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Abstract

We introduce the test-set equilibrium refinement of Nash equilibrium to formalize
the idea that players contemplate only deviations from equilibrium play in which a
single competitor plays a non-equilibrium best response. We then apply this refinement
to three well-known auction games, comparing our findings to similar ones previously
obtained by specialized equilibrium selections. We also introduce a theory of high
stakes versions of games, in which strategies are first proposed and then subjected to
a potentially costly review-and-revise process. We demonstrate a sense in which the
test-set equilibria emerge from such processes when the cost of revision is small.

Keywords: equilibrium refinement, test-set equilibrium, quasi-perfect equilibrium,
menu auction, generalized second-price auction, second-price common value auction

1 Introduction

Many auction games studied by economists have multiple Nash equilibria, each with the
feature that some bidders have many alternative best responses to equilibrium play. In first-
price auctions for a single item, a losing bidder’s best responses include all sufficiently low
bids; in second-price auctions, the winning bidder’s best responses include all sufficiently
high bids; and in generalized second-price auctions used for internet advertising, every
bidder’s set of best responses to equilibrium is typically an open interval of bids. For
the multi-item auction mechanisms that are commonly used, for example to allocate radio
spectrum, electricity or Treasury securities, each bidder can bid for different quantities
or different combinations of lots, with some bids winning and others losing. In equilibria
of these auctions, a bidder’s set of best responses often contains an open set in a multi-
dimensional space. All these games have a continuum of pure Nash equilibria.

Previous analyses of these games have often narrowed the set of equilibrium outcomes
by applying various specialized refinements, which are defined in terms of the specific game
and do not apply to general non-cooperative games—or even to general finite games. This
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suggests several questions: Can one achieve a similar narrowing using generally applica-
ble refinements like proper equilibrium (Myerson, 1978) or strategically stable equilibrium
(Kohlberg and Mertens, 1986)? If not, why not? Is there any consistent principle that can
reconcile, or possibly unify, the different specialized refinements that have been applied to
different auction games? For the first question, our examples below show that both proper
equilibrium and strategically stable equilibrium sometimes fail to narrow the equilibrium
set enough to generate conclusions like those obtained by previous analyses. For the second,
we will argue that the answer lies in the fact that for games with three or more players,
these two older tremble-based refinements fail to impose restrictions on the relative proba-
bilities of trembles by different players. Finally, we will argue that the several specialized
refinements can often be understood as imposing restrictions of that kind.

This paper, however, focuses mainly on the third question. We introduce a new Nash
equilibrium refinement that we call “test-set equilibrium,” which implicitly restricts the
relative probabilities of trembles by different players. A strategy profile is a test-set equi-
librium if it is a Nash equilibrium in undominated strategies with an additional property:
each player’s strategy is also undominated when tested against a limited set of profiles.
That “test set” consists of the equilibrium strategy profile and every profile in which all
players but one play their equilibrium strategies, while a single deviator plays a different
best response to the equilibrium. Implicit in this definition is that all players believe that
a tremble by one player to some best response to equilibrium play is more likely than any
tremble to an inferior response, whether by the same player or a different one, and also
more likely than any combination of trembles by two or more players.

Test-set equilibrium may have bite when players have many alternative best responses
to equilibrium play, as is often the case in auctions. Applying the test-set refinement to
three well-known auction games, we show that it delivers results that are closely comparable
to those of the previous specialized refinements. Following the previous papers, we focus
on refining the set of pure equilibria. Although our equilibrium selections are not exact
matches in any of these auction games, the differences are small and highlight possible
limitations of the original analyses.

• Test-set equilibrium is less restrictive than the truthful equilibrium refinement pro-
posed by Bernheim and Whinston (1986) to study their menu auction, and unlike
their alternative coalition-proof equilibrium, it imposes no constraints on the prof-
itability of joint deviations. Nevertheless, test-set equilibrium still implies a central
finding of the previous analysis, namely, that the payoff vector associated with any
selected equilibrium is in the core of the related cooperative game. The test-set anal-
ysis improves on the original analysis by obtaining this core payoffs result without
assuming an explicitly cooperative solution concept and without imposing a severe
restriction on the form of the equilibrium strategies.

• Test-set equilibrium is more restrictive than the locally envy-free equilibrium proposed
by Edelman, Ostrovsky and Schwarz (2007) and the similar symmetric equilibrium
proposed by Varian (2007) for their generalized second-price auction games. In par-
ticular, test-set equilibrium implies, just as those refinements do, that losing bidders
must not bid too low. When a test-set equilibrium exists, the efficiency and revenue
predictions of the previous theories are thus affirmed. But the test-set refinement also
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requires that winning bidders must not bid too high. Depending on exogenous payoff
parameters, the combination of these restrictions may be incompatible with the exis-
tence of any pure test-set equilibrium. In such cases, this analysis suggests a possible
need to qualify the efficiency and revenue predictions of the previous analyses.

• Test-set equilibrium is less restrictive than the tremble robust equilibrium proposed
by Abraham, Athey, Babaioff and Grubb (2016) for their second-price auction game,
in which an uncertain common value is known by just one of the two bidders. The
tremble robust equilibrium is the undominated Nash equilibrium that is selected by
assuming that there is a small probability that a third bidder appears and bids ran-
domly using a full support distribution. In the unique tremble robust equilibrium,
the uninformed bidder bids the minimum possible value. That equilibrium is also
a test-set equilibrium, but there is a second test-set equilibrium, in which the unin-
formed bidder bids the maximum possible value. The second equilibrium is selected if
one assumes that there is a small probability that the informed bidder has a binding
budget constraint.

We also show that test-set equilibrium characterizes the kinds of equilibrium outcomes
that survive when each player subjects its decision to a review, of the sort that is common
for decisions with large amounts are at stake. For any general finite game with normal form
Γ = (N ,S, π) and any c > 0, we define the “high stakes version” Γ̄(c) to be the following
extensive game, in which each player moves independently, with knowledge only of its own
past moves. Player n’s first move is to propose a strategy sn ∈ Sn, that is, a pure strategy
that it might play in the game Γ. Then, it either approves or rejects the proposed strategy.
If it approves, then sn becomes part of the outcome of the high stakes version. If it rejects,
then the player’s final move is to select a replacement strategy ŝn. Rejecting and replacing
a proposed strategy incurs the cost c > 0, which is small when the stakes are high. The
outcome of a pure strategy profile for Γ̄(c) is a profile of strategies s to be played in Γ,
which leads to payoffs π(s) minus any costs for strategy replacements. For any c > 0, a
mixed strategy profile σ is a Nash equilibrium of Γ if and only if it is the outcome of a Nash
equilibrium of Γ̄(c).

Outcomes of the high stakes versions become more interesting when we refine the equi-
librium selection using a variant of the quasi-perfect equilibrium of van Damme (1984).
Relative to the original concept, our variant—quasi*-perfect equilibrium—adds a restriction
that players believe it is much less likely in any extensive form that two or more agents
tremble than that just one agent trembles. When the stakes are very high, or equivalently
when c is very small, the effect of this added restriction is that the trembles most likely to
survive the review process in a high stakes version are ones that result in profiles in the
test set. In that case, only test-set equilibria of Γ are quasi*-perfect equilibrium outcomes
of Γ̄(c). Our quasi*-perfect equilibrium also relaxes the restrictions that players must have
identical beliefs about the trembles and believe agents’ trembles are uncorrelated, which
implies that for all c > 0, every test-set equilibrium survives review. Our main theorem
states that when c is sufficiently small, σ is a quasi*-perfect equilibrium outcome of Γ̄(c) if
and only if it is a test-set equilibrium of Γ.

In section 2, we define test-set equilibrium and show that, for two-player games, any
proper equilibrium is a test-set equilibrium and any test-set equilibrium is a trembling-hand
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perfect equilibrium, affirming that the main novelty is for games with at least three players.
Section 3 applies the test-set refinement to the three auction games.

In section 4, we apply the properness and stability refinements to the auction applica-
tions. For the generalized second-price auction, we show that neither implies the locally
envy-free outcome. For the (two-player) second-price auction with common values, proper
equilibrium is no weaker than test-set equilibrium, but strategic stability is much weaker:
it does not rule out any undominated Nash equilibrium. For the menu auction game, the
two tremble-based concepts appear to be intractable.

In section 5, we introduce our theory of high stakes versions and our quasi*-perfect
solution concept. We prove that when the review cost c is small, the outcomes of quasi*-
perfect equilibria of Γ̄(c) are the same as the test-set equilibria of Γ.

Section 6 displays an example of a three-player game with a unique Nash equilibrium
that fails the test-set condition. Our analysis of the example establishes that, for some
games, Nash equilibrium implicitly requires players to hold the extreme belief that some
trembles to best responses are “infinitely” less likely than others, which test-set equilibrium
does not allow. Section 7 discusses our results and puts them into context.

2 Test-Set Equilibrium

We define the test set associated with a strategy profile σ, which we denote T (σ), to consist
of the strategy profiles that are derived from σ by replacing the strategy of any one player
with any other best response to σ. Moreover, we say that a strategy profile σ is a test-set
equilibrium if (i) it is a Nash equilibrium, (ii) no player uses a strategy that is weakly
dominated in the game, and (iii) no player uses a strategy that is weakly dominated in
T (σ).

2.1 Notation for Games in Normal Form

A game in normal form is denoted Γ = (N , S, π), where N = {1, . . . , N} is a set of players,
S = (Sn)Nn=1 is a profile of pure strategy sets, and π = (πn)Nn=1 is a profile of payoff functions.
Such a game is finite if, for all players n, Sn is a finite set.

A mixed strategy profile is denoted σ = (σ1, . . . , σN ) ∈
∏N
n=1 ∆(Sn). We embed Sn in

∆(Sn) and extend the utility functions πn to the domain
∏N
n=1 ∆(Sn) in the usual way. We

use σ−n for a typical element of
∏
m 6=n ∆(Sm), BRn(σ−n) for the set of best responses, and

σ/σ′n for the strategy profile constructed from σ by replacing player n’s strategy with σ′n.

2.2 Definition

Definition 1. Let

T (σ) =

N⋃
n=1

{σ/sn : sn ∈ BRn(σ−n)} .

A mixed strategy profile σ satisfies the test-set condition if and only if, for all n, there is no
σ̂n ∈ ∆(Sn) such that both

(i) for all σ′ ∈ T (σ), πn(σ′/σ̂n) ≥ πn(σ′/σn), and
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(ii) for some σ′ ∈ T (σ), πn(σ′/σ̂n) > πn(σ′/σn).

We refer to T (σ) as the test set associated with σ. A strategy profile σ satisfies the
test-set condition if no player n is using a strategy that is weakly dominated by some σ̂n
against all strategy profiles σ′−n for σ′ ∈ T (σ). When this is the case for player n, we say
that its strategy is “undominated in the test set.”

Definition 2. A mixed strategy profile σ is a test-set equilibrium if and only if it is a Nash
equilibrium in undominated strategies that satisfies the test-set condition.

Our first result emphasizes that the test-set condition imposes its most novel restrictions
only for games with more than two players.

Proposition 1. In any finite, two-player game, every proper equilibrium is a test-set equi-
librium, and every test-set equilibrium is a trembling-hand perfect equilibrium.

That test-set equilibrium implies trembling-hand perfect equilibrium in games with two
players follows immediately from the fact that in such games, the set of trembling-hand
equilibria coincides with the set of equilibria in undominated strategies. Proper equilibrium
implies more constraints on the relative probabilities of trembles by any one player than
does test-set equilibrium. While test-set equilibrium implies constraints on the relative
probabilities of trembles by different players that are absent in proper equilibrium, those
constraints do not change the selection in two-player games, because neither player’s best
response calculation depends on them.

Our auction examples, which we analyze over the next two sections, establish that for
games with at least three players, test-set equilibrium sometimes restricts outcomes in ways
that proper equilibrium and strategic stability do not.

3 Auction Applications

3.1 Menu Auction

Bernheim and Whinston (1986) study the first-price menu auction and propose two refine-
ments of its equilibria: truthful equilibrium and coalition-proof equilibrium. Payoffs of an
equilibrium satisfying either condition lie on the bidder-optimal frontier of the core of the
associated cooperative game.

In this section, we recapitulate the menu auction model and study properties of its test-
set equilibria. We find that every truthful equilibrium is a test-set equilibrium. Similarly,
every coalition-proof equilibrium payoff vector is a test-set equilibrium payoff vector. How-
ever, test-set equilibrium implies fewer restrictions, which expands the set of payoffs that
can be implemented to a subset of the core containing the bidder-optimal frontier.

3.1.1 Environment

There is one auctioneer, who selects a decision x from a finite set X, which affects himself
and N ≥ 2 bidders. The gross monetary payoff that bidder n receives from any decision is
described by the function vn : X → R. Similarly, the auctioneer receives a gross monetary
payoff described by v0 : X → R. We assume that the values are normalized so that for
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each bidder n, minx∈X vn(x) = 0, and that no two decisions generate exactly the same total
surplus.

Assumption 1.
∑N

n=0 vn(x) is injective.

The N bidders simultaneously submit bids, which are offers to make payments to the

auctioneer, contingent on the decision chosen. Thus, each bidder chooses a vector b ∈ R|X|+ ,
which we may also write as a function bn : X → R+. Given the bids, the auctioneer chooses
a decision that maximizes his payoff v0(x) +

∑N
n=1 bn(x). Given the bids and the decision

x, an individual bidder’s payoff is vn(x)− bn(x).
To model this as a game among the bidders, we need a tie-breaking rule for the auctioneer

in case two outcomes achieve the same maximal value. Generalizing the usual rule for the
Bertrand model, we specify that the auctioneer breaks ties in favor of the decision with the

highest total value, leading to some auctioneer decision function x : (R|X|+ )Nn=1 → X.1 The

menu auction with continuous bid spaces is then the game Γ =
[
N , (R|X|+ )Nn=1, (πn(·))Nn=1

]
,

in which πn(b) = vn(x(b))− bn(x(b)).
In the Bertrand model, continuous bid spaces can be convenient for characterizing cer-

tain pure Nash equilibria, but the continuous model also differs inconveniently from most
of its nearby discretized versions in two important ways. First, in the continuous Bertrand
model, a bidder can place a bid that renders it indifferent between winning and losing (i.e.
by bidding its value), although this is impossible in generic discretized versions. Second, in
discrete Bertrand models, there are typically pure equilibria in which a losing bidder makes
the highest bid less than its value, which is an undominated strategy. But the limit of
such equilibria in the continuous model involves a bid equal to value, which is a dominated
strategy. As an extension of the Bertrand model, the menu auction model encounters the
same problems.

To conform equilibrium and dominance analyses for the continuous menu auction model
with those of nearby discrete models, we fix the two problems by making two correspond-
ing changes. Neither change affects the truthful equilibria, so both are consistent with the
Bernheim-Whinston analysis. The first change is to assume that each bidder breaks indif-
ferences among outcomes that lead to the same net payoff but different auctioneer decisions
using the same criterion as the auctioneer, namely, in favor of the outcome involving the
decision with the highest total value. When combined with Assumption 1, this tie-breaking
assumption implies that all of a bidder’s best responses to any given pure strategy profile
lead to identical outcomes, just as they would in any generic discretized version of the menu
auction.2 The second change breaks another indifference: against any bid profile in which
at least one competing bidder is playing a strictly dominated strategy, each bidder strictly
prefers to set its bid vector equal to its value vector (and therefore receive a payoff of zero)
over any other bid vector that leads to the same auctioneer decision and the same zero
payoff. That allows us to conclude below that a bidder whose bids are equal to its values
has not chosen a dominated strategy. With these specifications, we obtain the following
near-characterization of undominated strategies:

1Our approach departs slightly from the approach of Bernheim and Whinston (1986), who instead modify
the definition of equilibrium to include the auctioneer’s tie-breaking rule. Both approaches accomplish the
same end.

2This is relevant for our analysis through its effect on the test-set condition.
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Lemma 2. A pure strategy bn in the menu auction game is undominated if

(i) bn(x) ≤ vn(x) for all x ∈ X, with strict inequality if vn(x) > 0; or

(ii) bn(x) = vn(x) for all x ∈ X.

A pure strategy bn in the menu auction game is dominated if bn(x) > vn(x) for some x ∈ X.

3.1.2 Truthful Equilibrium

Bernheim and Whinston (1986) judge many of the Nash equilibria of the menu auction
game to be implausible, and suggest that a bidder might limit its search for strategies to a
simple, focal set of strategies, in a way that suggests a refinement:

Definition 3. A pure Nash equilibrium of the menu auction b = (b1, . . . , bN ) is a truthful
equilibrium if and only if for all n ∈ N and all x ∈ X, letting x∗ = x(b),

bn(x) = max{0, bn(x∗)− vn(x∗) + vn(x)}.

In words, an equilibrium is truthful if each bidder’s bid for each losing decision expresses
its full net willingness to pay to switch to that decision instead (subject to nonnegativity
constraint on bids). In any truthful equilibrium, all bidders use strategies that are in the
class of profit-target strategies. In such a strategy, a bidder n sets a profit target π̄n and
bids bn(x) = max(0, vn(x) − π̄n). This bid achieves the target payoff of π̄n whenever that
is possible, and no other bid does that, so this is a potentially focal class of strategies for
a bidder. An additional appeal is that this class of bids always includes a best response to
any competing pure strategy profile.

Truthful equilibrium, however, is a specialized refinement. Our goal below is to show
that test-set equilibrium, which is a general refinement, can do much of the same work.

3.1.3 Test-Set Equilibrium

This section has two main results. The first affirms that test-set equilibrium is not more
restrictive than truthful equilibrium. The main step needed to prove that is the following
lemma.

Lemma 3. A pure Nash equilibrium of the menu auction b = (b1, . . . , bN ) satisfies the
test-set condition if and only if for all n ∈ N and all x ∈ X, letting x∗ = x(b),

bn(x) ≥ max{0, bn(x∗)− vn(x∗) + vn(x)}.

The right-hand side of the inequality is the truthful bid for x when the winning decision
is x∗. So, in words, the lemma says a Nash equilibrium with winning decision x∗ satisfies
the test-set condition if and only if the bids for losing decisions are at least as high as with
truthful bidding. In particular, every truthful equilibrium satisfies the test-set condition.
Combining the two lemmas yields the following result.

Theorem 4. Every truthful equilibrium of the menu auction is a test-set equilibrium.
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Proof of Theorem 4. Suppose that b is a truthful equilibrium, and let x∗ = x(b). For
all bidders n, bn(x∗) ≤ vn(x∗), or else the bidder could profitably deviate to a constant
bid of zero. For any bidder n, if bn(x∗) < vn(x∗), then for all x for which vn(x) > 0, we
have bn(x) = max{0, bn(x∗)− vn(x∗) + vn(x)} < vn(x). And for all x for which vn(x) = 0,
we have bn(x) = 0. Thus, by Lemma 2(i) , bn is undominated. On the other hand, if
bn(x∗) = vn(x∗), then for all x, bn(x) = max{0, bn(x∗)−vn(x∗)+vn(x)} = vn(x), so Lemma
2(ii) implies that bn is undominated. Furthermore, by Lemma 3, every truthful equilibrium
satisfies the test-set condition.

