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Abstract

This paper studies the efficient estimation of large approximate factor mod-
els with cross-sectional dependence in panels where the number of cross-sections
(N) may be larger than the number of observations (T ). The traditional method
of principal components (PC) achieves consistency for any path of the panel di-
mensions but it is inefficient as the errors are treated to be homoskedastic and
uncorrelated. This paper considers a constrained principal components (Cn-PC)
method to efficienctly estimate the factors and their loadings when the errors
are cross-correlated. The Cn-PC solves a principal components problem sub-
ject to an explicit constraint of bounded cross-sectional dependence as stated in
Chamberlain and Rothschild [1983]. The Cn-PC estimators are computationally
very tractable. They are equivalent to the PCEs of a regularized form of the
data covariance matrix. Unlike maximum likelihood type methods, the Cn-PC
estimators do not require inverting a large covariance matrix and are valid for
panels with N ≥ T . The paper derives a convergence rate for the Cn-PC esti-
mators of the common factors and establishes their asymptotic normality. In a
Monte Carlo study, the Cn-PC estimators of the factors have good small sample
properties in terms of estimation and forecasting performances relative to the
existing PC estimators. The Cn-PCEs performs better than the generalized PC
type estimators (Choi [2012]) as the panel dimension N approaches T .

Keywords: High dimensionality, unknown factors, principal components, cross-
sectional correlation, shrinkage regression, out-of-sample forecasting
JEL Classification: C11, C13, C33, C53, C55

1 Introduction

Factor models constitute the dominant framework across many disciplines for realistic
parsimonious representation of the dynamic behavior of large panels of time series.
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Principal components estimators (PCEs) of the common factors can be easily computed
in panels where the cross-sectional dimension N is large and possibly larger than the
sample size T . PCEs are feasible for any path of the panel dimensions and are consistent
for both N and T going to infinity [Forni et al., 2009, 2005, 2004, Bai, 2003, Bai and Ng,
2003, Stock and Watson, 2002a,b]. However, principal components are not efficient in
the presence of heteroscedasticity or dependence in the error term. Methods based on
maximum likelihood (ML) and generalized principal components (GLS) type methods
depend on estimating a high-dimensional covariance matrix, which is a challenging
problem in large systems (N > T ) when errors are dependent and heteroscedastic.
The sample covariance matrix behaves optimally if N is fixed and converges to the
population covariance at a rate T−1/2. However, when N →∞, the sample covariance
matrix can behave very badly and for N > T cannot be inverted. One common
solution in the literature is to regularize the covariance matrix. See Fan et al. [2016]
for an overview.

This article is related to a large literature on factor models and a much smaller lit-
erature on estimation when N is large and the errors are cross-sectionally dependent.
Common factors can be consistently estimated using principal components or maxi-
mum likelihood (ML). The fundamental result in the literature is that common factors
can be consistently estimated for both N and T going to infinity, with no restrictions
on the relative rates of convergence and under fairly general conditions on the time
and cross-sectional dependence of the errors [Stock and Watson, 1998, 2002a,b, 2006,
Bai and Ng, 2002, Bai, 2003, Kapetanios, 2010, Onatski, 2010]. These studies treat the
idiosyncratic error components to be homoscedastic and uncorrelated cross-sectionally
and over time. In general, although there exist well-established estimation procedures
for static factor models, efficiency considerations have only received selective attention
in the literature. Boivin and Ng [2006] documented through extensive simulation anal-
ysis the potential effects of the presence of dependence on the PC estimators. They find
that ”Weighting the data by their properties when constructing the factors also lead to
improved forecasts” and that with cross-correlated errors the estimated factors may be
less useful for forecasting when more series are available. The ML estimation provides
a natural framework to account for heteroscedasticity and temporal dependence [Forni
et al., 2004, 2009]. Doz et al. [2012] establish the properties of maximum likelihood
estimators for factor models in large panels of time series under heteroscedasticity. Bre-
itung and Tenhofen [2011] propose a two-step generalized least squares estimation that
generalizes principal components to account for heteroscedasticity and serial correla-
tion in a dynamic factor model with possibly large N . Choi [2012] considers efficient
estimation using generalized least squares type PCEs to account for heteroscedasticity
and dependence, but the framework is not applicable to panels with N > T .

The literature is even more sparse in regards to efficiency considerations in large
panels with large N (possibly larger than T ) and cross-correlated errors. To our knowl-
edge, Bai and Liao [2016] is the most relevant study to this article. Bai and Liao [2016]
propose ML estimation with penalization of a large covariance sparse matrix. The
method produces joint estimates of the factors, the loadings and the covariance matrix
and is shown to be more efficient than PC estimators (PCEs) or GLS type PCEs. Bai
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and Liao [2016] paper is related to a growing literature on estimating large covariance
matrices [Ledoit and Wolf, 2004, 2012, Lam and Fan, 2009a]. Advances in matrix the-
ory have opened a new line of research into consistent estimation of large matrices.
Once a consistent estimate of the covariance matrix is achieved, a GLS type estima-
tion or ML can be implemented in a two-step plug-in estimation approach. Bai and
Liao [2016] presented results for both a two-step and a joint estimator. The Sparsity
assumption of the errors covariance matrix requires many off-diagonal elements to be
zero or nearly zero. This assumption is stronger than the weak cross-correlation of
Chamberlain and Rothschild [1983].

The objective of this article is methodological and practical. This article proposes a
novel PC-based estimation of factors in systems with large N (possibly larger than T )
and where the errors are cross-sectionally dependent. The suggested estimator solves
the PCEs problem under a constraint derived from the assumption of bounded depen-
dence in the sense of Chamberlain and Rothschild [1983]. This constrained system
can be solved using the method of principal components. The Cn-PCEs are obtained
by performing eigenvalue decomposition to a regularized data covariance matrix. The
constrained estimation has a dual problem that can be cast as shrinkage estimation,
where the regularization is applied to the cross-sectional correlations in the data. The
asymptotic properties of the Cn-PCEs of the common factors are derived using the
existing techniques of Bai and Ng [2002], Bai [2003] and Choi [2012]. We derive a
convergence rate for the Cn-PCEs to the population common factors and show asymp-
totic normality. The Cn-PCEs are computationally more attractive (than ML-based
estimators) because the estimation does not require (i) explicit assumption about the
structure of sparsity of the covariance matrix, or (ii) estimating and inverting large
covariance matrices.

In small samples, Monte Carlo simulations suggest that the Cn-PCEs have improved
accuracy compared to the PCEs and to GLS-type estimators. Applied to the prob-
lem of forecasting U.S. inflation and industrial production using the diffusion indexes
framework of Stock and Watson [2002a], we find relative improvement in accuracy.
However, the gains are not substantial and depend on the target series.

The rest of the paper is organized as follows. Section 2 reviews some results of the
dynamic factor models and the method of principal components. Section 3 introduces
the C-PC estimator and Section 4 establishes asymptotic convergence result and its
relative efficiency to PC estimator. The small sample properties of the estimators are
compared in Section 5 by means of Monte Carlo simulations. Finally, Section 5 con-
cludes the article. Proofs are deferred to the Appendix.

Notation
The following notation is used throughout the paper: E(.|Zt) and Et(.) denote condi-
tional expectation given variables in Zt and given information at time t respectively, A′

denotes the transpose of A, when A = [ai,j] is q× p matrix, A′ = [aj,i] is of dimensions
p × q, A ⊗ B denotes the Kronecker product of matrices A and B, for A = [aij] and
B = [bij], A ⊗ B = [aijB], A−1 denotes the inverse of a matrix A, ιm is a m-vector of
ones, Im is an m×m identity matrix, diag(A) = (a1,1, a2,2, ..., an,n) when A = [ai,j], by
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”vector” we mean column vector, for any positive number a, [a] is the largest integer
smaller than or equal to a.

2 Econometric Model: Notation and Preliminaries

Let Xit be the observed data for the ith cross-section unit at time t (i = 1, · · ·, N, t =
1, · · ·, T ). Consider the static factor model representation of the data:

Xit = λ′iFt + eit, (2.1)

where Ft = {Fkt}1≤k≤r, is an r × 1 vector of common factors, λi = {λik}1≤k≤r is the
corresponding vector of factor loading for cross-section unit i, and eit is an idiosyncratic
component.

Let X1, · · · , XT be observations from the N−variate response variable, the factor
structure in vector form:

X t = ΛFt + et, t = 1, · · · , T, (1.1)

where Ft is the r×1 vector of common factors, Λ is an N ×r matrix of factor loadings,
Λ = {λ′1, · · · , λ′N}; et is the N × 1 vector of idiosyncratic component of the model. Let
ΨN be the covariance matrix for the N − variate response variable, ΨN = E(X tX

′
t).

Then the factor structure implies a variance decomposition in the form

ΨN = ΛNΩFΛ′N + ΩN , (1.2)

where the subscript N is explicit to show that the factor structure depends on the num-
ber of cross-sections. The existence and uniqueness of the approximate factor structure
requires that the largest r eigenvalues of ΨN are unbounded with respect to N , the
remaining eigenvalues are constant (Chamberlain and Rothschild [1983],Brown [1989]
and Connor and Korajczyk [1993]). The approximate factor structure of Chamberlain
and Rothschild [1983] generalizes the strict factor model which assumes diagonal er-
ror covariance ΩN to allow for a more general covariance structure of the error term
allowing for both time and cross-sectional dependence amongst the errors. The cor-
relation between the idiosyncratic components is assumed to be weak both serially
and cross-sectionally to allow for identification and estimation of the factor structure.
The dimension of the panel in Chamberlain and Rothschild [1983] approximate factor
model can be large in both N and T . In fact the high-dimensional property is needed
to derive the desirable statistical properties of the estimate of both the factors and the
loadings in an approximate factor model. The model assumes weak cross-sectional cor-
relation, which is literally defined at the limit: as the number of variables grows larger,
the correlation between these variables becomes smaller. At the limit, when N goes
to infinity, the correlation dies out which ensures consistent estimation of the number
of factors and the space spanned by the common factors (Stock and Watson [2002a]
and Bai and Ng [2002]), and inferential theory (Bai [2003], Bai and Ng [2003]). The
consistency result is achieved even if the estimation method doesn’t exploit features
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of the data, such as heterogeneity in the signal to noise ratio, and non-spherical error
component.

In matrix notation, the model is written as

X = F0Λ0′ + e, (2.2)

where X = [X1, · · · , XT ]′ is the T × N matrix of observations, e = [e1, · · · , eT ]′ is a
T ×N matrix of idiosyncratic errors, F0 = [F 0

1 , · · · , F 0
T ]
′
is the T ×r matrix of common

factors and Λ0 = [λ0
1, · · · , λ0

N ]
′

is N × r matrix of factor loadings.

The underlying assumptions of the approximate factor structure are standard in
the literature. In particular the following assumptions are made (Bai and Ng [2002]
and Bai [2003]):

Assumption A1 (Factors). E‖F 0
t ‖4 <∞ and T−1

∑T
t=1 F

0
t F

0′
t → ΣF as T →∞ for

some positive definite matrix ΣF .

