
in SOE productivity, allowing more resources to be allocated to SOE firms. We therefore observe the surprising result that while the central bank lowers τ when it can adjust both instruments, it raises reserve requirements when that is the only policy tool available.

In contrast, following an improvement in POE productivity, Figure 7 shows that the central bank raises τ under both the individually optimal τ rule and the jointly optimal rules. This is because an improvement in POE productivity calls for more reallocation of capital from SOEs to POEs; at the same time, an increase in τ helps alleviate the declines in inflation through the cost channel discussed above. Thus, unlike the case with an SOE-specific TFP shock that implies a tradeoff between allocative efficiency and inflation stability, there is no such tradeoff in the case with a POE-specific TFP shock.

Overall, our impulse responses suggest that the interest rate policy tool is relatively effective for stabilizing fluctuations in real GDP and inflation, while adjusting reserve requirements is more effective for stabilizing sectoral allocations at business cycle frequencies. The differences we observe in policy responses under the various regimes speak to the importance of adjusting resource allocations under sector-specific shocks. Under shocks such as these where the potential gains from adjusting resource allocations across sectors are larger, the complementarity of the two policy tools are enhanced and the central bank is able to achieve notably superior macroeconomic stability and welfare relative to under each individually optimal policy rule.

VII. Conclusion

We study the benefits from adjusting reserve requirements as a policy instrument in a two-sector DSGE model with Chinese characteristics. Our model generalizes the standard financial accelerator model of Bernanke et al. (1999) to include two key forms of frictions: First, the model features segmented credit markets, in which SOE firms are able to obtain on-balance sheet bank loans, while POE firms rely on off-balance sheet lending for financing. Second, the government provides guarantees for formal bank loans to SOE firms, but not to off-balance sheet activity.

We show that government guarantees of SOE loans are an important source of distortions and that adjustments in reserve requirements can be an effective second-best policy. Adjusting reserve requirements can not only alleviate steady-state distortions but can also help stabilize business cycle fluctuations. In our model, POEs are more sensitive to business cycle shocks than SOEs because of the government guarantees on SOE loans. By adjusting reserve requirements, the central bank can influence the allocations of credit and capital to achieve its stabilization goals.
Under our calibration, adjusting nominal interest rates remains the primary policy instrument for macroeconomic stabilization. However, the relative effectiveness of the two alternative policy instruments depends on the sources of shocks. When interest rate policy is optimized under an aggregate TFP shock, allowing the central bank to optimally set the required reserve ratio provides only modest welfare gains. In contrast, adding the reserve requirement policy tool results in greater macroeconomic stabilization and welfare gains when the economy is hit by sector-specific productivity shocks.

Our results are second best by design. A more effective long-term reform would be to address the distortions in our framework explicitly, in particular to reduce or eliminate the distortion from the government guarantees on SOE loans only. More broadly, our results suggest potential gains from coordination between banking regulations and monetary policy.

Finally, under our closed-economy environment, private firms must rely on domestic shadow banking loans to finance their operation. This is a reasonable approximation to China’s current financial system because China has maintained tight controls over the capital account, so that it is difficult for domestic firms to obtain foreign funding. However, the Chinese government has set out plans to loosen its capital account. Having improved access to foreign funds would enhance financing conditions of the POEs, but could also crowd out some domestic off-balance sheet activity. A full analysis of the consequences of opening the capital account in such an environment therefore should be promising.
References

Funke, Michael, Petar Mihaylovski, and Haibin Zhu, “Monetary PolicyTransmission in China: A DSGE Model with Parallel Shadow Banking and Interest Rate Control,”

Table 1. Announcement Effects of RR policy on stock returns

<table>
<thead>
<tr>
<th>Event window</th>
<th>1-day (H=0)</th>
<th>3-day (H=1)</th>
<th>5-day (H=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔRR_{t-1}</td>
<td>0.00206</td>
<td>0.00479</td>
<td>0.01057</td>
</tr>
<tr>
<td></td>
<td>(7.20)</td>
<td>(9.21)</td>
<td>(15.74)</td>
</tr>
<tr>
<td>$SOE_{jt} \times \Delta RR_{t-1}$</td>
<td>-0.0012</td>
<td>-0.00225</td>
<td>-0.00442</td>
</tr>
<tr>
<td></td>
<td>(-3.21)</td>
<td>(-3.32)</td>
<td>(-5.05)</td>
</tr>
<tr>
<td>SOE_{jt}</td>
<td>-0.00007</td>
<td>-0.00026</td>
<td>-0.00041</td>
</tr>
<tr>
<td></td>
<td>(-2.60)</td>
<td>(-5.29)</td>
<td>(-6.47)</td>
</tr>
<tr>
<td>Firm size</td>
<td>-0.00034</td>
<td>-0.00099</td>
<td>-0.00155</td>
</tr>
<tr>
<td></td>
<td>(-27)</td>
<td>(-43)</td>
<td>(-53)</td>
</tr>
<tr>
<td>Book-to-market ratio</td>
<td>0.00009</td>
<td>0.00024</td>
<td>0.00047</td>
</tr>
<tr>
<td></td>
<td>(2.22)</td>
<td>(3.29)</td>
<td>(4.96)</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Sample size</td>
<td>4,119,971</td>
<td>4,079,847</td>
<td>4,000,353</td>
</tr>
<tr>
<td>R^2</td>
<td>0.00071</td>
<td>0.00182</td>
<td>0.00288</td>
</tr>
</tbody>
</table>