To see that the inequality in Lemma 3 is necessary, notice that if some bidder’s equilib-
rium bid fails this condition for some decision x, then it is dominated in the test set by an
alternative pure bid, which bids slightly higher for that decision. Indeed, this alternative
performs no worse than the original bid against any element of the test set, and it performs
strictly better in the event that another bidder also deviates by raising its bid on x by a
sufficient amount. Such a deviation by another bidder can be a best response and therefore
is included in the test set. For sufficiency, notice first that all best responses by any bidder
lead the auctioneer to pick the equilibrium decision x∗. Therefore, when play is in the test
set, a bidder can bring about a decision x 6= x∗ only by raising its bid for x, which from the
inequality can never be profitable. Hence bn is undominated in the test set.

The second main result demonstrates that test-set equilibrium, despite being weaker
than truthful equilibrium, is nevertheless strong enough to preserve some of the same re-
strictions on outcomes and payoffs. To state the result, we introduce some notation. Given
a set of bidders J ⊆ N , let J̄ = N \ J denote its complement, and let xJ denote a decision
that maximizes the payoff of the coalition consisting of J together with the auctioneer:

xJ ∈ arg max
x∈X

∑
n∈{0}∪J

vn(x).

In particular, xN is the decision that maximizes total surplus. In addition, define C to be
the set of the payoffs for the bidders that are consistent with an outcome in the core.3

C =

π ∈ RN+

∀J ⊆ N :∑
n∈J

πn ≤
N∑
n=0

vn(xN )−
∑

n∈{0}∪J̄

vn(xJ̄)

 .

The main results of Bernheim and Whinston (1986) are that both the truthful equilib-
rium payoffs and the coalition-proof equilibrium payoffs are the bidder-optimal frontier of
the core:

E =
{
π ∈ RN

∣∣ π ∈ C and @π′ ∈ C with π′ ≥ π
}
.

In contrast, the test-set equilibrium payoffs satisfy the related, but weaker, criterion of
lying in the core. The conclusion follows from Lemma 3 using an argument similar to that
in Bernheim and Whinston (1986). The intuition is as follows. Lemma 3 requires that in

3A core payoff includes the auctioneer’s payoff. It is a vector (π0, π) with π ∈ C and π0 =
∑N

n=0 vn(xN )−∑N
n=1 πn.
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any test-set equilibrium, bids for losing decisions must be sufficiently high. In particular,
if the equilibrium decision were x∗ 6= xN , then the lemma implies that the sum of bids for
xN is so high that the auctioneer would derive a higher payoff from choosing xN than x∗,
which is a contradiction. Likewise, if the inequality corresponding to some coalition J in
the definition of C were violated, then the lemma implies that the sum of bids for xJ̄ is so
high that the auctioneer would derive a higher payoff from choosing xJ̄ than x∗, which is a
similar contradiction.

Corollary 5. In all test-set equilibria of the menu auction, the auctioneer implements the
surplus-maximizing decision xN , and the bidders receive payoffs in C.

Among the Nash equilibria of the menu auction game are ones with inefficient outcomes
(x∗ 6= xN ), and possibly ones that are Pareto ranked for the bidders. Both the inefficient
equilibria and the Pareto inferior ones are sometimes called “coordination failures.” The
approach taken by Bernheim and Whinston (1986) seems to hint that eliminating either
type of coordination failure somehow hinges upon either (i) restrictions on the strategies
that can be played in equilibrium, as in truthful equilibrium, or (ii) cooperation in selecting
bids, as in coalition-proof equilibrium. The test-set analysis highlights that this is not quite
right; the individual choice criterion embodied in the test-set condition is sufficient to select
an efficient outcome with core payoffs. Test-set equilibrium delivers that conclusion by
implying that, for every bidder n and every decision x, vn(x)− bn(x) is weakly greater than
n’s equilibrium payoff.

Test-set equilibrium does still leave open the possibility for the second kind of coordi-
nation failure, in which there is some other equilibrium that all bidders prefer. Truthful
equilibrium also rules out those equilibria by requiring in its definition that if bn(x) > 0,
then vn(x)− bn(x) must equal n’s equilibrium payoff. This ensures that bidders do not bid
too high for non-equilibrium alternatives, and so they are not forced to bid very high to
make the auctioneer select xN . Likewise, coalition-proof equilibrium rules out coordination
failures because the concept itself assumes that players try to coordinate. Because test-set
equilibrium relies neither on exogenous restrictions on strategies nor on the assumption
that bidders try to coordinate, it highlights that the auction game itself promotes efficient
outcomes and payoffs in the core, but that coordinating on a core allocation that is best for
bidders requires more.4

3.2 Generalized Second-Price Auction

Edelman, Ostrovsky and Schwarz (2007) study the generalized second-price (GSP) auction,
using a Nash equilibrium refinement that they term locally envy-free equilibrium. Varian
(2007) studies the same auction and makes the same equilibrium selection, calling these
“symmetric” equilibria.

4A generalization of the Bernheim-Whinston model can be applied to study combinatorial auctions, in
which each bidder cares about, and is restricted to bidding for, only the set of goods allocated to that bidder.
Yet, the bidders may be linked by feasibility constraints on the allocation. Truthful bidding is still possible
in this generalization, and one can still show that truthful equilibrium payoffs are on the bidder-optimal
frontier of the core. For such games, however, a test-set equilibrium payoff may fail to lie in the core. This
negative finding suggests that coordination among bidders on a core outcome may be more challenging in
such an auction than in one in which bidding is not so restricted. See the online appendix for details.
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In this section, we restate the GSP auction model and study the properties of its test-set
equilibria. We find that every pure test-set equilibrium is locally envy-free, but that the
test-set condition also implies additional restrictions. Whether these additional restrictions
preclude the existence of a pure test-set equilibrium depends on the parameters of the game.

3.2.1 Environment

There are I ad positions and N bidders. The click rate of the ith position is κi > 0. The
value per click of bidder n is vn > 0. Bidder n’s payoff from being in position i is κivn
minus its payments to the auctioneer.

The N bidders simultaneously submit bids. Allowable bids are the nonnegative reals,
R+. Let b(i) denote the ith highest bid. It is convenient to define b(N+1) = 0 and κI+1 = 0.
Bidders are then sorted in order of their bids, where ties are broken uniformly at random.
After ties are broken, let, for i ≤ min{I,N}, g(i) denote the identity of the ith highest
bidder. Let G(I + 1) denote the set of all other bidders. The GSP mechanism allocates
position i to bidder g(i) at a per-click price of b(i+1), for a total payment of κib

(i+1). Members
of G(I + 1) win nothing and pay nothing.

The expected payoff to bidder n under the bid profile b = (b1, . . . , bN ) is

πn(b) = E
[
κIn(b)

(
vn − b(In(b)+1)

)]
,

where the expectation is taken over the random variable In(b), the position won by bidder
n. A GSP auction is modeled as a game Γ = [N , (R+)Nn=1, (πn(·))Nn=1].

For this analysis, we label positions and bidders so that click rates and bidder values
are in descending order, from highest to lowest.

Assumption 2. We assume the following:

(i) κ1 > · · · > κI , and

(ii) v1 > · · · > vN .

3.2.2 Locally Envy-Free Equilibrium

Edelman, Ostrovsky and Schwarz (2007) find that there are many implausible Nash equilib-
ria of their GSP game, and they justify a specialized refinement in a way that is time-honored
among economists: by making reference to factors outside of the game model.

Definition 4. A pure equilibrium of the GSP auction b = (b1, . . . , bN ) is a locally envy-free
equilibrium if for all i ∈ {2, . . . ,min{I + 1, N}},

κi

[
vg(i) − b(i+1)

]
≥ κi−1

[
vg(i) − b(i)

]
.5

5This definition is worded with some abuse of notation. First, the definition ignores the possibility of
tied bids. However, this is not an issue, as Lemma 11 shows that in any pure equilibrium, there are no ties
among the highest min{I + 1, N} bids. Second, it would be more correct to say that in the case i = I + 1,
the inequality must hold for all g(I + 1) ∈ G(I + 1).
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As partial justification for limiting equilibria in this way, Edelman, Ostrovsky and
Schwarz (2007) argue that the one-shot, complete information game of their model can
be regarded as standing in for the limit point of an underlying, frequently-repeated game of
incomplete information. In that game, one deviation that a bidder could undertake would
be to raise its bid to b, thereby increasing the price paid by the bidder one position above, in
the hopes of forcing that bidder out of its higher position. The higher bidder can sometimes
undermine that strategy by slightly undercutting the new bid b. The bid profiles that are
immune to this particular type of deviation correspond to the locally envy-free equilibria of
the one-shot, complete information game.

Edelman, Ostrovsky and Schwarz (2007) also point out that if the equilibria of the
GSP auction are refined in this way, then the auction possesses some attractive economic
properties. In all surviving equilibria, (i) the equilibrium allocation and payments together
constitute a stable assignment;6 (ii) consequently, the equilibrium outcome is Pareto efficient
and payments are competitive; and (iii) equilibrium revenue is at least as high as that
derived from the dominant-strategy equilibrium of the corresponding VCG mechanism.

3.2.3 Test-Set Equilibrium

Our alternative analysis does not rely on an appeal to an unmodeled repeated game. Our
main finding is this:

Theorem 6. Every pure test-set equilibrium of the GSP auction is a locally envy-free equi-
librium.

Our proof of Theorem 6 (in an appendix) shows the contrapositive. The thrust of the
proof relies on the following argument. If the winner g(i) of position i envies g(i−1), who is
the winner of position i− 1, then g(i)’s equilibrium bid is weakly dominated in the test set
by a slightly higher bid. The reason is that the slightly higher bid leaves g(i)’s allocation
and price unchanged against all elements of the test set except those in which bidder g(i−1)
deviates by reducing its bid to fall between g(i)’s equilibrium bid and the alternative bid.
For those test elements, bidder g(i)’s higher bid does strictly better: it causes the allocation
to reverse, so that g(i) wins the higher position at approximately its equilibrium bid. So, if
a strategy profile is not locally envy-free, then it it is not a test-set equilibrium.

3.2.4 Locally Envy-Free Equilibria that are not Test-Set Equilibria

While every pure test-set equilibrium is a locally envy-free equilibrium, the converse is not
true. As a simple illustration of this possibility, consider an example in which there are
two bidders and a single ad position. In the single-item case, the GSP auction reduces to a
second-price auction, and so it possesses a dominant strategy solution, which, by definition,
is also the unique test-set equilibrium. On the other hand, a bid profile is locally envy-free
in this example if bidder 1 wins and if bidder 2 bids at least its own value yet no more than
bidder 1’s value. This includes profiles in which both bidders play dominated strategies.

6In this setting, an assignment is stable if for every pair of positions i and j, κivg(i)−p(i) ≥ κjvg(i)−p(j),
where p(i) is the price paid by the winner of position i. This result is proven in Lemma 1 of Edelman,
Ostrovsky and Schwarz (2007).
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Another way to compare locally envy-free equilibrium and test-set equilibrium begins
by replacing the former with the following equivalent definition: a Nash equilibrium is
locally envy-free if each bidder’s bid is undominated against an alternative set of profiles
that includes the equilibrium profile and any profile in which the bidder whose bid is one
position higher deviates to a different best response. As this restatement reveals, locally
envy-free equilibrium implicitly assumes that each bidder regards trembles by higher bidders
as relatively more likely than trembles by lower bidders. In contrast, the test-set condition
treats trembles by higher bidders and by lower bidders as equally plausible: it tests each
bid against a set of profiles in which any other bidder may deviate to a different best
response. This characterization highlights that locally envy-free equilibrium differs in two
ways from test-set equilibrium. First, it does not require that the Nash equilibrium bids
are undominated in the usual sense, that is, against all possible profiles of bids. Second, the
set of deviations against which the equilibrium profile is tested is different. Both of these
differences can matter. The example in the previous paragraph shows that a locally envy-
free equilibrium can use a dominated strategy, and so can fail to be a test-set equilibrium.
The next subsection highlights the second difference. Its result implies that even when
a locally envy-free equilibrium uses undominated strategies, it can still fail the test-set
condition.

3.2.5 Potential Nonexistence of Pure Test-Set Equilibria

In a GSP game, pure test-set equilibria can fail to exist, depending on the parameters.

Proposition 7. Let I = N = 3. There exists a pure test-set equilibrium of the GSP auction
if and only if

v3

v2
≤ κ2

2 − κ1κ3

κ2
2 − κ2κ3

.

We sketch the proof, alongside an intuitive explanation. Suppose that b = (b1, b2, b3) is a
test-set equilibrium. Because pure test-set equilibria are locally envy-free, the outcome must
be an assortative matching, which requires b1 > b2 > b3. Test-set equilibrium implies two
additional restrictions. It requires that b2 must exceed some threshold blow2 , for otherwise
it is weakly dominated in the test set by b2 + ε for some small ε. Intuitively, this higher
bid is better when bidder 1 deviates downwards, and otherwise is no worse. But test-set
equilibrium also requires that b2 must lie below some threshold bhigh2 , for otherwise it is
weakly dominated in the test set by b2 − ε for some small ε. Intuitively, this lower bid
is better when bidder 3 deviates upwards, and otherwise is no worse. A pure test-set
equilibrium exists if and only if bhigh2 ≥ blow2 . The proposition restates that inequality in
terms of the exogenous parameters.

In summary, test-set equilibrium generates a partitioning of the parameter space that
was not revealed by previous analysis. In one part of the parameter space, a pure test-set
equilibrium exists, which, by Theorem 6, is locally envy-free. In such cases, our analy-
sis supports the reasonableness of the locally envy-free selection, as well as its associated
predictions about efficiency and revenue in the GSP auction. But in another part of the
parameter space, no pure test-set equilibrium exists. In such cases, it is less clear that
bidding behavior should be expected to converge at all, which would suggest a potential
need to qualify the predictions of locally envy-free equilibrium.
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3.3 Second-Price, Common Value Auction

Abraham, Athey, Babaioff and Grubb (2016) study a second-price auction game with com-
mon values and incomplete information, motivated by certain auctions for internet display
advertising. They find that there are a continuum of Nash equilibrium outcomes and suggest
narrowing the possible outcomes by selecting a single tremble robust equilibrium.

They begin their analysis with a two-bidder example. One bidder is informed, receiving
a private signal that is either low or high, and the other uninformed. The paper also treats
richer settings, but it suffices for our purposes to consider this simple example. We show
that test-set equilibrium eliminates all but two pure equilibria, one of which is the unique
tremble robust equilibrium.

3.3.1 Environment

Two bidders participate in a second-price auction. The object being auctioned has a com-
mon value of v to both bidders, which is either 0 or 1, each with equal probability. One
bidder is informed and learns the value of v. The other bidder is uninformed. Allowable
bids are the nonnegative reals, R+.

This game possesses many equilibria, yet standard refinements do little to focus the set
of predictions. Standard refinements do make a focused prediction for the informed bidder:
that it will use the dominant strategy of always bidding the value v. For the uninformed
bidder, bids outside the unit interval are weakly dominated, and standard refinements rule
those out. However, most refinements do little more to discipline the uninformed bidder’s
strategy.

Although the original definition of trembling-hand perfect equilibrium (Selten, 1975)
applies only to finite games, Simon and Stinchcombe (1995) have proposed some ways to
extend the application to games with infinite strategy sets. Abraham, Athey, Babaioff
and Grubb (2016) find that those extensions are not very restrictive in this application:
in equilibrium, the uninformed bidder can make any bid in the interval [0, 1]. Intuitively,
in this two-player game, perfection adds only the requirement that each bidder plays an
undominated strategy. In a later section, we will show that, for finite approximations of
this game, strategic stability is similarly unrestrictive.

3.3.2 Tremble Robust Equilibrium

Finding some of these these equilibria to be implausible, Abraham, Athey, Babaioff and
Grubb (2016) propose a refinement, “tremble robust equilibrium,” justifying it by reference
to the economic context of the game. Informally, an equilibrium is tremble robust if it is
the limit of equilibria of a sequence of perturbations of the game in which, with vanishingly
small probability, an additional bidder submits a randomly chosen bid.

Definition 5. A Nash equilibrium σ is tremble robust if there exists a distribution F
with continuous, strictly positive density on [0, 1], a sequence of positive numbers {εj}∞j=1

converging to zero, and a sequence of strategy profiles {σj}∞j=1 converging in distribution
to σ such that for all j:

(i) σj is a Nash equilibrium of the perturbation of the game in which with probability εj
an additional bidder arrives and submits a bid sampled from F , and
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(ii) σj does not prescribe dominated bids.

Just as for the previous examples, the proposed equilibrium refinement for this game is
specialized.

In this game, a pure strategy profile is a triple (b0, b1, bU ) giving the bids by the low-
and high-types of the informed bidder and by the uninformed bidder. Abraham, Athey,
Babaioff and Grubb (2016) show that this game has a unique tremble robust equilibrium:
(0, 1, 0). In contrast to trembling-hand perfect equilibrium, tremble robust equilibrium
requires the uninformed bidder to place a bid of 0. This leads to another observation made
by the authors: expected revenue in the unique tremble robust equilibrium of the second-
price auction (which is zero) is strictly lower than that of any equilibrium of the first-price
auction.

3.3.3 Test-Set Equilibrium

For this game, we have seen previously that there is a continuum of pure trembling-hand
perfect equilibria. Test-set equilibrium is more restrictive.

Proposition 8. There are two pure test-set equilibria of this game: (0, 1, 0) and (0, 1, 1).

Given any other undominated Nash equilibrium (0, 1, bU ) with 0 < bU < 1, the best
responses for the informed bidder have the low type make any bid in [0, bU ) and the high
type any bid in (bU , 1]. When the uninformed bidder faces this test set, it finds that any
alternative bid b̂U 6= bU in [0, 1] weakly dominates bU , thus eliminating that equilibrium.
So, the two profiles identified by the proposition are the only remaining candidates, and it
is easy to verify that they satisfy the test-set condition.7

Thus, test-set equilibrium makes a more focused set of predictions than perfect equi-
librium, isolating just two candidate pure equilibria. The equilibrium with bU = 0 is the
one that Abraham, Athey, Babaioff and Grubb (2016) had selected by introducing a per-
turbed game, with a third bidder who appears with low probability and places a bid at
random. The third bidder is irrelevant when the informed bidder’s type is high, so from
the uninformed bidder’s perspective, the perturbation is equivalent to assuming that only
the low-type informed bidder trembles. The second test-set equilibrium could similarly be
selected by a perturbation in which there is a small probability that the informed bidder’s
budget constraint forces it to bid less than 1, which is equivalent to assuming that only the
high-type trembles. In contrast to the tremble robust equilibrium, the auctioneer’s revenue
in this second test-set equilibrium is strictly higher than in the corresponding first-price
auction.

