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Abstract:

How the banking sector absorbs news is critical to disbursing information to financial
markets and the real economysing high frequency financial datand guantile regression
techniques wesharacterisesome stylised fastaboutstandard betas,iftlsion betas,jump
betasand the relationships between théon Japaneséankng stocksand bank portfolios.
Jump beta, which relate to the arrival of unexpected neargon averagehigher andmore
dispersedhanthe diffusion betasacross the bankingector While on averagethe standard
bet is a weighted average of the diffusion and jump beths magnitude of the weights
differ significartly across the cantiles, indicating nodinearity in how junp information is
incorporated. Oraverage,small bank portfolios have smaller diffusionthe and smaller
jump betas thafarge bank portfolio. Whiléhereare no significant differences between the
jump-diffusion beta ratios when conditionday market capitalisatignduring times of
financialcrisis, snall bankportfolios have significantljhigherjump betadiffusion beta ratios
than large bank portfolios; indicating thatduring time offinancial crisis small Japanese
banksfacemuchhigherrelativejump risks thadargerJapanesbanks
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|. Introduction

In the one factor capital asset pricing model (CAPM), systematic risk, measured by beta, is
determined by the assetds covari @mpeld9sd t h t h
Lintner 1969. The traditonaway of esti mating the assetodos ¢
regression, typically based on 5 years of monthdyad However, the advent ohore

powerful computers and easy access to high frequency data&dealternative non

parametric approachesealstic. Non-parametric approaels reduce thescale of the
calculationproblem and avoidnanyof the assumptions necessary for parametric modelling.

The use of lyh frequency data results in statistically superior beta estinmidshe
computation ofcontinuouslytime varying realized betas, providinga simple and robust

estimator for measurement of time varying systematic risk \{&eey et al. (2013)

From a pricing perspective, the empirical failure of the unconditional Capital Asset Pricing
Model (CAPM) has led to three possible approaches to relaxing thig oestrictive CAPM
assumptions. The first is to use additional systematic facteig, Merton (1973) allowing
extramarket factors to capte additional systematic risks;cduas thehreefactor model of
Fama and French (1998hd the fowfactor model ofCarhart (1997)The second approach is

to relax the static relationship between expected return and risk by allowing time variation in
the systematic factors. In that sendegannathan and Wang (1996¢ttau and Ludvigson
(2001)and Petkova and Zhang (200find that betas of assets with different characteristics
move differently over the business cycle anampbell and Vuolteenaho (200#ama and
French (1996)and Ferson and Harvey (199%how that timevariation in betas helps to
explain anomalies such as value, industry and size. Howewemahditional timevarying
framework does not seem to be enough to improve the weak fit of the CAPM, as shown by
Lewellen and Nagel (2006)

The third approach is the use of dual or conditional betas whereby the market beta is
conditioned on market states i.e. bullish or bearish or positive or negative market returns.
Bhardwaj and Brooks (1993owton and Peterson (199&hdPettengill et al. (19959mong

others have investigated the relationship between beta risk and stock market conditions.
Fabozzi and Francis (197Tiyst tested the stability of betas ave t he fAbul | 0 an:«
markets;Pettengill et al. (1995pbserve that larger firms experience larges betas in down
market conditions than in up market conditions, with the reverse being true for smaller firms,

Using an alternative return decomposition meth@dmpbell and Vuolteenaho (2004)



decompos€APM betas into discount rate betas and cash flow étash Botshekan et al.
(2012)follow to construct a return decomposition distinguishing cash flow and discount rate
betas inup and down markets. They find that for larger companies, the priced components of
risks become more symmetric (hatpside and downside market).

In eachof the above three approaches, the various beta estimates assume a continuous data
generation process, while in fact the empirical papers in high frequency literature support the
occurrence and persistence of jumps in the observed data generation préaegsbaly of
literatureshows that both treoretically and empiricalljumps explain many of the dynamic
features of stylized facts documented in asset prices. Studies on stochastic behaviour of the
stock market generally agree that stock returns anergeed by a mixed process with a
diffusion component and a jump componéntthis casehe standard CAPM beta is at best a

60 s umma r yfor the systegndtic risk of a mixgatocess, i.e. a weighted average of the
diffusion component and the jump compoheBy separatingthe standard beta into two
component betasve cancapture the two risks separately: one for continuous and small
changes (diffusion beta) and the other for discrete and large changes (jumg deébady

and Bollerslev (2010provide atheoretical framework for disentangling and estimating the
sensitivity towards systematic diffusiead jump risk in the context of factor models. They
focus on the decomposition of $gmatic risk by recognizingump occurrence athe
aggregate market level and show that diffusion and jump betas with respect to aggregate
market portfolio differ signifiantly and substantiallyrhe use of high frequency dataables

both betago betime-varying.

The keycontribution of this paper is to examittee relationship between standard, diffusion

and jump betas across the quantiles of observed retutheugh the continuous returns and

jump returns are orthogonal by thiedorov and Bollerslev (201@ecomposition, the three
realised betas (i.e. standard, diffusion and jump betas) are not restricted nor expected to be
orthogonal. In fact, a simple correlation test indicates some dependencies. The rich cross
sectional and tinieseries heterogeneity irunestimates of monthly betas enables to study

how standard beta, diffusion beta and jump betas vary both across quantiles and over time.
We adopt a quantile regressions (QR) approach to model the relationship between standard
betas and diffusion andmp betas not just for the mean of the conditional distribution, but

also across the distributiga.g.Koenker and Hallock (200)L.)

Our empirical investigations are based lagh-frequencystock data of50 Japanesbanks
included in the Nikkei 225 indeaver the 2002012 sample period. We begin bgtimating
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two separate betafje diffusion and jump betas as well as a standard CA&tIfor each of

the individual stock on a monthly basis over the whole sample peki¢elrely on 5minute
intraday sampling frequency for theeta estimationwith the frequency chosen ftguard

against the market microstructucemplicationsthat arise athe highe frequencies We

regress the standard beta against the diffusion and jump beta and we find that the quantile
regression relations between standard beta and diffusion and jump beta varies widely

depending on the quantile level of standard beta.

We find that on average the standard beta is weighted ondte diffusion beta component
then the jump b& component. The relationship holds acrashe quintilesconsidered
However, the actuamagnitudeof the weights differ across the quintiles. general, the
weights are jointljower for lowstandard betasncreasingaround the 56-75" quintilesand
droppingagainpost 74" quantile.

Sortingbank portfoliosbased on the sizeye find thatlarge banks have high betas amdall
banks have low beta3he results holdor all the three betasndicating thatarger Japanese
banks are more sensitive to both market movements than smaller imssitwegardless of
whether these movementscur through a jump or nadowever,the relative effects do not
remain the same. The ratiof the standard betas for large equity versuosall equity
portfolios is 2.81, while the ratio of diffusion betder large equityversussmall equity
portfoliosis 5.8. In contrast the ratioof jump betas forlarge equityversussmall equity
portfoliosis 1.65.

This study alsanvestigates the empirical betelationshipbetween the jumyliffusion model

and the conventional CAPMWe find that undercertain market conditions, particularly
during crisis periods, the hypothesis that the standard beta or systematic risk is the weighted
average of the diffusion and jump befas. both the diffusion and jump (market) risksnot

rejected at standard significamlevels.

The rest of the paper is organised as follows. In Section Il, we present our theoretical
framework. Section Il presents the methodology used in this study. Section IV describes the
data. The empirical results greesent in Section NSectionV concludes the paper.



