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Abstract 

 

Using unique individual-level panel data, we investigate whether preventive care 

triggered by health checkups is worth the cost. We exploit the fact that the health of 

individuals just below and above a clinical threshold is similar, whereas treatments differ 

according to the checkup signals they receive. We find that people respond to health 

signals by increasing medical care utilization. However, we find no evidence that 

additional care is cost effective; neither physical measures nor predicted risks of diabetes 

complications improve in the 3-5 years after the index checkup. For efficient use of 

medical resources, careful examination of cost effectiveness is essential. 
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1. Introduction 

Prevention of chronic disease has become a key health policy initiative in 

recent years. For example, the World Health Organization (WHO) provides a 

road map and menu of policy options that aim to reduce premature deaths 

due to chronic non-communicable diseases such as cardiovascular disease, 

cancer, and diabetes (WHO 2013). An important part of prevention is 

monitoring an individual’s health condition and intervening early enough to 

make a difference in the course of a disease. Traditional approaches include 

routine health checkups, cancer screening, and disease management 

programs. More recently, wearable and portable devices are gaining 

popularity, allowing people to monitor their own health in real time. 

Advocates suggest that such real-time health signals will lead to appropriate 

preventive care and improve health outcomes at a lower cost compared to 

conventional approaches, although others are skeptical.1  

While the importance of prevention is hard to deny, not all preventive 

services are cost-effective, so that attention should be given to assessing 

whether preventive care along different margins is worth its cost.2 The aim 

of this paper is to investigate this issue in the context of mandatory health 

checkups in Japan, focusing on risk for diabetes mellitus (DM). We first look 

at whether health signals about risk of developing DM embodied in health 

checkup reports affect individuals’ medical care utilization, health behaviors, 

and health outcomes. We then examine whether the additional care triggered 

by a health signal is worth the cost, by comparing the additional medical 

spending to the value of any resulting improvement in health outcomes. 

To identify the cost effectiveness or net value of preventive care, we apply 

a regression discontinuity (RD) design. We exploit the fact that individuals 

with health checkup results just below and above a threshold, e.g., a given 

level of fasting blood sugar (FBS), are similar in their underlying health 

status.3 However, people with measured values just above the threshold may 

                                                 
1 See for example discussion in Patel, Asch, and Volpp (2015). 
2 Cohen, Neumann and Weinstein (2008) conducted a systematic review of 599 peer-

reviewed articles, 279 of preventive services, and found that while some preventive 

measures are cost-saving, most reviewed in the literature are not, and many have 

unfavorable cost-effectiveness ratios. 
3 For the closely related condition of hypertension, a review of the 2017 US clinical 

guidelines states “the exact cut points for each of these classifications are somewhat 

arbitrary…[with] strong epidemiologic evidence to support a generally linear association…” 

(Greenland and Peterson 2017).  
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receive more preventive care – such as further diagnostic tests and diabetes-

related physician visits – compared to those with values just below the 

threshold. This additional care may lead to better health outcomes for the 

individuals just above the threshold, compared to those just below the 

threshold. By comparing the cost of care and health outcomes of these people, 

we can assess the cost effectiveness of providing preventive care around the 

threshold. Our approach builds on the pioneering work of Almond et al. (2010), 

who used the “very low birth weight” threshold for newborns to estimate the 

marginal returns to medical care for at-risk newborns.4 

Using Japanese data provides several key advantages. First, we can 

construct unique individual-level panel data, which consist of medical claims, 

health survey information, and health checkup measurements. These data 

can be linked by a patient ID. This rich longitudinal data set allows us to 

examine how health signals embodied in a checkup affect the individual’s 

medical care utilization and health outcomes after the checkup. Second, an 

annual health checkup is mandatory in Japan and more than 95% of 

employees in large corporations, such as those in our sample, receive a 

checkup.5 Typically, in other settings health-conscious people are more likely 

to obtain signals about their health by participating in health checkups or 

using wearable devices, and this sample selection is likely to bias estimation 

results. The mandatory health checkups in Japan alleviate this concern. 

Third, we have outcome variables suitable for examining the health and 

survival impacts of prevention. We apply a Japan-specific risk prediction 

model, the JJ risk engine (Tanaka et al. 2013), to our data to predict the 5-

year risk of mortality and significant DM complications for each individual. 

These measures allow us to study whether additional preventive care 

promotes health as measured by risk of salient medium- and longer-run 

health outcomes—such as stroke, heart disease, or death—that are a non-

linear function of multiple risk factors and age. Moreover, by assuming a 

value of statistical life year, we can quantify the monetary value of any 

                                                 
4 Other studies in the US, China and Korea have also used regression discontinuity to 

study response to health signals (Zhao et al. 2013, Kim et al. 2017, Oster 2017), without 

assessing the net value of any additional medical care triggered by the health signals. We 

discuss these studies and other related literature in section 2.1. 
5 Source: Special Survey on Industrial Safety and Health (MHLW 2012). As we note later, 

our data come from large corporate health insurers. According to the Industrial Safety and 

Health Act, any employer that fails to comply with the mandate will face a fine of up to 500 

thousand JPY (approximately US$5,000). 
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improvement in health and survival. This is an advantage compared to only 

examining intermediate health measures such as FBS, glycated hemoglobin 

(HbA1c), or body mass index (BMI) that are more easily available but are also 

more difficult to interpret in isolation (Lipska and Krumholz 2017). 

DM is an important case to study because it is a costly and incurable 

chronic disease of growing incidence and prevalence, and accordingly one of 

the primary targets for prevention (WHO 2013). DM is often called a “silent 

killer”: individuals at first are asymptomatic and often not aware of the 

condition, but in the long-run suffer from various serious complications, 

including problems of the eye, heart, kidney, nerves, and feet, and greater risk 

of premature mortality. Recent research underscores the economic and 

human cost of DM: in 2014, approximately 422 million adults have diabetes 

worldwide, incurring costs estimated to total $825 billion per year (NCD-RisC 

2016). DM is also a major health problem in Japan. It constituted the third 

largest disease category in 2014, with a national prevalence rate of 7.7% that 

is increasing as the population ages, and more than 28% of Japan’s adult 

population may have pre-diabetes or DM. 6  Japan’s total healthcare 

expenditure on its 7.2 million people with confirmed diabetes aged 20-79 was 

the fifth highest in the world in 2017 (International Diabetes Federation 

2017). DM can generally be prevented by early intervention to reduce lifestyle 

risk factors (such as smoking, unhealthy diet, sedentary lifestyle, and obesity). 

DM and pre-diabetes can be detected by elevated blood sugar levels (i.e., as 

measured by FBS), a diagnostic test commonly included in regular health 

checkups. Indeed, in Japan, policymakers consider this so important that in 

1972 they mandated that all employees receive annual screening for elevated 

blood sugar, as we describe below. 

We have three main findings. First, at a relatively low diagnosis 

threshold (i.e., FBS=110 mg/dl) that corresponds to “borderline type” DM in 

Japan (also called “pre-diabetes”), we find strong evidence that surpassing 

the threshold significantly increases medical care utilization as measured by 

DM-related physician visits and DM-related outpatient expenditures, 

                                                 
6 National Health and Nutrition Examination Survey (MHLW 2015) 

http://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h27-houkoku.pdf (P.165). According to 

biomarker results from the 2016 National Health and Nutrition Survey, over 10 million 

adults are strongly suspected of having diabetes, and an additional 10 million individuals 

are above the threshold for “pre-diabetes”(see report at http://www.mhlw.go.jp/file/04-

Houdouhappyou-10904750-Kenkoukyoku-Gantaisakukenkouzoushinka/kekkagaiyou_7.pdf 

( P.8)). 
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including on medications. This finding indicates that people do respond to 

health signals by undertaking follow-up visits with physicians, and thus 

health signals can potentially promote preventive care.  

Second, despite the significant increase in medical care utilization at the 

“borderline” threshold, we find no evidence that the additional care improves 

health outcomes. This is true both for intermediate health measures (such as 

FBS, BMI, and blood pressure) and for predicted risks of mortality and 

serious complications using the JJ Risk Engine. We further confirm these 

results by estimating a “fuzzy” version of the RD model that examines the 

causal effects of medical care utilization on health outcomes, recognizing that 

not everyone who passes the threshold may receive the signal. Thus, we 

conclude that there is no evidence that DM-related preventive medical care 

is cost effective (or even effective) around this threshold. The results hold both 

in the short-run (one year after a checkup) as well as in the medium- to longer-

run (three to five years after a checkup). These results suggest that either the 

threshold or the way results are reported to patients may need to be 

reexamined from the perspective of cost-effectiveness.  

Third, at a higher diagnostic threshold (i.e., FBS=126 mg/dl) above which 

the person is classified as a “diabetic type,” there is only weak evidence that 

crossing the threshold increases medical care utilization and improves some 

health behaviors and health outcomes, and these results are far from robust 

across measures and specifications. Because we do not observe a clear 

increase in medical care utilization at this threshold, we are unable to assess 

the cost-effectiveness of preventive care at the “diabetic type” threshold.  

The result that a signal of higher risk has weaker effects on medical care 

utilization is counter intuitive. Inspections of actual checkup reports revealed, 

however, that employers rarely flag this threshold in their health reports, and 

thus most individuals do not receive a health signal when crossing that 

threshold. Since almost all employers focus on the lower threshold to signal a 

warning of pre-diabetes, and neglect the threshold signifying the higher risk 

category of diabetes, we interpret our empirical results as suggesting that 

policymakers should re-consider the importance of sending a separate signal 

at each threshold when multiple diagnosis thresholds are of independent 

clinical significance. Furthermore, there might be an opportunity to 

significantly enhance the health benefits of Japan’s investment in mandatory 

checkups if insights from behavioral science were used to enhance the clarity 
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and salience of check-up results, and/or follow-up monitoring was provided 

for those at the highest predicted risk.  

The remainder of the paper is organized as follows. In Section 2, we 

briefly discuss related literature and the institutional context of our study 

(e.g. mandatory health checkups in Japan and the key threshold values for 

DM diagnosis). Section 3 introduces our empirical model and Section 4 

describes our data. In Sections 5 and 6, we report our graphical and 

econometric results and additional analyses, including the long-run effects of 

preventive care and various robustness checks. Section 7 discusses how these 

results compare to those of related studies and Section 8 concludes our paper, 

pointing out the general applicability of our approach to measuring cost-

effectiveness of care around clinical thresholds. 

 

2. Background 

2.1. Related literature  

Assessing the cost-effectiveness of health interventions has a venerable, if 

challenging, history (Garber 2000). Randomized controlled trials (RCTs) are 

the recognized gold standard for evidence, and organizations devoted to 

assessing cost-effectiveness of preventive care, such as the US Preventive 

Services Task Force, summarize evidence primarily from such trials. However, 

RCTs are not always possible and their results may have limited external 

validity. Economists have employed multiple techniques to assess cost-

effectiveness outside the context of a RCT, including exploiting natural 

experiments (e.g. Finkelstein et al. 2012) and instrumental variables.7  A 

notable pioneer in using clinical thresholds to further this line of research is 

Almond et al. (2010), estimating marginal returns to medical care for at-risk 

newborns. Focusing on the “very low birth weight” threshold for newborns, 

Almond et al. (2010) find that those whose birth weights are just below the 

threshold receive more medical care and experience lower one-year mortality 

rates, compared to newborns with birth weight just above the threshold. 

                                                 
7 See Doyle, Graves, and Gruber (2015) for an interesting recent example using random 

ambulance assignment, and Cawley (2015) for an excellent review highlighting common 

and creative instruments such as relative distance to a medical care provider offering the 

treatment, the provider’s historic tendency to administer the treatment, day of week of 

admission, or randomization of treatment for reasons other than research. Soumerai and 

Koppel (2016) provide a cautionary view. 
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These discontinuities allow them to conclude that medical care for at-risk 

newborns is cost effective around the threshold.  

While inpatient mortality is a salient outcome for at-risk newborns, it is 

not a feasible metric for cost-effectiveness of many other health interventions 

such as routine outpatient care, including preventive care and management 

of patients with chronic diseases. The difficulty of obtaining an appropriate 

measure of health outcome is a major obstacle in calculating cost effectiveness. 

