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Abstract:  

How the banking sector absorbs news is critical to disbursing information to financial 

markets and the real economy. Using high frequency financial data and quantile regression 

techniques we characterise some stylised facts about standard betas, diffusion betas, jump 

betas and the relationships between them for Japanese banking stocks and bank portfolios. 

Jump betas, which relate to the arrival of unexpected news, are on average, higher and more 

dispersed than the diffusion betas across the banking sector. While on average, the standard 

beta is a weighted average of the diffusion and jump betas, the magnitudes of the weights 

differ significantly across the quantiles, indicating non-linearity in how jump information is 

incorporated. On average, small bank portfolios have smaller diffusion betas and smaller 

jump betas than large bank portfolio. While there are no significant differences between the 

jump-diffusion beta ratios when conditioned by market capitalisation, during times of 

financial crisis, small bank portfolios have significantly higher jump beta-diffusion beta ratios 

than large bank portfolios; indicating that during time of financial crisis, small Japanese 

banks face much higher relative jump risks than larger Japanese banks. 
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I. Introduction 

In the one factor capital asset pricing model (CAPM), systematic risk, measured by beta, is 

determined by the asset’s covariance with the market over the market variance (Sharpe 1963; 

Lintner 1965).  The traditional way of estimating the asset’s constant beta has been by linear 

regression, typically based on 5 years of monthly data. However, the advent of more 

powerful computers and easy access to high frequency data has made alternative non-

parametric approaches realistic. Non-parametric approaches reduce the scale of the 

calculation problem and avoid many of the assumptions necessary for parametric modelling. 

The use of high frequency data results in statistically superior beta estimates and the 

computation of continuously time varying realized betas, providing a simple and robust 

estimator for measurement of time varying systematic risk. (see Wang et al. (2013)). 

From a pricing perspective, the empirical failure of the unconditional Capital Asset Pricing 

Model (CAPM) has led to three possible approaches to relaxing the overly restrictive CAPM 

assumptions. The first is to use additional systematic factors, as in Merton (1973), allowing 

extra-market factors to capture additional systematic risks; such as the three-factor model of  

Fama and French (1993) and the four-factor model of Carhart (1997). The second approach is 

to relax the static relationship between expected return and risk by allowing time variation in 

the systematic factors. In that sense, Jagannathan and Wang (1996), Lettau and Ludvigson 

(2001) and Petkova and Zhang (2005) find that betas of assets with different characteristics 

move differently over the business cycle and Campbell and Vuolteenaho (2004), Fama and 

French (1996) and Ferson and Harvey (1999) show that time-variation in betas helps to 

explain anomalies such as value, industry and size. However, this conditional time-varying 

framework does not seem to be enough to improve the weak fit of the CAPM, as shown by 

Lewellen and Nagel (2006). 

The third approach is the use of dual or conditional betas whereby the market beta is 

conditioned on market states i.e. bullish or bearish or positive or negative market returns. 

Bhardwaj and Brooks (1993), Howton and Peterson (1998) and Pettengill et al. (1995) among 

others have investigated the relationship between beta risk and stock market conditions. 

Fabozzi and Francis (1977) first tested the stability of betas over the “bull” and “bear” 

markets; Pettengill et al. (1995) observe that larger firms experience larges betas in down 

market conditions than in up market conditions, with the reverse being true for smaller firms, 

Using an alternative return decomposition method, Campbell and Vuolteenaho (2004) 
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decompose CAPM betas into discount rate betas and cash flow betas which Botshekan et al. 

(2012) follow to construct a return decomposition distinguishing cash flow and discount rate 

betas in up and down markets. They find that for larger companies, the priced components of 

risks become more symmetric (both upside and downside market).  

In each of the above three approaches, the various beta estimates assume a continuous data 

generation process, while in fact the empirical papers in high frequency literature support the 

occurrence and persistence of jumps in the observed data generation process. A large body of 

literature shows that both theoretically and empirically jumps explain many of the dynamic 

features of stylized facts documented in asset prices. Studies on stochastic behaviour of the 

stock market generally agree that stock returns are generated by a mixed process with a 

diffusion component and a jump component. In this case the standard CAPM beta is at best a 

‘summary proxy’ for the systematic risk of a mixed-process, i.e. a weighted average of the 

diffusion component and the jump component. By separating the standard beta into two 

component betas we can capture the two risks separately: one for continuous and small 

changes (diffusion beta) and the other for discrete and large changes (jump beta). Todorov 

and Bollerslev (2010) provide a theoretical framework for disentangling and estimating the 

sensitivity towards systematic diffusive and jump risk in the context of factor models. They 

focus on the decomposition of systematic risk by recognizing jump occurrence at the 

aggregate market level and show that diffusion and jump betas with respect to aggregate 

market portfolio differ significantly and substantially. The use of high frequency data enables 

both betas to be time-varying.  

The key contribution of this paper is to examine the relationship between standard, diffusion 

and jump betas across the quantiles of observed returns. Although the continuous returns and 

jump returns are orthogonal by the Todorov and Bollerslev (2010) decomposition, the three 

realised betas (i.e. standard, diffusion and jump betas) are not restricted nor expected to be 

orthogonal. In fact, a simple correlation test indicates some dependencies. The rich cross-

sectional and time–series heterogeneity in our estimates of monthly betas enables us to study 

how standard beta, diffusion beta and jump betas vary both across quantiles and over time. 

We adopt a quantile regressions (QR) approach to model the relationship between standard 

betas and diffusion and jump betas not just for the mean of the conditional distribution, but 

also across the distribution (e.g. Koenker and Hallock (2001)).  

Our empirical investigations are based on high-frequency stock data of 50 Japanese banks 

included in the Nikkei 225 index over the 2002-2012 sample period. We begin by estimating 
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two separate betas; the diffusion and jump betas as well as a standard CAPM beta for each of 

the individual stocks on a monthly basis over the whole sample period. We rely on 5-minute 

intraday sampling frequency for the beta estimation, with the frequency chosen to guard 

against the market microstructure complications that arise at the higher frequencies. We 

regress the standard beta against  the diffusion and jump beta and we find that the quantile 

regression relations between standard beta and diffusion and jump beta varies widely 

depending on the quantile level of standard beta. 

We find that on average the standard beta is weighted more on the diffusion beta component 

then the jump beta component. The relationship holds across all the quintiles considered. 

However, the actual magnitude of the weights differ across the quintiles. In general, the 

weights are jointly lower for low standard betas, increasing around the 50th-75th quintiles and 

dropping again post 75th quantile.  

Sorting bank portfolios based on the size, we find that large banks have high betas and small 

banks have low betas. The results hold for all the three betas; indicating that larger Japanese 

banks are more sensitive to both market movements than smaller institutions, regardless of 

whether these movements occur through a jump or not. However, the relative effects do not 

remain the same. The ratio of the standard betas for large equity versus small equity 

portfolios is 2.81, while the ratio of diffusion betas for large equity versus small equity 

portfolios is 5.82. In contrast, the ratio of jump betas for large equity versus small equity 

portfolios is 1.65. 

This study also investigates the empirical beta-relationship between the jump-diffusion model 

and the conventional CAPM. We find that under certain market conditions, particularly 

during crisis periods, the hypothesis that the standard beta or systematic risk is the weighted 

average of the diffusion and jump betas (i.e. both the diffusion and jump (market) risks) is not 

rejected at standard significance levels. 

The rest of the paper is organised as follows. In Section II, we present our theoretical 

framework. Section III presents the methodology used in this study. Section IV describes the 

data. The empirical results are present in Section IV. Section V concludes the paper.  
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II. Theoretical Framework 

A. Capital Asset Pricing Model 

The standard capital asset pricing model (CAPM) is given as: 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑖𝑡𝑟𝑚,𝑡 + 𝜀𝑖,𝑡                                                                                                                        (1) 

where 𝑟𝑖,𝑡  is the monthly excess stock return on stock i, and 𝑟𝑚,𝑡  is the aggregate market 

returns at time t;  𝛼𝑖 is the asset specific constant, and the error term 𝜀𝑖,𝑡  is the idiosyncratic 

risk of stock i, which is uncorrelated with 𝑟𝑚  or the idiosyncratic risk of any other stock 

under CAPM assumptions. The slope coefficient, 𝛽𝑖,𝑡, in equation (1), commonly known as 

the standard beta, is the systematic risk of asset i, and measures the responsiveness of the 

changes in stock’s prices to changes in market prices. According to the CAPM, the 

equilibrium expected return on a risky asset is a function of its covaraiance with the market 

portfolio. 

Standard beta, in CAPM is defined as, 

 𝛽𝑖,𝑡 =  
𝐶𝑜𝑣(𝑟𝑖,𝑡.𝑟𝑚,𝑡)

𝑉𝑎𝑟(𝑟𝑚,𝑡)
                                                                                                                                 (2) 

The CAPM model basically depends on stock and market returns, which in turn, depend on 

the underlying prices of individual stocks. It is now widely agreed in the literature that 

financial return volatilities and correlations are time-varying and returns follow the sum of a 

diffusion process and a jump process.1 

Consider the case where the log-price (𝑝𝑡) process of an asset at time t follows a continuous-

time jump-diffusion process defined by the stochastic differential equation as follows:  

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝑘𝑡𝑑𝐽𝑡                                                                                                            (3)  

where 𝜇𝑡 is the instantaneous drift of price process and 𝜎𝑡 is the diffusion process, and 𝑊𝑡 is 

standard Brownian motion. The first two terms correspond to the diffusion part of the total 

variation process, interpreted as responsible for the usual day-to-day price movement. 