Il . Theoretical Framework

A. Capital Asset Pricing Model

Thestandarccapital asset pricing model (CAPM)given as

[ A p
wherei ;, is the monthlyexcessstock return on stock, andi  is the aggregate market
returns at time; | is theassetspecific constantandthe error term  is the idiosyncratic
risk of stocki, which is uncorrelated with  or the idiosyncratic risk of any other stock
under CAPM assumption3he slope coefficient j, in equation(1), commonlyknown as
the standard dia, isthe systematic risk of assetand measures the responsivenesshef
changes instockd rices to changes inmarket prices According to the CAPM, the
equilibrium expecte return on a risky asset is a function ofdtsvamiance with the market
portfolio.

Standardbeta,in CAPM is defined as,

h
The CAPM model basically depends on staokd market returns, which rn, dependn
the underlying prices of individual stocks. It is now widely agreed in the literature that

financial return volatilities and correlations are tiwaying and returs follow the sum ofa

diffusion process and a jump process.

Considerthe case wherthe logprice r process of an asset at tifllows a continuous

time jumpdiffusion process defined by the stochastic differential equation as follows:

QR Qo , o QO o

where' is the instantaneous drift of price process ang the diffusion process, anad is
standard Brownian motiorThefirst two terms correspond to thiffusion part of the total
variation process, interpreted assponsible for the usualayto-day price movement.
Changes in stock prices may be due to variation in capitalization rates, a temporary
imbalance between supply and demand, or the receipt of information which only marginally
affects stock pricesThe final term,;QQ) refers to the jump component okthotal process,
where™Qis a counting process such tfi p indicates a jump at timé andQ) T
otherwise and™Q is the size of jump at timeif a jump occurredThe jump part imssumed to

be due to the receipt of any important informatithat causes a more than marginal change

1 See, for exampleélress (1967 Merton (1976) andBall and Torous (1983nd among others.
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(i.e. abnormal change) in the price of stock. The arrival sfkimd on information is random

and the intensity of information arrival follows aiBson process.

If the return of stocks should be divided intonju partand diffusionpart certainly the risk
associated with returns of securities shouldsipalarly decomposedThe presence of jump
variations in both individual assets and aggregate rmaifkect cevariance estimatiomand
consequentlyestimates of @alized keta and systematic risk. Teut would be prudent to
disentangle the jump component and the diffusion component in prices béicaysare
basically two quite different sources of risgee, e.gBates (200Q)Eraker (2004)Pan (2002)
andTodorov (2009)

B. Decomposing Systematic Risk: Diffusion and Jump components

Our frameworkmotivating the different betas and the separate pricindiféision and jump
market price risk and relies on tapproactoriginally developed by odorov and Bderslev
(2010)for decomposing market returns into two components: one associatedliffittion
price. movement and another associated with jumps. KHeanceéhe presence of both
components, equation (1) becomes:

tg I TRl g TRt -h T
wherel j is the monthlyexcessstock return on stock| is its drift termandthetotal market

risk ( y is modelled as a combination afdiffusion(i ; and jump componeni ; 8

The parameters  andf  denotet he r esponsiveness oftheeach s
diffusion and jump components of market risk andenotes thédiosyncratic ternt- which

is also made umf a continuous and jump componeiihis decomposition igpertinent

because standasinglefactor moded of risk implicitly assume thadtna s s et 6 s syst e ma
is unaffectedby any markefumps (i.e.thereare no market jumps because stock jumps are
diversified away at the aggregate level or the assets diffusion and jump betas are }he same
Equation (1) does not distinguish betwekeea diffusionand jump components of total return,

but does decompogetal returrs into systematicf(ii  and norsystematic( - h

components. Any market jump is embeddeithin i ;hwhile any nomssystematic jump

unique to firmi is included in the error te. Whenthe systematic riskexposure of a firnto
both diffusion and jumpprice movements arelentical, i.ef =T ;, the twefactor duat

betamarketmodel collapsgeto the usual ogfactor singlebetamarketmodel, which relates



the stock returm ; to the total market returni y 1 ; 1 . The restriction that

=1 j implies that the asset respondghe samenannerto market diffusionand jump price
changesi.e. intuitively that the asset and the marketrngove inthe samemannerduring

Anor malmeés and alpupt | mds k otf mMmMoves. Ffandfg@n t he
differ, empirical evidence for wbh is provided below, the croesectional variation in the

diffusion and jump betas may be used determineany separate pricindpehaviour The

extantliterature suggests thdte two betas are not the same

Chen (1996) shoedthat under the usuassumptioa of CAPM, relaxing onlythe normality

of asset returns, the juntpffusion modelincludes adiffusion beta, which measuree
systematic risk when no jumpxcursand jump beta, which measures the systematic risk
when jumps take place in the markethe dual betajump-diffusion model isdefinedas
follows:

g | g p MTg My -k v
The right side oequation v is theweighted average of two betas, with weighting parameter
hh

n.1 y is thediffusion beta as defined by, ; T is the jump beta as defined

byt $ Two special cases appl¥f. there are no jumps in the markethis
h

implies? 1, andequation v collapses to the conventional CARMuation
(I [ LW
On the other hand, if asset returns are generated by a pure jump process, Ttwhich

impliesn?  p, then equationu reduces t@pure jump CAPMequation

(IS R S S LW
[l . Methodology

Thepossibility of atwo-way decomposition ahe standard beta prompts us to investighte
relationship between thetandard betaand the decomposediffusion and jump beta
componentsWe now considethe relationship betweestandardbeta, diffusion beta and

jumpbeta across Japanese banks.



A. Realized Beta

Standardbetas are not directly observable. The traditiaggbroach forestimatng standard
betas relied on rolling linear regressions, typically requisagple sizes of up t& years of
monthly data to satisfy sample size requiremértimwever, the advent of readily available
high frequency data in recent years, have now made it possiséinmataealizedbetas over

much shorted sample sizes

Realizedbetaor high frequency standard besathe ratio of realized covariance of stock and
market to the realized market varianéexdersen et al. (2008rgue thatealizedbeta is a
more accurate measurement of stendardbeta because it employs more information than

the traditional regression on monthly returibe estimate ofedized beta foran individual
stock] f is defined as:
YO Opp B iwnl i

T g = ()
" Y oo B i

Despitethe advantages afealizedbeta, equation€) still defines thestandardbeta in a one
factor CAPM model. Thesame readly high frequency data that makgmssible the
computation of theealizedbetasalso enableshe disentanghg of theserealizedbetas into
diffusion betas andump betas, effectively giving rise to a twiactor CAPM model for
pricing assets which follow not only a diffusion process but also a jump prétesse, the

two-factor CAPM modeln this paper is alsojamp-diffusion CAPM model.
B. Diffusion and Jump betas

Thedecomposition of the retusiior the market into separadifusion and jump components
that formallydefinethel ; andf  in equationg4) are, of course, not directly observable.

Instead, we assume that prices are obseatvdscrete time grids of lengthsldver the active

trading day Th'Y. Empirical studies rely on discretely sampled returns denoted as

wheren j, refers to thé th intraday logprice for dayt; T is the total number of days in the

sample andis the(regular)sampling frequency.

2 see, e.g., the classical work Bgma and MacBeth (197.3)
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Asstem that the intraday stock price processes for the aggregate market index, denoted by
M ihand theith stock, denoted b8 ry heachfollow a generaldiffusion-time process. To

allow for the presence of jumps in the price procéssiorov and Bollerslev (2010)
consideedthe following specification for stodkand aggregate marke.®

For the market,

and for the stock,

Trnk Q| fQOT .y RQGF T jQUF . p Qe QGQYRQ pMh w

where, pandw ;; are standard Brownian motiorfier the market and asset| f and
|  denote the diffusive volatility of the aggregate market and staglspectively; and j
and vy refer to the pure jump Levy processes in the aggregate market and istock

respectively] j andf ; then measure the responsiveness of an individual stock to the

diffusion and jump component of marketkid/ithin this framework,f  ,T - is assumed

¢

constant throughout eaahonthbut can change fromonthto month

In order to disentangfe; and' , Todorov and Bollerslev (201@ropose a noparametric

beta estimation techniquesinga multi-power covariation/variatioformulationbetween the
returns of individual stocks and the market portfoliotfe diffusion and jump components.