Assumption A2 (Factor Loadings). ‖λ0
i ‖ < λ <∞, and ‖N−1

∑T
i=1 λ

0
iλ

0′
i −ΣΛ‖ →

0 as N →∞ for some r × r positive definite matrix ΣΛ.

Assumption A3 (Error term). There exists a positive constant M <∞, such that
for all N and T ,

1. E(eit) = 0, E|eit|8 ≤M ;

2. E(e′set/N) = γN(s, t), |γN(s, s)| ≤ M for all s and T−1
∑T

s=1

∑T
t=1 |γN(s, t)| ≤

M ;

3. E(eitejt) = τij,t with |τij,t| ≤ |τij| for some τij and for all t; in addition,

N−1

N∑
i=1

N∑
j=1

|τij| ≤M ;

4. E(eitejs) = τij,ts and (NT )−1
∑T

t=1

∑T
s=1

∑N
i=1

∑N
j=1 |τij,ts| ≤M ;

5. for every (t, s), E
∣∣∣N−1/2

∑N
i=1 [eiseit − E(eiseit)]

∣∣∣4 ≤M

Assumption A4. Weak Dependence between Factors and Idiosyncratic Errors:

E

(
1

N

N∑
i=1

∥∥∥∥∥ 1√
T

T∑
t=1

F 0
t eit

∥∥∥∥∥
)
≤M

In Assumption A2, the factor loadings are nonrandom. As noted in Bai and Ng
[2002], the results can be extended to the case of random factor loadings provided they
are independent of the factors and the idiosyncratic errors, and E‖λi‖4 < M .

This paper uses the usual normalization trick in the PC literature to enable iden-
tification of the factor structure of either 1

T

∑T
t=1 FtF

′
t = Ir or 1

N

∑N
i=1 λiλ

′
i = Ir. The
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model being analyzed in this paper is a static factor model in the sense that X t has
a contemporaneous relationship with the factors. Identification of the factor struc-
ture requires that the N dimensional population covariance matrix of X, ΦN has r
eigenvalues that diverge as N →∞.

The only observable quantities are the X t, t = 1, · · · , T . The true factors, their
loadings and the idiosyncratic errorsand the loadings λi are unknown population pa-
rameters and are the subject of this paper estimation approach. The number of factors
r is generally unknown and is an important question to be addressed in the framework
of factor analysis. Many estimation methods have been developped for the number of
common factors in panel data with both large number of cross-section units and time
series observations. For static approximate factor models like the one studied in this
paper, Bai and Ng [2002](BN hereandafter) proposed a consistent estimator of r by
minimizing two model information criteria which depended on both N and T . The BN
estimators are consistent and are linked to the eigenvalues of ΨN . The finite sample
properties of the BN estimators may be sensitive to the choice of the maximum possi-
ble number of factors and a prespecified threshhold function, especially in the presence
of moderate to strong serial and cross-section correlation. Alessi et al. [2010] revis-
ited the penalty in BN to add a multiplicative tuning constant based on Hallin and
Lǐska’s (2007) diverging eigenvalue method for generalized factor models. Examples of
other estimators with improved finite sample properties are the ”Edge Distribution”
estimator of Onatski [2010], the “Eigenvalue Ratio” and “Growth Ratio” of Ahn and
Horenstein [2013]. See also Onatski [2009] for inference about r, Forni et al. [2000],
Amengual and Watson [2007], and Bai and Ng [2007] for dynamic factor models.

In this paper, the number of factors r is known. An interesting question though
is to address the sampling behaviour of the aforementioned methods for estimating r.
This is beyond the scope of this article and is left for fututre research.

Under the regularity conditions in Assumptions A1-A4 (Bai and Ng [2002], Stock
and Watson [2002b]), the factors and factor loadings can be consistently estimated as
N and T are both large using the method of asymptotic principal components, Connor
and Korajczyk [1989]. Technically, the principal component estimator minimizes the
total sum of squares

V (Λ,F) = tr [(X− FΛ′)′(X− FΛ′)] , (2.3)

subject to the normalization F′F/T = Ir. The estimator has a simple interpretation
in terms of the singular value decomposition of the sample covariance of the data.
Consider the spectral decomposition of the sample covariance matrix of X, ΨN =
1
T
X′X:

ΨNΓ = Γ∆,

where ∆ = diag(d1, · · · , dN) is a diagonal matrix with dl corresponding to the lth

highest eigenvalue of ΨN , and Γ = (ϕ1, · · · , ϕN) is the matrix whose columns corre-
sponds to the normalized eigenvectors of ΨN . The normalized PC estimator of F are
F̂k,t = 1√

dk
ϕ′kX t, for k = 1, · · · , r; De Mol et al. [2008]. The PC estimator for Λ can be

computed as OLS projection of X on the estimated F̂, Λ = 1
T
X′F̂ = Γ1:r. Let us as-

sume that the processes are stationary, abstract from serial correlation and focus only
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on the role of the cross-sectional dependence assumption. Assumption (A3.3) is suffi-
cient and necessary for the asymptotic properties of the PC estimators derived in the
literature. Bai and Ng [2002] derive consistency results for the estimated number of fac-
tors, and the space spanned by the estimated factors under approximate factor model.
Referring to mathematical appendix of Bai and Ng [2002], the result that PC estimated
factors F̂t span (up to an orthogonal rotation Hk) the space of the true factors Ft, ie,

C2
NT

(
1
T

∑T
t=1 ‖F̂ k

t −Hk′Ft‖2
)

= Op(1) at a rate CNT = min{
√
N,
√
T}, requires that

N−2‖e′tΛ‖2 = Op(N
−1). The latter follows from E

(
T−1

∑T
t=1 ‖N−1/2e′tΛ‖2

)
≤ λ̄M ,

where ‖λi‖ ≤ λ̄ <∞, which is a direct implication of Assumption (A3.3) as shown in
Bai and Ng [2002]’ Lemma 1. Further more, this average convergence rate is sufficient
for consistency of the estimated number of factors using Bai and Ng [2002] criteria.

Assumption (A3.3) doesn’t explicitly play a role in the estimation of the factors
and the loadings. The PC estimators in the approximate factor model are the same as
those estimated in a strict factor model where the error covariance matrix is diagonal
and homoscedastic.

A number of studies have shown the importance of deviation from the assumption of
spherical eit on the small sample properties of the PC estimators. Boivin and Ng [2006]
provide an empirical assessment of the extent of which likely features of the data affect
the properties of the PC factors estimates F̂. Their study finds that forecast based on
weighted had smaller errors that forecasts based on OLS-PC estimation. Their result
points to a need to develop more efficient estimators that fully exploit information in
the data. Let us assume for the moment that the errors are independent across time
and that the time and cross-sectional dynamics are separable, E(ete

′
t) = Ω. If Ω is

known, a generalized least squares type principal component (GLS-PC) estimator can
be constructed by minimizing,

VΩ(Λ,F) = tr
[
Ω−1(X− FΛ′)′(X− FΛ′)

]
. (2.4)

This GLS-PC estimator is studied by Choi [2012] for the case N < T with heteroscedas-
tic errors, where Ω = diag[E(e2

1t), · · · , E(e2
Nt)], and with block diagonal cross section

dependence with n blocks, where Ω = Ω1

⊕
Ω2 · · ·

⊕
Ωn. Breitung and Tenhofen [2011]

considers similar type estimation for dynamic factor models with heteroscedasticity and
serial correlation. Estimation requires an estimate for the covariance matrix Ω. Feasi-
ble estimators include, the sample covariance matrix Ω̂N = T−1(X− F̂Λ̂′)′(X− F̂Λ̂′).
However, for high-dimensional systems with N > T , Ω̂N is singular. A candidate esti-
mate for Ω is the sample covariance matrix. However, when N > T , Ω̂ is singular and
minimizing VΩ̂N

(Λ,F) is unfeasible. To overcome inverting a singular matrix, Boivin
and Ng [2006] propose a weighting scheme that accounts for heteroscedasticity and
cross correlation. The weighting scheme is then applied to the PC estimator minimize

V (λi, Ft, wit) =
N∑
i=1

wiT

T∑
t=1

(Xit − λ′iFt)2, (2.5)

where choices of the weights include (i) wit is the inverse of the diagonal element of Ω̂T

estimated using data up to time T and, (ii) wit is the inverse of N−1
∑N

i=1 |Ω̂T (i, j)|.
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In principle, if an estimator of Ω̂−1 is available, a GLS type PC estimation can be
carried out. The random matrix literature has a rich body of work on estimating large
dimensional covariance matrices. Some of the results in this literature have been used
in the factor model literature. The approach is to estimate a sparse covariance matrix
using threshholding or penalized maximum likelihood.

Bai and Liao [2016] apply the estimator principal orthogonal component thresh-
holding estimator of Fan et al. [2013] to derive a two-step estimator, and use a penal-
ized likelihood (Lam and Fan [2009b]) for their proposed joint estimation procedure.
In their study, two estimators are proposed. The first is a two-step estimator that
minimizes the negative log-likelihood function,

−L1(Λ,Ω) =
1

N
log|det(ΛΛ′ + ΩN)|+ 1

N
tr
(
SX(ΛΛ′ + ΩN)−1

)
, (2.6)

where SX is the sample covariance matrix of the data. An estimator of ΩN is obtained
in a first step estimation using threshholding. The second joint estimator they propose
is an l1−penalized maximum likelihood estimator that minimizes,

L2Λ,Ω) = −L1(Λ,Ω) +
1

N

∑
i 6=j

µTwij|Ωij| (2.7)

The second estimator penalizes the off-diagonal elements of the covariance matrix.

3 The Cn-PC Estimator

Let us consider Assumption (A3.3) of bounded cross-sectional correlation in an ap-
proximate factor structure. The eigenvalues of the error covariance matrix Ω = E(ete

′
t)

in Chamberlain and Rothschild’s (1983) factor model must be bounded. Under the
assumption of (covariance) stationarity, E(eitejt) = τij, all the eigenvalues of Ω are

bounded by maxi
∑N

i=1 |τij|. Thus Assumption (A3.3) is implied by the assumption of∑N
i=1 |τij| ≤M for all i and all N , Bai and Ng [2002].

Let sgn(a) denote the spatial sign function with sgn(a) = |a|/a for a 6= 0 and
sgn(0) = 1. Under the assumption of stationarity, the inequality in Assumption (A3.3)
can be written as:

1

N

N∑
i=1

N∑
j=1

sgn(τij)τij ≤M, (3.1)

where τij = E(eitejt) and est = Xst − λ′sFt, for s = i, j.

In this article, the estimated factors solve an optimization problem that combines
the PC objective function and the assumption of bounded cross-sectional correlation.
The proposed Cn-PC estimation solves:

minimize
λi,Ft

(NT )−1

N∑
i=1

T∑
t=1

e2
it (3.2)

s.t
1

N

N∑
i=1

N∑
j=1

sgn(τij)τij ≤M (3.3)
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Let S be N ×N matrix with elements [Sij] defined as,

Si,i = 0 (3.4)

Si,j = sgn (τij) for i 6= j. (3.5)

The population Sij for i 6= j are generally not observed. In the following, an unfeasible
estimator is derived under the assumption that S is known. We show below in Lemma1
that a consistent estimator of each element in S can be obtained. We define a feasible
estimator based on an estimated S.