We circumvent this problem by calculating predicted risks of mortality and 

significant DM complications, using the JJ Risk Engine.  

 Our study is also closely related to Zhao, Konishi and Glewwe (2013), 

Oster (2017), and Kim, Lee and Lim (2017). Using data from the China Health 

and Nutrition Survey (CHNS), Zhao, Konishi and Glewwe (2013) apply 

regression discontinuity analyses to estimate the causal effect of diagnosis 

with hypertension (in the 3-4 years since the previous wave of CHNS) on food 

consumption and use of anti-hypertensives. They find a significant increased 

use of anti-hypertensives, as well as reduced fat intake, particularly among 

the higher-income individuals told they had high blood pressure. Their 

results are indicative that health signals from check-ups can lead to 

behavioral change and preventive care, at least along some margins for some 

specific population groups.  

Evidence in higher-income contexts has generally been less encouraging 

about modifying long-term behavior with individual health signals. For 

example, studying consumers in the US, Oster (2017) finds that households 

with a newly diagnosed diabetic – inferred from household scanner data 

recording purchase of blood sugar testing strips –  exhibit little change in 

their food consumption behavior over the following months. She suggests that 

relatively modest “sin taxes” (e.g. on sugary sodas) or subsidies of healthy 

fruits and vegetables might ultimately be more effective than individual 

health signals.  

In a recent working paper, Kim, Lee and Lim (2017) study the impact of 

screening for diabetes, obesity, and hyperlipidemia under the National 

Health Screening Program in Korea. Although closely related, our study 

differs from theirs in three important ways. First, we study whether 

preventive care is cost effective by taking into account the increase in 

medical expenditures triggered by health checkups, whereas the focus of 

Kim, Lee and Lim (2017) are the effects of health signals on health 
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behaviors and health outcomes. Second, for the effects on health outcomes, 

we study not only intermediate physical measures (such as FBS and BMI) 

but also predicted risks of mortality or serious DM complications by 

utilizing risk prediction models. Studying the latter is important because it 

provides more direct evidence on whether health signals promote better 

health outcomes in the long run, taking into account the interaction of 

multiple risk factors. Third, our data are based on mandatory checkups in 

Japan, whereas participation in health screening is voluntary in Korea. 

Only around 66% of Koreans choose to participate in screening, and this 

self-selection into screening may bias estimation results. We discuss the 

differences between their results and ours in the final section.8 

 

2.2. Mandatory health checkups in Japan 

Japan’s universal health coverage system includes insurance programs 

managed by employers for their employees, as well as insurance programs 

managed by municipalities. Although the benefit package and payment 

systems are uniform nationally, the requirements for annual health check-

ups differ between the employed and unemployed. Since our data comes from 

insurance plans managed by corporations, the insurer in this case is the 

employer. 

The most reliably enforced mandatory health check-ups are for 

employees aged 40-74 working in large firms, such as the insured individuals 

in our dataset. Under the Industrial Safety and Health Act of 1972, employers 

must provide, at the firm’s expense, annual health check-ups to their 

employees, with oversight by the Labor Standards Inspection Office and 

penalties of up to 500,000 JPY (approximately US$5,000) for noncompliance. 

The employees are also mandated to have these employer-provided check-ups 

annually, although the individual-level requirement does not have associated 

legal penalties, just the possibility of employers taking disciplinary actions 

against those who do not comply. As noted above, more than 95% of employees 

in large corporations do comply and receive annual checkups.9 

                                                 
8 In related work, Kim et al. (2015) find that Korea’s national cancer screening program 

modestly decreased relative inequalities in cancer screening while increasing overall 

uptake of such screening. 

9 For the non-employed aged 40-74, insurers (usually municipalities) provide the annual 

health check-up, but there are no penalties for insurers if their insureds do not comply, and 
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These mandatory checkups must include a series of items, including 

measurement of height, weight, liver function, blood lipids, blood pressure, 

and blood sugar. Individuals receive a report of these measurements within 

one or two months after a checkup. Figure 1 shows an example of such a 

report. If any measured value exceeds a clinical threshold, the report typically 

gives a warning (such as “H” for high) for the item and recommends a visit to 

a physician for further consultation. Although conducting a health checkup 

with specific required screening items is mandatory, the government does not 

specify threshold values for each physical measure; employers and insurers 

that conduct the checkups determine their own thresholds, presumably with 

reference to the clinical guidelines. Moreover, after receiving a health 

warning, such as “H”, whether to visit a physician or not is up to the 

individual. The person has no obligation to follow up with a medical provider, 

and neither employers nor other insurers are obligated to monitor or enforce 

such a follow-up visit.  

If a person makes a physician visit after a checkup, fees for the visit are 

covered by health insurance, and we observe all the treatments provided in 

our claims data. A physician has to record the name of the health condition 

for which the visit is made, and this information in the claims data allows us 

to identify DM-related physician visits. When the physician is not yet 

definitive about the diagnosis, the physician puts a “suspicion” flag on the 

diagnosis, which we also observe in our data. Because many physician visits 

triggered by health checkups may not have a confirmed diagnosis at the time 

of the initial physician visit, we include DM visits with or without a “suspicion” 

flag in our empirical analysis.  

                                                 

the compliance rate has been low. In April 2017 the Japanese Ministry of Health, Labor 

and Welfare proposed a plan to introduce financial incentives to increase the annual health 

check-up adherence rate among non-employed adult Japanese. See discussion in Council on 

Economic and Fiscal Policy, “Governance reform of Prevention, Health, Medical care and 

Long-term Care” on April 12th 2017 (in Japanese), available at 

http://www5.cao.go.jp/keizai-shimon/kaigi/minutes/2017/0412/shiryo_04.pdf, and  

“Summary of health checkup in Japan” on February 2015 (in Japanese), available at 

http://www.mhlw.go.jp/file/05-Shingikai-10601000-Daijinkanboukouseikagakuka- 

Kouseikagakuka/0000104589.pdf; and the Ministry of Health, Labour and Welfare (MHLW) 

documents in the references. 

http://www5.cao.go.jp/keizai-shimon/kaigi/minutes/2017/0412/shiryo_04.pdf
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2.3. Detection and management of DM and pre-diabetes  

FBS, or the detection of elevated sugar levels in the blood after an overnight 

fast, has long been considered the “gold standard” for the diagnosis of diabetes, 

although the cost-effectiveness of general population screening depends on 

prevalence and other factors (Hoerger et al. 2004, 2007; Gillies et al. 2008, 

Sacks 2011). There are two FBS thresholds that could trigger preventive care 

for DM. 10  The Japan Diabetes Society (JDS), which issues treatment 

guidelines for DM, specifies that an individual with FBS greater than or equal 

to 126 mg/dl is considered a “diabetic type,” while an individual with FBS 

greater than or equal to 110 mg/dl but below 126 mg/dl is regarded as 

“borderline type.” 11 Individuals classified as “borderline type” have a higher 

rate of developing DM and are sometimes called “pre-diabetic” (Seino et al. 

2010). A FBS value below 110 mg/dl is “normal type.”12 These JDS-specified 

FBS threshold values for DM diagnosis and elevated risk of DM have 

remained unchanged since before our study period. 

Common and simple medical interventions are known to be effective at 

improving the health measures that we study. Aggressive treatment of 

hypertension and hypercholesterolemia is recommended for adults with 

diabetes to prevent cardiovascular complications and other severe sequelae. 

The standard recommended treatment is a combination of these medications 

with health behavior improvement such as appropriate physical activity, 

healthy eating, and quitting smoking. 13  Studies have shown that this 

multifactorial approach to treatment of diabetes can reduce the risk of 

diabetes complications (UK Prospective Diabetes Study Group 1998, Miller 

                                                 
10 Although DM can also be diagnosed by examining blood sugar two hours after ingesting 

75 grams of glucose, such measures are rarely available in regular checkups and thus we do 

not consider them in this study. 
11 We note that the borderline or pre-diabetes threshold is set at FBS=100 mg/dl in the 

United States and other countries. 
12 Starting in April 2013, JDS defines FBS values greater than or equal to 100 and less 

than 110 as “high normal.” An alternative, newer measure used for DM diagnosis is HbA1c, 

which JDC adopted in July 2010. HbA1c greater than or equal to 6.5% signifies that an 

individual is “diabetic type.” In this paper, we focus on FBS but also look at HbA1c as an 

intermediate health outcome, as is common in clinical practice; we express HbA1c values 

based on the National Glycohemoglobin Standardization Program (NGSP) values. 
13http://www.mayoclinic.org/diseases-conditions/prediabetes/diagnosis-

treatment/treatment/txc-20270050 
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and Dunstan 2004), although low adherence to treatment presents a 

significant barrier to its effectiveness (Vermeire et al. 2005).14  

As noted, FBS between 110 and 125 mg/dL is considered pre-diabetes, or 

“borderline type” in Japan. Recommendations to prevent pre-diabetes from 

progressing to diabetes include healthy lifestyle choices—healthy eating, 

physical activity, weight loss, and smoking cessation—and on occasion, 

medications such as metformin. Evidence suggests that metformin and 

lifestyle interventions can delay the onset of type 2 diabetes by 3 and 11 years, 

and reduce the incidence of diabetes by 8% and 20%, respectively (Herman et 

al 2005).  

 

2.4. Health signals from mandatory check-ups in Japan: Empirical 

distribution of thresholds used in checkup reports 

As discussed in the previous section, there are two FBS thresholds (i.e., 

FBS=110, 126) that are most relevant for detecting pre-diabetes and 

diagnosing DM. However, employers do not have to adopt these values, 

because they are not legally bound to any specific signal to employees and can 

determine their own thresholds for reporting results of health checkups. 

Unfortunately, our data does not have information on the clinical threshold(s) 

that each employer adopts. As an alternative, we searched online to 

investigate what thresholds are typically used in actual checkup reports. We 

found posted on websites more than 50 checkup reports that contain FBS 

and/or HbA1c thresholds. One of our first main findings is that in all reports, 

only one threshold (or standard range) is specified for each physical exam 

measure. That is, no report defines two thresholds for one measure, such as 

both FBS=110 mg/dl and FBS=126 mg/dl.  

Figure 2 shows the “empirical” distribution of the thresholds obtained 

from our web search. It shows that for FBS, clinical thresholds at 110 mg/dl 

and 100 mg/dl are both common. FBS=110 mg/dl corresponds to “borderline 

type,” as we discussed in Section 2.2. FBS=100 mg/dl is not a threshold for 

DM diagnosis, but corresponds to the threshold for metabolic syndrome 

screening. Understanding the effects of metabolic syndrome screening is also 

important, but it deserves a thorough investigation beyond the scope of this 

                                                 
14 For example, a US study found that in 2009 only about 23% of adults over 40 with DM 

received all 4 recommended interventions (≥2 HbA1c tests, foot examination, dilated eye 

examination, and flu shot; Benjamin et al. 2017, p.e301). 
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paper. Thus, we do not study the FBS=100 mg/dl threshold in this paper. 

FBS=126 mg/dl is the threshold that corresponds to “diabetic type.” However, 

as Figure 2 shows, few checkup reports adopt this threshold. Thus, it appears 

that in Japan, individuals are not receiving independent signals from their 

required check-ups about both pre-diabetes and diagnosable diabetes FBS 

values. Accordingly, we anticipate there may be little response at the 

FBS=126 mg/dl threshold, despite its clinical importance for detecting 

diabetes.15 

We emphasize that we report the “empirical distribution” only for the 

purpose of interpreting empirical results. Neither do we use any number from 

the distribution to adjust our estimates, nor do we assume that the above 

distribution holds for the sample that we examine in this paper.  

 

3. Empirical Model 

3.1. Effects of Health Signals on Utilization, Health Behavior, and Health 

Outcomes 

In this section, we examine whether health signals affect (i) medical care 

utilization, (ii) health behavior, and (iii) health outcomes, using an RD design. 