Changes in stock prices may be due to variation in capitalization rates, a temporary 

imbalance between supply and demand, or the receipt of information which only marginally 

affects stock prices. The final term, 𝑘𝑡𝑑𝐽𝑡 refers to the jump component of the total process, 

where 𝑗𝑡  is a counting process such that 𝑑𝐽𝑡 = 1  indicates a jump at time t and 𝑑𝐽𝑡 = 0 

otherwise, and 𝑘𝑡 is the size of jump at time t if a jump occurred. The jump part is assumed to 

be due to the receipt of any important information that causes a more than marginal change 

                                                           
1 See, for example, Press (1967), Merton (1976), and Ball and Torous (1983) and among others. 
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(i.e. abnormal change) in the price of stock. The arrival of this kind on information is random 

and the intensity of information arrival follows a Poisson process.  

If the return of stocks should be divided into jump part and diffusion part certainly the risk 

associated with returns of securities should be similarly decomposed. The presence of jump 

variations in both individual assets and aggregate market affect co-variance estimation and 

consequently estimates of realized beta and systematic risk. Thus it would be prudent to 

disentangle the jump component and the diffusion component in prices because they are 

basically two quite different sources of risk; see, e.g. Bates (2000), Eraker (2004), Pan (2002) 

and Todorov (2009).  

 

B. Decomposing Systematic Risk: Diffusion and Jump components 

Our framework motivating the different betas and the separate pricing of  diffusion and  jump 

market price risk and relies on the approach originally developed by Todorov and Bollerslev 

(2010) for decomposing market returns into two components: one associated with  diffusion 

price movement and another associated with jumps. Hence, in the presence of both 

components, equation (1) becomes:  

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑖,𝑡
𝑐 𝑟𝑚,𝑡

𝑐 + 𝛽𝑖,𝑡
𝑗

𝑟𝑚,𝑡
𝑗

+ 𝜀𝑖,𝑡                                                                                                   (4)  

where 𝑟𝑖,𝑡 is the monthly excess stock return on stock i, 𝛼𝑖is its drift term and the total market 

risk (𝑟𝑚,𝑡) is modelled as a combination of a diffusion (𝑟𝑚,𝑡
𝑐 )  and jump component (𝑟𝑚,𝑡

𝑗
). 

The parameters 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑗
 denote the responsiveness of each stock’s movement to the 

diffusion and jump components of market risk and 𝜀𝑖 denotes the idiosyncratic term -- which 

is also made up of a continuous and jump component. This decomposition is pertinent 

because standard single factor models of risk implicitly assume that an asset’s systematic risk 

is unaffected by any market jumps (i.e. there are no market jumps because stock jumps are 

diversified away at the aggregate level or the assets diffusion and jump betas are the same). 

Equation (1) does not distinguish between the diffusion and jump components of total return, 

but does decompose total returns into systematic (𝛽𝑖,𝑡𝑟𝑚,𝑡) and non-systematic (𝛼𝑖 + 𝜀𝑖,𝑡 ) 

components. Any market jump is embedded within 𝑟𝑚,𝑡,  while any non-systematic jump 

unique to firm i is included in the error term. When the systematic risks exposure of a firm to 

both  diffusion and jump price movements are identical, i.e. 𝛽𝑖,𝑡
𝑐  =  𝛽𝑖,𝑡

𝑗
, the two-factor dual-

beta market model collapses to the usual one-factor single-beta market model, which relates 
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the stock return 𝑟𝑖,𝑡  to the total market return  𝑟𝑚,𝑡 = 𝑟𝑚,𝑡
𝑐 + 𝑟𝑚,𝑡

𝑗
 . The restriction that 𝛽𝑖,𝑡

𝑐  

=  𝛽𝑖,𝑡
𝑗

 implies that the asset responds in the same manner to market diffusion and jump price 

changes, i.e. intuitively that the asset and the market co-move in the same manner during 

“normal” times and periods of “abrupt” market moves. If, on the other hand, 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑗
 

differ, empirical evidence for which is provided below, the cross-sectional variation in the  

diffusion and jump betas may be used to determine any separate pricing behaviour. The 

extant literature suggests that the two betas are not the same.  

Chen (1996) showed that under the usual assumptions of CAPM, relaxing only the normality 

of asset returns, the jump-diffusion model includes a diffusion beta, which measures the 

systematic risk when no jumps occurs and jump beta, which measures the systematic risk 

when jumps take place in the market.  The dual beta jump-diffusion model is defined as 

follows: 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝑟𝑚,𝑡[(1 − ∅)𝛽𝑖,𝑡
𝑐 + ∅𝛽𝑖,𝑡

𝑗
] + 𝜀𝑖,𝑡                                                                                       (5) 

The right side of equation (5) is the weighted average of two betas, with weighting parameter 

∅. 𝛽𝑖,𝑡
𝑐  is the diffusion beta as defined by 𝛽𝑖,𝑡

𝑐 =  
𝐶𝑜𝑣(𝑟𝑖,𝑡𝑟𝑚,𝑡

𝑐 )

𝑉𝑎𝑟(𝑟𝑚,𝑡
𝑐 )

 ;  𝛽𝑖,𝑡
𝑗

 is the jump beta  as defined 

by 𝛽𝑖,𝑡
𝑗

=  
𝐶𝑜𝑣(𝑟𝑖,𝑡𝑟𝑚,𝑡

𝑗
)

𝑉𝑎𝑟(𝑟𝑚,𝑡
𝑗

)
 . Two special cases apply. If there are no jumps in the market, this 

implies ∅ = 0, and equation (5) collapses to the conventional CAPM equation,  

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝑟𝑚,𝑡[𝛽𝑖,𝑡
𝑐 ] + 𝜀𝑖,𝑡                                                                                                                 (5𝑎) 

On the other hand, if asset returns are generated by a pure jump process, 𝜎2(𝑟𝑚) = 0 which 

implies ∅ = 1, then equation (5) reduces to a pure jump CAPM equation, 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝑟𝑚,𝑡[𝛽𝑖,𝑡
𝑗

] + 𝜀𝑖,𝑡                                                                                                                 (5𝑏) 

III. Methodology 

 

The possibility of a two-way decomposition of the standard beta prompts us to investigate the 

relationship between the standard betas and the decomposed diffusion and jump beta 

components. We now consider the relationship between standard beta, diffusion beta and 

jump beta across Japanese banks. 
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A. Realized Beta 

Standard betas are not directly observable. The traditional approach for estimating standard 

betas relied on rolling linear regressions, typically requiring sample sizes of up to 5 years of 

monthly data to satisfy sample size requirements.2 However, the advent of readily available 

high frequency data in recent years, have now made it possible to estimate realized betas over 

much shorted sample sizes.  

Realized beta or high frequency standard beta is the ratio of realized covariance of stock and 

market to the realized market variance. Andersen et al. (2005) argue that realized beta is a 

more accurate measurement of the standard beta because it employs more information than 

the traditional regression on monthly returns. The estimate of realized beta for an individual 

stock, �̂�𝑖,𝑡
𝑠  is defined as: 

�̂�𝑖,𝑡
𝑠 =

𝑅𝐶𝑂𝑉𝑖,𝑡,𝑠
𝑠

𝑅𝑉𝑚,𝑡,𝑠
𝑠 =

∑ 𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠  𝑛
𝑠=1

∑  (𝑟𝑚,𝑡,𝑠)
2

 𝑛
𝑙=1

                                                                                                   (6) 

 

Despite the advantages of realized beta, equation (6) still defines the standard beta in a one-

factor CAPM model. The same readily high frequency data that makes possible the 

computation of the realized betas also enables the disentangling of these realized betas into 

diffusion betas and jump betas, effectively giving rise to a two-factor CAPM model for 

pricing assets which follow not only a diffusion process but also a jump process. Hence, the 

two-factor CAPM model in this paper is also a jump-diffusion CAPM model. 

B.  Diffusion and Jump betas 

The decomposition of the returns for the market into separate diffusion and jump components 

that formally define the 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑗
 in equations (4) are, of course, not directly observable. 

Instead, we assume that prices are observed at discrete time grids of length 1/s over the active 

trading day [0, 𝑇]. Empirical studies rely on discretely sampled returns denoted as  

 

𝑟𝑡,𝑠 = 𝑝𝑡,𝑠 − 𝑝𝑡,𝑠−1, 𝑠 = 1, … . , 𝑛 ; 𝑡 = 1, … . , 𝑇                                                                     (7) 

 

where 𝑝𝑡,𝑠 refers to the 𝑠 th intra-day log-price for day t; T is the total number of days in the 

sample and s is the (regular) sampling frequency. 

