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Abstract

We study conditions for the existence of stable, strategy-proof mecha-
nisms in a many-to-one matching model with salaries. Workers and firms
want to match and agree on the terms of their match. Firms demand dif-
ferent sets of workers at different salaries. Workers have preferences over
different firm-salary combinations. Workers’ preferences are monotone in
salaries. We show that for this model, a descending auction mechanism is
the only candidate for a stable mechanism that is strategy-proof for work-
ers. Moreover, we identify a maximal domain of demand functions for firms,
such that the mechanism is stable and strategy-proof.

In the special case, where demand functions are generated by quasi-linear
profit functions, our domain reduces to the domain of demand functions un-
der which workers are gross substitutes for firms. We provide two versions of
the results for the quasi-linear case. One for a discrete model, where salaries
are restricted to discrete units and one for a continuous model, where salaries
can take on arbitrary positive numbers. More generally, we show that sev-
eral celebrated results (the existence of a worker-optimal stable allocation,
the rural hospitals theorem, the strategy-proofness of the worker-optimal
stable mechanism) generalize from the discrete to the continuous model.
JEL-classification: C78, D47
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1 Introduction

Centralized clearing houses based on the deferred-acceptance mechanism are at
the heart of many successful real-world matching markets (Roth, 1984a; Abdulka-
diroglu and Sönmez, 2003; Sönmez and Switzer, 2013; Sönmez, 2013). Deferred-
acceptance mechanisms are appealing, because they produce stable outcomes,
meaning that no subgroup of agents can find a mutually beneficial deviation and
thus would have a reason to contract outside the market.1 Moreover, it is safe for
the applying side of the market to report their true preferences to the mechanism.
Thus, the mechanism successfully aggregates the information in the market and
levels the playing field for naive and sophisticated participants.

In some applications, the market does not only match agents, but determines
also the contractual details of the match. In a labor market, firms and work-
ers may have some discretion on how to set the salary. In the cadet-to-branch
match (Sönmez and Switzer, 2013), cadets can choose between different lengths
of service time in exchange for a higher priority in their branch of choice. These
markets can be understood as hybrids between matching markets and auctions and
have first been analyzed in the seminal paper of Kelso and Crawford (1982). Kelso
and Crawford propose a generalization of the (firm-proposing) deferred-acceptance
algorithm that they call the salary adjustment process. They identify a condition
on firms’ demand functions - workers have to be gross substitutes for the firms -
that guarantees that the process converges to a stable allocation. In the salary
adjustment mechanism, it is in general not optimal for workers to reveal their true
preferences or for firms to reveal their true demand for workers. Subsequently, Hat-
field and Milgrom (2005) have identified conditions on the demand, such that the
worker-proposing (descending) version of the salary adjustment process is stable,
and strategy-proof for the workers.2 For this to be the case, workers have to be
gross substitutes for firms and the law of aggregate demand3 must hold for each
firm.

In this paper, we extend the analysis of Kelso and Crawford (1982) and Hatfield
and Milgrom (2005) and consider necessary, as well as sufficient conditions for the
existence of stable and worker-strategy-proof mechanisms. We show that gross

1See Roth (1991) for evidence that clearing houses using unstable mechanisms tend to fail in
practice.

2Hatfield and Milgrom actually go beyond the Kelso-Crawford model, by allowing for multi-
dimensional contract-terms, instead of just salaries in their model. Different contracts can be
ranked arbitrarily, whereas in the Kelso-Crawford model workers’ preferences are monotone in
the contract-dimension, i.e. workers prefer higher salaries to lower salaries. We will discuss this
issue in more detail later. See also Echenique (2012) and Schlegel (2015) for a discussion on what
this adds in generality to the model.

3This means that if we shrink the choice set of a firm by increasing salaries, an equal or small
number of workers will be chosen.
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substitutability and the law of aggregate demand are essentially necessary for
the existence of a stable and strategy-proof mechanism. For this purpose, we
introduce the notion of a virtual demand function. For a demand function, the
corresponding virtual demand function is a closely related but in general more
well-behaved demand function. Replacing demand functions by virtual demand
functions will not change the outcome of the salary adjustment process. If workers
are virtual gross substitutes for firms, i.e. workers are gross substitutes for firms
according to the virtual demand, then the salary adjustment process converges to
an allocation that is stable, both in the original market, and in the virtual market
where we replace demand by virtual demand. The domain of demand functions,
under which workers are virtual gross substitutes for firms and the virtual law
of aggregate demand holds, turns out to be a maximal domain for the stability
and strategy-proofness of the salary adjustment process. More generally, it is a
maximal domain for the existence of any stable and strategy-proof mechanism. The
class contains demand functions under which workers are gross substitutes for firms
and the law of aggregate demand holds. For these demand functions the virtual
demand and the original demand are the same. However, it also contains many
other demand functions for which the virtual demand and the original demand
differ.

In the first part of the analysis, we treat demand functions of firms as given and
do not make any assumption on how they are generated. In particular, we do not
assume that firms are profit maximizers and salaries enter their profit linearly, as it
is often assumed in the literature (Kelso and Crawford, 1982; Gul and Stacchetti,
1999; Hatfield et al., 2014).4 Our modeling choice is motivated by real-world
matching markets with endogenous contracting. In these markets, the demand
side often does not consist of profit-maximizing firms, but rather of e.g. nonprofit
hospitals (Roth, 1984a) or branches of the US-military (Sönmez and Switzer, 2013).
Moreover, the salary is often non negotiable, whereas other contract terms are
negotiated during the match. These contract terms could, e.g., be a particular job
description, the working hours, or the length of the contract (as in the US-military
match). As long as preferences are monotone in the contract dimension, the more
general analysis in this paper applies to these cases.5

In the second part of the analysis, we consider the important special case,
where demand functions are obtained by the maximization of quasi-linear profit
functions. For this special case, we show that demand and virtual demand agree.

4Note however that Kelso and Crawford (1982), point out that their analysis can be gener-
alized beyond the quasi-linear model since “all arguments are completely ordinal” (Kelso and
Crawford, 1982, p.1492).

5The original analysis of the military match by Sönmez and Switzer (2013) uses a model that
does not directly fit into the Kelso-Crawford model. However, it can be shown (Jagadeesan,
2016) that the problem can be rephrased in an equivalent way using a Kelso-Crawford model.
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Moreover, the law of aggregate demand is now implied by the gross substitutes
condition. Thus, for the quasi-linear case, our domain of demand functions reduces
to the domain of demand functions under which workers are gross substitutes. It
turns out that an even stronger result holds for the quasi-linear case. For firms
maximizing quasi-linear profit functions, the domain of gross substitutes profit
functions is not only maximal for the existence of a stable and strategy-proof
mechanism, but more generally for the existence of stable allocations. We provide
two versions of the results for the quasi-linear case. One for a discrete model,
where salaries are restricted to discrete units and one for a continuous model,
where salaries can take on arbitrary positive numbers. Importantly, our results
only assume quasi-linearity on the firm-side of the market but not necessarily
on the worker-side of the market. Thus, for the continuous model, our results
generalize previous results due to Gul and Stacchetti (1999) and Hatfield et al.
(2014). Additionally, we provide generalizations of two results - the existence of a
worker-optimal stable allocation and the rural hospitals theorem - from the discrete
model to the continuous model.

1.1 Related Literature

Stable many-to-one matching mechanisms and their incentive properties have been
extensively studied (Hatfield and Kojima, 2010; Chen et al., 2016; Hirata and Ka-
suya, 2015; Kominers and Sönmez, 2016; Hatfield et al., 2015). Most papers focus
on the pure matching model or on the matching with contracts model (Hatfield
and Milgrom, 2005; Roth, 1984b; Fleiner, 2003). The latter model allows for multi-
dimensional contract-terms that can be ranked arbitrarily. A labor contract could,
for example, contain a particular job description, as well as a salary and it might
not be a priori clear how a worker ranks different job characteristics and salary
combinations. In contrast to this, we consider the more restricted case where there
is a natural ordering on the contract set and the workers have monotone prefer-
ences with respect to this ordering. If a worker agrees to work for some firm under
some salary, then he will also agree to work for the firm under a higher salary.
Cadets prefer short service times over long service times etc.

Since we are considering a more restricted model, all sufficient conditions for
stability and the existence of a stable and worker-strategy-proof mechanism from
the literature on matching with contracts also apply to our model. However, condi-
tions that are necessary for the model with contracts are not necessary conditions
for the model with salaries. For strategy-proofness, this is because certain prefer-
ence manipulations are ruled out by the model. A worker must report monotone
preferences. Thus, he cannot rank working for a firm under a low salary above
working for the same firm under a high salary to manipulate the outcome of the
mechanism in his favor. Similarly, weaker conditions are sufficient to guarantee
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the existence of stable allocations than those for markets with contracts.6

Recently, a maximal domain of choice functions for the existence of a stable
and worker-strategy-proof mechanism for matching markets with contracts has
been identified (Hatfield et al., 2015). We note that the result of Hatfield et al.
(2015) and our result on stable and worker-strategy-proof mechanisms are logi-
cally independent. Our domain is larger than the domain of demand functions
whose induced choice functions satisfy the conditions of Hatfield et al. (2015).7

On the other hand, their result applies to a broader class of problems. We think
that one advantage of studying the less general model is that a characterization
becomes easier to state and the condition on the demand functions is easier to
interpret. Furthermore, many practically relevant problems fit into the framework
with salaries. On the other hand, some problems like the airline seat-upgrade
problem of Kominers and Sönmez (2016), where the true preferences are likely
to violate monotonicity in the contract-term do not fit well into the model with
salaries. In this sense, we think that the results are complementary and both con-
tribute to our understanding of stable and worker-strategy-proof mechanisms in
matching markets with endogenous contracting.

6To illustrate this point, consider a market with two firms f1, f2 and three workers w1, w2, w3.
Suppose there are two kinds of contracts: A firm and a worker can match under a low salary 1
or under a high salary 2. The firms have preferences

{(w1, 1), (w2, 1), (w3, 1)} �f1 {(w1, 1)} �f1 {(w1, 2)} �f1 ∅ �f1 . . .
{(w2, 1)} �f2 {(w3, 1)} �f2 ∅ �f2 . . .

that induce choice functions in the usual way. Suppose workers always prefer to work for a firm
under the high salary to working for the same firm under the low salary. Going through all
different cases, one can show that for any preferences satisfying this monotonicity assumption
a stable allocation (in the matching with contracts sense) exists. This changes if workers can
report non-monotonic preferences. Consider the following preferences:

(f1, 1) �w1 (f1, 2) �w1 ∅ �w1 . . .

(f1, 2) �w2 (f2, 2) �w2 (f1, 1) �w2 (f2, 1) �w2 ∅
(f2, 2) �w3 (f1, 2) �w3 (f2, 1) �w3 (f1, 1) �w3 ∅

Worker w1 has non-monotone preferences in salaries. He prefers to work for firm f1 under a
low salary to working for the same firm under a high salary. Thus, in a stable allocation it will
never be the case that w1 works for f1 under the high salary. This in turn implies that no stable
allocation exists: The allocation that matches all three workers to f1 under the low salary is
blocked by worker w3 and firm f2. Any allocation that matches w2 to f2 under the low salary
is blocked by workers w1, w2 and w3 and firm f1. Any allocation that matches w3 to f2 under
the low salary is blocked by worker w2 and firm f2. Finally, all other allocations are either not
individually rational or blocked by workers w1, w2 and w3 and firm f1.

7The preferences of firm f1 in Footnote 7 induce, for example, a demand function that satisfies
our condition but not the condition of Hatfield et al. (2015).
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For the case of quasi-linear profit functions, we establish counterparts to both
existence results of Kelso and Crawford (1982), by showing that the sufficient
conditions from their paper are in fact maximal domain conditions. For the case
of a continuous salary space, a similar result was obtained by Gul and Stacchetti
(1999) in the slightly different context of an exchange economy with combinatorial
demand. As far as we know, the present paper is the first that studies stable
and worker-strategy-proof mechanisms in the fully general job matching model
with continuous salaries. Classical results for the one-to-one case can be found
in Demange and Gale (1985). We generalize these results to the many-to-one case.
Results for the many-to-one case where both sides of the market have quasi-linear
preferences can be found in Hatfield et al. (2014). We generalize their result by
relaxing the quasi-linearity for the applying side of the market.

2 Model and Known Results

2.1 Model

The following model is based on the job matching model of Kelso and Crawford
(1982). There are two finite disjoint sets of agents, a set of firms F and a set of
workers W . There is a finite set of possible salaries S = {1, 2, . . . , σ̄}.8 Firms
can hire workers and pay them salaries. Each firm f has a demand function
Df : SW → 2W that for a vector of salaries s = (sw)w∈W specifies a set of workers
Df (s) ⊆ W that the firm wants to hire under these salaries. Each worker w
has preferences �w over different firm-salary combinations and an outside option
which we denote by “∅”. We assume here that job characteristics other than the
salary are fixed and thus a worker has preferences over different firms, but not over
different jobs within the same firm.9 An ordinal market is a pair (D,�) consisting
of a demand profile D = (Df )f∈F and a preference profile �= (�w)w∈W .

We make the following assumptions on demand functions:

1. The maximal salary σ̄ is prohibitively high so that no firm will ever hire a
worker under this salary:

sw = σ̄ ⇒ w /∈ Df (s).

8The use of integer salaries is for notational convenience. Alternatively, we could use any
finite and totally ordered set of salaries.

9Note however that by the results in Section 2, heterogeneous job characteristics can be dealt
with to a certain extent in our model. If all workers’ rankings over different jobs at a firm are
known, then by the embedding result (Theorem ??) preferences over different job characteristics
can be expressed in our model.
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It will be convenient to extend demand functions to incomplete salary vectors
as follows: Suppose we have a salary vector that specifies salaries only for
a subset W ′ ⊆ W of the workers, s = (sw)w∈W ′ ∈ SW ′

. Define s̃ ∈ SW by
s̃w = sw for w ∈ W ′ and s̃w = σ̄ for w /∈ W ′. Then we let Df (s) := Df (s̃).

2. Demand functions satisfy irrelevance of rejected contracts (IRC):10

Suppose some worker was not chosen at some salary vector and we increase
the worker’s salary further. Then the firm will make the same choice after the
salary has increased. Formally, let w ∈ W and s, s′ ∈ SW with s−w = s′−w

11

and sw < s′w. Then

w /∈ Df (s)⇒ Df (s) = Df (s
′).

We make the following assumption on workers’ preferences:

1. Preferences are strict,

(f, σ) 6= (f ′, σ′)⇒ (f, σ) �w (f ′, σ′) or (f ′, σ′) �w (f, σ),

and
(f, σ) �w ∅ or ∅ �w (f, σ).

2. Preferences are increasing in salaries,

σ < σ′ ⇒ (f, σ) ≺w (f, σ′).

