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Abstract

Self-enforcing agreements, such as relational contracts and international agreements, pre-

scribe actions and rules enforcing these actions, but typically ignore agents’ ability to change

these rules. This paper studies self-sustaining norms, which prescribe how individuals react

to one another’s actions but also to proposals to change the rules. We characterize the set of

self-sustaining norms when agents interact frequently, which has a remarkably simple structure.

Inefficient norms may arise even when all actions are public and frequent and agents can credibly

commit to rules.

1 Introduction

Economists often distinguish agreements that rely on commitment from those that are self-enforcing.

Relational contracts (MacLeod and Malcomson (1989), Levin (2003)), sovereign debt contracts

(Bulow and Rogoff (1989, 1991), Atkeson (1991)), dynamic provision of public goods (Levhari and

Mirman (1980), Fershtman and Nitzan (1991)) and resolutions of the tragedy of the commons,

and cooperative equilibria of repeated games are well-known instances of self-enforcing agreements,

each of which represents an important paradigm in its respective field of study. But are these

agreements really immune from any commitment assumption?

In general, an agreement is viewed as self-enforcing if violations can be deterred by punishments

which are continuation equilibria of the game underlying the agreement. As seminal studies of

renegotiation-proof equilibria have noted, this concept ignores the possibility, for the parties in-

volved, of moving away from the punishment continuation to another continuation that all par-
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ties prefer to the punishment.1 In this scenario, what prevents the parties from moving to a

Pareto-superior continuation? If such a move is feasible, doesn’t this compromise the relevance of

“self-enforcing” equilibria? And if it isn’t, doesn’t this, in fact, constitute a form of commitment?

These questions suggest a stronger notion of self-enforcement, according to which an agreement

must deter not only deviations in actions, but also proposals which undermine the punishments

necessary to enforce the initial agreement. This stronger notion raises several conceptual challenges,

which this paper aims to identify and resolve.

The first challenge is a modeling question: to consider Pareto-improving proposals, one must envis-

age a larger game in which such proposals are entertained. Should this larger game be implicit, as

in the large literature on renegotiation-proof contracts?2 Or should it be formalized explicitly by

a model in which continuation equilibria can be negotiated? Put differently, should renegotiation

be considered as a possibly on-path phenomenon of a larger game? Or can it be conceptualized

without loss of generality as a constraint imposed on equilibria of the underlying game?

The cooperative approach to renegotiation–by far the most common in repeated games3—has fo-

cused on defining concepts of renegotiation-proof equilibrium. In some settings, however, on-path

1This point is made explicitly by Farrell (1983) and Abreu and Pearce (1991) and has also been noted in the more

applied literature on self-enforcing agreements. For example, Levin (2003) shows that the efficient contract that he

characterizes is “strongly” optimal, i.e., efficient after all histories. In the context of sovereign-debt contracts, Kletzer

and Wright (2000) identify a self-enforcing agreement that is renegotiation-proof according to various definitions of

the concept. In these works, the issue of renegotiation-proofness essentially collapses due to the availability of large

transfers and quasi-linear utility. By contrast, in a version of Levhari and Mirman’s “fish war” model of dynamic

provision of public goods, Cave (1987) identifies several non trivial issues with renegotiation—such as the nonexistence

of strong perfect equilibria.
2Early work following this approach include Farrell (1983), Pearce (1987), DeMarzo (1988), Bernheim and Ray

(1989), Farrell and Maskin (1989), Abreu and Pearce (1991), Asheim (1991), Bergin and MacLeod (1991), Abreu,

Pearce, and Stacchetti (1993), Benôıt and Krishna (1993) and Ray (1994). While some of this literature is motivated

by a critique of self-enforcing agreements, viewed as equilibria of a dynamic game which may not survive renegotiation,

the remedies proposed by this literature all take the form of restrictions—usually, based on efficiency considerations—

on the set of equilibria and use a cooperative or axiomatic approach. By contrast, in the present paper, a self-sustaining

norm may be viewed as a self-enforcing agreement in a larger game that includes renegotiation. Blume (1994) stands

out in this literature as it alludes to a larger game to justify efficient (or “renegotiation-perfect”) bargaining outcomes.

The actual process of renegotiation is unmodeled and captured instead by an efficient bargaining solution concept.
3An important exception is Miller and Watson (2013), who study bargaining in repeated games with transfers. A

key axiom in their theory is the concept of “no-fault disagreement” (NFD), which stipulates that the continuation of

the game when bargaining breaks down in a given period or when a player fails to make a prescribed transfer in that

period be independent of what triggered this event. The NFD axiom together with the availability of large transfers

as well as internal and external efficiency axioms weaker than those typically invoked under the cooperative approach

allows them to provide a sharp characterization of bargaining outcomes in their environment. In Appendix L, we

explore the consequences of their NFD axiom in our theory while maintaining the absence of transfers.
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renegotiation allows outcomes that cannot be replicated by renegotiation-proof equilibria. This

is for example the case when renegotiation entails some frictions (Brennan and Watson (2013)).

To determine whether the focus on renegotiation-proof equilibria is without loss, and which no-

tion of renegotiation-proofness to use, if any, this paper incorporates renegotiation stages into an

underlying model of dynamic interactions.4

We consider a simple environment, in which each period of a repeated game is enlarged to include

a renegotiation stage: a player is chosen at random to propose a new continuation of the enlarged

game, which may be accepted or rejected by other players. To achieve maximal clarity and focus on

the core conceptual issues, our benchmark setting concerns two players and a renegotiation stage

that involves only one proposal by one of the players, followed by an acceptance decision by the

other player. Equilibria in this enlarged game are called norms to emphasize that, unlike equilibria

of the underlying game, they prescribe not only how agents should react to each other’s actions,

but also which proposals they should make and how they should react to any proposal.5 The

norms that we consider are thus similar to the cultural beliefs studied by Greif (1994) in that they

include both the rules governing actions but also a deeper characteristic concerning how individuals

perceive proposals to change the rules and react to them.

To give a substantive meaning to proposals, we say that a norm is self-sustaining if it satisfies

a simple equilibrium refinement: any proposal that is accepted is played.6 Self-sustainability is

thus a property that a norm may have, a rule dictating how to handle incoming proposals. Of

course, other rules exist—such as rules stipulating that all proposals be ignored—and players are

allowed to propose, and possibly implement, any change to these rules. We characterize the set

of self-sustaining norms as the discount factor goes to 1, and then show that i) more complex

renegotiation protocols do not affect our results, ii) our refinement has an equivalent set-theoretic

formulation which differs from existing ones, and iii) the analysis and results extend to more players,

but raise new conceptual issues.

4Some papers have considered a “renegotiation-proofness” principle in specific environments (e.g., Hart and Tirole

(1988)). It should be clear that this approach is limited in dynamic games with an infinite horizon, most obviously

because there is no agreed upon concept of what “renegotiation-proof” means.
5This terminology should not be confused with the “social norms” considered by DeMarzo (1990) or Asheim

(1991), which are subsets of equilibria. By modeling norms as equilibria of a dynamic game, we address Ray’s (1994)

insight that renegotiation-proof sets should be recursively consistent, but instead of applying it to sets of equilibria

in the underlying game, we apply it to the enlarged game with renegotiation, by requiring that our norms be perfect

equilibria of the enlarged game.
6More precisely, the refinement is that any accepted proposal including, possibly, the first off-path proposal, be

played. The terminology refers to the fact that the norm must survive challenges from proposals to change it, while

treating all proposals seriously.
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When renegotiation is explicitly modeled as part of a larger dynamic game, new possibilities emerge

which were occulted by the cooperative approach to renegotiation. Consider, in a two-player

repeated game, a continuation equilibrium that is Pareto dominated by another continuation. If

someone proposes to switch to the Pareto-improving continuation, the proposal’s recipient should

consider the consequences of rejecting the proposal, which need not coincide with the continuation

equilibrium in the absence of any proposal: just as in any dynamic game, continuations can a priori

depend on all histories.

To be concrete, consider a repeated game and history with three possible continuation equilibria,

s1, s2, and sA, such that s1 is Pareto dominated by s2, and sA is most preferred by Ann but

least preferred by Bob. If s1 was to be played but Bob could, in larger game with negotiation,

suggest s2 instead, there is no reason why Ann should accept Bob’s proposal if rejecting it leads

to sA. Similarly, Bob could be rewarded for rejecting Ann’s proposal to move to s2 by a fourth

equilibrium sB that is most preferred by Bob and least preferred by Ann. In this situation, s1 is

stable despite being Pareto dominated, because all proposals are deterred by punishing the proposer

and rewarding the rejector of the proposal.

This observation suggests a novel mechanism for the persistence of inefficient outcomes in en-

vironments with dynamic interactions: even when agents i) interact arbitrarily frequently; ii) can

perfectly observe one anothers’ actions, iii) communicate freely; and iv) can credibly agree to switch

to more efficient equilibria, inefficient outcomes may still be sustained by a norm which deters pro-

posals by rewarding rejectors, as in the example above. This mechanism, which has applications

to political economy, regulatory policy, and other fields, may be viewed as a social norm which

prescribes players’ reaction to deviating actions but also to deviating proposals.

This mechanism is consistent with the impact on social interactions and institutions of Greif’s

(1994) cultural beliefs, which our self-sustaining norms seem to capture: Greif notes in particular

(p. 925) that “even if each member of the society recognizes the inefficiency caused by individualist

cultural beliefs, a unilateral move by an individual or a (relatively) small group would not induce a

change. Expectations about expectations are difficult to alter, and thus cultural beliefs can make

Pareto-inferior institutions and outcomes self-enforcing.”

One of the hardest conceptual questions here is to understand which proposals can be deterred by

a norm. Suppose that Ann and Bob are stuck at s1, as previously described. Could they agree

to tear down the rule which stipulates that rejecting s2 leads to sA or sB? But proposing such a

rule-tearing agreement amounts to making a proposal, not unlike the proposal to replace s1 by s2.

In the enlarged game, players anticipate all possible proposals, and all proposals are subject to the
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argument presented earlier.7

These observations point to a novel formal definition of social norms that is dynamic and en-

compasses the consideration of other norms. Some authors (many considering cooperative or set-

theoretic concepts of renegotiation) have described a norm as a set of equilibria which players view

as “acceptable” or “credible.” Thus, if a continuation equilibrium is Pareto dominated by a second

one, this domination is not a concern if the second equilibrium is not in the norm, i.e., not credible.

However, one may alternatively view a norm as the equilibrium that is actually played on path. For

example, driving on the right side of the road is the “norm” in the United States, but driving on the

left side of the road is the norm in Japan. Should a norm be conceptualized as a set of acceptable

equilibria, as with the cooperative approach, or as the actual equilibrium that players are engaged

in (which may be a layman’s view of the concept)? A related question is whether a norm should

be time-independent, as in most papers following the cooperative approach, or allowed to vary over

time? Some authors, notably Abreu and Pearce (1991) and Asheim (1991) have argued that norms

may vary over time, and noted that even presumably weak concepts of renegotiation-proofness fail

to allow for this.8

Our framework answers both questions simultaneously, by defining a norm as an equilibrium of

the dynamic game enlarged to include proposals: it specifies not only what is played on path (e.g.,

driving on the right side of the road), but also how players should consider proposals to change

the norm, i.e., which proposals are considered acceptable, and when. In particular, a proposal

which may have been acceptable at earlier stages of the game may become unacceptable after some

histories, such as those that include a recent deviation.

While some credible Pareto-improving proposals can be deterred, as explained above, this does not

mean that renegotiation has no bite. Consider, for example, a pure coordination game in which the

7A related question concerns how a proposal should be interpreted. In this paper, we define proposals as messages,

as in Miller and Watson (2013), each of which is associated with an equilibrium of the enlarged game. One could

alternatively imagine a hierarchy of proposals, in which each proposal of level k + 1 dictates the rule concerning

proposals of level k. Unless an artificial cap is imposed on this hierarchy (which would amount to a form of commit-

ment), this suggests the consideration of a universal proposal space in which each proposal includes a prescription

on how to react to any proposal from this space. Interestingly, however, this construction is impossible: no set of

messages can be rich enough to include as distinct proposals all equilibria that it generates. The set of equilibria

depends on the set of messages, since each equilibrium prescribes a reaction to each message. This leads to recursive

equation which puts the set of equilibria in bijection with its power set. This equation has no solution, by Cantor’s

impossibility theorem (see, e.g., Mendelson (1997)). The argument is explained further in Appendix D.
8While Abreu and Pearce (1991) allow the set of credible deviations to differ from the set of on-path equilibria,

they impose that the set of credible deviations always be the same. We do not impose this restriction here, although

a payoff-equivalent formulation of self-sustaining norms, described in Section 5, has a similar structure.
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Pareto frontier consists of a single payoff vector. Then, any proposal to move to this point would

be accepted, since rejecting it could only lead to a worse outcome for all players.

We characterize the set of all self-sustaining-norm payoffs as the discount factor goes to 1, and

show that this set largely depends on the nature of the underlying game. In games with high

conflict, such as the prisoners’ dilemma, renegotiation has no impact on the Folk Theorem: every

individually rational payoff can be implemented by a self-sustaining norm. In more cooperative

games, renegotiation eliminates many inefficient outcomes. In general, our results provide a way of

assessing the amount of conflict or misalignment in a game, providing a continuous spectrum for

the impact of renegotiation. It turns out that the payoffs implementable by self-sustaining norms

have a simple characterization: they coincide with the set of all individually rational payoff vectors

that lie above a particular point whose location depends on the shape of the Pareto frontier. Except

in pure coordination games, there exist inefficient self-sustaining norms.

In a political or regulatory context, these inefficient norms may be interpreted as rules set by a

third party who benefits from the inefficiency between the players. For example, in a dictatorship,

rebellions may be deterred by rules stipulating that anyone proposing a rebellion sees his proposals

rejected and is punished by other players who are rewarded for punishing him. While all citizens

prefer the rebellion over the status quo, the rules guarantee that it is in no one’s interest to ever

proposal a rebellion, even when all actions are public and an agreed proposal would be binding.

With an arbitrary number of agents, several new issues emerge. First, could a subset of agents

make a partial agreement, possibly at the expense of other agents? What would this imply for other

agents’ strategies? Could such agreements be private and gradually discovered by the remaining

agents? While these issues raise important and interesting challenges,9 we focus here on global

agreements: a proposal is submitted publicly to the entire set of players, and must be approved

by a supermajority of the players. As in any model of supermajority vote, the outcome is binary:

either the proposal passes, or it loses and a different continuation equilibrium ensues. As in the

two-player case, this continuation can, however, depend on the identity of the proposer.10 A norm

9When agreements are public, these questions relate to the study of coalition formation and coalition-proof equi-

libria (Bernheim, Peleg, and Whinston (1987)). And even if one can give a meaningful private agreements, such

agreements may generate asymmetric information among players and create well-known challenges to analyze the

formation and behavior of subsequent coalitions, as pointed out by Crémer (1996) and in the context of auctions,

by McAfee and McMillan (1992), and Caillaud and Jehiel (1994). See also Che and Kim (2006) for a more recent

treatment of this issue.
10Our approach is consistent with a large literature in political economy and social choice, according to which the

implications of a vote depend only on whether a winning coalition was achieved, not on the composition of the winning

coalition. Allowing the continuation equilibrium to depend finely on the identity of individuals who voted in favor of

the proposal would de factor split any proposal into a complex proposal schedule describing all possible continuations,
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is self-sustaining if it satisfies the refinement that any proposal accepted by at least L agents, where

L is the supermajority threshold, is played. Our main result extends to any number of players:

for any supermajority rule, the set of payoffs implemented by self-sustaining norms consists of all

payoffs that lie above a particular payoff vector. Moreover, this set becomes larger (i.e., more

permissive) as the supermajority rule becomes more stringent (i.e., L becomes larger).

2 Setting

We consider a repeated game with renegotiation, in which each period features an action stage

followed by a renegotiation stage. For expositional simplicity, the benchmark setting concerns two

players and focuses on the simplest renegotiation protocol: in each period, one player (at most)

gets to make a proposal, which may be accepted or rejected before moving to the next period.

Section 6 extends the analysis to more agents and Appendix G considers more general protocols of

proposals, showing that the main results are unaffected by this generalization.

For i ∈ {1, 2}, player i’s stage-game action, ai, lies in a finite set denoted Ai. The vector a = (a1, a2)

determines current-period payoffs u(a) = (u1(a), u2(a)). A distribution αi over Ai is a mixed action

for i, and α = (α1, α2) denotes the vector of mixed actions for both players. Players put a weight

ε ∈ (0, 1) on the current period, which corresponds to a common discount factor δ = 1− ε.