                                                           
2 see, e.g., the classical work by Fama and MacBeth (1973). 
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Assuem that the intraday stock price processes for the aggregate market index, denoted by 

𝑑𝑝𝑚,𝑡, and the ith stock, denoted by 𝑑𝑝𝑖,𝑡, each follow a general diffusion-time process. To 

allow for the presence of jumps in the price process Todorov and Bollerslev (2010) 

considered the following specification for stock i and aggregate market m.3 

For the market, 

 

 𝑟𝑚,𝑡,𝑠 ≡ 𝑑𝑝𝑚,𝑡 = 𝛼𝑚,𝑡𝑑𝑡 + 𝜎𝑚,𝑡𝑑𝑊𝑚,𝑡 +  𝑘𝑚,𝑡𝑑𝐽𝑚,𝑡                                                                     (8)  

 

and for the stock, 

 

𝑟𝑖,𝑡,𝑠 ≡ 𝑑𝑝𝑖,𝑡 = 𝛼𝑖,𝑡𝑑𝑡 + 𝛽𝑖,𝑡
𝑐 𝜎𝑚,𝑡𝑑𝑊𝑚,𝑡 + 𝛽𝑖,𝑡

𝑗
𝑑𝐽𝑚,𝑡 + 𝜎𝑖,𝑡𝑑𝑊𝑖,𝑡 + 𝑘𝑖,𝑡𝑑𝐽𝑖,𝑡, 𝑖 = 1, … , N         (9) 

 

where,  𝑊𝑚,𝑡 and 𝑊𝑖,𝑡 are standard Brownian motions for the market and asset i; 𝛼𝑚,𝑡  and 

𝛼𝑖,𝑡 denote the diffusive volatility of the aggregate market and stock i, respectively; and 𝐽𝑚,𝑡 

and 𝐽𝑖,𝑡  refer to the pure jump Levy processes in the aggregate market and stock i, 

respectively. 𝛽𝑖,𝑡
𝑐  and 𝛽𝑖,𝑡

𝑗
 then measure the responsiveness of an individual stock to the 

diffusion and jump component of market risk. Within this framework, [𝛽𝑖,𝑡
𝑐  , 𝛽𝑖,𝑡

𝑗
] is assumed 

constant throughout each month but can change from month to month.  

In order to disentangle 𝛽𝑖,𝑡
𝑐   and 𝛽𝑖,𝑡

𝑗
, Todorov and Bollerslev (2010) propose a non-parametric 

beta estimation technique using a multi-power covariation/variation formulation between the 

returns of individual stocks and the market portfolio for the diffusion and jump components. 

By expressing the co-variation between the continuous components of  𝑟𝑖,𝑡 and  𝑟𝑚,𝑡 as 

[𝑟𝑖,𝑡
𝑐 , 𝑟𝑚,𝑡

𝑐 ][0,𝑇] = 𝛽𝑖,𝑡
𝑐 ∫ 𝜎𝑚,𝑠

2𝑡

𝑡−1
𝑑𝑠,  and the variation of continuous component of 𝑟𝑚,𝑡  as 

[𝑟𝑚,𝑡
𝑐 , 𝑟𝑚,𝑡

𝑐 ][0,𝑇] = ∫ 𝜎𝑚,𝑠
2𝑡

𝑡−1
𝑑𝑠 in the continuous-time model, they show that the diffusion beta 

of the ith asset, 𝛽𝑖,𝑡
𝑐  can be expressed as: 

𝛽𝑖,𝑡
𝑐 =

[𝑟𝑖
𝑐, 𝑟𝑚

𝑐 ][0,𝑇]

[𝑟𝑚
𝑐 , 𝑟𝑚

𝑐 ][0,𝑇]
, 𝑖 = 1, … . . 𝑁.                                                                                              (10) 

                                                           
3 The notation here is simplified relative to that in Todorov and Bollerslev (2010) see their article for more 

details. 
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In reality, price data are not observed continuously. The estimator 𝛽𝑖,𝑡
𝑐  takes the following 

form in the discrete-time setting;      

�̂�𝑖,𝑡
𝑐 =

∑ 𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠 𝕝{|𝑟𝑡,𝑠|≤𝜃} 𝑛
𝑠=1

∑  (𝑟𝑚,𝑡,𝑠)
2

 𝕝{|𝑟𝑡,𝑠|≤𝜃} 
𝑛
𝑠=1

  ,   𝑖 = 1, … . . 𝑁.                                                                          (11) 

 

where,𝕝{|𝑟𝑡,𝑠|≤𝜃}  is the indicator function, based on the truncation level, 𝜃, for the diffusion 

component,  

𝕝 = {
1
0

 𝑖𝑓 {|𝑟𝑡,𝑠|≤𝜃}

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                                              (12)   

 

The observed high-frequency returns may contain both diffusive and jump risk components. 

Raising the high-frequency returns to powers of orders greater than two, has the effect of 

making the diffusion components negligible, so that systematic jumps dominate 

asymptotically for 𝑛 → ∞ . 4  As formally shown in Todorov and Bollerslev (2010), the 

following estimator is consistent for jump beta when there is at least one significant jump in 

the market portfolio for the given estimation window for 𝑛 → ∞. 

 

�̂�𝑖,𝑡
𝑗

= sign {∑ sign{𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠}|𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠|
𝜏

𝑛

𝑠=1

} × (
|∑ sign{𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠}|𝑟𝑖,𝑡,𝑠 𝑟𝑚,𝑡,𝑠|

𝜏𝑛
𝑠=1 |

∑  (𝑟𝑚,𝑡,𝑠)
2𝜏𝑛

𝑠=1

)

1

𝜏

, (13) 

 

Here, the power 𝜏 ≥ 2 so that the diffusion price movements do not matter asymptotically. 

The sign in equation (13) is taken to recover the signs of jump betas that are eliminated when 

taking absolute values. 

Following Todorov and Bollerslev (2010) and Alexeev et al. (2017) we set the parameter 

values for 𝜃,  𝜛, and 𝛼 estimate the �̂�𝑖,𝑡
𝑐   and �̂�𝑖,𝑡

𝑗
  on monthly basis. For estimating the  �̂�𝑖,𝑡

𝑐  

and �̂�𝑖,𝑡
𝑗

, the truncation threshold, 𝜃 = 𝛼∆𝑛
𝜛, uses 𝜛 = 0.49 and 𝛼 ≥ 0, suggesting that the 

threshold values may very across stocks and across different estimation windows. We 

implement the threshold, 𝜃 = 𝛼𝑖
𝑐 = 3√𝐵𝑉𝑖

[0,𝑇]
 for �̂�𝑖,𝑡

𝑐  suggesting that the diffusion 

                                                           
4 The basic idea of relying on higher orders powers of returns to isolate the jump component of the price has 

previously been used in many other situations, both parametrically and nonparametrically; see e.g., Barndorff-

Nielsen and Shephard (2003) and Aıt-Sahalia (2004). 
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components are contained within three standard deviation from mean, where, 𝐵𝑉𝑖
[0,𝑇]

 is the 

bi-power variation of the i-th stock at time [0, 𝑇]; implemented with 𝜏 = 2 for equation (13).  

III. Sample and Data 

The sample consists of publicly-traded Japanese bank stocks from January 2001 through 

December 2012, including varying phases of the business cycle. Our final sample consists of 

50 (of the 63) commercial banks listed on the Tokyo Stock Exchange (TSE) as the remaining 

banks did not have sufficient data availability. All the high-frequency data are extracted from 

the Thompson Reuters Tick history (TRTH) database available via the SIRCA. We use the 

Nikkei 225 index as the proxy of the market portfolio. Following the standard high-frequency 

literature, we sample at a 5-minute frequency for all data, reflecting a trade-off between using 

all available high-frequency data and avoiding the impact of market microstructure effects, 

such as infrequent trading or nonsynchronous trading. Unlike the more commonly 

investigated US and European markets, daily trading on the TSE is interrupted by a lunch 

break, trading between 09:00 am - 11:00 am and 12:30 pm- 3:00 pm local time. We sample 

prices from 9:05 am-11:00 pm and 12.35 pm-3.00 pm, with overnight and over-lunch returns 

excluded from the data set. Missing data at 5-minute intervals is filled with the previous price; 

when no actual trade occurs during a time interval, it is logical to assume that a stock price 

carries the same price of the previous particular time interval. Hansen and Lunde (2006) 

show that the previous tick method is a sensible way to sample prices in calendar time. 

Consequently, we have 53 intra-day observations for 2866 active trading days over a 12 year 

period (144 months). 

IV. Empirical Results 

A. Betas 

Our main empirical results are based on monthly standard, diffusion and jump beta estimates 

for each of the stocks in the sample. Table 1 presents the means and standard deviations of 

the time varying betas for period 2001-2012 and three sub periods; a pre-crisis period from 

Jan 2001 to June 2007, a crisis period consistent with the Global Financial Crisis (GFC) from 

July 2007 to May 2009 and a post-crisis period from June 2009 to the end of the sample. 5  

The statistics show that across the entire sample the jump beta has a higher mean (volatility) 

                                                           
5 We use the crisis period identified in Dungey and Gajurel (2014).  
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of 0.912 (0.626), relative to that of the standard beta 0.501(0.280) and the diffusion beta of 

0.324 (0.309). The difference in means of diffusion beta and jump beta over the full sample 

period is statistically significant (t-value = -78.219***) based on the pooled variance t-test of 

difference. These relative sizes are retained in the three sub-periods, while the standard, 

diffusion and jump betas are each generally larger and more volatile in crisis period 

compared to pre-crisis and post-crisis periods.  