We denote the set of all strict and increasing preferences by R.
A matching is a function µ : F ∪W → F ∪ 2W such that

1. for each f ∈ F , we have µ(f) ∈ 2W ,

2. for each w ∈ W , we have µ(w) ∈ F ∪ {∅},

3. for each f ∈ F and w ∈ W , we have f = µ(w) if and only if w ∈ µ(f).

A salary schedule for a matching µ is a salary vector s ∈ Sµ(F ) that for each
matched worker w specifies a salary sw paid by µ(w) to w. For each f ∈ F , we
let sf := (sw)w∈µ(f). An allocation is a pair (µ, s) consisting of a matching µ and
a salary schedule s for µ. We denote the set of allocations by A. For notational

10The requirement is a form of the weak axiom of revealed preferences and is an adaption of
the IRC condition from the matching with contracts literature (Aygün and Sönmez, 2013) to our
set-up (see Subsection 2.1.1).

11Here and in the following we let s−w := (sw′)w′∈W\{w}.
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convenience, we extend workers’ preferences over firm-salary pairs to preferences
over allocations in the usual way; for each w ∈ W we let

(µ, s) �w (µ′, s′) :⇔ (µ(w), sw) �w (µ′(w), s′w),

and
(f, σ) �w (µ, s) :⇔ (f, σ) � (µ(w), sw).

Let (D,�) be a market. Allocation (µ, s) is

individually rational in (D,�) if for each f ∈ F we have Df (sf ) = µ(f)
and for each w ∈ W we have (µ, s) �w ∅,

blocked in (D,�) by firm f ∈ F and group of workers W ′ 6= µ(f) if there is a
salary vector s′ ∈ SW with s′|µ(f) := (s′w)w∈µ(f) = sf , such that Df (s

′) = W ′

and (f, s′w) �w (µ, s) for each w ∈ W ′,12

stable in (D,�) if it is individually rational and not blocked by any firm
and group of workers.

We denote the set of all stable allocations in (D,�) by S(D,�). The following
lemma provides a reformulation of the stability condition that will be useful in
some of the proofs. The proof as well as all subsequent proofs are in the appendix.

Lemma 1. For (µ, s) ∈ A, f ∈ F and �∈ RW define the minimal potential
blocking vector s̃f = (s̃fw)w∈W ∈ SW by

s̃fw := min({σ ∈ S : (f, σ) �w (µ, s)} ∪ {σ̄}).

Let D be a demand profile. Then (µ, s) ∈ S(D,�) if and only if (µ, s) is individ-
ually rational in (D,�) and for each f ∈ F we have Df (s̃f ) = µ(f) .

A mechanism (for the workers) is a mapping from preference profiles to al-
locations M : RW → A. Mechanism M is strategy-proof if it is a weakly
dominant strategy for workers to report their true preferences to the mechanism,
i.e. for each w ∈ W , �−w∈ RW\{w} and �w,�′w∈ R we have

M(�w,�−w) �wM(�′w,�−w).

12Note that, when blocking, the firm pays the workers that it will keep after the blocking the
same salary as before (since s′|µ(f) = sf ). It appears natural to also allow for blocking such
that the firm pays some of its current workers a higher salary. However, we make the implicit
assumption that a firm will always choose a low salary contract over a high salary contract
with the same worker. Hence, if the firm blocks by offering higher salaries to some of the
workers that it currently employs and hiring some additional workers, then it could also block by
offering the same salary to the workers that it keeps and otherwise hiring the new workers. This
blocking notion corresponds (see Section 2.1.1) to the usual blocking notion for the matching
with contracts model.
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MechanismM is group-strategy-proof if for each W ′ ⊆ W , �−W ′∈ RW\W ′
and

�W ′ ,�′W ′∈ RW ′
, there is a w′ ∈ W ′ with

M(�W ′ ,�−W ′) �wM(�′W ′ ,�−W ′).

Let D be a demand profile. Mechanism M is D-stable if for each �∈ RW we
have M(�) ∈ S(D,�).

2.1.1 Matching with Contracts

Our model can be mapped into the matching with contracts model as follows
(here we follow Hatfield and Milgrom, 2005): The set of possible contracts is
X = F ×W ×S. Thus, a contract (f, w, σ) is a bilateral agreement between a firm
f and a worker w to match under a salary σ. For each f ∈ F we define a choice
functions Cf : 2X → 2X as follows. For each set of contracts X ′ ⊆ X define a
salary vector sf (X

′) = (sfw(X ′))w∈W , such that salary sfw(X ′) is the lowest salary
for w with firm f occurring in a contract in X ′, i.e.

sfw(X ′) := min{σ ∈ S : (f, w, σ) ∈ X ′ or σ = σ̄}.

Firm f chooses from X ′ the contracts with the workers that it demands under the
minimal salaries sf (X

′):

Cf (X
′) := {(f, w, sfw(X ′)) : w ∈ Df (sf (X

′))}.

The IRC condition on demand functions translates to the IRC condition on choice
functions (Aygün and Sönmez, 2013):

(f, w, σ) /∈ Cf (X ′)⇒ Cf (X
′ \ {(f, w, σ)}) = Cf (X

′).

Worker w’s preferences over X ∪ {∅} are given by (f, w, σ) �w (f ′, w′, σ′) ⇔
(f, σ) �w (f ′, σ′) and (f, w, σ) �w ∅ ⇔ (f, σ) �w ∅ with the convention that
∅ �w (f, w′, σ) for w′ 6= w. It is easy to check that our definition of stability is
equivalent to the usual stability condition in the matching with contracts literature.
In this sense, our model is just a matching with contracts model with the additional
restriction that preferences are monotone in the contract terms.

2.2 Stable Allocations

In general, a stable allocation does not need to exist for our model. A sufficient
condition for stability is that workers are gross substitutes for firms, i.e. increasing
the salary of some worker will not decrease the demand for other workers whose
salaries have not changed.
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Gross Substitutability: For workers w,w′ ∈ W,w 6= w′ and salary vectors
s, s′ ∈ SW with s′−w′ = s−w′ and sw′ < s′w′ ,

w ∈ Df (s)⇒ w ∈ Df (s
′).

Not only is gross substitutability sufficient for the existence of a stable alloca-
tion but it also guarantees that the set of stable allocations has a lattice structure.
If workers are gross substitutes for firms, then the set of stable allocation forms
a lattice with respect to the preferences of workers (Blair, 1988). In particular,
there is a unique stable allocation that is most preferred by all workers among
all stable allocations. We call this allocation the worker-optimal stable allo-
cation. It can be found by the salary adjustment process13 that is defined
as follows. The salary adjustment process for market (D,�) is parameterized by
sequences of offer vectors ((si(t))i∈F∪W )t=0,1,...,T for each firm and worker. An
offer vector for a firm f is a vector sf (t) ∈ SW and an offer vector for a worker
w is a vector sw(t) ∈ (S ∪ {0})F . We call (si(0))i∪W the initial offer vectors and
(si(T ))i∈F∪W the terminal offer vectors of the process. Initial offer vectors are
defined by sf (0) := (σ̄)w∈W for each f ∈ F and by sw(0) = (σ̄)f∈F for each w ∈ W .
All other offer vectors are calculated throughout the process. The offer vectors are
updated in rounds t = 0, 1, . . . , T as follows. Each round t consists of four steps.

1. Each worker applies to his favorite firms under salaries sw(t) or stays alone,
if he finds no firm acceptable under these salaries. We use the convention
that workers never apply to any firm under salary 0.

2. We update the offer vectors for firms. For each f ∈ F , we let sf (t) ∈ SW be
the vector of lowest salaries under which the workers have applied to f up
to and including round t (with (sf (t))w = σ̄ if w never has applied to f).

3. Each firm f is tentatively matched to the workers Df (sf (t)). If w has ap-
plied to f in round t, but is not tentatively matched to f , we say that w’s
application in round t was rejected by f .

4. If no applications has been rejected in round t, then the process finishes and
we permanently match each firm f to its tentative matches under the salaries
prescribed in the firm’s offer vector.

13For the more general model with arbitrary contracts, this is called the cumulative offer
process. As Hatfield and Milgrom (2005), we consider a version of the process were multiple
workers per round make new applications. We could also consider a version of the process were
applications are made subsequently. If workers are gross substitutes for firms, then this will yield
the same outcome (Hirata and Kasuya, 2014).
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t sw1(t) sw2(t) sw3(t) sf1(t) sf2(t) rejections tentative matching

0

(
2
2

) (
2
2

) (
2
2

) 2
2
2

 2
2
2

 f1 rejects w1 and w3

f2 rejects w2
∅

1

(
1
2

) (
2
1

) (
1
2

) 2
2
2

 2
2
2

 f1 rejects w2

f3 rejects w1 and w3
∅

2

(
1
1

) (
1
1

) (
1
1

) 1
2
1

 2
1
2


f1 rejects w3

µ(f1) = {w1}
µ(f2) = {w2}

3

(
1
1

) (
1
1

) (
0
1

) 1
2
1

 2
1
1


f2 rejects w2

µ(f1) = {w1}
µ(f2) = {w3}

4

(
1
1

) (
1
0

) (
0
1

) 1
1
1

 2
1
1

 µ(f1) = {w1, w2}
µ(f2) = {w3}

Table 1: The salary adjustment process for Example 1.

Otherwise, for each worker w we let sw(t + 1) be the vector of the highest
salaries under which w has not been rejected up to and including round t
(with (sw(t+ 1))f = 0, if w has been rejected by f under all salaries) and we
go to round t+ 1.

The following simple example illustrates the procedure:

Example 1. Let F = {f1, f2}, W = {w1, w2, w3} and S = {1, 2}. Firm f1 has the
demand function Df1 defined by

Df1(s) =


{w1, w2}, if s1 = s2 = 1,

{w1}, if s1 = 1, s2 = 2,

{w2}, if s1 = 2, s2 = 1,

∅, if s1 = s2 = 2.

Firm f2 has the demand function Df2 defined by

Df2(s) =


{w2}, if s2 = 1, s3 = 2,

{w3}, if s3 = 1,

∅, else.

Workers have preferences:

(f1, 2) �w1 (f2, 2) �w1 (f1, 1) �w1 (f2, 1) �w1 ∅,
(f2, 2) �w2 (f1, 2) �w2 (f2, 1) �w2 (f1, 1) �w2 ∅,
(f1, 2) �w3 (f2, 2) �w3 (f1, 1) �w3 (f2, 1) �w3 ∅.
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Table 1 describes the salary adjustment process for this market. The final alloca-
tion of the process matches workers w1 and w2 to firm f1 and worker w3 to firm
f2. Each worker receives a salary of 1.

In general, the salary adjustment process does not need to converge to a feasible
allocation. It could be the case that a worker w applies in some round to some
firm f which tentatively accepts the worker, but another firm f ′ wants to accept
an application made by w to f ′ in an earlier round that f ′ had previously rejected.
Thus, in the final allocation multiple firms could be matched to the same worker.
Gross substitutability rules out this possibility, since it guarantees that firms will
never want to recall applications made in previous rounds. Moreover, by the
definition of the process, if the outcome of the process is feasible then it is stable as
well. Later we will see that weaker conditions than gross substitutability guarantee
the convergence to a feasible (and stable) allocation. Let D be a demand profile
such that the salary adjustment process converges to a feasible outcome for any
preference profile. Then the salary adjustment mechanism for D assigns to
each �∈ RW the outcome of the salary adjustment process in (D,�).

Worker-optimality is related to strategy-proofness. Under gross substitutability
and the following additional condition on the firms’ demand functions the salary
adjustment mechanism is strategy-proof (Hatfield and Milgrom, 2005).

Law of Aggregate Demand. For salary vectors s, s′ ∈ SW

s ≤ s′ ⇒ |Df (s)| ≥ |Df (s
′)|.

The following proposition summarizes known results about side-optimal stable
allocations, the invariance of the set of matched workers in stable allocations (the
rural hospitals theorem), and (group)-strategy-proofness.

Proposition 1 (Kelso and Crawford, 1982; Blair, 1988; Hatfield and Milgrom,
2005; Hatfield and Kojima, 2009).

1. If workers are gross substitutes for firms, then the salary adjustment process
converges to a stable allocation that is most preferred by all workers among
all stable allocations.

2. If demand functions satisfy, moreover, the law of aggregate demand, then

(a) the set of employed workers is the same in all stable allocations,

(b) the salary adjustment mechanism is (group)-strategy-proof.
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3 Results

3.1 Virtual Demand Functions

It is a natural question whether the conditions of Section 2.2 for the stability
and strategy-proofness of the salary adjustment process are also necessary. Next
we provide a counter example showing that gross substitutability and the law of
aggregate demand are not necessary for the salary adjustment mechanism to be
stable and strategy-proof. The example will have the following structure: There
is one firm f for which workers are not gross substitutes. For each firm except for
f , workers are gross substitutes and the law of aggregate demand holds. However,
f ’s demand function can be replaced by another demand function, such that

1. the outcome of the salary adjustment process is the same under the original
demand profile and the profile where f ’s demand function is replaced,

2. under the replacing demand function, workers are gross substitutes for f and
the law of aggregate demand holds.

The salary adjustment mechanism is stable and strategy-proof both for the original
market and the market where we have replaced f ’s demand function by the virtual
demand function.

Example 2. Let W = {w1, w2, w3} and f ∈ F be a firm. Suppose firms F \{f} have
demand functions D−f = (Df ′)f ′ 6=f under which workers are gross substitutes and
the law of aggregate demand holds. For firm f we consider two different demand
functions Df and D∨f that are defined as follows:

Df (s) =


{w1, w2, w3}, if s = (1, 1, 1),

{w2}, if s 6= (1, 1, 1) and s2 ≤ 2,

∅, else.

D∨f (s) =

{
{w2}, if s2 ≤ 2,

∅, else.

Note that under Df workers are not gross substitutes as w3 ∈ Df (1, 1, 1) =
{w1, w2, w3} but w3 /∈ Df (2, 1, 1) = {w2} and that under D∨f workers are gross
substitutes.

Let �∈ RW . We show that the salary adjustment in the market (Df , D−f ,�)
and the salary adjustment process in the market (D∨f , D−f ,�) converge to the
same allocation. Observe that the demand functions Df and D∨f differ only at the
salary vector (1, 1, 1). Thus, for the salary adjustment processes to differ in the
two markets, workers w1, w2 and w3 must all apply to f under salary 1 during the
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salary adjustment process in (D,�). Note however that before w2 applies to f
under salary 1, he applies to f under salary 2. But once the process tentatively
matches w2 to f under salary 2, the firm will not subsequently drop the worker
w2 or accept additional workers. Thus, w2 will never apply to f under salary
1. Hence, the salary adjustment processes in the two markets converge to the
same allocation, which is the worker-optimal stable allocation in (D∨f , D−f ,�).
By Proposition 1, the salary adjustment mechanism for (D∨f , D−f ) is strategy-
proof and (D∨f , D−f )-stable. The argument above implies that the mechanism is
D-stable as well. Thus, there is a D-stable and strategy-proof mechanism.