Each period consists of the following stages:

1) Players observe the realization z of a public randomization device taking values in [0, 1];

2) They simultaneously and privately choose a mixed strategy αi ∈ ∆(Ai), i ∈ {1, 2}.11 Condi-

and raise a number of strategic considerations (such as the potential benefit of voting against a proposal which one

knows will pass anyway), which would require a separate analysis. We do show that if the continuation equilibrium

can depend arbitrarily on the identity of the rejectors, then the Folk Theorem can be restored, see Appendix J.
11In accordance with current practice, we allow players to use privately mixed strategies. This feature distinguishes

our analysis from some of the earlier work on renegotiation. For example, Farrell and Maskin (1989) assume that

players can observe each other’s mixing strategies, rather than just the realized actions. This distinction can severely

affect the set of weakly renegotiation-proof (WRP) equilibria, the concept introduced by Farrell and Maskin. Ap-

pendix K provides an example in which all Pareto efficient WRP (which are known to exist) are destroyed and the

repetition of an inefficient stage-game Nash equilibrium is the only WRP when mixing is private. Intuitively, when

players observe each other’s mixed strategy, there is without loss a single continuation payoff vector, conditional on

players’ mixed strategies. When mixtures are unobservable, however, there must be a continuation vector for each

possible outcome of the mixture, chosen so as to make each player indifferent across all actions in the support of his

mixed strategy. Moreover, all of these vectors must belong to the renegotiation-proof set. This is problematic because

some of these continuations may have Pareto-ranked payoffs, violating weak renegotiation-proofness. Bernheim and
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tional on the realization z of the public randomization device, players choose their mixed actions

independently from each other;

3) The vector a of actions is observed and the period’s payoffs are realized;

4) With probability p < 1, one of the players is given an opportunity to send a message from a set

M, whose cardinality weakly exceeds the cardinality of the continuum. Each player has the same

probability of p
2 being chosen.12 The chosen player may conceal his opportunity to send a message

by remaining silent, or mix between sending a message or staying silent;

5) If i sent a message, player −i decides whether to accept it, possibly mixing between acceptance

and rejection. The resulting decision D−i equals 1 if −i accepts the message and 0 if he rejects it;13

The public history of a period consists of a realisation z of the randomization device; an action

vector a; a (possibly empty) message mi by one of the players, denoted i, and if i sent a nonempty

message mi, an acceptance decision D−i. In addition, each player privately observes the mixing

probability used for each of his decisions.

We focus on public equilibria of this game, which we will sometimes call norms to indicate that

they concern the enlarged game rather, and let S denote the set of all norms. Since messages can

always be ignored regardless of whether they were accepted, the set of players’ expected payoffs

across all norms contains the set V (δ) of continuation payoffs of the underlying repeated game with-

out renegotiation. Moreover, the reverse inclusion still holds, as any norm in S can be replicated

without renegotiation: During the renegotiation stage players’ behavior may affect their continua-

tion payoffs in the next period. Before the renegotiation stage, players consider these continuation

payoffs as random variables, which depend on which player gets a chance to propose, and (mixed)

equilibrium strategies. Since the cardinality of players’ continuation payoffs coincides with the

cardinality of outcomes of the public randomization device, the randomization device can simulate

the outcome of renegotiation, yielding the same distribution over continuation payoffs in the next

period. This proves the following lemma.

Lemma 1 The set of continuation payoffs implemented by all the norms S coincides with V (δ).

Our main concept is an equilibrium refinement applied to norms.

Ray (1989) rule out mixing altogether, focusing their analysis on pure-strategy equilibria.
12When players have different probabilities of making a proposal, the sufficient conditions are unchanged and the

necessary conditions entail a payoff lower bound on each player that increases with this player’s proposal probability,

consistent with the intuition that a higher proposal probability means an increased bargaining power. See Appendix E.
13The paper’s main results hold as stated when the renegotiation stage includes multi rounds of negotiation. See

Appendix G.
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Let H+ denote the set of all finite public histories ending after an action stage such that no off-path

proposal has been accepted.14

Definition 1 A norm is self-sustaining if the following holds for any history h ∈ H+:

1. Message Richness Each message m ∈ M is assigned a norm of S, and the payoff vectors

spanned by these norms cover all of V (δ);15

2. Binding Acceptance If a message is proposed and accepted immediately following h, the

norm assigned to it is played from the next period onward.

Definition 1 thus requires that all accepted on-path proposals as well as the first accepted off-path

proposal be implemented. Put differently, Definition 1 means that i) as long as players have not

rejected it, they obey the rule stipulating that any accepted proposal is played, ii) the only way of

departing from rule is for them to make and accept an off-path proposal that violates the rule.16

Under a self-sustaining norm, players can credibly propose, accept, and thus implement, any al-

ternative norm. However, a player on the receiving end of any Pareto-improving off-path proposal

finds it optimal to reject it. We emphasize that, under a self-sustaining norm, any accepted pro-

posal is binding even when the proposed itself is not self-sustaining. Indeed, an accepted proposal

governs not only how players respond to each others’ actions, but also how they respond to each

others’ proposals. It is perfectly admissible, for instance, for players to agree at some point to

ignore all subsequent proposals—regardless of the response to these proposals—just as they may

agree to ignore specific deviations in the underlying game.

Self-sustaining norms have a set-theoretic formulation provided in Section 5: we define a convention

as a set of norms, and introduce a notion of stability for conventions. A norm is self-sustaining if

and only if the convention consisting of all continuations of the norm—following histories at which

no off-path proposal was accepted—is stable, with a reciprocal statement provided in Section 5. We

also introduce a notion of “credible” proposals17 and show that restricting the self-sustainability

14Formally, let H denote the set of all finite public histories ending after an action stage: elements of H take the

form h = (z0,a0,m0,i0 ,D0,−i0
, . . . , zt,at,mt,it ,Dt,−it

, zt+1,at+1) for some t + 1 ∈ N, where mt,it = Dt,−it = ∅
when no one proposed in period t. Then H+ consists of all histories h ∈ H with the following property: for any

period t′ covered by h for which that m = mt′,i
t′

is nonempty, either m is in the support of it′ ’s on-path proposals,

given the history h truncated after the action stage of period t′, or Dt′,−i
t′

= 0, i.e., −it′ rejects m.
15This condition is always achievable: By assumption, M has the cardinality of the continuum. Therefore, each

payoff vector v of V (δ) can be mapped to some message m, by assigning to m a norm that implements v.
16Of course, off-path proposals do not necessarily imply a rejection of this rule.
17A proposal is credible relative to a convention of norms if any ulterior deviation from the proposal, whether at

the action or the proposal stage, triggers a continuation norm in the convention.
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refinement to “credible” proposals yields the same necessary and sufficient conditions as those

obtained when all proposals are included in the refinement.

3 Main Result

Our main objective is to study the set of payoffs achieved by self-sustaining norms as players’

discount factor δ converges to 1, for each level of renegotiation frictions.

To achieve this objective, we adjust the probability p of a renegotiation opportunity in each period

proportionally to the period’s weight ε = 1−δ. This normalization has the following interpretation:

if ε represents the duration of each period and p = qε for some parameter q > 0, the probability that

a proposal opportunity arises within one unit of time, i.e., within K = 1/ε periods, is 1−(1−p)K =

1−(1−qε)1/ε ∼ q. The parameter q thus stands for the frequency of proposal opportunities per unit

of time. This normalization is useful to capture a non-degenerate effect of renegotiation frictions.18

Given q ≥ 0, a payoff vector X is sustainable at frequency q if there is a threshold ε(X) > 0 such

that for all ε ∈ (0, ε(X)), X is implemented by some self-sustaining norm associated with discount

factor δ = 1 − ε and renegotiation frequency q. We let V (q) denote the set of all payoff vectors

which are sustainable at frequency q and V̄ = ∩q≥0V (q). A payoff vector X belonging to V̄ is

implementable regardless of the renegotiation frequency and is said to be sustainable.

Let v
¯i

denote i’s minmax payoff in the stage game19 and Pi denote the feasible payoff vector that

gives i his maximal payoff among all payoff vectors above the minmax. If several such vectors

exist, the vector whose payoff for −i is the lowest is chosen. The weak individually-rational Pareto

18Theorem 1 implies that if the probability p of per-period renegotiation opportunity is fixed independently of ε,

the necessary condition for self-sustainability reduces to the sufficient condition described by the theorem, which is

independent of p. With p independent of ε = 1 − δ, taking δ to 1 essentially eliminates any renegotiation friction,

regardless of p, as any failure to renegotiate an inefficient norm in the current period will be followed by an arbitrarily

close opportunity to renegotiate. Moreover, the exploding renegotiation frequency which results from this assumption

also creates an instability as δ goes to 1: For each p > 0, there are examples for which self-sustaining norms fail to

exist as δ goes to 1, described in Appendix I. Our example features an inefficient stage-game Nash equilibrium as

well as Pareto-efficient equilibria which must be sustained by the threat of large punishments. When renegotiation

opportunities arrive at fixed rate p > 0 per period and δ goes to 1, the expected length of punishments becomes too

short for the Pareto efficient vectors above the stage-game Nash equilibrium to be implementable—the gain from a

deviation in action is proportional to ε = 1 − δ (the weight put on the current period), while the duration of any

punishment is of order pε (i.e., until it is renegotiated) and thus smaller than the deviation gain, for judiciously

chosen payoffs. The inefficient stage-game Nash equilibrium is not self-sustaining either, as it is destroyed by any

Pareto-efficient proposal.
19As usual, player −i is allowed to use a mix strategy to minmax i.
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frontier—consisting of vectors which are not strictly Pareto dominated—is a piecewise linear curve

joining P1 and P2.

For any payoff vector X of V (δ), let πi(X) denote the ith component of X. Thus, in the statement

to follow, v1 = π1(P2) denotes the first component of P2 and v2 = π2(P1) denotes the second

component of P1.

Theorem 1 • (Sufficiency) If

πi(A) > vi for i ∈ {1, 2} (1)

or A = P1 = P2, then A ∈ V (q) for all q ≥ 0.

• (Necessity) If A ∈ V (q), then

πi(A) ≥ v
¯ i +

q

2 + q
(πi(P−i)− v

¯ i) (2)

for i ∈ {1, 2}. If A is sustainable, inequalities in (1) must hold for both players as weak

inequalities.

Condition (1) thus fully characterizes (up to its boundary) the set of sustainable payoffs. The

sufficient and necessary conditions are respectively derived in Appendices A.1 and A.2.20

Figure 1 illustrates Theorem 1 for a fixed q: the green region represents the payoff vectors known to

be sustainable and the orange region represents the additional vectors which may be sustainable.

When q = 0 (no renegotiation), the orange region extends all the way to the minmax vector v
¯

and we recover the Folk Theorem. As renegotiation frictions become arbitrarily small (q → +∞),

the orange region disappears as necessary and sufficient conditions become identical (up to their

boundary).

One consequence of Theorem 1 is that V (q) is nonempty for all q ≥ 0 and so is the set of sustainable

payoffs. In particular, our concept of self-sustainability provides a well-defined counterpoint to the

standard Folk Theorem when renegotiation is introduced to repeated games, allowing us to compare

the impact of renegotiation across different strategic situations of the stage game, from perfectly

aligned interests to extreme misalignments, and to establish for a large class of games the possibility

20Appendix A.1 focuses on the case P1 6= P2. If P1 = P2, players have perfectly aligned interests as they both

want to implement P1 and the construction is trivial. When P1 = P2, the necessary condition selects this vector as

the unique outcome as renegotiation frictions become negligible. If the weak Pareto frontier lies strictly above the

minmax values, and consists of a segment giving a constant payoff to one of the players—a degenerate case—any

payoff on the frontier is sustainable.
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Figure 1: Necessary and sufficient conditions for fixed q

of sustaining inefficient norms even when δ is arbitrarily close to 1, and players can frictionlessly

and credibly propose and agree on Pareto improving proposals.21

3.1 Relation between player alignment and sustainable outcomes

Figure 2 represents the set of sustainable payoffs for degrees of player alignment. In configuration

(a), renegotiation constrains the set of implementable payoffs because the deterrence points P1

and P2 are too close to each other relative to the vector of minmax payoffs. Configuration (b)

represents a perfectly cooperative game. The only sustainable outcome is the Pareto efficient

vector. In configuration (c), the punishment/reward vectors used to deter off-path proposals are

sufficiently far apart and the Folk Theorem holds despite the presence of frictionless renegotiation.

As the figure illustrates, the impact of renegotiation hinges on the alignment structure of the stage

game. As the game becomes less cooperative (moving from (b) to (a) to (c) on the figure), there is

more scope for disagreement among the players, which can be used to implement a larger set of fea-

sible payoffs. Strategic renegotiation thus does not destroy the implementability of Pareto-efficient

payoffs, but does not prevent Pareto-inefficient ones either, and the severity of the inefficiency which

may be sustained increases as players’ interests become more divergent.

21It should be noted that for fixed ε, there need not exist any self-sustaining norm, just as strongly renegotiation-

proof equilibria (Farrell and Maskin (1989)) and externally consistent norms (Bernheim and Ray (1989)) may fail to

exist for fixed discount factors. Indeed, we have constructed a family of counter-examples for some fixed ε > 0 and

all values of q > 0.
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(c) Folk Theorem with extreme deterrence points (d) Asymmetric case

Figure 2: Necessary and sufficient conditions for various configurations

3.2 Comparative statics: bargaining frictions and discounting

In standard repeated games with public randomization, it is well known that the set of imple-

mentable payoffs gets larger as δ limits to one. This property does not hold with renegotiation.

For example, suppose that the stage game has an inefficient Nash equilibrium that violates the

necessary conditions obtained by Theorem 1 for q = 1
2 . For small ε, Theorem 1 implies that this

Nash equilibrium payoff, and an open neighborhood around it, is not sustainable. However as ε

goes to 1, there is a norm under which players follow this Nash equilibrium in the first period

(before possibly renegotiating to a Pareto superior continuation). Since the current-period weight

is arbitrarily close to 1, players’ payoffs are arbitrarily close to the inefficient Nash equilibrium’s

payoffs, which was impossible with a small enough value of ε.

Although discount-factor monotonicity is violated in the presence of renegotiation, a different kind

of monotonicity arises here, with respect to negotiation frictions: the more opportunities players
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have to renegotiate their norm, the smaller the set of sustainable payoffs. This result holds at all

discount factor levels and is proved in Appendix H.

Proposition 1 For any fixed ε ∈ (0, 1), the set of sustainable payoffs is decreasing in q.

3.3 Relation to the existing literature

When renegotiation is viewed as a strategic interaction, renegotiation-proof equilibria may contain

Pareto-ranked continuations. This happens when Pareto-improving proposals are dissuaded by

punishing the proposer and rewarding the rejector beyond the proposal. This idea also underlies

the results of Santos (2000) who considers players bargaining over which equilibrium to play in a

one-shot game, as well as Miller and Watson’s (2013) Theorem 1, which shows that renegotiation

has no restrictive power when it must only obey their “Internal Agreement Consistency” Axiom.

That theorem and ours differ in two important ways. First, their argument requires unbounded

transfers: to punish a proposer, say player 1, one requires him to make a very high transfer to 2

in the next period. If the weight of a single period is ε, the transfer must be of order 1
ε , hence the

necessity of unbounded transfers as ε goes to zero. These large transfers permit 1’s continuation

value to jump immediately from some punishment payoff v01 to a higher continuation value v1, which

is easy to implement. Second, the transfer stage takes place, in each period, before the action stage

(and, in particular, is distinct from it). If 1 deviates by making a lower transfer than prescribed, it

suffices to have him minmaxed by the other player and reset the continuation value to v01 for the

next period in order to punish this deviation.

When stage-game payoffs are bounded, as in our setting, the continuation value of a player cannot

jump by an ε-independent amount. The equilibrium construction must thus keep track of contin-

uation values and make sure that these continuation values are implementable at all stages and

following all deviations. In the absence of a separate transfer stage, moreover, if player 1 deviates

in action when implementing v01 , his continuation value must fall below v01 . Implementing this

lower value may be difficult or even impossible. In fact, it is this impossibility which creates new

restrictions on the set of sustainable payoffs and destroys the Folk Theorem obtained in Miller and

Watson’s Theorem 1.

Both Santos (2000) and Miller and Watson (2013) consider a further restriction, which is that the

continuation of the game, in case of a disagreement, be independent of the identity of the proposer

and of the nature of the proposals.22 This restriction guarantees a higher level of efficiency. The

22Similar ideas appear in Farrell (1987), Rabin (1994), and Arvan, Cabral, Santos (1999) for the case of simultaneous

announcements.
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consequences for our model of such a refinement are studied in Section L.