Table 1: Summary Statistics for Standard, Diffusion and Jump Betas  
The table summarizes of the time varying betas averages as estimated. The statistics include mean and standard 

deviations (in parentheses) are summarized by the full sample periods averages and three sub-periods. We 

include the pooled variance t-test of the difference between the two sample means for the Standard Beta, 

Diffusion Beta and Jump Beta. The t-statistics are shown in parentheses. * denotes significance at 10 % level; 

** denotes significance at 5 % level, and *** denotes significance at 1 % level 

 

          

  Standard Beta Diffusion Beta Jump Beta   

Full-sample Period         

Mean 0.501 0.280 0.912   

Std.Dev 0.324 0.309 0.626   

t-test of difference   -78.219***     
Pre-crisis Period         

Mean 0.390 0.223 0.759   

Std.Dev 0.276 0.276 0.572   

t-test of difference   -53.434***     

Crisis Period         

Mean 0.702 0.452 1.095   

Std.Dev 0.342 0.321 0.746   

t-test of difference   -29.376***     

Post-crisis Period         

Mean 0.548 0.248 1.042   

Std.Dev 0.306 0.308 0.552   

t-test of difference   -57.495***     

 

Figure 1 plots the kernel density estimates of the unconditional distributions of the three 

different betas averaged across time and stocks. The jump betas are somewhat larger on 

average, while the diffusion betas are the least dispersed of the three betas across time and 

stocks. Part of the dispersion in the betas maybe be due to estimation errors.6 

Figure 2 shows the time series of equally weighted portfolio betas, based on monthly quintile 

sorts for each of the three different betas and all of the individual stocks in the sample. The 

figure suggests that the variation in the standard beta and diffusion beta sorted portfolios (in 

Panels A and B) are clearly fairly close, as would be expected. The plots for the jump beta 

                                                           
6 Based on the expressions derived in Todorov and Bollerslev (2010), Bollerslev et al. (2015) report that the 

asymptotic standard errors for diffusion and jump betas averaged across all of the stocks and months in the 

sample equal 0.06 and 0.12, respectively, compared with 0.14 for the conventional OLS- based standard errors 

for the standard beta estimates. 
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quintile portfolios in Panel C, are distinctly different and more dispersed than the standard 

and diffusion betas quintile portfolios. Jump beta is significantly different from diffusion and 

standard beta. Motivated by these and to address the significant heterogeneity observed 

across Japanese banking sector stocks, we depart from the previous literature and employ the 

quantile regression analysis to estimate the relationship between standard, diffusion and jump 

betas.  

 

Figure 1: Distributions of Betas 
The figure displays kernel density estimates of the unconditional distributions of the three different betas 

averaged across firms and time. 
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Figure 2: Time series plots of betas 
The figure displays the time series of betas for equally weighted beta-sorted quintiles portfolios. Panel A shows 

the result for the standard beta sorted portfolios, Panel B the diffusion beta sorted portfolios and Panel C the 

jump beta sorted portfolios.  
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Panel (B): Diffusion Beta 
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Panel (C): Jump Beta 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2002 2003 2004 2005 2006 2007 2008 2009 2010

High quinti le 4th quinti le

3rd quinti le 2nd quintile

Low quinti le

J
u

m
p

 B
e

ta

 

 

B. Quantile regression model 

 

Ordinary least squares regression determines the average relation between the dependent and 

a set of relevant explanatory variable, focussing on the estimation of the conditional mean. 

Quantile regression (QR) model allows us to estimate the relationship at any specific 

quantiles; and helps in examination of non-linearity and the tail behaviour of a distribution. 

Quantile regression is more robust to the effects of heteroskedasticity, skewness and 

leptokurtosis, each of which are reported stylised features of financial data (Koenker and 

Xiao 2006).  

The quantile regression approach has been widely used in many areas of applied economics 

and econometrics; such as the investigation of wage structure (Buchinsky 1994) earnings 

mobility (Trede 1998; Eide and Showalter 1999), and educational quality issues (Eide and 

Showalter 1998; Levin 2001). There is also growing interest in employing quantile regression 

methods in the financial literature. Applications in this field include work on Value at Risk 

(Taylor 1999; Chernozhukov and Umantsev 2001; Engle and Manganelli 2004), option 

pricing (Morillo 2000), and the analysis of the cross section of stock market returns (Barnes 

and Hughes, 2002), return distributions (Allen et al. 2013), mutual fund investment styles 
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(Bassett Jr and Chen 2002), the investigation of hedge fund strategies (Meligkotsidou et al. 

2009), the return-volume relationship in the stock market  (Chuang et al. 2009), and the 

diversification and firm performance relationship  (Lee and Li 2012).  

The quantile regression takes the following form 

𝑦𝑖 =  𝑥′
𝑖𝑏

𝜏 + 𝜀𝑖  
𝜏                                                                                                                                    (14) 

where 𝑦𝑖 is the dependent variable of interest and 𝑥𝑖  the vector of predictor variables. The 

parameter vector 𝑏𝜏 is associated with the 𝜏-quantile while 𝜀𝑖  
𝜏 is the error term, allowed to 

have a different distribution across quantiles. Note that the local effect of 𝑥𝑖 on the 𝜏-quantile 

is assumed to be linear. The slope coefficient vector 𝑏𝜏  differs across quantiles and the 

estimator for 𝑏𝜏is obtained from 

𝑚𝑖𝑛 ∑ 𝜏 × |𝜀𝑖  
𝜏 | + ∑ (1 − 𝜏) × |𝜀𝑖  

𝜏 |

𝑖:𝜀𝑖  
𝜏 <0𝑖:𝜀𝑖  

𝜏 >0

=  ∑ 𝜏 × |𝑦𝑖 − 𝑥′
𝑖𝑏

𝜏| + ∑ (1 − 𝜏) × |𝑦𝑖 − 𝑥′
𝑖𝑏

𝜏|

𝑖:𝑦𝑖−𝑥′
𝑖𝛽𝜏<0𝑖:𝑦𝑖−𝑥′

𝑖𝛽𝜏≥0

          (15) 

The quantile function is estimated by minimizing a weighted sum of absolute residuals, 

where the weights are functions of the quantiles of interest. The coefficient estimates are 

computed by using linear programing methods (for more details, see Koenker (2005)). For 

𝜏 = 0.5, i.e., the conditional median of 𝑥, the problem collapses to the (well known) Least 

Absolute Deviation (LAD) estimation. The value of 𝑏 is obtained using linear programming 

algorithms and standard errors via bootstrapping techniques. We conduct the minimization 

procedure at quantiles of 𝜏 =  0.05, 0.25, 0.50, 0.75, 0.95.  
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C. Quantile Regression Analysis 

 

As a benchmark regression, we first explore what OLS regression has to say about the 

relationships of three beta across Japanese banks. Table 2 presents the results from OLS 

regressions to explain the cross-sectional and time series variation in the standard betas as a 

function of the variation in the two other betas, diffusion and jump betas. Model (1) in Table 

2 shows that the diffusion beta exhibits the highest explanatory power for standard beta, with 

an average adjusted R-squared of 0.64. To provide an impression on the contribution of jump 

betas, we include model (2). The jump beta explains 48% variation in standard beta. When 

we add the diffusion beta and jump beta as in model (3), we see that altogether, 80 % of the 

variation in standard beta may be accounted for by the component betas, with diffusion beta 

having by far largest and most significant effect. The OLS regression results are consistent 

with Figures 1 and 2. 

 

Table 2: The relationship between Standard, Diffusion and Jump betas across Japanese 

Banks 
This table presents the pooled OLS regression results between Standard beta, Diffusion beta and Jump beta 

across different banks. Standard errors are displayed in parentheses below the coefficients. The asterisks *, **, 

and *** indicate the significance at the 10%, 5%, and 1% level, respectively.  

 

Dependent Variable=Standard Beta    Models   

  (1) (2) (3) 

Diffusion Beta 0.874***   0.678*** 

  (0.029)   (0.027) 

Jump Beta   0.362*** 0.229*** 

    (0.022) (0.011) 

Constant 0.257*** 0.164*** 0.107*** 

  (0.013) (0.015) (0.008) 

R-squared 0.64 0.48 0.80 

 

The OLS estimator focuses only on the central tendency of distributions. We implement QR 

analysis to investigate how the standard, diffusion and jump betas are inter-related at their 

various quantiles. 7 The quantile regression procedures yield a series of quantile coefficients, 

one for each sample quantile. We test whether standard beta responds differently to changes 

in the independent variables depending on whether the beta is in the left tail of distribution 

                                                           
7 We proceed to examine the relations relationship between standard beta, diffusion beta and jump beta across 

Japanese bank using the following quantile regression model: 

Q(τ)𝛽𝑠  (β𝑖,𝑡
𝑠 ) = a0(τ) + b1(τ)β𝑖,𝑡

𝑐 + b2(τ)β𝑖,𝑡
𝑗

+ εi,t      

The variable of primary interest is the coefficient of diffusion and jump betas on the standard betas. The slopes 

of the regressors are estimated at five different quantiles τ −the 5th, 25th, 50th, 75th, 95th- using the same set of 

explanatory variables for each quantile. 
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(low risk bank) or in the right tail of the distribution (high risk bank). In Table 3, we present 

the parameter estimates for selected quantiles ranging from 0.05 to 0.95. The relationship 

between standard, diffusion and jump betas changes in magnitude across the distribution 

quantiles. For example, while the response rates for diffusion beta and jump beta at the 5th 

quantile are, respectively, 0.55 and 0.16, at the median they are 0.71 and 0.28, and at the 95th 

quantile they are 0.68 and 0.22. All coefficients are strongly statistically different from zero. 