By expressingthe covariation between the continuous components jpfandi  as
igh v v T r. . rQbhand the variation of continuous componentiof, as

i sR 5 % . . §Qiinthe continuousime model, they show that the diffusion beta

of thei" assetf i can be expressed:as

h

3The notation here is simplified relative to thatTindorov and Bollerslev (201®ee their article for more
details.



In reality, price dataare not observed continuouslihe estimator ; takes the following

form in the discret¢ime setting

B ignl M . 5
(i — hQ piB 808 pp
B Urn M
whereyl - is the indicator functionbased on the truncation levekfor the diffusion
component
P A~ F
\ o QQ P C

The doserved higHrequency returns magontain both diffusive and jump risk components.
Raising the higHrequency returns to powers of ordepeaterthan two,has the effect of
making the diffusion components negligible, so thatsystematic jum@ dominate
asymptotically foré © H.* As formally shown inTodorov and Bollerslev (2010)the
following estimatoris consistent for jump betahen there is at least one significant jump in

the market portfolio for the given estimation windfiwe © H=3

Here, the powet ¢ so that thediffusion price movements do not matter asymptotically.
The sign in equatioril) is taken to recover the signs of jump betas that are eliminated when
taking absolute values.

Following Todorov and Bollerslev (201G&nd Alexeev et al. (2017Wwe set the parameter
values for—h" hand estimate thé r and  on monthly basis. For estimating thep

andl , the truncation threshald— | Y huses” 8@ oand| nhsuggesting that the

threshold values may very across stocks and across different estimation svinlew

implement the threshold— | ROl for T  suggesting that thediffusion

4The basic idea of relying on higher orders powers of returns to isolate the jump component of the price has
previously been used in many other situations, both parametrically and nonparametrically; seredgrff
Nielsen and Shephard (20G)dA éSahalia (2004)
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components are contained withimree standard deviatidnom mean where,60 ® " is the

bi-power variation of the-ih stock at timerti'Y; implemented witht ¢ for equation(13).

Il . Sample and Data

The sample consists of publidsaded Japanese bank stodksm January 200%hrough
December 201,2ncluding varying phases of the business cyOl& final sample consists of

50 (of the 63 commercial bankBstedon the Tokyo Stock Exchange (TS&S the remaining
banks did not have sufficient data availabiliyl the highfrequencydata are extracted from

the Thompson Reuters Tick history (TRTH) databas@lable via the SIRCA. We ugbke

Nikkei 225index agheproxy of the market portfolio. Following the standard kiggguency
literature, wesample at a-ninute frequencyor all data reflectinga tradeoff between using

all available highfrequency data and avoiding the impact of market microstructure sffect
such as infrequent trading or nonsynchronous tradidglike the more commonly
investigated US and European markets, daily trading on the TSE is interrupted by a lunch
break, trading between 09:00 amh1:00 am and 12:30 pn3:00 pm local time. We sangl
prices from 9:05 ar11:00 pm and 12.35 pi3.00 pm, with overnight and ow&inch returns
excluded from the data sédissing data at-Bninute intervals is filled with the previous price;
when no actual trade occurs during a time interval, it is logicalssume that a stock price
carries the same price of the previous patrticular time inteHahsen and Lunde (2006)
show that the previous tick method is a sensible way to sample prices in calendar time.
Consequently, whaave53 intra-day observations fa2866activetrading days over &2 year

period (44 months).

IV . Empirical Results

A. Betas

Our main empirical results are based on monthly standdfdsion and jump beta estimates
for each of the stocks in the samplable 1 presentie means and standard deviations of
the time varying betas for period 2DA012 and three sub periodspee-crisis periodfrom
Jan 2001 to June 2004 crisis periodconsistent with the Global Financial Crisis (GFC) from
July 2007 to May 200@nd a postcrisis periodfrom June 20090 the end of the sampfe.
The statistics show thatross the entire sangghe jump beta has a higherean yolatility)

5 We use the crisis period identified ibLingey and Gajurel (2014)
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of 0.912(0.629, relative to that of the standard b&&010.280 and the diffusion beta of
0.324(0.309. The difference in means of diffusion beta and jump be& the full sample
period is statisticallgignificant(t-value =-78.219***) based orthe pooled variance-testof
difference These relative sizes are retained in the threepsulods, while thestandard,
diffusion and jump betas areach generally &rger and more volatile in crisis period

compared to prerisis and postrisis periog.

Table 1: Summary Statistics for Standard, Diffusion and Jump Betas

The table summarizes of the time varying betasrages asstimated. The statistics include meaml standard
deviations (in parentheses) are summarized by the full sample penedsgesand three sulperiods. We
include the pooled variancetdast of the difference between the two sample means for the Standard Beta,
Diffusion Beta and Jump Beta. Thestiatistics areshownin parentheses. * denotes significance at 10 % level;

** denotes significance at 5 % level, and *** denotes significance at 1 % level

Standard Beta Diffusion Beta Jump Beta
Full-sample Period
Mean 0.501 0.280 0.912
Std.Dev 0.324 0.309 0.626
t-test of difference -78.219**
Pre-crisis Period
Mean 0.390 0.223 0.759
Std.Dev 0.276 0.276 0.572
t-test of difference -53.434**
Crisis Period
Mean 0.702 0.452 1.095
Std.Dev 0.342 0.321 0.746
t-test of difference -29.376**
Postcrisis Period
Mean 0.548 0.248 1.042
Std.Dev 0.306 0.308 0.552
t-test of difference -57.495**

Figure 1 plotsthe kernel density estimates of the unconditional distributions of the three
different betas averaged across time and stocks. The jump dretasmewhatlarger on
average, whilghe diffusion betas are the least dispersed of the three betas across time and
stocks.Part of the dispersion in the betaaybebe due toestimation errors.

Figure 2 showshe time series of equally weighted portfolio betas, based on monthly quintile
sorts for each of ththreedifferent betas and all of the individual stocks in sianple. The
figure suggests that the variation in the standard betaliféfndion beta sorted portfolio§in
Pane$ A and B are clearly fairly closeas would be expectedhe plots for the jump beta

6 Based on the expressions derivedTimdorov and Bollerslev (2010Bollerslev et al. (2015peport that the
asymptotic standard errors for diffusion and jump betas averaged across all of the stocks and months in the
sample equal 0.06 and 0.12, respectively, compared with 0.14 for the conventiondda3e®& standard errors

for the standard beta estimates.
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quintile portfolios in Panel C, are distinctly different and more dispersed than the standard
anddiffusion betas quintilgoortfolios. Jumpbeta is significantly different frordiffusion and
standard betaMotivated by these and to address the signifidagterogeneity observed
acrosslapanese bankirsgctor stockswe depart fronthe previous literature and employ the

guantile regression analysis to estimate the relationship between staliffiaschn and jump

betas.

Figure 1: Distributions of Betas
The figure displays kernel density estimates of the unconditional distributions of the three different betas

averaged across firms and time.
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Figure 2: Time series plots of betas

The figure displays the time series of betas for equally weighteesbetd quintiles portfolios. Panel A shows
the result for the standard beta sorted portfolios, Panel Bitfusion beta sorted portfolios and Panel C the
jump beta sorted portfolios.
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Panel (C): Jump Beta
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B. Quantile regression model

Ordinary least squaregegressiordetermines the averagelation between the dependent and
a set of relevant explanatory varigblecussing on thesimation of the conditional mean.
Quantile regression (QR) model allows us tdimeate the relationshi@t any specific
guantiles and helps irexamination of no#inearity andthe tail behaviourof a distribution.
Quantile regression isnore robust tothe effects ofheteroskedasticity, skewness and
leptokurtosis,each ofwhich arereported stylisedeatures of financial datéKoenker and
Xiao 2008.