4 Alternative Refinements for the Applications

In this section, we sketch applications of proper equilibrium and strategic stability to a gen-
eralized second-price auction game and to the second-price, common value auction consid-
ered above. We limit our discussion to those two applications, because the multi-dimensional

7The conclusion of Proposition 8 also holds when the game is analyzed in agent-normal form, and the
analysis is nearly the same as well.
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bid spaces of the menu auction mechanism make it difficult to apply tremble-based concepts
like properness and stability. Since these tremble-based refinements are usually defined only
for finite games, the following analysis restricts bids to the finite set {0, 1

m , ...,
mM
m } for some

positive integers m and M .

4.1 Generalized Second-Price Auction

Consider an example of the generalized second-price auction game with three bidders and
three ad positions. The three bidders’ values per click are 3, 2 and 1, respectively. The
top position attracts 4 clicks; the second position attracts 2 clicks, and the bottom position
attracts one click. For the discretized bid set, let m be any integer multiple of 2, and take
M ≥ 2.

We begin by searching for what will turn out to be the unique Nash equilibrium of the
GSP auction in which (i) the outcome is efficient, (ii) bidder 1 is much less likely to tremble
than bidder 2 (that is, bidder 1’s total probability of trembling is much smaller than bidder
2’s probability of trembling to any particular bid), and (iii) bidder 2 is much less likely to
tremble than bidder 3. To derive the equilibrium bids for bidders 2 and 3, let us temporarily
suppose that bidder 1 bids high and that its trembles have probability 0. That results in
a second-price auction game between bidder 2 and 3, in which the higher bidder wins the
second position and the lower bidder wins the bottom position and pays 0. This game has
dominant strategies for its two players b3 = 1

2 and b2 = 1. Next, to infer the equilibrium
strategy for bidder 1, fix the bid b2 = 1 of bidder 2 and suppose that bidder 2’s trembles
have probability zero. In the induced game between bidder 1 and 3, bidder 1’s dominant
strategy is to bid b1 = 2. It is routine to verify that if the zero probabilities used for
this intuitive derivation are perturbed to create full support distributions of trembles, then
what had been dominant strategy bids become a strict equilibrium (in which each bidder is
playing its unique best response). Since proper equilibrium imposes no restrictions on the
relative probabilities of trembles by different players, b∗ = (2, 1, 1

2) is a proper equilibrium.
Moreover, the uniqueness of equilibrium with these trembles implies that any stable set
that includes an efficient equilibrium must include b∗.

Now, we show that b∗, which is both proper and part of any stable set that includes an
efficient equilibrium, is not locally envy-free. Indeed, in any locally envy-free equilibrium b,
bidder 2 prefers its equilibrium allocation, with its payoff of 2(2 − b3), to the allocation of
bidder 1, with its payoff of 4(2− b2). That requires b2 ≥ 1 + b3

2 , which does not hold in the
case of b∗. On the other hand, it can be shown that b∗ is not a test-set equilibrium even in
this discretized setting, provided that the discretization is sufficiently fine (m ≥ 6).

4.2 Second-Price, Common-Value Auction

As before, there are two bidders, one informed and one uninformed, and the value of the
object to either bidder is either 0 or 1. For the discretized bid set, let m ≥ 3, which ensures
that the discretization is sufficiently fine.

As in the continuous model, the undominated Nash equilibria in pure strategies are those
in which (i) the informed bidder plays its dominant strategy, bidding 0 when the common
value is 0 and 1 when it is 1, and (ii) the uninformed bidder bids any bU = k

m ∈ [0, 1]. Both
properness and stability imply these restrictions as well.
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Stability, however, implies no further restrictions: the unique stable set consists of all
the undominated Nash equilibria. To verify that observation, consider a perturbation of
the game according to which the uninformed bidder trembles with full support and, for
0 < k < m, the informed bidder trembles with positive positive probability only to the
following strategy: bid k+1

m when the common value is 0 and k−1
m when it is 1. When

the informed bidder does not tremble, it must play its dominant strategy, since that is its
unique best response in this perturbation. Given that, the uninformed bidder’s unique best
response in this perturbation is to bid bU = k

m . Therefore, the Nash equilibrium profile

(0, 1, km) is part of any stable set when 0 < k < m. A similar argument applies when k = 0
or m. Moreover, it is again routine to verify that the zero probabilities used in this intuitive
derivation can be replaced by very low positive probabilities and full support distributions
for the trembles of both bidders.

By arguments similar to those made in the continuous case, there are again two pure
test-set equilibria of this auction: (0, 1, 0) and (0, 1, 1).8 Since this is a two-player game,
by Proposition 1, these are the only pure strategy profiles that are candidates to be proper
equilibria. In contrast to test-set equilibrium, proper equilibrium imposes some hard-to-
analyze restrictions on the relative probabilities of trembles by the two types of the informed
bidder. We have been unable to ascertain whether both candidates are proper equilibria.
The proper equilibria of the agent-normal form, which impose no such restrictions, coincide
exactly with the test-set equilibria. See the online appendix for details.

5 Quasi*-Perfect Equilibrium and High Stakes Games

5.1 Notation for Games in Extensive Form

The solution concept developed in this section is a variant of the quasi-perfect equilibrium
of van Damme (1984). To highlight the similarities, the text in this subsection is copied
almost verbatim from that paper.

We introduce the following notation. Let N = {1, . . . , N} denote the set of players. Let
Γ̄ be a finite extensive form game with perfect recall. Let u be an information set of player
n in Γ̄. A local strategy bnu at u is a probability distribution on Cu, where Cu denotes the
set of choices at u. The probability that bnu assigns to c ∈ Cu is denoted by bnu(c) and Bnu
denotes the set of all local strategies at u.9 We view Cu as a subset of Bnu.

A behavior strategy bn of player n is a mapping that assigns to every information set of
player n a local strategy. Un denotes the set of all information sets of player n and Bn is
the set of all behavior strategies of this player. A behavior strategy bn is completely mixed
if bnu(c) > 0 for all u ∈ Un and c ∈ Cu. If bn ∈ Bn and b′nu ∈ Bnu, then bn/b

′
nu is used

to denote the behavior strategy which results from bn if bnu is changed to b′nu, whereas all
other local strategies remain unchanged.

8The argument for the discrete case is as follows. Suppose that bU ∈ { 1
m
, . . . , m−1

m
}. To show that

(0, 1, bU ) is not a test-set equilibrium, we observe the following. First, a bid of 1 weakly dominates bU in the
test set, unless bU = m−1

m
. Second, a bid of 0 weakly dominates bU in the test set, unless bU = 1

m
. Since we

assume m ≥ 3, at least one of these two cases applies.
9In sections 5.1 and 5.2 only, to conform to van Damme’s original formulation, we use c to denote a choice

at an information set. In other sections, c denotes the cost of revision in a high stakes version Γ̄(c).
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For an information set u, we write Z(u) for the set of all endpoints of the tree coming
after u and if u, v ∈ Un, then we write u ≤ v if Z(u) ⊃ Z(v). As usual, u < v stands for
u ≤ v and u 6= v (hence, u < v means v comes after u). Note that the relation ≤ partially
orders Un, since the game has perfect recall. If bn, b

′
n ∈ Bn and u ∈ Un, then we use bn/ub

′
n

to denote the behavior strategy b′′n defined by

b′′nv =

{
b′nv if v ≥ u,
bnv otherwise

Furthermore, letting B =
∏N
n=1Bn, if b ∈ B and b′n ∈ Bn, then b/ub

′
n denotes the behavior

strategy profile b/(bn/ub
′
n).

We denote player n’s expected payoff given that the behavior strategy profile b is played
by π̄n(b). We also denote player n’s expected payoff given that information set u is reached
and the behavior strategy profile b is played by π̄nu(b).

Definition 6 (van Damme, 1984). Let Γ̄ be a finite game in extensive form with perfect
recall. A behavior strategy profile b is a quasi-perfect equilibrium of Γ̄ if there exists a
sequence {bt}∞t=1 of completely mixed behavior strategy profiles, converging to b, such that
for all n, u, and t,

π̄nu(bt/ubn) = max
b′n∈Bn

π̄nu(bt/ub
′
n).

Thus, quasi-perfect equilibrium requires that at each information set, players take into
account past mistakes, as well as potential future mistakes by opponents. However, in
contrast to trembling-hand perfect equilibrium of the extensive form Γ̄, each player assumes
that it will make no mistakes at future information sets, even if it had made a mistake in
the past.

5.2 Quasi*-Perfect Equilibrium

Our proposed refinement differs from quasi-perfect equilibrium in three ways. First, it
allows players to hold differing beliefs about the trembles.10 Second, it allows players to
believe that other players’ trembles may be correlated.11 Third, it adds the restriction that,
when taking limits, the “independent components” of the trembles at each information set
all converge to zero at the same rate and that the “correlated components” of the trembles
converge to zero at a faster rate than that.12

10Other refinements that relax interpersonal consistency of beliefs include that of Weibull (1992), as well
as c-perfect equilibrium and other related refinements in Fudenberg, Kreps and Levine (1988).

11Correlated trembles have also been considered elsewhere in the literature. For example, they are the
basis of c-perfect equilibrium and other related refinements in Fudenberg, Kreps and Levine (1988). In
contrast to their approach, ours allows only a small amount of correlation, requiring the probability of
correlated trembles to converge to zero at a faster rate than the probability of any single tremble.

12Bagwell and Ramey (1991) employ a related restriction to select equilibrium in a limit-pricing game, in
which a potential entrant, who does not know the cost level of the industry, observes the prices set by two
informed duopolists. Their refinement specifies that if the entrant finds himself at an unexpected information
set that could be explained either by a deviation by a single duopolist (when costs are at one level) or by
deviations by both duopolists (when costs are at another level), then he should presume the former.
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To accommodate these adjustments, the first step is to extend the payoff functions in the
obvious way to allow correlated distributions. A correlated behavior strategy profile is a gen-
eral distribution d on

∏N
n=1

∏
u∈Un

Cu. Player n’s associated payoff, either unconditionally
or conditional on reaching an information set u, is denoted by π̄n(d) or π̄nu(d), respectively.
Additionally, if b′n is a behavior strategy for player n and if u ∈ Un, then let d/ub

′
n denote

the product of the following two distributions: first, the distribution on
∏
v∈Un:v≥uCv that

is induced by b′n; second, the marginal of d on
∏
v∈Un:v 6≥uCv ×

∏
m6=n

∏
v∈Um

Cv. This rep-
resents what n believes if it deviates at some information set u and the information sets
thereafter, expecting that its deviation will not affect any other player’s strategy. These def-
initions agree with the previous ones in the case that d is the product distribution induced
by a behavior strategy profile b.

Using this notation, we describe our proposed modification of quasi-perfect equilibrium.

Definition 7. Let Γ̄ be a finite game in extensive form with perfect recall. A behav-
ior strategy profile b is a quasi*-perfect equilibrium of Γ̄ if there exist a profile of com-
pletely mixed behavior strategy profiles, (τn)Nn=1; a profile of sequences of distributions on∏N
n=1

∏
u∈Un

Cu, ({dt,n}∞t=1)Nn=1; as well as sequences of positive real numbers {εt}∞t=1 and
{δt}∞t=1 such that

(i) limt→∞ εt = 0 and limt→∞ δt = 0,

(ii) for all m, all t, and all c ∈
∏N
n=1

∏
u∈Un

Cu,

dt,m(c) ≥ (1− εtδt)
N∏
n=1

∏
u∈Un

[(1− εt)bnu(cu) + εtτ
m
nu(cu)] ,

(iii) and for all n, all u ∈ Un, and all t,

π̄nu(dt,n/ubn) = max
b′n∈Bn

π̄nu(dt,n/ub
′
n).

For each player m, the sequence {dt,m}∞t=1 in the definition represents that player’s
beliefs about trembles. Condition (ii) restricts these beliefs in the following way. With
probability 1 − εtδt, the choices at each information set are made independently. In that
case, each player m believes that for information set u ∈ Un, play follows the equilibrium
local strategy bnu with probability 1 − εt and follows the independent tremble τmnu with
probability εt. With the remaining εtδt probability, correlated trembles may occur.

This definition incorporates the three properties we have described. First, it permits
players to possess different beliefs about trembles. Second, it permits players to believe that
trembles are correlated, but that the correlated trembles are relatively rare (happening with
total probability εtδt) compared to the chance of any single tremble (which has a probability
on the order of εt). Third, it requires that the probability of every single independent
tremble vanishes at the same rate (on the order of εt).
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5.3 High Stakes Versions

We now introduce a model in which the players, regarding their strategy choices as involving
high stakes, subject those choices to review. This might happen, for example, in an auction,
if a salesman or a consultant recommends a bid and presents it for review and approval
by a senior manager. Alternatively, the agents of any player in the model might all be the
same individual, who makes an initial decision and then “sleeps on” it before confirming or
changing it.

Given any finite game in normal form, Γ, a high stakes version of that game, Γ̄(c), is a
related extensive form game in which each of the N players selects a strategy to be played
in Γ via a three step process with perfect recall. First, each player chooses (“recommends”)
a pure strategy sn ∈ Sn. Second, the player observes (“reviews”) sn and makes a binary
choice in {Approve,Disapprove}. In the case of approval, sn is passed on to be played in Γ.
In the case of disapproval, the player chooses (“finally decides”) a pure strategy s′n ∈ Sn,
which is then played in Γ. These processes are independent: each player in this extensive
game observes only its own previous choices and not those of any other player.

Given a behavior strategy for player n in Γ̄(c), bn, the aforementioned process determines
the mixed strategy that will be played in Γ, which we denote αn(bn) ∈ ∆(Sn). We also use
βn(bn) to denote the probability with which player n’s recommendation is disapproved on
path when the player uses behavior strategy bn. Furthermore, given a behavior strategy
profile b, we use α(b) to denote the strategy profile (αn(bn))Nn=1, which we refer to as the
“outcome of b.”

To complete the description of Γ̄(c), we specify a profile of payoff functions π̄ = (π̄n)Nn=1,
as follows. Given a behavior strategy profile b, player n receives the payoff π̄n(b) =
πn(α(b)) − βn(bn)c. Thus, c is to be understood as the cost that a player incurs by re-
jecting and replacing its initial choice (or “recommendation”).

5.4 Representation Theorem

The next results connect Γ and Γ̄(c). For any review cost c, the Nash equilibrium outcomes
of Γ̄(c) are the Nash equilibria of the game Γ. We interpret this to mean that if the players
make no mistakes, then the review process does not change anything. However, for all
sufficiently small values of c, the quasi*-perfect equilibrium outcomes of Γ̄(c) are the test-
set equilibria of the original game Γ. This means that adding the possibility of mistakes in
the review process as specified by quasi*-perfect equilibrium leads to test-set equilibrium.13

Proposition 9. Let Γ be a game in normal form and c ≥ 0. A strategy profile σ is a Nash
equilibrium of Γ if and only if there exists a Nash equilibrium b of Γ̄(c) such that σ = α(b).

13Thus, this framework serves as a behavioral foundation for test-set equilibrium. In a similar spirit, other
authors have provided behavioral foundations for proper equilibrium. Myerson and Weibull (2015) consider
a model in which each player, rather than having its full strategy sets at its disposal, chooses its strategy
from a possibly restricted “consideration set” given by nature. Under certain conditions, the projections of
the Nash equilibria of these consideration set games converge to the proper equilibria of the original game.
Kleppe, Borm and Hendrickx (2017) consider a model in which each player chooses not only a single strategy
but also a list of backups to be attempted in the event that nature “blocks” its initial choice. Under certain
conditions, the projections of the Nash equilibria of these fall back games converge to a subset of the proper
equilibria of the original game.
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Theorem 10. Let Γ be a finite game in normal form. A strategy profile σ is a test-set
equilibrium of Γ if and only if there exists c̄ > 0 such that for all c ∈ (0, c̄), there exists a
quasi*-perfect equilibrium b of Γ̄(c) such that σ = α(b).

In one direction, the proof of Theorem 10 (given in an appendix) works by demonstrating
that it takes two trembles in Γ̄(c) to bring about an outcome in Γ that is outside the test
set.14 In contrast, a single tremble in the initial choice (by the “recommender agent”) can
survive if it leads to a different best response, because no player finds it worthwhile to incur
the cost of c to correct such a tremble. Multiple trembles are infinitely less likely, so only
test-set equilibria can survive the review process. That all test-set equilibria survive review
is proven by applying the supporting hyperplane theorem to construct each player’s beliefs
about the independent and correlated components of trembles.

This discussion highlights the reasons we need to modify the quasi-perfect equilibrium
concept for the analysis. First, like perfect and proper equilibrium, quasi-perfect equilibrium
does not require or imply that, when trembles become rare, single trembles must be much
more likely to combinations of trembles. It is by adding this requirement to the definition of
quasi*-perfect equilibrium that we obtain necessity of test-set equilibrium. Second, like per-
fect and proper equilibrium, quasi-perfect equilibrium entails the further restrictions that
players agree about the probabilities of trembles and regard trembles as statistically inde-
pendent. It is by removing those elements from the definition of quasi*-perfect equilibrium
that we obtain sufficiency of test-set equilibrium.

6 Test-Set Equilibrium May Not Exist

Figure 1 presents an example of a game that has no test-set equilibrium.15 (Up,Left,West)
is the unique Nash equilibrium of this game, but it is not a test-set equilibrium because
East weakly dominates West in the test set:

T (Up,Left,West) =

{
(Up,Left,West), (Down,Left,West), (Up,Center,West),

(Up,Right,West), (Up,Left,East)

}
.

The unique Nash equilibrium of this game (which is also a perfect, proper, and strategically
stable equilibrium) is (Up,Left,West). Geo’s choice of West can be optimal only if Geo
believes that a joint tremble to (Down,Right) is at least as likely as the single tremble to
Center. That requires the extreme belief that a single tremble to Center is “infinitely less
likely” than either a single tremble to Down or a single tremble to Right, even though all

14Suppose that c is sufficiently small, and b is a quasi*-perfect equilibrium of Γ̄(c) leading to the outcome
σ = α(b). The proof establishes that for each player n, the behavior strategy bn must specify: (i) playing
σn at the recommendation information set, (ii) approving best responses to σ−n at review information sets
while disapproving inferior responses, and (iii) playing best responses to σ−n at final decision information
sets. As in Proposition 9, σn must itself be a best response to σ−n. Given this, a player must tremble twice
in Γ̄(c) in order to play an inferior response to σ−n in Γ: either at the recommendation and review stages
or at the review and final decision stages.