3.1 The unfeasible CnPC estimator

In the following, let us assume that the population Sij are known. This is unfeasible
since in practice the sign of dependence between cross-sections is generally unknown.
We argue that in many applications, institutional knowledge and theory may provide
information about the direction of co-variation between variables without the knowl-
edge of the strength of the relationship.

Let L1(F,Λ) = 1
T

∑T
t=1 e

′
tet and L2(F,Λ) = 1

NT

∑T
t=1 e

′
tSet −M . The optimization

in (3.2)-(3.3) can be written as:

minimize
Λ,F

{L1(Λ, F, r)|L2(F,Λ, r) ≤ 0}, (3.6)

under the normalization of either T−1
∑T

t=1 FtF
′
t = Ir, or N−1

∑N
i=1 λiλ

′
i = Ir. This

optimization problem can be solved using the theorem of Kuhn-Tucker.

Note that both L1 and L2 are of magnitude of order N . Let us assume that the
number of factors r is known and concentrate on the estimation of F and Λ for a given
r. Treating the system in (3.6) as a convex programming problem, the Lagrangian is

L(Λ, F, µ) =
1

N
L1(Λ, F ) + µNTL2(F,Λ). (3.7)

The matrix S has diagonal elements equal to zero and off diagonal elements that are ei-
ther 1 or −1. The Lagrangian is similar to that of a shrinkage regression where the cross
correlations are shrunk towards zero. The parameter µNT represents the cost/penalty
for deviation of the solution from (3.1) and thus plays the role of a shrinkage factor.

Proposition 1. The constrained principal component estimator (Cn-PC) for F 0, de-
noted F̂ , which solves (3.7) is

√
T times the matrix consisting of the eigenvectors cor-

responding to the r largest eigenvalues of the matrix XANX′, where AN = IN +µNTS,
where µNT is the Lagrange multiplier parameter. The Cn-PC estimator for Λ0, denoted
Λ̂ is given by Λ̂ = 1

T
XF̂ .

See Appendix A.

Assumption A5 (Error term). There exists a positive constant M <∞, such that
for all N and T ,
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1. let E(e′sSet/N) = %N(s, t), then
∑T

s=1 |%N(s, t)| ≤M for all t.

2. for every t, s, and N , assume that E
∣∣N−1/2 [e′sSet − E (e′sSet)]

∣∣4 ≤M ;

3. for any t and N , there exists a positive constant M <∞ such that E
∥∥∥ 1√

N
Λ0′Set

∥∥∥2

≤
M.

Theorem 3.1. For any fixed (known) r ≥ 1, there exists a suitable (r × r) full rank
rotation matrix H such that under Assumption A1-A5

1

T

T∑
t=1

∥∥∥F̂t −H′F 0
t

∥∥∥2

= Op(δ
−2
NT ) +Op(µ

−2
NT δ

−2
NT ),

where H =
(

Λ′ANΛ
N

)(
F ′F̂
T

)
V −1
NT . Or equivalently,

ω2
NT

(
1

T

T∑
t=1

∥∥∥F̂t −H′F 0
t

∥∥∥2
)

= Op(1),

where δNT = min
{√

N,
√
T
}

and ωNT = min {δNT , δNTµNT}.

See Proof in Appendix B.
As in the standard principal components estimation, the true factors F 0

t are identified
only up to a scale. What is considered is the space spanned by the true factors identified
by a rotation HF 0

t of F 0
t . In Theorem 3.1, the time average of squared deviations

between the Cn-PC estimator and those that lie in the true factor space goes to zero
as N, T →∞. The rate of convergence depends on the panel structure but also on the
regularization factor µNT .

Note that the Cn-PC estimator are implicit functions of µNT . When µNT = O(1)
(equivalent to h = 0 in Proposition below) the Cn-PC estimator of F̂ is the principal
component estimator of the factor space consisting of the eigenvectors corresponding
to the r largest eigenvalues of XX′/T (see for example, Stock and Watson [2002a],
Bai and Ng [2002], Bai [2003]). In this case, Theorem 3.1 implies the same rate of
convergence as in Bai and Ng [2002] which is equal to δNT and is determined by the
smaller of N or T .

Theorem 3.1 establishes conditions under which the convergence of the Cn-PC
estimator is faster/slower than that of the ordinary PCEs.

Proposition 2. Let µNT = δ−hNT , then the rate of convergence in Theorem 3.1 is:

(i) ω2
NT = δ

2(1−h)
NT for h > 0,

(ii) ω2
NT = δ2

NT for h ≤ 0.

10



In the case of h > 0, ω2
NT < δ2

NT and thus the Cn-PC estimator converge (in the
sense of Theorem 3.1) to factors that lie in the true factors space at a rate slower
than Bai and Ng [2002] ordinary CPEs. The two methods are implying a different
rotation matrix H which means the convergence is towards different rotation of the
space spanned by the true factors. Thus the estimated factor spaces are not directly
comparable.

Lemma 1. Assume in addition that max1≤t≤T
∑T

s=1 γN(s, t)2 ≤ M for some M < ∞
uniformly in t, then

ω2
NT

∥∥∥F̂t −H′F 0
t

∥∥∥2

= Op(1).

The proof is similar to that of Theorem 3.1.

3.2 The Feasible Cn-PC estimator

The population Sij, i 6= j, i, j = 1, · · · , N are generally unknown. In principle, the
information required is an estimate of the direction of association between two cross
sections. This doesn’t necessarily require estimating the covariance/correlation matrix.
Any statistic that measures the ordinal association between Xi and Xj functions of
the model parameters, Sij ≡ S(λi, λj, Ft). Each Sij is a measure of ordinal association
between eit and ejt.

An estimate of Sij can be defined using the estimated parameters of the model,

Ŝij = S
(
λ̂i, λ̂j, F̂t

)
(3.8)

= sgn
[
Ê (êitêjt)

]
(3.9)

= sgn

[
1

T

T∑
t=1

(
Xit − λ̂′iF̂t

)(
Xjt − λ̂′jF̂t

)]
(3.10)

A pairwise covariance/correlation estimator for τij can be computed only from the
ith and jth cross sections. This is a fast and better strategy in high-dimensions with
possibly sparse systems (N > T ), Dürre et al. [2015]. Consider the sample moment
estimator, τ̂ij, for the population τij:

τ̂ij =
1

T

T∑
t=1

êitêjt,

where êkt = Xkt − Ĉkt, where the common component estimator, Ĉkt = λ̂′kF̂t, for k =
1, · · · , N . In order to make Assumption (A3.3) operational, the population moments
τij are replaced by the sample moments τ̂ij, and sgn(τij) by sgn(τ̂ij).

Lemma 2 (Consistency of τij and sgn(τ̂ij)). Under assumptions A1-A4, as T,N →∞
we have

i. τ̂ij converges to τij at a rate Op

(
1

T 1/4

)
+Op

(
1

δNT

)
11



ii. For τ̂ij 6= 0, plim sgn(τ̂ij) = sgn(τij)

Proof in Appendix 7

3.3 Choosing M

The ’shrinkage’ parameter µNT can be estimated from the objective function L(µ̂).
The system is a function of M , the amount of cross-sectional correlation allowed in the
approximate factor structure. M is a tuning parameter that controls the amount of
shrinkage that is applied to the estimated τij. Clearly, µNT increases as M decreases.
The relationship between µNT and M is a correspondence and not a function. Al-
though positive values of µNT correspond to a single value of M , the value µNT = 0

relates to all M in
[

1
N

∑N
i=1

∑N
j=1 |E(ê(0)itê(0)jt)|,∞

)
, ê(0)it are the residuals from the

unconstrained PCA. If the factor structure is strict, then there is no need for shrinkage.

Let M0 = 1
N

∑N
i=1

∑N
j=1

∣∣∣T−1
∑T

t=1 ê(0)itê(0)jt

∣∣∣, then values of M < M0 will increase

shrinkage and induce more sparsity of the error covariance matrix. The complimentary
slackness conditions are used to deduce an estimate µ̂NT of µNT . If the constraints are
not binding and 1

N

∑N
i=1

∑N
j=1 |E(eitejt)| ≤ M , then the constrained maxima are the

PC solution
(
F̂ , Λ̂, 0

)
. On the other hand, if 1

N

∑N
i=1

∑N
j=1 |E(eitejt)| > M , then by

the complimentary slackness we must have µ̂ > 0 and 1
N

∑N
i=1

∑N
j=1 |E(eitejt)| = M

Chamberlain and Rothschild (1983) showed that asset prices have an approximate
factor structure if the largest eigenvalue of Ω = E(ete

′
t) is bounded. The largest

eigenvalue of Ω is bounded by maxi
∑N

i=1 ‖τij‖, where τij = E(eitejt), (Boivin and
Ng [2006]).Under the assumptions of an approximate factor model, there should exist
a M such that

∑N
j=1 ‖τij‖ ≤ M < ∞ for all i and N . This assumption is vital in

the development of the approximate factor structure theory. However, there is no
indication as to how much cross-correlation is permitted in practice. Boivin and Ng
[2006] use τ̂ ∗ = maxiτ̂

∗
i /N , where τ̂ ∗i =

∑N
j=1 |T−1

∑T
t=1 êitêjt| as indicator for M/N ,

which should be small and decreasing with N . That is, the bounding quantity M is of
order Op(N).

There a correspondence between the tuning parameter µNT that controls the amount
of regularization and the threshold M . If M is greater or equal than the L1,1−norm of

the PC regression sample covariance matrix, M0 =
∑N

j=1

∑N
i=1 |τ̂ij|, τ̂ij =

∑T
t=1 êitêjt/T ,

then the PCA estimator is, of course unchanged by the proposed regularization. For
smaller values of M , the constrained problem shrinks the estimated cross-sectional cor-
relations towards the origin in the L1,1 sense. One-way to calibrate and estimate M is
cross-validation. Using a normalized parameter m = M/M0 to index the constrained
estimates of F and Λ over a grid of values of s between 0 and 1 inclusive. The value
m̂ yielding the lowest estimated value for some risk function is selected. The risk can
be measured in terms of fit of the factors estimates F̂ and/or in terms of prediction
error for factor based h−steps ahead forecasts. In our analysis, we present the path of
solutions indexed by a fraction m of shrinkage factor of M0.

12



Penalized principal components regression

A closely related optimization problem to constrained PC regression problem in (3.7)
is the constrained regression

minimize
λi,Ft

(NT )−1

N∑
i=1

T∑
t=1

e2
it + κnt

1

N

N∑
i=1

N∑
j=1

|E(eitejt)| (3.11)

Problems (3.7 ) and (3.11) are equivalent (Osborne et al. [2000]). For a given κnt, 0 ≤
κnt <∞, there exists a M ≥ 0 such that the two problems share the same solution, and
vice versa. In (3.11), the parameter κnt is easily interpreted as shrinkage/regularization
parameter applied to large cross-section correlation parameters. The Lagrange mul-
tiplier µNT is the price of deviation from the bounded cross correlation constraint
imposed by the approximate factor structure. The two parameters are exchangeable
for all practical purposes.