The quantile regression approach has been widely used in many areas of applied economics
and econometri¢gssuch as the investigation of wage struct(Bechinsky 199} earnings
mobility (Trede 1998 Eide and Showalter 1999and educational quality issuéside and
Showalter 1998Levin 200). There is also growing interest in employing quantile regression
methods in the financial literature. Applications in this field include work on Value at Risk
(Taylor 1999 Chernozhukov and Umantsev 2Q0Engle and Manganelli 2004 option

pricing (Morillo 2000), and the analysis of the cross section of stock market returns (Barnes

and Hughes, 2002), return distributiofdslen et al. 201} mutual fund investment styles
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(Bassett Jr and Chen 200%he investigatn of hedge fund strategi¢sieligkotsidou et al.
2009, the returavolume redtiorship in the stock market(Chuang et al. 2009 ard the
diversification and firmperformance relatioship (Lee and Li 201},

The quantile regregm takes the following form

O W - pT
wherew is the dependent variable of interest anthe vecto of predictor variables. The
parameter vectab is associated with thequantile while- is the error term, allowed to
have a different distribution across quantiles. Note that the local effecbofthet-quantile

is assumed to be linealThe slope coefficient vectab differs across quantiles and the

estimator for is obtained from

aQe t s s p T s
d d

d d

The quantile function is estimated by minimizing a weighted sum of absolute residuals,
where the weights are functions of the quantiles of interest. The coefficient estimates are
computed by using linear programing methods (for more details{seeker (2005) For

t mhi.e., the conditional median af the problem collapses to tif@ell known) Least
AbsoluteDeviation (LAD) estimation. The value dfis obtained using linear programming
algorithms and standard errorg bootstrapping technique®/e conduct the minimization
procedure at quantiles ¢f T8t i} bT@ ] brdo v
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C. Quantile Regression Analysis

As a benchmark regressipnve first explore what OLS regressidrasto say about th
relationdips of three beta across Japanese banks. TAlpeesents the results from OLS
regressionso explain the crossectional and time series variation in the standard betas as a
function of the variation in the two other betdgfusion and jump betasModel (1) in Table

2 shows that thdiffusion beta exhibits the highest explanatory power forddath beta, with

an average adjusted$uared of 0.64To providean impression on the contribution of jump
betas,we include model (2). e jump beta explag¥8% variation in standard betd/hen

we add the diffusion beta and jump beta as in modelM@ see thatltogether, 80 % of the
variation in standard beta may be accounted for bydngonenbetas, withdiffusion beta
having by far largest and most significant efféldde OLS regression results arensistent

with Figures 1 and 2.

Table 2: The relationship between StandardDiffusion and Jump betas across Japanese
Banks

This table presents the pooled OLS regression results between Standafifhetmn beta and Jump beta
across different bankStandard errors are displayed in parenthesbelow theoefficients The asterisks *, **,
and *** indicate the significance at the 10%, 5%, and 1% level, respectively.

Dependent Variable=Standard Beta Models
1) 2 3
Diffusion Beta 0.874*** 0.678***
(0.029) (0.027)
Jump Beta 0.362*** 0.229***
(0.022) (0.011)
Constant 0.257*** 0.164*** 0.107***
(0.013) (0.015) (0.008)
R-squared 0.64 0.48 0.80

The OLS estimator focesonly on the central tendency of distributiob$e implemeniQR

analysis to investigate how the standatiffusion and jump betas anater-related at their
various quantiles. The quarite regression procedures yieddseries of quantile coefficients
one for each sample quantil&e test whether standard betspond differently to changes

in theindependent variabledepending on whether theetais in the left tail of distribution

”We proceed to examine the relatioetationship between standard beta, diffusion beta and jump beta across
Japanese banlsing the following quantile regression model:

1z . Az Azrg Azry Rj

The variable of primary interest is the coefficient of diffusion and jump betas on the standard betas. The slopes
of the regressors are estimated at five different quamtilese 8", 25", 50", 75", 95"- using the same tef
explanatory variables for each quantile.
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(low risk bank) or in the right tail of the distribution (high risk barik)Table3, we present

the parameter estimates for selected quantiles ranging from 0.05 toTBed%5elatioship
between standardiffusion and jump betas changes in magnitude across the distribution
quantiles.For example, while the response safier diffusion keta and jump beta at th& 5
quantile are, respectivel9.55and 0.16, at the median they are 0.71 a@8,cand at the 95
guantile they are 0.68 and 0.22. All coefficients are strongly statistically different from zero.
Additionally, our results showhat the conditional mean approach is also misleading in terms

of goodnes®f-fit.

Table4 presents theesults forF-tests ofthe null hypothesis of equal slopes across quantiles
to formally test whether the slopes of explanatory variables change goargsieswhere a
bootstrap procedure was extended to construct a joint distribution across pairs of quantiles
(Chuang et al. 2009These results indicate th#te coefficients are significantly different
from each other between all quintiles. Further, we observe that there are significant
differences between the coefficient df uantile and 95 quantile, supporting the notion that

at low and high ofstandardbetas withinthe Japanese banking sectthre relationship
betweenstandarddiffusion and jumps betas differ significantl@ur results indicate that the
relaionship may be far morecomplex (i.e. nonlinear) than can be described using #ta
squares regressionh@ relatioshipsbetweenstandard betasliffusion betas and jump betas

for Japanese bankingtock are nontlinear across quantiles and the relationships at tail
guantilesarequitedifferent from those atentralquantiles
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Table 3: The relationship between Standard beta,Diffusion beta and Jump beta

different quantiles

This table presents the regression results between Standar®iffstan beta and Jump beta across different
guantiles Standard errors are displayed in parentheses belowabefficients Standard errors are obtained by
bootstrapping with 100 replicatis. The asterisks *, **, and *** indicate the significance at the 10%, 5%, and 1%
level, respectively.

Dependent Variable= Standard Beta

5th quant 25th quant 50th quant 75th quant 95th quant
Diffusion Beta 0.555%** 0.689*** 0.709%** 0.684*** 0.677***
(0.025) (0.012) (0.010) (0.012) (0.028)
Jump Beta 0.157*** 0.245*** 0.281*** 0.2971*** 0.222%**
(0.006) (0.004) (0.006) (0.010) (0.018)
Constant -7.77e16 -3.28e15 0.0410*** 0.120*** 0.376***
(0.003) (0.000) (0.005) (0.008) (0.018)
Pseudo Rsquared 0.48 0.58 0.61 0.60 0.53

Table 4: Post estimation linear hypothesis testing.

The table presents-tést for testing whether coefficients between diffetdatquintiles are equal. Quantiles
were atimated by simultaneous regressamalysis. Standard errors were obtained by bootstrapping with 100
replications. The asterisks *, **, and *** indicate the significance at the 10%, 5%, and 1% level, respectively.