4 Interpretation and applications: a novel mechanism for misco-

ordination and inertia

The statement of Theorem 1 implies even when i) the game has complete information, ii) the

discount factor δ is arbitrarily close to 1, iii) players can exchange messages at arbitrarily high

frequency, the meaning of which consists of unambiguous agreement proposals, and iv) accepted

agreements are binding.

Inefficient payoffs are sustained by rules which discourage proposals, including Pareto-improving

ones, and which may be viewed as part of a social norm among the players. Although such a social

norm seems undesirable from the perspective of the players, it may be interpreted in a broader

context, in which the designer of the norm is not an active player of the game and benefits from

the inefficiency that arises from the perspective of the players.

In particular, the agents who are explicitly modeled—only two so far, although Section 6 extends

the analysis to an arbitrary number of players—may be part of a larger society or organization who

exert externalities on other economic, unmodeled agents.

Potential applications include bidders in an auction, firms in a cartel, members of a radical organi-

zation, or simply citizens which the social planner wish to control, as in the case of a dictatorship. In

these applications, high payoffs for these players mean that they are colluding, polluting, shirking,

or, more generally, adversely affecting individuals who enter the social planner’s objective.

Viewed from this perspective, the rules which enforce a Pareto-inefficient norm have the virtue

of being self-sustaining: the social planner does not need to intervene once the game has started.

There is no need for external monitoring or punishment.

Consider, for instance, a regulator wishing to prevent collusive pricing in an oligopolistic market.

If the firms can be given self-sustaining rules that prevent collusion, such a design is of course

cheaper for the regulator than explicitly monitoring the firms and administrating the punishments.

Likewise, the manager of administrative office facing high costs of monitoring his employees may

wish to create a social norm between them which implements high effort and under which an

employee’s proposal to shirk is rebuked by other employees and thwarted without requiring the

manager’s intervention. The designer’s role consists in setting the rules at the beginning of the

game, specifying how players should interpret deviations in actions and proposals. Once this
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common understanding is reached, the designer completely withdraws from the game: the players

enforce the rules themselves by punishing one another if one of them ever deviates from these rules.

Of course, proposal-deterring norms do not have to be designed by anyone: players may simply be

trapped in a norm with this feature—perhaps the remain of an unmodeled evolution before which

such a norm made sense. An example may be “acting tough” and discouraging any suggestion to

“soften up” even when doing so would in fact lead to a Pareto improvement.

Suppose that the designer of the norm can also make new actions available to the players (such

as snitching on one another, as in the prisoner’s dilemma). Introducing actions which increase

the misalignment between players, as discussed in Section 3.1, increases the maximal inefficiency of

sustainable outcomes, and thus potentially also the (unmodeled) payoff of the norm designer. From

a designer’s perspective, creating actions which benefit only one player but not others facilitates

the deterrence of collusive proposals.

We sketch two applications below, in which norms are Pareto inefficient from the players’ perspective

but beneficial to some social planner whose sole involvement in the game, possibly, is to design the

norm governing players’ interactions.

Cournot competition.

Consider two symmetric firms which, under Cournot competition, produce together more than

the monopolistic output. These firms could achieve a higher profit by each producing half of

the monopolistic output. However, proposals to move away from the current equilibrium may be

subject to a norm treating any such proposal as corrupt behavior. The firm on the receiving end

of such a proposal could reject it, triggering a continuation in which, say, the rejector produces the

Stackelberg leader’s output in each period and the proposer produces the Stackelberg follower’s

output. These outputs give the proposer a lower payoff than the competitive equilibrium and his

competitor a higher payoff than the half of the monopoly’s profit.23

Political inertia and dictatorship.

Consider an authoritarian regime facing the risk of a revolution. In this regime, citizens may be

exploited through high taxes, expropriation, and other channels. Faced with this situation, various

citizen factions may attempt to persuade others to start a revolution (an off-path proposal). If the

proposal is accepted, the authoritarian regime falls which (ideally) increases all citizens’ well-being.

23The punishment for the proposer, i.e., the Stackelberg equilibrium, is inefficient. However, it suffices to incentivize

a rejection to the proposal and thus deter a Pareto-improving proposal.
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The regime may impose a norm that thwarts this threat by rewarding anyone who reveals the

plot and punishing its instigator. Importantly, all rewards and punishments are administered by

the citizens, without the dictator getting involved or even monitor them.24 This provides a novel,

completely endogenous explanation for the stability of dictatorships even when citizens can credibly

coordinate to overthrow the regime. It exposes the limits of attempts to coordinate when the norm

in place anticipates such attempts.

The dynamic nature of social norms and the importance of neologisms

Our analysis emphasizes the dynamic nature of social norms, particularly with regard to how

“innovative” proposals are perceived. For instance, starting from a Pareto-inefficient norm, a first

proposal to increase cooperation and increase both players’ payoffs may perceived as acceptable and

implemented. To be sustained, however, this cooperation may require the threat of punishments

during which the kind of cooperation originally proposed is no longer acceptable.

In other applications, a dynamic norm may capture each player’s endogenous “status” determining

the actions and proposals that he is allowed to pursue. If a player proposes to disrupt the current

norm (say, by implementing a higher cooperation, or a revolution), he loses his status when the

proposal is rejected. An infamous example concerns prisoner camps in which a prisoner is assigned

the administrative authority over other prisoners, but loses it if this authority is used to rebel.

5 Equivalent notions of stability

This section provides “open” and “closed” set-theoretic formulations of self-sustaining norms, and

then shows that our necessary and sufficient conditions are unchanged if only a subset of “credible”

proposals is taken seriously.

5.1 Stable Conventions

The first one defines a set-theoretic notion of norms, which facilitates the comparison of our concept

with existing notions of renegotiation-proofness (e.g., Farrell and Maskin (1989) and Bernheim and

Ray (1989)).

Definition 2 A subset C ⊂ S of norms is a convention if for any s ∈ C as long as no off-path

24While the application obviously involves more than two players, the gist of the many-player analysis is identical

to the two-player one, as shown in the many-player extension of Section 6.
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proposal was accepted, the continuation of s belongs to the convention C.25

The definition implies that if players start with a norm in a convention, then all on-path proposals

(whether they are accepted or rejected), as well as rejected off-path proposals, have their continua-

tions in the convention. In particular, deviations in actions are punished within the convention, as

long as no off-path proposal to leave the convention has been accepted. One may informally view

C as a “social norm:” it describes the set of continuations which players perceive as consistent with

“business as usual.” A convention can be abandoned only when some player makes an off-path

proposal outside of it that is accepted by the other player. The following notion of stability requires

that such proposals be taken seriously by the players.

Definition 3 A convention C is stable if, in any period starting with a norm in C, the properties

of Message Richness and Binding Acceptance from Definition 1 are satisfied.

Since all on-path continuations of norms in C must all belong to C—by definition of a convention—

stability implies that any Pareto-improving proposal lying outside the convention is rejected with

probability 1; for if it were accepted, stability would require that the proposal be implemented.

Stability thus requires that no player ever has an incentive to make proposals outside of the

convention—hence the terminology. Intuitively, stability is achieved by rewarding a player on the

receiving end of a deviating proposal whenever he rejects it. Crucially, however, this continuation,

which rewards the rejector and deters the proposer, must lie within the convention.

As anticipated, convention stability is equivalent to self-sustainability in the following sense.

Proposition 2 An norm is self-sustaining if and only if it is part of a stable convention.

The proof of this equivalence is straightforward: First, any norm belonging to a stable convention

must be self-sustaining, since all continuations of on-path proposals and rejected off-path proposals

lie in the convention, and thus subject to the stability condition. For the reverse direction, take any

self-sustaining norm and consider the set consisting of this norm together with all of its continuations

at the beginning of periods following histories for which no off-path proposals has been accepted.

This set forms a convention, by construction, which is stable, by self-sustainability of the norm.

Closed vs. open conventions

25Continuations of s are always defined at the beginning of the corresponding period.
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The conventions defined above are open in the sense that they allow players to depart from the

convention when an off-equilibrium proposal is accepted. This possibility is absent from earlier

studies of renegotiation-proof equilibrium. However, these perspectives can be reconciled: we show

that convention stability can be recast in terms of a purely set-theoretic definition.

Definition 4 A subset C of S is a closed convention if for any s ∈ C, any continuation of s

belongs to C.

The only difference with Definition 2 is that continuations belong to the convention even when off-

path proposals are accepted. To offset this change, our earlier definition of stability is translated

into the language of set-theoretic analysis.

Definition 5 A closed convention C is stable if it satisfies the following property: Consider any

norm of C and history at which i gets a chance to make a proposal, and let Ûi denote i’s continuation

payoff. Then, for any proposal with payoff vector U which gives i a payoff πi(U) > Ûi, there is a

payoff vector U ′ of C such that π−i(U
′) ≥ π−i(U) and πi(U

′) ≤ Ûi.

Theorem 2

1. For any closed convention Cc, there exists an open convention Co which has the same payoff set,

and vice versa.

2. For any stable closed convention Cc, there exists a stable open convention Co which has the same

payoff set, and vice versa.

5.2 Credible proposals

Stability requires that players implement any accepted proposal. When players are used to a

convention C, one may wonder why players should take all proposals seriously, particularly when

these proposals lie outside of the convention. It turns out that Theorem 1’s necessary and sufficient

conditions are identical if one restricts proposals to a much smaller subset of “credible” proposals.

Definition 6 Given a convention C, a norm is C-credible (or just “credible”, when there is no

confusion) if any off-equilibrium play (action, proposal, or acceptance decision) triggers a contin-

uation that belongs to C (for the appropriate stage within the period). A continuation payoff is

credible if it is implemented by a credible norm.

Starting with a norm belonging to some convention C, a credible proposal is such that any future

deviation triggers a reversal to the convention. For example, if a convention includes a “punishment”
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norm that gives low utility to both players, the convention can support many credible norms by

imposing that any deviation trigger the punishment norm. Since the players may deviate at different

stages of any period, after a deviation they will play the next stage according to the convention.26

In addition, any subsequent deviation (namely, accepting an off-path proposal) may trigger a norm

which does not belong to the convention.

Definition 7 A convention C is credibly stable if:

1. Message C-Richness Each m ∈ M is associated with a norm of S, and each C-credible
payoff is implemented by an C-credible norm associated with some message;

2. C-Binding Acceptance If a message is accepted, whose associated norm is C-credible, the
associated norm is implemented.

Definition 7 is clearly more permissive than Definition 3, because it imposes the refinement over a

smaller set of proposals. However, we have the following result.

Theorem 3 The set of points sustained by credibly stable conventions obeys the necessary and

sufficient conditions of Theorem 1.

The proof is straightforward: first, any stable convention is credibly stable since the latter must

sustain fewer proposal challenges than the former. Our construction for the sufficiency condition

thus still applies. Second, the proposals used in Appendix A.2 to derive the necessary conditions

of Theorem 1 are credible, as shown in this appendix. The necessary conditions are thus identical

for stable and credibly stable conventions.

6 Arbitrary number of players

The analysis so far has focused on two players, a common restriction to study renegotiation in

repeated games.27 Extending the analysis to more players raises new conceptual issues. Can

26For example, if a player deviates during the action stage, the players will then engage in renegotiation under the

rules prescribed by the convention. If a player deviates during the renegotiation stage by sending the wrong message

or making the off-path acceptance choice, then in the next period the players will choose their actions according to

the convention.
27E.g., Farrell and Maskin (1989), Benôıt and Krishna (1993), and Santos (2000). Abreu, Pearce, and Stacchetti

(1993) focus instead on symmetric equilibria.
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proposals be targeted toward a subset of individuals? What happens if only a subset of the players

accepts the proposal?

This section explores some of these issues, allowing for an arbitrary number, n, of players. After

a player has made a proposal, other players vote on accepting the proposal. We assume that the

vote is simultaneous and show in an extension that sequential voting does not alter our conclusions

(Appendix J.2).

The setting build on the two-player case is modified as follows. At the proposal stage, each player

i has the same probability p
n (p < 1) of being chosen to send a message. The renegotiation friction

parameter q is still defined by p = qε. This player may choose to conceal his opportunity to send a

message. If i sends a message, other players vote on whether to accept it, resulting in a vector of

acceptance votes D−n ∈ {0, 1}n−1.28

With multiple players voting on a proposal, we consider the supermajority rule: a proposal is

accepted if at least L players support it, with L ∈ {⌊N/2⌋, . . . , N − 1}.29 Each fixed value of L

defines a concept of self-sustaining norm refinement, as in the two-player case. Let H+ denote the

set of all finite public histories ending after an action stage such that no off-path proposal has been

accepted by the supermajority.

Definition 8 An norm is self-sustaining if the following holds for any history h ∈ H+:

1. Message Richness Each message m ∈ M is assigned a norm of S. The payoff vectors

associated to these norms cover the set V (δ);

2. Binding Acceptance If a message is accepted by at least L voters, the norm assigned to it

is played from next period onward.

As with with most of the literature on voting, we assume that if a proposal fails the vote, the

continuation is independent of the exact number, or identity, of the voters who voted to reject it.30

Definition 9 A self-sustaining norm s is simple if, for any history h ∈ H+, when player i

28As in the two-player case, if no message is sent the identity of a sender is arbitrarily chosen and the empty

message is assumed to be rejected by everyone else.
29The lower bound N/2 is natural to interpret the voting as a supermajority rule, but not necessary for the analysis.

The upper bound N − 1 corresponds to the unanimity rule, keeping in mind that the proposer is not voting over his

own proposal.
30The case in which continuations can depend arbitrarily on the voting profile in considered in Appendix J.1.
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makes a proposal mi, there are two continuations, depending on whether mi passes or fails the

supermajority vote.

In the analysis that follows, we focus to fix ideas on the unanimity rule (L = N − 1). This rule is

easier to interpret (since no player is “forced” to espouse a new norm that he has not chosen), but

the analysis of other supermajority rule is qualitatively the same. As usual with voting games, we

eliminate weakly dominated strategies.

Assumption 1 A player votes in favor of the proposal if it gives him a strictly higher payoff than

its continuation payoff in case of a rejection.

We also assume that the individually-rational payoff set has full-dimension, which guarantees that

the Folk Theorem holds for the underlying repeated game (Fudenberg and Maskin (1986)).

The key to characterizing self-sustaining norms is to determine each player i’s worst possible pun-

ishment if he makes an unprescribed proposal. Suppose that i makes a proposal with corresponding

payoff vector C, and let V denote the set of payoff vectors across all continuations of our candidate

self-sustaining norm, s, following histories at which no off-path proposal has been accepted by the

supermajority. (All payoffs in V are estimated at the beginning of a period.) If s is self-sustaining,

C will be implemented if all players accept i’s proposal. If anyone rejects the proposal, norm sim-

plicity implies that there is a single payoff vector in V, D(C), which will be realized. If D(C) gives

πj(C) or more to at least one player j 6= i, this player will refuse the implementation of C, and the

norm implementing D(C) will be played.

Following any proposal with payoff C by player i, the worst punishment in V for player i minimizes

i’s utility over the set:31

D(C,V) = {D(C) ∈ V : ∃j 6= i : πj(D(C)) ≥ πj(C)}.

Let πi(C,V) denote i’s utility under this worst punishment.

Viewing πi(C,V) as a function of C, one can then find the proposal with a continuation C(V) which
maximizes i’s payoff at the worst punishment: C(V) = argmaxC{πi(C,V)}, and the corresponding

payoff, πi(V), for i. The payoff C(V) may be viewed as follows. The most efficient way of preventing

player i from making a non-prescribed proposal is by implementing his worst punishment. Antici-

pating this, if player i deviates from his prescription, he may as well choose the optimal proposal,

which gives the payoff C(V).
31For the existence of a worst punishment, the set V needs to be closed. Our construction will satisfy this condition.
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These observations lead to the following sequential construction. We start from the set F of strictly

individually-rational payoffs in the stage game, i.e., the payoffs which would be implementable

without renegotiation as δ goes to 1. We then consider the minimal payoffs πi(F), i ∈ {1, ..., n}
that each player i could guarantee himself when given a chance to make a proposal if all sustainable

payoffs belong to F . We will build two decreasing sequences of sets, starting from F , which will

generate separate necessary and sufficient conditions for a payoff to be self-sustaining.

To derive sufficient conditions, the kth set in the sequence, Fk
S , is reduced by removing all the

payoffs below πi(Fk
S), to form the k+1-th set in the sequence, starting with F0

S = F . We will show

that this process converges to a stable set which defines sufficient conditions.

To derive necessary conditions, the kth set in the sequence, Fk
N , is constructed inductively as follows.