4 Limiting distributions of constrained principal com-

ponent estimators

In this section, we study the asymptotic distributions of the proposed constrained
PC estimators. In particular, these estimators are compared to the properties of the
ordinary PC estimators of Bai [2003] and the generalized PCEs of Choi [2012].

Assumption A6. Moments and Central Limit Theorem

1. for any t, N and T , there exists an M <∞ such that

E

∥∥∥∥∥ 1√
NT

T∑
s=1

F 0
s [e′sSet − E (e′sSet)]

∥∥∥∥∥
2

≤M ;

2. for any N and T , there exists an M <∞ such that

E

∥∥∥∥∥ 1√
NT

T∑
s=1

Λ0′SesF 0′

s

∥∥∥∥∥
2

≤M ;

3. for each t, as N →∞,
1√
N

Λ0′et
d−→ N(0, Ψt)

where Ψt = limN→∞
1
N

Λ0′E(ete
′
t)Λ

0;

4. for each i, as T →∞,

1√
T

T∑
t=1

F 0
t eit

d−→ N(0,Φi),

where Φi = plimT→∞
1
T

∑T
t=1

∑T
s=1 E(F 0

t F
0′
t eiteis).
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Assumption A7 (Factor Loadings*). ‖N−1Λ0′ANΛ0 − ΣΛ∗‖ → 0 as N → ∞ for
some r × r positive definite matrix ΣΛ∗.

Assumption A8. The eigenvalues of the r × r matrix (ΣΛ∗ · ΣF ) are distinct.

Assumption A9. The tuning parameter µNT satisfies:

1. 1
δNT

= o(µNT ),
√
N√

TδNT
= o(µNT ) and µNT = o(1);

2. µNT
∑

i 6=j |τij| → 0.

Theorem 4.1. Suppose that Assumptions A1-A7 hold.

1. If
√
N

TµNT
→ 0,

√
N
(
F̂t −H′F 0

t

)
d−→ N(0, V −1/2QΨtQ′V −1/2). (4.1)

Proof in Appendix B.2

Efficiency of Cn-PC estimator

The main motivation of this paper is to improve on the existing estimators in terms
of efficiency. The ordinary PCEs have asymptotic distribution (Theorem 1 of Bai and
Ng [2003]):

√
N
(
F̂t −H ′F 0

t

)
d−→ N(0, V −1/2

opc QopcΨtQ
′
opcV

−1/2
opc ), (4.2)

where Qopc = Σ
−1/2
Λ ΥopcV

1/2
opc , Υopc is eigenvector of Σ

1/2
Λ ΣFΣ

1/2
Λ , and Vopc = QopcΣΛQ

′
opc.

It is not obvious to compare the asymptotic variance covariance matrices in (4.1)
and (4.2) because the Cn-PC estimator and PCEs are estimating different objects.
These estimators are estimating different rotations of the true factors because H in the
PCEs and H in the Cn-PC estimator are generally different.

Consider the case of a factor structure with one common factor. This is an inter-
esting case where H and H are identical and equal to the scalar Σ

−1/2
F . In this case,

PCEs and Cn-PC estimator are estimating the same object Ft/
√

ΣF . Since in this case

(of r = 1), Υ = Υopc =≡ 1, Q = Qopc = Σ
−1/2
F , then the Cn-PC estimator of F 0

t

F̂t w
F 0
t√

ΣF

+
1√
N
N

(
0,

1

ΣF

Σ−1
Λ∗ΨtΣ

−1
Λ∗

)
(4.3)

and the PCEs have

F̂t,opc w
F 0
t√

ΣF

+
1√
N
N

(
0,

1

ΣF

Σ−1
Λ ΨtΣ

−1
Λ

)
, (4.4)
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where

ΣΛ∗ = ΣΛ + µNT plim
Λ′SΛ

N
≥ ΣΛ, (4.5)

because S is positive definite and µNT ≥ 0. In this case, the Cn-PC estimator are more
efficient than the PCEs with ratio of (asymptotic) variances equal to:

V (F̂t,opc)

V (F̂t)
=

(
1 + µNT plim

Λ′SΛ

N

)2

.

5 Monte Carlo Simulations

5.1 Simulations designs

This section presents the Monte Carlo experiments designed to study the small sample
properties of the proposed Cn-PC estimator and their performance relative to the
ordinary PCEs in the presence of cross-correlated errors. The experimental design for
the Monte Carlo simulation adopts the same covariance structure as in Boivin and Ng
[2006]. Let the total number of cross-sections N be divided into three groups of sizes
N1, N2 and N3 such as, N = N1 + N2 + N3. Let the errors uit be the building blocks
for the errors dynamics with uit ∼ N(0, 1), i = 1, · · · , N , and construct the errors eit
where

N1 : eit = σ1uit,

N2 : eit = σ2uit,

N3 : eit = σ3ẽit, ẽit = uit +
∑C

j=1 ρijujt

In this experiment, the errors in the first N1 series are mutually uncorrelated, the errors
in the next N2 are also mutually uncorrelated but their variance differ from the first
series, σ2

2 > σ2
1. Cross correlation is introduced in the last N3 series. The latter are

correlated with a proportion C from the N1 group. The cross correlation matrix Ω13

therefore has C · N3 non-zero elements. The correlation coefficients ρij denote cross-
correlation of series i ∈ {1, N1} and j ∈ {N1 +N2 + 1, N} and is drawn from a uniform
distribution U [0.05, 0.7]. The error variance in the third group is σ2

3 = σ2
1.The error

covariance matrix takes the form:

Ωii = σ2
1, 1 ≤ i ≤ N1

Ωii = σ2
2, N1 + 1 ≤ i ≤ N1 +N2

Ωii = σ2
3, N1 +N2 + 1 ≤ i ≤ N

Ωij = 0, 1 ≤ i, j ≤ N1 +N2

Ωij = σ1σ3ρij, i ≤ C,N1 +N2 + 1 ≤ j ≤ N.

Figure 1 displays an example of the pattern of dependence structure in the simula-
tion design. The variances are equal to one, and thus the graph represents a sparsity
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Figure 1: Sparsity of the errors covariance matrix, N = 50

plot for both the covariance and the correlation matrix. In this example, there is clus-
tering of correlations between group 1 and group 3 as well as within group 1 and group
3 series.

The common factors and the loadings are fixed throughout the simulation, which
corresponds to analysis conditional on F 0 and Λ0. The number of factors r is known
and fixed. The study considers two cases, r equal to one and two. The panel dimension
takes combinations of T = 50, 100, and N = 50, 100, 150. Data are generated through
Xit =

∑r
m=1 λimFmt+eit. Our Monte Carlo results are based on L = 2, 000 repetitions.

For each repetition l = 1, · · · , L, the Monte Carlo experiment is carried out as
follows.

(i) Compute the ordinary principal components estimators of F̂
(l)
OLS−PC , Λ̂

(l)′

OLS−PC

and the estimated errors êlOLS−PC = X(l)− Λ̂
(l)′

OLS−PCF̂
(l)
OLS−PC . Using the sample

covariance matrix Ω̂OLS−PC = ê′ê/NT , construct an estimate for sign matrix,
Ŝ(l).

(ii) Given a value of M = m ·M0, where m ∈ [0, 1], compute
(
F̂ (l), µ̂lNT

)
:

(a) Begin with a starting value µNT = µ0, here we take µ0 = 0.5
√
tr(ê′ê)/tr(ê′AN ê),

and Aµ = IN − µS, find the optimal solution to the dual objective function
L(µ):

µ̂NT = arg maxµ(NT )−1
[
tr XAµX′ − tr F̂ ′µXAµX′F̂µ

]
−M, (5.1)

where F̂µ is
√
T times eigenvectors corresponding to the largest r eigenvalues

of ΨN,µ = 1
T
X′AµX. This is iterated to convergence and to optimal values

F̂ (l), µ̂
(l)
NT .

(b) Compute the Cn-PC estimator for the loadings as a linear projection of X
on F̂ (l): Λ̂(l) = 1

T
X′F̂ (l).

(iii) Compute the following measures of performance.
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- Percentage explained variation. Boivin and Ng [2006] use the percentage of
variation in the true factors captured by the estimated structure,

S
(l)

F̂ ,F 0
=

tr

(
F 0′F̂ (l)

(
F̂ (l)′F̂ (l)

)−1

F̂ (l)′F 0

)
tr(F 0′F 0)

.

- Small sample bias. The estimated factors and the true factors are not di-
rectly comparable. The estimated factors span a transformation of the true
factors. In comparing the small sample bias of the Cn-PC estimator and
the benchmark PCEs, one has to account for the differences in the rotation
matrices H and H. We compute the small sample bias of the (rotated)
factors F̃t ≡ H−1F̂t:

bias(l) =
1

L

L∑
l=1

F̃
(l)
tk − F

0
tk, (5.2)

for k = 1 and t = 1, [T/2], T .

- Empirical mean squared errors (MSEs). For each F̂
(l)
t , we compute

MSEs(l) = r−1
∥∥∥F̂ (l)

t − F
0(l)
t

∥∥∥2

. (5.3)

5.2 The ’Diffusion Index’ framework

Consider the forecasting model whereby we are interested in the one h-ahead forecast
of a series yt. The series to be forecasted in both Monte Carlos are generated by

yt+h = β0 +
r∑
j=1

βjF
0
jt + εt+h ≡ yF 0,t+h|t + εt+h,

where εt ∼ N(0, σ2
ε ), and σ2

ε is chosen such that the R2 of the forecasting equation is
κy. The infeasible diffusion index forecast is ŷF 0,t+h|t, which only requires estimation of
β. The feasible diffusion index forecast is denoted ŷF̂ ,t+h|t, which requires estimation
of both the factors and β. A forecast using the observed N series is not feasible if N
is large. However, one can use the factor structure of Xit in equation (2.1) and use
F 0
t ≡ {F 0

jt}rj=1 to account for the important drivers of common variation in X:

ŷF 0,t+h|It = β̂0 + F 0′

t β̂. (5.4)

This forecast is unfeasible since the true factors F 0
t are unobserved. Given estimates

F̂t,N ≡ {F̂jt,N}r̂j=1, using the data from the N series and conditional on information at
time It, a feasible factor augmented forecast, also known as a ’diffusion index’ forecast
(Stock and Watson [2002a]), is

ŷF̂t,N ,t+1|It = β̂0 + F̂ ′t,N β̂. (5.5)
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Table 1: Small sample bias and standard errors for the estimated factors F̃t,1, for t = [T/2], T
and r = 1

Cn-PC PCE

F̃[T/2],1 F̃T,1 F̃[T/2],1 F̃T,1
T N bias std bias std bias std bias std
50 50 -0.018 0.190 -0.092 0.163 -0.024 0.037 -0.139 0.097

100 0.001 0.179 -0.207 0.092 0.033 0.031 -0.025 0.008
150 -0.155 0.136 0.293 0.137 -0.211 0.103 0.353 0.166

100 50 -0.004 0.118 0.008 0.092 -0.046 0.025 0.121 0.015
100 -0.128 0.102 -0.109 0.106 -0.120 0.079 -0.114 0.054
150 -0.168 0.105 -0.049 0.115 -0.126 0.063 -0.013 0.053

150 50 -0.007 0.089 0.026 0.078 -0.032 0.053 0.070 0.081
100 0.018 0.097 -0.113 0.086 0.054 0.022 -0.180 0.032
150 0.093 0.062 0.031 0.065 -0.000 0.020 -0.065 0.021

The results are for the sampling distribution of F̃t = J−1F̂t, J = H for Cn-PC and J = H for PCE. The shrinkage
factor M is chosen by a 10−fold cross-validation.