The argument in the example can be made more generally. Subsequently, we
will define for each demand function a corresponding virtual demand function. To
define the virtual demand function D∨f for a demand function Df , we consider a
market with only one firm f and workers W . Thus, we have an auction rather
than a matching market. Since there is only one firm, the workers’ preferences
are determined by their reservation salaries, i.e. the smallest salaries under
which the workers are willing to work for f . Suppose now that we run the salary
adjustment process in the market consisting of firm f with demand functionDf and
workers with reservation salaries s ∈ SW . Let s∨ be the terminal offer vector for
firm f in the salary adjustment process under reservation salaries s. In the terminal
allocation f is matched to Df (s

∨). We define the virtual demand function for
Df to be the demand function D∨f : SW → 2W where D∨f (s) := Df (s

∨).

Example 2 (cont.). To see that

D∨f (s) =

{
{w2}, if s2 ≤ 2,

∅, else

satisfies the definition of a virtual demand function, note that for each s =
(s1, s2, s3) with s2 ≤ 2 a descending auction will terminate in an allocation that
matches w2 to f under salary 2 i.e. for s2 ≤ 2 we have s∨ = (s1, 2, s3) and
Df (s

∨) = {w2}. Otherwise, the terminal assignment is empty, i.e. for s2 > 2
we have s∨ = s and Df (s

∨) = ∅.
In the following, we indicate for each property of a demand function that the

property holds for the virtual demand function by adding the adjective “virtual”.
Thus, we say that workers are virtual gross substitutes for firm f if they are
gross substitutes according to the virtual demand function. Similarly, we talk
about the virtual law of aggregate demand, the virtual IRC etc. For a
demand profile D = (Df )f∈F we call D∨ = (D∨f )f∈F the virtual demand profile
for D and for a market (D,�) we call the market (D∨,�) the virtual market.

As illustrated by Example 2, demand and virtual demand can differ. However,
in two important cases they coincide. Later, in Section 4.2.1, we will show that
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demand and virtual demand coincide for demand functions induced by quasi-linear
profit function. Moreover, demand and virtual demand agree for demand functions
under which workers are gross substitutes and the law of aggregate demand holds.
Both results follow from a more general result. We say that a demand function
Df satisfies the law of demand invariance if for s, s′ ∈ SW with s−w = s′−w and
sw < s′w we have

w ∈ Df (s
′)⇒ Df (s) = Df (s

′).

Proposition 2. If the demand function Df satisfies the law of demand invariance,
then the demand function and the virtual demand function coincide Df = D∨f . If
the demand function satisfies gross substitutability and the law of aggregate de-
mand, then it satisfies the law of demand invariance.

3.1.1 Stability

Next we relate stability in the virtual market to stability in the original market.
In the following we say that workers are virtual gross substitutes in the market
(D,�), if the virtual gross substitutes conditions holds for each firm f ∈ F at
all individually rational salary vectors, i.e. at all salary vectors that only contain
salaries under which workers prefer to work for f to their outside option. Similarly,
we say that virtual IRC, the virtual law of aggregate, etc. hold in the market (D,�)
if those properties hold for individually rational salary vectors.

Proposition 3. Let D be a demand profile, D∨ its virtual version and � a prefer-
ence profile. If in the market (D,�), workers are virtual gross substitutes for firms
and virtual IRC holds, then the outcome of the salary adjustment process in the
original market (D,�) and in the virtual market (D∨,�) is the same and stable
in both markets.

3.2 A Maximal Domain Result

In this section, we show that the domain of demand functions, such that workers
are virtual gross substitutes for firms and the virtual law of aggregate demand
holds, is a maximal Cartesian domain for the existence of a stable and strategy-
proof mechanism. This means that if we choose a demand profile D = (Df )f∈F
such that each Df has the two properties, then the salary adjustment mechanism
is well-defined, stable, and strategy-proof. On the other hand, if either of the
conditions fails for the demand function of a firm f , then we can define unit
demand functions D−f = (Df ′)f ′ 6=f

14 for the other firms such that for the profile

14A unit demand function is a demand function, such that the firm demands at most one
worker at each salary vector, i.e. for each s ∈ SW we have |Df ′(s)| ≤ 1. This implies in particular
that workers are gross substitutes for the firm.
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D = (Df , D−f ) there is no D-stable, strategy-proof mechanism.
The following lemma will be useful in the proof of the maximal domain result.

It states that stable and strategy-proof mechanisms are unique whenever they
exist. Similar results are known for the classical matching model (Alcalde and
Barberà, 1994) and the model with contracts (Hirata and Kasuya, 2015).

Lemma 2. Let D be a demand profile. If there is a D-stable and strategy-proof
mechanism, then it is unique. For each profile �∈ RW such that in the market
(D,�) workers are virtual gross substitutes for firms and virtual IRC holds, the
stable and strategy-proof mechanism implements the worker-optimal stable alloca-
tion in the virtual market (D∨,�).

With the lemma we can proof our main result for ordinal markets.

Theorem 1. The domain of demand functions under which workers are virtual
gross substitutes and the virtual law of aggregate demand holds is maximal for the
existence of a stable and strategy-proof mechanism.

1. Let D be a demand profile such for each firm workers are virtual gross sub-
stitutes and the virtual law of aggregate holds. Then, there is a D-stable
and (group)-strategy-proof mechanism. The mechanism implements for each
preference profile � the worker-optimal stable allocation in the virtual market
(D∨,�).

2. Let Df be a demand function such that workers are not virtual gross substi-
tutes or the virtual law of aggregate demand fails. Then, there are unit de-
mand functions D−f for the other firms, such that no D-stable and strategy-
proof mechanism exists.

4 Quasi-linear Profit Functions

Next, we spell out the implications of the previous result for the quasi-linear case.
In the quasi-linear set-up, demand functions are obtained by the maximization of
profit functions where salaries enter linearly (and negatively) in the profit. We do
not assume quasi-linearity for workers’ preferences. If a worker prefers to work for
a firm f under a salary σ to working for another firm f ′ under a salary of σ′, he
may nevertheless prefer to work for f ′ instead of f , if both salaries σ and σ′ are
raised by the same amount.

For the special case of quasi-linear profit functions, we will see that demand
and virtual demand agree. It is then a straightforward consequence of the proof of
Theorem 1 that gross substitutes profit functions are a maximal domain of quasi-
linear profit functions for the existence of a stable allocation. We state two versions
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of the maximal domain result: one discrete version where salaries are restricted to
discrete units and one continuous version where salaries can be arbitrary positive
real numbers. Thus, we prove a converse to both existence results of Kelso and
Crawford (1982). For the continuous model, a similar result was obtained by Gul
and Stacchetti (1999).

In contrast to the result of the previous section, the domain is maximal for the
existence of a stable allocation. However, in the quasi-linear case, gross substi-
tutability is also sufficient for the existence of a stable and strategy-proof mecha-
nism. Thus, the domain is maximal for the existence of a stable and strategy-proof
mechanism as well. Again we obtain two versions of this result, one for the dis-
crete model and one for the continuous model. The result for the continuous model
generalizes previous results by Hatfield et al. (2014). On the way to proving the
result for the continuous model, we will establish continuous counter-parts to the
existence result for a worker-optimal stable allocation and the rural hospitals the-
orem.

4.1 Model

The following model is the original job matching model of Kelso and Crawford
(1982). As before, we consider a finite set of firms F and a finite set of workers
W . Each firm f has a production function yf : 2W → R that assigns to each
set of workers the gross product of the workers working for the firm f measured
in the same unit as salaries. We assume that yf (∅) = 0. If f hires workers W ′

under salaries s ∈ RW ′
++, then f ’s (net) profit is

πf (W
′, s) := yf (W

′)−
∑
w∈W ′

sw.

Each worker w has a utility function uw : (F × R++) ∪ {∅} → R that is
continuous and strictly increasing in salaries.

A continuous (quasi-linear) market is a pair (y, u) consisting of a produc-
tion profile y = (yf )f∈F and a utility profile u = (uw)w∈W . A discrete (quasi-
linear) market is a triple (y, u, σ0) consisting of a production profile y, a utility
profile u, and a smallest salary increment σ0 ∈ R++.

Continuous and discrete markets only differ in so far as salaries in discrete
markets are restricted to integer-multiples of the smallest salary increment.15 More
precisely, an allocation in a continuous market, is any pair (µ, s) consisting of a

matching µ and a salary schedule s ∈ Rµ(F )
++ . We denote the set of allocations

in continuous markets by A. An allocation in a discrete market with smallest

15More generally, all subsequent results would hold for arbitrary discrete salary spaces. We
restrict ourselves to the case with uniform salary increments for notational convenience.
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increment σ0 is a (µ, s) ∈ A such that for each w ∈ µ(F ) we have sw = k · σ0 for
some k ∈ N. We denote the set of allocations for discrete markets with increment
σ0 by A(σ0). For notational convenience, we extend the domains of firms’ profit
functions and of workers’ utility functions to the domain of allocations in the usual
way; for each f ∈ F we let

πf (µ, s) = πf (µ(f), sf ),

and for each w ∈ W we let

uw(µ, s) = uw(µ(w), sw).

A discrete market (y, u, σ0) has no ties if workers are never indifferent between
different assignments, i.e. for allocations (µ, s), (µ′, s′) ∈ A(σ0) for each w ∈ W we
have

µ(w) 6= µ′(w)⇒ uw(µ, s) 6= uw(µ′, s′)

and firms have single-valued demand, i.e. for each f ∈ F and s ∈ SW := {σ0, 2σ0, 3σ0, . . . , σ̄}W
there is a unique W ′ ⊆ W with

πf (W
′, s) = max

W̃⊆W
πf (W̃ , s).

Discrete market without ties are the generic case in the sense that almost every
discrete market has no ties. A discrete market (y, u, σ0) without ties can be con-
sidered to be a special case of the ordinal markets studied in the previous sections.
Let σ̄ > maxf∈F,W ′⊆W yf (W

′) be an integer-multiple of σ0 and define a set of
possible salaries by S := {σ0, 2σ0, 3σ0, . . . , σ̄}. Define for each f ∈ F a demand
function Df : SW → 2W by

Df (s) := argmaxW ′⊆Wπf (W
′, s) (1)

and for each w ∈ W a strict preference relation �w over (F × S) ∪ {∅} by

(µ, s) �w (µ′, s′) :⇔ uw(µ, s) > uw(µ′, s′).

We call (D,�) the ordinal market corresponding to (y, u, σ0).

4.1.1 Stability

We introduce two stability notions for quasi-linear markets. Strict core stability
corresponds to the stability notion that we have considered earlier, in the sense that
for discrete markets without ties, strict core allocations are the stable allocations in
the corresponding ordinal market. We also introduce the weaker stability notion of
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core stability, because for markets with ties, strict core allocations sometimes fail
to exist while core allocations do exist. For continuous markets the two stability
notions agree.

We define the stability notions for a continuous market. The definitions carry
over to a discrete market by requiring that all salaries occurring in the definitions
are integer-multiples of the salary increment. Let (y, u) be a continuous market.
Allocation (µ, s) is

individually rational if for each f ∈ F and W ′ ⊆ µ(f) we have πf (µ, s) ≥
πf (W

′, s) and for each w ∈ W we have uw(µ, s) ≥ uw(∅).

strictly blocked by firm f ∈ F and workers W ′ ⊆ W with salaries s′ ∈ RW ′
++

if πf (W
′, s′) > πf (µ, s) and uw(f, s′w) > uw(µ, s) for each w ∈ W ′.

blocked by firm f ∈ F and workers W ′ ⊆ W with salaries s′ ∈ RW ′
++ if

πf (W
′, s′) ≥ πf (µ, s) and uw(f, s′w) ≥ uw(µ, s) for each w ∈ W ′ and at least

one of the inequalities is strict.

in the core of (y, u) if it is individually rational and not strictly blocked by
any firm and group of workers

in the strict core of (y, u) if it is individually rational and not blocked by
any firm and group of workers.

We denote the set of core allocations in (y, u) by C(y, u) and the set of core alloca-
tions in (y, u, σ0) by C(y, u, σ0). As utility and profit functions are continuous and
strictly increasing in salaries, the set C(y, u) is also the set of strict core allocation
in (y, u).

One readily checks that the strict core allocations in a discrete market without
ties are just the stable allocations in the corresponding ordinal market.

Lemma 3. For discrete markets without ties, an allocation is in the strict core if
and only if it is stable in the corresponding ordinal market.

Core allocations in discrete and continuous markets are related as follows. If an
allocation is in the core of a continuous market and the salaries in the allocation
are integer-multiple of some increment σ0, then it is also in the core of the discrete
market with minimal salary increment σ0. On the other hand, core allocations in
continuous markets can be approximated by core allocations in discrete markets in
the following sense. We say that a sequence of allocations (µt, st)t=0,1,... converges
to an allocation (µ, s) if the sequence of matrices (M t)t=0,1,... ⊆ RF×W defined by

mt
fw :=

{
stw, if µt(w) = f,

0, if µt(w) 6= f,
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converges to the matrix M defined by

mfw :=

{
sw, if µ(w) = f,

0, if µ(w) 6= f,

in RF×W . With this definition, we have the following lemma that will be use-
ful when relating mechanisms for discrete markets to mechanisms for continuous
markets..

Lemma 4. Let (σ0(t))t=0,1,... be a sequence of salary increments with limt→∞ σ0(t) =
0 and {(µt, st)}t=0,1,... be a sequence of allocations with (µt, st) ∈ C(y, u, σ0(t)). If
the sequence {(µt, st)}t=0,1,... converges, then limt→∞(µt, st) ∈ C(y, u).

4.2 Maximal Domain Results

4.2.1 Discrete Markets without Ties

A maximal domain result for markets without ties follows from the proof of The-
orem 1 by observing that for quasi-linear profit functions, demand and virtual
demand agree.

Lemma 5. Let πf be a quasi-linear profit function that has no ties for salaries
that are integer-multiples of σ0. Then the demand and virtual demand induced by
πf agree.

The following theorem is a counterpart to Theorem 4 of Kelso and Crawford
(1982). It follows from the previous lemma and Claim 3 in the proof of Theorem 1.

Theorem 2. The domain of quasi-linear profit functions such that workers are
gross substitutes is a maximal domain of quasi-linear profit functions that guarantee
the existence of a strict core allocation in discrete markets without ties.

1. In each discrete market without ties such that workers are gross substitutes
for firms, there is a strict core allocation.

2. Let yf be a production function such that πf has no ties when salaries are
integer-multiples of σ0 and such that workers are not gross substitutes for
firm f . Then there exists unit demand production functions16 y−f and utility
functions u such that (y, u, σ0) has no ties and no strict core allocation in
(y, u, σ0) exists.