Let πmin,i(Fk
N ) denote the lowest expected payoff for player i at the beginning of a period, among all

payoff vectors in Fk
N . This value is lower than the continuation payoff πi(Fk

N ) that i can guarantee

himself when he gets a chance to make a proposal. We have

πmin,i(Fk
N ) ≥ εvi + (1− ε)

[qε

n
πi(Fk

N ) + (1− qε

n
)πmin,i(Fk

N )
]

Indeed, as in the two-player case, i gets at least vi as his current payoff, and can guarantee himself

πi(Fk
N ) if he has a chance to make a proposal. As ε goes to 0, one can express the value πmin,i(Fk

N )

as:

πmin,i(Fk
N ) ≥ nvi + qπi(Fk

N )

n+ q
. (3)

At each step the set Fk
N is being reduced by removing the payoffs below (3). Iterations of this

procedure converge to a steady set, as we show in the Appendix.

Proposition 3 Both procedures converge to steady sets.

We denote the limiting sets by VS and VN . These sets are both positive orthants, whose vertices

give lower bounds on players’ payoffs (calculated at the beginning of period) under both procedures,

and are denoted πmin,i(VS) and πmin,i(VN ), for any player i. By construction, expression (3) holds

as an equality for VN :

πmin,i(VN ) =
nvi + qπi(VN )

n+ q
(4)

Similarly, we have πmin,i(VS) = πi(VS).

We can now state the main result of this section. Let P denote the Pareto frontier of the feasible

payoffs in the stage game and, for each i, P−i denote any individually-rational payoff vector of P
which minimizes i’s payoff. Also let R denote the open positive orthant whose vertex is the vector

(πi(P−i))
n
i=1. In the two-player case, this set characterized the sufficient conditions for sustainable
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payoffs. With n > 2 players, we show that R still consists of sustainable payoff vectors, though

it might not include all of them. The theorem is formulated for the case where Pareto frontier

supports for each player a non-zero range of payoffs.32

Theorem 4 Any sustainable payoff lies in VN , and generically any payoff in the interior of VS is

sustainable. Moreover, any payoff in the interior of R is sustainable.

As in the two-player case, the sets defined by the necessary and sufficient conditions converge to

each other as renegotiation frictions vanish (see Appendix C.3). Moreover, by construction, the

two sets shrink if the number L that determines the supermajority rule, decreases.

Proposition 4 The sets VS and VN converge to each other as q goes to infinity. The sets shrink

as L decreases.

When players respond sequentially to a proposal, the same result obtains.33

7 Conclusion

This paper provides a model of self-enforcing agreements in which proposals to overturn these

agreements are explicitly considered as part of a larger game. Self-sustaining norms are equilibria

of this enlarged game, i.e., self-enforcing agreements which concern not just which actions to take

but also how to react to proposals to change the agreements. We characterize the set of self-

sustaining norm payoffs as the discount factor goes to 1.

One virtue of our model is its simplicity, which is reflected in three aspects: i) the protocol of

negotiation, which consists of a one-shot proposal/acceptance stage to the stage game, ii) the

concept of self-sustaining norms, which is a single, straightforward equilibrium refinement, iii) the

characterization of the set of sustainable payoffs, which are easily described graphically.

Another virtue is its robustness: the results are unchanged if the negotiation protocol is expanded,

or if the refinement is restricted to a set of credible proposals. No assumption is imposed on the

32When the feasible set has a unique Pareto-efficient point, this point is the only sustainable payoff. When at

least two players have multiple payoffs on the Pareto frontier, the set of sustainable payoffs is always a non-empty

full-dimensional orthant. When all points of the Pareto frontier give the same payoff to all but one player, any payoff

on the Pareto frontier is sustainable.
33See Appendix J.2. Sequential and simultaneous voting are in fact equivalent under the assumption, standard in

the voting literature, that a player votes for the proposal if it gives him higher expected payoff than rejecting it.
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nature of the stage game beyond the standard full dimensionality of the feasible set, when there

are three or more agents.

Conceptually, our notion of self-sustaining norms formalizes the idea that the rules governing our

interactions are subject to change but also subject to deeper norms that govern how such changes

are perceived. This seems to capture the concept of “cultural beliefs” studied by Greif (1994) and

provide a mechanism for the persistence of inefficiencies even when agents are free to communicate.

Beyond these results, some important issues remain to be explored. In particular, what happens

if a player can make a proposal to a subset of players? How would such a proposal, if accepted,

affect the strategies used by the players excluded from the proposal? Exclusive negotiations of this

kind are common in economics, when agents are divided into relatively homogeneous groups within

which negotiation is easier or when they are engaged in specific relationships like those arising in

supplier chains. They may also arise in community enforcement models, in which matching parties

may engage in local renegotiation to alleviate punishments (Ali, Miller, and Yang (2016)). Under-

standing how strategic renegotiation shapes equilibrium outcomes in environments with segmented

groups seems a particularly interesting direction for future work.
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Benôıt, J.-P., Krishna, V. (1993) “Renegotiation in Finitely Repeated Games,” Econometrica,

Vol. 61, pp. 303–323.

25



Bergin, J., MacLeod, B. (1993) “Efficiency and Renegotiation in Repeated Games,” Journal of

Economic Theory, Vol. 61, pp. 42–73.

Bernheim, B.D., Ray, D. (1989) “Collective Dynamic Consistency in Repeated Games,” Games

and Economic Behavior, Vol. 1, pp. 295–326.

Bernheim, B.D, Peleg, B., Whinston, M. (1987) “Coalition-Proof Nash Equilibria I. Con-

cepts,” Journal of Economic Theory, Vol. 42, pp. 1-12.

Blume, A. (1994) “Intraplay Communication in Repeated Games,” Games and Economic Behav-

ior, Vol. 6, pp. 181–211.

Brennan, J.R., Watson, J. (2013) “The Renegotiation-proofness Principle and Costly Renego-

tiation,” Games, Vol. 4, pp. 347–366.

Bulow, J., Rogoff, K. (1989) “A Constant Recontracting Model of Sovereign Debt,” Journal

of Political Economy, Vol. 97, pp. 155–178.

Bulow, J., Rogoff, K. (1991) “Sovereign Debt Repurchases: No Cure for Overhang,” Quarterly

Journal of Economics, Vol. 106, pp. 1219–35.

Caillaud, B. and Jehiel, P. (1998) “Collusion in Auctions with Externalities,” Rand Journal

of Economics, Vol. 29, pp. 680–702.

Cave, J. (1987) “Long-Term Competition in a Dynamic Game: The Cold Fish War,” Rand Journal

of Economics, Vol. 18, pp. 596–610.

Che, Y.-K., Kim, J. (2006) “Robustly Collusion-Proof Implementation,” Econometrica, Vol. 74,

pp. 1063–1107.
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A Proof of Theorem 1

A.1 Sufficient Conditions

We construct, for any payoff vector (hereafter, “point”) A satisfying (1) and ε sufficiently small a

norm s ∈ S which implements A and is self-sustaining at all frequencies q ≥ 0. The construction is

based on points A1 and A2 such that Ai gives i his worst possible payoff among all self-sustaining

continuations of s (that is, continuations following histories at which no off-path proposal was

accepted).34 When i’s continuation payoff is at an ε-independent distance above his payoff from

Ai, it is easy to incentivize him to follow any prescribed action, since any deviation provides a

maximal gain of order ε and can be punished by implementing Ai. One challenge is to choose Ai so

that i is adequately incentivized near Ai. The second important points of the construction are D1

and D2, which serve to deter off-path proposals. These points are chosen to be Pareto efficient, and

set so that any relevant off-path proposal by i may be deterred by having −i reject the proposal and

have Di be implemented instead. Di must therefore be chosen so that −i is sufficiently rewarded,

and i punished, for any proposal that i may entertain.

Preliminaries

Since the message space has the cardinality of the continuum, we can without loss of generality

identify it with the set V (δ) of feasible payoff vectors, a full dimensional subset of R2.35

We interpret each message X ∈ V (δ) as a proposal to move to a continuation whose expected payoff

is X. For any point X implemented by some self-sustaining continuation of the candidate norm s,

let sX denote the corresponding continuation.36

To distinguish players’ expected payoffs at each stage of each period, we introduce the following

notation. Given a subset L of norms, let U(L) ⊂ R
2—or just U , when there is no confusion—denote

the set of expected payoffs for the players across all possible norms in L, computed before public

randomization. V is defined identically but computed after the realization of the randomization

device z. U is thus included in the convex hull of V. Finally, let W consist of continuations

payoffs after actions and payoffs are observed and incurred in the current period, but before the

proposal stage. Each element of W is a convex combination of three expected payoff vectors

corresponding to the following events: player 1 gets to make a proposal, player 2 does, or no one

does. Because elements ofW define continuation payoffs excluding the current period, to make them

34Unless stated otherwise, points refer to expected payoffs at the beginning of the current period.
35If M’s cardinality exceed the cardinality of the continuum, we assign the minmax payoff to all superfluous

messages.
36There is only one continuation for each payoff X considered below, so sX is well defined.
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Figure 3: Construction of a self-sustaining norm

commensurate with payoffs in U , we evaluate them at the next period (i.e., ignoring the discount

factor between the two periods). With this convention, payoffs in W are convex combinations of

elements of U .

Elements of U , V, and W are points of two-dimensional sets. Recall that for any payoff vector X,

we let πi(X) denote the ith component of X.

Proof

For each player i, there are two configurations to consider, depending on whether i’s minmax payoff

v
¯i

is less than or equal to πi(P−i). We first consider the case in which both players are in the former

configuration.

Case 1: v
¯1

= π1(P2) and v
¯2

= π2(P1) Consider any point A satisfying (1). For ε small enough, the

points A1 and A2 with coordinates (π1, π2)(A1) = (v
¯1

+ ε
1
2 , π2(A)) and (π1, π2)(A2) = (π1(A), v

¯2
+

ε
1
2 ) are individually rational and such that π1(A1) < π1(A) and π2(A2) < π2(A). The norm sA1

implementing A1 is constructed as follows (sA2 has a similar construction):

1) Action stage: player 2 minmaxes player 1, possibly mixing between several actions {a2j}j . Player
1 best responds by a pure action a1,minmax achieving his minmax payoff.

1a) If no deviation in action is observed, the continuation payoff vector B1j ∈ W is a function of 2’s

realized action, a2j , and is chosen so that i) 2 is indifferent between all actions a2j used to minmax
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1, ii) 1’s continuation payoff is independent of j (so the vectors {B1j}j all lie on the same vertical

line as shown on Figure 3), and iii) the promise-keeping condition is satisfied for both players. In

particular,

π1(A1) = εv
¯1

+ (1− ε)π1(B1j) (5)

for all indices j corresponding to some action a2j in 2’s minmaxing distribution. In particular, the

points B1j all lie within an ε-proportional distance of A1.

1b) If 2 deviates in action (i.e., chooses an action outside of the mixture used to minmax 1), the

continuation payoffs jump to the point A2, mentioned above, which gives 2 her lowest possible

payoff.37 For small ε, this punishment suffices to incentivize 2 because any deviation gain is of

order ε whereas π2(A2) is arbitrarily close to 2’s minmax payoff, causing 2 an ε-independent loss.

1c) If 1 deviates in action, disregard this. Such a deviation is suboptimal since 1 was prescribed to

best respond to being minmaxed by 2.

2) Proposal stage: the norm sB1j implementing B1j is as follows: if either 2 gets a chance to make

a proposal, or no player does, the play returns to sA1 . 2 is prescribed to remain silent. If 1 gets

a chance to make a proposal, he proposes a continuation sC1j whose corresponding payoff vector

C1j lies on the line going through A1 and B1j and is chosen so as to satisfy the promise-keeping

condition

π1(B1j) =
(

1− p

2

)

π1(A1) +
p

2
π1(C1j) (6)

Player 2 is prescribed to accept proposal sC1j . The points {C1j}j give the same payoff to 1,

independently of j. Their implementation is described in 3) below.

2a) If 1 proposes any continuation other than sC1j that improves his payoff, he is punished by a

continuation sD1—triggered if player 2 rejects 1’s proposal—chosen such that i) π1(D1) < π1(C1j)

and ii) 2 prefers π2(D1) to her payoff under 1’s proposal sC1j . Precisely, D1 is defined as the point

of the Pareto frontier that gives 1 a payoff of

π1(A1) + π1(C1j)

2
(7)

As explained shortly, 1’s payoff at C1j is of order
√
ε above what 1 gets at A1 or B1j . If 1 proposes

a plan that makes him worse off than sC1j , 2 accepts it if only if improves her payoff. Of course,

such a proposal never arises in equilibrium.

2b) If 2 deviates by making a proposal or rejecting 1’s offer to move to C1j , players jump to

the continuation sD2 , which punishes 2’s deviation (in the former case, sD2 is assigned as the

37More precisely, players start implementing the payoff B21, which is the analogue of the point B11, following the

implementation of A2.
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continuation arising when 1 rejects 2’s proposal). No proposal simultaneously gives 1 more than

his payoff at sD2 and 2 more than his payoff from sA1 .

3) Next periods: the norm sC1j is easily sustained because it gives 1 a payoff of order
√
ε above

what A1 and B1j give him. A deviation in action by 1 brings a gain of order ε and is punished by a

drop of order
√
ε in 1’s continuation payoff, and is thus suboptimal, for ε small enough. sC1j can be

implemented by a deterministic sequence of actions keeping players’ continuation payoffs within a

distance Kε from C1j . The rules implementing this sequence are simple: play a deterministic action

profile keeping continuation payoffs ε-close to C1j and do not allow any proposal. If 1 deviates in

actions, jump to one of the continuations sB1j ; if he deviates in proposals, jump to sD1 if 2 rejects

this offer. A similar rule is applied for player 2, who has even more to lose from a deviation.

4) The point D1 also gives 1 a payoff of order
√
ε above A1 and B1j . sD1 can therefore be

implemented similarly to sC1j . Again, any proposal is ignored.

The construction is represented on Figure 3. The magnitudes of payoff differences between the

points involved in the construction are indicated on Figure 4.

We verify the claim that all C1j’s lie at a
√
ε-proportional distance to the right of A1. From (5)

and (6), we have

π1(A1) = εv
¯1

+ (1− ε)π1(Bj) = εv
¯1

+ (1− ε)
[(

1− qε

2

)

π1(A1) +
qε

2
π1(C1j)

]
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Ignoring the terms of order ε2 and higher, this implies that

π1(A1) = εv
¯1

+
(

1−
(

1 +
q

2

)

ε
)

π1(A1) +
qε

2
π1(C1j).

Subtracting π1(A1) from both sides and dividing by ε yields

ε
1
2 = π1(A1)− v

¯1
=

q

2
(π1(C1j)− π1(A1)) , (8)

which shows the claim.

The direction of each vector
−−−−→
A1C1j, which is also

−−−−→
A1B1j ’s direction, depends only on 2’s action,

a2j ; it does not change when ε goes to 0. This shows that, for ε small enough, C1j is a feasible

payoff and π2(C1j) exceeds π2(A2) by an ε-independent value.

As noted, the system of actions and proposals implementing sAi ’s, sBij ’s and sCij ’s and sDi ’s is

incentive compatible in actions and in proposals. To conclude the construction, observe that A

gives each player i a payoff higher than Ai, by an amount that is independent of ε. One may

therefore implement A by a deterministic sequence of actions, chosen so that the continuation

payoffs stay within a distance Kε of A.38 Deviations in actions are punished by moving to sB11

or sB21 , depending on the deviator’s identity. Deviations in proposals are similarly punished by

moving to sD1 or sD2 .

To verify that the norm is self-sustaining, notice that whenever 1 gets to make a proposal (at any

of continuations considered in the construction), his payoff is at least π1(D1). Since D1 is on the

Pareto frontier, any proposal giving 1 strictly more than π1(D1) must give 2 less than π2(D1). This

means that sD1 can serve as a punishment in case 1 makes such a proposal.

Remaining cases: v
¯1

< π1(P2) and/or v
¯2

< π2(P1)

The construction is almost identical in other cases. The only difficulty is that the difference π1(A1)−
v
¯1

is now bounded below away from zero, whereas it was previously of order
√
ε. This may lead to

situations in which the points C1j constructed above are no longer feasible and/or give 2 a payoff

lower than π2(A2). The difficulty is easily addressed by adding, for each j, a point E1j lying on the

segment [A1B1j ]—and thus also on the line (A1C1j)—such that if player 2 gets a chance to make

a proposal, or if nobody does, players’ continuation payoffs jump to E1j . The promise keeping

condition (6) becomes

π1(B1j) =
(

1− p

2

)

π1(E1j) +
p

2
π1(C1j) (9)

38It is possible to show that each of A, A1, and A2 can be implemented so that players’ continuation payoffs

eventually converge to a Pareto-efficient point. Under this “redemptive” implementation, if players switch to a

Pareto-inefficient element following a deviation, they will eventually forgive and forget past deviations.
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Choosing E1j close enough to B1j ensures that C1j lies within a distance
√
ε of B1j and, hence,

of A1. This guarantees that C1j is feasible and does not drop below π2(A2), so that the rest of

the argument for the first case can be applied. To implement sE1j , we use public randomization to

implement it as a probabilistic mixture of sA1 and sC1j .