The primary purpose of the analysis is to document whether these outcomes 

indeed discretely change at the threshold. We postpone to Section 3.3 the 

discussion of the causal effect of preventive care on health outcomes.  

In our analysis, we exploit the fact that health checkup thresholds (such 

as FBS=110 mg/dl and 126mg/dl) are arbitrarily determined and individuals 

with values just below and above a threshold are similar in their health status. 

                                                 

15 In contrast to the FBS values, many more thresholds are used for HbA1c and, more 

importantly, these values are in close proximity. This makes it difficult to implement an RD 

approach because there is not a large enough “window” to identify the impact of each 

threshold. For example, to empirically examine a discontinuity at HbA1c=6.3% that is part 

of the “standard range,” we need a large number of observations just below and above the 

threshold. However, because many employers also use the HbA1c=6.0% threshold, only 

three data points, i.e., HbA1=6.0, 6.1, and 6.2, can be used to represent the data just below 

the 6.3% threshold. For these reasons, we use FBS values for our RD analyses in this 

paper.  
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However, only those whose values cross the threshold will receive a health 

signal, and this discontinuity identifies the effect of health signals on the 

three outcomes mentioned above.  

The RD approach addresses the potential endogeneity between health 

signals and the outcomes of our interest. For example, if one simply regresses 

the amount of medical utilization on checkup values, the effect of the checkup 

value is likely to be biased because omitted variables, such as the person’s 

unobserved health status, may be correlated with the checkup value. The RD 

approach addresses endogeneity because we compare individuals who are 

similar in all ways except that their checkup values are just above and below 

an arbitrary threshold. 

One common concern when using an RD approach is manipulation of 

the running variable. In our case, blood sugar levels (our running variable) 

vary over time and it is difficult for individuals to precisely control those 

levels. Moreover, physicians and checkup takers do not know blood sugar 

levels on site and thus it is unlikely that they manipulate the measures in a 

precise manner. Also, we focus on non-DM patients who were not diagnosed 

as DM in our analysis; these people are typically neither aware of their blood 

sugar levels nor have any incentive to manipulate them. Nonetheless, we 

formally address this concern in Section 4 by performing “manipulation 

checks” as suggested by McCrary (2008). 

In the case of the FBS=110 mg/dl threshold, we estimate the following 

local polynomial regression using a rectangular kernel:   

𝑌𝑖𝑡+1 = 𝛼0 + 𝛼1𝐹𝐵𝑆110𝑖𝑡 + 𝑓(𝐹𝐵𝑆𝑖𝑡 − 110) + 𝛼2𝑍𝑖𝑡 + 𝐴𝑡 + 𝜇𝑖𝑡 ,   (1) 

where 𝑌𝑖𝑡+1 represents one of three types of variables, i.e., (i) medical care 

utilization, (ii) health behavior, and (iii) health outcome, for person i in year 

t+1. We discuss each dependent variable in detail in the following section.  

𝐹𝐵𝑆110𝑖𝑡 is a dummy variable that equals one if person i’s FBS in year t 

is greater than or equal to 110 mg/dl, and zero otherwise. We define another 

threshold value, 𝐹𝐵𝑆126𝑖𝑡, in the same way. 𝑓(𝐹𝐵𝑆𝑖𝑡 − 110) is a function that 

controls for the FBS level in year t. We experiment with linear, quadratic, and 

cubic polynomials with respect to (𝐹𝐵𝑆𝑖𝑡 − 110) , allowing their effects to 

differ before and after the threshold. 𝑍𝑖𝑡  is a vector of covariates that 

accounts for person i’s demographics, including age, age squared, and gender. 
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𝐴𝑡are year fixed effects. We estimate the model with and without 𝑍𝑖𝑡 and 𝐴𝑡. 

Qualitative results change little with or without covariates, as we report later. 

αs are parameters to be estimated. 𝜇𝑖𝑡 is the error term which we allow to be 

correlated over time.16 

FBS values are available only in integer values. Because there is no clear 

way to determine the optimal bandwidth in the case of discrete running 

variable, we check the robustness of the results by experimenting with 

different bandwidths between 3 mg/dl and 10 mg/dl. The maximum width is 

10 mg/dl in our case because there is another cutoff value of FBS=100mg/dl 

for “metabolic syndrome screening,” as we discussed in Section 2.3. 

 

3.2. Dependent variables 

Medical Care Utilization. We use the following four variables to 

represent medical care utilization: i) Any DM visit: a dummy variable that 

equals one if person i makes at least one DM-related visit within a year after 

a checkup in year t and zero otherwise. In Japan, physicians must list all 

diseases of the patient (including suspected ones) and we observe them in our 

data. We determine that the visit is DM-related if DM is included as one of 

the diseases; ii) Number of DM visits: the total number of DM-related visits 

for person i within a year after a checkup in year t; and iii) OGTT 

examination: a dummy variable that equals one if person i takes an additional 

test to diagnose DM, called an oral glucose tolerance test (OGTT), within a 

year after a checkup in year t; iv) DM-related outpatient medical spending: 

medical spending on outpatient care (including spending on DM medications) 

for person i within a year after a checkup in year t. We construct these 

variables by aggregating 12 months of claims data after a checkup. Appendix 

I defines all the variables used in this study. 

Health Behavior. For health behavior, we create dummy variables for (i) 

walk or exercise regularly, (ii) smoke, (iii) drink every day, and (iv) eat after 

dinner, and use them as the dependent variables. These variables are taken 

from health surveys conducted at the time of the health checkups.  

                                                 
16 We cluster standard errors by person because we sometimes observe the same 

individual in multiple years. Following the suggestion of Kolesar and Rothe (2017), we 

do NOT cluster standard errors by the running variable because doing so substantially 

reduces standard errors especially when the number of discrete supports or the 

bandwidth is small. 
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Health Outcomes. We use two types of health outcomes as our dependent 

variable. The first captures physical health measures, including blood sugar 

level (FBS and HbA1c), BMI, and systolic blood pressure (SBP). These 

physical measures are taken from the annual checkup in year t+1. Although 

these measures are objective and relatively easily measured, these metrics 

alone cannot tell us whether preventive care significantly reduces the health 

risks of DM, since they interact in non-linear ways with each other and the 

patient’s age when determining individual-specific health outcomes such as 

risks of stroke, heart attack, and mortality. Therefore, we apply a Japan-

specific risk prediction model, the JJ Risk Engine (Tanaka et al. 2013) to 

predict medium- and longer-term health outcomes. We use risk factors in year 

t+1 to calculate the individual’s predicted risk of mortality and significant DM 

complications in the following five years, including (i) risk of having a stroke, 

(ii) risk of developing coronary heart disease (CHD), and (iii) risk of non-

cardiovascular (CV) mortality. 17  The JJ Risk Engine uses patient 

demographics (e.g. gender and age), physical measures (e.g., BMI, HbA1c, 

blood pressure, cholesterol level), and health behavior (e.g., exercise and 

smoking) as inputs for calculating risks.18  Appendix II describes how we 

implemented the JJ Risk Engine using our data.  

The predicted risks of real clinical endpoints arise from a multistate 

model that follows the Markov renewal process applied to Japanese patient 

data from two clinical trials (Tanaka et al. 2013). The JJ risk scores would 

not be expected to be different if none of the input factors changed, but the 

predicted risks from more than one risk factor changing are not simple linear 

functions of the individual factors, and interact with the patient’s age.  

It should be noted that the JJ Risk Engine is designed to predict risks for 

individuals with diagnosed DM without complications, not for predicting 

risks for individuals without DM. Most individuals in our sample are pre-DM 

patients whose risk factors fall outside the range used to construct the 

                                                 
17 We do not estimate risk of overt nephropathy or progression of retinopathy, because our 

sample includes patients not diagnosed with diabetes and therefore the default (diabetic) 

values from the risk engine are not appropriate for determining their 5-year risks of these 

complications. Moreover, estimating the cost-effectiveness of reduction in these risks 

involves population-specific measures of quality of life at different gradations of morbidity 

and is thus less straightforward and generalizable than estimating the value of change in 

risk of death, or the avoided treatment spending from any reduction in risk of a stroke. 
18 We are extremely grateful for Shiro Tanaka and co-authors for providing the computer 

code for this project. 
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prediction model. While the engine allows us to calculate the risks even for 

pre-DM patients, we should be careful about interpreting the results because 

predicted risks of mortality and significant complications for pre-DM patients 

are based on extrapolation. For this reason, we checked the robustness of our 

results using a risk prediction model for cardiovascular outcomes of 

individuals without diagnosed diabetes (developed by the WHO and 

International Society of Hypertension). The results do not change with this 

alternative risk measure. 

 

3.3. Cost Effectiveness of Preventive Medical care  

The main objective of this paper is to quantify the cost effectiveness of 

preventive medical care triggered by health signals, by looking at the causal 

effects of medical care utilization on health outcomes. 19  To do so, we 

implement a “fuzzy” version of RD, where we use the status of surpassing a 

diagnosis threshold (such as FBS=110 mg/dl) as an instrumental variable for 

medical care utilization. A “fuzzy” RD is appropriate because not everyone 

who passes the threshold may receive the signal. People with measured 

values just above a threshold may receive more preventive care than those 

with values just below the threshold, and we quantify cost effectiveness by 

comparing the marginal costs of medical care with the value of any better 

health outcomes resulting from the additional medical care.  

Specifically, in the case of the FBS=110 mg/dl threshold, we estimate the 

following fuzzy RD model, using local-polynomial regressions with a 

rectangular kernel. The first stage regression is as follows:  

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖𝑡 = 𝛼0 + 𝛼1𝐹𝐵𝑆110𝑖𝑡 + 𝑓(𝐹𝐵𝑆𝑖𝑡 − 110) + 𝛼2𝑍𝑖𝑡 + 𝐴𝑡 + 𝜇𝑖𝑡 ,   (2) 

where 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖𝑡 is the amount of medical care utilization of person i in 

year t. We use “Number of DM visits” and “DM-related outpatient medical 

spending” (including all DM-related outpatient care and medications) for 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖𝑡, both of which are assumed to be sufficient statistics for DM-

related medical utilization. The remaining variables are the same as in 

Equation (1).  

                                                 
19 Please note that in Section 3.1, we quantified the overall effect of surpassing a threshold 

on health outcomes regardless of the channel, i.e., whether signals affect health behaviors 

or medical care. This section focuses on the effect of medical care on health outcomes.  



pg. 17 

 

The second stage regression is given by the following: 

𝑦𝑖𝑡+1 = 𝛽0 + 𝛽1𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖𝑡 + 𝑓(𝐹𝐵𝑆𝑖𝑡 − 110) + 𝛽2𝑍𝑖𝑡 + 𝐴𝑡 + 𝜖𝑖𝑡 , (3) 

where 𝑦𝑖𝑡+1 captures a health outcome of person i in year t+1. We use both 

physical health measures and predicted risks of DM complications, as 

discussed in the previous section. The remaining variables are the same as in 

Equation (1). 𝛽𝑠 are parameters to be estimated. 𝛽1 is the RD coefficient, 

our main interest in this section.  

The fuzzy RD approach is valid if our excluded instrument, 𝐹𝐵𝑆110𝑖𝑡, 

satisfies the following conditions. First, it is correlated with 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖𝑡 and, 

second, it affects health outcomes, 𝑦𝑖𝑡+1, only through 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖𝑡. The first 

condition is the same empirical association that we discussed in Section 3.1. 

For the second condition, a major concern is that the health signal (such as 

FBS>=110 mg/dl) may not only increase medical care utilization but also 

independently alter the person’s health-related behaviors such as smoking 

and exercise habits (without a warning from the physician to stop smoking or 

engage in more exercise), that could also affect health outcomes. If this is true, 

the second condition above will be violated. Note again that whether health 

signals affect health behaviors is exactly what we discussed in Section 3.1. To 

preview our results, we show that in Section 7.4, health signals have little 

effect on health behaviors, which supports the assumption required for 

identification.  