Additionally, our results show that the conditional mean approach is also misleading in terms 

of goodness-of-fit.  

Table 4 presents the results for F-tests of the null hypothesis of equal slopes across quantiles 

to formally test whether the slopes of explanatory variables change across quantiles where a  

bootstrap procedure was extended to construct a joint distribution across pairs of quantiles 

(Chuang et al. 2009). These results indicate that the coefficients are significantly different 

from each other between all quintiles. Further, we observe that there are significant 

differences between the coefficient of 5th quantile and 95th quantile, supporting the notion that 

at low and high of standard betas within the Japanese banking sector the relationships 

between standard, diffusion and jumps betas differ significantly. Our results indicate that the 

relationship may be far more complex (i.e. non-linear) than can be described using least-

squares regression. The relationships between standard betas, diffusion betas and jump betas 

for Japanese banking stock are non-linear across quantiles and the relationships at tail 

quantiles are quite different from those at central quantiles. 
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Table 3: The relationship between Standard beta, Diffusion beta and Jump beta 

different quantiles 
This table presents the regression results between Standard beta, Diffsion beta and Jump beta across different 

quantiles. Standard errors are displayed in parentheses below the coefficients. Standard errors are obtained by 

bootstrapping with 100 replications. The asterisks *, **, and *** indicate the significance at the 10%, 5%, and 1% 

level, respectively.  

 

Dependent Variable= Standard Beta       

  5th quant 25th quant 50th quant 75th quant 95th quant 

Diffusion Beta 0.555*** 0.689*** 0.709*** 0.684*** 0.677*** 

  (0.025) (0.012) (0.010) (0.012) (0.028) 

Jump Beta 0.157*** 0.245*** 0.281*** 0.291*** 0.222*** 

  (0.006) (0.004) (0.006) (0.010) (0.018) 

Constant -7.77e-16 -3.28e-15 0.0410*** 0.120*** 0.376*** 

  (0.003) (0.000) (0.005) (0.008) (0.018) 

Pseudo R-squared 0.48 0.58 0.61 0.60 0.53 

 

Table 4: Post estimation linear hypothesis testing. 
The table presents F-test for testing whether coefficients between different the quintiles are equal. Quantiles 

were estimated by simultaneous regression analysis. Standard errors were obtained by bootstrapping with 100 

replications. The asterisks *, **, and *** indicate the significance at the 10%, 5%, and 1% level, respectively. 

 

Panel A: 
H0: Test whether Diffusion beta and Jump beta coefficients are equal  across different quantiles 

H0: Q5=Q25 F(  2,  5401) =214.87***     

  Prob > F = 0.0000     

H0: Q25=Q50 F(  2,  5401) = 48.98***     

  Prob > F = 0.0000     

H0: Q50=Q75 F(  2,  5401) = 3.18**     

  Prob > F = 0.0417     

H0: Q75=Q95 F(  2,  5401) = 10.92***     

  Prob > F = 0.0000     

H0: Q05=Q95  F(  2,  5401) = 22.42***     

  Prob > F = 0.0000     

H0: Q25=Q75 F(  2,  5401) = 23.40***     

  Prob > F =  0.0000     

 

Panel B: 
H0: Test whether Diffusion beta and Jump beta coefficients are equal  across different quantiles 

H0: Q5=Q05 F(  2,  5401) =1536.52***     

  Prob > F = 0.0000     

H0: Q25=Q25 F(  2,  5401) = 2907.22***     

  Prob > F = 0.0000     

H0: Q50=Q50 F(  2,  5401) = 4544.71***     

  Prob > F = 0.0000     

H0: Q75=Q75 F(  2,  5401) = 3309.56***     

  Prob > F = 0.0000     

H0: Q95=Q95 F(  2,  5401) = 541.05***     

  Prob > F =  0.0000     
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Figure 3 shows how the beta values vary across quantiles, depicting the point estimates of the 

slope of explanatory variable and 95% pointwise confidence band. If assumptions for the 

standard linear regression model hold, the quantile slope estimates should trace a constant 

and horizontal line across the quantiles, with only the intercept parameters systematically 

increasing with 𝜏 . However, none of the slope estimates shown could be described as 

constant and horizontal. In fact, the quantile slope estimates of the variables such as diffusion 

beta and jump beta followed a non-linear pattern with low values in the left tail and high 

values in the right tail. It is apparent that the slope of regression changes across the quantiles 

and is clearly not constant, as presumed in OLS. The results indicate that on average the jump 

betas for a quantile are higher than the corresponding diffusion betas. However, companies 

with low quantile standard betas are less sensitive to market jumps in comparison to 

companies with high quantiles standard betas.  

Figure 4 shows the scatter plots of the monthly standard betas versus diffusion betas and 

monthly standard beta versus jump betas for each quantile. The scatter plot in panel A of 

figure 4 suggests heteroskedasticity in the dataset, given that the dispersion of results seems 

somewhat narrower at the higher tail end of the distribution. The best-fit lines for the 5th and 

95th quantiles shown in the panel A indicate that for higher diffusion betas at the tails the 

dependency relationships of the standard betas with the diffusion betas are very similar i.e. 

they have similar gradients. For the intermediate quantiles (25th , 50th and 75th quantiles) the 

best-fit lines tends to converge at higher diffusion betas, indicating the relationship between 

standard beta and diffusion beta is dissimilar at low diffusion betas. In the case of jump betas 

(see Figure 4, panel B), the gap between the 5th and 95th quantiles is higher on the right side 

of the graph; in other words, among those firms- the jump betas for the 5th and 95th quantiles 

are diverging. Thus, at the tails, the diffusion betas and jump betas behave differently from 

each other. 
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Figure 3: Quantile plot of estimated slopes and 95% confidence interval 
The solid line gives the coefficients of diffusion beta estimates from the quintile regression, with the shaded 

grey area depicting a 95% confidence interval. The dashed line gives the OLS estimate of mean effect, with two 

dotted lines again representing a 95% confidence interval for this coefficient.  

 

 

The general conclusion that can be drawn is that there exists a wide disparity in behaviour 

between high risk firms and low risk firms when receiving diffusion and jump shocks.  
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Figure 4: Scatterplot of Betas across different quantiles 
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D. Size-sorted portfolios 

To control for possible size effects, we test the relationship between standard beta, diffusion 

beta and jump beta using five subsample portfolios constructed by sorting the data with 

respect to size. The banks are grouped into five benchmark portfolios ranked by size and 

based on market capitalization at the end of each year t. Tables 5 and 6 report the results for 

portfolios sorted on stock size and rebalanced each year. Portfolio 1 includes the smallest 

banks in the group and portfolio 5 includes largest banks in the sample. Table 5 shows a clear 

size effect for the OLS-estimated coefficients. The diffusion beta coefficients are all 

statistically significant with higher loadings for the smaller portfolios. For jump betas, all the 

corresponding coefficients are also statistically significant but now the larger portfolios have 

the higher loadings. Irrespective of the relative loadings, however, the diffusion coefficient is 

consistently larger than the jump beta coefficient for each of the five size-sorted portfolios.  

Table 5: The OLS relationship between Standard beta, Diffusion beta and Jump beta 

across for size-sorted stock portfolios 
This table presents the pooled OLS regression results between Standard beta, Diffusion beta and Jump beta 

across different banks. Standard errors are displayed in parentheses below the coefficients. The asterisks *, **, 

and *** indicate the significance at the 10%, 5%, and 1% level, respectively 

 
Dependent Variable= Standard Beta 

  Small 2 3 4 Large 

Diffusion Beta 0.600*** 0.685*** 0.740*** 0.469*** 0.573*** 

  (0.043) (0.066) (0.047) (0.063) (0.026) 

Jump Beta 0.192*** 0.199*** 0.215*** 0.271*** 0.203*** 

  (0.015) (0.018) (0.021) (0.020) (0.016) 

Constant 0.103*** 0.112*** 0.107*** 0.161*** 0.242*** 

  (0.013) (0.012) (0.013) (0.026) (0.019) 

R-squared 0.67 0.71 0.79 0.70 0.73 

 

We apply a quantile regression methodology to the size-sorted portfolios and report in Table 

6 the quantile relationships between the three betas. We obtain results similar to those 

reported in Table 3 with one noticeable difference. For the largest portfolio in Table 6, the 

quantile regression lines converge, whereas as for the remaining portfolios the quantile 

regression lines diverge as is the case in Table 3.  

For small bank portfolios the diffusion components are loaded relatively higher than jump 

components. For the large bank portfolios, however, the two components are loaded more 

evenly. These findings lead us to conclude not only that smaller bank portfolios have lower 

jump betas relative to the larger bank portfolios, but that the effective contributions of jump 

betas to standard betas also differ significantly across size sorted portfolios. 
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Table 6: The Quantile relationship between Standard beta, Diffusion beta and Jump 

beta for size-sorted stock portfolios 
This table presents the regression results between Standard beta, Diffusion beta and Jump beta across different 

quantiles. Standard errors are displayed in parentheses below the coefficients. Standard errors are obtained by 

bootstrapping with 100 replications. The asterisks *, **, and *** indicate the significance at the 10%, 5%, and 1% 

level, respectively.  