Panel A:

HO: Test whetherDiffusion beta and Jump beta coefficients arequal across different quantiles

HO: Q5=Q25 F( 2, 5401) =214.87***
Prob > F = 0.0000

HO: Q25=0Q50 F( 2, 5401) = 48.98***
Prob > F = 0.0000

HO: Q50=Q75 F( 2, 5401) = 3.18**
Prob > F = 0.0417

HO: Q75=Q95 F( 2, 5401) =10.92***
Prob > F = 0.0000

HO: Q05=Q95 F( 2, 5401) = 22.42***
Prob > F = 0.0000

HO: Q25=Q75 F( 2, 5401) = 23.40***
Prob > F = 0.0000

Panel B:

HO: Test whether Diffusion beta and Jump beta coefficients arequal across different quantiles

HO: Q5=Q05 F( 2, 5401) £536.52**
Prob > F = 0.0000

HO: Q25=5 F( 2, 5401) =2907.22**
Prob > F = 0.0000

HO: Q50=G0 F( 2, 5401) 454471 *
Prob > F =0.0000

HO: Q75=Q’5 F( 2, 5401) =3309.56**
Prob > F = 0.0000

HO: Q95=Q95 F( 2, 5401) 541.05**

Prob > F = 0.0000
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Figure 3 shows how the taevalues vary across quantiles, depictingpibiait estimates of the
slope of explanatory variablend 95% pointwise confidence banif.assumptions for the
standard linear regression model hold, the quantile slope estimates shoal@&constant

and horizontal line across the quantilesth only the intercept parametesgstematically
increasing wit T. However, noa of the slope estimates showould be described as
constant and horizontdh fact, the quantile slope estimates of the variables such as diffusion
betaand jump beta followeda nonlinear pattern with low values in the left tail and high
values in the right taillt is apparent that the slope of regression changes across the quantiles
and is clearly not constant, as presumed in OLS. The results indicate that on average the jump
betasfor a quantileare higher than the correspondidiffusion betas. Howesr, companies

with low quantile standardbetas areless sensitive to market jumps in comparistm

companies with high quantiletandardetas.

Figure 4 shows the scatter plots of the monthly standard betas wd#fsisgon betas and
monthly standard beta versus jump betasefachquantile. The scatter plotn panel A of
figure 4 suggests heteroskedasticity in the dataset, given thatispersin of results seems
somewhanarrower at the higher tail erd the distribution. Thédestfit lines for the % and

95" quantilesshown in the panel Andicate that forhigher diffusion betas at the tails the
dependency relationships of the standaeths with the diffusion betas are very similar i.e.
they hae similar gradientsFor the intermediate quantiles {2550" and 74" quantiles)the
bestfit lines tends to converge at higher diffusion betas, indicating the relationship between
standardeta and diffusion beta @issimilaratlow diffusion betas.In the case ofump betas
(see Figure 4panel B, the gap between thé"and 9%' quantiles is higher on the right side
of the graph; in other words, among those firthe jump betafor the 8" and 99" quantiles
arediverging Thus at the tails, the diffusion betas and jump betas behave differently from
each other
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Figure 3: Quantile plot of estimated slopes and 95% confidence interval

The solid line gives the coefficients diffusion beta estimates from the quintile regression, with the shaded
grey area depicting a 95% confidence interval. The dashed line gives the OLS estimate of mean effect, with two
dotted lines again representing a 95% confidence interval for this coefficient.
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The generatonclusion that can be drawntlgat thereexists awide disparityin behaviour
between high risk firms and low risk firmghenreceivingdiffusion and jump shocks.
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Figure 4: Scatterplot of Betas across different quantiles

Panel A: Standard Beta and Continuous Beta
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D. Sizesorted portfolios

To control for possible size effectwe test the relationship between standard betaysibif
beta and jump beta using fiwibsampleportfolios constructed by sorting the data with
respect to sizeThe banks are grouped into five benchmark portfolios ranked by size and
based on market capitalization at the end of eachty@ables 5 and6 reportthe results for
portfolios sorted on stock siznd rebalanced each yedportfolio 1 includes thesmallest
banks in thegroup and portfolio 5 includdargestbanks in the sampl&@able5 shows a clear
size effect for the OLSestimated coefficiest The diffusion beta coefficiest are all
statistically significant with higher loadings for the smafiertfolios For jump beta, all the
corresponding coefficients are also statistically significantout the larger portfolios have
the higher loadingdrrespective of the relative loadingsgowever, the diffusion coefficien
consistently largethanthe jump beta coefficient for eachtbk five sizesorted portfolios.

Table 5: The OLS relationship between Standard betaDiffusion beta and Jump beta

across for sizesorted stock portfolios

This table presents the pooled OLS regression results beStaeedard betdiffusion beta and Jump beta
across different bankStandard errors are displayed in parentheses belowdbefficients The asterisks *, **,
and *** indicate the significance at the 10%, 5%, and 1% level, respectively

Dependent Variable=Standard Beta

Small 2 3 4 Large
Diffusion Beta 0.600*** 0.685*** 0.740*** 0.469*** 0.573***
(0.043) (0.066) (0.047) (0.063) (0.026)
Jump Beta 0.192%** 0.199*** 0.215*** 0.271*** 0.203***
(0.015) (0.018) (0.021) (0.020) (0.016)
Constant 0.103*** 0.112%** 0.107*** 0.161*** 0.242***
(0.013) (0.012) (0.013) (0.026) (0.019)
R-squared 0.67 0.71 0.79 0.70 0.73

We apply a quantile regression methodology to thesized portfolios and report in Table

6 the quantile relationships between ttneee betas. We obtain results similar to those
reportedin Table 3 with one noticeable difference. For the largest portfolio in Table 6, the
guantile regression lines convergehereas as for the remaining portfolios the quantile

regression lines diverges is the case in Table 3.

For small bank portfolios the diffusion compaone are loaded relatively higher than jump
componentsFor the large bank portfolios, however, the two congmts are loaded more
evenly. Thesefindings lead us to conclude not orthat smaller bank portfolios have lower
jump betas relative to the larger bank portfolibst that theeffective contribution®f jump

betas tstandard betas also differ significangéigross size sorted portfolios
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Table 6: The Quantile relationship between Standard beta Diffusion beta and Jump

beta for sizesorted stock portfolios

This table presents the regression results between Standar®iffetsion beta and Jump beta across different
guantiles Standard errors are displayed in parentheses belowdabefficients Standard errors are obtained by
bootstrapping with 100 replications. The asterisks *, **, and *** indicate the significance at the 10%, 5%, and 1%
level, respectively.

Dependent Variable= Standad Beta

5th quant 25th quant 50th quant 75th quant 95th quant
Small
Diffusion Beta  0.329%* 0.510%* 0.632%* 0.638** 0.665*
(0.049) (0.042) (0.049) (0.032) (0.052)
Jump Beta 0.170%** 0.195%** 0.224%%* 0.225%%* 0.185%*
(0.012) (0.010) (0.013) (0.019) (0.036)
Constant -0.019** 0.029%* 0.064* 0.133% 0.308%*
(0.009) (0.006) (0.009) (0.015) (0.036)
PeiLan 0.39 0.40 0.42 0.44 0.45
squared
2
Diffusion Beta 0,498 0.624* 0.638" 0.717% 0.656™*
(0.048) (0.053) (0.042) (0.035) (0.044)
Jump Beta 0.142% 0.205%* 0.248%+ 0.259%+ 0.192%*
(0.015) (0.012) (0.010) (0.019) (0.032)
Constant 0.006 0.030%* 0.063* 0.122% 0.354%*
(0.005) (0.005) (0.006) (0.014) (0.029)
Pez [ 0.40 0.47 0.50 0.49 0.47
squared
3
Diffusion Beta  0.558** 0.690* 0.762% 0.736"* 0.760%*
(0.064) (0.045) (0.031) (0.030) (0.047)
Jump Beta 0.157%* 0.223%* 0.244%% 0.262%%* 0.209%+*
(0.017) (0.017) (0.012) (0.020) (0.026)
Constant -0.006 0.022% 0.071%* 0.141%+ 0.357%*
(0.008) (0.011) (0.008) (0.015) (0.021)
Pl X 0.45 0.51 0.56 0.57 0.56
squared
4
Diffusion Beta  0.265"* 0,463 0.540% 0.524% 0.512%*
(0.060) (0.040) (0.027) (0.026) (0.053)
Jump Beta 0.213%* 0.276%* 0.316%* 0.339% 0.292%*
(0.025) (0.016) (0.016) (0.026) (0.034)
Constant 0.040%* 0.058** 0.081% 0.163** 0.397**
(0.014) (0.011) (0.013) (0.024) (0.041)
e 0.38 0.47 0.48 0.49 0.49
squared
Large
Diffusion Beta  0.630%** 0.591 % 0.590%* 0.570%* 0.540%*
(0.043) (0.033) (0.022) (0.031) (0.048)
Jump Beta 0.170%* 0.257%* 0.260%** 0.225%% 0.170%%*
(0.027) (0.028) (0.021) (0.024) (0.025)
Constant -3.33e16 0.081* 0.158** 0.296** 0.563**
(0.002) (0.033) (0.021) (0.028) (0.038)
psenade 0.54 0.52 0.50 0.48 0.45
squared
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E. Size Effectand the Betas