16Unit demand production functions are those that induce unit demand functions. Alterna-
tively, we can now define a unit demand production function as a production function, such
that yf (W ′) = maxw∈W ′ yf ({w}) for each W ′ ⊆W with W ′ 6= ∅. This definition will carry over
to the case with ties that we discuss later.
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4.2.2 Continuous Markets and Discrete Markets with Ties

The construction in the proof of Theorem 3 generalizes straightforwardly to the
continuous model. To state and prove the result for the continuous model, we
have to generalize the gross substitutes condition to the continuous model. The
only difference is that we now have to deal with demand correspondences rather
than demand functions. A production function yf induces a demand correspon-
dence Df : RW

++ ⇒ 2W that is defined for each s ∈ RW
++ by Equation 1. Note

that there now can be multiple profit maximizing bundles of workers, i.e. Df (s)
can have multiple values Df (s) ⊆ 2W . Following Kelso and Crawford (1982), we
define gross substitutability for the demand correspondence as follows.

Gross Substitutability with Ties: For each worker w′ ∈ W and salary vec-
tors s, s′ ∈ RW

++ with s′−w′ = s−w′ and sw′ < s′w′ the following holds: For each
W ′ ∈ Df (s) there exists a W ′′ ∈ Df (s

′) such that W ′ \ {w′} ⊆ W ′′.

The following theorem is a counterpart to Theorem 2 of Kelso and Crawford
(1982).

Theorem 3. The domain of quasi-linear profit functions such that workers are
gross substitutes is a maximal domain of quasi-linear profit functions that guarantee
the existence of a (strict) core allocation in continuous markets.

1. In each continuous market such that workers are gross substitutes for firms,
there is a (strict) core allocation.

2. Let yf be a production function such that workers are not gross substitutes for
firm f . Then there exist unit demand production functions y−f and utility
functions u such that no (strict) core allocation in (y, u) exists.

In discrete markets with ties, the strict core can be empty, even if workers are
gross substitutes for firms.17 However, core allocations still exist in this case (see
Theorem 1 of Kelso and Crawford, 1982). It is a natural question, whether gross

17The following market is a simple example. Let F = {f} and W = {w1, w2}. Salaries are
restricted to integers, σ0 = 1. Define yf by yf ({w1}) = yf ({w2}) = 1.1 and yf (W ′) = 0 for
all other W ′ ⊆ W . Choose utility functions such that for w = w1, w2 we have uw(f, 1) >
uw(∅). Since salaries are integer-valued, there are three individually rational allocations. The
empty allocation, the allocation where worker w1 is matched to the firm under salary 1, and the
allocation where worker w2 is matched to the firm under salary 1. The first allocation is blocked
by the firm and either of the two workers with salary 1, the second allocation is blocked by the
firm (which is indifferent) and worker w2, the third allocation is blocked by the firm (which is
indifferent) and the worker w1. Hence there is no strict core allocation. There are, however, two
core allocations: One where f is matched to w1 under salary 1 and one where f is matched to
w2 under salary 1.
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substitutes profit functions form a maximal domain of quasi-linear profit functions
for the existence of core allocations in discrete markets. In general, the answer to
this question is negative as the following example demonstrates.

Example 3. Let f ∈ F and W = {w1, w2, w3}. Define a production function
yf : 2W → R by

yf (W
′) :=


3.4, if w1, w2, w3 ∈ W ′,

1.3, if w1 ∈ W ′ and (w2 /∈ W ′ or w3 /∈ W ′),

0, else.

Under salaries (1, 1, 1), the firm chooses all workers, but under salaries (1, 1, 2), it
chooses only worker w1 and in particular not worker w2.

Suppose salaries are restricted to integer values, σ0 = 1. Consider production
functions y−f such that workers are gross substitutes for the other firms, and a
utility profile u. We claim that there is a core allocation in (y, u, 1). To see this,
consider the modified production function ỹf : 2W → R such that ỹf (W

′) = 1.3
if w1 ∈ W ′ and ỹf (W

′) = 0 otherwise. Under ỹf workers are gross substitutes for
firm f . Thus, there is a core allocation (µ, s) in (ỹf , y−f , u, 1). We show that (µ, s)
is in the core of (y, u, 1) as well.

Suppose for the sake of contradiction that the allocation (µ, s) is strictly blocked
in (y, u, 1). The only possible blocking coalition consists of f and workers w1, w2, w3.
By individual rationality of (µ, s) in (ỹf , y−f , u, 1) we either have µ(f) = {w1}
and sw1 = 1 or µ(f) = ∅. In the first case, firm f has to pay worker w1 a
salary of 2 to make w1 strictly better off than in (µ, s). In the second case, we
have uw1(µ, s) ≥ uw1(f, 1) since otherwise f and w1 would strictly block (µ, s) in
(ỹf , y−f , u, 1). Thus, in the second case, firm f has to pay worker w1 a salary of
at least 2 to make w1 strictly better off than in (µ, s). Moreover, in both cases,
firm f has to pay the workers w2 and w3 salaries of at least 1 to block. But
πf ({w1, w2, w3}, 2, 1, 1) = −0.6 < 0 = min{πf (∅), πf ({w1}, 1)} ≤ πf (µ, s). Thus,
f and w1, w2, w3 block in neither case. Hence (µ, s) is in the core of (y, u, 1).

The above example shows that there can exist core allocations in markets with
complementarities, provided that the salary space is very coarse. However, we
obtain a maximal domain result, if we require additionally that salary increments
are “small enough”. The following result is a counterpart to Theorem 2 of Kelso
and Crawford (1982) and follows directly from Theorem 3.

Corollary 1. The domain of quasi-linear profit functions such that workers are
gross substitutes is a maximal domain of quasi-linear profit functions for the exis-
tence of a core allocation in discrete markets with small salary increments.

1. In each discrete market such that workers are gross substitutes for firms,
there is a core allocation.
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2. Let yf be a production function such that workers are not gross substitutes
for firm f . Then there exist unit demand production functions y−f , utility
functions u and a σ′0 ∈ R++ such that for each σ0 < σ′0 no core allocation in
(y, u, σ0) exists.

4.3 Strategy-proofness

In the previous section, we dealt with stability alone and did not consider strategy-
proofness. In the following, we show that for quasi-linear markets, stable and
strategy-proof mechanisms exist, if workers are gross substitutes for firms.

First we adapt the notion of a stable and strategy-proof mechanism to the
modified set-up. Let U be the set of all utility functions that are continuous and
strictly increasing in salaries. A mechanism (for the workers) is a mapping from
utility profiles to allocations M : UW → A. Mechanism M is strategy-proof, if
it is a weakly dominant strategy for workers to report their true utility function
to the mechanism, i.e. for each w ∈ W , u−w ∈ UW\{w} and uw, u

′
w ∈ U we have

uw(M(uw, u−w)) ≥ uw(M(u′w, u−w)).

Let y be a production profile and σ0 ∈ R++ a salary increment. Mechanism M is
(y, σ0)-core-stable, if for each u ∈ UW we have M(u) ∈ C(y, u, σ0). Mechanism
M is y-core-stable if for each u ∈ UW we have M(u) ∈ C(y, u).

The intuition why we get strategy-proofness “for free” in the quasi-linear case
lies in the fact that gross substitutability implies the law of aggregate demand for
quasi-linear profit functions. More precisely, we can define the law of aggregate
demand for correspondences and then observe that in the quasi-linear case, gross
substitutability implies the law of aggregate demand.

Law of Aggregate Demand with Ties. For salary vectors s, s′ ∈ RW
++ with

s ≤ s′ and each W ′ ∈ Df (s) there exist a W ′′ ∈ Df (s
′) such that |W ′| ≥ |W ′′|.

With this definition, we have the following result due to Hatfield and Milgrom
(2005).

Proposition 4 (Hatfield and Milgrom, 2005). For each quasi-linear profit func-
tion such that workers are gross substitutes, the induced demand correspondence
satisfies the law of aggregate demand.

4.3.1 Discrete Mechanisms

First we consider the discrete model. To define a mechanism we have to deal
with tie-breaking. We show that if workers are gross substitutes for firms, then
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for each σ0 ∈ R++ there exists a profile Dσ0 of well-behaved demand functions
defined for salaries that are integer multiples of σ0 that select from the demand
correspondences induced by yf . The demand functions are well-behaved in the
sense that for each firm, workers are gross substitutes and the law of aggregate
demand holds. The demand profile Dσ0 can be used to define a mechanism: First,
if necessary, ties in workers’ reported utilities u are broken according to some
prescribed tie-breaking procedure to obtain a profile of strict worker preferences
�. Second, the salary adjustment process is run in the market (Dσ0 ,�).

We show now that Proposition 4 implies that there exists a well-behaved and
single-valued selection from the demand correspondence.18 The existence of well-
behaved demand functions follows by a perturbation argument. A production
function yf can be slightly perturbed such that the demand induced by the per-
turbed production function ỹf becomes single-valued on the discrete salary grid
under consideration. If the perturbation is small, then the demand D̃f induced
by ỹf is a selection from the demand Df induced by yf . The gross substitutes
condition and the law of aggregate demand for D̃f follow from the two properties
for the unperturbed demand Df .

Lemma 6. Let yf be a production profile such that workers are gross substitutes
for firm f and let S ⊆ R++ be finite. Then there exists a demand function D̃f :
SW → 2W such that

1. D̃f is a selection from the demand correspondence Df induced by yf , i.e. for
each s ∈ SW we have D̃f (s) ∈ Df (s).

2. under D̃f , workers are gross substitutes and the law of aggregate demand
holds.

Lemma 6 allows to define a core-stable and strategy-proof mechanism.

Proposition 5. Let y be a production function such that workers are gross sub-
stitutes for firms, then for each σ0 ∈ R++ there exists a (y, σ0)-core-stable and
strategy-proof mechanism.

18We remark, however, that not every single-valued selection has to be well-behaved. Con-
sider, for example, the following production function for a market with two workers w1, w2:
yf ({w1, w2}) = 5, yf ({w1}) = 3, yf ({w2}) = 3, yf (∅) = 0. Workers are gross substitutes for
f . Suppose salaries are restricted to integer values. The demand correspondence induced by
yf can be multi-valued for integer salaries. We have e.g. Df (1, 2) = {{w1}, {w1, w2}} and

Df (2, 2) = {{w1}, {w2}, {w1, w2}}. Now suppose we choose a single valued selection D̃f from

Df , such that D̃f (1, 2) = {w1} but D̃f (2, 2) = {w1, w2}. The selection violates the law of
aggregate demand.
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4.3.2 Continuous Mechanisms

Finally, we consider the continuous model. In this case, we can define a core
stable and strategy-proof mechanism by using limit arguments. First we show
that the existence of a worker-optimal strict core allocation in discrete markets
without ties (Part 1 of Proposition 1) implies the existence of a worker-optimal
core allocation in continuous markets. Similarly, we can derive a version of the
rural hospitals theorem for continuous markets from its discrete counterpart (Part
2.(a) of Proposition 1).

Theorem 4. In each continuous market such that workers are gross substitutes
for firms,

1. there exists a core allocation that is most preferred by all workers among all
core allocations,

2. if a worker is unemployed in one core allocation, then in all other core al-
locations he is either unemployed or indifferent between his assignment and
being unemployed.

In contrast to the discrete model, worker-optimal core allocations do not need
to be unique. There can be continuous markets with multiple worker-optimal
core allocations. However, all workers are indifferent between all of these worker-
optimal allocations. A simple example is the following.

Example 4. Let F = {f1, f2} and W = {w1, w2}. Both firms have the same
production function yf : 2W → R for f = f1, f2, defined by yf (W

′) = 1 for W ′ 6= ∅
and yf (∅) = 0. Both workers have the same utility function uw(f, σ) = σ for
f = f1, f2, and w = w1, w2. There are two core allocations that are both worker-
optimal. The first allocation matches w1 to f1 under salary 1 and w2 to f2 under
salary 1. The second allocation matches w1 to f2 under salary 1 and w2 to f1
under salary 1. Both workers are indifferent between the two allocations.

Finally, we show that we can define a mechanism by selecting for each utility
profile one of the worker-optimal core allocations in such a way that the so-defined
mechanism is strategy-proof. The strategy-proofness of the mechanism follows
by a limit argument from Proposition 5. First we show that if the sequence of
allocations selected by the discrete mechanisms for a utility profile converges as
salary increments go to 0, then the limit allocation is a worker-optimal allocation
in the continuous market.

Lemma 7. Let y be a production profile such that workers are gross substitutes for
firms. Let (σ0(t))t=0,1,2,... be a sequence of salary increments with limt→∞ σ0(t) =
0 and let (Mt)t=0,1,2,... be a sequence of (y, σ0(t))-core-stable and strategy-proof
mechanisms. If for u ∈ UW the sequence of allocations (Mt(u))t=0,1,2,... converges,
then it converges to a worker-optimal core allocation in (y, u).
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In general, the sequence of allocations selected by the discrete mechanisms
does not need to converge as salary increments go to 0. The sequence could for
example oscillate between allocations that are close to different worker-optimal
core allocations if the market has several worker-optimal core allocations as in
Example 4. However, we can always choose (by the Bolzano-Weierstrass Theorem)
a converging subsequence and use the limit allocation of the subsequence to define
the mechanism. The strategy-proofness follows from the strategy-proofness of the
discrete mechanisms.

Theorem 5. Let y be a production profile such that workers are gross substitutes
for firms, then there exists a y-core-stable and strategy-proof mechanism.
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A Proof of Lemma 1

Proof. Let (µ, s) ∈ S(D,�). By definition (µ, s) is individually rational. More-
over, if there is a f ∈ F with Df (s̃f ) 6= µ(f), then f and Df (s̃f ) block (µ, s) via
s̃f .

For the opposite direction, let (µ, s) be individually rational and let Df (s̃f ) =
µ(f) for each f ∈ F . Suppose there are a firm f and a group of workers W ′ 6= µ(f)
that block (µ, s) via salary vector s′ ∈ SW . Without loss of generality, we may
assume that for w /∈ W ′ ∪ µ(f), we have s′w = σ̄. Under this assumption, s′ ≥ s̃f
with s̃|µ(f) = s′|µ(f). If s′f = s̃f , then W ′ = Df (s

′
f ) = µ(f) contradicting the

assumption that µ(f) 6= W ′. Otherwise, we can apply IRC repeatedly and ob-
tain a contradiction: Let s′w > s̃fw. Then w /∈ Df (s̃f ) = µ(f) and, by IRC,
Df (s̃f,−w, s

′
w) = Df (s̃f ) = µ(f). Repeatedly adjust salaries of un-demanded work-

ers to obtain, Df (s
′) = Df (s̃f ) = µ(f). Since µ(f) 6= W ′, this is a contradic-

tion.

B Proof of Proposition 2

Proof. Let s ∈ SW and s∨ ≥ s be the outcome of the salary adjustment process
for reservation salaries s. By definition of the salary adjustment process, for w /∈
Df (s

∨) we have sw = s∨w. Now transform s∨ into s by sequentially lowering salaries
of the workers w with s∨w > sw. In each step, the demand remains unchanged by
the law of demand invariance. Thus, Df (s

∨) = Df (s).
Next we show that the law of demand invariance is satisfied if workers are

gross substitutes and the law of aggregate demand holds. Let s, s′ ∈ SW with
s−w = s′−w and sw < s′w. If w ∈ Df (s

′), then, by gross substitutability, we have
Df (s) ⊆ Df (s

′). By the law of aggregate demand this implies Df (s) = Df (s
′).