 

Dependent Variable= Standard Beta 

  5th quant 25th quant 50th quant 75th quant 95th quant 

  Small 

Diffusion Beta 0.329*** 0.510*** 0.632*** 0.638*** 0.665*** 

  (0.049) (0.042) (0.049) (0.032) (0.052) 

Jump Beta 0.170*** 0.195*** 0.224*** 0.225*** 0.185*** 

  (0.012) (0.010) (0.013) (0.019) (0.036) 

Constant -0.019** 0.029*** 0.064*** 0.133*** 0.308*** 

  (0.009) (0.006) (0.009) (0.015) (0.036) 

Pesudo R-

squared 
0.39 0.40 0.42 0.44 0.45 

  2 

Diffusion Beta 0.498*** 0.624*** 0.638*** 0.717*** 0.656*** 

  (0.048) (0.053) (0.042) (0.035) (0.044) 

Jump Beta 0.142*** 0.205*** 0.248*** 0.259*** 0.192*** 

  (0.015) (0.012) (0.010) (0.019) (0.032) 

Constant 0.006 0.030*** 0.063*** 0.122*** 0.354*** 

  (0.005) (0.005) (0.006) (0.014) (0.029) 

Pesudo R-

squared 
0.40 0.47 0.50 0.49 0.47 

  3 

Diffusion Beta 0.558*** 0.690*** 0.762*** 0.736*** 0.760*** 

  (0.064) (0.045) (0.031) (0.030) (0.047) 

Jump Beta 0.157*** 0.223*** 0.244*** 0.262*** 0.209*** 

  (0.017) (0.017) (0.012) (0.020) (0.026) 

Constant -0.006 0.022** 0.071*** 0.141*** 0.357*** 

  (0.008) (0.011) (0.008) (0.015) (0.021) 

Pesudo R-

squared 
0.45 0.51 0.56 0.57 0.56 

  4 

Diffusion Beta 0.265*** 0.463*** 0.540*** 0.524*** 0.512*** 

  (0.060) (0.040) (0.027) (0.026) (0.053) 

Jump Beta 0.213*** 0.276*** 0.316*** 0.339*** 0.292*** 

  (0.025) (0.016) (0.016) (0.026) (0.034) 

Constant 0.040*** 0.058*** 0.081*** 0.163*** 0.397*** 

  (0.014) (0.011) (0.013) (0.024) (0.041) 

Pseudo R-

squared 
0.38 0.47 0.48 0.49 0.49 

  Large 

Diffusion Beta 0.630*** 0.591*** 0.590*** 0.570*** 0.540*** 

  (0.043) (0.033) (0.022) (0.031) (0.048) 

Jump Beta 0.170*** 0.257*** 0.260*** 0.225*** 0.170*** 

  (0.027) (0.028) (0.021) (0.024) (0.025) 

Constant -3.33e-16 0.081** 0.158*** 0.296*** 0.563*** 

  (0.002) (0.033) (0.021) (0.028) (0.038) 

Pseudo R-

squared 
0.54 0.52 0.50 0.48 0.45 
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E. Size Effect and the Betas 

The evidence for the effect of size on bank systematic risk is mixed; whilst Demsetz and 

Strahan (1997) find that large banks tend to diversify their business more efficiently and are 

less prone to bankruptcy, Saunders et al. (1990) and Anderson and Fraser (2000) find that 

bank systematic risk increases with bank size as large banks could be more sensitive to 

general market movements than small banks. We test if the time varying betas are related to 

the market capitalisation or size of the portfolios and over non-crisis and crisis periods. Table 

7 presents the mean and standard deviations of the standard, diffusion and jump betas for 

small and large portfolios. We report the t-statistics for the test of the hypothesis that there is 

no difference in the beta averages and ratios between small and large portfolios. In all cases 

we obtain reject the null hypothesis and conclude that larger banks are more sensitive to 

market movements than the smaller banks, regardless of whether they occur through a jump 

or not. 

Although the betas of large bank portfolios are larger than the small bank portfolios, the 

jump-diffusion beta ratios between the two portfolios do not differ significantly. However, 

there is one exception. During the crisis period there is a statistically significant difference in 

the jump-diffusion beta ratios, with smaller portfolios exhibiting relatively larger jump beta 

increases compared with the corresponding diffusion beta increases. This is corroborated by 

the larger magnitudes of the estimated intercepts for large portfolios than small portfolios 

(see Tables 5 and 6). Small portfolios equities are more sensitive to large surprises than the 

large portfolio equities during times of crisis. An explanation for this phenomenon is that 

small bank equities are riskier than large bank equities because less information is available 

about the former than about the latter. Consequently, small bank portfolios react more 

severely to surprises than do the large bank portfolios. Reinganum and Smith (1983) have 

pointed out that for the differential information explanation to hold, the additional risk caused 

by the relative lack of information must not be idiosyncratic. That is, the lack of information 

must be a source of systematic risk that cannot be diversified away.  
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Table 7: Betas in large and small equity portfolios 
The beta statistics include mean and standard deviations (in parentheses) are summarized by the full sample periods and three sub-periods. We report the betas for two size-

sorted equity portfolios (large size equity beta portfolio, and small size equity beta portfolio). We include the pooled variance t-test of the difference between the two sample 

means for the Standard Beta, Diffusion Beta and Jump Beta and also the size-sorted equity portfolio. The t-statistics are given in parentheses. * denotes significance at 10 % 

level; ** denotes significance at 5 % level, and *** denotes significance at 1 % level 

 

    Large equity portfolio    Small equity portfolio  

    Std Beta Dfu Beta Jump Beta Jmp-Dfu Beta Ratio   Std Beta Dfu Beta Jmp Beta Jmp-Dfu Beta Ratio 

Full-sample Period   

   

           

Mean   0.814 0.576 1.165 6.355   0.290 0.099 0.707 5.718 

Std.Dev   0.282 0.319 0.630    0.203 0.173 0.595  

t-test of difference   -48.466*** -40.478*** - 16.927 *** - 0.0793          

Pre-crisis Period   

   

           

Mean   0.720 0.528 1.080 8.032   0.159 0.036 0.443 8.718 

Std.Dev   0.252 0.300 0.508    0.109 0.101 0.513  

t-test of difference   - 39.583 *** - 28.828 *** - 18.501 *** 0.040          

Crisis Period   

   

           

Mean   0.988 0.752 1.251 1.796   0.438 0.226 0.868 5.724 

Std.Dev   0.266 0.254 0.955    0.230 0.211 0.712  

t-test of difference   - 23.610*** - 24.0423*** - 4.856 *** 1.956 **          

Post-crisis Period   

   

           

Mean   0.888 0.527 1.306 6.525   0.316 0.073 0.830 2.904 

Std.Dev   0.267 0.363 0.449    0.181 0.152 0.516  

t-test of difference   - 32.545 *** - 20.664 *** - 11.607 *** - 0.460          
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IV. Difference between the Jump-Diffusion Model and the CAPM 

Theoretically the jump-diffusion APM is related to the CAPM. Based on the CAPM single 

index model, stock returns can be formulated as follows8: 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑖𝑟𝑚,𝑡 + 𝜀𝑖,𝑡                                                                                                                      (16) 

 

The covariance of a pair of assets, 1 and 2, can then be defined as:  

 

𝐶𝑜𝑣(𝑟1, 𝑟2) = 𝐶𝑜𝑣( 𝛼1 + 𝛽1𝑟𝑚 + 𝜀1,  𝛼2 + 𝛽2𝑟𝑚 + 𝜀2  )                                                              (17) 

 

where 𝛼 is constant and we assume 

 

𝐶𝑜𝑣(𝑟𝑚, 𝜀1) =  𝐶𝑜𝑣(𝑟𝑚, 𝜀2) = 𝐶𝑜𝑣(𝜀1, 𝜀2) = 0                                                                           (18) 
 

Equation (17) then becomes 

 

𝐶𝑜𝑣(𝑟1, 𝑟2) = 𝐶𝑜𝑣(𝛽1𝑟𝑚, 𝛽2𝑟𝑚)                                                                                                        (19)  

 

Since 𝛽1 and 𝛽2 are both constants, Equation (19) then becomes 

 

𝐶𝑜𝑣(𝑟1, 𝑟2) = 𝛽1𝛽2𝐶𝑜𝑣(𝑟𝑚, 𝑟𝑚) = 𝛽1𝛽2𝜎𝑚
2                                                                                     (20)  

 

Using the return decomposition argument in this paper, the market returns can be broken into 

a diffusion returns component and a jump returns component i.e. 

𝑟𝑚,𝑡 =  𝑟𝑚,𝑡
𝑐 + 𝑟𝑚,𝑡

𝑗
                                                                                                                               (21)  

Thus the single index model can be rewritten as 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑖(𝑟𝑚,𝑡
𝑐 + 𝑟𝑚,𝑡

𝑗
) + 𝜀𝑖,𝑡                                                                                                     (22)  

However, Equation (22) assumes that 𝛽𝑖
𝑐 =  𝛽𝑖

𝑗
= 𝛽𝑖. 