Note: For each coefficient, the upper row displays the estimated valued and the numbers shown in parantheses are the t-statistics. The critical values of t-statistics are 1.64, 1.96, and 2.58 for the 10%, 5%, and 1% significance levels, respectively.
Table 2. Announcement Effects of RR policy on stock returns: Before and after fiscal stimulus

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-day (H=0)</td>
<td>3-day (H=1)</td>
</tr>
<tr>
<td>∆RR_{t−1}</td>
<td>0.0010</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>(2.00)</td>
<td>(0.31)</td>
</tr>
<tr>
<td>SOE_{jt} × ∆RR_{t−1}</td>
<td>0.0001</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(1.03)</td>
</tr>
<tr>
<td>SOE_{jt}</td>
<td>0.00002</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>(2.90)</td>
<td>(4.09)</td>
</tr>
<tr>
<td>Firm size</td>
<td>-0.0003</td>
<td>-0.0008</td>
</tr>
<tr>
<td></td>
<td>(-9)</td>
<td>(-14)</td>
</tr>
<tr>
<td>Book-to-market ratio</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>(-0.25)</td>
<td>(-0.56)</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Sample size</td>
<td>1,018,628</td>
<td>1,003,518</td>
</tr>
<tr>
<td>R²</td>
<td>0.0005</td>
<td>0.0011</td>
</tr>
</tbody>
</table>

Note: For each coefficient, the upper row displays the estimated valued and the numbers shown in parantheses are the t-statistics. The critical values of t-statistics are 1.64, 1.96, and 2.58 for the 10%, 5%, and 1% significance levels, respectively.
Table 3. Calibrated values.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Households</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Subjective discount factor</td>
<td>0.995</td>
</tr>
<tr>
<td>η</td>
<td>Inverse Frisch elasticity of labor supply</td>
<td>2</td>
</tr>
<tr>
<td>Ψ</td>
<td>Weight of disutility of working</td>
<td>18</td>
</tr>
<tr>
<td>δ</td>
<td>Capital depreciation rate</td>
<td>0.035</td>
</tr>
<tr>
<td>Ω_k</td>
<td>Capital adjustment cost</td>
<td>1</td>
</tr>
<tr>
<td>B. Retailers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϵ</td>
<td>Elasticity of substitution between retail products</td>
<td>10</td>
</tr>
<tr>
<td>Ω_p</td>
<td>Price adjustment cost parameter</td>
<td>22</td>
</tr>
<tr>
<td>C. Firms and financial intermediaries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Steady state growth rate</td>
<td>1.0125</td>
</tr>
<tr>
<td>k</td>
<td>Shape parameter in Pareto distribution of idiosyncratic shocks</td>
<td>1.587</td>
</tr>
<tr>
<td>ω_m</td>
<td>Scale parameter in Pareto distribution of idiosyncratic shocks</td>
<td>0.37</td>
</tr>
<tr>
<td>A_s</td>
<td>SOE TFP scale (normalized)</td>
<td>1</td>
</tr>
<tr>
<td>A_p</td>
<td>POE TFP scale</td>
<td>1.42</td>
</tr>
<tr>
<td>α</td>
<td>Capital income share</td>
<td>0.5</td>
</tr>
<tr>
<td>θ</td>
<td>Share of household labor</td>
<td>0.94</td>
</tr>
<tr>
<td>ψ</td>
<td>Share parameter for SOE output in intermediate good</td>
<td>0.45</td>
</tr>
<tr>
<td>σ_m</td>
<td>Elasticity of substitution between SOE and POE products</td>
<td>3</td>
</tr>
<tr>
<td>m_s</td>
<td>SOE monitoring cost</td>
<td>0.15</td>
</tr>
<tr>
<td>m_p</td>
<td>POE monitoring cost</td>
<td>0.15</td>
</tr>
<tr>
<td>ξ_s</td>
<td>SOE manager’s survival rate</td>
<td>0.97</td>
</tr>
<tr>
<td>ξ_p</td>
<td>POE manager’s survival rate</td>
<td>0.69</td>
</tr>
<tr>
<td>D. Government policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π</td>
<td>Steady state inflation rate</td>
<td>1.005</td>
</tr>
<tr>
<td>τ</td>
<td>Required reserve ratio</td>
<td>0.15</td>
</tr>
<tr>
<td>ψ_{rp}</td>
<td>Taylor rule coefficient for inflation</td>
<td>1.5</td>
</tr>
<tr>
<td>ψ_{ry}</td>
<td>Taylor rule coefficient for output</td>
<td>0.2</td>
</tr>
<tr>
<td>σ</td>
<td>Share of government spending in GDP</td>
<td>0.14</td>
</tr>
<tr>
<td>l_s</td>
<td>Fraction of SOE debt guaranteed by the government</td>
<td>1</td>
</tr>
<tr>
<td>l_p</td>
<td>Fraction of SOE debt guaranteed by the government</td>
<td>0</td>
</tr>
<tr>
<td>E. Shock process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>Persistence of TFP shock</td>
<td>0.95</td>
</tr>
<tr>
<td>σ_a</td>
<td>Standard deviation of TFP shock</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Table 4. Volatilities and welfare under alternative policy rules: Aggregate TFP shock