A.2 Necessary Conditions

The interesting case is when v
¯i

< πi(P−i): otherwise, Theorem 1 predicts only that i’s payoff must

be individually rational. We derive the necessary condition for player 1; the same argument can be

applied to player 2.

Suppose that π1(P2) > v
¯1

and, by contradiction, that there is a point A ∈ V (q) such that π1(A) <

v1 = v
¯1

+ q
2+q (π1(P2)− v

¯1
): one can construct, for any ε small enough and per-period probability

p = qε of proposal opportunity, a self-sustaining norm s that implements A.

Let C1 denote 1’s infimum payoff over all continuations of s following histories at which it is 1’s

turn to make a proposal and no off-path proposal has yet been accepted. Since the Pareto point

P2 is a possible proposal payoff,39 and since it Pareto dominates all payoffs with π1 < π1(P2), C1

must satisfy π1(P2) ≤ C1.

We now contradict this inequality. Let N denote the set of continuations of s at the beginning

of all periods following histories at which no off-path proposal has been accepted. Also let A1 =

infV ∈V(N ) π1(V ), B1 = infW∈W(N ) π1(W ), and D1 = infU∈U(N ) π1(U), and consider any sequence

{Vk} ∈ V(N ) such that π1(Vk) →k→+∞ A1. For any Vk there is an action that implements it in

the first period of the corresponding continuation. However, if player 1 deviates, he can guarantee

himself an immediate payoff of at least v
¯1
, and the worst punishment for him after deviation gives

him at least B1. Therefore, π1(Vk) ≥ εv
¯1

+ (1 − ε)B1. Since this inequality holds for all Vk we

obtain, taking the limit:

A1 ≥ εv
¯1

+ (1− ε)B1 (10)

Since any element of U(N ) lies in the convex hull of V(N ), and player 1 can always conceal his

opportunity to propose, we have C1 ≥ D1 ≥ A1. Consider now a sequence {Wk} ∈ W(N ) such that

π1(Wk) → B1. Any element Wk is a weighted average of an expected payoff vector EU1
k whenever

1 gets a chance to make a proposal, an expected payoff vector EU2
k when it is 2’s turn to make a

39By the Folk Theorem, P2 can be implemented by an equilibrium of the repeated game without renegotiation.

P2 can thus also be implemented as a norm of the enlarged game in which all proposals are ignored, i.e., treated as

cheap talk.
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proposal, and a payoff vector U0
k in case no one gets to make a proposal:

Wk =
p

2
(EU1

k ) +
p

2
(EU2

k ) + (1− p)(U0
k ) (11)

We note that EU1
k is a mixture of elements of U(N ) resulting from 1’s mixture over proposals and

2’s mixture over her acceptance decision. Similarly, EU2
k is a mixture of elements of U(N ).

Since all elements Uk’s belong to U(N ), we have π1(EU2
k ) ≥ A1 and π1(U

0
k ) ≥ A1. Equation (11)

thus implies that

π1(Wk) ≥ (1− p

2
)A1 +

p

2
π1(EU1

k ).

Recalling that C1 denotes 1’s infimum payoff when he gets to make a proposal, we get

π1(Wk) ≥ (1− p

2
)A1 +

p

2
C1.

Taking limits, B1 ≥ (1− p
2)A1 +

p
2C1, or

B1 ≥ (1− qε

2
)A1 +

qε

2
C1. (12)

Combining (10) and (12), we conclude that A1 ≥ εv
¯1

+ (1− ε)[(1− qε
2 )A1 +

qε
2 C1]. Ignoring terms

of order ε2 in the right-hand side of this equation, A1 ≥ εv
¯1

+(1− [1+ q
2 ]ε)A1 +

qε
2 C1. Subtracting

A1 on both sides of the last equation and dividing by ε, we obtain

0 ≥ v
¯1

− [1 +
q

2
]A1 +

q

2
C1 (13)

From A1 ≤ π1(A), C1 ≥ π1(P2), and π1(A) < v1 = v
¯1

+ q
2+q (π1(P2)− v

¯1
), we get

0 < v
¯1

− [1 +
q

2
]A1 +

q

2
C1

which contradicts (13). This shows the necessary condition for player 1.

An identical reasoning for player 2 shows the second necessary condition. This proves the result

for P1 6= P2. A similar reasoning applies when P1 = P2.

Credible proposals Section 5 has introduced the concept of C-credible proposals, and claimed

that the necessity conditions were unaffected if the proposals involved in the definition of stability

were restricted to being credible. To prove this claim, it suffices to verify that the proposal to move

to P2, used just above to derive the necessary condition, is C-credible. The norm implementing

P2 is constructed as follows: players are prescribed to play, in all periods, the pure action profile

with payoff P2, and to abstain from making any proposal. Any deviation, whether in action
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or in proposal, triggers the continuation implementing A—which is supposed to exist, by the

contradiction hypothesis. Clearly, player 2 cannot benefit from deviating as she is getting her

highest possible payoff in the game. Moreover, the difference π1(P2) − π1(A) is by assumption

bounded below by 2
2+q (π1(P2) − v

¯1
), which is ε-independent. Therefore, 1 cannot benefit from

deviating either: a deviation in action may create an immediate gain of order ε, but triggers a

drop in continuation payoffs that is ε-independent and dominates the gain. A deviation in proposal

yields the payoff vector A, which again is detrimental to 1.

B Concept equivalence: Proof of Theorem 2.

1. Any closed convention Cc is an open convention as well, so the first statement is trivially true.

Now consider any open convention Co. To construct a payoff-equivalent closed convention Cc, we

modify each norm s of Co as follows: s’s rules on and off the equilibrium path are kept unchanged

except when a player, say i, sends a message mi which is off the equilibrium path. In this case,

because Co is an open convention, the continuation if −i accepts the proposal need not lie in Co.

Following such a proposal, players are instead prescribed to behave as if i had remained silent.

The new rules define a norm: when playing the original norm s, i was not sending the message mi

anyway, so removing this option does not affect equilibrium behavior and payoffs. By construction,

the set of modified norms form a closed convention Cc, and because each norm of Co has been

modified into a single payoff-equivalent norm of Cc, the conventions are payoff equivalent.

2. We start with the observation that if two conventions Cc and Co have the same payoff sets, then

any proposal that is credible according to either convention is credible according to the other one.

We now consider any stable open convention Co and construct the corresponding closed convention

Cc as in Part 1. To show that Cc is stable, consider any norm s of Cc, history at which player i

gets to propose, and credible proposal U such that πi(U) is strictly greater than i’s continuation

payoff Ûi. From the above observation, U is also credible for Co. If the proposal U gives player

−i a lower payoff that Û does, then the payoff U ′ = Û satisfies Definition 5. If the proposal U

Pareto dominates Û , then for the norm s̃ of Co corresponding to s, and the same history, −i must

reject U with positive probability (for otherwise πi(U) would coincide with Ûi). Let U ′ denote

the continuation payoff if −i rejects U . By stability of Co, −i knows that if he accepts U it will

be implemented. Since it is weakly optimal for −i to reject U , it must therefore be the case that

π−i(U
′) ≥ π−i(U). Moreover, it must also be the case that πi(U

′) ≤ Ûi, for otherwise it would

be strictly optimal for i to deviate by proposing U , and s̃ would not be a part of an open stable

convention Co. Using this U ′ in Definition 5, this implies that Cc is stable.
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Next, consider any stable closed convention Cc. To construct a payoff-equivalent stable open con-

vention Co, we simultaneously modify all norms of Cc. The modification proceeds in two steps,

using a recursive representation norms. A norm may be viewed as a prescription of actions, pro-

posals and acceptance decisions for the next period (each depending on what happened in earlier

stages), along with a continuation norm resulting from these stages applied to the period after next.

In Step 1, we modify the prescriptions for time t + 1, and still use norms of Cc as continuation

norms. The purpose of this step is to make a prescription compatible with the requirement that

if a Pareto-improving, credible proposal is made and accepted, then it has to be played. In Step

2, we replace these continuation norms of Cc by those built in Step 1, to guarantee that the rule

applies at all periods, ensuring that credible norms which are accepted are implemented, so that

Definition 7 holds at all periods.

Consider any norm s of Cc. We modify s as follows. For the modified norm s̃, the action stage and

on-path proposals are prescribed exactly as in s.40 Now consider a history at which i makes any

proposal U which is not prescribed by s but which is Cc-credible. If −i accepts the proposal, we

construct s̃ by prescribing that players implement this proposal.41 If the proposal gives i a strictly

higher payoff than his continuation payoff Ûi, then by stability of Cc, there must exist a payoff

vector U ′ corresponding to some norm s′ of Cc, which gives player −i at least as much as U , and

which gives player i at most Ûi. We prescribe playing the norm corresponding to U ′ in case player

−i rejects the proposal. If U does not improve upon i’s continuation payoff, we prescribe playing

the continuation corresponding to any of i’s on-path proposals in case −i rejects U . Finally, if i

makes a non-credible proposal, the proposal is ignored as if i had stayed silent.

We now verify that s̃ is a norm that yields the same payoff as s. Since s̃ prescribes the same actions

as s, players are incentivized to follow the prescription. If i gets a chance to make a proposal,

any proposal prescribed by s (and hence s̃) yields the same continuation payoff as in s. If player i

makes a credible, off-equilibrium proposal that improves upon his on-path payoff, then player −i

is incentivized to reject it, and i’s continuation payoff is weakly lower than his on-path payoff. It

is never optimal for i to make a credible proposal that is lower than his on-path payoff, regardless

of −i’s acceptance decision. Finally, we replace all continuation norms by their modified versions.

40Another modification of s is needed when i proposes on path a continuation ŝ that lies outside of Cc, which

−i is supposed to accept, and which is followed by a continuation s′ in the convention Cc (as it should, since the

convention is closed). This sequence of moves is replaced by i directly proposing s′ and having it accepted by −i.

The modified profile is also a norm, as is easily checked. More generally, any norm of the game may be turned into

a payoff-equivalent “truthful” norm of the game, i.e., one in which any proposal that is made and accepted on the

equilibrium path is implemented, as explained and proved in Appendix F.
41At this point, we do not know yet that the proposal is Co-credible. We only know that it is Cc-credible. However,

the norm Co that we are constructing will be payoff equivalent to Cc and hence have the same set of credible proposals.
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There remains to verify that the set consisting of all modified norms forms a stable open convention,

denoted Co, which is payoff equivalent to Cc. First, we notice that continuations outside of Co

may arise only when a player makes an off-path proposal (which, by construction, also has to be

credible) which is accepted by the other player. Thus, Co is an open convention. By construction,

each element of Co corresponds to exactly one element of Cc, which yields the same expected payoff.

Therefore, the conventions are payoff equivalent. As observed earlier, this implies that they have the

same set of credible proposals. This, in turn, implies that any Pareto-improving, credible proposal

of Co that is accepted is played and, hence, that Co is stable.

C Proofs of Section 6 (Arbitrary number of players)

C.1 Proof of Proposition 3

We fix one of the two procedures and let Fk denote the set corresponding to the k-th step in the

sequential reduction of the set F under this procedure. We first show that points on the relative

Pareto frontier P(Fk) of Fk are never removed by the procedure. Suppose, contrary to the claim,

that some point A ∈ P(Fk) was removed by the procedure. Then there would be a player i such

that πi(A) < πi(Fk). If A was prescribed as a punishment payoff for any proposal of player i, then

for i’s optimal proposal with payoff C ∈ Fk, the punishment payoff A would not be credible as it is

removed at the k-th step. That is, any j 6= i has πj(A) < πj(C). Since A lies on the Pareto frontier

of Fk, this means that πi(C) < πi(A): C gives i a lower payoff than πi(Fk), which contradicts

C’s assumed optimality. One could simply prescribe both continuations to have C as their payoff

vector, and this would give i a lower payoff than πi(Fk).

When evaluating the worst punishmentD(C,Fk) for player i for making a (non-prescribed) proposal

with payoff C, the optimal proposal (that is, the one which gives the highest payoff to player i from

the worst punishment) always lies on the Pareto frontier. Indeed, consider a proposal with payoff

C, which is not Pareto-optimal, and another proposal with payoff C ′, which Pareto dominates C.

The set D(C,Fk) of possible punishment payoffs is strictly larger than the set D(C ′,Fk), since the

latter set gives every player j 6= i a higher lower-bound on his payoff. This implies that the proposal

C ′ gives player i a worst punishment payoff πi(C
′,Fk) at least as high as the proposal associated

with payoff C.

Since no point on the relative Pareto frontier of F is removed in the sequential reduction, the set of

optimal proposals (in terms of evaluating the worst possible punishment) for any player i remains

the same along the sequence. However, the set of possible punishments keeps decreasing at each
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step, which weakly increases, as a result, the minimal value πi(Fk) with k. (Recall that πi(Fk) is

i’s minimal payoff if he gets a chance to make a proposal). At each step, the set Fk is characterized

by the n lower bounds of the players’ payoffs {πmin,i(Fk)}i∈{1,...,n}. These lower bounds are weakly
increasing at each step, which implies that the procedure converges to a stable point.

C.2 Proof of Theorem 4

Necessity

Suppose that A lies outside of VN and, for any ε > 0 small enough, there exists a self-sustaining

norm s(ε) such that A lies in the set V(ε) of payoff vectors across all continuations of s(ε) following

histories at which no off-path proposal was accepted by the supermajority. The sets V(ε) must

satisfy inequality (3) (replacing Fk
N as an argument of this inequality), up to an ε-term. Consider

the limit of V(ε) as ε goes to 0. This limit payoff set contains A and satisfies inequality (3), which

implies that A should have not been removed from any of the sets Fk
N . However, this implies that

A belongs to VN , a contradiction.

Sufficiency: R

We first prove that any point in R is sustainable. Consider any point A with πi > πi(P−i) for

any i. As in the two-player case, one can find n points Ai such that for j 6= i πj(Ai) = πj(A)

and πi(Ai) = πi(P−i) +
√
ε. We build a self-sustaining norm s, in which for each i, the point Ai

gives i his lowest payoff across all continuations, following histories at which no off-path proposal

was accepted. In the continuation norm sAi associated with payoff vector Ai, player i is being

minmaxed. Since players other than i may have to use mixed strategies, this generates a set B
of continuation payoffs, following the action stage, which depend on the realization of actions of

players other than i. Any continuation B ∈ B is implemented as follows: if i can make a proposal,

he is prescribed to propose some continuation with payoff C; other players are prescribed to remain

silent; in the absence of any proposal, the continuation returns to sAi . As in the two-player case,

one can guarantee (possibly using the public randomization), that the distance AiC is of order
√
ε.

Since the Pareto frontier is connected, so is its truncation to points for which i’s payoff lies above

πi(P−i). One can therefore find a connected subset Sε of the frontier consisting of all points giving,

for each i, a payoff greater than or equal to πi(Ai)+Kε, where K is a constant chosen large enough

that players are incentivized not to deviate in actions.

Continuation norms with payoffs in Sε are constructed in such a way that each player i gets at

least πi(Ai) +Kε in all subsequent continuations.
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When implementing Ai, players are already incentivized to follow the prescribed actions. If i makes

a non-prescribed proposal, then by construction of Sε there exists a continuation with a payoff Qi

in Sε that gives i a lower payoff than C. Indeed, the lower bound for πi at the set Sε is πi(Ai)+Kε,

while πi(C)− πi(Ai) is of order
√
ε.

Sufficiency: General Conditions

The proof is similar to that of the two-player case. For any point A ∈ VS with πi > πmin,i(VS),

consider the set of points Ai ∈ VS such that for any i πi(Ai) = πmin,i(VS) +
√
ε and π−i(Ai) =

π−i(A). The points Ai have a smaller i-th coordinate than A provided that ε is small enough. We

also assume without loss of generality that πi(Aj)− πi(Ai) >>
√
ε for any j 6= i.

We build a self-sustaining norm s such that Ai gives the lowest payoff to player i across all continu-

ations following histories at which no off-path proposal was accepted. At sAi , player i is minmaxed.

Since players other than i may have to mix their actions, we construct a set of continuations with

payoffs B ∈ B, corresponding to the observed actions of players −i. For any continuation norm

sB associated with some payoff B ∈ B, i is prescribed to make a proposal with some payoff vector

C, and all other players are prescribed to remain silent. As with the two-player case, C can be

assumed to lie at a distance of order
√
ε from Ai. When implementing the continuation norm sC

associated with C, players are prescribed to follow a deterministic sequence of actions such that

the continuation payoff remains within an ε-distance from C. Players are prescribed not to make

any proposals.