For the general case where 𝛽𝑖
𝑐 ≠  𝛽𝑖

𝑗
, then the above relationship can be further rewritten as 

𝑟𝑖,𝑡 =  𝛼𝑖 + 𝛽𝑖
𝑐𝑟𝑚,𝑡

𝑐 + 𝛽𝑖
𝑗
𝑟𝑚,𝑡

𝑗
+ 𝜀𝑖,𝑡                                                                                                   (23)  

The covariance of two assets 1 and 2, is then  

𝐶𝑜𝑣(𝑟1, 𝑟2) = 𝐶𝑜𝑣( 𝛼1 + 𝛽1
𝑐𝑟𝑚

𝑐 + 𝛽1
𝑗
𝑟𝑚

𝑗
+ 𝜀1  ,  𝛼2 + 𝛽2

𝑐𝑟𝑚
𝑐 + 𝛽2

𝑗
𝑟𝑚

𝑗
+ 𝜀2  )                            (24) 

 

We correspondingly drop the constant 𝛼 and the error term 𝜀 in Equation (24) and only keep 

the remaining variables. Therefore,  

𝐶𝑜𝑣(𝑟1, 𝑟2) = 𝐶𝑜𝑣(𝛽1
𝑐𝑟𝑚

𝑐 + 𝛽1
𝑗
𝑟𝑚

𝑗
,  𝛽2

𝑐𝑟𝑚
𝑐 + 𝛽2

𝑗
𝑟𝑚

𝑗
)                                                                        (25) 

                                                           
8 The proof as shown is referenced from Liu (2014). 
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𝐶𝑜𝑣(𝑟1, 𝑟2) = 𝐶𝑜𝑣(𝛽1
𝑐𝑟𝑚

𝑐 ,  𝛽2
𝑐𝑟𝑚

𝑐 ) + 𝐶𝑜𝑣 (𝛽1
𝑗
𝑟𝑚

𝑗
,  𝛽2

𝑐𝑟𝑚
𝑐 ) + 𝐶𝑜𝑣(𝛽1

𝑐𝑟𝑚
𝑐 ,  𝛽2

𝑗
𝑟𝑚

𝑗
)

+ 𝐶𝑜𝑣 (𝛽1
𝑗
𝑟𝑚

𝑗
, 𝛽2

𝑗
𝑟𝑚

𝑗
)                                                                                                 (26) 

 

𝐶𝑜𝑣(𝑟1, 𝑟2) =  𝛽1
𝑐𝛽2

𝑐 𝐶𝑜𝑣(𝑟𝑚
𝑐 , 𝑟𝑚

𝑐 ) +  𝛽1
𝑗
𝛽2

𝑐 𝐶𝑜𝑣(𝑟𝑚
𝑗

, 𝑟𝑚
𝑐 ) + 𝛽1

𝑐𝛽2
𝑗
 𝐶𝑜𝑣(𝑟𝑚

𝑐 , 𝑟𝑚
𝑗

)

+ 𝛽1
𝑗
𝛽2

𝑗
 𝐶𝑜𝑣(𝑟𝑚

𝑗
, 𝑟𝑚

𝑗
)                                                                                                (27) 

 

 

The second and third terms of Equation (27) are zero as the diffusion returns and jump 

returns are uncorrelated. Therefore, 

 

𝐶𝑜𝑣(𝑟1, 𝑟2) =  𝛽1
𝑐𝛽2

𝑐 𝐶𝑜𝑣(𝑟𝑚
𝑐 , 𝑟𝑚

𝑐 ) + 𝛽1
𝑗
𝛽2

𝑗
 𝐶𝑜𝑣(𝑟𝑚

𝑗
, 𝑟𝑚

𝑗
)                                                               (28) 

 

𝐶𝑜𝑣(𝑟1, 𝑟2) =  𝛽1
𝑐𝛽2

𝑐𝜎𝑚
2 (𝑐) + 𝛽1

𝑗
𝛽2

𝑗
𝜎𝑚

2 (𝑗)                                                                                       (29) 

 

The standard CAPM beta is defined as  

𝛽𝑖,𝑡 =
𝐶𝑜𝑣(𝑟1, 𝑟2)

𝜎𝑚
2

                                                                                                                                (30) 

Using Equations (29) 𝑎𝑛𝑑 (30), we can rewrite the Equation (30) 

𝛽𝑖,𝑡 =
𝛽1

𝑐𝛽𝑚
𝑐 𝜎𝑚

2 (𝑐)+𝛽1
𝑗

𝛽𝑚
𝑗

𝜎𝑚
2 (𝑗)

𝜎𝑚
2 =  

𝛽1
𝑐𝜎𝑚

2 (𝑐)+𝛽2
𝑗

𝜎𝑚
2 (𝑗)

𝜎𝑚
2  ; where 𝛽𝑚

𝑐 =  𝛽𝑚
𝑗

= 1.0 by definition. 

Consequently, the standard beta is the weighted average of diffusion and jump betas 

𝛽𝑖,𝑡 =  
𝜎𝑚,𝑡

2 (𝑐)

𝜎𝑚,𝑡
2 𝛽𝑖,𝑡

𝑐 +  
𝜎𝑚,𝑡

2 (𝑗)

𝜎𝑚,𝑡
2 𝛽𝑖,𝑡

𝑗
                                                                                                     (31) 

 

Equation (31) implies that the standard beta (in the conventional CAPM) is the weighted 

average of the jump beta and diffusion beta (in the jump diffusion asset pricing model). This 

hypothesis can be tested empirically using following regression equation: 

𝛽𝑖,𝑡
𝑆 = 𝑐0 +  𝑐1𝛽𝑖,𝑡

𝑐  + 𝑐2𝛽𝑖,𝑡
𝑗

+ 𝜀𝑖,𝑡                                                                                                      (32) 

The testable hypotheses are:  

𝑐1 + 𝑐2 = 1                                                                                                                                           (33) 

𝑐𝑜 = 0                                                                                                                                                     (34) 
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In Table 8 (Full Sample Analysis), we report the F-tests of whether the systematic risk is a 

weighted average of diffusion and jump betas. For bank stocks, Panel A shows that the 

hypothesis is not rejected in either the OLS regression with No Constant (NC) case or 

Quantile regression at the median (50th quantile). For bank portfolios, Panel B shows more 

mixed results. The results for the three sub-periods are shown in Table 9. In the crisis period 

the bank stocks, Panel A, do not reject both hypotheses in OLS regression with No Constant 

(NC) case and Quantile regression at the median (50th quantile). For all other periods, the 

results are mixed for both bank stocks (Panel A) and bank portfolios (Panel B). 

 

These results suggest that during crisis periods, there is a higher decoupling of the market 

returns. That is, the diffusion returns and jump returns are independent from each other and 

consequently, the diffusion and jump betas are also not independent. During other periods, 

these component betas are seemingly correlated resulting in the mixed rejections of the two 

hypotheses. We conclude that under market conditions where the component market returns 

are not strongly correlated, such as crisis periods, the hypothesis that the standard beta or 

systematic risk on an asset is the weighted average of the diffusion and jump betas, that is 

both the diffusion and jump (market) risks, is not rejected. 
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Table 8: Testing Distinction between the Jump-Diffusion Model and the CAPM: Full sample Analysis 
The table presents F-test for testing whether the beta in the conventional CAPM is the weighted average of the jump beta and diffusion beta in the jump-Diffusion model. The asterisks *, **, 

and *** indicate the significance at the 10%, 5%, and 1% level, respectively. NC: No Constant. 

 

 H0: Test whether the beta in conventional CAPM is the average of diffusion beta and jump beta in the jump-diffusion model 

H0: C1+C2=1                    

Panel A: Individual Stocks                    

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

F-stat 18.63*** 0.53 172.21*** 47.85*** 1.71 8.5** 18.07***       

P-value 0.000 0.471 0.000 0.000 0.192 0.004 0.000       

                      

Panel B: Portfolios                     

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

Small  17.77*** 3.60* 138.93*** 31.43*** 8.36*** 24.04*** 10.37***       

  0.001 0.077 0.000 0.000 0.003 0.000 0.004       

2 3.69 0.83 69.53*** 13.77*** 10.73*** 1.01 23.56***       

  0.065 0.370 0.000 0.001 0.001 0.316 0.000       

3 1.55 4.46* 27.79*** 8.76*** 0.04 0.00 0.92       

  0.225 0.044 0.000 0.003 0.838 0.962 0.337       

4 14.80*** 3.66* 86.87*** 57.37*** 25.95*** 29.60*** 9.52***       

  0.001 0.066 0.000 0.000 0.000 0.000 0.002       

Large 114.88*** 2.62 77.04*** 16.38*** 44.28*** 71.64*** 35.82***       

  0.000 0.123 0.000 0.000 0.000 0.000 0.000       

H0: C0=0                    

Panel A: Individual Stocks                    

  OLS OLS(NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

F-stat 179.51*** - 0.00 0.00 71.25 222.96*** 452.40***       

P-value 0.000 
 

1.000 1.000 0.192 0.000 0.000       

                      

Panel B: Portfolios                     

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

Small  66.79***  4.66*** 20.66*** 49.32*** 128.25*** 71.21***       

  0.000  0.031 0.000 0.000 0.000 0.000       

2 82.22***  1.71 30.48*** 102.66*** 67.12*** 112.18***       

  0.000  0.192 0.000 0.000 0.000 0.000       

3 70.15***  0.62 4.59** 98.27*** 120.23*** 262.67***       

  0.000  0.430 0.032 0.000 0.000 0.000       

4 37.38***  5.89*** 24.16*** 39.23*** 40.63*** 98.42***       

  0.000  0.015 0.000 0.000 0.000 0.000       

Large 156.58***  0.00 5.19*** 44.45*** 121.15*** 219.35***       

  0.000  1.000 0.023 0.000 0.000 0.000       
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Table 9: Testing Distinction between the Jump-Diffusion Model and the CAPM: Sub Sample Analysis 
The table presents F-test for testing whether the beta in the conventional CAPM is the weighted average of the jump beta and diffusion beta in the jump-Diffusion model as in Table 2, but for 

different subsamples. The asterisks *, **, and *** indicate the significance at the 10%, 5%, and 1% level, respectively. 