C Proof of Proposition 3

Proof. We prove the result by induction on the length of workers’ preference lists.
For �∈ RW let `(�) :=

∑
w∈W |{(f, σ) ∈ F × S : (f, σ) �w ∅}|.

Induction Basis: For each �∈ RW with `(�) = 0, the only individually rational
allocation is the empty matching. Both the salary adjustment process in (D,�)
and in (D∨,�) converge to the empty matching which is stable in both markets.
Induction Assumption: For each �∈ RW with `(�) ≤ n the outcome of the
salary adjustment process in the market (D,�) and in the virtual market (D∨,�)
is the same and stable in both markets.
Induction Step: Let �∈ RW with `(�) = n+ 1. Since workers are virtual gross
substitutes for each firm and virtual IRC holds, Proposition 1 implies that the
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salary adjustment process in the virtual market converges to the worker-optimal
stable allocation (µ, s) in (D∨,�).

First, we consider the case that during the salary adjustment process in the
virtual market (D∨,�), some worker w does not apply to some firm f under the
acceptable salary σ, i.e.

. . . �w (µ(w), sw) �w (f, σ) �w . . . �w ∅ �w . . . .

Let �′w be obtained from �w by truncating �w after (µ(w), sw), i.e.

. . . �′w (µ(w), sw) �′w ∅ �′w (f, σ) �′w . . . .

Note that (µ, s) is also the worker-optimal stable allocation in the truncated vir-
tual market (D∨,�′w,�−w). By the induction assumption, the salary adjustment
process in the market (D,�′w,�−w) converges to (µ, s). We show that the salary
adjustment process in (D,�) converges to (µ, s) as well. Suppose not. Then dur-
ing the salary adjustment process in (D,�), firm µ(w) will reject an application
of w under salary sw. But up to that point, the salary adjustment process in
(D,�) and that in (D,�′w,�−w) and therefore, by the induction assumption, that
in (D∨,�′w,�−w) agree. However, if µ(w) rejects w under sw during the salary
adjustment process in (D∨,�′w,�−w), then, by virtual gross substitutability, µ(w)
will never accept an application by w under sw afterwards. This contradicts the
fact that µ(w) is matched to w under sw in the outcome of the salary adjustment
process (µ, s) in (D∨,�′w,�−w). Thus, (µ, s) is also the outcome of the salary ad-
justment process in (D,�). By the definition of the salary adjustment process, the
outcome of the salary adjustment process is stable whenever it is feasible. Thus,
(µ, s) is stable in (D,�).

Next we consider the case that during the salary adjustment process in the vir-
tual market (D∨,�), each worker applies to all firms under all acceptable salaries.
First we show that then, also during the salary adjustment in the original market
(D,�), each worker applies to all firms under all acceptable salaries. Suppose not.
Then there is a worker w for which the last firm f and salary σ under which he
applies during the salary adjustment process is ranked above the least-preferred
acceptable firm-salary combination (f ′, σ′), i.e.

(f, σ) �w (f ′, σ′) �w ∅.

Let �′w be obtained from �w by truncating �w after (f, σ). Since w applies only
to acceptable firm-salary combinations according to the truncated preferences �′w
during the salary adjustment process in (D,�), the salary adjustment process
in the original market (D,�) and that in the truncated market (D,�′w,�−w)
agree. Thus, the salary adjustment process in (D,�) converges, by the induction
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assumption, to the worker optimal stable allocation (µ′, s′) in (D∨,�′w,�−w) and
(µ′, s′) �w (f, σ) �w (f ′, σ′). But, then (µ′, s′) is also stable in the un-truncated
virtual market (D∨,�). Now recall that each worker applies to all firms under
all possible salaries during the salary adjustment process in (D∨,�). Thus, either
µ(w) = f ′ with sw = σ′ or µ(w) = ∅. Therefore (µ′, s′) �w (µ, s), contradicting
the worker-optimality of (µ, s) in (D∨,�). Thus, in the following we can assume
that each worker applies to all firms under all acceptable salaries during the salary
adjustment process in both the original and the virtual market.

For each f ∈ F , define a salary vector sf = (sfw)w∈W ∈ SW by

sfw := min({σ ∈ S : (f, σ) �w ∅} ∪ {∅}).

Since each worker applies to all firms under all acceptable salaries in the virtual and
in the original market, the vector sf is the terminal offer vector for f in the salary
adjustment processes in both markets. Since the salary adjustment process in the
virtual market converges to (µ, s), we have for each f ∈ F that D∨f (sf ) = µ(f).
It remains to show that for each f ∈ F we have Df (sf ) = µ(f) and thus (µ, s) is
also the outcome of the salary adjustment process in the original market.

Suppose for the sake of contradiction that there is a f ′ ∈ F with Df ′(sf ′) 6=
D∨f ′(sf ′) = µ(f ′). Consider the modified salary schedule s̃ where for each w ∈ µ(f ′)
we let s̃w = (sf ′)

∨
w and for w /∈ µ(f ′) we let s̃w = sw. Since µ(f ′) = D∨f ′(sf ′) 6=

Df ′(sf ′) we have s̃ 6= s. Next we show that (µ, s̃) ∈ S(D∨,�). Since s̃ ≥ s and
s̃ 6= s, this will be a contradiction with (µ, s) being the worker-optimal stable
allocation in (D∨,�). For each f ∈ F let s̃f be the minimal potential blocking
vector for (µ, s̃) under preferences � as defined in Lemma 1. For f ′ we have
s̃f ′ = s∨f ′ and by definition of D∨f ′ we have D∨f ′(s

∨
f ′) = D∨f ′(sf ′) = µ(f ′). For each

f 6= f ′ we have s̃f ≥ sf with s̃fw = sfw for w ∈ µ(f). Thus, by the virtual
IRC we have D∨f (s̃f ) = D∨f (sf ). Therefore Lemma 1 (again we implicitly use the
virtual IRC) implies (µ, s̃) ∈ S(D∨,�). We have reached a contradiction. Thus,
for each f ∈ F we have Df (sf ) = D∨f (sf ) = µ(f) and the allocation (µ, s) is also
the outcome of the salary adjustment process and stable in (D,�).

D Proof of Lemma 2

Proof. LetM,M′ be D-stable and strategy-proof mechanisms. We show that for
each �∈ RW we haveM(�) =M′(�) and if workers are virtual gross substitutes
under D for each firm, then M(�) is the worker-optimal stable allocation in the
virtual market (D∨,�). We prove the result by induction on the length of workers’
preference lists. For �∈ RW let `(�) :=

∑
w∈W |{(f, σ) ∈ F × S : (f, σ) �w ∅}|.

Induction Basis: For each �∈ RW with `(�) = 0, the empty matching is the
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only stable allocation in (D,�) and (D∨,�) and the lemma trivially holds.
Induction Assumption: For each �∈ RW with `(�) ≤ n we have M(�) =
M′(�). If workers are, moreover, virtual gross substitutes for each firm and virtual
IRC holds, then M(�) is the worker-optimal stable allocation in (D∨,�).
Induction Step: Let �∈ RW with `(�) = n + 1. Let (µ, s) := M(�) and
(µ′, s′) := M′(�). Suppose (µ, s) 6= (µ′, s′). Since (µ, s), (µ′, s′) ∈ S(D,�), there
is a w ∈ W such that either (µ′, s′) �w (µ, s) �w ∅ or (µ, s) �w (µ′, s′) �w ∅.

If (µ′, s′) �w (µ, s) �w ∅, then truncate w’s preferences after (µ′(w), s′w). If w
submits the truncated preferences �′w and everyone else submits preferences �−w,
then - by strategy-proofness ofM′ - w will receive the same assignment (µ′(w), s′w)
in M′(�) and M′(�′w,�−w). Furthermore, by the induction assumption, M′(�′w
,�−w) =M(�′w,�−w). But thenM(�′w,�−w) �wM(�), contradicting strategy-
proofness. Thus, there is no w ∈ W with (µ′, s′) �w (µ, s) �w ∅. A completely
analog argument shows that there is no w ∈ W with (µ, s) �w (µ′, s′) �w ∅.

Next assume that workers are virtual gross substitutes for each firm and virtual
IRC holds under D. Let (µ, s) :=M(�) and (µ′, s′) be the worker-optimal stable
allocation in (D∨,�). Suppose (µ, s) 6= (µ′, s′). By Proposition 3, (µ′, s′) is stable
in (D,�) as well. Since (µ, s), (µ′, s′) ∈ S(D,�), there is a w ∈ W such that either
(µ′, s′) �w (µ, s) �w ∅ or (µ, s) �w (µ′, s′) �w ∅.

If (µ′, s′) �w (µ, s) �w ∅, then truncate w’s preferences after (µ′(w), s′w). Note
that (µ′, s′) is also stable in the markets (D,�′w,�−w) and (D∨,�′w,�−w). By
the induction assumption,M(�′w,�−w) is the worker-optimal stable allocation in
(D∨,�′w,�−w). By strategy-proofness of M, worker w is unmatched in M(�′w
,�−w) since otherwise M(�′w,�−w) �wM(�). However, then (µ′, s′) �wM(�′w
,�) contradicting the worker-optimality of M(�′w,�−w) in (D∨,�′w,�−w).

If (µ, s) �w (µ′, s′) �w ∅, then truncate w’s preferences after (µ(w), sw).
By the induction assumption, M(�′w,�−w) is the worker-optimal stable alloca-
tion in (D∨,�′w,�−w). By strategy-proofness of M, Mw(�′w,�−w) = Mw(�).
Thus, M(�′w,�−w) is stable in (D∨,�) as well. But this contradicts the worker-
optimality of (µ′, s′) in (D∨ �).

E Proof of Theorem 1

The following lemma collects for future reference some observations about virtual
demand functions that follow immediately from their definition.

Lemma 8. Let Df be a demand function and s ∈ SW a vector of reservation
salaries. Let (s(t))t=0,...,T be the sequence of offer vectors for f in a market with
F = {f} and workers with reservation salaries s. Then

1. for each 0 ≤ t ≤ T , we have s(t)∨ = s(t) and therefore D∨f (s(t)) = Df (s(t)),
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2. for s∨ = s(T ) we have D∨f (s∨) = D∨f (s) = Df (s
∨). Moreover, for each

w /∈ D∨f (s) we have s∨w = sw.

Now we are ready to prove Theorem 1.

Proof of 1. By Proposition 3, the salary adjustment mechanism for D and for D∨

is the same and stable with respect to both demand profiles. By Proposition 1, it
is (group)-strategy-proof.

Proof of 2. Let Df be a demand function such that workers are not virtual gross
substitutes or the virtual law of aggregate demand fails. In the following, a viola-
tion is a pair of salary vectors (s, s′) such that there is a w′ ∈ W with s−w′ = s′−w′

and s′w′ = sw′ + 1 and at least one of the following two statements is true:

1. There is a w 6= w′ such that w ∈ D∨f (s) but w /∈ D∨f (s′). (violation of virtual
gross substitutability).

2. |D∨f (s)| > |D∨f (s′)| (violation of the virtual law of aggregate demand).

A violation (s̄, ¯̄s) ∈ SW ×SW is maximal if there is no violation (s, s′) with s ≥ s̄
and s 6= s̄. By finiteness of SW at least one such maximal violation exists. First
we show the for each maximal violation (s̄, ¯̄s) the following facts are true:

Claim 1. Let s, s′ ∈ SW be salary vectors with s′ ≥ s ≥ s̄. If for each w /∈ D∨f (s′)
we have sw = s′w, then D∨f (s) = D∨f (s′).

We prove the statement for the case where s and s′ differ only in the salary for
one worker w ∈ W . Repeated application of the special case, where salaries dif-
fer only for one worker, yields the general result where salaries differ for multiple
workers. Let (s(t))t=0,...,T and (s′(t))t=0,...,T ′ be the sequences of offer vectors for
f in the salary adjustment process for reservation salaries s and s′. Suppose
D∨f (s) 6= D∨f (s′). Since D∨f (s) 6= D∨f (s′), there is a τ such that for t ≤ τ we
have s(t) = s′(t) and such that s(τ + 1) 6= s′(τ + 1). Under reservation salaries
s, firm f rejects an application of w under salary s′w in round τ or a previous
round and worker w makes a new application to f in round τ + 1 under salary sw,
i.e. sw(τ) = s′w > sw(τ+1) = sw. Under reservation salaries s′ reapplying is not in-
dividually rational for w. Thus, under reservation salaries s′, salary s′w is the lowest
salary under which f receives an application from w. Thus, if we let τ ′ ≤ τ be the
round in which firm f rejects an application of w under salary s′w, the salary for w
remains unchanged for all subsequent rounds, s′w(t) = s′w for t ≥ τ ′. By Lemma 8,
we have Df (s

′(t)) = D∨f (s′(t)) for each 0 ≤ t ≤ T ′. Thus, as w’s application in
round τ ′ is rejected, we have w /∈ D∨f (s′(τ ′)) = Df (s

′(τ ′)). Now note that by the
maximality of the violation (s̄, ¯̄s) and as s′(T ′) ≥ s̄ and s′(T ′) 6= s̄, for all salary
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vectors s̃′ ≥ s̃ ≥ s′(T ) workers are virtual gross substitutes for f . Thus, if τ ′ 6= T ′,
then w /∈ D∨f (s′(τ ′)) = Df (s

′(τ ′)) implies w /∈ Df (s
′(τ ′ + 1)) = D∨f (s′(τ ′ + 1)). In

the same way, if τ ′ + 1 6= T ′, then w /∈ Df (s
′(τ ′ + 1)) = D∨f (s′(τ ′ + 1)) implies

w /∈ Df (s
′(τ ′ + 2)) = D∨f (s′(τ ′ + 2)) and so on. Iterating in this way, we obtain

w /∈ D∨f (s′(T )) = Df (s
′(T )) = D∨f (s′).

Claim 2. We have Df (s̄) = D∨f (s̄).

Suppose D∨f (s̄) 6= Df (s̄). Recall that s̄∨ is the terminal offer vector for f in
the salary adjustment process with reservation salaries s̄. We have two cases: Let
w ∈ W be the worker with s̄w 6= ¯̄sw. Then either s̄∨w ≥ ¯̄sw = s̄w + 1 or s̄∨w = s̄w.
In the first case, note that s̄∨ ≥ ¯̄s. Moreover, since s̄∨w > s̄w, Lemma 8 implies
that w ∈ D∨f (s̄∨). For w̃ 6= w such that w̃ /∈ D∨f (s̄) = D∨f (s̄∨), Lemma 8 im-
plies s̄∨w̃ = s̄w̃ = ¯̄sw̃. Thus, by Claim 1, D∨f (s̄∨) = D∨f (¯̄s). But by Lemma 8,
D∨f (s̄∨) = D∨f (s̄) contradicting the fact that D∨f (s̄) 6= D∨f (¯̄s).