 

4. Data 

Our data consist of medical claims, health checkup measurements, and 

health survey responses. All of these data can be linked by a patient ID. The 

data come from several employer health insurance groups and are provided 

by the Japan Medical Data Center (JMDC). As of April 2014, the JMDC 

claims data base covers 1.6 million members.20 Our data cover the period 

between January 2005 and December 2014. The claims data are monthly and 

we can track the person’s medical record as long as the person works for the 

same employer and the employer provides data to JMDC. Individuals usually 

have a health checkup once annually; our data includes the year and month 

                                                 
20 JMDC claims data have been used by a number of previous studies, including Iizuka 

(2012) and Fukushima et al. (2016).  
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of the checkup. A health survey – asking respondents about their self-

assessed health and health-related behaviors – is conducted as part of a 

checkup and thus is usually the same month as the checkup.  

In this study, we are primarily interested in the effects of preventive care 

on health outcomes and thus we focus on those who are not being treated for 

DM at the time of the health checkup. We include a checkup in our analysis 

if it meets the following conditions: i) the patient was not diagnosed with DM 

during the 6 months before the checkup; ii) we have data for the patient at 

least 6 months before the checkup; iii) we have data for the patient at least 

12 months after the checkup; and iv) the patient was 30～64 years old at the 

time of the checkup.21  

Table 1 provides summary statistics for the variables used in the analysis. 

We have more than 1.7 million observations in our data set. Figure 3 looks at 

the distribution of FBS values. FBS values are available only as integers and 

thus we use a bin size of one for the figures throughout the paper. Figure 3 

shows a smooth distribution of measured FBS values, with no apparent 

discontinuity at either the FBS=110 mg/dl or FBS=126 mg/dl thresholds. We 

also performed the “manipulation test” proposed by McCrary (2008). As 

shown in Table 2, the test statistics become significant when the bandwidth 

is 4 mg/dl and 10 mg/dl for FBS=110 mg/dl and 10 mg/dl for FBS=126 mg/dl. 

However, the statistics also become significant at other “placebo” FBS values 

such as FBS=108 mg/dl or 112 mg/dl. Thus, our interpretation is that the test 

results do not necessarily suggest that the running variable is manipulated 

at the FBS=110 mg/dl or 126 mg/dl thresholds.  

More than 297,000 observations are available around the “borderline 

type” signal, i.e., measured values which fall between FBS>=100 and 

FBS<=119. We have fewer observations around the “diabetic type” signal, but 

we still observe about 44,000 observations for the same bandwidth around 

FBS=126 mg/dl. 

An underlying assumption of an RD approach is that covariates do not 

exhibit a discontinuity at the threshold. To check whether covariates are 

balanced just before and after the thresholds, we plot the average values of 

our covariates, i.e., female and age, for each FBS value. As shown in Figure 

4, female has no apparent discontinuity at the thresholds, but age may exhibit 

                                                 
21 In rare cases, people take a checkup more than once in a year. In such cases, we 

include the first checkup in our analysis.  
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a small jump at the FBS=110 mg/dl threshold. To check these observations, 

we estimated local-linear regressions using our preferred specification. It 

turns out that there is a small jump for the former at the threshold as 

reported in Table A1. To alleviate the concern, we control for the covariates in 

our regressions and find that, with or without covariates, the results are 

almost identical. Additionally, Table A1 shows that our dependent variables 

are reasonably balanced just before and after the thresholds, although the 

large number of observations results in a small number of coefficients being 

significant. 

In our data, we observe individuals only if they are working in the same 

company and while the health insurance group provides data to JMDC. To 

address a potential selection issue, in Figure 5 we plot whether attrition is 

related to the threshold values, where Attrition equals one if the person 

disappears from our data within 12 months after a checkup and zero 

otherwise. As shown in Figure 5, there is no apparent discontinuity at the 

thresholds, indicating that attrition is not likely to be related to the cutoff 

values. We also estimated a local-linear regression with our preferred 

specification that uses a rectangular kernel with a bandwidth of 5 mg/dl with 

covariates and found that the dummy variable for the threshold is not 

statistically significant at either the FBS=110 mg/dl or 126 mg/dl thresholds 

(not reported).22 

Barreca et al. (2011) suggests that when there is a non-random heaping 

in the data, we need to be careful about constructing the data set and they 

propose a donut-hole RD in such a case. In our case, our running variable, 

FBS, is available only in integers and as shown in Figure 3 there is no heaping 

in our running variable. 

 

5. Empirical Results 

5.1. Effects of Health Signals on Utilization, Health Behavior, and Health 

Outcomes 

In this section, we report how health signals affect (i) medical care utilization, 

(ii) health behavior, and (iii) health outcomes. We show the results for the 

“borderline type” signal, followed by those for the “diabetic type” signal.  

                                                 
22 The results are available from the authors upon request.  
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5.1.1. Effects of the “borderline type” signal (FBS>=110 mg/dl) 

Medical Care Utilization: Figure 6 presents the effects on utilization of 

the FBS>=110 signal, above which the person is considered a “borderline type.” 

Figure 6 clearly shows that all measures of medical care utilization 

significantly increase at the threshold. In particular, the probability of 

visiting a physician for DM increases about 5 percentage points (from 10% to 

15%) at the threshold, and the total number of DM-related visits increases by 

approximately 0.2 visits per year. Similarly, the use of an oral glucose 

tolerance test (OGTT), an additional test to diagnose DM, increases 

approximately six times, from 0.1% to 0.6%. DM-related outpatient medical 

spending also increases by around 2,000 JPY (approximately US $20) per 

year per person. Considering that only 5% of people additionally respond to 

the signal, medical spending increases approximately by 40,000 JPY (or $400) 

for those who responded to the signal.  

In Panel A of Table 3, we report corresponding local-linear regression 

results from our preferred specification. To save space, we only report the 

coefficients for the threshold dummy variables. Consistent with Figure 6, we 

find that all four measures of utilization significantly increase at the 

threshold, with magnitudes similar to those shown in Figure 6. For example, 

the probability of visiting a doctor for DM at least once within a year after a 

checkup (Any DM visit) increases by about 5 percentage points and the 

number of DM visits increases by 0.2 per year. All of these estimates are 

significant at the one percent level. 

Figure A1 in the Appendix checks the robustness of the results by 

experimenting with different bandwidths from 3 mg/dl to 10 mg/dl and by 

using local linear, quadratic, and cubic polynomials. The vertical lines in the 

figure indicate the 95% confidence interval for each estimate. As shown, the 

results are robust regardless of bandwidths and polynomials. Figure A2 

reports the results without covariates. The results are virtually identical to 

those with covariates, providing further confidence on our empirical findings.  

Whereas we observe a clear jump at the threshold, its absolute impact 

seems limited. For example, the probability of visiting a physician for DM 

increases about 5 percentage points at the threshold. Although this 

represents a 50% increase, it does not seem to be a large absolute magnitude, 
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given that nearly 90% of people could potentially respond to the signal at the 

threshold (see Figure 6). One reason for the low response rate may be that 

only half of those who exceed the threshold receive a warning signal of 

“borderline type,” as Figure 2 indicates. Moreover, people may discount the 

clinical importance of the “borderline type” signal even when they receive it.  

Health Behavior. In Figure 7, we report results for health behavior. In 

stark contrast to Figure 6, we observe little effect of the health signal on 

health behavior. Although the figure leaves open the possibility that “walk or 

exercise” and “smoke” may have improved slightly at the threshold, local 

linear regressions reported in Panel B of Table 3 indicate that in fact none of 

the coefficients are statistically significant at the five percent confidence level. 

These results are in stark contrast to the results for medical care utilization, 

where we found all coefficients are significant at the one percent confidence 

level. Thus, we conclude that there is no evidence that health signals affect 

health behaviors.  

The result that people do not alter health behaviors after receiving a 

health warning may not be surprising in the current context. As previously 

mentioned, when a physical health measure exceeds a DM diagnosis 

threshold such as FBS>=110 mg/dl, a checkup report usually recommends a 

visit to a physician and/or re-test of the measure that is outside the normal 

range, but typically does not recommend or provide information regarding 

lifestyle changes. The check-up report (see Figure 1) is rather cryptic and does 

not explain the significance of any given measure or the combined level of risk 

that an individual may have, given their age and other risk factors. Moreover, 

lifestyle changes such as quitting smoking are notoriously challenging. These 

factors may help to explain why health behaviors change little after 

surpassing a diagnosis threshold for “borderline type” DM.  

At the same time, however, the result is worrisome from the perspective 

of preventing DM. To the extent that preventive visits to physicians might 

also involve counseling to reduce lifestyle risk factors such as smoking and 

sedentary lifestyle, this non-response along margins of health-related 

behavior could also be interpreted as evidence of the lack of effectiveness of 

preventive care at this margin. 

In Figure A3, we check the robustness of the results by altering 

bandwidths and polynomials. Figure A4 further checks the results without 

covariates. The results are robust to these checks. Therefore, there is little 
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evidence that health signals affect health behavior at this threshold, unlike 

the case of medical care utilization.  

Health Outcomes. Figures 8 and 9 show the impact of the FBS>=110 

health signal on health outcomes. In contrast to the impact on medical care 

utilization, we observe virtually no discontinuities in health outcomes at the 

threshold, whether measured by intermediate health outcomes (Figure 8) or 

by predicted 5-year risks of mortality and significant DM complications 

(Figure 9). Estimation results reported in Panel C of Tables 3 confirm these 

observations. In particular, none of the estimated coefficients are significantly 

negative. As show in Figures A5－A8, these results stay the same even when 

we use different bandwidths, polynomials, and with and without covariates. 

All of these results indicate that whereas the signal clearly increases 

physician office visits and medical care utilization, there is no evidence that 

the additional utilization leads to better health or survival. 

We note that although the estimated coefficients are not significant, they 

are relatively precisely estimated as indicated by the standard errors 

reported in Table 3. For example, the point estimate of the RD dummy for 

risk of stroke is -0.028 with a standard error of 0.059, implying the confidence 

interval ranges from -0.146 to 0.090. These potential effects are much smaller 

than the average risk of stroke at FBS=110 mg/dl, which is approximately 3.5 

(see Figure 9). Similarly, for risk of CHD and Non CV mortality, corresponding 

confidence intervals range from -0.088 to 0.040 and -0.031 to 0.41, respectively. 

They are again much smaller than the average risks for these conditions at 

FBS=110 mg/dl, which are approximately 2.8 and 1.5, respectively. Thus, the 

impact of the “borderline type” signal on health outcomes is likely to be small 

even if it is non-zero. 

 

5.1.2. Effects of the “diabetic type” signal (FBS>=126 mg/dl) 

Medical Care Utilization: Figures 10 shows the effects on medical care 

utilization of the FBS=126 mg/dl signal, above which the person is considered 

a “diabetic type.” As shown in Figure 10, medical care utilization also appears 

to increase at this threshold, but the impacts are less clear than those found 

for the FBS>=110 mg/dl threshold shown in Figure 6. For example, the 

probability of having at least one DM visit (Any DM visit) appears to increase 

at the threshold but only around 4 percentage points, slightly smaller than 



pg. 23 

 

the 5-percentage-point increase found at the FBS>=110 threshold. The use of 

OGTT also appears to increase at the threshold, although we cannot be 

definitive without a regression analysis. The number of DM visits and DM-

related outpatient medical expenditure may also slightly increase at the 

threshold.  

Local-linear regression results reported in Table 3 show that the 

probability if a DM visit and the use of OGTT examination significantly 

increase by 4 and 0.5 percentage points, respectively. However, the number of 

DM visits and DM-related outpatient medical expenditure do not 

significantly increase at this threshold. As before, we also estimated the 

model using different bandwidths, polynomials, and with and without 

covariates. The results are robust as shown in Figure A9 (with covariates) 

and Figure A10 (without covariates). Thus, medical care utilization does 

increase in some models, but the results are not robust across measures and 

specifications at the “diabetic type” threshold. 

At first glance, it appears counter-intuitive to find weaker responses at 

FBS>=126 mg/dl than at FBS>=110 mg/dl, because individuals presumably 

would be more concerned about a signal of diabetes than pre-diabetes. 