The evidence for theeffect of size on bank systematic risknexed whilst Demsetz and
Strahan (1997find that large banks tend to diversify their business more efficiently and are
less prone to bankruptcfsaunders et al. (199@nd Anderson ad Fraser (2000find that

bank systematic risk increases with bank size as large banks could be more sensitive to
general market movements than small baki¥stest if the time varying betas are related to
themarket capitalisation aizeof theportfoliosand over noscrisis and crisis period3able

7 presents the mean and standard deviations of the standard, diffusion and jump betas for
small and large portfolios. We report thstatistics for the test of the hypothesis thatehie

no differencein the beta averages and ratietween small and larg®rtfolios In all cases

we obtainreject the null hypothesis and concluithat large banksare more sensitive to
market movementthanthe smaler banks regardless of whether they oc¢brough a jump

or not.

Although the betasof large bank portfoliosare larger than the smabank portfolios the
jump-diffusion beta ratiobetween the two portfolios do not differ significantiyowever,
there isone exceptionDuring the crisis periothere is a statistically significant difference in
the jumpdiffusion beta ratioswith smaller portfolios exhibiting relataly larger jump beta
increases compared withe corresponding diffusion beta increasHss is coroborated by
the larger magnites of the estimatedinterceps for large portfolios than small portfolios
(see Table5 and6). Small portfoliosequitiesare more sensitive to large surprises than the
large portfolioequitiesduring times of crisisAn explanation for this phenomenon tisat
small bankequitiesare riskier than largbank equitiesbecause less information is available
about the former than abbthe latter. Consequentlysmall bank portfolios react more
severely to surprises than do the labgmk portfolios Reinganum and Smith (198Rave
pointed out thiafor the differential information explanation to hold, the additiorsd caused
by the relative lack of information must not be idiosyncréfitat is, the lack of information

must be a source of systematic risk that cannot be diversified away.
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Table 7: Betas in large and small equity portfolios

The betastatistics include mean and standard deviations (in parentheses) are summarized by the full sample periods anuktiods. Sk report the betas for two size
sorted equity portfolios (large size equity beta portfolio, and small size equity betdigpitite include the pooled varianceetst of the difference between the two sample
means for the Standard BeEiffusion Beta and Jump Beta and also the siaged equity portfolio. Thedtatistics are given in parentheses. * denotes significance at 10 %

level; ** denotes significance at 5 % level, and *** denotes significance at 1 % level

Large equity portfolio

Small equity portfolio

Std Beta Dfu Beta Jump Beta  JmpDfu Beta Ratio Std Beta Dfu Beta Jmp Beta JmpDfu Beta Ratio
Full-sample Period
Mean 0.814 0.576 1.165 6.355 0.290 0.099 0.707 5.718
Std.Dev 0.282 0.319 0.630 0.203 0.173 0.595
t-test of difference -48.466*** -40.478*** -16.927 ***  -0.0793
Pre-crisis Period
Mean 0.720 0.528 1.080 8.032 0.159 0.036 0.443 8.718
Std.Dev 0.252 0.300 0.508 0.109 0.101 0.513
t-test of difference -39.583 *** -28.828 ***  -18.501 ** 0.040
Crisis Period
Mean 0.988 0.752 1.251 1.796 0.438 0.226 0.868 5.724
Std.Dev 0.266 0.254 0.955 0.230 0.211 0.712
t-test of difference -23.610%**  -24.0423***  -4.856 *** 1.956 **
Postcrisis Period
Mean 0.888 0.527 1.306 6.525 0.316 0.073 0.830 2.904
Std.Dev 0.267 0.363 0.449 0.181 0.152 0.516
t-test of difference -32.545**  -20.664 ***  -11.607 ** -0.460
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IV . Difference between the JumiDiffusion Model and the CAPM

Theoretically thgump-diffusion APM is related to the CAPM. Based tlle CAPMsingle

indexmodel| stockreturrs can beformulatedasfollows®:

in | Tigs -g PO
The covariance of a pair of assets, 1 anth@then be defined as

6¢£bh 6E0 T - h i - P X
wherg is constanand we assume

6&b h 6&b h 6¢0h L1 py
Equation p x thenbecomes

6¢bh 6&ED1 R p W
Sincg andf are both constagtEquation p wthen becomes

6e¢bh 11 6&bA T, ¢
Using the return decomposition argument in this paperptarket retumcanbe broken into
a diffusionreturrs componenanda jumpreturrs component i.e.

[ O A Cp

lh I T TR Ui -h QS
However,Equation ¢ ¢ assumes that 1 18

For the general case whére 1 , then the above relationshipn ke further rewritten as
ig | T iws T 1y -h Co
The covariance of two assets 1 ands2hen

6¢bh 60 T i1 1 - h [ S - QT

We correspondinglydrop the constant and the error termin Equation ¢ Tt and only keep

theremaining variablesTherefore,

6¢bh (o330 VIR TR N U R U B qu

8 The proof as shown is referenced fram (2014)
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6¢bh 6D 1 A 60 1 A i 6D i A

60 1 R i CQ
6¢bh T 6€&€0 h T 6é0h It 6é&b h
I1 6€0h ¢ X

The second and third tesnf Equation ¢ x are zeraas the diffusion returns and jump
returns are uncorrelate@herefore,

6 & bh rY 6éb A 1T 6é0 A C Y
6&bh T, o 11, Q W

The standard CAPM beta defined as
6¢bh
Ty ———— o

UsingEquatiors ¢ w® ¢ ‘@ mhwe can rewrite the Equatiow Tt

[ ; whergf I p8tby definition

Consequently, the standard beta is the weighted average of diffusion and jump betas
” A (I) ” A ?’Q
A 5 i . gp

» h n h

Equation 81) implies thatthe standardbeta (in the conventional CAPMis the weighted
avaage of the jump beta and diffusion bétathe jump diffusiomasset pricingnode). This
hypothesisan beestedempiricallyusingfollowing regressiorequation:

Th ® Qf f O p -5 oG
The testable hypothesare:

® ® p oo

O T o1
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In Table 8(Full Sample Analysis)we report thé=-test of whetherthe systematic risk is a
weightedaverage of diffusion and jumpetas.For bank stocks, Panel A shows tliaé
hypothesis is not rejecteith either theOLS regression with No Constant (NC) case
Quantile regression at the median ‘{&fuantile). For bank portfolios, Pan@lshows more
mixed results The results for the three syeriods are shown in Table 9 the crisis period

the bank stocks, Panel A, do meject both hypotheses in OLS regression with No Constant
(NC) case and Quantile regression at the mediafi ¢@ntile). For all other periodsthe
results are mixed for both bank stocRael A and bank portfoliogPanel B.