The initial point A is also implemented by deterministic actions and no proposals. Moreover, each

point in the positive orthant starting at the vertex with ith coordinate πi(Ai) + Kε for each i is

implemented by a self-sustaining continuation norm of s in such a way that πi > πi(Ai) +Kε: sAi

is a severe enough punishment for i that it is suboptimal for him to deviate in action.

The norm s can be shown to be generically self-sustaining. The only new issue concerns i’s incentives

to deviate in proposal. We have reduced (increased the lower bounds on payoffs) the initial set VS

by an order of
√
ε. The orthant defined by πi > πi(Ai) + Kε for all i is part of the set of self-

sustaining continuations, but some points lying below this orthant are removed from the original

set VS. As a result, the value πi(.), which i can guarantee if having a chance to propose, can now be

larger. Our goal is to show that, nevertheless, generically the value of πi(.) is smaller than πi(C),

and therefore player i is incentivized to propose sC .

When building a set VS by sequentially removing payoffs with πmin,i(.) < πi(.), the initial set of

individually-rational payoffs gets reduced. If for player i the final value of πmin,i(VS) is strictly
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larger than his minmax payoff vi, then the value of πi(Ai)− vi is of order ε
0. This means that the

distance AiC can be made of ε
1
4 -order. At the same time, the set VS (and, respectively, the value

πi(.)) were changed by an order of
√
ε, guaranteeing that πi(.) < πi(C).

If player i’s payoff πmin,i(VS) equals to minmax vi, this means that i’s payoff was not increased

when building the set VS . Put it differently, one can consider a hyperplane of the set VS with

πi = vi, and find the maximum payoffs of other players πj , j 6= i on that hyperplane. The n − 1-

dimensional payoff vector {πj}j 6=i cannot lie within the interior of VS (otherwise, player i could

make a proposal dominating {πj}j 6=i and thus guaranteeing himself a payoff higher than vi). When

the set VS is reduced by (an arbitrarily small)
√
ε-order, player i can gain incentives to make an

off-path proposal, only if the vector {πj}j 6=i lies exactly on the Pareto frontier of VS . However, this

possibility is non-generic.

C.3 Proof of Proposition 4

Intuition. The sets VS and Vq
N—necessary conditions depend on q, hence the superscript—are

both obtained from F by sequentially increasing the lower bounds on each player’s payoff when he

gets a chance to make a proposal. VS is obtained by removing payoffs below πi(·) at each step,

while Vq
N is obtained by removing payoffs below

nvi+qπi(.)

n+q . When q goes to infinity, the sets of

payoffs removed at each step of these procedures converge to each other. As we show below, this

implies that Vq
N converges to the set VS as q goes to infinity.

The set of sufficient conditions, VS , can be characterized by two sets of lower bounds for each player

i: πi(VS) is the lower bound on i’s payoff when he gets a chance to make a proposal and πmin,i(VS)

is the lower bound for his payoff at the beginning of a period. VS was constructed in such a way

that πi(VS) ≤ πmin,i(VS).

To capture this intuition, we first show by induction that VS is the largest set S of individually

rational payoffs whose Pareto frontier is equal to P(V) and such that πi(S) ≤ πmin,i(S) for any

i. Consider such a set S. The sequence of sets Fk
S converging to VS starts with F0

S = F , the set

of all individually rational points. This implies that πi(S) ≥ πi(F0
S), since F0

S contains S and,

hence, the set of punishments if i makes an unprescribed proposal is higher with F0
S than with S,

resulting in a lower bound πi. We now show the induction hypothesis: if πi(S) ≥ πi(Fk
S), then the

same condition holds for k + 1. Due to the way the payoffs are cut at step k, one has for each

i, πmin,i(Fk+1
S ) = max{πmin,i(Fk

S), πi(Fk
S)} ≤ πi(Fk

S), which does not exceed πi(S) ≤ πmin,i(S).
Since the lower bound πmin,i(Fk+1

S ) is lower than πmin,i(S), the set Fk+1
S contains S, and one has

that πi(S) ≥ πi(Fk+1
S ). By induction, the limit set VS contains R.
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Let VN denote the limit of Vq
N as q goes to infinity. We wish to show that VN = VS. Consider

the sequences {Fk,q
N }+∞

k=0 resulting from the procedure applied, for any fixed q, to derive necessary

conditions for this value of q. Due to the way points are removed at each step, it is easy to check that

Fk,q′

N ⊂ Fk,q
N whenever q′ > q; by the same logic, it is straightforward to check that VS is contained

in VN . To prove the reverse inclusion, note for each q and i, we have πmin,i(Vq
N ) ≥ nvi+qπi(Vq

N )

n+q , as

this inequality holds at each step k of the procedure. Taking the limit as q goes to infinity, the

limiting set VN must satisfy for each i πi(VN ) ≤ πmin,i(VN ). From the previous paragraph, this

implies that VS contains VN , which concludes the proof.
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D Messages as equilibria: A conceptual difficulty

In the main text, we defined the negotiation stage through an exogenously given set of messages,

and then assigned a norm to each message, requiring that each payoff vector of the feasible set be

assigned a message. One may wonder if it is possible to assign a message to each norm, rather

than to each payoff. This requirement is much stronger since there are potentially many equilibria

that yield the same payoff. Moreover, this creates a circularity problem, because if one enlarges

the message space, this changes the underlying game (since more messages can be sent) and thus

the set of equilibria.

To be specific, suppose that the description of each period, in Section 2, is modified as follows.

Steps 1–3 and 5 are unchanged, but Step 4 is replaced by the following step:

4’) With probability p < 1, one of the players is chosen to propose a new plan for continuation of

the game. Each player has the same probability of p
2 being chosen. The chosen player may conceal

his proposal opportunity by remaining silent, or mix between making a proposal or staying silent.

The object of a proposal is an infinite-horizon plan m from the set M of all possible plans, defined

as follows

A plan in period t describes players’ strategy for the infinite repetition of the stage-game described

above, from period t + 1 onwards. These decisions (actions, proposals, and acceptance mixtures)

are history-dependent. The setting being time invariant, it is convenient to define recursively the

set M of plans. A plan m ∈ M in period t is described by the following elements:

a) For each realization z of the public randomization device, a pair α = α[m](z) of mixed actions

that players should play in period t+ 1;

b1) For each player i, a distribution µ̄i = µ̄i[m](z,a) ∈ ∆(M ∪ ∅) over proposals, where the

outcome ∅ means that i abstains from making a proposal (unbeknownst to player −i). We assume

that distributions have a finite support over plans.1 The proposal distribution can depend on the

realization z of the public randomization device and on the pair a of observed actions. Because

p < 1, not observing any proposal from either player is always consistent with “on-path” behavior.

The realized proposal is denoted µi;

b2) A probability q−i = q−i[m](z,a, µi) that −i accepts i’s proposal (whenever µi 6= ∅), which may

depend on z, a, and µi;

1We will in fact impose a uniform upper bound on this support, as explained below.
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b3) If no one has made a proposal, the acceptance stage is skipped. To economize on notation,

we assume that some player i is, even in that case, conventionally selected (randomly or deter-

ministically) as the proposer and let µi = ∅ and D−i = 0. (So, −i’s conventional response is to

systematically “reject” a non proposal.)

c) A continuation plan m+1 = m+1[m](z,a, i, µi,D−i) ∈ M for period t+2 onwards, as a function

of z, a, i, µi, D−i, where i indicates the identity of the last proposer.2

While the above definition seems natural, it turns out to be too permissive for the set of plans to be

well-defined: there does not exist a set of plans so large as to contain all the possible continuation

prescriptions allowed above. In particular, in the above construction, a plan must specify an

acceptance decision for each possible proposal. Therefore, each plan m must specify—among other

things—a function which maps each element of M (the proposal) to a binary decision (acceptance).

This implies that the set M of plans must contain, in order to include all possible prescriptions,

its power set 2M. Such a set does not exist, since any set has a strictly lower cardinality than its

power set, by Cantor’s Power Set Theorem (see, e.g., Mendelson (1997)).

E Asymmetric proposing probabilities

It is easy to extend the analysis to a protocol in which one of the players has a higher probability

factor qi of proposal than the other player. The sufficient conditions are unchanged in this setting,

but the necessary conditions become tighter for the player whose proposal probability is higher,

which translates into a higher minimal guaranteed payoff for that player across all self-sustaining

norms. To see this clearly suppose that v
¯1

< π1(P2) and v
¯2

< π2(P1) (configuration (a) in Fig-

ure 2), so that renegotiation potentially benefits both players, compared to the minmax payoffs,

and consider the case in which 1 can make frequent proposals while 2 never gets a chance to make

a proposal (i.e., q1 is arbitrarily large while q2 = 0). Then, 2’s minimal guaranteed sustainable

payoff collapses to her minmax payoff, while 1 is guaranteed to get a payoff of at least π1(P2). More

generally, player i’s minimal payoff, given by (2), is calculated using the probability qi that he gets

an opportunity to make a proposal, and is independent of the other player’s probability of getting

that opportunity. As qi increases, player i’s guaranteed continuation payoff increases as well, and

vice versa.

2Clearly, this plan must be independent of i whenever µi = ∅, so that the convention chosen for the proposer in

the absence of any actual proposal is indeed irrelevant. This restriction is applied throughout.
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F Truthful norms

For any number of players and any norm there is a payoff-equivalent norm, which is truthful in the

sense that any on-path proposal is always accepted and implemented. Indeed, when some player

i gets a chance to make a proposal, he can make any number of proposals in equilibrium, the

expectation of which is some continuation payoff C. We alter the norm by prescribing player i to

make only one proposal with payoff C. The altered norm prescribes all other players to accept

the proposal and C to be implemented regardless of the acceptance decision. The payoff C can be

implemented using public randomization.

If i deviates and proposes a Pareto improvement relative to C, everyone is prescribed to reject it.

With two players, the new norm prescribes to have the same rejection continuation as in the original

norm. The incentive to accept the proposal is unaffected by the transformation, so the other player

is incentivized to reject an off-path proposal.

With more than two players rejecting the off-path proposal is an equilibrium. When the norm

is simple (see Section 6) and players vote for the payoff-improving proposal, as in Assumption 1,

player i is still prescribed to propose C. If player i makes an off-path proposal which gives him

more than πi(C), for each such a proposal there is at least one player j 6= i who rejects it, as

otherwise this off-path proposal would be made and accepted in the original norm.

G General renegotiation protocols

The benchmark model can be extended to allow multiple rounds of renegotiation within each period

without affecting the main results. We consider a multi-round renegotiation environment similar to

Miller and Watson (2013), adopting their notation. In each period, with probability qiε player i can

make a proposal to player j, which initiates a stochastic alternating-offer renegotiation protocol.

The renegotiation rounds are numbered as l ∈ {1, 2, ...},with l = 1 being the original proposal of

player i. If at any round the proposal is accepted, the players stop renegotiation and move to the

next period; otherwise the players continue renegotiation. Conditional on reaching the round l > 1,

player i is selected to be the proposer with probability ρi,l. Conditional on rejecting the proposal

in l-th round, the renegotiation breaks with probability βl ∈ [0, 1], with
∏∞

l=1(1 − βl) = 0. The

values of ρi,l, l > 1, and of βl, l ≥ 1, are assumed to be independent of made proposals, and of the

identity of the original proposer, and are the same across different time periods.

The presence of multiple rounds of renegotiation affects the set of equilibria in the repeated game
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with renegotiation. Nevertheless, Definitions 2, 3, ?? have straightforward extensions applied to

each round of renegotiation and Theorem 1 continues to hold as stated. It is equally easy to show

for environment of Section L, below, where the continuation of a failed proposal is independent of

the proposer, that Theorems 8 and 9 also continue to hold.3

Theorem 5 Theorem 1 extends to multi-round renegotiation.

The proof for sufficient conditions in Theorem 1 still holds, since player i can be punished for

making an unprescribed proposal by moving to the continuation which gives the highest possible

payoff to the player j, which makes all the future rounds of renegotiation meaningless. The proof

for the necessary conditions in Theorem 1 also holds, since when player i gets a chance to propose,

he can guarantee to move to the above continuation, in both the one-round and the multi-round

cases.

H Comparative statics

Consider any q > q′ and any norm s that is self-sustaining at some frequency q. We will show the

existence of a norm s′ that is self-sustaining at frequency for q′ and payoff-equivalent to s.

Under the new norm s′, any payoff A achieved by s following any history ending before the action

stage is implemented using the same mixed actions and the same subsequent continuations as pre-

scribed by s. Consider now any vector payoff B, calculated before the proposal stage, implemented

by some continuation sB of s. sB is a mixture of three continuation equilibria: sC1 , which arises

when 1 gets a chance to make a proposal and is calculated after the proposal stage; sC2 which arises

if 2 gets to make a proposal; and sC , which arises if no one gets to make a proposal.

At frequency q′, B is implemented as follows: players are prescribed to make exactly the same

proposals (with the same prescribed punishments if someone made an off-path proposal). For B

to still to be the weighted average of the continuations occurring after the three proposal events,

we change the continuation payoff in case no proposal is made: the new continuation payoff in this

case, C ′, has to lie on the line between B and C. The new continuation sC
′

is achieved using public

3Concerning Theorem 8, even in the multi-round case renegotiation ends in one round, with a continuation payoff

being on the Pareto frontier. Moreover, with each player i having a non-zero bargaining power (equivalent to πi > 0),

the proof of Theorem 9 in Section L.1 does not require the property of η-stability, since the Pareto-improving proposal

will lie in the interior of the Pareto set of stable norm.
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randomization, as it lies in the triangle (C,C1, C2). This construction gets us close to the desired

norm s′.

However, one also needs to make sure that players are correctly incentivized to make a proposal,

when they get an opportunity to do so, rather than to conceal this opportunity. This is the case

if π1(C1) ≥ π1(C) and π2(C2) ≥ π2(C), i.e., if each player gets at least as high a payoff when he

makes a proposal as when he remains silent. When one moves point C to C ′, these incentives might

get violated, and the construction above must be adjusted as follows.

The new continuation payoff when no proposal is made, C ′, lies in between C and B. Suppose

that it violates 1’s incentives to make his prescribed proposal: π1(C
′) > π1(C1). Since, in the old

norm, we had π1(C1) ≥ π1(C), such a violation is possible only if π1(C2) > π1(C1). In this case, we

modify the prescribed proposal for player 1 by moving point C1 towards C2. As this happens, the

value of π1(C1) increases and the value π1(C
′) decreases (to keep B the weighted average). When

these values become equal, the incentives for player 1 to make a proposal start holding again. With

the new continuation payoff C ′
1 for player 1’s proposal and renewed continuation payoff in case of

no proposal C ′′, player 1 is incentivized to make the prescribed proposal. One then can check that

both new points can be implemented: the payoff C ′
1 lies between C1 and C2 and therefore can be

implemented using public randomization, while point C ′′ lies within the triangle (C,C1, C2) and

can therefore also be implemented.

The same procedure is applied to player 2. The modified continuation payoffs can be implemented

using public randomization device. The new norm s′ therefore has the same set of payoffs as the

old norm s at any stage, and it is self-sustaining at frequency q′.

I Non-vanishing probability of proposal

The sufficient conditions of Theorem 1 rely on the probability p of a player being able to make a

proposal being proportional to ε: p = qε. As explained at intuitively the beginning of Section 3,

when p is independent of ε, one can no longer guarantee the existence of sustainable payoffs for all

stage games. This section establishes the result formally: for p ∈ (0, 1], there exists a stage game

which has no sustainable payoffs when the discount factor δ is sufficiently close to 1.

An example of such a game is given by the matrix below, with some payoffs expressed in terms of

a large constant M .
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-2M,-2M -2M,-2M -2M,-2M -1,7 -1,-2M 0,0

-2M,-2M -2M,-2M -2M,-2M M,-2M -2M,M 0,0

-2M,-2M -2M,-2M -2M,-2M -2M,M M,-2M 0,0

7,-1 -2M,M M,-2M -2M,-2M -2M,-2M 0,0

-2M,-1 M,-2M -2M,M -2M,-2M -2M,-2M 0,0

0,0 0,0 0,0 0,0 0,0 0,0

The minmax values of players are v1 = v2 = 0, as seen from the last row and the last column. The

set of Pareto efficient payoffs is a part of a line which goes through points (−1, 7) and (7,−1), and

is a segment between (0, 6) and (6, 0): any other stage game payoff gives strictly less total payoff

of the players, π1 + π2.

Lemma 2 For any p > 0, there exists M such that for all ε small enough, no self-sustaining norm

exists.