However, the results are not surprising in light of what was revealed by 

Figure 2 – namely, that individuals rarely receive the “diabetic type” signal 

because very few checkup reports adopt FBS=126 mg/dl as a threshold. Of 

course, it is a serious concern if, as we suspect, high-risk people are not 

alerted that they are actually high risk. Such “false reassurance” could offset 

any health benefits of (possibly repeated) signals at lower thresholds. One 

implication of these results is that if multiple threshold values exist for a 

physical measure, it is important that separate signals be considered at each 

risk level, calibrated to the strength of the evidence and seriousness of the 

risk, and conveyed in a clear and understandable way to individuals. 

Health Behavior. Turning to the effects on health behaviors, Figure 11 

indicates that the signal continues to have little effect on any measure of 

health behavior, although the probability of “walk or exercise” and “drink 

every day” may be somewhat affected at the threshold. Panel B of Table 3 

reports local-linear regression results that use the preferred specification. It 

shows that “walk or exercise” increases at the threshold. However, all other 

health behaviors are little affected by the signal at this margin. As before, we 

also performed robustness checks using different bandwidths and 



pg. 24 

 

polynomials and with and without covariates. Figures A11 and A12 indicate 

that the RD coefficient for “walk or exercise” becomes significant for local-

linear models with relatively wider bandwidths. For other variables, we 

continue to find no significant effect. Thus, we conclude that, unlike the 

“borderline type” signal that had no effect at all on any health behavior, we 

have weak evidence that the “diabetic type” signal affects some types of health 

behavior but the result is not robust across behaviors or empirical 

specifications. 

Health Outcomes. Figures 12 and 13 show the results for health outcomes. 

In Figure 12, intermediate health outcomes such as BMI and FBS are smooth 

around the FBS=126 mg/dl threshold and there is no clear evidence that the 

signal improves health outcomes. In Figure 13, “risk for stroke” and “risk for 

non-CV mortality” appear to decrease somewhat at the threshold. However, 

as we report in Panel C of Table 3, results from local-linear regressions do not 

indicate that the FBS=126 mg/dl signal significantly affects either of these 

outcomes even at the 10 percent confidence level. As before, we performed 

robustness checks using different bandwidths and polynomials and with and 

without covariates. As reported in Figures A13 and A14, as well as Figures 

A15 and A16, there is no evidence that the “diabetic type” signal affects health 

outcomes, whether they are measured by intermediate health outcomes or by 

predicted risks of mortality and DM complications.   

 

5.2. Cost Effectiveness of Preventive Medical Care 

In this section, we examine the cost effectiveness of preventive medical care 

by implementing a fuzzy RD approach. 

5.2.1. First-stage results 

For the first-stage regression, we regress two medical care utilization 

variables, i) Number of DM visits and ii) DM-related outpatient medical 

spending, on FBS thresholds. Because the first-stage regression results are 

the same as the ones reported in Section 5.1.1, we only briefly review the 

results.  

As reported in Panel A of Table 3, we found that the Number of DM visits, 

the first dependent variable, significantly increases at the FBS=110 mg/dl 

threshold. We also observed a significant increase in DM-related outpatient 
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medical spending at this threshold. These results indicate that our 

instrumental variable (the FBS>=110 mg/dl signal) is correlated with the 

endogenous variable (medical care utilization). In contrast, for the FBS=126 

mg/dl threshold, we did not find evidence that the “diabetic type” health 

signal increases both dependent variables (see Panel A of Table 3). For this 

reason, we focus on the FBS=110 mg/dl threshold to study the cost 

effectiveness of preventive medical care.  

As discussed in Section 3.1, one concern regarding our “fuzzy” RD 

approach is that after receiving a health signal, individuals may alter health 

behavior, which in turn may affect health outcomes. If so, this makes it 

difficult to identify the impact of medical care utilization on health outcomes. 

For the FBS>=110 mg/dl threshold, however, this is not a serious concern in 

our case. As reported in Panel B of Table 3 and Figure A3, the “borderline 

type” signal has virtually no effect on health behaviors, which provides 

confidence about the second qualification for the instrument, that the health 

signal affects health outcomes only through medical care utilization.  

 

5.2.2. Second-stage results  

Table 4 reports the results from the second-stage regressions. As we discussed 

in Section 3, we use two types of health outcomes as our dependent variables, 

namely (i) intermediate health outcomes and (ii) predicted risks of mortality 

and significant DM complications. We only report the results for the 

“borderline type” threshold because in Section 5.1.2 we did not find that the 

two medical care utilization measures increase at the “diabetic type” 

threshold. 23  Panel A of Table 4 shows that none of the coefficients are 

negative and statistically significant. Thus, we find no empirical evidence 

that the significant increase in DM-related medical care around the threshold 

improves health outcomes. Robustness check results with various 

bandwidths and polynomials reported in Appendix A17 and A18 further 

confirm this observation. Moreover, while we only look at short-run effects in 

this section, as we report later in Section 6.2, we also do not find evidence of 

improvements in long-run health outcomes. Therefore, the medical care 

triggered by the FBS>=110 mg/dl threshold does not appear to be effective, 

                                                 
23 Nonetheless, we also estimated the regressions for FBS>=126 mg/dl and found that 

the first-stage F-stats are less than 5 in all cases. This invalidates the instrumental 

variable approach, as we expected.  
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much less cost effective. 

Note that we have more than 55,000 observations in our regressions 

even when we use a narrow window width of 5 mg/dl. Moreover, the first-

stage F-statistics are bigger than 20 for local-linear regressions, indicating 

that the excluded instrument is strongly correlated with DM care, as 

anticipated by Figure 6. Thus the insignificant second-stage results are not 

because of the weak instrument problem. 

 

6. Additional analysis  

6.1. Effects on first-time signal receivers  

One might expect that some people are not health conscious and they may 

routinely ignore health warning signals. If we exclude these individuals, the 

effects of health signals on health outcomes and medical expenditures might 

be substantially larger. To explore such a possibility, we redo the analyses by 

excluding individuals who received the “borderline type” signal in the 

previous year.  

In Figure A19, we report the impact of “borderline type” signal of 

FBS=110 mg/dl on medical care utilization. As before, the “borderline type” 

signal clearly increases medical care utilization. In fact, as expected, the 

impacts of the signal are slightly larger than those reported in Figure 6. For 

example, as shown in Figure A19, the probability of visiting a doctor for DM 

increases by approximately 6 percentage points among those who did not 

receive a signal the previous year, slightly higher than the 5-percentage-point 

increase found in Figure 6.  

The results for health outcomes reported in Figures A20 and A21 are 

similar to our previous results; there is no evidence that the “borderline type” 

signal affects health outcomes. These results are confirmed by local-linear 

regressions (not reported). Thus, as expected, individuals who did not receive 

the warning last year respond more to the signal; however, the additional 

medical care utilization still does not seem to improve health outcomes. These 

results provide further confidence in our conclusion that preventive DM care 

around the “borderline threshold” of FBS=110 mg/dl is neither effective nor 

cost effective. 

We now turn to the results for the “diabetic type” threshold. Regarding 

medical care utilization, as shown in Figure A22, we continue to find that the 
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probability of a DM visit increases at the threshold but other utilization 

variables are little affected in this case. Turning to health outcomes shown in 

Figures A23 and A24, a notable departure from our previous analyses is that 

we find some evidence that the “diabetic type” signal reduces FBS values 

about 4 mg/dl (which is about a 4% reduction from the mean at FBS=125) 

when the individual did not receive a signal in the previous year; for the 

majority of local-linear regressions and some quadratic regressions, the RD 

coefficients are significantly negative at the 5% confidence level. For all other 

health outcomes, however, the effects are not distinguishable from zero. Thus, 

the “diabetic type” signal appears to have some influence on health outcomes 

for those who did not exceed the threshold in the previous year, although the 

results are not robust across bandwidths and alternative health outcomes. 

 

6.2. Longer-run effects on health outcomes  

So far, we have looked at short-run effects of health signals and found no 

robust evidence that additional care triggered by health signals improves 

health outcomes. However, medical care can have cumulative effects and thus 

we might observe stronger effects in the long-run.  

To assess this possibility, we examine the effects on health outcomes 

three and five years after a checkup, focusing on the “borderline threshold” 

where we found significant short-run increases in medical care utilization. 

We use the full sample for this analysis. Figure A25 shows the effects on 

intermediate health outcomes three years after a checkup: we find no 

apparent discontinuity at the threshold. The results for predicted risks of 

mortality and complications are similar, as shown in Figure A26. The results 

for five years after a checkup are similar, as reported in Figures A27 and A28 

in the Appendix. Note that for these predicted risks of mortality and 

complications, we are in effect examining 10-year outcomes, since we use risk 

factors 5 years after the checkup to predicted outcomes for the next 5 years. 

In other words, for a 2009 checkup, we use blood pressure and other risk 

factors as measured in 2014 to predict probabilities of suffering a stroke, 

developing CHD, or non-cardiovascular mortality between 2014 and 2019. 

Thus, even in the long-run, there is no evidence that additional care for DM 

(around the margin of “borderline type”) improves health outcomes. 
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6.3. Alternative health outcome measure 

As an alternative to the predicted risks of mortality and significant 

complications using the JJRE, we also experimented with a risk measure 

calculated by the WHO risk prediction model (please see Appendix III for how 

we implemented the risk model.) Unlike the JJRE, the WHO risk measure is 

based on individuals without diagnosed diabetes and thus complements the 

JJRE measures. As shown in Figure A29, there is no clear evidence that the 

“borderline type” and “diabetic type” signals affect the WHO risk measure 

with different bandwidths and polynomials. These results provide additional 

support for our finding that the health signals have little effect on health 

outcomes.  

 

7. Discussion 

There are some differences in results between our study and the most closely 

related one, Kim et al. (2017) on health screening in Korea. First, at the lower 

“pre-diabetes” threshold, utilization clearly increases in Japan but not in 

Korea. In both countries, at this threshold there is no intervention such as a 

phone call from a physician or nurse urging a visit. One reason for the 

differences in response may be that the multiple thresholds in the Korean 

checkup report—with only a “yellow light” and no free secondary exam at the 

lower threshold, compared to a “red light” and offer of a free second exam at 

the 126 threshold—lead individuals to infer that the “pre-diabetes” signal is 

not serious enough to make a physician visit. On the other hand, because most 

Japanese reports only have the “pre-diabetes” threshold, people may take it 

more seriously and visit physician offices.24 In addition, differences in the 

samples may contribute to the differing results. For example, the Korean 

sample has many older, unemployed or retired individuals, whereas our 

Japan sample includes only working-age adults. Also, whereas health 

checkups are mandatory in Japan, the Korean sample consists of individuals 

who chose to take a checkup. Additionally, our sample has more than four 

times the number of observations around the “pre-diabetes” threshold as the 

Korean sample does, and this might have made the Japan estimate at that 

                                                 
24 Alternatively, the Korean estimates may be biased downwards because as the authors 

note the secondary examination after a screening is not counted as an outpatient visit in 

Korea. 



pg. 29 

 

threshold more precise.25 

At the higher threshold corresponding to “diabetic type,” the Korean 

study has more convincing evidence on the effect of the threshold on the use 

of DM medications and intermediate health outcomes (such as BMI and waist 

circumference), although the evidence is still not robust across different 

measures. For example, FBS values are little affected by the “diabetic type” 

signal in the Korean study and they do not find evidence that the signal 

affects any health behavior.26 We find that health outcomes improve in some 

specifications as discussed in Section 6.1; but our results are generally less 

clear cut at this threshold, probably because few checkup reports adopt 126 

mg/dl as a threshold and not many people receive that signal. 

Despite these differences, consistent economic insights flow from the 

results of both studies: namely, that individuals only respond to a clear signal 

(FBS=110 for Japan’s “high” report, FBS=126 for Korea’s “red light” report), 

and such information is more conducive to health improvement when 

combined with a follow-up intervention (as in Korea for the higher 

threshold)—although even then, the effects attenuate over time. 