15We thank Michael Ostrovsky, Markus Baldauf, and Bernhard von Stengel for helpful suggestions that
led us to find this example.
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Figure 1: A three player game†

[West ] Left Center Right
Up 0, 0, 0 0, 0, 0 0, 0, 0

Down 0, 0, 0 −1, 1, 0 1,−1, 0

[East ] Left Center Right
Up 0, 0, 0 0,−1, 1 0, 1, 0

Down −1, 0, 0 −1,−1, 0 1,−1,−1

†Row’s payoffs are listed first. Column’s payoffs are listed second. Geo’s payoffs are listed third.

three strategies are best responses to equilibrium play. Test-set equilibrium prohibits Geo
from holding such extreme beliefs, and therefore does not exist for this game.16

Such an extreme belief is also inconsistent with the logic of quasi*-perfect equilibrium
in the high stakes version, which specifies that the probabilities of all single trembles must
be of the same order of magnitude. In particular, for all c > 0, just a single tremble in Γ̄(c)
(by Column, at the recommendation stage) is required to bring about a single deviation
to Center in Γ. However, trembles by two different players are required in Γ̄(c) to bring
about a joint deviation to (Down,Right) in Γ. Quasi*-perfect equilibrium prevents Geo
from believing that the second possibility is as likely as the first.

7 Discussion

Despite doubts among game theorists that Nash equilibrium conditions are either necessary
or sufficient for a solution to general non-cooperative games, equilibrium analysis contin-
ues to be a standard part of both theoretical and empirical studies of competitive bidding.
There is now a huge empirical literature about auction games, with its hypotheses often
motivated by theoretical properties of Nash equilibrium. In theoretical work on auctions,
many analyses, including the ones reviewed in this paper, have not relied on Nash equilib-
rium alone. Instead, they have employed specialized equilibrium refinements that do not
apply to general finite games.

In this paper, we propose a new refinement of Nash equilibrium for general finite games
that may be particularly valuable for limiting multiplicity of equilibria in auctions and
other games with high stakes. In offering this refinement, we do not argue that equilibrium
approaches are always convincing: our proposed refinement is not a substitute for careful
thought and consideration of evidence about the economic setting. What we have shown is
that applications of the test-set refinement can mimic, illuminate, and sometimes improve
previous analyses that had relied on idiosyncratic criteria.

For games with three or more players, test-set equilibrium introduces a new restriction
on player’s beliefs that is not found in older tremble-based refinements. The restriction is

16Milgrom and Mollner (2017) introduce the related refinement of extended proper equilibrium and show
that it exists for all finite games and refines proper equilibrium. Like test-set equilibrium, it implies the
restriction that any single tremble to a strategy that is a best response to equilibrium is more likely than
one to a strategy that is an inferior response to the equilibrium, whether by the same player (as in proper
equilibrium) or by another player. Unlike test-set equilibrium, however, extended proper equilibrium does not
preclude the extreme belief that a single-player deviation to a strategy that is a best response to equilibrium
play may be infinitely less likely than another such strategy.
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that the likeliest strategy profiles are ones in which (i) at most one player deviates from
equilibrium, where (ii) that deviation is to an alternative best response to equilibrium
play. In a similar way, the related extensive-form solution concept that we introduce,
quasi*-perfect equilibrium, requires the first of these conditions, although not the second.
However, the second condition is satisfied by quasi*-perfect equilibrium outcomes of the
high stakes version of any finite game (in which players subject their initial strategy choices
to a potentially costly review process) when the stakes are sufficiently high.

We have shown that proper equilibrium and strategic stability are too weak to yield the
familiar conclusions of two well-known auction analyses, and they are too difficult to apply
to a third. In contrast, test-set equilibrium is both easy to apply and effective in all three
applications. Moreover, our derivation of test-set equilibria from quasi*-perfect equilibria of
the high stakes versions provides an account of how the sort of review processes in common
use could promote this selection when the stakes are sufficiently high.
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A Proofs

A.1 Proofs for Section 2

Proof of Proposition 1. Let Γ be a finite two-player game.

Part One: Let σ be a test-set equilibrium of Γ. Then, σ is a Nash equilibrium in undom-
inated strategies, so it is a trembling-hand perfect equilibrium (Mas-Colell, Whinston and
Green, 1995, page 259).

Part Two: Let σ = (σ1, σ2) be a proper equilibrium of Γ. However, suppose by way of
contradiction that σ is not a test-set equilibrium. Because σ is proper, it must be a Nash
equilibrium in undominated strategies. Therefore, it must be the case that the test-set
condition fails. Without loss of generality, suppose that player 1’s choice of σ1 is weakly
dominated in the test set. Then there exists σ̂1 ∈ ∆(S1) and ŝ2 ∈ BR2(σ1) such that
(i) π1(σ̂1, ŝ2) > π1(σ1, ŝ2), and (ii) for all s2 ∈ BR2(σ1), π1(σ̂1, s2) ≥ π1(σ1, s2).

Because σ is proper, there exist sequences {εt}∞t=0 and {σt}∞t=0 such that (i) each εt > 0
and limt→∞ εt = 0, (ii) each σt is an εt-proper equilibrium, and (iii) limt→∞ σ

t = σ. By
the third criterion, we have that for all s2 ∈ S2, limt→∞ π2(σt1, s2)→ π2(σ1, s2). Therefore,
there must exist some T such that for all t ≥ T and all s2 /∈ BR2(σ1), π2(σt1, s2) < π2(σt1, ŝ2).
By the second criterion, this requires that for all such t and all such s2, σt2(s2) ≤ εtσt2(ŝ2).

Now, define ∆ = π1(σ̂1, ŝ2) − π1(σ1, ŝ2) > 0. Furthermore, let ∆̄ denote the difference
between player 1’s maximum and minimum payoffs, which exists because the game is finite.
Then for all t ≥ T ,

π1(σ̂1, σ
t
2)− π1(σ1, σ

t
2) ≥ ∆σt2(ŝ2)− ∆̄ ·

∑
s2 /∈BR2(σ1)

σt2(s2)

>
(
∆− ∆̄|S2|εt

)
σt2(ŝ2),

which is positive for all sufficiently small values of εt. Thus, for sufficiently large values of
t, σ1 is not a best response to σt2. This contradicts limt→∞ σ

t
1 = σ1.

A.2 Proofs for the Menu Auction

Proof of Lemma 2.

Part One: Suppose that bn denotes a strategy satisfying the conditions of the first claim.
Without loss of generality, let n = 1. Let x̄ ∈ X be such that v1(x̄) = 0. Note that
b1(x̄) = 0. Let K > maxx v0(x) − minx v0(x) and ∆ > maxx v1(x). Consider any pure
bid b̂1 6= b1. We will establish that b̂1 does not dominate b1. Let x̂ ∈ X be such that
b̂1(x̂) 6= b1(x̂). There are two cases:

(i) First, suppose that v1(x̂) = 0. In this case, b1(x̂) = 0, so b̂1(x̂) > 0. Specify a profile
of bids for bidders m 6= 1 as follows. For all m > 2 and all x ∈ X, bm(x) = 0. For
bidder 2, define b2 as follows: b2(x̂) = ∆ +K, and for all x 6= x̂, b2(x) = 0. If bidders
m 6= 1 bid in this way, then b1 and b̂1 both lead to an auctioneer decision of x̂, but
bidder 1 makes a smaller payment and therefore receives a higher payoff under b1 than
under b̂1.

24



(ii) Second, suppose that v1(x̂) > 0. In this case, b1(x̂) < v1(x̂). If b̂1(x̂) > b1(x̂), then an
appropriate profile of bids for bidders m 6= 1 can be specified as in the first case. On
the other hand, if b̂1(x̂) < b1(x̂), then we specify a profile of bids for bidders m 6= 1
as follows. For all m > 2 and all x ∈ X, bm(x) = 0. For bidder 2, define bδ2 as follows:
bδ2(x̄) = K + ∆ + b1(x̂), bδ2(x̂) = K + ∆ + v0(x̄) − v0(x̂) + δ, and for all x /∈ {x̄, x̂},
bδ2(x) = 0. If δ < b1(x̂)− b̂1(x̂) and if bidders m 6= 1 bid in this way, then (i) b1 leads
to an auctioneer decision of x̂ and a payoff for bidder 1 of v1(x̂)−b1(x̂) > 0, but (ii) b̂1
leads to an auctioneer decision of x̄ and a payoff for bidder 1 of v1(x̄)− b̂1(x̄) ≤ 0.

As a consequence, b1 is not dominated by any pure strategy. Furthermore, these arguments
can also be extended to rule out dominance by mixed bids.

Part Two: Suppose that bn denotes a strategy satisfying the conditions of the second
claim. Without loss of generality, let n = 1. As above, let x̄ ∈ X be such that v1(x̄) = 0,
let K > maxx v0(x) − minx v0(x), and let ∆ > maxx v1(x). Specify the profile of bids for
bidders m 6= 1 as follows. For all m > 2 and all x ∈ X, bm(x) = 0. For bidder 2, define
b2(x̄) = K + ∆ and b2(x) = 0 for all x 6= x̄. Bidder 1 has no way to secure a positive payoff
against this bid profile and can secure a zero payoff only if the auctioneer decision is x̄.
Therefore bidder 1’s unique best response to this bid profile is to set b1(x) = v1(x) for all
x ∈ X.

Part Three: The third claim is easily proven by showing that if there exists an x ∈ X for
which bn(x) > vn(x), then bn is dominated by the bid vector min(bn(x), vn(x)).

Proof of Lemma 3. Let b be a Nash equilibrium of the first-price menu auction. Let
x∗ = x(b). We first argue that for all bidders n, it must be the case that b̂n ∈ BRn(b−n) if
and only if both x(b̂n, b−n) = x∗ and b̂n(x∗) = bn(x∗).

For sufficiency, first observe that since b is a Nash equilibrium, no bidder m 6= n can
be using a strictly dominated bid, and so the fact that bidder n strictly prefers setting its
bid vector equal to its value vector against certain such bid profiles is irrelevant. Next,
observe that the two conditions imply that (b̂n, b−n) leads to the same outcome as (bn, b−n).
Since b is a Nash equilibrium, bn ∈ BRn(b−n), and therefore b̂n ∈ BRn(b−n) as well. For
necessity, recall that, as observed in the text, all of bidder n’s best responses must lead to
the same decision. Furthermore, all best responses must lead to the same payments for that
decision. Since b is a Nash equilibrium, bn ∈ BRn(b−n). If also b̂n ∈ BRn(b−n), then the
two conditions must hold.

Part One (Necessity): Suppose by way of contradiction that there exists some bidder k and
some x̂ ∈ X for which bk(x̂) < bk(x

∗)− vk(x∗) + vk(x̂). We can therefore define ε > 0 to be

ε = [vk(x̂)− bk(x̂)]− [vk(x
∗)− bk(x∗)] . (1)

Choose some m 6= k and define the following bids for bidders k and m

b̂k(x) =

{
bk(x) if x 6= x̂

bk(x̂) + 2ε
3 if x = x̂

b̂m(x) =

{
bm(x) if x 6= x̂

v0(x∗)− v0(x̂) +
∑N

n=1 bn(x∗)−
∑

n6=m bn(x̂)− ε
3 if x = x̂
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We conclude this direction of the proof by establishing three claims. First, that b̂m ∈
BRm(b−m). Second, that πk(b̂k, b̂m, b−km) > πk(bk, b̂m, b−km). Third, for any n 6= k and
any b̂n ∈ BRn(b−n), that πk(b̂k, b̂n, b−kn) ≥ πk(bk, b̂n, b−kn), and in the case of equality, then
x(b̂k, b̂n, b−kn) = x(bk, b̂n, b−kn) as well. These three claims constitute a contradiction to b
having satisfied the test-set condition.

First, we show that b̂m ∈ BRm(b−m). As observed at the beginning of this proof, it
suffices to show (i) that b̂m(x∗) = bm(x∗), which since x∗ 6= x̂ follows from the definition
of b̂m, and (ii) x(b̂m, b−m) = x∗. Because x(bm, b−m) = x∗ and because b̂m agrees with
bm for all x 6= x̂, we must have x(b̂m, b−m) ∈ {x∗, x̂}. It therefore only remains to show
x(b̂m, b−m) 6= x̂. To see this, we have

v0(x̂) + b̂m(x̂) +
∑
n6=m

bn(x̂)

= v0(x̂) +

v0(x∗)− v0(x̂) +

N∑
n=1

bn(x∗)−
∑
n6=m

bn(x̂)− ε

3

+
∑
n6=m

bn(x̂)

= v0(x∗) + bm(x∗) +
∑
n6=m

bn(x∗)− ε

3

= v0(x∗) + b̂m(x∗) +
∑
n6=m

bn(x∗)− ε

3
.

Since ε > 0, this indeed establishes that x(b̂m, b−m) 6= x̂ and completes the proof of this
claim.

Second, we show that πk(b̂k, b̂m, b−km) > πk(bk, b̂m, b−km). We have just seen that
x(bk, b̂m, b−km) = x∗. Next, we establish that x(b̂k, b̂m, b−km) = x̂. Because x(bk, b̂m, b−km) =
x∗ and because b̂k agrees with bk for all x 6= x̂, we must have x(b̂k, b̂m, b−km) ∈ {x∗, x̂}. It
therefore remains to show x(b̂k, b̂m, b−km) 6= x∗. To see this, we have

v0(x̂) + b̂k(x̂) + b̂m(x̂) +
∑
n6=k,m

bn(x̂)

= v0(x̂) +

[
bk(x̂) +

2ε

3

]
+

v0(x∗)− v0(x̂) +
N∑
n=1

bn(x∗)−
∑
n 6=m

bn(x̂)− ε

3

+
∑
n6=k,m

bn(x̂)

= v0(x∗) + bk(x
∗) + bm(x∗) +

∑
n6=k,m

bn(x∗) +
ε

3

= v0(x∗) + b̂k(x
∗) + b̂m(x̂∗) +

∑
n6=k,m

bn(x∗) +
ε

3
.

Since ε > 0, this indeed establishes that x(b̂k, b̂m, b−km) 6= x∗. Armed with this, we can
compare the payoffs of bidder k under the two bid profiles:

πk(b̂k, b̂m, b−km)− πk(bk, b̂m, b−km) =
[
vk(x̂)− b̂k(x̂)

]
− [vk(x

∗)− bk(x∗)]

= [vk(x̂)− bk(x̂)]− [vk(x
∗)− bk(x∗)]−

2ε

3

=
ε

3
,
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where the final step uses the definition of ε in (1). Because ε > 0, this completes the proof
of this claim.

Third, we show that for any n 6= k and any b̂n ∈ BRn(b−n), that πk(b̂k, b̂n, b−kn) ≥
πk(bk, b̂n, b−kn), and in the case of equality, then x(b̂k, b̂n, b−kn) = x(bk, b̂n, b−kn) as well.
As observed at the beginning of this proof, if b̂n ∈ BRn(b−n), then x(bk, b̂n, b−kn) = x∗.
Because of this and because b̂k agrees with bk for all x 6= x̂, we must have x(b̂k, b̂n, b−kn) ∈
{x∗, x̂}. In the first case, x(b̂k, b̂n, b−kn) = x̂. In this case, the argument from the previous
paragraph can be used to show that πk(b̂k, b̂n, b−kn) > πk(bk, b̂n, b−kn). In the second case,
x(b̂k, b̂n, b−kn) = x∗. In this case,

πk(b̂k, b̂n, b−kn) = vk(x
∗)− b̂k(x∗) = vk(x

∗)− bk(x∗) = πk(bk, b̂n, b−kn),

and in addition, x(b̂k, b̂n, b−kn) = x∗ = x(bk, b̂n, b−kn), as required.

Part Two (Sufficiency): Suppose that b violates the test-set condition. A consequence of
that is that there exists a bidder k, a pure bid b̂k ∈ BRk(b−k), a bidder m 6= k, and a pure
bid b̂m ∈ BRm(b−m) for which πk(b̂k, b̂m, b−km) ≥ πk(bk, b̂m, b−km), with equality only if the
total surplus from x(b̂k, b̂m, b−km) exceeds that from x(bk, b̂m, b−km).

As observed at the beginning of this proof, a necessary condition for b̂m ∈ BRm(b−m)
is that x(bk, b̂m, b−km) = x∗. We also define x̂ = x(b̂k, b̂m, b−km). Rewriting the violation of
the test-set condition in these terms:

vk(x̂)− b̂k(x̂) ≥ vk(x∗)− bk(x∗), (2)

with equality only if the total surplus from x̂ exceeds that from x∗. We argue that x̂ 6= x∗.
In the case that (2) holds with equality, then the total surplus from x̂ exceeds that from x∗,
and so we automatically obtain x̂ 6= x∗. Next, as observed at the beginning of this proof, a
necessary condition for b̂k ∈ BRk(b−k) is that b̂k(x

∗) = bk(x
∗). Therefore, (2) cannot hold

with strict inequality unless x̂ 6= x∗.
In either case, we have that x(b̂k, b̂m, b−km) = x̂ 6= x∗ = x(bk, b̂m, b−km). This is only

possible if b̂k(x̂) > bk(x̂). Therefore, (2) implies

vk(x̂)− bk(x̂) > vk(x
∗)− bk(x∗),

which implies the desired inequality.

Proof of Corollary 5. Suppose that b is a test-set equilibrium. We argue first that x(b) =
xN , and second that b induces payoffs in C.17

Part One (Surplus-Maximizing Decision): Define x∗ = x(b) and suppose by way of contra-
diction that x∗ 6= xN . By Lemma 3, we have that for all bidders n,

bn(xN ) ≥ bn(x∗)− vn(x∗) + vn(xN ).

Summing over n,

N∑
n=1

bn(xN ) ≥
N∑
n=1

bn(x∗)−
N∑
n=1

vn(x∗) +
N∑
n=1

vn(xN ).

17This proof draws from the proof of Theorem 2 of Bernheim and Whinston (1986).
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Equivalently,

v0(xN ) +

N∑
n=1

bn(xN ) ≥ v0(x∗) +

N∑
n=1

bn(x∗)−
N∑
n=0

vn(x∗) +

N∑
n=0

vn(xN ). (3)

By the definition of xN , we also have

N∑
n=0

vn(xN ) >

N∑
n=0

vn(x∗), (4)

where the strictness of the inequality is by Assumption 1. Plugging (4) into (3), we obtain

v0(xN ) +
N∑
n=1

bn(xN ) > v0(x∗) +
N∑
n=1

bn(x∗),

which contradicts x(b) = x∗.