Proof. The proof proceeds by contradiction. Suppose there exists a self-sustaining norm and let V
denote the set of payoff vectors implemented by all continuations of the norm that follow histories

at which no off-path proposal has been accepted. Consider the payoff vector Q2 ∈ V that gives the

highest payoff to player 2 in V, and suppose that π2(Q2) > 0. If player 1 gets a chance to propose,

1 gets at least π1(Q2). Therefore the infimum A1 of 1’s payoff over all elements of V satifies

A1 ≥ ε ∗ v
¯1

+ (1− ε)(p ∗ π1(Q2) + (1− p) ∗ A1)

because 1 is gets at least minmax payoff v
¯1

during the action stage, and can guarantee himself a

payoff π1(Q2) when he makes a proposal.

When implementing Q2, the expected per-period payoff of player 2 must be strictly positive, since

Q2 gives the maximal payoff to 2 in V. As was shown above, player 2 has to play as a pure strategy

one of the columns from the second to the fifth; and respectively, player 1 is able to deviate and

get a payoff of at least M . Thus, 1’s continuation payoff has to satisfy:

π1(Q2) ≥ ε ∗M + (1− ε)(p ∗ π1(Q2) + (1− p) ∗ A1).

Indeed, if player 1 deviates and gets M in the current period, during the renegotiation stage player

1 can secure the payoff π1(Q2) if given a chance to propose, and otherwise gets at least A1.

Combining the above inequalities yields

p(M − π1(Q2)) ≤ (1− p)(A1 − v
¯1
),
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which is impossible for M large enough. Therefore, there is no self-sustaining norm for which 2

gets a strictly positive payoff. By symmetry, the same holds for player 1. The only possible self-

sustaining norm that remains is for both players to always minmax each other and get zero in each

period. However, this norm is not robust to a proposal to move to a babbling norm with payoff

(3, 3), which is implementable by the Folk Theorem as long as ε is small enough. �

Although, existence may be an issue when p fixed, this need not be the case. In particular, if the

per-period utility of a deviator is sufficiently low during the punishment phase, this will be suffice

to deter deviations, even if the probability of renegotiation is large. There are many stage games for

which there exist sustainable payoffs at all frequencies of renegotiation. An example of such a game,

in which Pareto inefficient punishment is needed to support on path behavior, is given by the matrix

below:

-14,0 0,0 0,6

-14,0 0,0 5,0

-14,1 2,1 0,0

The Pareto frontier of this game consists of all the payoffs which lie between the points (0, 6) and

(5, 0). All these payoffs are sustainable as δ becomes sufficiently large, even if the value of p remains

fixed.

Proposition 5 There exists ε0 ∈ (0, 1) such that ∀ε < ε0, any payoff on the Pareto frontier of the

game is sustainable for any value of p ∈ [0, 1].

Proof. The proof of this proposition follows the construction of Appendix A.1. In order to

implement Pareto-efficient payoff Q = (0, 6), player 2 has to choose the third column, while player

1 has to choose the first row. However, 1 may be tempted to choose the second row and get a

payoff of 5. In order to implement Q, therefore, there must be a Pareto-inefficient punishment for

player 1, sufficiently harsh to deter 1 from making this deviation, despite being able to propose a

Pareto improvement with positive probability in each period. This is achieved as follows: when

implementing Q, if player 1 deviates and chooses the second row instead of the first one, he gets an

immediate benefit of 5ε. Player 1 is punished by moving continuation payoff to point B = (−5.5ε, 1).

At this stage, if player 1 gets a chance to renegotiate, he proposes point C = (0.5ε, 1), otherwise

the play moves to point A = ([−5.5− 6 p/2
1−p/2 ]ε, 1), which gives player 1 a continuation payoff of at

least −11.5ε. Point A is implemented by choosing the third row and the first column with a payoff

(−14, 1), and at the renegotiation stage player 1 would have a continuation payoff of at least ε.

With this construction, point Q deters any off-path proposals by player 1. �
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J Multiplayer agreements: Voter-dependent continuations and se-

quential voting

J.1 Voter-dependent continuations

Suppose, first, that continuation payoffs can depend arbitrarily on the voting decision of each

player—except if everyone agrees on a proposal, in which case stability dictates that the proposal is

implemented. With this high degree of flexibility, norms may be constructed so that all negotiation

proposals are dissuaded and the Folk Theorem obtains.

Theorem 6 For any feasible payoff vector π with πi > vi for all i, π is sustainable.

To understand this result, we recall that in the underlying repeated game without negotiation, any

strictly individually-rational payoff vector can be implemented for ε small enough by minmaxing

any player i who deviates in actions, and switch to minmaxing any player j 6= i who deviates when

minmaxing player i. The same idea can be applied when negotiation is feasible, by deterring it

as follows: if a player, i, proposes another continuation, everyone else is prescribed to reject the

proposal and to start minmaxing player i. If another player, j, deviates from the prescribed rejection

by accepting i’s proposal, and all other players reject it, then players are prescribed to minmax j

instead of i. If two or more players accept i’s proposal, it is implemented, which guarantees that the

norm satisfies our stability refinement. This prescription guarantees that it is always suboptimal

for a player to unilaterally accept a proposal and, consequently, that it is also suboptimal to make

any proposal. Unless some additional restrictions are imposed on the continuation payoffs, allowing

for the possibility of renegotiation with three or more players thus has no more predictive power

on the set of equilibria and payoffs than the standard Folk Theorem.

To prove Theorem 6 formally, observe that since v ∈ F , the standard Folk Theorem implies that

for ε small enough v can be achieved by an equilibrium of the underlying repeated game. This

equilibrium can be embedded into a norm of the repeated game with renegotiation. According

to this norm, no proposal is ever prescribed at any stage of the game. If a player i ever makes

a proposal, other players are prescribed to reject it and the continuation payoff corresponds to

punishing player i, as if i had deviated in action in the underlying equilibrium. If only one player

j 6= i accepts i’s proposal, the continuation corresponds instead to the punishment equilibrium for

j. If at least two players accept the proposal, it is implemented. These prescriptions guarantee

that any unilateral deviation in action, proposal, or acceptance decision is suboptimal.
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J.2 Sequential voting in case of no restrictions

Sequential voting permits more than two continuation payoffs, depending on the sequence of accep-

tance decisions of the players. The set of sustainable payoffs is qualitatively similar to the earlier

analysis with simple norms but more permissive.

Proposition 6 Suppose that each proposal is decided by sequential voting. Then, sufficient and

necessary conditions analogous to those of Theorem 4 obtain, which are characterized by upper

orthants. Moreover, the set characterized by each of these two conditions is larger than the corre-

sponding set obtained with simple norms and simultaneous voting.

Sequential voting with many continuations thus provides more predictive power than simultaneous

voting with voter-dependent continuations, but less predictive power than the simultaneous-voting

specification with only two continuations.

Proof. [Sketch] Consider for simplicity the case of three players: player 1 makes a proposal and

player 2 responds first, followed by player 3. Depending on responding players’ votes, there are

four possible continuations, one of which is equal to 1’s proposal and arises when 2 and 3 accept

the proposal.

The ability to punish 2 for accepting player 1’s proposal is constrained by the following issue: if 2

accepts the proposal, 3 will reject it only if the punishment for player 2 gives him at least the same

payoff as 1’s proposal, which will be implemented if he accepts it. This puts a lower bound on 2’s

punishment payoff, which is higher than the minmax v2.

As a result, 1’s punishment for making an off-path proposal is also limited. Since fewer punishments

are available, fewer norms are self-sustaining: sequential voting has more predictive power than

simultaneous voting. By nature of the arguments used to derive necessary and sufficient conditions,

these conditions are characterized by upper orthants, even if players randomize their acceptance

decision. Since allowing only two continuations—as simple norms do with simultaneous voting—is

a special case of the more numerous continuations allowed by sequential voting, it follows that

simple stable norms have more predictive power than the stable norms obtained with sequential

voting. �
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K Observable mixed strategies

We have assumed throughout the paper that when a player randomizes across several actions or

proposals, only the outcome of this randomization is observed by the other player. In particular,

players’ continuation values cannot directly depend on their choice of mixed strategy. Our results

do not change if instead we assume that mixed strategies are observable. For sufficient conditions,

this fact is straightforward because our construction is clearly compatible with players observing

more information. For necessary conditions, payoff lower bounds were computed using only that

any player can guarantee himself at least his minmax payoff during the action stage and at least

some particular payoff during the proposal stage which satisfies the responder. These lower bounds

do not change when mixing is observable.

The observability of mixed strategies does affect, however, the set of weakly renegotiation-proof

(WRP) equilibria defined by Farrell and Maskin (1989), as follows. An SPE σ is weakly-renegotiation

proof if there do not exist continuation equilibria σ1, σ2 of σ such that σ1 strictly Pareto dominates

σ2. If a payoff vector arises as players’ continuation payoff following some history of a WRP

equilibrium, we will also say that these payoffs are WRP.

Assuming that mixing probabilities are observable, Farrell and Maskin obtained a sufficient condi-

tion for any feasible payoff to be WRP in the context of two-player repeated games. To formulate

this condition, they define ci(α) = maxa′iπi(a
′
i, α−i) as the cheating payoff of player i when he

chooses a best response to the (mixed) action α−i, and establish the following result.

Proposition 7 Let π = (π1, π2) denote a feasible payoff. If there exist (mixed) action pairs αi =

(αi
1, α

i
2) (for i = 1, 2) such that ci(α

i) < πi, and π−i(α
i) ≥ π−i, then the payoff π is WRP if δ is

sufficiently close to one.

Moreover, with observable mixed strategies the set of WRP payoffs generically contains Pareto-

efficient payoffs, as shown in Evans and Maskin (1989).

Theorem 7 Given the players’ action spaces A1 and A2, for a generic choice of payoff functions,

if players are sufficiently patient, then there exists a WRP equilibrium that is Pareto-efficient.

We now prove the existence of a symmetric stage game in which all Pareto-efficient payoffs above the

minmax satisfy the requirement of the above proposition, but cannot beWRP if mixing probabilities

are unobserved, even if the stage game payoffs are slightly perturbed. The definition of WRP is

the same as before, except that equilibrium strategies now depend only on the history of realized
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actions rather than on the history that included mixed strategies. The stage game is identical to

the one described in Appendix I with M = 100, and is reproduced here for convenience:

-2M,-2M -2M,-2M -2M,-2M -1,7 -1,-2M 0,0

-2M,-2M -2M,-2M -2M,-2M M,-2M -2M,M 0,0

-2M,-2M -2M,-2M -2M,-2M -2M,M M,-2M 0,0

7,-1 -2M,M M,-2M -2M,-2M -2M,-2M 0,0

-2M,-1 M,-2M -2M,M -2M,-2M -2M,-2M 0,0

0,0 0,0 0,0 0,0 0,0 0,0

As noted in Appendix I, the minmax values of players are v1 = v2 = 0, as seen from the last row

and the last column. The set of Pareto efficient payoffs is a part of a line which goes through

points (−1, 7) and (7,−1), and is a segment between (0, 6) and (6, 0): any other stage game payoff

gives strictly less total payoff of the players, π1 + π2. Let’s show that none of those Pareto efficient

payoffs can be a part of WRP given low enough ε (arbitrarily patient players), even if players have

access to a public randomization device. In fact, only the minmax payoff of (0, 0) is WRP:

Counter-Example 1 With unobservable mixed strategies, (0, 0) is the unique WRP payoff.

Suppose, by way of contradiction, that there is a point A that is the continuation payoff of some

WRP equilibrium σ and such that π2(A) > 0 (the case of π1(A) > 0 is similar). Consider the payoff

vector A′ corresponding to player 1’s lowest payoff and, hence, player 2’s highest payoff among all

continuation payoffs of σ before public randomization.4 When implementing A′, player 2 cannot

choose either the first or the last column, since there column give him at most zero, regardless of

1’s strategy; this would imply that 2’s continuation payoff in the next period satisfies π2 > π2(A
′),

contradicting our choice of A′. Therefore, 2 chooses among columns located between the second

and fifth.

Since A′ gives 1 his lowest possible payoff, when implementing A′ player 1 cannot get a period

payoff higher than π1(A
′), even if he always plays a stage-game best response. Otherwise, the

promise-keeping constraint would have to prescribe a continuation giving 1 a payoff lower than

π1(A
′). If 2 chooses a pure strategy (among the columns from the second to the fifth), player 1 can

guarantee himself a payoff of M = 100, which is greater than what 1 gets from any individually-

rational payoff. Thus, when implementing A′, player 2 should play a mixed strategy. Due to

promise-keeping constraints, each pure action that 2 chooses in equilibrium should give 2 a payoff

4Since σ is WRP, 1’s lowest continuation payoff is achieved for 2’s highest continuation payoff. The proof can be

easily adjusted if σ’s payoff extrema are not achieved.
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of at least π2(A
′) > 0.5 Such a strategy is impossible, however, as shown below.

When implementing A′, let player 1 choose the rows from the first to the third with a total probabil-

ity of β, and choose the fourth and the fifth rows with the total probability of γ. If player 2 chooses

either the second or the third column, 2’s expected payoff is at most X1 = −2Mβ +Mγ, while if

2 chooses either the fourth or the fifth column, 2’s expected payoff is at most X2 = Mβ − 2Mγ.

Since both payoffs X1,X2 cannot both be strictly positive, 2 has to mix either between the second

and the third columns, or between the fourth and the fifth columns.

Let player 1 choose the fourth row with probability β′, and the fifth row with probability γ′. If

player 2 chooses the second column, 2’s expected payoff is at most X ′
1 = Mβ′ − 2Mγ′, while if 2

chooses the third column, 2’s expected payoff is at most X ′
2 = −2Mβ′ +Mγ′. Since both payoffs

X ′
1,X

′
2 cannot be strictly positive at the same time, 2 cannot mix between the second and the third

columns.

Let player 1 choose the first row with probability α̂, the second row with probability β̂, and the

third row with probability γ̂. If 2 chooses the fourth column, his expected payoff is at most

X̂1 = 7α̂ − 2Mβ̂ + Mγ̂, while if he chooses the fifth column, his expected payoff is at most

X̂2 = −2Mα̂+Mβ̂ − 2Mγ̂. The sum of the two payoffs X̂1 + X̂2 = (7 − 2M)α̂ −Mβ̂ −Mγ̂ ≤ 0.

In particular, the payoffs X̂1, X̂2 cannot both be strictly positive and, hence, player 2 cannot be

mixing between the fourth and the fifth columns.

Since there is no mixed strategy which gives player 2 a strictly positive payoff for each of 2’s actions,

pointA is not WRP. The only WRP payoff is the minmax payoff (0, 0). Moreover, even if one slightly

perturbs the stage game payoffs, there will be no WRP equilibrium which provides the players with

payoffs that are significantly higher than the minmax. By contrast, with observable mixed strategies

and sufficiently patient players, one could implement any Pareto efficient payoff strictly above the

minmax. Any Pareto efficient payoff satisfies Proposition 7 where α1 corresponds to 1 choosing

the fourth row and 2 mixing between the first and second columns with equal probability, and α2

corresponds to 1 mixing between the first and second rows with equal probability and 2 choosing

the fourth column.

5Indeed, 2’s continuation payoffs are all below π2(A
′), by definition of A′, while the pure actions in the support

of his optimal mixed strategy give him an expected payoff of π2(A
′).
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L Self-sustainable norms in the absence of proposer-specific pun-

ishments

One virtue of explicitly modeling the renegotiation process is to incorporate the logic of modern

repeated games analysis into renegotiation: just as arbitrary continuation equilibria may follow from

observed actions in a repeated game, here arbitrary continuations may follow rejected proposals.

The paper has explored one consequence of this generality, which is that even good proposals may

be deterred, and Pareto dominated equilibria be sustained as a result.

While in the applications discussed earlier this flexibility seemed reasonable or even desirable, in

other environments it is natural to ask what equilibria may be sustained when proposers cannot

be punished. Indeed, such a restriction is imposed in a number of models of explicit negotiation6

and sometimes formalized as a “No-Fault Disagreement” (NFD) axiom. The axiom requires the

continuation equilibrium following a rejected proposal to coincide with the default continuation in

case no proposal was made. This appendix shows how our results are modified when this refinement

is added.

In order to keep the language of the analysis as close as possible to the existing literature, this section

adopts the “stable convention” terminology of Definitions 2 and 3 instead of the self-sustainability

refinement.7

Definition 10 A stable convention C is forgiving if for any equilibrium s in C, for any i and mi,

s+1[s](z,a, i,mi, 0)=s+1[s](z,a, i, ∅, 0).

Our concepts are modified as follows. A payoff vector A is said to be forgivingly q-sustainable if for

all ε small enough, there is a forgiving stable convention containing an equilibrium which expected

payoff is equal to A. A is forgivingly sustainable if it is forgivingly q-sustainable for all q’s large

enough.