In the second case, consider the vector s̃ := (s̄∨−w, ¯̄sw) ≥ ¯̄s. We show that for
w̃ /∈ D∨f (s̃) we have s̃w̃ = ¯̄sw̃: Clearly this is the case for w̃ = w. For w̃ 6= w,
suppose that s̃w̃ > s̄w̃ = ¯̄sw̃ but w̃ /∈ D∨f (s̃). Since (s̄, ¯̄s) is a maximal violation
and s̄∨ 6= s̄, the pair (s̄∨, s̃) is not a violation. Thus, virtual gross substitutability
implies that w̃ /∈ D∨f (s̄∨). However, since s̃w̃ > s̄w̃, Lemma 8 implies w̃ ∈ D∨f (s̄∨).
Thus, we have a contradiction.

The above two claims are true for any maximal violation. Next we go through
three different cases to establish the theorem.

1. There is a maximal violation (s̄, ¯̄s) for which the virtual gross substitutes
condition is violated.

2. For all s′ ≥ s ≥ s̄ the virtual gross substitutes condition holds. There is
a maximal violation (s̄, ¯̄s) for which the virtual IRC condition is violated,
i.e. for the agent w′ with ¯̄sw′ > s̄w′ we have w′ /∈ D∨f (s̄) and D∨f (s̄) 6= D∨f (¯̄s).

3. For all s′ ≥ s ≥ s̄ virtual IRC and the virtual gross substitutes condition
hold. There is a maximal violation (s̄, ¯̄s) for which the virtual law of aggre-
gate demand is violated.

Note that this cover all potential cases: Gross substitutability together with the
law of aggregate demand imply IRC (see Aygün and Sönmez (2013)). Thus if
virtual IRC holds for all maximal violations, it holds for all s′ ≥ s ≥ s̄.

Case 1. Violation of virtual gross substitutability.
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There are w,w′ ∈ W with w 6= w′ such that s̄−w′ = s̄−w′ and w ∈ D∨f (s̄) but
w /∈ D∨f (¯̄s). Let f ′ ∈ F \ {f} be one of the other firms. For each s ∈ SW , we
define Df ′ by

Df ′(s) =


{w}, if sw < σ̄, sw ≤ sw′ ,

{w′}, if sw′ < σ̄, sw′ < sw,

∅, else.

(2)

Note that Df ′ is a unit demand function. In particular, it satisfies gross substi-
tutability and the law of aggregate demand. Thus, by Proposition 2, demand and
virtual demand for f ′ coincide, Df ′ = D∨f ′ . All other firms f ′′ ∈ F \ {f, f ′}, have

the trivial demand function Df ′′(s) = ∅ for each s ∈ SW . We show that there is
no D-stable, strategy-proof mechanism. We define the profile �∈ RW by

(f, σ̄) �w . . . �w (f, s̄w + 1) �w (f ′, σ̄) �w (f, s̄w) �w (f ′, σ̄ − 1) �w ∅ �w . . . (3)

(f, σ̄) �w′ . . . �w′ (f, ¯̄sw′ + 1) �w′ (f ′, σ̄) �w′ (f, ¯̄sw′) �w′ (f ′, σ̄ − 1) �w′ (f, s̄w′) �w′ ∅ �w′ . . .
(4)

(f, σ̄) �w′′ . . . �w′′ (f, s̄w′′) �w′′ ∅ �w′′ . . . for w′′ 6= w,w′. (5)

Consider the market (D,�). First we show that in the corresponding virtual mar-
ket there is no stable allocation.

Claim 3. There is no stable allocation in (D∨,�).

Suppose there is a (µ, s) ∈ S(D∨,�). Consider the minimal potential blocking
vector s̃f for allocation (µ, s), firm f and profile�. By the definition of stability, we
have µ(f) = D∨f (s̃f ). We consider two cases: either s̃fw′ = s̄w′ or s̃fw′ ≥ ¯̄sw′ > s̄w′ .
In the first case, s̃f ≥ s̄ with s̃fw′′ = s̄w′′ for w′′ /∈ µ(f) = D∨f (s̃f ). By Claim 1,
this implies µ(f) = D∨f (s̃f ) = D∨f (s̄). Thus, w,w′ ∈ µ(f) and therefore µ(f ′) = ∅.
Moreover, w′ is matched to f under salary sw′ = s̄w′ . Hence f ′ and w′ can block
the allocation (µ, s) with salary σ̄ − 1, contradicting the stability of (µ, s).

In the second case, s̃f ≥ ¯̄s with s̃fw′′ = ¯̄sw′′ for w′′ /∈ µ(f) = D∨f (s̃f ).
By Claim 1, this implies µ(f) = D∨f (s̃f ) = D∨f (¯̄s). Thus, w,w′ /∈ µ(f) and
µ(f ′) = {w′} with sw′ = σ̄ − 1. But then f ′ and w can block the allocation (µ, s)
with salary σ̄ − 1 contradicting the stability of (µ, s).

Now we show that there is no D-stable, strategy-proof mechanism. Suppose
there is a D-stable, strategy-proof mechanism M and let (µ, s) := M(�). We
consider two cases: Either there is a w̃ ∈ W with (µ, s) �w̃ (f, s̄w̃) or not. In the
first case, truncate w̃’s preferences after (µ(w̃), sw̃). If w̃ submits the truncated
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preferences �′w̃ and everyone else submits preferences �−w̃, then - by strategy-
proofness of M - w̃ will receive the same assignment (µ(w̃), sw̃) in M(�) and
M(�′w̃,�−w̃). By the maximality of the violation (s̄, ¯̄s), workers in the truncated
market (D,�′w̃,�−w̃) are virtual gross substitutes and the virtual law of aggregate
holds. This implies that in the truncated market the virtual IRC condition holds.
By Lemma 2, M(�′w̃,�−w̃) is the worker-optimal stable allocation in the virtual
market (D∨,�′w̃,�−w̃). Since w̃ is matched inM(�′w̃,�−w̃), the allocation is also
stable in the un-truncated virtual market (D∨,�). But this contradicts Claim 3.

In the second case, by Claim 2, µ(f) = Df (s̄) = D∨f (s̄) and therefore w,w′ ∈
µ(f). Hence µ(f ′) = ∅. But then f ′ and w′ can block (µ, s) with salary σ̄ − 1
contradicting the stability of (µ, s).

Case 2. Violation of virtual IRC.

There is a maximal violation (s̄, ¯̄s) such that for the worker w′ with ¯̄sw′ 6= s̄w′

we have w′ /∈ D∨f (s̄) and D∨f (s̄) 6= D∨f (¯̄s). By Claim 1, we have w′ /∈ D∨f (¯̄s). By
virtual gross substitutability, there is, moreover, a worker w 6= w′ with w ∈ D∨f (¯̄s)
but w /∈ D∨f (s̄). Let f ′ ∈ F \ {f} be one of the other firms. For each s ∈ SW , we
define Df ′ by

Df ′(s) =


{w}, if sw < σ̄, sw ≤ sw′ ,

{w′}, if sw′ < σ̄, sw′ < sw,

∅, else.

(6)

Note that Df ′ is a unit demand function. In particular, it satisfies gross substi-
tutability and the law of aggregate demand. Thus, by Proposition 2, demand and
virtual demand for f ′ coincide, Df ′ = D∨f ′ . All other firms f ′′ ∈ F \ {f, f ′}, have

the trivial demand function Df ′′(s) = ∅ for each s ∈ SW . We show that there is no
D-stable, strategy-proof mechanism. Suppose there is a D-stable, strategy-proof
mechanism M and consider the profile �∈ RW defined by

(f, σ̄) �w . . . �w (f, s̄w + 1) �w (f ′, σ̄) �w (f, s̄w) �w (f ′, σ̄ − 1) �w ∅ �w . . .
(f, σ̄) �w′ . . . �w′ (f, ¯̄sw′) �w′ (f ′, σ̄) �w′ (f, s̄w′) �w′ (f ′, σ̄ − 1) �w′ ∅ �w′ . . .

(f, σ̄) �w′′ . . . �w′′ (f, s̄w′′) �w′′ ∅ �w′′ . . . for w′′ 6= w,w′.

Let (µ, s) := M(�). First we show that µ(w′) = ∅. We consider two cases:
Either for each w̃ ∈ W we have (f, s̄w̃) �w̃ (µ, s) or there is a w̃ ∈ W such that
(µ, s) �w̃ (f, s̄w̃). In the first case, the minimal potential blocking vector for firm
f is given by s̃f = s̄. By Claim 2, this implies w,w′ /∈ µ(f) = D∨f (s̄). Therefore,
we have µ(f ′) = {w} and µ(w′) = ∅ as desired. In the second case, truncate
w̃’s preferences after (µ(w̃), sw̃). If w̃ submits the truncated preferences �′w̃ and
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everyone else submits preferences �−w̃, then - by strategy-proofness of M - w̃
will receive the same assignment (µ(w̃), sw̃) in M(�) and M(�′w̃,�−w̃). By the
maximality of the violation (s̄, ¯̄s), workers in the truncated market (D,�′w̃,�−w̃)
are virtual gross substitutes and the virtual law of aggregate holds. This implies
that in the truncated market the virtual IRC condition holds. By Lemma 2,
M(�′w̃,�−w̃) is a stable allocation in the virtual market (D∨,�′w̃,�−w̃). Consider
the minimal potential blocking vector s̃f for firm f for allocation M(�′w̃,�−w̃).
By Claim 1, we have D∨f (s̃f ) = D∨f (s̄). Thus, w,w′ /∈ µ(f). Therefore, we have
µ(f ′) = {w} and µ(w′) = ∅ as desired.

Next consider the modified preferences �′w′∈ R for worker w′ defined by

(f, σ̄) �′w′ . . . �′w′ (f, ¯̄sw′) �′w′ (f ′, σ̄) �′w′ (f ′, σ̄ − 1) �′w′ ∅ �w′ . . .

By maximality of (s̄, ¯̄s), virtual gross substitutability, the virtual law of aggregate
demand and hence virtual IRC hold in the market (D,�′w′ ,�−w′). By Lemma 2,
the allocationM(�′w′ ,�−w′) is the worker-optimal stable allocation in the virtual
market (D∨,�′w′ ,�−w′). Now note that the allocation (µ′, s′) with µ′(f ′) = {w′},
µ′(f) = D∨f (¯̄s), s′w′ = σ̄−1 and s′w̃ = ¯̄sw̃ for w̃ ∈ µ′(f) is stable in (D∨,�′w′ ,�−w′).
In particular, we haveM(�′w′ ,�−w′) �w′ (f ′, σ̄− 1) �w′ ∅ =M(�), contradicting
the strategy-proofness of M.

Case 3. Violation of the virtual law of aggregate demand.

There is a maximal violation (s̄, ¯̄s) of the virtual law of aggregate demand, i.e. two
salary vectors s̄, ¯̄s ∈ SW such that D∨f (¯̄s)| > |D∨(s̄)|.

By virtual IRC, we have w′ ∈ D∨f (s̄). By Claim 1, we have w′ /∈ D∨f (¯̄s)
Thus there are two other workers w1, w2 ∈ W \ {w′} with w1, w2 ∈ D∨f (¯̄s) but
w1, w2 /∈ D∨f (s̄). We define Df ′ by

Df ′(s) =


{w1}, if sw1 < σ̄,

{w2}, if sw1 = σ̄ and sw2 < σ̄,

{w′}, if sw1 = σ̄ and sw2 = σ̄ and sw′ < σ̄,

∅, else.

All other firms f ′′ ∈ F \ {f, f ′}, have the trivial demand function Df ′′(s) = ∅ for
each s ∈ SW . Suppose there is a D-stable, strategy-proof mechanismM. Consider
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the profile �∈ RW defined by

(f, σ̄) �w′ . . . �w′ (f, ¯̄sw′) �w′ (f ′, σ̄) �w′ (f ′, σ̄ − 1) �w′ (f, s̄w′) �w′ ∅ �w′ . . .

(f, σ̄) �w1 . . . �w1 (f, s̄w1) �w1 (f ′, σ̄) �w1 (f ′, σ̄ − 1) �w1 ∅ �w1 . . .

(f, σ̄) �w2 . . . �w2 (f, s̄w2 + 1) �w2 (f ′, σ̄) �w2 (f ′, σ̄ − 1) �w2 (f, s̄w2) �w2 ∅ �w2 . . .

(f, σ̄) �w′′ . . . �w′′ (f, s̄w′′) �w′′ ∅ �w′′ . . . for w′′ 6= w′, w1, w2

Let (µ, s) :=M(�). Let sf be the minimal potential blocking vector of allocation
(µ, s) for f under �.

First consider the case that µ(f ′) = {w′} with sw′ = σ̄ − 1. Then we have
sf ≥ ¯̄s with sfw = ¯̄sw for w /∈ D∨f (sf ). Thus, by Claim 1 µ(f) = D∨f (sf ) = D∨f (s̄).
But w2 /∈ D∨f (¯̄s). Therefore f ′ and w2 can block with salary σ̄ − 1 contradicting
stability.

Second consider the case that µ(f ′) = {w1} with sw1 = σ̄ − 1. Then we have
sf ≥ s̄ with sfw = s̄w for w /∈ D∨f (sf ). Thus, by Claim 1, µ(f) = D∨f (sf ) =
D∨f (s̄). In particular, w2 is unmatched under µ. Now suppose that w2 changes his
preferences to

(f, σ̄) �′w2
. . . �′w2

(f, s̄w2) �′w2
∅ �′w2

(f ′, σ̄) �′w2
. . . .

Let (µ′, s′) := M(�′w2
,�−w2). We show that w2 receives a better assignment in

(µ′, s′) than in (µ, s) contradicting the strategy-proofness of M. To show this,
consider a third allocation (µ′′, s′′) defined by

µ′′(f) = D∨f (¯̄s), µ′′(f ′) = {w′}, s′′w =

{
¯̄sw, if w ∈ µ′′(f),

σ̄ − 1, if w = w′.

First we show that (µ′′, s′′) is stable in (D∨,�′w2
,�−w2): For f , the minimal po-

tential blocking vector for (µ′′, s′′) under (�′w2
,�−w2) is ¯̄s. For f ′ the minimal

potential blocking vector for (µ′′, s′′) under (�′w2
,�−w2) is sf ′ ∈ SW defined by

sf ′w =

{
σ̄ − 1, if w = w′,

σ̄, if w 6= w′.