The feasible ’diffusion index’ forecast requires the estimation of both Ft and β and thus
depends on the properties of the ’generated’ regressors F̂t,N .

We compute the empirical mean-squared-forecast errors (MSFE) and, Boivin and
Ng [2006]

MSFEŷF̂ ,ŷF0 =
1

J

T+J−1∑
t=T

(
ŷF 0,t+1|t − ŷF̂ ,t+1|t

)2

(5.6)

Sβ̂,β =
1

J

T+J−1∑
t=T

(
yF̂ ,t+1|t − ŷF̂ ,t+1|t

)2

(5.7)

The statistic(5.6) measures the loss in forecast accuracy due to Ft being unobserved
and estimated. If the estimated factors are consistent and span the same space as the
true factors, the difference in forecasting performance of the two predictors F̂t,N and
F 0
t should be negligible and SŷF̂ ,ŷF0 close to one. The larger is SŷF̂ ,ŷF0 , the closer are

the ’diffusion index’ forecasts to those generated by the (infeasible) forecasts based on
observed factors. The statistic in (5.7) assesses the accuracy of the ’diffusion index’
forecasts relative to the conditional mean forecasts which requires only estimation of
Ft. Smaller values of Sβ̂,β are desirable.

A pseudo-out-of-sample forecasting experiment with 10 years rolling window cor-
responds to T = 120 and is carried out for 10 years into the future, J = 120. The
panel size in this experiment are T = 120 and N = 131 to reflect the panel dimensions
commonly used in macroeconomic forecasting.

5.3 Simulation results

Fixed M

Table 1 reports the small sample bias and sample standard deviation of the estimated
factors F̃tj for j = 1. For the sake of brevity, the results are computed for t set to equal
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Figure 2: Accuracy of the Cn-PC estimators of common factors: Empirical MSEs

Note: The MSEs are computed for the rotated estimated factor matrix F̃t = J F̂t. The shrinkage factor M is equal to
M0 for which the constrained problem has the same solution as its dual penalized PC regression.

[T/2] and T . The number of factors in this design experiment is r = 1. Note that in all
of Monte Carlo results, the number of factors r is assumed to be known. The threshold
M = M is selected with 10-fold cross validation. Results show that, overall, the
proposed constrained estimators (Cn-PC estimator) have smaller bias compared to the
ordinary principal components estimators (PCEs). The sample standard deviation of
the Cn-PC estimator is larger than those of the PCEs for panel dimensions considered
in the experiment.

Figure 2 displays the sample MSEs (5.3) for the rotated factors matrix F̃t, estimated
using the Cn-PC over a grid of values for the regularization parameter µNT and for a
given M . The results shown are equivalent to the penalized PC estimator that solves
(3.11). Results for the PCEs are displayed in dashed line. The left panel is for the case
with one true factor and the right panel is for the case of two factors in the population
model. As expected, the proposed technique with µNT = 0 gives the same factors’
accuracy in terms of MSEs as the standard principal components method. As the
penalization increases, the MSEs for model with r = 1 decrease sharply. For r = 2
DGP, the MSEs of F̃t also reaches a stable value after some dynamics for small µNT .
The relationship between MSE and µNT is not monotonic.

Figure (4) displays the MSEs for the Cn-PC estimates of the common factors F
(right panel) and the common components Ĉ (left panel). It is observed that the GLS-
PC delivers a 22% decrease in the MSE of the estimated factors. The Cn-PC estimator
proves more accurate than the GLS-PC, with potential gains in MSE ranging from 5%
to 35%, depending on M .

Consider the case of the common factors in the left panel. Accuracy of the Cn-PC,
as measured by the MSE, increases as N becomes large. This is not the case for the
PC estimators where the gains in forecasting accuracy are very small.

5.3.1 M indexed path

Figure 3 displays the path of the statistic SF̂ ,F 0 indexed by m = M/M0. Note that in

this experiment, the Cn-PC estimator F̂t and µ̂NT are jointly estimated. The Cn-PC
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Figure 3: Accuracy of Cn-PC estimators of common factors F̂ : SF̂ ,F 0

estimator results are shown in circle-dot dashed line and the PCEs in bold dashed line.
The left panel plots the results for r = 2 and the right panel for one factor model, r = 1.
The right panel shows that the PCEs is doing a pretty good job with statistic values
in the 90% range. However, there is also a clear advantage of the Cn-PC estimator
with values that range from 0.97 to 0.98. For the two-factors model on the left side of
the figure, the estimated factors span less perfectly the true space of the true factors.
The explained variation in the true factors for the PCEs is low in the 40% range. The
Cn-PC estimator improves the ability of the factors estimates to span the factor space
with values reaching 0.75. The plot suggests that the relation between M and SF̂ ,F
is not monotonic. There are some values of M for which the Cn-PC estimators do
slightly worse than the standard PC.

These plots display how the estimated statistics are affected by the model threshold
selection method. These can be used as graphical tools for the selection of the parame-
ter M in a similar way as the ridge-trace plot is used in the context of ridge regression
[Hoerl et al., 1975]. Such plots provide a visual assessment of the effect on coefficient
of the choice of the ridge regularization parameter, thus allowing the analyst to make
a more informed decision. The selected M would correspond to the threshold value at
which the value of the statistic of interest stabilizes.

In Table 2, the estimator GLS-PC refers to Choi [2012] estimator that uses PCE
sample covariance estimator to compute a feasible generalized PC efficient estimator.
The OLS-PC are very inaccurate in terms of SF̂ ,F 0 . The GLS-PC performs better in
case of T large and N small. However, as N becomes larger, PC-GLS becomes less
accurate. When N is large, GLS-PC performs poorly with SF,F 0 considerably lower
than the ones for the PC and Cn-PC estimators. The low accuracy of PC-GLS can be
explained by the poor accuracy and unstable estimator of the covariance matrix when
N is large and close to T .
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Figure 4: Empirical mean squared errors (MSEs) of Cn-PC estimators of common factors F̂
and common components Ĉ

Table 2: Efficiency of estimated common factors: SF̂ ,F 0 and MSEF̂

SF̂ ,F 0 MSEF̂
T N PC Cn-PC PC-GLS PC Cn-PC PC-GLS

100 25 0.13 0.319 0.434 2.17 2.16 2.13
50 0.12 0.382 0.157 1.84 1.76 1.77

150 50 0.10 0.337 0.185 1.78 1.95 1.97
100 0.10 0.580 0.078 1.83 1.89 1.94

55 50 0.24 0.505 0.072 1.94 1.95 1.75
50 25 0.26 0.341 0.252 1.96 1.36 2.02

Sample correlations

Similar to the use ridge-trace plot which shows graphically the effect of the shrinkage
parameter on the coefficients in the linear regression model, one can look at the effect
of the threshold M on the elements |τ̂ij| and the sample cross-section correlations. We
use this strategy to select the threshold M for the results in this section.

Figure 5 shows histograms of the sampling distribution of ω̂ij for a selection of
values for i and j. We select cases where ω0

ij = 0 and ω0
ij 6= 0 in the population model.

The dotted vertical line marks the true population value. The Cn-PC estimators are
shown in the black colored histogram.

In the top two panels, the results show that for the PCEs estimates of the sample
correlations, the distribution is almost symmetric around zero and fat tailed. The
Cn-PC estimator estimates are much smaller and concentrated around a small average
value. This observation is independent of the true population value. This is due to
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the fact that the Cn-PC estimator is shrinking the average absolute value of these
correlations. The shrinkage is not applied to each correlation coefficient.

The Cn-PC estimator’s correlations are shrunk relative to the PCEs. This reduction
in the size of the correlations is less significant for the case of N = T = 150, although
the spread is still smaller.

Figure 6 shows the sampling distribution of maximum average cross-correlation τ̂ ∗.
The results show that overall, the estimated τ̂ ∗ based on Cn-PC estimator are lower
than those based on PCEs. In the first panel with N = 50 and T = 100, τ̂ ∗ for Cn-PC
estimator support ranges from 0.02 to 0.46, while for PCEs the range starts from 0.47
to 0.66.

These results depend on the panel dimension. For T = N = 150, the results are less
promising, although the distribution of τ̂ ∗ is skewed to the left, favoring lower values.

Simulated forecasts

Figure 7 displays the statistics Sŷ,y and Sβ̂,β0 indexed by m = M/M0. The dotted-
dashed circle line plots the results for Cn-PC estimator, while the benchmark PCEs
are shown in the straight dashed line. The plot also shows the results for the weighted-
PC estimator [Boivin and Ng, 2006], which uses as weights wiT equal to the inverse of
N−1

∑N
j=1 |Ω̂ij| for each error eit in the PC objective function. The results correspond

to a panel with T = 120 and N = 130, to reflect the panel dimensions that are
encountered in macroeconomic forecasting and arbitrage pricing applications. The
plots correspond to averages over 1000 replications.

As expected, the weighted-PC estimator outperforms the PCEs with smaller values
of Sŷ,y and Sβ̂,β0 . The shrinkage factor M = m ·M0 matters for the performance of the
Cn-PC. Unlike the results we have documented earlier with respect to the accuracy of
the factors, there is no pattern to the relationship between M and the diffusion index
forecasts. But the results show that, for small values of m, the Cn-PC can outperform
the weighted-PC by sizable margins.

6 Empirical Example

This section applies the Cn-PC estimator to a forecasting experiment for the U.S.
Index of Industrial Production (IPS10) and Consumer Price Index (PUNEW) using the
dataset provided by Stock and Watson [2002a]. The data include real variables such as
sectoral industrial production, employment and hours worked; nominal variables such
as consumer and price indexes, wages, money aggregates; stock prices and exchange
rates. The data series are transformed to achieve stationarity: monthly growth rates
for real variables (e.g. industrial production, sales) and first differences for variables
already expressed in rates (e.g. unemployment rate, capacity utilization). The dataset
comprises of monthly observations from 1959:01 to 2003:12 and 131 time series. The
sample is divided into an in-sample portion of size T = 120 (1959:01 to 1969:12) and an
out-of-sample evaluation portion with first date December 1970 and last date December

22



Table 3: Pseudo-out-of-sample mean squared forecasts errors for US inflation and industrial
production

IPS10 PUNEW
r = 10 r = 5 r = 10 r = 5

h=12 PC Cn-PC PC Cn-PC PC Cn-PC PC Cn-PC
1970-2002 MSFE 0.51 0.51 0.52 0.50 0.64 0.62 0.57 0.57

V ar 0.85 0.85 0.66 0.66 0.53 0.53 0.60 0.60
1970-1985 MSFE 0.32 0.31 0.31 0.31 0.43 0.40 0.38 0.38

V ar 0.95 0.94 0.75 0.75 0.45 0.45 0.56 0.56
1985-2002 MSFE 1.09 1.08 1.13 1.11 1.65 1.63 1.46 1.40

V ar 0.53 0.50 0.39 0.43 0.87 0.85 0.77 0.75

IPS10 PUNEW
h = 1 h = 4 h = 1 h = 4

r=7 PC Cn-PC PC Cn-PC PC Cn-PC PC Cn-PC
1970-2002 MSFE 0.72 0.70 0.57 0.57 0.78 0.75 0.67 0.67

V ar 0.42 0.38 0.56 0.56 0.27 0.27 0.37 0.37
1970-1985 MSFE 0.66 0.61 0.49 0.49 0.75 0.71 0.56 0.55

V ar 0.46 0.43 0.56 0.56 0.26 0.25 0.42 0.41
1985-2002 MSFE 0.86 0.86 0.86 0.86 0.82 0.82 0.97 0.97

V ar 0.28 0.28 0.54 0.54 0.28 0.28 0.25 0.25

2003. Therefore, there are a total of M = 397 out-of-sample evaluation points split
into pre- and post-1985 periods with cat-off date December 1984. The models and
parameters are re-estimated and the 12-step-ahead forecasts are computed for each
month t = T +12, · · ·T +12+M −1 using a rolling window scheme that uses the most
recent 10 years of monthly data, that is data indexed t− 12− T + 1, · · · , t− 12.