 

8. Conclusion 

While the importance of preventive care is hard to refute, it is also true that 

not all preventive care can improve welfare. Using unique individual-level 

panel data, we investigated whether people respond to health signals and if 

so, whether medical care triggered by health signals is worth its cost. We did 

so in the context of mandatory health checkups in Japan, focusing on 

preventive medical care for DM. 

We find that, first, people respond to preventive health signals and 

increase their probability of visiting a physician. For example, we estimate 

that medical spending increases approximately 40,000 JPY (or $400) per year 

                                                 
25 To analyze the effect of the signal on the “number of outpatient visits for DM,” we have 

120 thousand observations at the FBS=110 threshold with a 5 mg/dl bandwidth, whereas 

the Korean study has 52 thousand observations at the FBS=100 threshold with a 

bandwidth twice as wide, 10 mg/dl. 
26 The authors speculate that the reductions in BMI and waist circumference stem from 

behavior change (reduction in calorie intake); however, since unexplained significant weight 

loss is itself a symptom of diabetes, the evidence is not so clear in this case. (The Korean 

form for the secondary exam includes a warning “if you have any specific problems (e.g. 

excessive weight loss), please talk to your physician”; and the authors do not find any 

weight loss for non-diabetes health signals such as from the obesity screening.) 
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for those who respond to the FBS≧110 pre-diabetes signal. This result 

confirms that health signals can potentially help prevent chronic disease by 

bringing people to physicians’ offices and leading to follow-on care. However, 

this result also implies that if thresholds do not reflect the cost-effectiveness 

of preventive care, they may exacerbate wasteful over-use of some kinds of 

care while not effectively promoting use of medical resources that are under-

used relative to their cost-effectiveness (Baicker, Mullainathan, and 

Schwartzstein, 2015).  

Second, importantly, we do not find evidence that additional medical 

care triggered by health signals is effective (much less cost effective) at the 

“borderline type” threshold. We do find substantial increases in DM-related 

medical care utilization. However, health outcomes did not improve either for 

physical measures (biomarkers) or for predicted risks of mortality and serious 

DM complications. Thus, we find no evidence that additional preventive 

medical care triggered by the health signal is worth its cost. Our results 

suggest that the current “pre-diabetes” threshold may need to be reexamined 

from the perspective of cost effectiveness.  

Our third main finding is the lack of response at the higher threshold 

that corresponds to “diabetic type.” With no robust evidence that medical care 

utilization increases at this threshold, we could not assess cost effectiveness 

of such utilization. One of the reasons why the impact of the signal is weaker 

may be that few people actually receive this signal because employers rarely 

adopt this threshold in their checkup reports. Accordingly, individuals may 

not be informed that their check-up results imply they are a higher-risk 

“diabetic type.” When multiple diagnosis thresholds are meaningful for a 

condition, it is important that individuals receive separate health signals 

according to their level of risk, with simple and eye-catching reports that do 

not bury important health information in fine print or with unintelligible 

jargon.  

These results reinforce previous findings in the literature that people do 

respond to health signals under some circumstances, resulting in greater use 

of preventive services or other medical care (Zhao et al. 2013, Kim et al. 2017), 

but medium- and long-run outcomes often do not improve (Oster 2017, Kim 

et al. 2017). We contribute to the literature by not only estimating the effect 

of health signals on utilization and health behavior but also analyzing cost 

effectiveness of preventive care. Clinicians have pointed out the potential for 
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overtreatment when a large fraction of the population is classified as 

“borderline type” (Yudkin and Montori 2014). Our results are also consistent 

with such a concern.  

 Our results for both clinical thresholds suggest that a “traffic light” 

system of reporting or other use of behavioral insights for the check-up 

reports might significantly enhance the effectiveness (and cost-effectiveness) 

of Japan's existing investments in mandatory check-ups. Predicted risks—

such as those for stroke and mortality that we estimate with a Japanese-

specific risk model—are increasingly used for translating the health 

implications of multiple sub-optimal risk factors into understandable 

language for patients, and thus might be important to include in check-up 

reports to improve the framing and salience of clinical measurements and 

thereby enhance the cost-effectiveness of mandatory checkups. Such risk 

prediction models are currently used in the Korean national screening 

program reports as well as in the US for categorizing the severity and 

appropriate management of the most common chronic disease, hypertension 

(Whelton et al. 2017). 

More generally, there are a large number of diagnosis thresholds for 

multiple conditions that could trigger additional preventive care – primary, 

secondary, and tertiary prevention – and little is known about their cost 

effectiveness. While we focus on DM in our analysis, our approach can easily 

be applied to many other health conditions and clinically-relevant diagnostic 

criteria. Such analyses could be useful inputs for establishing appropriate 

diagnosis thresholds and conveying their significance to patients, leading to 

more efficient use of medical resources. 
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Appendix I: Definitions of variables  

Outcome variables  Definition  

 Any DM Visit ▪ The rate of a diagnosis of diabetes (or at least rule-out diagnostic testing for diabetes) within 1 

year of the index checkup 

▪ “diagnosis” is defined by the following 2 conditions: 

(1) The individual has a claim that includes DM as one of the conditions and 

(2) Consultation days > 0. 

▪ “DM” are diseases categorized as E10~E14 in ICD10 code.  

 Number of DM Visits  ▪ Consultation days for DM within 1 year of the checkup 

 OGTT examination ▪ Rate of conducting an oral glucose tolerance test (OGTT) within 1 year of the checkup 

 DM-related outpatient 

medical spending  

▪ “DM-related outpatient medical spending” is calculated from points as follows: (Total points of all 

outpatient claims which include “DM” as one of the conditions + Total points of pharmacy claims 

which include an “DM drug” as one of drugs) 

▪ “DM drugs” are drugs categorized as A10 in ATC code. Note:1 point = 10 YEN  

 Walk or Exercise 

 Smoke 

 Drink everyday 

 Eat after dinner 

▪ Self-report of health habits as measured in the health survey associated with the checkup a year 

after the index check-up 

▪ “Walk or Exercise” = 1 if the individual reports exercising enough to work up a sweat for 30 

minutes or more per day & 2~7 days per week. (“Walk or Exercise” = 0 otherwise.) 

▪ “Drink everyday” = 1 if he/she drinks every day. (“Drink everyday” = 0 otherwise.) 
▪ “Smoke” = 1 if he/she has a habit of smoking. (“Smoke” = 0 otherwise.) 

▪ “Eat after dinner” = 1 if he/she eats a midnight snack 3 days or more per week. (“Eat after 

dinner” = 0 otherwise.) 

 FBS / HbA1c /  

BMI / SBP  

▪ The values of FBS / HbA1c / BMI / SBP measured at the checkup a year after the index checkup 

 Risk for Stroke /  

Risk for CHD /  

Risk for non CV mortality 

▪ The predicted 5-year risk of developing macro- and micro-vascular complications from Type 2 

Diabetes, based on the risk factors (e.g. age, blood pressure, HbA1c) measured at the checkup a 

year after the index checkup 

▪ These predicted risks are calculated from the JJRE equations as developed by Tanaka et al. 
(Diabetes Care 2013)  
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Appendix II: Implementing the JJRE 

 

Measurement of medium and long-run health outcomes utilizes 5-year risk of 

developing CHD, stroke, or non-cardiovascular mortality as predicted by the 

Japan Diabetes Complications Study/the Japanese Elderly Diabetes 

Intervention Trial risk engine (JJRE) (Tanaka et al. 2013). The JJRE risk 

prediction model is similar to many other risk prediction models, such as the 

well-known Framingham cardiovascular disease risk model or the UK 

Prospective Diabetes Study (UKPDS) risk prediction model often used for 

estimating medium- and longer-term risks for individuals with diabetes. Such 

risk models use data from research studies to model how “risk factors” (or 

predictor variables), such as age, sex, and blood pressure, can predict specific 

health outcomes in the next 5 or 10 years. Most such models have been 

calibrated for non-Asian populations, and thus are not appropriate for our 

sample. The JJRE is specifically designed for predicting risks for a Japanese 

population. We are grateful to the JJRE authors for sharing their SAS 

program code with us.  

 

The JJRE incorporates 11 risk factors to predict macro- and microvascular 

complications among Japanese patients with diabetes (without diabetes 

complications except mild retinopathy):  sex, age, HbA1c, years after 

diagnosis, BMI, systolic blood pressure, non-HDL cholesterol, albumin-to-

creatinine ratio, atrial fibrillation, current smoker, and leisure-time physical 

activity. The model was developed based on data from 1,748 Japanese type 2 

diabetic patients pooled from two clinical trials. The JJRE “separately 

calculates each risk of the first occurrence for five events: fatal and nonfatal 

CHD, fatal and nonfatal stroke, non-cardiovascular mortality, overt 

nephropathy, and progression of retinopathy” (Tanaka et al. 2013, p.1194). 

 

We have used the JJRE code to calculate the risk of CHD, stroke, and non-

cardiovascular mortality in our data. We do not estimate risk of overt 

nephropathy or progression of retinopathy, because our sample includes 

patients not diagnosed with diabetes and therefore the default (diabetic) 

values from the risk engine are not necessarily appropriate for determining 

their 5-year risks of these diabetes complications.1  

                                                 
1 However, to run the JJRE SAS model requires inputting values for all risk factors 
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Defining JJRE input variables 

We must use the JJRE default values for those values that we lack for our 

sample. For each risk factor used in one of the JJRE risk prediction 

equations, we code the risk factor as follows. 

 

LTPA (Leisure Time Physical Activity) 

 

LTPA is defined from two questions asked at the health check-up: 

EXERCISE==1 if the patient answers yes to the question “Have you been 

exercising at least twice a week (at least 30 minutes per session of light 

sweating) for over one year?” and 2 otherwise; WALK==1 if answer yes to 

the question “Do you walk or exercise to a similar degree daily for at least 

one hour?” and 2 otherwise). The amount of LTPA fits at least the JJRE 

categories if the self-reported answer to either of these questions is “Yes.”  

 

Then the variable LTPA is coded as follows: 

gen LTPA = . 

replace LTPA = 1 if EXERCISE == 1 | WALKING == 1 

replace LTPA = 0 if EXERCISE == 2 & WALKING == 2 

 

Duration of DM Diagnosis: 

 

Duration of diagnosis is defined as follows: In the JMDC dataset 

(4_diseases_x., where x signifies a year such as 2014), a variable named 

“FIRSTDX” (first diagnosis date) associated with each diagnosis code exists. 

We identified the first diagnosis year associated with diabetes for each patient 

in the cohort using data from 2005 to 2014. In the great majority of cases, this 

first diagnosis date remains constant throughout all diabetes-related visits in 

the data. However, where there are different values for FIRSTDX for a given 

patient over multiple visits, we took the earliest of the FIRSTDX variable. 

Duration of diabetes diagnosis in a given year is calculated as current year – 

min(FIRSTDX). Patients without two separate non-suspect (i.e. suspicion 

                                                 

and outputting all five predicted risks; therefore, we utilize the JJRE default values for 

the risk factors that are missing in the JMDC data. 
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flag2=0) diagnoses of diabetes in two or more years are assigned a duration of 

diagnosis of 0 in all years. 

 

ACR 

 

JMDC does not report ACR values. We therefore assigned ACR a value of 60 

(the default value for a diagnosed diabetic in the JJRE) if a patient has two 

or more confirmed (non-suspect) diagnoses of diabetes in two separate years. 

Otherwise, a patient is assigned an ACR value of 30. 

 

NHDL-C (Non-High Density Lipoprotein Cholesterol) 

 

We estimated NHDL-C from the JMDC checkup data on HDL, LDL, and 

triglycerides, using the Friedewald formula: If TG<400, 

NHDL=LDL+(TG/5); otherwise if TG>=400, NHDL is set to missing. 

 

AF (Atrial Fibrillation) and DR (Diabetic Retinopathy) 

 

We used JMDC’s disease data files to determine whether an individual had 

a prior history of AF or DR. For each individual, we identified the earliest 

year he or she had a non-suspect diagnosis of AF (I48 Atrial fibrillation and 

flutter) and the earliest year the individual had a non-suspect diagnosis of 

DR (H36, E103, E113, E123, E133 or E143). Then, for each observation for 

which a JJRE risk calculation was conducted, we identified whether the 

earliest year of AF or DR is prior to the current year. If so, we set the 

dummy variables AF and/or DR to 1, and 0 otherwise. 