Part Two (Core Payoffs): Next, we argue that the test-set equilibrium b generates payoffs
π ∈ C. Let J ⊆ N . Because x(b) = xN ,

v0(xN ) +
N∑
n=1

bn(xN ) ≥ v0(xJ̄) +
N∑
n=1

bn(xJ̄).

Consequently,

v0(xN ) +
∑
n∈J

bn(xN ) +
∑
n∈J̄

bn(xN ) ≥ v0(xJ̄) +
∑
n∈J̄

bn(xJ̄).

Since x(b) = xN , we have from Lemma 3 that for all bidders n, bn(xJ̄) ≥ bn(xN )−vn(xN )+
vn(xJ̄). Plugging this into the above,

v0(xN ) +
∑
n∈J

bn(xN ) +
∑
n∈J̄

bn(xN ) ≥ v0(xJ̄) +
∑
n∈J̄

bn(xN )−
∑
n∈J̄

vn(xN ) +
∑
n∈J̄

vn(xJ̄).

Rearranging, we obtain∑
n∈J

bn(xN ) ≥
∑

n∈{0}∪J̄

vn(xJ̄)−
∑

n∈{0}∪J̄

vn(xN ).

Thus, the the equilibrium payoffs for coalition J are∑
n∈J

πn =
∑
n∈J

vn(xN )−
∑
n∈J

bn(xN )

≤
N∑
n=0

vn(xN )−
∑

n∈{0}∪J̄

vn(xJ̄),

as desired.
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A.3 Proofs for the GSP Auction

Lemma 11 states that in any pure Nash equilibrium, none of the highest min{I,N} bidders
will be tied with any other bidder. It will be helpful in proving Theorem 6, which is the
main result for this application.

Lemma 11. If b = (b1, . . . , bN ) is a Nash equilibrium of the GSP auction, then for all
i ∈ {1, . . . ,min{I,N − 1}}, b(i) > b(i+1).

Proof of Lemma 11. Suppose i ∈ {1, . . . ,min{I,N−1}} and K are such that b(i) = · · · =
b(i+K) = b∗ is a “maximal tie.” That is to say, suppose there are exactly K+ 1 bidders who
bid b∗. We derive a contradiction from K ≥ 1. First, note that any bidder with per-click
value v who is part of the tie earns the payoff

1

K + 1

[
κi+K

(
v − b(i+K+1)

)
+
K−1∑
k=0

κi+k(v − b∗)

]
.

By raising its bid to just above b∗, the bidder would earn the payoff

κi (v − b∗) .

If b∗ = 0, then this deviation would be a profitable one. We therefore assume henceforth
that b∗ > 0. In that case, the bidder can reduce its bid to just below b∗, which would lead
to the payoff

κi+K

(
v − b(i+K+1)

)
.

Let v′ < v′′ be the per-click values of two of the tied bidders (Assumption 2(ii) rules out
the possibility of equality). Because the bidder with value v′ does not find it profitable to
deviate to just below b∗,

1

K + 1

[
κi+K

(
v′ − b(i+K+1)

)
+

K−1∑
k=0

κi+k(v
′ − b∗)

]
≥ κi+K

(
v′ − b(i+K+1)

)
=⇒ κi+K

(
v′ − b(i+K+1)

)
+Kκi(v

′ − b∗) ≥ (K + 1)κi+K

(
v′ − b(i+K+1)

)
=⇒ κi(v

′ − b∗) ≥ κi+K
(
v′ − b(i+K+1)

)
. (5)

Because the bidder with value v′′ does not find it profitable to deviate to just above b∗,

1

K + 1

[
κi+K

(
v′′ − b(i+K+1)

)
+

K−1∑
k=0

κi+k(v
′′ − b∗)

]
≥ κi

(
v′′ − b∗

)
=⇒ κi+K

(
v′′ − b(i+K+1)

)
+Kκi(v

′′ − b∗) ≥ (K + 1)κi
(
v′′ − b∗

)
=⇒ κi+K

(
v′′ − b(i+K+1)

)
≥ κi

(
v′′ − b∗

)
. (6)

Adding together equations (5) and (6) and canceling like terms, we obtain κiv
′+κi+Kv

′′ ≥
κi+Kv

′ + κiv
′′. Equivalently,

(κi − κi+K)(v′ − v′′) ≥ 0.
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By Assumption 2(i) and the fact that K ≥ 1, we have κi > κi+K . Furthermore, we
previously supposed v′ < v′′. This is therefore a contradiction.

Proof of Theorem 6. Suppose that b is a pure Nash equilibrium that is not locally envy-
free. By Lemma 11, none of the highest min{I,N} bidders will be tied with any other
bidder. Therefore, for all i ∈ {1, . . . ,min{I,N}}, G(i) is a singleton, the unique element of
which we denote g(i). Note, however, that in the case where N > I, G(I + 1) is defined as
the N − I lowest bids, and might therefore not be a singleton.

Let i∗ be the largest index for which the locally envy-free inequality is violated, so that
for some element of G(i∗), which we henceforth denote g(i∗),

κi∗−1

(
vg(i∗) − b(i

∗)
)
> κi∗

(
vg(i∗) − b(i

∗+1)
)
. (7)

We use b∗ to denote the equilibrium bid of g(i∗). For the case in which i∗ ≤ I, b∗ = b(i
∗).

For the case in which i∗ = I + 1, b∗ ∈
[
0, b(i

∗)
]
.

With this established, the proof consists of three parts. First, we demonstrate that
bidders who bid lower than g(i∗) are sorted by their values for clicks. We then show that
b fails the test-set condition by demonstrating the existence of an ε > 0 such that b(i

∗) + ε
weakly dominates b∗ in the test set. The second part establishes this for the case in which
i∗ = I + 1. The third part establishes this for the case in which i∗ ≤ I.

Part One: Let k ∈ {1, . . . , I + 1− i∗}. Suppose that g(i∗ + k) ∈ G(i∗ + k). Because i∗ was
defined as the largest index for which the locally envy-free inequality is violated, we have

κi∗+k

(
vg(i∗+k) − b(i

∗+k+1)
)
≥ κi∗+k−1

(
vg(i∗+k) − b(i

∗+k)
)
.

Furthermore, equilibrium requires that bidder g(i∗ + k − 1) cannot profit by deviating to
just below b(i

∗+k). Thus,

κi∗+k−1

(
vg(i∗+k−1) − b(i

∗+k)
)
≥ κi∗+k

(
vg(i∗+k−1) − b(i

∗+k+1)
)
.

Manipulating these inequalities yields

(κi∗+k−1 − κi∗+k)
(
vg(i∗+k−1) − vg(i∗+k)

)
≥ 0.

By Assumption 2(i), κi∗+k−1 > κi∗+k, and so vg(i∗+k−1) ≥ vg(i∗+k). By Assumption 2(ii),
the inequality must actually be strict. Because we can make this argument for all k ∈
{1, . . . , I + 1− i∗}, we conclude that the bidders below g(i∗) are sorted by value:

vg(i∗) > vg(i∗+1) > · · · > max
g(I+1)∈G(I+1)

vg(I+1).

This observation will be useful in part three of this proof.

Part Two: Suppose that i∗ = I + 1. Define

ε =
1

2
min

{
b(I) − b(I+1), vg(i∗) − b(I+1)

}
.
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By Lemma 11, b(I) > b(I+1), which implies that the first component of the minimum is
positive. That the second component is positive follows from (7), the violation of the locally
envy-free inequality for g(i∗). (To see this, recall that we use the convention κI+1 = 0.)
Thus, ε > 0.

We now compare whether bidder g(i∗) is better off by playing b(I+1) + ε or b∗ in the
test set. By the definition of ε, b(I+1) + ε < b(I). Therefore, both bids perform the same
in the event that none of the competitors of g(i∗) deviate. We complete the analysis by
considering three classes of deviations.

(i) First, b∗ and b(I+1) + ε perform equally well against all elements of the test set in
which the deviating bidder does not deviate within the interval

[
b∗, b(I+1) + ε

]
.

(ii) Second, suppose that the deviator is g(i) for some i ≤ I and that the deviation is to
within the interval

[
b∗, b(I+1) + ε

]
(i.e. a higher bidder who deviates downward). To

begin, assume that the deviation, which we denote b̂, is to the interior of the interval.
Then the incremental payoff that g(i∗) receives from playing b(I+1) + ε instead of b∗ is

κI

(
vg(i∗) − b̂

)
≥ κI

(
vg(i∗) − b(I+1) − ε

)
> 0.

The last step in the above uses the fact that by definition, ε < vg(i∗)− b(I+1). Finally,
if the deviation is to one of the endpoints of the interval, then the tie will be broken
randomly, so the expected gains are at least half of those above, and therefore still
positive.

(iii) Third, suppose that the deviator is another member of G(I+1) and that the deviation
is to within the interval

[
b∗, b(I+1) + ε

]
(i.e. a lower bidder who deviates upward). In

these cases, b(I+1) + ε and b∗ perform equally well: both result in a payoff of zero for
g(i∗).

Moreover, notice that since b(I+1) +ε is a best response to equilibrium for bidder g(I), there
is at least one element of type (ii) in the test set. Therefore, b(I+1) + ε weakly dominates
b∗ in T (b). Consequently, b is not a test-set equilibrium.

Part Three: Suppose that i∗ ≤ I. Define

ε =
1

2
min

{
b(i
∗−1) − b∗, vg(i∗) − b∗ −

κi∗

κi∗−1

(
vg(i∗) − b(i

∗+1)
)}

.

By Lemma 11, b(i
∗−1) > b∗, which implies that the first component of the minimum is

positive. That the second component is positive follows from (7), the violation of the
locally envy-free inequality for g(i∗). Thus, ε > 0.

We now compare whether bidder g(i∗) is better off by playing b∗+ε or b∗ in the test set.
By the definition of ε, b∗ + ε < b(i

∗−1). Therefore, both bids perform the same in the event
that none of the competitors of g(i∗) deviate. We complete the analysis by considering
three classes of deviations.

(i) First, b∗ and b∗ + ε perform equally well against all elements of the test set in which
the deviating bidder does not deviate within the interval [b∗, b∗ + ε].
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(ii) Second, suppose that the deviator is g(i) for some i < i∗ and that the deviation is
to within the interval [b∗, b∗ + ε] (i.e. a higher bidder who deviates downward). To
begin, assume that the deviation, which we denote b̂, is to the interior of the interval.
Then the incremental payoff that g(i∗) receives from playing b∗ + ε instead of b∗ is

κi∗−1

(
vg(i∗) − b̂

)
− κi∗

(
vg(i∗) − b(i

∗+1)
)

> κi∗−1

(
vg(i∗) − b∗ − ε

)
− κi∗

(
vg(i∗) − b(i

∗+1)
)

> 0.

The last step in the above uses the fact that by definition, ε < vg(i∗)−b∗− κi∗
κi∗−1

(
vg(i∗) − b(i

∗+1)
)
.

Finally, if the deviation is to one of the endpoints of the interval, then the tie will
be broken randomly, so the expected gains are only half of those above, yet are still
positive.

(iii) The third remaining possibility is that the deviator is g(i) ∈ G(i) for some i > i∗ and
that the deviation is to within the interval [b∗, b∗+ε] (i.e. a lower bidder who deviates
upward). We argue that there are no elements in the test set of this form by showing
that this cannot be a best response for g(i).

Because i∗ was defined as the largest index for which the locally envy-free inequality
is violated, we have that for all k ∈ [1, i− i∗],

κi∗+k

(
vg(i∗+k) − b(i

∗+k+1)
)
≥ κi∗+k−1

(
vg(i∗+k) − b(i

∗+k)
)
.

From part one of this proof, we have that for all k ∈ [1, i− i∗], vg(i∗+k) ≥ vg(i), which
implies

κi∗+k

(
vg(i) − b(i

∗+k+1)
)
≥ κi∗+k−1

(
vg(i) − b(i

∗+k)
)
.

Summing the above equation across all k ∈ [1, i − i∗], then canceling like terms, we
obtain

κi

(
vg(i) − b(i+1)

)
≥ κi∗

(
vg(i) − b(i

∗+1)
)
,

which implies

κi

(
vg(i) − b(i+1)

)
> κi∗

(
vg(i) − b∗

)
.

This implies that the deviation is not a best response for g(i), as desired.

Moreover, notice that since b∗ + ε is a best response to equilibrium for bidder g(i∗ − 1),
there is at least one element of type (ii) in the test set. Therefore, b∗+ ε weakly dominates
b∗ in T (b). Consequently, b is not a test-set equilibrium.

Proof of Proposition 7. For ease of reference, we restate here the condition in the propo-
sition, and we denote it (?):

v3

v2
≤ κ2

2 − κ1κ3

κ2
2 − κ2κ3

. (?)
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The proof proceeds in two parts. First, we demonstrate by construction that (?) is sufficient
for the existence of a test-set equilibrium in the environment with three bidders and three
positions. Second, we also demonstrate that (?) is necessary for the existence of a test-
set equilibrium in this environment. Our strategy for the latter is to use Theorem 6 to
establish a lower bound on bidder 2’s bid in any test-set equilibrium. We then also establish
a corresponding upper bound and demonstrate that both cannot be simultaneously satisfied
if (?) is violated.

Part One (Sufficiency): We argue that if (?) holds, then the following is a test-set equilib-
rium:

b1 =

(
1− κ2

κ1

)
v1 +

κ2 − κ3

κ1
v3

b2 =

(
1− κ2

κ1

)
v2 +

κ2 − κ3

κ1
v3

b3 =

(
1− κ3

κ2

)
v3

We can see from these expressions that b1 > b2 > b3. We can also see that the best responses
to equilibrium for bidder 3 are b̂3 ∈ [0, b2), for bidder 2 are b̂2 ∈ (b3, b1), and for bidder 1
are b̂1 ∈ (b2,∞).

Using this, we now check that bidder 3 does not have an alternate bid that weakly
dominates b3 either in the test set or in the game. For brevity, we limit attention here to
pure strategy dominance. (Similar arguments also establish the absence of mixed strategy
dominance.) Suppose, by way of contradiction, that such a bid, b′3, exists. Since b′3 must
be a best response to equilibrium, b′3 ∈ [0, b2). There are two cases.

(i) First, suppose b′3 < b3. Both b′3 and b3 perform the same against all elements of the
test set, so b′3 cannot weakly dominate b3 in the test set. Moreover, b′3 cannot weakly
dominate b3 in the game because b3 outperforms b′3 when bidder 2 deviates to any
b̂2 ∈ (b′3, b3). Indeed, bidder 3’s payoff from playing b′3 against this deviation is κ3v3.
On the other hand, bidder 3’s payoff from playing b3 against this deviation is

κ2(v3 − b̂2) > κ2(v3 − b3) = κ3v3.

(ii) Second, suppose that b′3 > b3. Then we also have a contradiction, since b3 outperforms
b′3 when bidder 2 deviates to any b̂2 ∈ (b3, b

′
3), which can happen in the test set. Indeed,

bidder 3’s payoff from playing b3 against this deviation is κ3v3. On the other hand,
bidder 3’s payoff from playing b′3 against this deviation is

κ2(v3 − b̂2) < κ2(v3 − b3) = κ2v3 − κ2v3 + κ3v3 = κ3v3.

Similarly, suppose that bidder 2 has an alternate bid, b′2, that weakly dominates b2 either
in the test set or in the game. Since b′2 must be a best response to equilibrium, b′2 ∈ (b3, b1).
There are two cases.
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(i) First, suppose b′2 > b2. Then we have a contradiction, since b2 outperforms b′2 when
bidder 1 deviates to any b̂1 ∈ (b2, b

′
2), which can happen in the test set. Indeed, bidder

2’s payoff from playing b′2 against this deviation is

κ1(v2 − b̂1) < κ1(v2 − b2) = κ2v2 − κ2v3 + κ3v3.

On the other hand, bidder 2’s payoff from playing b2 against this deviation is

κ2(v2 − b3) = κ2v2 − κ2v3 + κ3v3.

(ii) Second, suppose b′2 < b2. Then we also have a contradiction, since b2 outperforms b′2
when bidder 3 deviates to any b̂3 ∈ (b′2, b2), which can happen in the test set. Indeed,
bidder 2’s payoff from playing b′2 against this deviation is κ3v2. On the other hand,
bidder 2’s payoff from playing b2 against this deviation is

κ2(v2 − b̂3) > κ2(v2 − b2)

=
κ2

2

κ1
v2 −

κ2
2 − κ2κ3

κ1
v3

≥ κ2
2

κ1
v2 −

κ2
2 − κ2κ3

κ1
· κ

2
2 − κ1κ3

κ2
2 − κ2κ3

v2

= κ3v2,

where (?) is used in the penultimate step of the above.

Lastly, suppose that bidder 1 has an alternate bid, b′1, that weakly dominates b1 in the
test set. Since b′1 must be a best response to equilibrium, b′1 ∈ (b2,∞). There are two cases.

(i) First, suppose b′1 > b1. Both b′1 and b1 perform the same against all elements of the
test set, so b′1 cannot weakly dominate b1 in the test set. Moreover, b′1 cannot weakly
dominate b1 in the game because b1 outperforms b′1 when bidder 2 deviates to any
b̂2 ∈ (b1, b

′
1). Indeed, bidder 1’s payoff from playing b′1 against this deviation is

κ1(v1 − b̂2) < κ1(v1 − b1) = κ2v1 − κ2v3 + κ3v3.

On the other hand, bidder 1’s payoff from playing b1 against this deviation is

κ2(v1 − b3) = κ2v1 − κ2v3 + κ3v3.

(ii) Second, suppose that b′1 < b1. Then we also have a contradiction, since b1 outperforms
b′1 when bidder 2 deviates to any b̂2 = (b′1, b1), which can happen in the test set.
Indeed, bidder 1’s payoff from playing b′1 against this deviation is

κ2(v1 − b3) = κ2v1 − κ2v3 + κ3v3.

On the other hand, bidder 1’s payoff from playing b1 against this deviation is

κ1(v1 − b̂2) > κ1(v1 − b1)

= κ2v1 − κ2v3 + κ3v3.
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We conclude that (b1, b2, b3) is, indeed, a test-set equilibrium.

Part Two (Necessity): Suppose that b = (b1, b2, b3) is a pure test-set equilibrium. By The-
orem 6, the equilibrium is locally envy-free. Locally envy-free equilibria feature assortative
matching, so b1 > b2 > b3. Furthermore, since b is locally envy-free, bidder 3 must not envy
bidder 2. That is, we must have κ2(v3 − b3) ≤ κ3v3. Equivalently,

b3 ≥
(

1− κ3

κ2

)
v3. (8)

Similarly, bidder 2 must not envy bidder 1. That is, we must have κ1(v2−b2) ≤ κ2(v2−b3).
Equivalently,

b2 ≥ v2 −
κ2

κ1
(v2 − b3). (9)

Substituting (8) into (9), we obtain

b2 ≥ v2 −
κ2

κ1
(v2 − v3)− κ3

κ1
v3. (10)

Equation (10) is the desired lower bound on b2. We next establish the following upper
bound on b2:

b2 ≤
(

1− κ3

κ2

)
v2. (11)

To see that this must be the case, assume by way of contradiction that b2 >
(

1− κ3
κ2

)
v2.