Now note that D∨f (¯̄s) = µ′′(f) and D∨f ′(sf ′) = Df ′(sf ′) = µ′′(f ′). Thus, by
Lemma 1, (µ′′, s′′) is stable in (D∨,�′w2

,�−w2). By Lemma 2, (µ′, s′) is the
worker-optimal stable allocation in (D∨,�′w2

,�−w2). Thus, we have (µ′, s′) �w′

(µ′′(w′), s′′w′) = (f ′, σ̄ − 1). Let s′f be the minimal potential blocking vector of
(µ′, s′) for f under (�′w2

,�−w2). Since (µ′, s′) �w′ (f ′, σ̄ − 1), we have s′f ≥ ¯̄s with
s′fw = ¯̄sw for w /∈ D∨f (s′f ). Thus, by Claim 1, µ′(f) = D∨f (s′f ) = D∨f (¯̄s). Therefore,
we have w2 ∈ µ′(f) with s′w2

≥ ¯̄sw2 . Hence (µ′, s′) �w2 µ(w2) = ∅. We have
obtained the desired contradiction.
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Third consider the case that µ(f ′) = {w2} with sw2 = σ̄ − 1. Then, we have
sf ≥ (s̄−w2 , s̄w2 + 1) with sfw = s̄w̃ for w /∈ D∨f (sf ) \ {w2} and sfw2 = ¯̄sw2 + 1 if
w2 /∈ D∨f (sf ). Thus, by Claim 1, µ(f) = D∨f (s̄−w2 , s̄w2 + 1). Since w2 /∈ D∨f (s̄) we
have D∨f (s̄−w2 , s̄w2 + 1) = D∨f (s̄). But then w1 /∈ µ(f). Therefore f ′ and w1 can
block with salary σ̄ − 1 contradicting stability.

Finally consider the case that µ(f ′) = ∅. Then, we have sf ≥ s̄ with sfw = s̄w̃
for w /∈ D∨f (sf ). Thus, by Claim 1, µ(f) = D∨f (s̄). But then w1 /∈ µ(f). Therefore
f ′ and w1 can block with salary σ̄ − 1.

F Proof of Lemma 3

Proof. First we show that an allocation (µ, s) is individually rational in (y, u, σ0) if
and only if it is individually rational in (D,�). For each w ∈ W we have uw(µ, s) ≥
uw(∅) ⇔ (µ, s) �w ∅. Moreover, Df (sf ) = µ(f) implies that πf (µ(f), sf ) >
πf (W

′, sf ) for each W ′ ⊆ µ(f). On the other hand, let πf (µ(f), sf ) > πf (W
′, sf )

for each W ′ ⊆ µ(f). Let s̃ ∈ SW be the vector defined by s̃w = sw for w ∈ µ(f)
and s̃w = σ̄ for w ∈ W ′ \ µ(f). Since 0 > πf (W

′, s̃) for each W ′ ⊆ W with
W ′ \ µ(f) 6= ∅, we have Df (sf ) = Df (s̃) = µ(f).

Next we show that (µ, s) is blocked in (y, u, σ0) if and only if it is blocked in
(D,�). First suppose (µ, s) is blocked in (y, u, σ0) by f and W ′ under salaries s′.
It is no loss of generality to assume that for each w ∈ W ′ ∩µ(f) we have s′w = sw,
since otherwise we can lower for each w ∈ W ′ ∩ µ(f) the salary from s′w to sw
while f and W ′ still block the allocation. Since the market (y, u, σ0) has no ties,
we have πf (W

′, s′) > πf (µ, s). Thus, µ(f) 6= Df (s
′). Thus, f and Df (s

′) block
(µ, s) in (D,�) with salaries (s′w)w∈Df (s′).

Next suppose (µ, s) is blocked in (D,�) by f and W ′ under salaries s′. Then
Df (s

′) = W ′ 6= µ(f). Therefore πf (W
′, s′) > πf (µ(f), s′) = πf (µ, s). Moreover

uw(f, s′w) ≥ uw(µ, s) for each w ∈ W ′. Thus, f and W ′ also block (µ, s) with
salaries (s′w)w∈W ′ in (y, u, σ0).

G Proof of Lemma 4

Proof. For (µ, s) ∈ A, f ∈ F and u = (uw)w∈W define the continuous minimal
potential blocking vector s̃f = (s̃fw)w∈W ∈ RW

+ as follows. Salary s̃fw is the
salary that makes w indifferent between working for f and (µ, s), i.e.

uw(f, s̃fw) = uw(µ, s).

Since uw is continuous and increasing in salaries such a salary is well defined,
unless uw(f, σ) > uw(µ, s) for each σ ∈ R++ in which case we let sfw = 0. Define
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a surplus function Φ : A → R as follows. For (µ, s) ∈ A and f ∈ F let s̃f be
the continuous minimal potential blocking vector of (µ, s). Then

Φ(µ, s) := max
f ′∈F,W ′⊆W

πf (W
′, s̃f ′)− πf ′(µ, s).

First we show that for (µ, s) ∈ A with Φ(µ, s) = 0 we have (µ, s) ∈ C(y, u). (The
opposite direction is also true. This characterization of core allocations is due
to Kelso and Crawford, 1982.) Suppose (µ, s) /∈ C(y, u). Then there is a firm f such
that (µ, s) is not individually rational for f , or f blocks (µ, s) together with a group
of workers. In the first case there is a W ′ ⊆ µ(f) such that πf (W

′, s̃f ) > πf (µ, s),
contradicting the assumption that Φ(µ, s) = 0. In the second case, there are
salaries s′ such that πf (W

′, s′) > πf (µ, s) and uw(f, s′w) > uw(µ, s). Let s̃f be the
continuous minimal potential vector for f and (µ, s) under u. By the definition
of s̃f , we have s′ ≥ s̃f |W ′ . Thus πf (W

′, s̃f ) ≥ πf (W
′, s′) > πf (µ, s). Therefore

πf (W
′, s̃f )− πf (µ, s) > 0 contradicting the assumption that Φ(µ, s) = 0.

Now let (σ0(t))t=0,1,... and {(µt, st)}t=0,1,... be as in the statement of the lemma.
First we show that for each t we have Φ(µt, st) ≤ σ0(t) · |W |. Suppose not. Then
there exists a f ∈ F and W ′ ⊆ W such that

πf (W
′, s̃f ) > πf (µ

t, st) + σ0(t) · |W |.
For each w ∈ W ′ let s′w be the salary obtained by rounding s̃fw up to the nearest
integer multiple of σ0(t). For each w ∈ W ′ we have uw(f, s′w) ≥ uw(µ, s) and for f
we have

πf (W
′, s′) ≥ πf (W

′, s̃f )− σ0(t) · |W ′| > πf (µ
t, st).

Thus f and W ′ block (µt, st) contradicting (µt, st) ∈ C(y, u, σ0(t)).
As {(µt, st)}t=0,1,... converges to allocation (µ, s), there is a T such that for

t > T we have µt = µ. The function Φ is continuous in salaries as profit functions
and utility functions are continuous in salaries. Thus

Φ(µ, s) = Φ(µ, lim
t→∞

st) = lim
t→∞

Φ(µ, st) = lim
t→∞

Φ(µt, st) = 0,

where for the last equality we used that for each t we have Φ(µt, st) ≤ σ0(t) · |W |.
Therefore, (µ, s) ∈ C(y, u) as desired.

H Proof of Lemma 5

Proof. By Proposition 2, it suffices to show that Df satisfies the law of demand
invariance. Let s, s′ ∈ SW with s−w = s′−w and sw < s′w and consider a salary
change from s′ to s: For each W ′ ⊆ W with w ∈ W ′ the profit increases by the
same amount πf (W

′, s′)−πf (W ′, s) = s′w− sw and for each W ′ ⊆ W with w /∈ W ′

the profit remains unchanged πf (W
′, s) = πf (W

′, s′). Thus, if w ∈ Df (s
′), then

Df (s
′) is also profit maximizing under s, i.e. Df (s) = Df (s

′).

38



I Proof of Theorem 2

Proof. The first part follows from Proposition 1 and Lemma 3.
For the second part, Let yf be a production function and σ0 ∈ R++ a salary

increment such that πf has no ties on {k · σ0 : k ∈ N} and workers are not gross
substitutes under the induced demand Df : {k · σ0 : k ∈ N}W → 2W . Without
loss of generality, we may assume σ0 = 1. The proof of the general case is the
same modulo multiplying all relevant salaries by the smallest salary increment.
We choose an integer σ̄ > maxf∈F,W ′⊆W yf (W

′) and define S := {1, 2, . . . , σ̄}. Let
s̄, ¯̄s ∈ SW and w′ ∈ W with ¯̄s−w = s̄−w and ¯̄sw′ = s̄w′ + 1 such that there is a
w 6= w′ with w ∈ Df (s̄) but w ∈ Df (¯̄s). We define production functions y−f as
follows. Let f ′ ∈ F \ {f} be one of the other firms. We define yf ′ : 2W → R as
follows. Choose

σ̄ − 1 < yf ′({w′}) < yf ′({w}) < σ̄.

Let yf ′({w′′}) = 0 for w′′ 6= w,w′. Define

yf ′(W
′) := max

w̃∈W ′
yf ′({w̃}) for each W ′ ⊆ W.

For all other firms f ′′ ∈ F \ {f, f ′}, we let yf ′′ : 2W → R be the trivial production
function, defined by yf ′′(W

′) = 0 for each W ′ ⊆ W . We define a utility profile u
by

uw̃(f, σ) := σ − s̄w̃ + ε1, for each w̃ ∈ W,
uw̃(∅) := 0, for each w̃ ∈ W,

uw(f ′, σ) := σ − (σ̄ − 1) + ε2,

uw′(f ′, σ) := σ − (σ̄ − 1) + ε3,

and arbitrarily for each other firm-salary pair. The parameters ε1, ε2, ε3 are chosen
such that 0 < ε2 < ε1 < ε3 < σ0 = 1. For all other firm-salary pairs, the utility
functions can be defined arbitrarily. One readily checks that the ordinal market
(D,�) corresponding to (y, u, 1) is the market defined by equations 3,4,5 in the
proof of Theorem 1. By Lemma 5 and Claim 3 from the proof of Theorem 1 there
is no stable allocation in (D,�). By Lemma 3 there is no strict core allocation in
(y, u, 1).

J Proof of Theorem 3

The following lemma (see also Chambers and Echenique, 2016) will be useful in
some of the subsequent proofs.
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Lemma 9. Let the demand correspondence Df be induced by a quasi-linear profit
function. For each s ∈ RW

++ there exists a neighborhood U ⊆ RW
++ of s such that

for each s′ ∈ U we have Df (s
′) ⊆ Df (s).

Proof. Let s ∈ RW
++. We choose ε > 0 such that

ε <
minW ′∈Df (s),W ′′ /∈Df (s) πf (W

′, s)− πf (W ′′, s)√
|W |

.

Let U := {s′ ∈ RW
++ : |s − s′| ≤ ε}, where | · | is the Euclidean norm. Let s′ ∈ U ,

W ′ ∈ Df (s) and W ′′ /∈ Df (s). We have

πf (W
′, s′)− πf (W ′′, s′) ≥ πf (W

′, s)− πf (W ′′, s)−
∑
w∈W

|sw − s′w|

>
√
|W | · ε−

∑
w∈W

|sw − s′w| ≥ 0.

Thus, each bundle of workers that is not profit maximizing under s is also not
profit maximizing under s′. We have Df (s

′) ⊆ Df (s).

Now we prove Theorem 3.

Proof. The first part is Theorem 2 of Kelso and Crawford (1982).
For the second part, let yf be a production function such that workers are not

gross substitutes under the demand Df induced by yf . First we show that there
is a gross substitutes violation at salary vectors where the demand is single-valued.

Claim. There are s̄, ¯̄s ∈ RW
++ and w′ ∈ W with ¯̄s−w′ = s̄−w′ and ¯̄sw′ > s̄w′

such that Df (s̄) = {W ′}, Df (¯̄s) = {W ′′} and there is a w 6= w′ with w ∈ W ′ but
w /∈ W ′′.

Let s, s′ ∈ RW
++ and w′ ∈ W with s′−w′ = s−w′ and s′w′ > sw′ such that there is

a W ′ ∈ Df (s) such that for each W ′′ ∈ Df (s
′) there is a w 6= w′ with w ∈ W ′

but w /∈ W ′′. If Df is single-valued at s and s′ we are finished. Otherwise, by
Lemma 9, we can find an ε′ > 0 such that for all s̃ in the ε′-neighborhood of s′ we
have Df (s̃) ⊆ Df (s

′). Let ε = (εw)w∈W be defined by εw = ε′√
|W ′|

for w ∈ W ′ and

εw = 0 for w /∈ W ′. By construction Df (s − ε) = {W ′}. Moreover, by construc-
tion, s′− ε is in the ε′-neighborhood of s′ and therefore Df (s

′− ε) ⊆ Df (s
′). If Df

is single-valued at s′ − ε we can choose s̄ = s − ε and ¯̄s = s′ − ε. Otherwise, by
Lemma 9, we can find an ε′′ > 0 such that for all s̃ in the ε-neighborhood of s−ε we
have Df (s̃) = Df (s− ε) = {W ′}. Choose an arbitrary W ′′ ∈ Df (s

′ − ε) ⊆ Df (s
′).

Let ε̃ = (ε̃w)w∈W be defined by ε̃w = ε′′√
|W ′′|

for w ∈ W ′′ and εw = 0 for w /∈ W ′′.
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By construction, Df (s
′ − ε − ε̃) = {W ′′}. Moreover, by construction, s − ε − ε̃ is

in the ε′′-neighborhood of s− ε and therefore Df (s− ε− ε̃) = Df (s− ε) = {W ′}.
The claim holds for the salary vectors s̄ = s− ε− ε̃ and ¯̄s = s′ − ε− ε̃.

With the claim, we can finish the proof. Let s̄, ¯̄s ∈ RW
++, w,w′ ∈ W and

W ′,W ′′ ⊆ W be as in the claim. First, we define production functions y−f for the
other firms. Let f ′ ∈ F \{f} be one of the other firms. We define yf ′ : 2W → R as
follows. Choose yf ′({w}), yf ′({w′}) > 0 and yf ′({w′′}) = 0 for w′′ 6= w,w′. Define

yf ′(W
′) := max

w̃∈W ′
yf ′({w̃}) for each W ′ ⊆ W.

For all other firms f ′′ ∈ F \ {f, f ′}, we let yf ′′ : 2W → R be the trivial production
function, defined by yf ′′(W

′) = 0 for each W ′ ⊆ W . We define a utility profile u
by

uw̃(f, σ) := σ − s̄w̃ + ε1, for each w̃ ∈ W,
uw̃(∅) := 0, for each w̃ ∈ W,

uw(f ′, σ) := σ − yf ′({w}) + ε2,

uw′(f ′, σ) := σ − yf ′({w′}) + ε3,

and arbitrarily for each other firm-salary pair. The parameters ε1, ε2, ε3 are chosen
as follows: By Lemma 9, we can choose ε1 > 0 such that for s̃ := (s̄w̃ − ε1)w̃∈W ,
we have Df (s̃) = Df (s̄) = {W ′}. Choose 0 < ε2 < ε1 and

πf (W
′, s̃)− πf (W ′′, s̃) < ε3 < πf (W

′, s̃)− πf (W ′′, s̃) + ε2.