 

BMI (Body Mass Index) 

 

Height and weight are available in the JDMC checkup data and are 

reported in centimeter and kilograms. We calculated the BMI using the 

standard formula, weight (kg) / [height (m)]2 after converting height in 

centimeters to meters. 

                                                 
2 The JMDC claims data includes a “suspicion flag” to demarcate claims in which the 

physician may suspect a given condition but has not definitively diagnosed it, such as a 

diagnostic rule-out test for a given medical condition like diabetes. We use “non-

suspect” to describe claims lacking this suspicion flag (i.e. SUSPECT==0). 
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All other variables (age, female, systolic blood pressure, smoking status, and 

HbA1c) were taken directly from the patient demographic file or the 

checkup file. 

 

We confirmed, for a random sample of PIDs with check-up data, perfect 

congruence between our JJRE predicted risks (from applying the SAS code to 

our JMDC data) and the JJRE predicted risks output from the web engine of 

JJRE (www.biostatistics.jp/prediction/jjre).  
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Appendix III.  WHO Risk Prediction Model 

 

As an alternative risk prediction measure, we used the risk charts prepared 

by the World Health Organization (WHO) and International Society of 

Hypertension (ISH) to estimate 10-year risk of a fatal or non-fatal 

cardiovascular event. Specifically, we use Figure 25 Western Pacific region A 

which includes Japan (WPR A). This risk prediction chart, summarizing the 

WHO/ISH prediction model for 10-year risk of a fatal or non-fatal 

cardiovascular event by gender, age, systolic blood pressure, total blood 

cholesterol, smoking status and presence or absence of diabetes mellitus, is 

available at http://ish-world.com/downloads/activities/colour_charts_24_Aug_07.pdf.  

 

The WHO/ISH predicted risks summarized in the charts are in categories or 

ranges (not a continuous variable based on the continuous risk factors of each 

patient, such as the JJRE model). Therefore we produced the output variable 

“whorisk” as categorical variables, defined as follows: 

0 is a ten year risk of cardiovascular event of <10%; 

1 is 10% - < 20% 

2 is 20% - < 30% 

3 is 30% - < 40% 

4 is >= 40% 

 

TheWHO/ISH chart lists age as 70, 60, 50 and 40.We classified patients into 

the WHO/ISH age categories as follows:  

a person falls in the 40 category if he/she is < 50; 

a person falls in the 50 category if (s)he is 50 to < 60; 

a person falls in the 60 category if (s)he is 60 to < 70; 

a person falls in the 70 category if (s)he is 70+. 

 

Systolic blood pressure (SBP) categories in the WHO/ISH chart are 180, 160, 

140 and 120 only; we classified an individual’s SBP as follows: 

if a person’s SBP is >= 180, he falls in the 180 category; 

if a person’s SBP is 160 to < 180, then he falls in 160; 

if a person’s SBP is 140 to < 160, then he falls in 140; 

if a person’s SBP is < 140, then he falls in 120. 

 

http://ish-world.com/downloads/activities/colour_charts_24_Aug_07.pdf


pg. 38 

 

Total cholesterol is designated as 4, 5, 6, 7, and 8 mmol/l in the WHO/ISH 

model. 

We calculated total cholesterol as TC = triglycerides * 0.2 + HDL + LDL in 

mg/dl; we multiplied this result by 0.02586 to convert mg/dl to mmol/l. Then 

individuals’ total cholesterol is classified into the following categories: 

< 5 —> 4 

>=5 to < 6 —> 5 

>= 6 to < 7 —> 6 

>= 7 to < 8 —> 7 

>= 8 —> 8 

 

The unit of observation is the checkup. Each individual has a predicted risk 

estimated for each checkup observed in the data. 
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Figure 1. An example of a checkup report 

 CERTIFICATE OF HEALTH  
 Name ******************** Date of Birth **/**/****  

 Under Medical Treatment None Medical History None  

 Subjective Symptoms None Objective Symptoms No findings  
   

  2012/04/20 2011/04/10 2010/04/15 2009/04/18 Reference(or Normal)  

 Age 47 46 45 44   

 

Physical 
Examination 

Height(cm) 171.8 171.9 171.8 171.8   

 Weight(kg) 65.5 66.7 65.2 60.1   

 BMI 22.2 22.6 22.1 20.4   

 Waist Circumference 72.4 72.8 71.3 70.5   

 
Eye sight 

Without glasses(R/L) - - - -   

 With glasses(R/L) 0.9/1.0 0.8/0.7 0.9/0.9 1.0/1.0   

 

Hearing 

Right 1000Hz normal normal normal normal   

 Right 4000Hz normal normal normal normal   

 Left 1000Hz normal impaired normal normal   

 Left 4000Hz normal normal normal impaired   

 Method audiometer audiometer audiometer audiometer   

 

Chest X-ray 

Findings no findings no findings no findings no findings   

 Method direct direct direct direct   

 Film No. No.314 No.201 No.55 No.308   

 Sputum examination normal normal normal normal   

 Electrocardiogram examination normal normal normal normal   

 

Liver function 

ASL(GOT) 29 33 30 28 ≦35(U/L)  

 ALT(GPT) 27 42 28 26 ≦35(U/L)  

 γ-GTP 44 49 42 38 ≦55(U/L)  

 
Serum lipid 

concentration 

HDL cholesterol 45 41 43 44 ≧40(mg/dL)  

 LDL cholesterol 110 113 103 99 <120(mg/dL)  

 Neutral Fats 107 119 110 100 <150(mg/dL)  

 Glucose 

metabolism 

FBS H  112 108 104 H  115 ≦109(mg/dL)  

 HbA1c(NGSP) H  5.9 5.5 5.2 H  6.0 ≦5.8(%)  

 
Anemia test 

RBC  470 465 480 472 ≧400,≦539(10^4/μL)  

 Hemoglobin 15.9 16.2 14.6 16.7 ≧13,≦16.6(g/dL)  

 Blood 

pressure 

SBP 102 108 102 98 ≦130mmHg  

 DBP 70 72 70 65 ≦85mmHg  

 
Uric acid 

Glucose (－) （－） （－） （－）   

 Protein (－) （－） （－） （－）   

 … … … … … … …  
   

 Evaluation  

 The following items are out of normal range.   

  Test Items Comments  

 
 FBS 

Re-testing required. You may have a re-examination at a medical institution. Lifestyle advice will also be given by a physician, a 

nurse, or a dietician.  

 

   

 Physician’s Signature  ******************** Office/Institutions  *** clinic  
 

Notes: This figure shows a typical checkup report that employees receive. The original language is in 
Japanese.   
 

Figure 2. Distribution of threshold values used in checkup reports 

Notes: This figure shows the “empirical distribution” of 

threshold values used in checkup reports obtained from the authors’ internet search.

 

26

30

1

FBS=100

FBS=110

FBS=126

FBS threshold (n=57)
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Figure 3. Distribution of FBS values 

 
a 

Notes: The histogram shows the density of FBS values within 1 point bins of the FBS value around the 
“borderline type (FBS=110 mg/dl)” and “diabetic type (FBS=126 mg/dl)” thresholds.  
 
 
 
Figure 4. Covariates Balance  

  

Notes: The scatter plot shows the mean of the covariate within 1 point bins of the FBS value. The vertical 
lines indicate the two threshold values for DM diagnosis. We fit the values using a linear function within 
5 mg/dl of FBS values before and after the thresholds.  
 
 
 
Figure 5. Attrition rate 

 
Notes: The scatter plot shows the mean of attrition within 12 months after a checkup, using 1 point bins 
of the FBS value. The vertical lines indicate the two threshold values for DM diagnosis. We fit the values 
using a linear function within 5 mg/dl of FBS values before and after the thresholds. 
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Figure 6. Effects of the FBS≧110 signal on medical care utilization   

  

  
Notes: The scatter plot shows the mean of medical care utilization variable within 1 point bins of the FBS 
value. The vertical line indicates the FBS=110 mg/dl threshold. We fit the values using a linear function 
within 5 mg/dl of FBS values around the threshold. 
 

Figure 7. Effects of the FBS≧110 signal on health behavior 

  

  
Notes: The scatter plot shows the mean of health behavior variable within 1 point bins of the FBS value. 
The vertical line indicates the FBS=110 mg/dl threshold. We fit the values using a linear function within 
5 mg/dl of FBS values around the threshold. 
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Figure 8. Effects of the FBS≧110 signal on intermediate health outcomes 

   

  
Notes: The scatter plot shows the mean of intermediate health outcome variable within 1 point bins of 
the FBS value. The vertical line indicates the FBS=110 mg/dl threshold. We fit the values using a linear 
function within 5 mg/dl of FBS values around the threshold. 
 
Figure 9. Effects of the FBS≧110 signal on predicted risks of DM complications 

  

 
Notes: The scatter plot shows the mean of predicted risk of DM complication within 1 point bins of the 
FBS value. The vertical line indicates the FBS=110 mg/dl threshold. We fit the values using a linear 
function within 5 mg/dl of FBS values around the threshold. 
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Figure 10. Effects of the FBS≧126 signal on medical care utilization 

  

  
Notes: The scatter plot shows the mean of medical care utilization variable within 1 point bins of the FBS 
value. The vertical line indicates the FBS=126 mg/dl threshold. We fit the values using a linear function 
within 5 mg/dl of FBS values around the threshold. 
 

Figure 11. Effects of the FBS≧126 signal on health behavior 

  

  
Notes: The scatter plot shows the mean of health behavior variable within 1 point bins of the FBS value. 
The vertical line indicates the FBS=126 mg/dl threshold. We fit the values using a linear function within 
5 mg/dl of FBS values around the threshold. 
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Figure 12. Effects of the FBS≧126 signal on intermediate health outcomes 

   

 
Notes: The scatter plot shows the mean of intermediate health outcome variable within 1 point bins of 
the FBS value. The vertical line indicates the FBS=126 mg/dl threshold. We fit the values using a linear 
function within 5 mg/dl of FBS values around the threshold. 
 

Figure 13. Effects of the FBS≧126 signal on predicted risks of DM complications 

  

 
Notes: The scatter plot shows the mean of predicted risk of DM complication within 1 point bins of the 
FBS value. The vertical line indicates the FBS=126 mg/dl threshold. We fit the values using a linear 
function within 5 mg/dl of FBS values around the threshold. 
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Table 1. Summary statistics 

  N mean std.err. 

【running variable (at t)】 

FBS (mg/dl) 1,741,209 92.9 14.2 

【covariates】 

  

  

  

Age 1,741,209 45.050 8.270 

Female 1,741,209 0.363 0.480 

【medical care utilization (between t and t+1)】 

Any DM visit 1,741,209 0.059 0.236 

Number of DM Visits 1,741,209 0.240 1.805 

OGTT examination 1,741,209 0.001 0.024 

DM-related outpatient medical spending ( in 1,000 JPY) 1,741,209 2.63 25.57 

【health behavior (at t+1)】 

Walk or Exercise 967,757 0.439 0.496 

Smoke 1,146,643 0.303 0.459 

Drink everyday 1,073,649 0.267 0.442 

Eat after dinner  940,030 0.182 0.385 

【intermediate health outcomes (at t+1)】 

FBS 1,141,578 93.3 14.1 

HbA1c 1,015,687 5.5 0.5 

SBP 1,209,467 120.5 15.5 

BMI 1,209,582 22.8 3.4 

【predicted risks of DM complications (at t+1)】 

  

  

  

Risk for Stroke (%) 496,742 2.47 3.08 

Risk for CHD (%) 496,742 2.04 1.89 

Risk for Non CV Mortality (%) 496,742 1.17 1.28 

WHO risk (0~4) 725,257 0.03 0.24 

 

 

Table 2. McCrary test 

Cutoff 
Bandwidth 

2 4 6 8 10 

105 -1.171 -1.548 -1.439 0.282 1.394 

108 0.491 1.805 3.362 5.215 8.763 

110 -1.424 -2.176 -1.471 1.358 5.841 

112 0.226 1.647 2.431 4.348 9.186 

115 0.531 0.400 1.609 4.584 9.040 

120 0.426 0.099 0.639 2.069 4.913 

125 -1.200 0.241 0.561 1.323 2.901 

126 1.010 0.585 0.706 1.141 2.658 

130 1.143 1.497 2.084 2.290 3.013 

Note: This table provides tvalues of the McCrary test. Bold numbers indicate tvalues greater than 2. 
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Table 3. Effects of “borderline type” and “diabetic type” signal 
 

FBS at 110 mg/dl 
 

FBS at 126 mg/dl 

  coefficient  
mean at 

109 
obs.    coefficient  

mean at 

125 
obs.  