Then define

ε =
1

2
min

{
b2 −

(
1− κ3

κ2

)
v2, b2 − b3,

(
1− κ2

κ1

)
(v1 − v2)

}
.

By assumption, the first component of the minimum is positive. We also know that b2 > b3,
so the second component of the minimum is positive. That the third component is positive
follows from Assumption 2. Thus, ε > 0.

We then compare the performance of b2 − ε to that of b2 in the test set T (b). By the
definition of ε, b2− ε > b3. Therefore, both bids perform the same in the event that none of
the competitors of bidder 2 deviate. We complete the analysis by considering three classes
of deviations.

(i) First, b2 and b2 − ε perform equally well against all elements of the test set in which
the deviating bidder does not deviate within the interval [b2 − ε, b2].

(ii) Second, suppose that the deviator is bidder 1 and that the deviation is to within the
interval [b2−ε, b2]. For this to be an element of the test set, it must be a best response
to equilibrium for bidder 1. This requires κ1(v1 − b2) = κ2(v1 − b3). To begin, we
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assume that the deviation, which we denote b̂1, is to the interior of the interval. Then
the incremental payoff that bidder 2 receives from playing b2 − ε instead of b2 is

κ2(v2 − b3)− κ1(v2 − b̂1) > κ2(v2 − b3)− κ1(v2 − b2 + ε)

= κ2(v2 − b3)− κ1(v2 − b2 + ε)− κ2(v1 − b3) + κ1(v1 − b2)

= (κ1 − κ2)(v1 − v2)− κ1ε

> 0.

The last step in the above uses the fact that by definition, ε <
(

1− κ2
κ1

)
(v1 − v2).

Finally, if the deviation is to one of the endpoints of the interval, then the tie will
be broken randomly, so the expected gains are only half of those above, yet are still
positive.

(iii) The third remaining possibility is that the deviator is bidder 3 and that the deviation
is to within the interval [b2− ε, b2]. To begin, we assume that the deviation, which we
denote b̂3, is to the interior of the interval. Then the incremental payoff that bidder
2 receives from playing b2 − ε instead of b2 is

κ3v2 − κ2(v2 − b̂3) > κ3v2 − κ2(v2 − b2 + ε) > 0.

The last step in the above uses the fact that by definition, ε < b2 −
(

1− κ3
κ2

)
v2.

Finally, if the deviation is to one of the endpoints of the interval, then the tie will
be broken randomly, so the expected gains are only half of those above, yet are still
positive.

Moreover, notice that since b2 − ε is a best response to equilibrium for bidder 3, there is at
least one element of type (iii) in the test set. Therefore, b2 − ε weakly dominates b2 in the
test set. This is the desired contradiction, which establishes the necessity of (11).

Thus we must have both (11), an upper bound on b2, and (10), a lower bound on b2. In
order for both to be simultaneously satisfied we must have that, as claimed,

v3

v2
≤ κ2

2 − κ1κ3

κ2
2 − κ2κ3

.

A.4 Proofs for the Second-Price, Common Value Auction

Proof of Proposition 8. We first argue that the stated strategy profiles are in undomi-
nated strategies and satisfy the test-set condition. We then complete the proof by arguing
that all other pure strategy profiles in undominated strategies fail the test-set condition.

Part One: In both purported test-set equilibria, the strategy of the informed bidder is to
bid the value of the object. This is a dominant strategy for the informed bidder, which is
therefore both undominated in the test set and undominated in the game. Thus, it suffices
to consider the uninformed bidder in what follows.

Consider the equilibrium (0, 1, 0). Let b̂U 6= 0 be an alternative pure bid. For all
δ ∈ (0, b̂U ), the bid profile (δ, 1, 0) is in the test set T (0, 1, 0). Moreover, πU (δ, 1, b̂U ) <
πU (δ, 1, 0). As a consequence, no pure bid dominates a bid of 0 either in the game or in the
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test set for the uninformed bidder. Furthermore, the argument can be extended to derive
a similar conclusion for mixed bids: if σU 6= 0 is an alternative mixed bid, then for all
sufficiently small values of δ, (δ, 1, 0) ∈ T (0, 1, 0) and πU (δ, 1, σU ) < πU (δ, 1, 0), so that no
mixed bid dominates a bid of 0 either in the game or in the test set for the uninformed
bidder.

Consider the equilibrium (0, 1, 1). Let b̂U 6= 1 be an alternative pure bid. For all δ ∈
(0, |1− b̂U |), the bid profiles (0, 1−δ, 1) and (0, 1+δ, 1) are both in the the test set T (0, 1, 1).
Moreover, one of the following two conditions holds: (i) πU (0, 1 − δ, b̂U ) < πU (0, 1 − δ, 1),
while πU (0, 1 + δ, b̂U ) = πU (0, 1 + δ, 1), or (ii) πU (0, 1 + δ, b̂U ) < πU (0, 1 + δ, 1), while
πU (0, 1− δ, b̂U ) = πU (0, 1− δ, 1). As a consequence, no pure dominates a bid of 1 either in
the game or in the test set for the uninformed bidder. Furthermore, the argument can be
extended to derive a similar conclusion for mixed bids: if σU 6= 1 is an alternative mixed bid,
then for all sufficiently small values of δ, {(0, 1−δ, 1), (0, 1+δ, 1)} ⊂ T (0, 1, 1) and at least one
of the following holds: πU (0, 1− δ, σU ) < πU (0, 1− δ, 1) or πU (0, 1 + δ, σU ) < πU (0, 1 + δ, 1),
so that no mixed bid dominates a bid of 1 either in the game or in the test set for the
uninformed bidder.

Part Two: Test-set equilibrium requires players to play undominated strategies. Thus, in
any test-set equilibrium, the informed bidder must play its dominant strategy of bidding
the value of the object. In addition, all bids bU /∈ [0, 1] are dominated for the uninformed
bidder. It therefore remains to show that for any bU ∈ (0, 1), the bid profile (0, 1, bU ) is not
a test-set equilibrium.

The informed bidder’s best responses to the uninformed bidder’s bid of bU are {(b̂0, b̂1) | b̂0 ∈
[0, bU ), b̂1 ∈ (bU ,∞)}. The uninformed bidder’s best responses to the informed bidder’s
strategy of bidding the value of the object are b̂U ∈ [0,∞). Therefore, the test set is

T (0, 1, bU ) = {(b̂0, b̂1, bU ) | b̂0 ∈ [0, bU ), b̂1 ∈ (bU ,∞)} ∪ {(0, 1, b̂U ) | b̂U ∈ [0,∞)}.

For the uninformed bidder, the alternative bid b̂U = 0 weakly dominates bU in the test
set.18 In particular, the bid of zero does strictly better than bU against a strategy for the
informed bidder of (bU/2, 1), and it never does worse in the test set.

A.5 Proofs for Section 5

Proof of Proposition 9. Let Γ be a game in normal form, and fix any c ≥ 0.

Sufficiency: Suppose σ is not a Nash equilibrium of Γ. There then exists a player n and a
strategy s′n ∈ Sn such that πn(s′n, σ−n) > πn(σn, σ−n). Let b be a behavior strategy profile
of Γ̄(c) such that σ = α(b). Then player n’s payoff in Γ̄(c) from playing bn when all other
players play according to b is at most πn(σn, σ−n). On the other hand, define an alternative
behavior strategy for player n, which we denote b′n, as follows: (i) play according to s′n
at the recommendation information set, (ii) approve at each review information set, and
(iii) play arbitrarily at each final decision information set. Player n’s payoff in Γ̄(c) from
playing b′n when all other players play according to b is πn(s′n, σ−n). Therefore, b′n is a
profitable deviation for player n, and b is not a Nash equilibrium of Γ̄(c).

18In fact, any b̂U 6= bU in the unit interval weakly dominates bU in the test set.
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Necessity: Suppose σ is a Nash equilibrium of Γ. For each player n, define a behavior
strategy for Γ̄(c), which we denote bn, as follows: (i) play according to σn at the recommen-
dation information set, (ii) approve at each review information set, and (iii) play arbitrarily
at each final decision information set. Let b = (b1, . . . , bN ). Player n’s payoff in Γ̄(c) from
playing a behavior strategy b′n when all other players play according to b is

π̄n(b′n, b−n) = πn(αn(b′n), α−n(b−n))− βn(b′n)c = πn(αn(b′n), σ−n)− βn(b′n)c.

This payoff is maximized when αn(b′n) ∈ BRn(σ−n) and βn(b′n) = 0. Since this is indeed
the case when b′n = bn, player n does not possess a profitable deviation, and b is a Nash
equilibrium of Γ̄(c).

Proof of Theorem 10 (Sufficiency). Suppose that Γ is a finite game in normal form.
Suppose σ is such that there exists a c̄ > 0 such that for all c ∈ (0, c̄), there exists a quasi*-
perfect equilibrium of Γ̄(c), b, such that σ = α(b). If, for all players n, BRn(σ−n) = Sn,
then let ∆ be any positive number. Otherwise, define ∆ > 0 as the minimum difference
between the payoffs in Γ from best and inferior responses to σ:

∆ = min
n∈N :BRn(σ−n)6=Sn

(
max
sn∈Sn

πn(sn, σ−n)− max
sn∈Sn\BRn(σ−n)

πn(sn, σ−n)

)
.

Fix some positive c < min{c̄,∆}. Let b be a quasi*-perfect equilibrium of Γ̄(c) such that
σ = α(b). Let (τn)Nn=1, ({dt,n}∞t=1)Nn=1, {εt}∞t=1, and {δt}∞t=1 be as in Definition 7.

We prove that σ is a test-set equilibrium through a series of claims. Claim 1 establishes
that σ is a Nash equilibrium in undominated strategies. Claim 6 establishes that σ satisfies
the test-set condition. Claims 2–5 are intermediate results used in the proof of Claim 6.
Specifically, Claim 2 establishes that if an information set of a particular player is reached
sufficiently frequently, then the reaching of that information set conveys no information,
asymptotically, about the behavior of the other players. Claim 3 establishes that approval
must occur at review information sets following recommendations that are best responses to
σ, and conversely, disapproval at review information sets following recommendations that
are inferior responses to σ. Claims 4 and 5 establish that local strategies at certain final
decision information sets, interpreted as strategies in Γ, must be best responses to σ.

Claim 1: Given any player m, let v ∈ Um be the recommendation information set in Γ̄(c)
of that player. Interpreted as a strategy in Γ, the local strategy bmv is equivalent to σm.19

Moreover, σm is undominated in Γ and σm ∈ BRm(σ−m).

Proof: We abuse notation to let α−m map a (potentially non-product) distribution on∏
n6=m

∏
u∈Un

Cu into the induced distribution on S−n. Let πm(σm, α−m(dt,m)) denote the
payoff received in Γ by player m when the distribution of play is determined by the product
of σm and α−m(dt,m).

We have π̄mv(d
t,m/vb

′
m) = πm(αm(b′m), α−m(dt,m)) − βm(b′m)c. The fact that bm ∈

arg maxb′m∈Bm
π̄mv(d

t,m/vb
′
m) for all t implies (i) βm(bm) = 0, and (ii) αm(bm) ∈ BRm(α−m(dt,m))

for all t. By (i), player m’s recommendation is never rejected on path, and so σm = αm(bm)
is equivalent to bmv when the latter is interpreted as a strategy in Γ.

19The local strategy bmv can be interpreted as a mixed strategy in Γ for player m because the available
choices at player m’s recommendation information set v are exactly the pure strategies Sm.
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Moreover, by (ii), σm = αm(bm) ∈ BRm(α−m(dt,m)) for all t. For all t, dt,m is completely
mixed, and therefore α−m(dt,m) is a full support distribution on S−m. This immediately
implies that σm is undominated in Γ. Furthermore, since dt,m converges to the distribu-
tion induced by the behavior strategy profile b, we have that α−m(dt,m) converges to the
distribution induced by σ−m. Taking limits, we conclude σm ∈ BRm(σ−m).

Claim 2: Given any player m and any information set v ∈ Um in Γ̄(c), let dt,m|v denote the
conditional distribution of dt,m given that v is reached. If the unconditional probability of
v being reached under dt,m is Ω(εt), then α−m(dt,m|v) converges to the distribution induced
by σ−m.20

Proof: The probability under dt,m that there is a correlated tremble and v is reached is
O(εtδt). By assumption, the probability under dt,m that v is reached is Ω(εt). Consequently,
the probability under dt,m that there is no correlated tremble and v is reached is also Ω(εt).
By Bayes’ Rule, dt,m|v therefore converges to the conditional distribution of dt,m given that
v is reached and there is no correlated tremble. The marginal of that conditional distribution
on
∏
n6=m

∏
u∈Un

Cu is the distribution induced by b−m. Thus, α−m(dt,m|v) converges to
the distribution induced by α−m(b−m) = σ−m.

Claim 3: Given any player m and any s′m ∈ Sm, let v ∈ Um denote the review information
set in Γ̄(c) that follows a recommendation of s′m. If s′m ∈ BRm(σ−m), then the local strategy
bmv specifies approval with probability one. If s′m /∈ BRm(σ−m), then the local strategy bmv
specifies disapproval with probability one.

Proof: If bm specifies recommending s′m with positive probability, then information set v
is reached with probability Θ(1) under dt,m; otherwise v is reached with probability Θ(εt).
Let dt,m|v denote the conditional distribution of dt,m given that v is reached. By Claim
2, α−m(dt,m|v) converges to the distribution induced by σ−m. Suppose b′m is a behavior
strategy that specifies approval with probability p at information set v and specifies deciding
according to σ′′m at the final decision information set following v. Then π̄mv(d

t,m/vb
′
m)

converges to pπm(s′m, σ−m) + (1 − p) [πm(σ′′m, σ−m)− c]. We use this general form in the
payoff calculations below.

First, suppose s′m ∈ BRm(σ−m). Let b′m be a behavior strategy that specifies approval
with probability 1 at information set v. Let b′′m be a behavior strategy that specifies approval
with probability p < 1 at information set v and specifies deciding according to some σ′′m at
the final decision information set following v. Then

lim
t→∞

π̄mv(d
t,m/vb

′
m)− π̄mv(dt,m/vb′′m)

= (1− p)
[
πm(s′m, σ−m)− πm(σ′′m, σ−m) + c

]
≥ (1− p)c > 0,

which implies that π̄mv(d
t,m/vb

′
m) > π̄mv(d

t,m/vb
′′
m) for sufficiently large values of t. Since

bm ∈ arg maxb′m∈Bm
π̄mv(d

t,m/vb
′
m) for all t, this implies that bmv must specify approval

with probability one if s′m ∈ BRm(σ−m).
Second, suppose s′m /∈ BRm(σ−m). Let b′m be a behavior strategy that specifies approval

with probability 0 at information set v and specifies deciding according to some σ′m ∈
20A sequence {xt}∞t=1 is Ω(εt) if (∃k > 0)(∃T )(∀t > T )|xt| ≥ kεt. Similarly, a sequence {xt}∞t=1 is O(εt) if

(∃k > 0)(∃T )(∀t > T )|xt| ≤ kεt. In addition a sequence {xt}∞t=1 is Θ(εt) if it is both Ω(εt) and O(εt).
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BRm(σ−m) at the final decision information set following v. Let b′′m be a behavior strategy
that specifies approval with probability p > 0 at information set v and specifies deciding
according to some σ′′m at the final decision information set following v. Then

lim
t→∞

π̄mv(d
t,m/vb

′
m)− π̄mv(dt,m/vb′′m)

= πm(σ′m, σ−m)− pπm(s′m, σ−m)− (1− p)πm(σ′′m, σ−m)− pc ≥ p∆− pc > 0,

which implies that π̄mv(d
t,m/vb

′
m) > π̄mv(d

t,m/vb
′′
m) for sufficiently large values of t. Since

bm ∈ arg maxb′m∈Bm
π̄mv(d

t,m/vb
′
m) for all t, this implies that bmv must specify disapproval

with probability one if s′m /∈ BRm(σ−m).

Claim 4: Given any player m and any s′m /∈ BRm(σ−m), let v ∈ Um be the final decision
information set in Γ̄(c) following the disapproval of a recommendation of s′m. Interpreted
as a strategy in Γ, bmv ∈ BRm(σ−m).

Proof: By Claim 1, reaching information set v requires a tremble at the recommendation
information set of player m. However, by Claim 3, reaching information set v does not
require a tremble at the following review information set. Consequently, information set v
is reached with probability Θ(εt) under dt,m. Let dt,m|v denote the conditional distribution
of dt,m given that v is reached. By Claim 2, α−m(dt,m|v) converges to the distribution
induced by σ−m. Then, interpreting bmv as a strategy in Γ, π̄mv(d

t,m/vb
′
m) converges to

πm(bmv, σ−m) − c. We must have bm ∈ arg maxb′m∈Bm
π̄mv(d

t,m/vb
′
m). Taking limits, this

requires bmv ∈ BRm(σ−m).

Claim 5: Given any player m and any s′m ∈ Sm that is recommended under bm with positive
probability, let v ∈ Um denote the final decision information set in Γ̄(c) following the
disapproval of a recommendation of s′m. Interpreted as a strategy in Γ, bmv ∈ BRm(σ−m).

Proof: By assumption, reaching information set v does not require a tremble at the recom-
mendation information set of player m, which by Claim 1 implies that s′m ∈ BRm(σ−m).
However, by Claim 3, reaching information set v therefore requires a tremble at the following
review information set. Consequently, information set v is reached with probability Θ(εt)
under dt,m. Let dt,m|v denote the conditional distribution of dt,m given that v is reached.
By Claim 2, α−m(dt,m|v) converges to the distribution induced by σ−m. As in the proof of
Claim 4, this requires bmv ∈ BRm(σ−m).

Claim 6: For any player m, σm is undominated in T (σ).

Proof: Letting L =
∑N

n=1 |Un|, the following statements are true of the distribution of play
in Γ̄(c) under dt,m. First, the probability of no tremble occurring is (1 − εtδt)(1 − εt)L, in
which case play is distributed according to b. Second, for any player n, any information set
u ∈ Un, and any cu ∈ Cu, the probability of a “single independent tremble” to cu is (1 −
εtδt)εt(1−εt)L−1τmnu(cu), in which case play is distributed according to b/cu. Third, the total
probability of “joint independent trembles” is (1− εtδt)

[
1− (1− εt)L − Lεt(1− εt)L−1

]
, in

which cases τm dictates the play at two or more information sets while play at the other
information sets is distributed according to b. Fourth, the probability of a “correlated
tremble” is εtδt, in which case play may be distributed arbitrarily.