The main result in this case is given by the novel necessary conditions, which are much more

restrictive those of Theorem 1: the continuation payoffs must lie within a distance O(1q ) of the

convex hull of the (individually-rational) Pareto frontier. More precisely, for each feasible payoff

vector A, let ρ(A) denote the signed distance from the line (P1P2), counted positively if A lies

below (P1P2), and negatively otherwise, as indicated by Figure 5.

6See Santos (2000) and Miller-Watson (2013). A similar idea appears in Farrell (1987), Rabin (1994), and Arvan,

Cabral, Santos (1999) for the case of simultaneous announcements.
7The concepts used in this appendix can be readily re-expressed in terms of self-sustainability.
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P2

P1

A : ρ(A) > 0

B : ρ(B) < 0

Figure 5: Signed distance from (P1P2)

ρ̄1+
q

Figure 6: Sustainable payoffs without proposer-specific punishments

Let ρ̄ denote the maximum value of ρ among all feasible payoff vectors.

Theorem 8 If A is forgivingly q-sustainable, then ρ(A) ≤ ρ̄
1+q .

One may also wonder whether all the feasible payoffs lying above the line (P1P2) can be achieved in

this case. The next result provides a positive answer which is independent of negotiation frictions.

To establish this result, we slightly modify the definition of stability, as follows: deviating proposal

which is accepted needs to be implemented only if it improves the proposer’s payoff by more than

a constant η > 0, arbitrarily small but fixed, over his equilibrium payoff without the deviation.8

Definition 11 A convention C is η-stable if a) at any element s ∈ N the players engage in rich

renegotiation, and b) the following holds: consider any equilibrium of C and history at which i gets

8Using the refinement in Theorem 8 affects the corresponding bound by a factor η.
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Q1
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P2

P1

Q2

Figure 7: Construction of a convention with NFD (payoffs)

a chance to make a proposal and let Ûi denote i’s continuation payoff. Then, whenever i proposes

a plan s ∈ S giving him at least Ûi + η, and −i accepts it, µ is implemented.

Theorem 9 Assuming η-stability, any payoff vector A strictly above the segment (P1P2) is forgiv-

ingly sustainable.

The role of η is to prevent off-path proposals whose payoffs lie near the boundary of the convention’s

payoff set, as detailed in the proof of the theorem.

L.1 Proof of Theorem 9 (Sufficient Conditions)

Notation: throughout the analysis, for any payoff vector X achieved by some norm of C, we will

denote by XC the corresponding equilibrium.

Consider two feasible Pareto points, Q1 and Q2, lying at an arbitrarily small but strictly positive

distance from P2 and P1, respectively, and illustrated by Figure 7. It suffices enough to show that

for any ε small enough, there exists a forgiving stable convention C which includes Q1 and Q1 as

equilibrium payoffs, that is, convention has elements QC
1 , Q

C
2 . By public randomization, this will

imply that this convention can also be made to contain all payoffs above the segment [Q1, Q2]. The

argument below focuses on the case in which P2 and P1 are determined by the minmax payoffs,

which is the harder one.9

We construct a convention which continuation payoffs just after the public randomization stage

(before the action stage) consist of the Pareto frontier contained between Q1 and Q2 and of two

9If, say, π1(P2) > v1, it suffices to set Q1 = P2 in our construction and use it as as the best proposal for player 2.
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A1
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B

C

Kε

Lε

Figure 8: Construction of a convention with NFD (implementation)

additional points, A1 and A2, respectively lying within ε-proportional distance from Q1 and Q2, as

indicated on Figure 7. We describe the implementation of AC
1 and QC

1 ; A
C
2 and QC

2 have a symmetric

implementation.

While Q1 is taken as given, the location of A1 depends on ε, and is determined by the following

conditions

π1(A1) = π1(Q1)−Kε

π2(A1) = π2(Q1)− Lε, (14)

for constants K and L which will be determined ulteriorly.

To implement AC
1 , players are prescribed to minmax each other. The continuation payoff B after

the action stage is a function of the players’ realized actions, a1 and a2: B = B(a1, a2). The

implementation is illustrated by Figure 8. For any action ai of player i the continuation payoff

πi(B(ai, aj)) does not depend on aj .

Given that player 2 has minmaxed player 1, let Eu1(a1) denote 1’s expected payoff for the period,

as a function of his chosen action, a1. 1’s continuation payoff, π1(B(a1, a2)), satisfies the promise-

keeping condition

π1(A1) = εEu1(a1) + (1− ε)π1(B(a1, a2)).

A similar relation holds for 2’s continuation payoff. By appropriately choosing players’ continuation

payoffs B(a1, a2)(a1,a2)∈A, the construction can make players indifferent between taking any action

in the game.

Moreover, if the constant K appearing in (14) is large enough, then for any action profile (a1, a2),

one necessarily has π1(B(a1, a2)) < π1(Q1)).
10

10Indeed, the distance between A and B(a1, a2) is proportional to ε, with a coefficient bounded above by the highest
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Consider any of the continuation payoffs B(a1, a2)(a1,a2)∈A after the action stage—henceforth re-

ferred to as ‘B’ for simplicity. B is a weighted average of three continuation payoffs corresponding

to the following events: player 1 makes a proposal, player 2 makes a proposal, no one makes a

proposal. Let C denote the continuation payoff in case no one makes a proposal (this payoff is

computed before the public randomization taking place in the following period).

For the convention to be forgiving, any rejected proposal results in payoff C. This implies that if

player 1 gets to make a proposal, in equilibrium he proposes the element with a Pareto-efficient

payoff C1 which gives 2 her default value π2(C), making player 2 to accept the proposal in equilib-

rium.

The situation is different if player 2 gets to make a proposal. BC gives player 1 a lower payoff than

QC
1 , and player 2 is prescribed to propose an element QC

1 , which achieves her highest payoff in the

convention and also gives player 1 a higher payoff than CC does.

As shown on Figure 8, at element BC if player 1 gets a chance to make a proposal, he proposes CC
1 ,

if 2 gets a chance to make a proposal, she proposes QC
1 . B is thus a weighted average of C, C1 and

Q1. Given any point B, one can find a default option C such that B is indeed the right weighted

average, given the probabilities of proposal for each player.

We will verify at the end of this proof that the constants K and L from (14) may be chosen so

that C lies to the right of the line (A1, Q1). If this is true, C
C may be implemented, before public

randomization, as a weighted average of AC
1 , Q

C
1 , and QC

2 .

The remaining element of interest, QC
1 , is implemented as follows: players are prescribed to choose

the pure-strategy Pareto-efficient payoff northwest of Q1. If 1 deviates in action, the continuation

payoff jumps to B; if 2 deviates, it jumps to the analog of B near Q2. Players are incentivized to

play as prescribed as long as π1(Q1)−π1(B)
ε is large enough. This is achieved by judiciously choosing

the constants K and L arising in (14), as explained next.

Determination of the constants K and L

First, we observe that for K large enough, the threat of jumping to continuation BC is enough

to incentivize player 1 to play as prescribed in the implementation of QC
1 . We fix such a K—this

choice is independent of ε. We now show that for L big enough, for any realization of B (which

depends on which actions players choose while implementing AC), the point C will lie to the right

of line A1Q1, as mentioned earlier.

absolute value of the payoff of the stage game.
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Since a player’s probability of proposal and the distance from B to the Pareto line are both pro-

portional ε, the distance between B and C must be proportional to ε2. Therefore, if we can show

that each continuation point B(a1, a2) lies to the right of the line A1Q1, at a strictly positive

ε-proportional distance, so does the point C, for sufficiently small ε.

The points B(a1, a2) are constructed by promise-keeping conditions. Let B∗ denote the continuation

payoff, out of all continuations B(a1, a2), which gives the lowest payoff to player 1 and the highest

payoff to player 2. B∗ corresponds to the highest value Eu1(a1) out of all actions a1 and to the

lowest value Eu1(a2) out of all actions a2. It suffices to show that B∗ lies to the right of A1Q1. We

recall the promise-keeping conditions

π1(A1) = εEu1(a1) + (1− ε)π1(B
∗)

π2(A1) = εEu2(a2) + (1− ε)π2(B
∗)

or, equivalently,

[π1(A1)− π1(B
∗)] = ε[Eu1(a1)− π1(B

∗)]

[π2(A1)− π2(B
∗)] = ε[Eu2(a2)− π2(B

∗)].

The ratio of the absolute values of the right-hand sides in the two equations above, |Eu2(a2)−π2(B∗)
Eu1(a1)−π1(B∗) |,

determines the tangent of the angle of the vector A1B
∗ above the horizontal. Since B∗ is at an

ε-distance from Q1, this ratio simplifies to |Eu2(a2)−π2(Q1)
Eu1(a1)−π1(Q2)

|, plus ε-terms which can be ignored.

Player 1 cannot obtain a higher payoff than his minmax v1 (as player 2 is minmaxing him), and

player 2 cannot obtain a lower payoff than her lowest possible payoff in the game, which we denote

as v. Therefore, the angle of the vector A1B
∗ above the horizontal is no higher than | v−π2(Q1)

v1−π1(Q2)
|, a

finite value independent of L and ε.

The tangent of the angle of the line (A1Q1) above the horizonal is equal to L
K . By choosing L high

enough, this ratio exceeds twice the ratio | v−π2(Q1)
v1−π1(Q2)

|. This guarantees that the vector A1B
∗ lies

strictly to the right of the line (A1Q1), as desired.

There remains to check that the convention satisfies all the conditions of Theorem 9. First, both

players are incentivized to propose as prescribed: player 1 proposes the best available option for

him, given the default option C. If player 2 wants to improve upon Q1, she has to propose a

continuation which gives her at least η more than her on-path continuation payoff. For ε small

enough, however, the only proposals that would achieve this would have to give player 1 less than

π1(C), and would therefore be rejected. Second, the continuation payoff, C, is the same when a

proposal is rejected, regardless of the identity of the proposer and the nature of the proposal. The
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convention is thus forgiving. Finally, the point Q1 is a continuation of the convention both after

and before the public randomization, as desired.

L.2 Proof of Theorem 8 (Necessary Conditions)

Consider a forgiving stable convention C. For simplicity, we assume that at each stage of the

game—before the action stage, before the proposal stage, and before the public randomization

stage—there exist equilibria in the convention with respective payoff vectors A, B, and C, that

yield the maximal value of ρ at the corresponding stage.11 Let α denote the (possibly mixed)

action profile corresponding to the first-period play implementing element AC—the continuation

before the action stage, and let v(α) denote the expected current payoff resulting from α. Since

ρ(v(α)) ≤ ρ̄, we necessarily have

ρ(A) ≤ ερ̄+ (1− ε)ρ(B)

Point B, which is a continuation payoff before the proposal stage, is the weighted average of the

continuation payoffs following accepted proposals, and of the default option. When a player—

player 1, say—gets a chance to make a proposal, the expected continuation payoff must lie within

at most an
√
ε-distance from the Pareto line. Otherwise, player 1 could propose a Pareto point

which increases both players’ payoffs by a value proportional to
√
ε, and is an equilibrium lying

above the minmax.12 This proposal would then be accepted by player 2 and would be a profitable

deviation for player 1. Therefore, if a player gets a chance to make a proposal, which happens with

probability qε, the resulting continuation cannot have a positive value of ρ that exceeds
√
ε. When

no one makes a proposal, the continuation payoff is dictated by the default continuation, whose

value of ρ is at most ρ(C). This implies that

ρ(B) ≤ qε×√
ε+ (1− qε)ρ(C).

Finally, since C is a convex combination of payoffs, obtained by public randomization, of equilibrium

payoffs before the action stage whose maximal ρ-value is achieved by A,

ρ(C) ≤ ρ(A).

Combining the above inequalities and getting rid of second-order ε-terms shows Theorem 8.

11If the supremum values are not achieved, the proof can be easily adjusted by taking appropriate limits.
12With the more permissive concept of an η-stable convention, the continuation payoff has to lie within a distance

of
√
ε+ η from the Pareto line. Otherwise player 1 could make a proposal which gives him η more, and gives player

2
√
ε more than the continuation payoff.
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L.3 Arbitrary number of players without proposer-specific punishment

Finally, consider the most restrictive case of a simple convention that is also forgiving, as defined

in the two-player case.

Definition 12 A simple convention C is forgiving if, for each period t and history h ∈ H+ ending

in period t, the continuation play in case of a proposal not accepted by the supermajority is the

same as if no proposal was made.

The definitions of (forgivingly) sustainable payoffs at frequency q and (forgivingly) sustainable

payoffs are identical to those of the two-player case.

The necessary conditions resemble the two-player case. Let P ′ denote the set of individually-rational

Pareto-efficient payoffs and Co(P ′) denote the convex hull P ′ .

Proposition 8 If A is forgivingly q-sustainable, the distance from A to Co(P ′) is bounded above

by a decreasing function of q, which converges to 0 as q becomes arbitrarily large.

The proof closely mirrors the argument used for the two-player case and is only sketched here.

Suppose that A is the point of the convention which has the largest distance from Co(P ′) and

that A lies “too far” down away from Co(P ′). Whenever a player gets to make a proposal—which

happens with probability proportional to q—he proposes a Pareto point (or close to it). Moreover,

the continuation payoff A′ which follows if the proposal is rejected cannot lie farther away from

Co(P ′) than A does. Combining this puts a bound on A’s distance to Co(P ′), which vanishes as q

gets large.

We conclude this section with sufficient conditions.

Theorem 10 Assuming η-stability, any point A in the set Co(P ′) lying strictly above the minmax

is forgivingly sustainable.

Proof. [Sketch] We construct a forgiving η-stable convention C as follows. The convention C includes

all Pareto-efficient payoffs which lie at some arbitrary small, but ε-independent distance from the

minmax values. The convention C also includes, for each player, a set of Pareto-inefficient elements

used to build a punishment equilibrium for that player, all elements in each set lie within a distance

of order ε from the Pareto-efficient elements of the convention. For each player i, there is a Pareto-

inefficient payoff vector Ai which gives i his worst payoff in C. The equilibrium AC
i which achieves

payoff Ai, together with its continuations, form the punishment set for player i, as described below.
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If players were unable to make any proposal, one could implement payoff Ai as follows. Player

i is being minmaxed, which may require other players to use mixed strategies. As described in

earlier proofs, this results in a set B1 of continuation payoffs, (potentially) one for each observed

action profile (these various continuations are needed to incentivize the minmaxing strategy). Each

continuation payoff B1 ∈ B1 is implemented by minmaxing player i, which again generates several

continuation payoffs in the next period, with generic element denoted as B2. Player i is minmaxed

in this way for several periods. In each period i’s continuation payoff, πi, increases by an amount of

order ε. One can compute the number T of periods needed to minmax player i, so that πi exceeds

πi(Ai) by a sufficiently high amount that i can be incentivized to play any action by the threat

of returning to Ai. The value of T is independent of ε. After these T periods, each continuation

payoff BT can be implemented by playing a deterministic sequence of actions so that the continu-

ation payoff always lies within some ε-proportional distance from BT . This implementation is an

equilibrium, since the payoff Ai prevents any deviation from player i, and any deviation by another

player leads to an even larger drop in the continuation payoff of the deviator.

When proposals are re-introduced in the game, there will be changes in the implementation of AC
i ,

but these changes will be insignificant. After the first round of minmaxing player i, the resulting

continuation payoff B1 is calculated taken into account the possibility of proposals. That is, B1C is

the convex combination of some default option, C1C , if no one makes a proposal, and of proposals

payoffs CC
i for each player, which are chosen to be Pareto efficient elements of the convention C.

The distance between the payoffs B1 and C1 is of order ε2—as explained the similar proofs seen

earlier. In the next period, the continuation payoff before the actions will be C1 (instead of B1, in

the previous paragraph). Therefore, if one repeats minmaxing player i for T periods, the resulting

continuation payoff compared to the case with no proposals, will differ by an amount of order ε2,

which is negligible as ε becomes arbitrarily small. As the value of δ limits to one, the modified

implementation of Ai, based on minmaxing player i for T periods and then choosing a deterministic

sequence of actions, will thus be an equilibrium even with the possibility of proposals.

Finally, the payoff Ai (and, therefore, all the default continuation payoffs C’s) can be chosen so

as to lie within some distance Kε-distance from the Pareto line. With ε small enough, no player

can make an off-equilibrium proposal that would give him a payoff of at least η more than the

equilibrium proposal, while keeping all other players at least at well as off as with the default

payoff C. Therefore, the constructed convention is η-stable. Using initial public randomization,

one can then include in the convention any point in the convex hull Co(P ′), which concludes the

proof. �
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