Panel A: medical care utilization (at t+1) 

Any DM visit 0.047*** 0.091 120,735  0.040*** 0.230 19,241 
 (0.004)  

  (0.013)  
 

Number of DM visits 0.188*** 0.368 120,735  0.264* 1.312 19,241 
 (0.027)  

  (0.148)  
 

OGTT examination 0.005*** 0.001 120,735  0.005** 0.002 19,241 
 (0.001)  

  (0.002)  
 

DM-related outpatient medical spending  1.933*** 3.753 120,735  1.225 12.169 19,241 
 (0.333)  

  (1.228)  
 

 
  

     

Panel B: health behavior (at t+1) 

Walk or Exercise 0.010 0.434 66,870  0.041** 0.418 10,461 
 (0.008)  

  (0.020)  
 

Smoke -0.006 0.341 80,640  0.013 0.390 13,322 
 (0.007)  

  (0.017)  
 

Drink every day -0.010 0.376 75,048  -0.019 0.376 12,201 
 (0.007)  

  (0.017)  
 

Eat after dinner 0.001 0.163 64,924  -0.003 0.158 10,100 
 (0.006)  

  (0.015)  
 

 
 

      

Panel C: health outcomes (at t+1) 

FBS 0.163 105 80,074  -1.018 118 12,920 
 (0.183)  

  (0.789)  
 

HbA1c -0.004 5.7 73,907  0.034 6.1 13,045 
 (0.007)  

  (0.029)  
 

BMI -0.036 24.3 85,306  -0.077 24.6 14,085 
 (0.051)  

  (0.134)  
 

SBP 0.094 128 85,288  0.396 129 14,081 
 (0.215)  

  (0.555)  
 

Risk for Stroke -0.028 3.376 55,475  -0.163 4.220 9,171 
 (0.059)  

  (0.170)  
 

Risk for CHD -0.024 2.737 55,475  0.118 3.383 9,171 

 (0.032)  
  (0.104)  

 

Risk for Non CV mortality 0.005 1.472 55,475  -0.035 1.773 9,171 
 (0.018)    (0.051)   

 
Note: This table shows the results from local-linear regression using a rectangular kernel with a 5 
mg/dl bandwidth and covariates. Only the coefficients for the RD dummies are reported. Standard 
errors, corrected for clustering at the person level, are in parentheses. ***: 1 % confidence level, **: 
5 % confidence level, *: 10 % confidence level. 
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Table 4. Results from second-stage regressions  

 FBS at 110 mg/dl 

(bandwidth=5mg/dl)   coefficient obs. 

Panel A: Endogenous variable = Number of DM visits 

  FBS (at t+1) 0.763 80,074 
 (0.863)  

  HbA1c (at t+1) -0.020 73,907 
 (0.034)  

  BMI (at t+1) -0.164 85,306 
 (0.238)  

  SBP (at t+1) 0.433 85,288 
 (0.987)  

  Risk for stroke (at t+1) -0.109 55,475 
 (0.234)  

  Risk for CHD (at t+1) -0.096 55,475 
 (0.128)  

  Non-CV mortality (at t+1) 0.020 55,475 
 (0.071)  

 
  

Panel B: Endogenous variable = DM-related outpatient medical spending 

  FBS (at t+1) 0.062 80,074 
 (0.070)  

  HbA1c (at t+1) -0.002 73,907 
 (0.003)  

  BMI (at t+1) -0.015 85,306 
 (0.021)  

  SBP (at t+1) 0.038 85,288 
 (0.088)  

  Risk for stroke (at t+1) -0.010 55,475 
 (0.022)  

  Risk for CHD (at t+1) -0.009 55,475 
 (0.012)  

  Non-CV mortality (at t+1) 0.002 55,475 
 (0.007)  

 
Note: This table shows the results from Equation (2). Only the coefficients for the endogenous 
explanatory variables are reported. Standard errors, corrected for clustering at the person level, are 
in parentheses. ***: 1 % confidence level, **: 5 % confidence level, *: 10 % confidence level. 
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Figure A1. Robustness of the effects of the FBS≧110 signal on medical care utilization 

  
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧110 
mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 

 
Figure A2. Robustness the effects of the FBS≧110 signal on medical care utilization (estimated 

without covariates) 

  
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and without covariates. Only the coefficients and 95% CIs for the FBS
≧110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A3. Robustness of the effects of the FBS≧110 signal on health behavior   

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel with a 
bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧110 mg/dl threshold 
are reported. Standard errors, corrected for clustering at the person level. 

 

Figure A4. Robustness of the effects of the FBS≧110 signal on health behavior (estimated 

without covariates) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 

with a bandwidth of 5 mg/dl and without covariates. Only the coefficients and 95% CIs for the FBS

≧110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A5. Robustness of the effects of the FBS≧110 signal on intermediate health outcomes 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧110 
mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
 
Figure A6. Robustness of the effects of the FBS≧110 signal on predicted risks of DM 

complications 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧110 
mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A7. Robustness of the effects of the FBS≧110 signal on intermediate health outcomes 

(estimated without covariates) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and without covariates. Only the coefficients and 95% CIs for the FBS
≧110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
 
Figure A8. Robustness of the effects of the FBS≧110 signal on predicted risks of DM 

complications (estimated without covariates) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and without covariates. Only the coefficients and 95% CIs for the FBS
≧110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A9. Robustness of the effects of the FBS≧126 signal on medical care utilization

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 

with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧126 

mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 

 

Figure A10. Robustness of the effects of the FBS≧126 signal on medical care utilization 

(estimated without covariates) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and without covariates. Only the coefficients and 95% CIs for the FBS
≧126 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A11. Robustness of the effects of the FBS≧126 signal on health behavior 

  
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧126 
mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 

 
Figure A12. Robustness of the effects of the FBS≧126 signal on health behavior (estimated 

without covariates) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and without covariates. Only the coefficients and 95% CIs for the FBS
≧126 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A13. Robustness of the effects of the FBS≧126 signal on intermediate health outcomes 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel with a 
bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧126 mg/dl threshold 
are reported. Standard errors, corrected for clustering at the person level. 

 
Figure A14. Robustness of the effects of the FBS≧126 signal on predicted risks of complications 

Notes: This figure presents the results from local polynomial regressions using rectangular kernel with a 

bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧126 mg/dl threshold 

are reported. Standard errors, corrected for clustering at the person level. 
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Figure A15. Robustness of the effects of the FBS≧126 signal on intermediate health outcomes 

(estimated without covariates) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and without covariates. Only the coefficients and 95% CIs for the FBS
≧126 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
 

Figure A16. Robustness of the effects of FBS≧126 signal on predicted risks of DM 

complications (estimated without covariates) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and without covariates. Only the coefficients and 95% CIs for the FBS
≧126 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A17. Robustness of the effects of additional DM care on intermediate health outcomes  

 
 
Notes: This figure presents the results from Equation (3). Only the coefficients and 95% CIs for the 
FBS≧110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level 
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Figure A18. Robustness of the effects of additional DM care on predicted risks of DM 

complications 
 

 
 

 
Notes: This figure presents the results from Equation (3). Only the coefficients and 95% CIs for the 
FBS≧110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person 
level. 
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Figure A19. Robustness of the effects of the FBS≧110 signal on medical care utilization (for 

those who did not exceed the threshold in the previous year) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧110 
mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 

 
Figure A20. Robustness of the effects of the FBS≧110 signal on intermediate health outcomes 

(for those who did not exceed the threshold in the previous year) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧110 
mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A21. Robustness of the effects of the FBS≧110 signal on predicted risks of DM 

complications (for those who did not exceed the threshold in the previous year) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 

with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧110 

mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 

 

Figure A22. Robustness of the effects of the FBS≧126 signal on medical care utilization (for 

those who did not exceed the threshold in the previous year) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧126 
mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A23. Robustness of the effects of the FBS≧126 signal on intermediate health outcomes 

(for those who did not exceed the threshold in the previous year) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧126 
mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
 
Figure A24. Robustness of the effects of the FBS≧126 signal on predicted risks of DM 

complications (for those who did not exceed the threshold in the previous year) 

  
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and covariates. Only the coefficients and 95% CIs for the FBS≧126 
mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A25. Longer-run effects of the FBS≧110 signal on intermediate health outcomes (after 3 

years) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and with covariates. Only the coefficients and 95% CIs for the FBS≧
110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
 

Figure A26. Longer-run effects of the FBS≧110 signal on predicted risk of DM complications 

(after 3 years) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and with covariates. Only the coefficients and 95% CIs for the FBS≧
110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A27. Longer-run effects of the FBS≧110 signal on intermediate health outcomes (after 5 

years) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and with covariates. Only the coefficients and 95% CIs for the FBS≧
110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
 
Figure A28. Longer-run effects of FBS≧110 signal on predicted risk of complications (after 5 

years) 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 
with a bandwidth of 5 mg/dl and with covariates. Only the coefficients and 95% CIs for the FBS≧
110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level. 
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Figure A29. Robustness of the effects of FBS signals on an alternative measure of predicted 

risk of DM complications 

 

 
Notes: This figure presents the results from local polynomial regressions using rectangular kernel 

with a bandwidth of 5 mg/dl and with covariates. Only the coefficients and 95% CIs for the FBS≧

110 mg/dl threshold are reported. Standard errors, corrected for clustering at the person level.  
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Table A1. Covariates Balance Test 
 

FBS at 110 mg/dl  FBS at 126 mg/dl 

  coefficient 
mean at 

109 
obs.   coefficient 

mean at 

125 
obs.  

Covariates (at t)         

Age 0.157 48.7 120,735  0.164 49.1 19,241 
 (0.097)  

  (0.252)  
 

Female 0.009** 0.166 120,735  0.009 0.130 19,241 
 (0.005)  

  (0.010)  
 

Walk or Exercise 0.015** 0.433 91,769  -0.004 0.425 13,798 
 (0.007)  

  (0.017)  
 

Smoke -0.005 0.331 107,684  -0.005 0.397 16,891 
 (0.006)  

  (0.015)  
 

Drink every day -0.017*** 0.385 100,989  -0.035** 0.390 15,635 
 (0.006)  

  (0.015)  
 

Eat after dinner 0.001 0.169 88,704  -0.008 0.170 13,254 
 (0.005)  

  (0.013)  
 

HbA1c 0.002 5.7 102,383  0.051*** 6.0 17,653 
 (0.005)  

  (0.019)  
 

BMI 0.022 24.3 120,673  -0.005 25.1 19,208 
 (0.044)  

  (0.120)  
 

SBP -0.060 128 120,650  0.699 130 19,210 
 (0.185)  

  (0.493)  
 

Risk for Stroke  0.079 3.483 74,745  0.031 4.550 11,984 
 (0.048)  

  (0.127)  
 

Risk for CHD 0.001 2.730 74,745  0.093 3.710 11,984 
 (0.026)  

  (0.088)  
 

Risk for Non-CV mortality -0.002 1.610 74,745  0.033 1.990 11,984 
 (0.015)   

 (0.039)   

 
Note: This table shows the results from local-linear regressions using a rectangular kernel with a 5 
mg/dl bandwidth and covariates. Only the coefficients for the RD dummies are reported. Standard 
errors, corrected for clustering at the person level, are in parentheses. ***: 1 % confidence level, **: 
5 % confidence level, *: 10 % confidence level. 

 