We next argue that every “single independent tremble” leads to play in the test set.
That is, for any player n, any information set u ∈ Un, and any cu ∈ Cu, the strat-
egy profile α−m(b/cu) is a convex combination of strategy profiles in the set Tm(σ) =
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∪n6=m {(sn, σ−mn) : sn ∈ BRn(σ−n)}. First, suppose n = m. Then the tremble is irrelevant,
so that α−m(b/cu) = σ−m. Second, suppose u is the recommendation information set of a
player n 6= m and cu specifies recommending some sn ∈ BRn(σ−n). By Claim 3, bn specifies
approving it with probability one. Hence, α−m(b/cu) = (sn, σ−nm). Third, suppose u is the
recommendation information set of a player n 6= m and cu specifies recommending some
sn /∈ BRn(σ−n). By Claim 3, bn specifies disapproving it with probability one, and by Claim
4, bn specifies deciding according to some σ′n ∈ BRn(σ−n) at the subsequent information
set. Hence, α−m(b/cu) = (σ′n, σ−nm). Fourth, suppose u is some review information set of
a player n 6= m that follows a recommendation that is not made with positive probability
under bn. Then the tremble is irrelevant, so α−m(b/cu) = σ−m. Fifth, suppose u is some
review information set of a player n 6= m that follows a recommendation that is made with
positive probability under bn, and cu specifies approving the recommendation. By Claim
1, α−m(b/cu) = σ−m. Sixth, suppose u is some review information set of a player n 6= m
that follows a recommendation that is made with positive probability under bn, and cu
specifies disapproving the recommendation. By Claim 5, bn specifies deciding according to
some σ′n ∈ BRn(σ−n) at the subsequent final decision information set. The induced play
for player n is then some σ′′n whose support is a subset of supp(σn) ∪ supp(σ′n). Thus,
σ′′n ∈ BRn(σ−n), and α−m(b/cu) = (σ′′n, σ−nm). Seventh, suppose u is some final decision
information set of a player n 6= m. This means that there are no trembles elsewhere in the
game tree. By Claims 1 and 3, the final decision information set will then remain unreached,
so the tremble is irrelevant and α−m(b/cu) = σ−m.

Suppose there exists some strategy σ̂m ∈ ∆(Sm) that weakly dominates σm in the
test set. We will derive a contradiction in the following way. When the distribution of
play in Γ̄(c) is governed by dt,m, but no trembles occur, then the induced play in Γ is
distributed according to σ−m, against which σ̂m and σm perform equally well. When a
“single independent tremble” occurs, then, as argued above, the induced play in Γ lies in
the test set, where σ̂m performs weakly better than σm and sometimes strictly so. When
a “joint independent tremble” or a “correlated tremble” occurs, the induced play in Γ may
lie outside the test set, and σ̂m may perform strictly worse, but only by an amount that
is bounded. Aggregating across these possibilities, we will see σ̂m performs strictly better
overall as t→∞.

Since σ̂m ∈ ∆(Sm) weakly dominates σm in the test set, there exists some σ̂−m ∈ Tm(σ)
such that πm(σ̂m, σ̂−m) > πm(σm, σ̂−m). Further, there then exists a player n 6= m such
that σ̂−m takes the form (ŝn, σ−nm) for some ŝn ∈ BRn(σ−n). Let u be the recommen-
dation information set of player n, and let ĉu specify recommending ŝn ∈ BRn(σ−n). By
Claim 3, bn specifies approval with probability one at the review information set following
a recommendation of ŝn. Hence, α−m(b/ĉu) = σ̂−m. In addition, define ∆̄ as the maximum
difference between the payoffs in Γ from best and worst responses to any strategy profile:

∆̄ = max
n∈N

max
s−n∈S−n

(
max
sn∈Sn

πn(sn, s−n)− min
sn∈Sn

πn(sn, s−n)

)
.

Combining all of the above, the difference in player m’s expected payoff from σ̂m and from
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σm in Γ when the play of other players is distributed according to α−m(dt,m) is

πm(σ̂m, α−m(dt,m))− πm(σm, α−m(dt,m))

≥ [πm(σ̂m, σ̂−m)− πm(σm, σ̂−m)] (1− εtδt)εt(1− εt)L−1τmnu(ĉu)

− ∆̄
(
εtδt + (1− εtδt)

[
1− (1− εt)L − L(1− εtδt)L(1− εt)L−1εt

])
.

The first term is positive and on the order of εt. The second term is negative, but only on
the order of ε2

t + εtδt. Thus, this difference is positive for sufficiently large values of t. This
creates the desired contradiction because, as established in the proof of Claim 1, we must
have σm ∈ BRm(α−m(dt,m)) for all t.

Proof of Theorem 10 (Necessity). Let σ be a Nash equilibrium of Γ in undominated
strategies that satisfies the test-set condition. Define the behavior strategy profile b as
follows: (i) for any player n, if u ∈ Un is the recommendation information set of that player,
then let bnu be equivalent to σn; (ii) for any player n, if u ∈ Un is a review information set of
that player that follows a recommendation to play some s′n ∈ BRn(σ−n), then let bnu specify
approval; (iii) for any player n, if u ∈ Un is a review information set of that player that
follows a recommendation to play some s′n /∈ BRn(σ−n), then let bnu specify disapproval;
(iv) for any player n, if u ∈ Un is a final decision information set of that player, then let bnu
be equivalent to σn. Because σ is a Nash equilibrium, for every player n, only best responses
to σ−n are recommended with positive probability. Consequently, disapproval never occurs
on path, and hence α(b) = σ.

If, for all players n, BRn(σ−n) = Sn, then let ∆ be any positive number. Otherwise,
define ∆ > 0 as the minimum difference between the payoffs in Γ from best and inferior
responses to σ:

∆ = min
n∈N :BRn(σ−n)6=Sn

(
max
sn∈Sn

πn(sn, σ−n)− max
sn∈Sn\BRn(σ−n)

πn(sn, σ−n)

)
.

Fix any positive c < ∆. To complete the proof of sufficiency—with ∆ playing the role of c̄—
we argue through a series of claims that b, as defined above, is a quasi*-perfect equilibrium
of Γ̄(c).

Claim 1: For any player m, there exists a full support probability distribution on S−m,
which we denote gm, such that σm ∈ BRm(gm).

Proof: The proof is standard. Let L =
∑

n6=m |Sn|. Let (s1
−m, . . . , s

L
−m) be an enumeration

of the elements of S−m. For each σm ∈ ∆(Sm), define

xm(σm) =
(
πm(σm, s

1
−m), . . . , πm(σm, s

L
−m)

)
,

and define the set
Xm = Conv ({xm(sm) : sm ∈ Sm}) .

Then Xm is closed, convex, and determined by a finite set. Because σm is not weakly
dominated in Γ, the result of Arrow, Barankin and Blackwell (1953) implies the existence
of a supporting hyperplane to the set Xm through the point xm(σm) whose normal has
positive components. Dividing the components by their sum yields a normal vector whose
components sum to one. The normalized components constitute the desired probability
distribution gm, which has full support on S−m.
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Claim 2: For any player m, define Tm(σ) = ∪n 6=m {(sn, σ−mn) : sn ∈ BRn(σ−n)}. There
exists a full support probability distribution on Tm(σ), which we denote fm, such that
σm ∈ BRm(fm).

Proof: The proof is similar to that of Claim 1. In this case, let L = |Tm(σ)|, and let
(σ1
−m, . . . , σ

L
−m) be an enumeration of the elements of Tm(σ). Additionally, for each σm ∈

∆(Sm), define
xm(σm) =

(
πm(σm, σ

1
−m), . . . , πm(σm, σ

L
−m)

)
,

and define the set
Xm = Conv ({xm(sm) : sm ∈ Sm}) .

Then Xm is closed, convex, and determined by a finite set. Because σm is not weakly dom-
inated in Tm(σ), the result of Arrow, Barankin and Blackwell (1953) implies the existence
of a supporting hyperplane to the set Xm through the point xm(σm) whose normal has
positive components. Dividing the components by their sum yields a normal vector whose
components sum to one. The normalized components constitute the desired probability
distribution fm, which has full support on Tm(σ).

Claim 3: For any player m and any full support distribution on S−m, gm, there exists a full
support distribution on

∏
n6=m

∏
u∈Un

Cu, which we denote ḡm, such that α−m(ḡm) = gm.

Proof: For each s′−m ∈ S−m, fix a full support distribution on {c−m ∈
∏
n6=m

∏
u∈Un

Cu :
α−m(c−m) = s′−m}. We refer to that distribution as “the vertex corresponding to s′−m.”
Let ∆∗ be the subset of distributions over

∏
n6=m

∏
u∈Un

Cu that is the |S−m|-dimensional
simplex defined by those vertices.

Abusing notation to let α−m map a distribution on
∏
n 6=m

∏
u∈Un

Cu into the induced
distribution on S−m, notice that α−m : ∆∗ → ∆(S−m) is a continuous function. Moreover,
α−m maps the vertex corresponding to s′−m into the pure strategy profile s′−m. Conversely,
α−m maps any point on the face of the simplex opposite the vertex corresponding to s′−m to
a distribution that puts zero probability on s′−m. Finally, since gm has full support on S−m,
gm(s′−m) ∈ (0, 1). Thus, we can apply the generalization of the intermediate value theorem
for simplices, due to Vrahatis (2016), to establish the existence of some ḡm ∈ int(∆∗)
with α−m(ḡm) = gm. By the construction of ∆∗, any such interior point is a full support
distribution on

∏
n6=m

∏
u∈Un

Cu.

Claim 4: Let L =
∑

n6=m |Un|. For any player m and any full support distribution on the
elements of Tm(σ), fm, there exists a completely mixed behavior strategy profile τm−m such
that

α−m

 1

L

∑
n6=m

∑
u∈Un

∑
cu∈Cu

τmnu(cu) · b−m/(bn/cu)

 =
2L− 1

2L
σ−m +

1

2L
fm.

Proof: We proceed by construction. First, for all players n 6= m and all final decision
information sets u ∈ Un, let τmnu be any local strategy with full support. Second, fix some
probability p ∈ (0, 1). Then for all players n 6= m and all review information sets u ∈ Un, let
τmnu be the local strategy that approves with probability p and disapproves with probability
1 − p. Third, for all players n 6= m, at the recommendation information set u ∈ Un,
determine the local strategy τmnu in the following way: (i) if s′n ∈ BRn(σ−n), then let τmnu
tentatively assign one half of the probability to s′n that fm assigns to (s′n, σ−nm); (ii) if
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Sn \BRn(σ−n) is nonempty, then distribute the remaining probability in proportion to any
full support distribution on the elements of that set; and (iii) if Sn \ BRn(σ−n) is empty,
then distribute the remaining probability in proportion to σn. Because fm has full support
on Tm(σ), the resulting behavior strategy profile τm−m is completely mixed.

Letting τm−m be as defined above, it can be checked that the distribution on pure behavior
strategies in Γ̄ given by

1

L

∑
n 6=m

∑
u∈Un

∑
cu∈Cu

τmnu(cu) · b−m/(bn/cu)

induces play in Γ that is distributed according to 2L−1
2L σ−m + 1

2Lf
m, as claimed.

Claim 5: b is a quasi*-perfect equilibrium of Γ̄(c).

Proof: Define {εt}∞t=1 = 1
t2

and {δt}∞t=1 = 1
t . For any player m, there exist distributions

gm, fm, and ḡm, as well as a behavior strategy profile τm−m, which satisfy the conditions of
the previous claims. It will economize on notation to define the following distribution on∏
n6=m

∏
u∈Un

Cu:

f̄m =
1

L

∑
n6=m

∑
u∈Un

∑
cu∈Cu

τmnu(cu) · b−m/(bn/cu),

where, by Claim 4, α−m(f̄m) = 2L−1
2L σ−m + 1

2Lf
m. We can then define the following

distribution on
∏
n6=m

∏
u∈Un

Cu:

dt,m−m(c−m) = (1− εtδt)(1− εt)Lb−m(c−m) + L(1− εtδt)εt(1− εt)L−1f̄m(c−m)

+
[
1− (1− εtδt)(1− εt)L − L(1− εtδt)εt(1− εt)L−1

]
ḡm(c−m).

In addition, let τmm be any full support behavior strategy for player m, and define the
following distribution on

∏N
n=1

∏
u∈Un

Cu:

dt,m(c) = dt,m−m(c−m) ·
∏
u∈Um

[(1− εt)bmu(cu) + εtτ
m
mu(cu)] .

By a simple change of variables, it suffices to show that dt,m meets the requirements of parts
(ii) and (iii) of Definition 7 for all sufficiently large values of t, rather than for all t.

We first establish part (ii) of Definition 7, namely that for all sufficiently large values of
t and for all c ∈

∏
n6=m

∏
u∈Un

Cu,

dt,m(c) ≥ (1− εtδt)
N∏
n=1

∏
u∈Un

[(1− εt)bnu(cu) + εtτ
m
nu(cu)] .

To see that this is true, note that after dividing through by
∏
u∈Um

[(1− εt)bmu(cu) + εtτ
m
mu(cu)]

and then cancelling like terms, the left hand side is Θ(εtδt) = Θ(t−3), while the right hand
side is Θ(ε2

t ) = Θ(t−4).
Next, we note that by the construction of dt,m as the product of dt,m−m and a separate

distribution on the elements of
∏
u∈Um

Cu, the distribution of play by the players n 6= m in
Γ̄, conditional on reaching any information set v ∈ Um, is equivalent to the unconditional
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distribution, dt,m−m. Moreover, that distribution is a convex combination of b−m, f̄m, and
ḡm, which converges to b−m as t grows large. Consequently, this induces play in Γ that is a
convex combination of σ−m, fm, and gm, which converges to σ−m as t grows large. Moreover,
note that σm is a best response to all three of those distributions, and therefore to any such
convex combination. Using these observations, we establish part (iii) of Definition 7, namely
that for all sufficiently large values of t and for all v ∈ Um,

π̄mv(d
t,m/vbm) = max

b′m∈Bm

π̄mv(d
t,m/vb

′
m).

To do so, we separately consider the recommendation information set, the review informa-
tion sets, and the final decision information sets.

First, let v be the recommendation information set of player m. As argued above, σm
is a best response to the distribution of play in Γ by the players n 6= m for all t. Note that
bm specifies recommending according to σm at the recommendation information set v, and
also specifies approval at all on-path review information sets. This is the best that player
m can do, and so we indeed have bm ∈ arg maxb′m∈Bm

π̄mv(d
t,m/vb

′
m).

Second, let v be a final decision information set of player m. As argued above, σm is a
best response to the distribution of play in Γ by the players n 6= m for all t. Note that bm
specifies deciding according to σm at v. This is the best that player m can do conditional
on v being reached, and so we indeed have bm ∈ arg maxb′m∈Bm

π̄mv(d
t,m/vb

′
m).

Third, let v be a review information set of player m. As argued above, σm is a best
response to the distribution of play in Γ by the players n 6= m for all t. Thus, conditional
on information set v being reached, player m can do no better than the best of the follow-
ing possibilities: (i) to disapprove the recommendation at information set v and to play
according to σm at the subsequent final decision information set, or (ii) to approve the rec-
ommendation at information set v. Suppose first that v follows a recommendation to play
some s′m ∈ BRm(σ−m). In this case, bm specifies approval at v, and so π̄mv(d

t,m/vbm) con-
verges to πm(s′m, σ−m), which, since s′m and σm are both best responses to σ−m is equal to
πm(σ′m, σ−m). It suffices to compare this to an alternative, b′m, which specifies disapproval
at v and deciding according to σm at the subsequent information set, and so π̄mv(d

t,m/vb
′
m)

converges to πm(σm, σ−m)−c. Thus, limt→∞ π̄mv(d
t,m/vbm)−π̄mv(dt,m/vb′m) = c > 0. Con-

sequently, we have bm ∈ arg maxb′m∈Bm
π̄mv(d

t,m/vb
′
m) for all sufficiently large values of t.

Suppose next that v follows a recommendation to play some s′m /∈ BRm(σ−m). In this case,
bm specifies disapproval at v and deciding according to σm at the subsequent information set,
and so π̄mv(d

t,m/vbm) converges to πm(σm, σ−m)− c. It suffices to compare this to an alter-
native, b′m, which specifies approval at v, and so π̄mv(d

t,m/vb
′
m) converges to πm(s′m, σ−m).

Thus, limt→∞ π̄mv(d
t,m/vbm)− π̄mv(dt,m/vb′m) = πm(σm, σ−m)−c−πm(s′m, σ−m) ≥ ∆−c >

0. Consequently, we have bm ∈ arg maxb′m∈Bm
π̄mv(d

t,m/vb
′
m) for all sufficiently large values

of t.

45



Supplement to Equilibrium Selection in Auctions and High

Stakes Games∗

Paul Milgrom Joshua Mollner

September 13, 2017

1 Package Auction Model

The package auction model is a generalization of the menu auction model, in which each
bidder cares about and bids for only some part of the allocation. As one example, there
may be a set of goods to be allocated among bidders, with each bidder caring about and
bidding for only its own allocation or “package.”

Does Corollary 5—that test-set equilibrium leads to core payoffs in the menu auction
setting—extend to the full set of package auctions? In this section, we demonstrate by
example that the answer is no.1

As before, there is one auctioneer, who selects a decision that affects himself and N
bidders. The possible packages for bidder n are given by the set Xn and the possible
choices for the auctioneer by X ⊆×N

n=1Xn. The gross monetary payoffs that bidder n
receives are described by the function vn : Xn → R. Similarly, the auctioneer receives gross
monetary payoffs described by v0 : X → R.2

The N bidders simultaneously submit bids. A bid is a menu of payments to the
auctioneer, contingent on the package received, which can be expressed as a function
bn : Xn → R+. Given bids, the auctioneer chooses an allocation x ∈ X that maximizes his
payoff v0(x) +

∑N
n=1 bn(xn). As before, we assume that if there are several such decisions,

then the auctioneer chooses the one that maximizes the total surplus. We also continue
to assume that all agents have lexicographic preferences, first preferring outcomes with the
highest personal payoff and secondarily preferring ones with higher total surplus. And we
also assume as before that against any bid profile in which at least one competing bidder is

∗For helpful comments, we thank Gabriel Carroll, Ricardo De la O, Piotr Dworczak, Drew Fudenberg,
Philippe Jehiel, Peter Klibanoff, Fuhito Kojima, Markus Mobius, Michael Ostrovsky, James Schummer,
Erling Skancke, Andrzej Skrzypacz, Joel Sobel, Bruno Strulovici, Péter Vida, Jörgen Weibull, Glen Weyl,
Alexander Wolitzky, seminar participants, and anonymous referees. Milgrom thanks the National Science
Foundation for support under grant number 1525730.