In this empirical example, the Cn-PC estimator is computed using a threshold
parameter M that is chosen using a ten-fold cross-validation.

Table 3 reports the mean squared forecasts error (MSFE) relative to the random
walk and the variance (var) of the forecasts relative to the variance of the series to be
forecast. We consider three sample periods and consider different values for the forecast
horizon h. The number of factors r is selected using Bai and Ng [2002] information
criterion ICp1 , which returns and estimate of r̂ = 7. We also show results for arbitrary
values of r = 5, 10.

It is observed that the gains in forecast accuracy depend on the sample period and
on the target series. Generally, the gains are not significant and range from 0% to 6%
decrease in the pseudo-out-of-sample mean-squared forecast errors.

Consumer price Index forecasts appear to benefit the most from incorporating de-
pendence features using the Cn-PC estimators of the predictors F̂t. These benefits are
more appreciable during the period of post moderation of 1985-2002. This is supported
by the findings in the literature. During this period, predictability of the price and
output series is problematic partly because of the instabilities in the data and of the
inflation targeting policy of the Federal Reserve Bank.

7 Conclusion

This paper proposes a novel PC-based method for incorporating the features of cross-
correlation in the data in large factor models. The method allows for approximate factor
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structure in the sense of Chamberlain and Rothschild [1983] and embeds the assumption
of bounded cross-sectional dependence as external information in the PC method. This
constrained estimation is easily implemented within the classical principal components
analysis. The method does not require inverting a large covariance matrix and works
through a shrinkage mechanism applied to the sample cross correlations. The Monte
Carlo results show that the Cn-PC estimator is generally more efficient than the PC and
GLS-PC for large systems. Applied to real data, the results suggest that improvements
in the accuracy of the estimated factors do not always lead to improvements into the
forecasts accuracy, but that the results depend on the target series and on the forecast
horizon.
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Hallin, M., Lǐska, R., 2007. Determining the number of factors in the general dynamic
factor model. Journal of the American Statistical Association 102 (478), 603–617.

Hoerl, A. E., Kennard, R. W., Baldwin, K. F., 1975. Ridge regression: Some simula-
tions. Communications in Statistics 4 (2), 105––123.

Kapetanios, G., 2010. A testing procedure for determining the number of factors in
approximate factor models with large datasets. Journal of Business and Economics
Statistics 28, 397–409.

25



Lam, C., Fan, J., 2009a. The Annals of Statistics 37 (6B), 4254–4278.

Lam, C., Fan, J., 2009b. Sparsistency and rates of convergence in large covariance
matrix estimation. The Annals of Statistics 37 (6B), 4254–4278.

Ledoit, O., Wolf, M., 2004. A well-conditioned estimator for large-dimensional covari-
ance matrices. Journal Multivariate Analysis 88, 365–411.

Ledoit, O., Wolf, M., 2012. Nonlinear shrinkage estimation of large-dimensional covari-
ance matrices. The Annals of Statistics 40 (2), 1024—-1060.

Onatski, A., 2009. Testing hypotheses about the number of factors in large factor
models. Econometrica 77 (5), 1447–1479.

Onatski, A., 2010. Determining the number of factors from empirical distribution of
eigenvalues. The Review of Economics and Statistics 92 (4), 1004–1016.

Osborne, M. R., Presnell, B., Turlach, B. A., 2000. On the LASSO and its dual. Journal
of Computational and Graphical Statistics 9 (2), 319–337.

Stock, J., H., Watson, M., W., 1998. Diffusion indexes. NBER, Working Papers 6702.

Stock, J. H., Watson, M. ., 2006. Forecasting with many predictors. In Handbook of
Economic Forecasting 1, 551–554.

Stock, J. H., Watson, M. W., 2002a. Forecasting using principal components from
a large number of predictors. Journal of the American Statistical Association 97,
1167–1179.

Stock, J. H., Watson, M. W., 2002b. Macroeconomic forecasting using diffusion indexes.
Journal of Business and Economic Statistics 20 (2), 147–162.

Appendix A1: Cn-PC Estimators

The critical points of the function (3.7) are found by solving the first order conditions
on the feasible set:

(I) :
∂L(Λ, F )

∂Λ
|Λ̂,F̂ = 0 (7.1)

(II) :
∂L(Λ, F )

∂F
|Λ̂,F̂ = 0 (7.2)

M ≥ (NT )−1

N∑
t=1

ê′tS êt, µ̂NT ≥ 0, µ̂NT

(
M − (NT )−1

N∑
t=1

ê′tS êt

)
= 0 (7.3)
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The conditions in (7.3) are known as the complementary slackness. The first two sets
of conditions in 7.1 and 7.2, lead to the following:

(I) :
T∑
t=1

(IN + µ̂NTS) êtF̂
′
t = 0 (7.4)

Λ̂ =

(
T∑
t=1

X tF
′
t

)(
T∑
t=1

FtF
′
t

)−1

(7.5)

(II) :
T∑
t=1

Λ̂′ (IN + µ̂NTS) êt = 0 (7.6)

F̂t =
(

Λ̂′ (IN + µ̂NTS) Λ̂
)−1

Λ̂′ (IN + µ̂NTS)X t (7.7)

Substituting (7.5) into the Lagrangian and imposing the identification restriction F ′F/T =
Ir, this concentrates out Λ to obtain a reduced Lagrangian that is a function of F and
µ:

L(F̂ , µ̂NT , r) = (NT )−1

T∑
t=1

ê′têt − µ

[
M/N − (N2T )−1

N∑
t=1

ê′tS êt

]
= (NT )−1trace [ê (IN + µ̂NTS) ê]−M

=
trace X (IN + µ̂NTS)X ′

NT
− trace F̂ ′ (X (IN + µ̂NTS) X′) F̂

NT
− µ̂NTM

For a given µ̂NT , the optimization problem is identical to maximizing trace F ′
(

X(IN+µ̂NTS)X′

T

)
F

with respect to F . The estimated factor matrix, denoted by F̂µ̂NT to the latter problem
is the matrix with columns consisting of the principal components of, X (IN + µ̂NTS) X′.
Technically, consider the spectral decomposition of the matrix of,

Ψ′N,µ̂ = X (IN + µ̂NTS) X′,

ΨN,µ̂Γµ̂ = Γµ̂∆µ̂,

where ∆µ̂ = diag(d1,µ̂, · · · , dN,µ̂) is a diagonal matrix with da,µ̂ corresponding to the
ath highest eigenvalue of ΨN,µ̂, and Γµ̂ = (ϕ1,µ̂, · · · , ϕN,µ̂) is the matrix whose columns
corresponds to the normalized eigenvectors of ΨN,µ̂. The ’normalized’ constrained PC

estimators (Cn-PC estimator) of F(µ̂) are F̂k,t = 1√
dk,µ̂

ϕ′k,µ̂X t, for k = 1, · · · , r.

To summarize,

F̂µ̂NT :
√
T × first r principal components of X (IN + µ̂NTS))X′, (7.8)

Λ̂µ̂NT : Λ̂µ̂NT = X′F̂µ̂NT /T, (7.9)

µ : M = (NT )−1

N∑
t=1

ê′tS êt (7.10)
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I solve for (F̂µ̂, µ̂) which minimizes the reduced Lagrangian L(F, µ) in (7.8) subject to
the constraint F ′F/T = Ir. The problem can be solved as in the standard primal-dual
procedure, whereby the Lagrangian is further concentrated to a reduced function of µ,
after replacing F by F̂ (µ). The dual problem solves the maximum of the concentrated
objective function, L(µ), which is equal to:

(NT )−1
[
tr X (IN + µ̂NTS)X ′ − tr F̂ ′µ̂NT (X (IN + µ̂NTS) X′) F̂µ̂NT

]
− µ̂NTM (7.11)

APPENDIX B: Proofs of Main results

B.1. Proof of Theorem 1

The main results in this paper can be proven using some of the Lemma’s of Bai and
Ng [2002] and Bai [2003]. I will therefore omit many of the details that are not worth
reporting. In all of the proofs, I assume that the true number of factors (in the popu-
lation) r is known.

Proof of Theorem 1 Let VNT be an r×r matrix consisting of the largest eigenval-
ues of the matrix 1

NT
X (IN + µNTS) X′ in descending order. Denote AN ≡ IN +µNTS.

The Cn-PC estimator estimates for the common factors F̂ are defined as the eigenvec-
tors corresponding to the largest eigenvalues of the matrix XANX′ and thus satisfy the
relation F̂ = 1

NT
XANX′F̂ V −1

NT by the definition of eigenvalues and eigenvectors. Let

the rotation matrix H =
(

Λ′ANΛ
N

)(
F ′F̂
T

)
V −1
NT . Then the following relation originates

from Choi [2012] (if AN is replaced with Ω−1)who generalized the original expressions
in Bai [2003] and Bai and Ng [2002] (corresponding to µNT = 0),

F̂ − FH =
1

NT
(XANX′) F̂ V −1

NT −
1

NT
F (Λ′ANΛ)F ′F̂ V −1

NT

=
1

NT
(XANX′ − F (Λ′ANΛ)F ′) F̂ V −1

NT

=
1

NT
(eANe′ + eANΛF ′ + FΛ′ANe) F̂ V −1

NT .