These resultsuggesthat during crisis periods, there is a higher decoupling of the market
returns That is,the diffusion returns and jump wehs are independent froeach other and
consequently, the diffusion and jump betas @s® notindependentDuring other periosl
these component betas are seemingly correla®ating in themixed rejections of theato
hypothesesWe conclude thatinder market conditions where themponent market returns
are not stronglycorrelated such ascrisis periodsthe hypothesisthat thestandard beta or
systematiaisk on an asset is the weighted averagéhefdiffusion ad jump betasthat is

both the diffusion and jump (market) risksnot rejected
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Table 8: Testing Distinction between the JumpDiffusion Model and the CAPM: Full sample Analysis
The table presentstést for testingvhether the beta in the conventional CAPM is the weighted average of the jump beta and diffusion beta inDiffugionpmodel. The asterisks *, **,
and *** indicate the significance at the 10%, 5%, and 1% level, respectiV€lyNo Constant.

HO: Test whether the beta in conventional CAPM is the average diiffusion beta and jump beta in the jump-diffusion model

HO: C1+C2=1
Panel A: Individual Stocks
OLS OLS (NO 5th quant 25th quant 50th quant 75th quant 95th quant
F-stat 18.63*** 0.53 172.21%** 47 .85%+* 1.71 8.5%* 18.07***
P-value 0.000 0471 0.000 0.000 0.192 0.004 0.000
Panel B: Portfolios
OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant
Small 17.77%* 3.60* 138.93** 31.43** 8.36** 24,04+ 10.37**
0.001 0.077 0.000 0.000 0.003 0.000 0.004
2 3.69 0.83 69.53** 13.77** 10.73** 1.01 23.56**
0.065 0.370 0.000 0.001 0.001 0.316 0.000
3 1.55 4.46* 27.79** 8.76** 0.04 0.00 0.92
0.225 0.044 0.000 0.003 0.838 0.9&2 0.337
4 14.80*** 3.66 86.87** 57.37** 25.95** 29.60** 9.52¢*
0.001 0.066 0.000 0.000 0.000 0.000 0.0@
Large 114.88*** 2.62 77.04* 16.38** 44.28** 71.64* 35.82+**
0.000 0.123 0.000 0.000 0.000 0.000 0.000
HO: C0=0
Panel A: Individual Stocks
OLS OLS(NC) 5th quant 25th quant 50th quant 75th quant 95th quant
F-stat 179.51 % - 0.00 0.00 71.25 222.96*** 452.40***
P-value 0.000 1.000 1.000 0.192 0.000 0.000
Panel B: Portfolios
OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant
Small 66.79** 4.66** 20.66** 49,32+ 128.25** 7127+
0.00 0.031 0.000 0.000 0.000 0.00
2 82.22+* 1.71 30.48** 102.66** 67.12%* 112.18**
0.000 0.192 0.000 0.000 0.000 0.000
3 70.15%** 0.62 4.59** 98.27*** 120.23*** 262.67***
0.000 0.430 0.032 0.000 0.000 0.000
4 37.38** 5.89** 24.16** 39.23** 40.63** 98.42**
0.00 0.015 0.000 0.000 0.000 0.000
Large 156.58** 0.00 5.19** 44.45** 121.15** 219.35**
0.000 1.000 0.023 0.000 0.000 0.000
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Table 9: Testing Distinction between the JumgDiffusion Model and the CAPM: Sub Sample Analysis
The table presentstést for testing whether the beta in the conventional CAPM is the weighted average of the juamal loiiffasion beta in the jurApiffusion model as in Table 2, but for
different subsamples. The asterisks *, **, and *** indicate the significance at the 10%, 5%, and 1% level, respectively.

HO: Test whether the beta in conventional CAPM is the averagef diffusion beta and jump beta in the jumpdiffusion model

HO: C1+C2=1

Pre-crisis Period

Panel A: Individual Stocks

OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant
F-stat 53.86** 13.34** 305.47F** 165.09** 47 .27+ 39.94+ * 70.04**
P-value 0.000 0.000 0.000 0.000 0.192 0.004 0.000
Panel B: Portfolios
OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant
Small 59.42** 20.93** 138.93*** 80.99** 40.67** 30.12** 24.08**
0.00 0.000 0.000 0.000 0.000 0.000 0.000
2 92.60*** 54.06*** 47.02** 92.98** 36.87** 66.93*+* 13.43**
0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 32.11%* 9.04*** 101.5G** 130.22** 151.99%** 36.10*** 19.33***
0.000 0.006 0.000 0.000 0.000 0.000 0.000
4 98.64** 40.39** 109.12** 163.20** 81.87** 58.61** 30.64**
0.00 0.000 0.000 0.000 0.000 0.000 0.002
Large 46.48** 3.12 53.42** 56.66** 29.53** 33.74** 116.99**
0.000 0.105 0.000 0.000 0.000 0.000 0.000
Crisis Period
Panel A: Individual Stocks
OLS OLS(NC) 5th quant 25th quant 50th quant 75th quant 95th quant
F-stat 0.04 0.58 0.47 0.28 0.21 0.02 1.31
P-value 0.839 0.495 0.495 0.594 0.646 0.895 0.253
Panel B: Portfolios
OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant
Small 11.90** 4.08* 19.45** 2.24 2.37 1.99 155
0.04 0.065 0.000 0.136 0.125 0.159 0.214
2 0.27 22.06*** 0.91 0.96 5.76** 2.88 4.85*
0610 0.000 0.341 0.328 0.017 0.091 0.029
3 7.00** 73.12** 3.77 40.09* * 5,255 % 16.92+* 0.68
0.016 0.000 0532 0.000 0.022 0.000 0.410
4 9.83** 4.50 2.55 5.02** 13.6** 2.95* 1.44**
0.06 0.072 0.112 0.026 0.000 0.087 0.232
Large 5.5 93.00*** 3.54** 8.83** 3.57* 1.36 0.50
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0.033 0.000 0.061 0.003 0.060 0.244 0.481
Postcrisis Period
Panel A: Individual Stocks
OLS OLS (NO) 5th quant 25th quant 50th quant 75th quant 95th quant
F-stat 11.95** 11.95 104.93*** 51.92%** 22.11%** 16.36** 22.15**
P-value 0.001 0.001 0.000 0.000 0.000 0.000 0.000
Panel B: Portfolios
OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant
Small 29.80** 8. 79+ 51.27** 113.13** 33.82** 25.46** 6.52**
0.000 0.010 0.000 0.000 0.000 0.000 0.011
2 5.88* 0.13 6.19%** 10.38** 14.25** 15.4+* 6.99**
0.027 0.718 0.013 0.001 0.000 0.000 0.009
3 4.18 1.12 4.34** 3.86+* 0.30 2.14 1.95
0.062 0.309 0.039 0.051 0.586 0.146 0.164
4 40.18** 10.87** 164.27** 58.70** 73.62** 42.23** 42.23**
0.000 0.0B 0.000 0.000 0.000 0.000 0.000
Large 107.63** 15,72+ 23.19*+* 27.62** 36.79** 24 .69+ 14 5+
0.000 0.08 0.000 0.000 0.000 0.000 0.000
HO: C0=0
Pre-crisis Period
Panel A: Individual Stocks
OLS OLS (NO) 5th quant 25th quant 50th quant 75th quant 95th quant
F-stat 68.86*** - 0.23 0.23 41.00*** 223.30*** 367.52***
P-value 0.000 0.631 0.631 0.000 0.000 0.000
Panel B: Portfolios
OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant
Small 59.42%** 2.75* 37.74* 255.64** 147.74** 61.21**
0.000 0.098 0.000 0.000 0.000 0.000
2 92.60*** 0.77 40.73** 81.15** 264.97** 65.75**
0.000 0.379 0.000 0.000 0.000 0.000
3 32.11%** 0.00 16.17** 183.65** 112.57** 130.15**
0.000 1.000 0.000 0.000 0.000 0.000
4 98.64*** 0.18 40.12** 76.57** 76.57** 72.28**
0.000 0.670 0.000 0.000 0.000 0.000
Large 46.48*** 0.25 0.00 17.76** 32.75** 286.52**
0.000 0.615 1.000 0.000 0.000 0.000
Crisis Period
Panel A: Individual Stocks
OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant
F-stat 0.47 - 0.50 45 .57*** 63.54*** 103.73*** 540.93***
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P-value 0.495 0.48 0.000 0.000 0.0000 0.0000
Panel B: Portfolios
OLS OLS (NO) 5th quant 25th quant 50th quant 75th quant 95th quant
Small 11.90*** 3.46* 4.15% 7.06*** 28.87*** 71.82%**
0.004 0.064 0.042 0.008 0.000 0.000
2 0.27 0.48 5.70 22.79** 12.25** 68.04* *
0.610 0.488 0.181 0.000 0.000 0.000
3 7.00** 0.33 0.46 12.23** 28.73** 66.80***
0.016 0.569 0.496 0.001 0.000 0.000
4 9.83*** 6.21*+* 11.62* 26.15** 7.65** 12.86**
0.006 0.013 0.001 0.000 0.006 0.000
Large BESHE 8.3 * 39.08** 69.10** 40.62*+* 78.48***
0.033 0.004 0.000 0.000 0.000 0.000
Postcrisis Period
Panel A: Individual Stocks
OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant
F-stat 44.98** - 1.47 7.7 29,61+ 52.77** 115.06**
P-value 0.000 0.226 0.005 0.000 0.000 0.000
Panel B: Portfolios
OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant
Small 29.80*** 0.88 11.66** 26.29** 43.82** 79.69**
0.000 0.350 0.000 0.000 0.000 0.000
2 5.88** 0.10 9.70Qk* 11.86** 24 .27 20.12*=
0.027 0.754 0.002 0.00L 0.000 0.000
3 4.18* 2.14 4.24+* 3.86** 50.15%** 22.03
0.062 0.145 0.041 0.051 0.000 0.000
4 40.18*** 8.49w* 12.25** 37.75** 30.85** 84.02+**
0.000 0.004 0.000 0.000 0.000 0.000
Large 107.63*** 9.52¢* 16.42** 24,56+ 23.80** 36.62**
0.000 0.0 0.000 0.000 0.000 0.000
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V. Conclusion