1A further generalization is to the class of core-selecting mechanisms (Day and Milgrom, 2008). The
example therefore also implies that test-set equilibrium does not necessarily lead to core payoffs in all core-
selecting mechanisms.

2The package auction model is equivalent to the menu auction in the special case where X1 = · · · = XN

and X is the diagonal subset of×N

n=1
Xn.
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playing a strictly dominated strategy, each bidder strictly prefers to set its bid vector equal
to its value vector over any other bid vector that leads to the same auctioneer decision and
the same zero payoff.

While Bernheim and Whinston (1986) demonstrate that truthful equilibrium and coalition-
proof equilibrium lead to bidder-optimal core payoffs only in the menu auction setting, these
results generalize to all package auctions. In contrast, Corollary 5—that test-set equilibrium
leads to core payoffs in the menu auction setting—does not generalize to all package auc-
tions. Example 1, below, describes a package auction that possesses a test-set equilibrium
with non-core payoffs.

In the example, there are six bidders, with possible packages Xn = {l, w} (“lose” or
“win”). The set X includes six combinations of packages, describing which sets of bidders
can simultaneously win. First, bidder 1 may win alone. Alternatively, bidder 2 may win
together with one of bidders 3, 4, 5, or 6. Finally, bidders 3, 4, 5, and 6 may win together.
The last of these possibilities maximizes total surplus. However, there exists a test-set
equilibrium implementing the allocation in which bidder 1 wins alone.

Example 1. Let N = 6. For all n, let Xn = {l, w}. Let

X =

{
(w, l, l, l, l, l), (l, w, w, l, l, l), (l, w, l, w, l, l),

(l, w, l, l, w, l), (l, w, l, l, l, w), (l, l, w, w,w,w)

}
.

For all x ∈ X, let v0(x) = 0. Let the payoffs of the bidders be as follows:

v1(l) = 0, v1(w) = 29
v2(l) = 0, v2(w) = 19
v3(l) = 0, v3(w) = 9
v4(l) = 0, v4(w) = 8
v5(l) = 0, v5(w) = 7
v6(l) = 0, v6(w) = 6

Then the following bid profile is a test-set equilibrium, which results in the inefficient
allocation (w, l, l, l, l, l):

b1(l) = 0, b1(w) = 28
b2(l) = 0, b2(w) = 19
b3(l) = 0, b3(w) = 9
b4(l) = 0, b4(w) = 0
b5(l) = 0, b5(w) = 0
b6(l) = 0, b6(w) = 0

Proof of Example 1. It is easy to verify that these bids result in the allocation (w, l, l, l, l, l).
This allocation is inefficient because it yields a total surplus of 29, whereas the allocation
(l, l, w, w,w,w) yields a total surplus of 30. It is also easy to check that these bids are a
Nash equilibrium.

Bidder 1 has a unique best response to the equilibrium bids of the other bidders: its
equilibrium bid of b1(l) = 0 and b1(w) = 28. The best responses of bidder 2 are those of
the form b2(l) = 0 and b2(w) ∈ [0, 19]. For all bidders n ∈ {3, 4, 5, 6}, their best responses
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are those of the form bn(l) = 0 and bn(w) ∈ [0, 9]. Given this, it is easily checked that each
bidder’s test-set condition is satisfied.

Finally, in the equilibrium, no bidder is using a bid that is weakly dominated in the
game, by an extension of Lemma 2.

This package auction example helps to sharpen our understanding of how test-set equi-
librium promotes core allocations in the original Bernheim-Whinston menu auction model.
Test-set equilibrium is effective there because it promotes “high enough” bids for losing
decisions. It does so because each bidder n believes that a deviation by a single other
bidder playing a different best response might offer an opportunity for a better outcome,
provided that n bids high enough. In this package auction example, however, bidders 4, 5,
and 6 are not bidding “high enough,” yet there is no element in the test set that offers an
opportunity for a better outcome. No single deviation can create such an opportunity; only
a joint deviation by two or more others could do that.

Coalition-proof equilibrium refines away this package-auction equilibrium because it
considers the possibility of a cooperative joint deviation. Truthful strategies work as a
refinement in this context, too, because the restriction to truthful bids is a restriction to
bids that are high enough for losing decisions. The test-set refinement for these package-
auction games, however, does not imply high bids for losing decisions.

2 Proper Equilibria of the Agent-Normal Form of the Second-
Price, Common-Value Auction

Although we have been unable to characterize the pure proper equilibria of the normal form
of the second-price, common-value auction described in section 4.2—which is a discrete
version of the motivating example of Abraham, Athey, Babaioff and Grubb (2016)—we do
have such a characterization for the agent-normal form. In the agent-normal form of this
auction, the pure test-set equilibria and the pure proper equilibria coincide.

Proposition 12. There exist two pure proper equilibria of the agent-normal form of the
discrete second-price, common-value auction described in section 4.2: (0, 1, 0) and (0, 1, 1).

Proof of Proposition 12. The proof consists of two parts. First, we construct sequences
of trembles that justify each of (0, 1, 0) and (0, 1, 1) as proper equilibria. Second, we argue
that no other pure strategy profile is a proper equilibrium. For brevity, we focus, in each
part, on the case where the discretized bid set is {0, 1

m , . . . ,
m−1
m , 1}.

Part One: For all sufficiently small values of ε, the following completely mixed strategy
profile is an ε-proper equilibrium: (i) for k ∈ {1, . . . ,m}, the low-type informed bidder places
probability εk on k/m and places all remaining probability on 0, (ii) for k ∈ {0, . . . ,m−1},
the high-type informed bidder places probability ε2m−k on k/m and places all remaining
probability on 1, and (iii) for k ∈ {1, . . . ,m}, the uninformed bidder places probability εk

on k/m and places all remaining probability on 0. As ε converges to zero, these ε-proper
equilibria converge to (0, 1, 0), which is therefore a proper equilibrium.

For all sufficiently small values of ε, the following completely mixed strategy profile is an
ε-proper equilibrium: (i) for k ∈ {1, . . . ,m}, the low-type informed bidder places probability
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εm+k on k/m and places all remaining probability on 0, (ii) for k ∈ {0, . . . ,m−1}, the high-
type informed bidder places probability εm−k on k/m and places all remaining probability
on 1, and (iii) for k ∈ {0, . . . ,m−1}, the uninformed bidder places probability εm−k on k/m
and places all remaining probability on 1. As ε converges to zero, these ε-proper equilibria
converge to (0, 1, 1), which is therefore a proper equilibrium.

Part Two: Let {εt}∞t=1 be a sequence of positive numbers converging to zero and let
{(σt0, σt1, σtU )}∞t=1 be a sequence of completely mixed strategy profiles such that for each
t, (σt0, σ

t
1, σ

t
U ) is an εt-proper equilibrium.

Suppose b, b′ ∈ {0, 1
m , . . . ,

m−1
m , 1} with b < b′. Because σtU is completely mixed, the low-

type informed bidder receives a strictly higher payoff from b than from b′ against (σt1, σ
t
U ).

Thus, εt-properness requires σt0(b′) ≤ εtσ
t
0(b). Likewise, the high-type informed bidder

receives a strictly higher payoff from b′ than from b against (σt0, σ
t
U ), and we conclude

σt1(b) ≤ εtσt1(b′).
The uninformed bidder’s payoff from bidding k/m against (σt0, σ

t
1) is

πtU

(
k

m

)
=

1

2

∑
k′<k

[
σt0

(
k′

m

)(
−k
′

m

)
+ σt1

(
k′

m

)(
1− k′

m

)]
+

1

4

[
σt0

(
k

m

)(
− k
m

)
+ σt1

(
k

m

)(
1− k

m

)]
.

We argue that if (σt0, σ
t
1) satisfies the restrictions described above and if the index t is

sufficiently large, then πtU cannot be maximized at k/m for any k ∈ {2, . . . ,m−1}. Suppose
to the contrary that it were. This implies πtU

(
k
m

)
≥ πtU

(
k+1
m

)
, or equivalently,

σt0

(
k + 1

m

)(
k + 1

m

)
+ σt0

(
k

m

)(
k

m

)
≥ σt1

(
k + 1

m

)(
1− k + 1

m

)
+ σt1

(
k

m

)(
1− k

m

)
.

Applying the above restrictions on (σt0, σ
t
1), we obtain

σt0

(
k

m

)[
k

m
+ εt

(
k + 1

m

)]
≥ σt1

(
k

m

)[(
1− k

m

)
+

1

εt

(
1− k + 1

m

)]
. (12)

Similarly, πtU being maximized at k/m with k ∈ {2, . . . ,m − 1} also implies πtU
(
k
m

)
≥

πtU
(
k−1
m

)
, or equivalently,

σt0

(
k

m

)(
k

m

)
+ σt0

(
k − 1

m

)(
k − 1

m

)
≤ σt1

(
k

m

)(
1− k

m

)
+ σt1

(
k − 1

m

)(
1− k − 1

m

)
.

Applying again the above restrictions on (σt0, σ
t
1), we obtain

σt0

(
k

m

)[
k

m
+

1

εt

(
k − 1

m

)]
≤ σt1

(
k

m

)[(
1− k

m

)
+ εt

(
1− k − 1

m

)]
. (13)

Together, (12) and (13) further imply

k
m + εt

(
k+1
m

)(
1− k

m

)
+ 1

εt

(
1− k+1

m

) ≥ k
m + 1

εt

(
k−1
m

)(
1− k

m

)
+ εt

(
1− k−1

m

) ,
which is a contradiction for sufficiently large indices t.
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3 Sufficient Conditions for Existence of Test-Set Equilibrium

Despite the fact that test-set equilibria may fail to exist in finite games (cf. section 6),
there are classes of games in which a test-set equilibrium always exists. Proposition 13
states three conditions, each of which is sufficient to guarantee the existence of a test-set
equilibrium. One sufficient condition is for the game to have two players: proper equilibria
exist and by Proposition 1 are also test-set equilibria in such games. A second sufficient
condition is for the game to have three players, each of whom has two pure strategies.
Together, these two results imply that the game in Figure 1 is the smallest possible game
in which a test-set equilibrium may fail to exist. A third sufficient condition is for the game
to be a potential game (Monderer and Shapley, 1996): any strategy profile that maximizes
the potential function is a test-set equilibrium.

In addition, Proposition 14 states that in generic games, every Nash equilibrium is a
test-set equilibrium.

Proposition 13. A finite game in normal form has at least one test-set equilibrium if it
also satisfies at least one of the following conditions:

(i) it is a two-player game,

(ii) it is a three-player game in which each player has at most two pure strategies, or

(iii) it is a potential game.

Proof of Proposition 13.

Claim (i): This follows immediately from Proposition 1 and the existence of proper equi-
libria in finite games.

Claim (ii): We show that for three-player games in which each player has two pure strate-
gies, test-set equilibrium is implied by extended proper equilibrium (Milgrom and Mollner,
2017). The result will then follow from the existence of extended proper equilibrium in
finite games, which we establish in that paper. Since extended proper equilibrium requires
players to use strategies that are undominated in the game, it suffices to establish that the
test-set condition must hold.

Consider a three player game with strategy sets Sn = {an, bn}. Suppose σ is an extended
proper equilibrium of this game that fails the test-set condition. Without loss of generality,
suppose it is player 1 for whom the test-set condition fails. Then there exists σ̂1 ∈ ∆(S1) that
weakly dominates σ1 in T (σ). Also without loss of generality, suppose that (σ1, a2, σ3) is an
element of the test set against which σ̂1 strictly outperforms σ1. Thus, a2 ∈ BR2 (σ1, σ3),
and

π1(σ̂1, a2, σ3) > π1(σ1, a2, σ3). (14)

Now if σ2(a2) = 1, then (14) contradicts Nash equilibrium. Therefore σ2(a2) < 1, which
implies b2 ∈ BR2 (σ1, σ3). Then by the failure of the test-set condition for player 1, we also
have

π1(σ̂1, b2, σ3) ≥ π1(σ1, b2, σ3). (15)
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Now if σ2(a2) > 0, then equations (14) and (15) would together contradict Nash equilibrium.
Thus, σ2 = b2. The argument now splits into two cases. In the first, BR3 (σ1, σ2) = {a3, b3}.
In the second, BR3 (σ1, σ2) is a singleton.

• Suppose BR3 (σ1, σ2) = {a3, b3}. Then

T (σ) = {(a1, b2, σ3), (b1, b2, σ3), (σ1, a2, σ3), (σ1, b2, σ3), (σ1, b2, a3), (σ1, b2, b3)}.

Then by the failure of player 1’s test-set condition, we also have

π1(σ̂1, b2, a3) ≥ π1(σ1, b2, a3) (16)

π1(σ̂1, b2, b3) ≥ π1(σ1, b2, b3) (17)

Suppose that for some α > 0, σε is a sequence of (α, ε)-extended proper equilibria
converging to σ. Then:

π1(σ̂1, σ
ε
2, σ

ε
3)− π1(σ1, σ

ε
2, σ

ε
3) = [π1(σ̂1, a2, σ

ε
3)− π1(σ1, a2, σ

ε
3)]σε2(a2)

+ [π1(σ̂1, b2, σ
ε
3)− π1(σ1, b2, σ

ε
3)]σε2(b2),

which is positive for sufficiently small values of ε. To see the last step:

(i) Equation (14) implies that the first term is positive for completely mixed σε3
sufficiently close to σ3.

(ii) Equations (16) and (17) imply that the second term is nonnegative.

This constitutes a contradiction to σ being an extended proper equilibrium.

• Without loss of generality, the second case is BR3 (σ1, σ2) = {a3}, so that σ3 = a3.
Suppose that for some α > 0, σε is a sequence of (α, ε)-extended proper equilibria
converging to σ. Then:

π1(σ̂1, σ
ε
2, σ

ε
3)− π1(σ1, σ

ε
2, σ

ε
3) = [π1(σ̂1, a2, a3)− π1(σ1, a2, a3)]σε2(a2)σε3(a3)

+ [π1(σ̂1, b2, a3)− π1(σ1, b2, a3)]σε2(b2)σε3(a3)

+ [π1(σ̂1, a2, b3)− π1(σ1, a2, b3)]σε2(a2)σε3(b3)

+ [π1(σ̂1, b2, b3)− π1(σ1, b2, b3)]σε2(b2)σε3(b3)

= σε2(a2)σε3(a3)

{
[π1(σ̂1, a2, a3)− π1(σ1, a2, a3)]

+ [π1(σ̂1, a2, b3)− π1(σ1, a2, b3)]
σε3(b3)

σε3(a3)

+ [π1(σ̂1, b2, a3)− π1(σ1, b2, a3)]
σε2(b2)

σε2(a2)

+ [π1(σ̂1, b2, b3)− π1(σ1, b2, b3)]
σε2(b2)σε3(b3)

σε2(a2)σε3(a3)

}
,

which is positive for sufficiently small values of ε. To see the last step:

(i) Equation (14) implies that the first term inside the braces is positive.
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(ii) Equation (15) implies that the second term inside the braces is nonnegative.

(iii) Since σ3 = a3,
σε
2(b2)
σε
2(a2) converges to zero. Because payoffs in the game are bounded,

this implies that the third term inside the braces converges to zero as well.

(iv) Finally, since a2 ∈ BR2(σ1, σ3) while b3 /∈ BR3(σ1, σ2), the definition of (α, ε)-

extended proper equilibrium requires that
σε
3(b3)
σε
2(a2) converges to zero. Moreover,

since σε3(a3) converges to one, this implies that the fourth term inside the braces
converges to zero as well.

This constitutes a contradiction to σ being an extended proper equilibrium.

Claim (iii): We use the fact that any potential game is strategically equivalent to a game
in which there exists a function P , referred to as the potential function of the game,
which is such that for all n and for all s ∈×N

n=1 Sn, πn(s) = P (s). It is known that
any finite potential game possesses a pure strategy trembling-hand perfect equilibrium
s∗ ∈ arg maxs∈×N

n=1 Sn
P (s) (Carbonell-Nicolau and McLean, 2014). Since s∗ is trembling-

hand perfect, it is also a Nash equilibrium in undominated strategies. We claim that s∗ is
a test-set equilibrium; to show this, it only remains to check the test-set condition.

Let n ∈ N and σ′ ∈ T (s∗). By definition, there exist a player m and a strategy
ŝm ∈ BRm(s∗−m) such that σ′ = σ/ŝm. Let P̄ = P (s∗) be the maximum potential. Since
ŝm ∈ BRm(s∗−m), we have P (s∗/ŝm) = P (s∗) = P̄ . Moreover, for any σ̂n ∈ ∆(Sn), we must
have P (σ′/σ̂n) ≤ P̄ . Therefore, P (σ′/s∗n) ≤ P (σ′/σ̂n), as desired.

Proposition 14. For almost all finite games in normal form, every Nash equilibrium is a
test-set equilibrium.3

Proof of Proposition 14. A Nash equilibrium σ is quasi-strict if for each player n, each
element of BRn(σ−n) is in the support of σn. Harsanyi (1973) establishes that, for almost
all finite games in normal form, every Nash equilibrium is quasi-strict.4 Similarly, Kreps
and Wilson (1982) establish that, for almost all finite games in normal form, every Nash
equilibrium is trembling-hand perfect. We argue that if both of these conditions are sat-
isfied, as is the case for almost all finite games, then every Nash equilibrium is a test-set
equilibrium.

First, in such games, every Nash equilibrium is a trembling-hand perfect equilibrium,
and therefore an equilibrium in undominated strategies. Second, in such games, every Nash
equilibrium is a quasi-strict Nash equilibrium. To complete the proof, we argue that every
quasi-strict Nash equilibrium satisfies the test-set condition.

Let σ be quasi-strict equilibrium. Suppose by way of contradiction that the test-set con-
dition does not hold. Then without loss of generality, there exist players 1 and 2 and a strat-
egy σ̂1 ∈ ∆(S1) such that (i) for some s2 ∈ BR2(σ−2), π1(σ̂1, s2, σ−12) > π1(σ1, s2, σ−12),
and (ii) for all s2 ∈ BR2(σ−2), π1(σ̂1, s2, σ−12) ≥ π1(σ1, s2, σ−12). Because σ is quasi-strict,
supp(σ2) = BR2(σ−2). Thus, the above conditions imply that π1(σ̂1, σ−1) > π1(σ1, σ−1),
which contradicts that σ is a Nash equilibrium.

3We define “almost all games” in the same sense as Harsanyi (1973).
4Harsanyi (1973) himself refers to such equilibria as “quasi-strong.”
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