In vector form, the relation becomes,

F̂t −H′Ft =
1

NT
V −1
NT F̂

′ (eANet + F 0Λ′ANet + eANΛF 0
t

)
(7.12a)

= V −1
NT

(
1

NT

T∑
s=1

F̂se
′
sANet +

1

NT

T∑
s=1

F̂sF
0′

s Λ′ANet +
1

NT

T∑
s=1

F̂se
′
sANΛF 0

t

)
(7.12b)

= V −1
NT (aNT,t + bNT,t + cNT,t) (7.12c)
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Let ANj be the jth column of the matrix AN with elements AN,ij, then we can write:

aNT,t =
1

NT

T∑
s=1

F̂se
′
sANet =

1

NT

T∑
s=1

F̂s

N∑
j=1

N∑
i=1

eisAN,ijejt

=
1

NT

T∑
s=1

F̂s

[
N∑
l=1

(
elselt + µNT

N∑
k 6=l

Sileiselt

)]

Note that the latter comes from the fact that the elements of AN = IN + µNTS are
equal to AN,ii = 1 for i = 1, · · · , N and AN,ij = µNTSij for 1 ≤ i 6= j ≤ N .

aNT,t =
1

NT

T∑
s=1

F̂s

N∑
l=1

elselt + µNT
1

NT

T∑
s=1

F̂s

N∑
k 6=l

Sileiselt

=
1

NT

T∑
s=1

F̂s

N∑
l=1

elselt + µNT
1

NT

T∑
s=1

F̂s

(
N∑
l=1

N∑
i=1

Sileiselt −
N∑
l=1

elselt

)

=
1

NT

T∑
s=1

N∑
l=1

F̂selselt(1− µNT ) + µNT
1

NT

T∑
s=1

F̂s

N∑
l=1

N∑
i=1

Sileiselt

=

[
1

T

T∑
s=1

F̂sγN(s, t) +
1

T

T∑
s=1

F̂sςst

]
(1− µNT ) + µNT

[
1

NT

T∑
s=1

F̂s

N∑
l=1

N∑
i=1

Sileiselt

]
,

where γN(s, t) = E
(
N−1

∑N
i=1 eiteis

)
and ςst =

e′set
N
−γN(s, t) are defined as in Bai and

Ng [2002]. Similarly, we can write:

bNT,t =

[
1

T

T∑
s=1

F̂sηst

]
(1− µNT ) + µNT

[
1

T

T∑
s=1

F̂s

(
Λ0′(IN + S)et

N

)
,

]

where ηst = F 0′
s Λ0′et/N . The last term cNT,t is equal to bNT,t since, e′sΛF

0
t /N = ηst.

Using the Cauchy-Schwarz inequality, that states (
∑m

s=1 zs)
2 ≤ m

∑m
s=1 z

2
s , we have

‖F̂t −H′F 0
t ‖2 ≤ 3

(
‖aNT,t‖2 + ‖bNT,t‖2 + ‖cNT,t‖2

)
,

and

1

T

T∑
t=1

‖F̂t −H′F 0
t ‖2 ≤ 3

T

T∑
t=1

(
‖aNT,t‖2 + ‖bNT,t‖2 + ‖cNT,t‖2

)
.

Now

‖aNT,t‖2 ≤ 3(1− µNT )2T−2‖
T∑
s=1

F̂sγN(s, t)‖2 + 3(1− µNT )2T−2‖
T∑
s=1

F̂sςst‖2

+ 3µ2
NTT

−2‖
T∑
s=1

F̂s

N∑
l=1

N∑
i=1

Sileiselt/N‖2.
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Bai and Ng [2002] in the proof of their Theorem 1 in page 213, show that

T−1

T∑
t=1

‖T−1

T∑
s=1

F̂sγN(s, t)‖2 = Op

(
T−1

)
,

T−1‖
T∑
s=1

F̂sςst/T‖2 = Op

(
N−1

For the last term in
∑T

t=1 aNT,t/T :

T−1

T∑
t=1

‖
T∑
s=1

F̂s

N∑
l=1

N∑
i=1

Sileiselt/NT‖2 =

T∑
s=1

F̂s

N∑
l=1

N∑
i=1

Sileiselt/NT =
1

T

T∑
s=1

F̂sξN(s, t) +
1

T

T∑
s=1

F̂s%N(s, t)

where
ξN(s, t) = N−1e′sSet − %N(s, t)

Now,

‖ 1

T

T∑
s=1

F̂s%N(s, t)‖ ≤

(
1

T

T∑
s=1

‖F̂s‖2

)1/2(
1

T

T∑
s=1

|%N(s, t)|2
)1/2

= Op(1) ·O
(

1√
T

)
because of the normalization F̂ ′F̂ /T = Ir and Assumption A5(1). Thus, 1

T

∑T
t=1‖

1
T

∑T
s=1 F̂s%N(s, t)‖2 =

Op

(
1
T

)
. Now,

1

T

T∑
t=1

‖ 1

T

T∑
s=1

F̂sξN(s, t)‖2 ≤ 1

T

(
1

T

T∑
s=1

‖F̂s‖

)1/2
 1

T 2

T∑
s=1

T∑
s′=1

(
T∑
t=1

ξN(s, t)ξN(s′, t)

)2
1/2

≤ 1

T
Op(1) · T

N
= Op

(
1

N

)

since E
(∑T

t=1 ξN(s, t)ξN(s′, t)
)2

≤ T 2 maxs,t E |ξN(s, t)|4, and from Assumption A5(2),

E |ξN(s, t)|4 =
1

N2
E
∣∣N−1/2 [e′sSet − E(e′sSet)]

∣∣4 ≤ N−2M.

To summarize,

1

T

T∑
t=1

‖aNT,t‖2 =

[
Op

(
1

T

)
+Op

(
1

N

)]
(2µ2

NT − 2µNT + 1)
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For bNT,t,

1

T

T∑
t=1

‖bNT,t‖2 ≤ 1

T

T∑
t=1

‖ 1

T

T∑
s=1

F̂sηst‖2(1− µNT )2 + µ2
NT

1

T

T∑
t=1

‖ 1

T

T∑
s=1

F̂s

(
F 0′
s Λ0′Set
N

)
‖2.

The proof of Theorem 1 in Bai and Ng [2002] show that: 1
T

∑T
t=1‖

1
T

∑T
s=1 F̂sηst‖2 =

Op (N−1). Consider the second term,

1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

F̂s

(
F 0′
s Λ0′Set
N

)∥∥∥∥∥
2

≤ 1

NT

T∑
t=1

[(
1

T

T∑
s=1

‖F̂s‖2

)(
1

T

T∑
s=1

‖F 0
s ‖2

)∥∥∥∥Λ0′Set√
N

∥∥∥∥2
]

= Op

(
1

N

)
,

because of Assumption A5(3), and Assumption A1(1). Thus,

1

T

T∑
t=1

‖bNT,t‖2 = Op

(
1

N

)
[µ2
NT + (µNT − 1)2]

Combining all the results, we have

1

T

T∑
t=1

∥∥∥F̂t −H′Ft∥∥∥2

=

[
Op

(
1

T

)
+Op

(
1

N

)]
(2µ2

NT − 2µNT + 1)

= V −1
NT

[
Op

(
δ−2
NT

)
+Op

(
µ2
NT δ

−2
NT

)]
.

The last step is to characterize the convergence of the matrix VNT ,

‖VNT‖ =
1

T

∥∥∥F̂ ′ (XANX′) F̂
∥∥∥

≤
∥∥∥F̂ ′F̂ /T∥∥∥ ‖XANX′/N‖

≤ Op(1) · µ2
N (‖XX′/N‖ ‖XX′/N‖)

= µ2
NOp(1).

At last,

1

T

T∑
t=1

∥∥∥V −1
NT

(
F̂t −H′Ft

)∥∥∥2

≤ ‖VNT‖2

[
1

T

T∑
t=1

∥∥∥F̂t −H′Ft∥∥∥2
]

≤ µ−2
NT

[
Op

(
δ−2
NT

)
+Op

(
µ2
NT δ

−2
NT

)]
.

and thus,

1

T

T∑
t=1

∥∥∥(F̂t −H′Ft)∥∥∥2

≤
[
Op

(
µ−2
NT δ

−2
NT

)
+Op

(
δ−2
NT

)]
.

�
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B.2. Proof of Theorem 2

From (7.12),

F̂t −H′Ft = V −1
NT

(
1

NT

T∑
s=1

F̂se
′
sANet +

1

NT

T∑
s=1

F̂sF
0′Λ′ANet +

1

NT

T∑
s=1

F̂se
′
sANΛF 0

t

)
= V −1

NT (aNT,t + bNT,t + cNT,t)

= V −1
NT [I + µNII] ,

where

I =
1

T

T∑
s=1

F̂sγN(s, t) +
1

T

T∑
s=1

F̂sςst +
1

T

T∑
s=1

F̂sηst +
1

T

T∑
s=1

F̂sξst,

where ξst = F 0′
t Λ0es/N, and

II =
1

T

T∑
s=1

F̂s
e′tSes
N

+
1

T

T∑
s=1

F̂s

(
F 0′
s Λ0′Set
N

)
+

1

T

T∑
s=1

F̂s

(
F 0′
t Λ0′Ses
N

)
.

Lemma 3. If µNT = O(1). Then

F̂t −H′Ft = V −1
NT

[
Op

(
1√
TωNT

)
+Op

(
1√

NωNT

)
+Op

(
1√
N

)
+Op

(
1√

NωNT

)]
(7.13)

Lemma 3 follows from the earlier result of Theorem 3.1 and the proof can be carried
out in similar way as that of [Bai, 2003, Lemma A.2 pages. 159–160].

The limiting distribution is determined by the dominant term in the expression 7.13
which depends on the panel dimensions and on the tuning parameter.

Lemma 4. Let
√
N/TµNT → 0. Then under Assumptions A1-A7,

√
N
(
F̂t −H′Ft

)
= V −1

NT

(∑T
s=1 F̂sF

0′
s

T

)[(
Λ0′et√
N

)
+ µNT

(
Λ0′Set√

N

)]
+ op(1) (7.14)

We have Λ0′Set/
√
N = Op(1) by Assumption 5(3) and µNT = op(1) by Assumption

7(1) thus
√
N
(
F̂t −H′Ft

)
= V −1

NT

(∑T
s=1 F̂sF

0′
s

T

)(
Λ0′et√
N

)
+ op(1) (7.15)

By Assumption A6(3), (
Λ0′et√
N

)
d−→ N(0,Ψt).

Lemma 5. Under Assumptions A1-A5,
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(i)

VNT =
1

T
F̂ ′
(

XANX′

TN

)
F̂

p−→ V,

(ii)

F̂ ′F 0

T

(
Λ0′ANΛ0

N

)
F̂ ′F 0

T

p−→ V

Lemma 6. Under Assumptions A1-A4 and A7,

plimT,N→∞
F̂ ′F 0

T
= Q,

where Q is an invertible r × r matrix given by Q = V 1/2ΥΣ
−1/2
Λ∗ , with V consisting

of eigenvalues (in descending order) of ΣΛ∗ · ΣF and Υ is the corresponding matrix of
eigenvectors.

Proof. The result in lemma 6 can be proven using the same methods as in the
proof of Proposition 1 in Bai [2003]. Key elements of the proof. By Lemma 5(ii) and
X = F 0Λ0′ + e, we have (respectively):(

Λ0′ANΛ0

N

)1/2

T−1F 0′
(

XANX′

N

)
F̂ =

(
Λ0′ANΛ0

N

)1/2
(
F 0′F̂

T

)
VNT ,

and
(BNT + dNTR

−1
NT )RNT = RNTVNT ,

where BNT =
(

Λ0′ANΛ0

N

)1/2 (
F 0′F 0

T

)(
Λ0′ANΛ0

N

)1/2

, and RNT =
(

Λ0′ANΛ0

N

)1/2 (
F 0′ F̂
T

)
.