In this paper, waisedhigh-frequency data and novel methodf decomposing s ecur i t yo
systematic risk intdwo components$o estimataliffusion beta and the jump betamponents

We empiricallytestfor anyrelationship betweethe standard beta diffusion beta and jump

betas across a portfolio of Japanese banking stocks ugiragtile regressiotechniqus to

allow for nortlineairity.

Using high-frequency data of the Japanese bankem 20012012, we find that the
relatiorship between standard, diffusion and jump betaslifferent(i.e. nonrlinear) across
guantiles.More precigly, we find thatthe standard betaon average and as expectesl
weighted more by the diffusionomponentthan the jumpcomponentthough the actual
magnituds of the weightsdiffer significantly acrosgjuantiles. The relationshipholds for

bothbankstocks andankportfolios.

Past enpirical studies have shown thetndardoetas ary systematiclhy across firm sizeA

close look at our results indicates tham averagelarge banks have largdetas whereas

small banks have smalibetas i.elarger Japanese banks are more sensitive totpodls of

market movements than smaller institutions, regardless of whethes thevements are
continuous or jumpsHowever in our studythe smaller bank portfoliogxhibit largerjump-

diffusion beta ratis thanthelarger bank portfoliosluring times of crisissuggesting thahe

jump beta are disproportionately larger thaihe correspondingiffusion betas in the small
portfolios indicatingan additionalsizecumcrisis effect. The resuk sugges that during

times of crisisthe jumpdiffusion betaasymmetry could be more severe for serdtlanks

than largebanksin Japan

Our findings also indiate that during crisis periotlse diffusion returns and jump tehs are
independentaind consequently, the diffiem and jump betas are alsocanrelated. During

other period, these component betas are seemingly codredatiing tomixed rejections of
thehypotheses around whether standard betas can be expressed as a weighted combination of
diffusion and jump betarhus, we can say that under market conditions where the component
market returns are not strongly correthteuch ascrisis periods, the hypothesis that the
standard beta or systematic risk on an asset is the weighted average of the diffusion and jump
betas i.e. both the diffusion and jump (market) riskwisrejected
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Appendix:
Al. Jump Test

We apply the nonparametric jurgietection methods prosed WarndorffNielsen and
Shephard (2006 hereafter, BNS, to detect jumps in the Nikkei 225 index. BNS propose two
general measures based on realized power variations to test for jumps and to estimate the
contribution of jumps to totalariation realized variance (RV) and-power variation (BV).

The ealized variance (RV) is defined as the sum of squared intratiays,
Yo iph o pmBay 08

where n is the sampling total sample (usually daily/monthly) ianpds the intraday
logarithmic return. Note that equatioA.{) uses only returns from within each trading day
(intraday returns), discarding any overnighuras (intradayreturns). As a result, any jumps
resulted from overnight returns are excluded from realized variance. Wigees to zero,
realized variance converges to integrated variance plus the ju@psidorfiNielsen and
Shephard 20Q4Andersen and Bollerslev 19p8Ne can rewrite this as:

Y 6P . Qi Qh o pB&Y 08

Where,0 = sampling frequency, is the timediffusion intergrade variance function aity
is the squared disaeejump term. It is clear that realizedniance is not a robust measure of
the variance in the presence of jumps.
Therefore, to improve the robustness of vareaestimation in the presence of jumps, BN
propose bpower variation (BV)

€ .

‘ iripg ho pB&Y 08

0w ‘
e p

where' ¢I* . (BarndorftNielsen and Shephard 2004show thatBV consistently
estimates the diffusion true or integrated variance (i.e. jump free) when the sampling
frequency goes to zero. Intuitively, in the presence of any jump, one of the two consecutive
returns is bound to be larger. The product of the smalterrreand the larger returns,
however, will be small and thus neutralize the effect of the jumps. Therefore,

0 w° , Qh Q&b O m o0&
Combining equations0& and0& ,ford © 1
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Thus, the difference between tewandd wconsistently estimasethe jump contribution to
the total variation.
Following Huang and Tauchen (200%e define the jump ratio statistic
vo YO 0 -
Yw
which converges to a standard normal distribution when scaled by its asymptotic variance in
the absence of jumps. That
" YO . .
WL O 0 rip o0&
- uv-—-i Agph—

whereO wis the quaepower variation robust to jumps as showsBarndorftNielsen and
Shephard (2004ndAndersen et al. (2007Thequadpower varaition iglefinedas

€ ‘ ‘ ‘ CE s .
P ilp 1y 1p 1pho pB&Y o8y

Ow ¢

The® Ustatistic in equationd8& can be applied to test the null hypothesis that there is no
jump in the return process during a trading daljiuang and Tachen (2005show that this

test has very good size and power properties and is quite accurate for detecting jumps.
Significant jumps are identified by the realizationscobin excess of the 99.9% critical
valuen

Op OGO M 8YwWw 6w 08w

whereQefers to the indicator function equal to one if a jump occurs and zero otherwise.
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