<table>
<thead>
<tr>
<th>Variables</th>
<th>Benchmark</th>
<th>Optimal τ rule</th>
<th>Optimal R rule</th>
<th>Jointly optimal rule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Policy rule coefficients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\psi_{\tau p}$</td>
<td>1.50</td>
<td>1.50</td>
<td>7.42</td>
<td>5.18</td>
</tr>
<tr>
<td>$\psi_{\tau y}$</td>
<td>0.20</td>
<td>0.20</td>
<td>0.07</td>
<td>-0.12</td>
</tr>
<tr>
<td>$\psi_{r p}$</td>
<td>0.00</td>
<td>-13.14</td>
<td>0.00</td>
<td>11.67</td>
</tr>
<tr>
<td>$\psi_{r y}$</td>
<td>0.00</td>
<td>4.81</td>
<td>0.00</td>
<td>15.96</td>
</tr>
<tr>
<td>Volatility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>8.618%</td>
<td>8.155%</td>
<td>5.279%</td>
<td>4.952%</td>
</tr>
<tr>
<td>π</td>
<td>3.409%</td>
<td>3.231%</td>
<td>0.084%</td>
<td>0.136%</td>
</tr>
<tr>
<td>C</td>
<td>6.118%</td>
<td>5.950%</td>
<td>4.388%</td>
<td>4.306%</td>
</tr>
<tr>
<td>H</td>
<td>2.103%</td>
<td>1.835%</td>
<td>0.599%</td>
<td>0.416%</td>
</tr>
<tr>
<td>R</td>
<td>3.412%</td>
<td>3.236%</td>
<td>0.398%</td>
<td>0.349%</td>
</tr>
<tr>
<td>Y_s</td>
<td>9.091%</td>
<td>6.999%</td>
<td>5.362%</td>
<td>3.415%</td>
</tr>
<tr>
<td>Y_p</td>
<td>8.132%</td>
<td>8.455%</td>
<td>5.552%</td>
<td>5.982%</td>
</tr>
<tr>
<td>Welfare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welfare gains</td>
<td>—</td>
<td>0.2423%</td>
<td>1.1799%</td>
<td>1.1801%</td>
</tr>
</tbody>
</table>

Note: The welfare gain under each optimal policy rule is the consumption equivalent relative to the benchmark economy (see the text in Section VI.2 for details).
Table 5. Volatilities and welfare under alternative policy rules: SOE-specific TFP shock

<table>
<thead>
<tr>
<th>Variables</th>
<th>Benchmark</th>
<th>Optimal τ rule</th>
<th>Optimal R rule</th>
<th>Jointly optimal rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_{rp}</td>
<td>1.50</td>
<td>1.50</td>
<td>7.72</td>
<td>5.78</td>
</tr>
<tr>
<td>ψ_{ry}</td>
<td>0.20</td>
<td>0.20</td>
<td>0.32</td>
<td>-0.59</td>
</tr>
<tr>
<td>ψ_{rp}</td>
<td>0.00</td>
<td>-31.81</td>
<td>0.00</td>
<td>71.72</td>
</tr>
<tr>
<td>ψ_{ry}</td>
<td>0.00</td>
<td>-3.99</td>
<td>0.00</td>
<td>-52.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
</tr>
<tr>
<td>π</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>Y_s</td>
</tr>
<tr>
<td>Y_p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare gains</td>
</tr>
</tbody>
</table>