Let ΥNT = RNTV
∗
NT with V ∗NT the matrix consisting of diagonal elements of R′NTRNT .

Then (BNT + dNTR
−1
NT )ΥNT = ΥNTVNT , which implies that ΥNT is an eigenvector of

BNT + dNTR
−1
NT , and we have

Q = plim
F 0′F̂

T
= plim

(
Λ0′ANΛ0

N

)−1/2

ΥNTV
∗
NT = Σ

−1/2
Λ∗ ΥV 1/2,

where Υ is the eigenvectors for the matrix B = plim BNT + dNTR
−1
NT = Σ

1/2
Λ∗ ΣFΣ

1/2
Λ∗ .

Proof of Theorem 7.15 follows due to Lemma 3 and Lemma 5 and we have limiting

distribution of
√
N
(
F̂t −H′F 0

t

)
is therefore a N(0,Ξt) where

Ξt = V −1QΨtQ′V −1 (7.16)

�
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B.3. Proof of consistency of Ŝij, Lemma2

The paper proceeds by estimating the elements of S using pairwise covariance/correlation
estimators. The requirements for a fast strategy to compute estimators that are de-
fined in high-dimensions with possibily sparse systems where N > T , suggests using
pairwise covariance/correlation estimators (Dürre et al. [2015]). Consider an estimator
for τij given by the sample covariance:

τ̂ij =
1

T

T∑
t=1

(
Xit − Ĉit

)(
Xjt − Ĉjt

)
,

where Ĉkt = λ̂′kF̂t.�

Proof of Lemma 2(i).

The first part of proving the consistency of Sij,T,N is to chow that:

plimN,T→∞τ̂ij = E(eitejt) = τij.

Consider the sample covariance between cross section i and cross-section j:

τ̂ij =
1

T

T∑
t=1

(
eit − (Ĉit − C0

it)
)(

ejt − (Ĉjt − C0
jt)
)

=
1

T

T∑
t=1

eitejt −
1

T

T∑
t=1

eit(Ĉjt − C0
jt)−

1

T

T∑
t=1

ejt(Ĉit − C0
it) +

1

T

T∑
t=1

(Ĉit − C0
it)(Ĉjt − C0

jt)

= Iij − IIij − IIij + IVij

Consider the second and third terms above, for any i 6= j = 1, · · · , N , we have

|IIij| =

∣∣∣∣∣ 1

T

T∑
t=1

(
Ĉit − C0

it

)
ejt

∣∣∣∣∣ ≤
(

1

T

T∑
t=1

(
Ĉit − C0

it

)2
)1/2

·

(
1

T

T∑
t=1

e2
jt

)1/2

.

Now

Ĉit − C0
it = (F̂t −H ′F 0

t )′H−1λ0
i + F̂ ′t(λ̂i −H−1λ0

i ), (7.17)

from Bai [2003] Appendix C. Because (a+ b)2 ≤ 2(a2 + b2), we have

(Ĉit − C0
it)

2 ≤ 2

[(
(F̂t −H ′F 0

t )′H−1λ0
i

)2

+
(
F̂ ′t(λ̂i −H−1λ0

i )
)2
]
, (7.18)

and

1

T

T∑
t=1

(Ĉit − C0
it)

2 ≤ 2

(
1

T

T∑
t=1

[
(F̂t −H ′F 0

t )′H−1λ0
i

]2

+
1

T

T∑
t=1

[
F̂ ′t(λ̂i −H−1λ0

i )
]2
)

= 2(I + II).
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The first term,

I =
1

T

T∑
t=1

[
(F̂t −H ′F 0

t )′H−1λ0
i

]2

≤ 1

T

T∑
t=1

‖F̂t −H ′F 0
t ‖2 · ‖H−1‖2 · ‖λ0

i ‖2.

Note that ‖H‖ ≤ ‖F̂ ′F̂ /T‖1/2‖F 0′F 0/T‖1/2‖Λ0′Λ0/N‖ and therefore depends on both
N and T . By Assumptions A and B, ‖H‖ = Op(1) because each of the matrix norms
in ‖H‖ is stochastically bounded, Bai and Ng [2002]. Therefore,

1

T

T∑
t=1

[
(F̂t −H ′F 0

t )′H−1λ0
i

]2

= Op

(
1

δ2
NT

)
·Op(1) · ‖λi‖2 = Op

(
1

δ2
NT

)
·Op(1) · λ2

,

following from Assumption A2 and ‖λi‖ ≤ λ <∞. The second term,

II =
1

T

T∑
t=1

[
F̂ ′t(λ̂i −H−1λ0

i )
]2

≤ ‖λ̂i −H−1λ0
i ‖2 1

T

T∑
t=1

‖F̂t‖2

From Proof of Theorem 2 in Bai [2003], the first term in (II),

λ̂i −H−1λ0
i = H ′

1

T

T∑
s=1

F 0
s eis +

1

T
F̂ ′
(
F 0 − F̂H−1

)
λi +

1

T

(
F̂ − F 0H

)
ei

‖λ̂i −H−1λ0
i ‖2 ≤ 4 (ai + bi + ci) ,

where:

ai = ‖H ′ 1
T

T∑
s=1

F 0
s eis‖2 ≤ ‖H‖2‖ 1

T

T∑
s=1

F 0
s eis‖2

‖ 1

T

T∑
s=1

F 0
s eis‖2 =

1

T 2

T∑
s=1

T∑
l=1

F 0′

s F
0
l eiseil ≤

(
1

T 2

T∑
l=1

(
F 0′

s F
0
l

)2
)1/2(

1

T 2

T∑
s=1

T∑
l=1

(eiseil)
2

)1/2

≤ 1√
T

(
1

T

T∑
s=1

‖F 0
s ‖2

)1/2

·

(
1

T 2

T∑
s=1

T∑
l=1

(eiseil)
2

)1/2

,

now, E [(eiseil)
2] ≤ maxsE|eis|4 ≤M (Assumption A3 (1)), then we have

ai ≤ Op(1) ·Op

(
1√
T

)
·O(1).
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Now, consider the term bi,

bi =

∥∥∥∥ 1

T
F̂ ′
(
F 0 − F̂H−1

)
λi

∥∥∥∥2

≤

∥∥∥∥∥ 1

T

T∑
t=1

F̂t

(
F 0
t − F̂tH−1

)′∥∥∥∥∥
2

· ‖λi‖2

≤

(
1

T

T∑
t=1

‖F 0
t − F̂tH−1‖2

)
·

(
1

T

T∑
t=1

‖F̂t‖2

)
· ‖λi‖2

(
1

T

T∑
t=1

‖F 0
t − F̂tH−1‖2

)
= ‖H−1‖2

(
1

T

T∑
t=1

‖F̂t − F 0
t H‖2

)
= Op(1) ·Op

(
1

δ2
NT

)
Thus,

bi ≤ Op

(
1

δ2
NT

)
·O(1) · λ2

.

The last term,

ci =
1

T 2

∥∥∥∥(F̂ − F 0H
)′
ei

∥∥∥∥ =
1

T 2

∥∥∥∥∥
T∑
s=1

(F̂t −HF 0
t )eit

∥∥∥∥∥
≤

(
1

T

T∑
t=1

‖F̂t −HF 0
t ‖2

)
·

(
1

T

T∑
t=1

e2
it

)

≤ Op

(
1

δ2
NT

)
·O(1)

Collecting the terms together for the expressions (I) and (II), we have:

1

T

T∑
t=1

(Ĉit − C0
it)

2 ≤ Op

(
1√
T

)
+Op

(
1

δ2
NT

)
. (7.19)

Now going back to τ̂ij, we can derive the rate for IVij similarly to IIij. We have,

IVij = Op

(
1√
T

)
+Op

(
1

δ2NT

)
. Therefore, we can conclude,

τ̂ij =
1

T

T∑
t=1

eitejt −Op

(
1

T 1/4

)
−Op

(
1

δNT

)
. (7.20)

�

Proof of Lemma 2(ii).

Estimation of S is likewise done pairwise by estimating Sij, i, j = 1, · · · , N . Each
entry Sij,T is compted only from the ith and jth cross sections, thus the computing
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time increases quadratically with N . Under the assumption of stationarity τij,t = τij =
E(eitejt). The population Sij = sgn(τij):

Sij = 1(τij ≥ 0)− 1(τij < 0), (7.21)

where 1(A) = 1 if ’A’ is correct and 0 otherwise. Let Sij,T be an estimator for Sij
defined as:

Sij,T = 1(τ̂ij ≥ 0)− 1(τ̂ij < 0). (7.22)

The expected value E(Sij,T ):

E(Sij,T ) = P (τ̂ij ≥ 0)− P (τ̂ij < 0) . (7.23)

Given the result in equation(7.20),

E(Sij,T ) = P

(
1

T

T∑
t=1

eitejt −Op

(
1

T 1/4

)
−Op

(
1

δNT

)
≥ 0

)

− P

(
1

T

T∑
t=1

eitejt −Op

(
1

T 1/4

)
−Op

(
1

δNT

)
< 0

)
.

As N, T →∞,

E(Sij,T ) → P

(
limN,T →∞

∑T
t=1 eitejt
T

≥ 0

)
− P

(
limN,T →∞

∑T
t=1 eitejt
T

< 0

)
= 1(τij ≥ 0)− 1(τij < 0) = Sij

The latter result because τij is a deterministic population parameter and is either ≥ 0
or < 0, and thus the respective probabilities are identically 1 or zero. �

7.1 Proof of efficiency of Cn-PC for r = 1

For the case of r = 1, we have

ΣΛ∗ = ΣΛ + µNT plim
Λ′SΛ

N
≥ ΣΛ (7.24)

Now consider the second term,

Λ′SΛ =
∑
i 6=j

∑
j

λ′iλjSij

If there is a factor structure in the population model, we have for i 6= j = 1, · · · , N :

Xit = λ′iFt + eit (7.25)

Xjt = λ′jFt + ejt (7.26)

E [XitXjt] = E
[
(λ′iFt)(λ

′
jFt)

]
+ E [eitejt] (7.27)

= E [λ′iλjF
′
tFt] + E [eitejt] . (7.28)
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A factor structure implies that the dynamics of the N cross sections are driven by the
common factors Ft. Let’s assume for the sake of argument, that we condition on Ft.
In this case, we would expect that the sign of E [XitXjt|Ft] will be driven by the sign
of E [λ′iλj]. If this holds, then the sign of E [eitejt] is the same as the sign of E [λ′iλj].
We can conclude that

sgn

[
plim

Λ′SΛ

N

]
≥ 0.

In this case, the Cn-PC estimator are more efficient than the PCEs with ratio of
(asymptotic) variances equal to:

V (F̂t,opc)

V (F̂t)
=

(
1 + µNT plim

Λ′SΛ

N

)2

.
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Figure 5: Distribution of Ω̂i,j
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Figure 6: Sampling distribution of τ̂∗

Figure 7: Accuracy of the Diffusion Index forecasts
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