We show that no (strict) core allocation in (y, u) exists. Suppose for the sake
of contradiction that (µ, s) ∈ C(y, u). We consider three cases: either µ(f ′) = ∅
or µ(f ′) = {w} or µ(f ′) = {w′}. In the first case, we have µ(f) = W ′ and
sw′ ≤ s̃w′ + πf (W

′, s̃)− πf (W ′′, s̃), since otherwise either the allocation would not
be individually rational for f or f and W ′′ could block. Thus, sw′ < s̃w′ + ε3 and
therefore

uw′(µ, s) = sw′ − s̄w′ + ε1 < s̃w′ − s̄w′ + ε1 + ε3 = ε3.

But now f ′ and w′ can block (µ, s) with salary σ = yf ′({w′}).
In the second case, by individual rationality, we have sw ≤ yf ′({w}) and there-

fore uw(µ, s) ≤ ε2. But then f and W ′ can block the allocation with salaries
s′ ∈ RW ′

++ such that s′w = s̄w and s′w̃ = sw̃ for w̃ ∈ W ′ \ {w}.
In the third case, we have uw′(µ, s) ≥ πf (W

′, s̃) − πf (W ′′, s̃), since otherwise
f and W ′ can block the allocation with salaries s′ ∈ RW ′

++ such that s′w′ = s̃w′ +
uw′(µ, s) and s′w̃ = sw̃ for w̃ ∈ W ′ \ {w′}. Since uw′(µ, s) ≥ πf (W

′, s̃)− πf (W ′′, s̃),
we have

sw′ ≥ yf ′({w′}) + πf (W
′, s̃)− πf (W ′′, s̃)− ε3 > yf ′({w′})− ε2.
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Thus, πf ′(µ, s) < ε2. But then f ′ and w can block with salary σ = yf ′({w}) − ε2
contradicting the assumption that (µ, s) ∈ C(y, u).

K Proof of Corollary 1

To prove the corollary, we use the Bolzano-Weierstrass theorem from real analysis.
For future reference, we provide a version of the theorem for our set-up.

Lemma 10. Any sequence of individually rational allocations {(µt, st)}t=0,1,2,... in
a continuous market has a converging subsequence {(µtj , stj)}j=0,1,2,.... The subse-
quence can be chosen such that each allocation uses the same matching, µtj = µ
for j = 0, 1, . . ..

Proof. The set of individually rational allocations in (y, u) where allocations are
understood, as above, as matrices in RF×W is bounded. Thus the Bolzano-
Weierstrass theorem implies that there is a subsequence {(µtj , stj)}j=0,1,... con-
verging to an allocation (µ, s). Since there are only finitely many matchings, we
may choose the subsequence such that each allocation in the subsequence uses the
same matching µ.

With this lemma we can prove the corollary.

Proof. The first part is Theorem 1 of Kelso and Crawford (1982).
For the second part, let (y, u) be a market as in the second part of Theorem 3.

We show that there is a σ′0 such that for σ0 < σ′0 we have C(y, u, σ0) = ∅. Sup-
pose not. Then there exists a sequence of salary increments (σ0(t))t=0,1,... with
limt→∞ σ0(t) = 0 and allocations {(µt, st)}t=0,1,... with (µt, st) ∈ C(y, u, σ0(t)). By
Lemma 10, we can find a converging subsequence {(µtj , stj)}j=0,1,... By Lemma 4,
we have limj→∞(µtj , stj) ∈ C(y, u) contradicting C(y, u) = ∅.

L Proof of Lemma 6

Proof. By Lemma 9 in Appendix J, there exists an ε′ > 0 such that for each
s ∈ SW we have Df (s

′) ⊆ Df (s) for each |s − s′| ≤ ε′. Choose for each w ∈
W independently and uniformly at random, numbers εw ∈ (0, ε′√

|W |
). Define a

modified production function ỹf : 2W → R by

ỹf (W
′) := yf (W

′) +
∑
w∈W ′

εw. (7)
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The profit function π̃f induced by ỹf has with probability 1 no ties for salaries
in S. In particular, there exist numbers ε = (εw)w∈W ∈ (0, ε′√

|W |
)W such that the

profit function defined by Equation (7) induces a profit function without ties for
salaries in S. We consider the induced demand function D̃f : SW → 2W . Note
that for each s ∈ SW we have D̃f (s) = Df (s− ε). Thus gross substitutability and
the law of aggregate demand for D̃f follow from the gross substitutability and the
law of aggregate demand for Df . Moreover,

|s− ε− s| = |ε| =
√∑

w∈W

ε2w ≤ ε′,

and therefore D̃f (s) ∈ Df (s).

M Proof of Proposition 5

Proof. We choose a σ̄ > maxf∈F,W ′⊆W yf (W
′) which is an integer multiple of σ0

and let S := {σ0, 2 · σ0, . . . , σ̄}. Consider a profile Dσ0 = (Dσ0
f : SW → 2W )f∈F of

well-behaved demand functions as constructed in Lemma 6. Let M : RW → A
be the salary adjustment mechanism for the profile Dσ0 . Let B be an ordering of
the firms F . We use the ordering to break ties. For each u ∈ UW , we define a
�u,σ0∈ RW by

(f, σ) �u,σ0w (f ′, σ′) :⇔ (uw(f, σ) > uw(f ′, σ′) or (uw(f, σ) = uw(f ′, σ′) and f B f ′)).

Indifferences with the outside option are broken in favor of employment, i.e.

(f, σ) �u,σ0w ∅ ⇔ uw(f, σ) ≥ uw(∅)

and
∅ �u,σ0w (f, σ)⇔ uw(∅) > uw(f, σ).

We define a mechanism Mσ0 : UW → A by

Mσ0(u) =M(�u,σ0).

We check that Mσ0 is strategy-proof. Suppose for the sake of contradiction that

uw(Mσ0(u
′
w, u−w)) > uw(Mσ0(u)).

Then M(�u′,σ0) �u,σ0w M(�u,σ0). But this contradicts the strategy-proofness of
M.
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Next we show that for each u ∈ UW the allocation Mσ0(u) is in the core of
(y, u, σ0). Since M is Dσ0-stable it suffices to show that if an allocation (µ, s) is
stable in (Dσ0 ,�u,σ0), then it is in the core of (y, u, σ0). Let (µ, s) ∈ S(Dσ0 ,�u,σ0).
Since (µ, s) is individually rational in (Dσ0 ,�u,σ0) we have Dσ0

f (sf ) = µ(f) for
each f ∈ F . Since Dσ0

f is a selection from the demand correspondence induced by
yf , we have πf (µ(f), sf ) ≥ πf (W

′, sf ) for each W ′ ⊆ µ(f). Moreover, since (µ, s)
is individually rational in (Dσ0 ,�u,σ0) we have (µ, s) �u,σ0w ∅ for each matched w.
Thus, we have uw(µ, s) ≥ uw(∅) for each matched w. Hence (µ, s) is individually
rational in (y, u, σ0).

Next, let f ∈ F , W ′ ⊆ W and s′ ∈ SW ′
such that uw(f, s′w) > uw(µ, s) for each

w ∈ W ′. We show that πf (W
′, s′) ≤ πf (µ, s) and thus there is no strict blocking

coalition for (µ, s) in (y, u, σ0). Define a vector s̃ ∈ SW by

s̃w =


sw for w ∈ µ(f),

s′w for w ∈ W ′ \ µ(f),

σ̄ else.

Since s̃w = sw ≤ s′w for w ∈ µ(f)∩W ′, we have πf (W
′, s̃) ≥ πf (W

′, s′). Moreover,
(f, s̃w) �u,σ0w (µ, s) for each w ∈ W (for w ∈ µ(f)∩W ′ we have (f, s̃w) = (µ(w), sw)
and for all other w we have (f, sw) �u,σ0w (µ, s)). By stability of (µ, s) in (Dσ0 ,�u,σ0)
this implies that Dσ0

f (s̃) = µ(f). Therefore, πf (µ, s) = πf (µ(f), s̃) ≥ πf (W
′, s̃) ≥

πf (W
′, s′) as desired.

N Proof of Theorem 4

Proof. Note that for each matching µ the set {s ∈ Rµ(F ), (µ, s) ∈ C(y, u)} is
compact. Thus for the first part of the theorem, it suffices to show that for each
(µ, s), (µ′, s′) ∈ C(y, u) there is an allocation (µ̄, s̄) ∈ C(y, u) such that for each
w ∈ W we have uw(µ̄, s̄) ≥ max{uw(µ, s), uw(µ′, s′)}. We define (µ̄, s̄) by:

µ̄(w) :=

{
µ(w), if uw(µ, s) ≥ uw(µ′, s′),

µ′(w), if uw(µ′, s′) > uw(µ, s)

and

s̄w :=

{
sw, if µ̄(w) = µ(w), µ̄(w) 6= ∅,
s′w, if µ̄(w) = µ′(w), µ̄(w) 6= ∅.

.

We show that (µ̄, s̄) ∈ C(y, u). For each f ∈ F consider the continuous min-
imal potential blocking vectors sf , s

′
f , s̄f for allocations (µ, s), (µ′, s′), (µ̄, s̄). By

appropriate tie breaking, we can find for each f ∈ F a single-valued selection
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D̃f from Df that satisfies gross substitutability at salaries sf , s
′
f , s̄f and such that

µ(f) = D̃f (sf ) and {w ∈ µ′(f) : (µ′, s′) �w (µ, s)} ⊆ D̃f (s
′
f ). By gross substi-

tutability, we have µ̄(f) ⊆ D̃f (s̄f ) for each f ∈ F . Moreover∑
f∈F

|D̃f (sf )| = |µ(F )| ≤ |µ̄(F )| ≤
∑
f∈F

|D̃f (s̄f )|.

By the law of aggregate demand, we have
∑

f∈F |D̃f (sf )| ≥
∑

f∈F |D̃f (s̄f )|. Thus∑
f∈F |D̃f (s̄f )| = |µ̄(F )| and therefore for each f ∈ F we have µ̄(f) = D̃f (s̄f ) as

desired.
Next we show the second part of the theorem. Let (µ̄, s̄) be a worker optimal

core allocation in (y, u). It suffices to show that for each (µ, s) ∈ C(y, u) and
w ∈ W with µ(w) = ∅ we have uw(µ̄, s̄) = uw(∅). For each f ∈ F , let sf , s̄f be
the minimal potential blocking vectors for allocations (µ, s) and (µ̄, s̄). Without
loss of generality, we may assume that for each w ∈ W with (µ, s) ∼w ∅ we have
µ(w) = ∅. Otherwise, by worker-optimality of (µ̄, s̄), we could find an allocation
(µ′, s′) with uw′(µ′, s′) = uw′(µ, s) for each w′ ∈ W and µ(w) = ∅. By a similar
argument as above, we can show that |µ(F )| = |µ̄(F )|. By worker-optimality of
(µ̄, s̄) this concludes the proof.

O Proof of Lemma 7

Proof. Let u ∈ UW and suppose Mt(u) converges to (µ, s) as t → ∞. By
Lemma 4, (µ, s) ∈ C(y, u). By the first part of Theorem 4, there is a worker
optimal allocation (µ̄, s̄) ∈ C(y, u). We show that for each w ∈ W we have
uw(µ, s) = uw(µ̄, s̄). Suppose for the sake of contradiction that there is a w ∈ W
such that uw(µ̄, s̄) > uw(µ, s). Let uw(µ̄, s̄) > K > uw(µ, s) and define u′w ∈ U
by u′w(f, σ) := uw(f, σ) for each (f, σ) ∈ F × R++ and u′w(∅) := K. Note that
(µ̄, s̄) is still a worker-optimal core allocation in (y, u′w, u−w). Consider the se-
quence of allocations {Mt(u

′
w, u−w)}t=1,2,.... By Lemma 10, there is a subsequence

{(µ̃j, sj)}j=0,1,... := {Mtj(u
′
w, u−w)}j=0,1,... that converges to an allocation (µ̃, s̃).

The subsequence can be chosen such that for each j = 0, 1, . . . we have µ̃j = µ̃.
By Lemma 4, (µ̃, s̃) ∈ C(y, u′w, u−w). By the second part of Theorem 4, we have
µ̃(w) 6= ∅. Thus uw(µ̃, s̃) > uw(µ, s). By continuity of uw in salaries, we can find a
j such that uw(µ̃, s̃tj) > uw(µ, s) contradicting the strategy-proofness of Mtj .

P Proof of Theorem 5

Proof. Let (Mσ0)σ0>0 be a family of (y, σ0)-stable and strategy-proof mechanisms.
Such a family exists by Proposition 5. Let u ∈ UW . Since the allocations
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(Mσ0(u))σ0>0 are individually rational in (y, u) there exists by Lemma 10, a se-
quence (σ0(t))t=0,1,... of salary increments with limt→∞ σ0(t) = 0 such thatMσ0(t)(u)
converges to an allocation (µ, s) as t→∞. By Lemma 7, (µ, s) is a worker-optimal
core allocation in (y, u). We define M(u) := (µ, s).

We show that M is strategy-proof. Let u−w ∈ UW\{w} and uw, u
′
w ∈ W .

Define (µ, s) := M(u) and (µ′, s′) := M(u′w, u−w). Now suppose for the sake of
contradiction that uw(µ′, s′) > uw(µ, s). We show that this implies that there is a
σ0 ∈ R++ such that uw(Mσ0(u

′
w, u−w)) > uw(Mσ0(u)) contradicting the strategy-

proofness of Mσ0 .
Let (σ0(t))t=0,1,2,... be the sequence of salary increments that we used to define

M(u). It is not necessarily the case that the sequence {Mσ0(t)(u
′
w, u−w)}t=1,2,...

converges to (µ′, s′), since we might have used different decreasing sequences of
salary increments to defineM(u) andM(u′w, u−w). However, by Lemma 10, there
is a subsequence (σ0(tj))j=0,1,... such that {Mσ0(tj)(u

′
w, u−w)}j=1,2,... converges to

an allocation (µ′′, s′′) (possibly µ′′ 6= µ′). By Lemma 7, both (µ′, s′) and (µ′′, s′′)
are worker-optimal core allocations in (y, u). Thus uw(µ′, s′) = uw(µ′′, s′′). Define
ε := uw(µ′, s′)− uw(µ, s).

By Lemma 10, it is no loss of generality to assume that for each t we have
Mσ0(t)(u) = (µ, st) for a schedule st ∈ Rµ(F )

++ . Since uw is continuous in salaries,
we can find a T such that for t > T we have

|uw(µ, st)− uw(µ, s)| < ε/2.

By Lemma 10, it is no loss of generality to assume that for each j we have

Mσ0(tj)(u
′
w, u−w) = (µ′′, s̃j) for a schedule s̃j ∈ Rµ′′(F )

++ . Since uw is continuous
in salaries, we can find a J such that for j > J we have

|uw(µ′′, s̃j)− uw(µ′′, s′′)| < ε/2.

Choose j > J such that tj > T . For σ0 := σtj we have

uw(Mσ0(u
′
w, u−w)) > uw(µ′′, s′′)−ε/2 = uw(µ′, s′)−ε/2 > uw(µ, s)+ε/2 > uw(Mσ0(u)).

This contradicts the strategy-proofness of Mσ0 .
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