Note: The welfare gain under each optimal policy rule is the consumption equivalent relative to the benchmark economy (see the text in Section VI.2 for details).
Table 6. Volatilities and welfare under alternative policy rules: POE-specific TFP shock

<table>
<thead>
<tr>
<th>Variables</th>
<th>Benchmark</th>
<th>Optimal (\tau) rule</th>
<th>Optimal (R) rule</th>
<th>Jointly optimal rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi_{\tau p})</td>
<td>1.50</td>
<td>1.50</td>
<td>7.54</td>
<td>3.45</td>
</tr>
<tr>
<td>(\psi_{\tau y})</td>
<td>0.20</td>
<td>0.20</td>
<td>0.17</td>
<td>-0.12</td>
</tr>
<tr>
<td>(\psi_{rp})</td>
<td>0.00</td>
<td>-33.04</td>
<td>0.00</td>
<td>3.34</td>
</tr>
<tr>
<td>(\psi_{ry})</td>
<td>0.00</td>
<td>-2.68</td>
<td>0.00</td>
<td>22.86</td>
</tr>
</tbody>
</table>

Volatility

<table>
<thead>
<tr>
<th>(\text{Volatility})</th>
<th>(\text{GDP})</th>
<th>(\pi)</th>
<th>(C)</th>
<th>(H)</th>
<th>(R)</th>
<th>(Y_s)</th>
<th>(Y_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Volatility})</td>
<td>6.324%</td>
<td>2.503%</td>
<td>4.549%</td>
<td>1.445%</td>
<td>2.503%</td>
<td>4.116%</td>
<td>8.232%</td>
</tr>
<tr>
<td>(\text{GDP})</td>
<td>5.967%</td>
<td>2.365%</td>
<td>4.425%</td>
<td>1.241%</td>
<td>2.367%</td>
<td>3.380%</td>
<td>8.493%</td>
</tr>
<tr>
<td>(\pi)</td>
<td>3.902%</td>
<td>0.111%</td>
<td>3.323%</td>
<td>0.377%</td>
<td>0.285%</td>
<td>2.774%</td>
<td>6.575%</td>
</tr>
<tr>
<td>(C)</td>
<td>3.518%</td>
<td>0.162%</td>
<td>3.220%</td>
<td>0.261%</td>
<td>0.235%</td>
<td>4.100%</td>
<td>6.987%</td>
</tr>
<tr>
<td>(H)</td>
<td>0.6084%</td>
<td>0.6099%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Welfare

| \(\text{Welfare gains}\) | — | 0.1363% | 0.6084% | 0.6099% |

Note: The welfare gain under each optimal policy rule is the consumption equivalent relative to the benchmark economy (see the text in Section VI.2 for details).
Figures 1. China’s required reserve ratio (daily frequencies).
Figure 2. Impulse responses to a shock to the required reserve ratio estimated from the BVAR model.
Figure 3. Steady-state implications of the required reserve ratio (τ) for macroeconomic variables and welfare. Welfare gains are measured as consumption equivalent relative to the steady state in the benchmark model with $\tau = 0.15$. The optimal required reserve ratio in the steady state is 0.34.
Figure 4. Impulse responses of aggregate variables to a positive TFP shock under alternative policy rules. Benchmark rule: black solid lines; optimal interest rate rule: blue dashed lines; optimal reserve requirement rule: red dashed lines; jointly optimal rule: magenta dashed-dotted lines. The vertical-axis unit of the required reserve ratio is the percentage-point deviations from the steady state level. The vertical-axis units for all other variables are percent deviations from the steady state levels. The variables displayed include real GDP (GDP_t), inflation (π_t), the nominal deposit rate (R_t), and the required reserve ratio (τ_t).
Figure 5. Impulse responses of sector-specific variables to a positive TFP shock under alternative policy rules. Benchmark rule: black solid lines; optimal interest rate rule: blue dashed lines; optimal reserve requirement rule: red dashed lines; jointly optimal rule: magenta dashed-dotted lines. The vertical-axis units are percent deviations from the steady state levels. The variables displayed include SOE output (Y_{st}), POE output (Y_{pt}), SOE leverage ratio (B_{st}/N_{st}), POE leverage ratio (B_{pt}/N_{pt}), SOE bankruptcy ratio ($F(\omega_{st})$), POE bankruptcy ratio ($F(\omega_{pt})$), SOE credit spread (Z_{st}/R_{t}), and POE credit spread (Z_{pt}/R_{t}).
Figure 6. Impulse responses of aggregate variables to a positive SOE TFP shock under alternative policy rules. See the caption under Figure 4 for details.
Figure 7. Impulse responses of aggregate variables to a positive POE TFP shock under alternative policy rules. See the caption under Figure 4 for details.