 

 H0: Test whether the beta in conventional CAPM is the average of diffusion beta and jump beta in the jump-diffusion model 

H0: C1+C2=1                    

Pre-crisis Period           

Panel A: Individual Stocks                    

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

F-stat 53.86*** 13.34*** 305.47*** 165.09*** 47.27*** 39.94*** 70.04***       

P-value 0.000 0.000 0.000 0.000 0.192 0.004 0.000       

Panel B: Portfolios                     

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

Small  59.42*** 20.93*** 138.93*** 80.99*** 40.61*** 30.12*** 24.08***       

  0.000 0.000 0.000 0.000 0.000 0.000 0.000       

2 92.60*** 54.06*** 47.02*** 92.98*** 36.87*** 66.93*** 13.43***       

  0.000 0.000 0.000 0.000 0.000 0.000 0.000       

3 32.11*** 9.04*** 101.59*** 130.22*** 151.99*** 36.10*** 19.33***       

  0.000 0.006 0.000 0.000 0.000 0.000 0.000       

4 98.64*** 40.39*** 109.12*** 163.20*** 81.87*** 58.61*** 30.64***       

  0.000 0.000 0.000 0.000 0.000 0.000 0.002       

Large 46.48*** 3.12 53.42*** 56.66*** 29.53*** 33.74*** 116.99***       

  0.000 0.105 0.000 0.000 0.000 0.000 0.000       

Crisis Period                    

Panel A: Individual Stocks                    

  OLS OLS( NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

F-stat 0.04 0.58 0.47 0.28 0.21 0.02 1.31       

P-value 0.839 0.495 0.495 0.594 0.646 0.895 0.253       

 

Panel B: Portfolios                     

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

Small  11.90*** 4.08* 19.45*** 2.24 2.37 1.99 1.55       

  0.004 0.065 0.000 0.136 0.125 0.159 0.214       

2 0.27 22.06*** 0.91 0.96 5.76** 2.88* 4.85**       

  0.610 0.000 0.341 0.328 0.017 0.091 0.029       

3 7.00** 73.12*** 3.77 40.09*** 5.25** 16.92*** 0.68       

  0.016 0.000 0.532 0.000 0.022 0.000 0.410       

4 9.83*** 4.50* 2.55 5.02** 13.61*** 2.95* 1.44***       

  0.006 0.072 0.112 0.026 0.000 0.087 0.232       

Large 5.35** 93.00*** 3.54** 8.83*** 3.57* 1.36 0.50       



32 

 

  0.033 0.000 0.061 0.003 0.060 0.244 0.481       

Post-crisis Period                    

Panel A: Individual Stocks                    

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

F-stat 11.95*** 11.95 104.93*** 51.92*** 22.11*** 16.36*** 22.15***       

P-value 0.001 0.001 0.000 0.000 0.000 0.000 0.000       

 

Panel B: Portfolios                     

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

Small  29.80*** 8.79*** 51.27*** 113.13*** 33.82*** 25.46*** 6.52***       

  0.000 0.010 0.000 0.000 0.000 0.000 0.011       

2 5.88** 0.13 6.19*** 10.38*** 14.25*** 15.41*** 6.99***       

  0.027 0.718 0.013 0.001 0.000 0.000 0.009       

3 4.18* 1.12 4.34** 3.86** 0.30 2.14 1.95       

  0.062 0.309 0.039 0.051 0.586 0.146 0.164       

4 40.18*** 10.87*** 164.27*** 58.70*** 73.62*** 42.23*** 42.23***       

  0.000 0.005 0.000 0.000 0.000 0.000 0.000       

Large 107.63*** 15.72*** 23.19*** 27.62*** 36.79*** 24.69*** 14.51***       

  0.000 0.003 0.000 0.000 0.000 0.000 0.000       

H0: C0=0                    

Pre-crisis Period           

Panel A: Individual Stocks                    

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

F-stat 68.86*** - 0.23 0.23 41.00*** 223.30*** 367.52***       

P-value 0.000  0.631 0.631 0.000 0.000 0.000       

Panel B: Portfolios                    

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

Small  59.42***  2.75* 37.74*** 255.64*** 147.74*** 61.21***       

  0.000  0.098 0.000 0.000 0.000 0.000       

2 92.60***  0.77 40.73*** 81.15*** 264.92*** 65.75***       

  0.000  0.379 0.000 0.000 0.000 0.000       

3 32.11***  0.00 16.17*** 183.65*** 112.57*** 130.15***       

  0.000  1.000 0.000 0.000 0.000 0.000       

4 98.64***  0.18 40.12*** 76.57*** 76.57*** 72.28***       

  0.000  0.670 0.000 0.000 0.000 0.000       

Large 46.48***  0.25 0.00 17.76*** 32.75*** 286.52***       

  0.000  0.615 1.000 0.000 0.000 0.000       

Crisis Period                    

Panel A: Individual Stocks                    

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

F-stat 0.47 - 0.50 45.57*** 63.54*** 103.73*** 540.93***       
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P-value 0.495  0.48 0.000 0.000 0.0000 0.0000       

 

Panel B: Portfolios                     

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

Small  11.90***  3.46* 4.15** 7.06*** 28.87*** 71.82***       

  0.004  0.064 0.042 0.008 0.000 0.000       

2 0.27  0.48 5.70 22.79*** 12.25*** 68.04***       

  0.610  0.488 0.181 0.000 0.000 0.000       

3 7.00**  0.33 0.46 12.23*** 28.73*** 66.80***       

  0.016  0.569 0.496 0.001 0.000 0.000       

4 9.83***  6.21*** 11.62** 26.15*** 7.65*** 12.86***       

  0.006  0.013 0.001 0.000 0.006 0.000       

Large 5.35**  8.31*** 39.08*** 69.10*** 40.62*** 78.48***       

  0.033  0.004 0.000 0.000 0.000 0.000       

Post-crisis Period                    

Panel A: Individual Stocks                    

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

F-stat 44.98*** - 1.47 7.77*** 29.61*** 52.77*** 115.06***       

P-value 0.000  0.226 0.005 0.000 0.000 0.000       

 

Panel B: Portfolios                     

  OLS OLS (NC) 5th quant 25th quant 50th quant 75th quant 95th quant       

Small  29.80***  0.88 11.66*** 26.29*** 43.82*** 79.69***       

  0.000  0.350 0.000 0.000 0.000 0.000       

2 5.88**  0.10 9.70*** 11.86*** 24.27*** 20.12***       

  0.027  0.754 0.002 0.001 0.000 0.000       

3 4.18*  2.14 4.24** 3.86** 50.15*** 22.03       

  0.062  0.145 0.041 0.051 0.000 0.000       

4 40.18***  8.49*** 12.25*** 37.75*** 30.85*** 84.02***       

  0.000  0.004 0.000 0.000 0.000 0.000       

Large 107.63***  9.52*** 16.42*** 24.56*** 23.80*** 36.62***       

  0.000  0.002 0.000 0.000 0.000 0.000       
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V. Conclusion 

In this paper, we used high-frequency data and a novel method of decomposing a security’s 

systematic risk into two components to estimate diffusion beta and the jump beta components. 

We empirically test for any relationship between the standard betas, diffusion betas and jump 

betas across a portfolio of Japanese banking stocks using quantile regression techniques to 

allow for non-linearity.  

Using high-frequency data of the Japanese banks from 2001-2012, we find that the 

relationship between standard, diffusion and jump betas is different (i.e. non-linear) across 

quantiles. More precisely, we find that the standard beta, on average and as expected, is 

weighted more by the diffusion component than the jump component, though the actual 

magnitudes of the weights differ significantly across quantiles. The relationship holds for 

both bank stocks and bank portfolios.  

Past empirical studies have shown that standard betas vary systematically across firm size. A 

close look at our results indicates that, on average, large banks have larger betas whereas 

small banks have smaller betas i.e. larger Japanese banks are more sensitive to both types of 

market movements than smaller institutions, regardless of whether these movements are 

continuous or jumps. However, in our study the smaller bank portfolios exhibit larger jump-

diffusion beta ratios than the larger bank portfolios during times of crisis, suggesting that the 

jump betas are disproportionately larger than the corresponding diffusion betas in the small 

portfolios, indicating an additional size-cum-crisis effect. The results suggest that, during 

times of crisis, the jump-diffusion beta asymmetry could be more severe for smaller banks 

than larger banks in Japan. 

Our findings also indicate that during crisis periods the diffusion returns and jump returns are 

independent and consequently, the diffusion and jump betas are also uncorrelated. During 

other period, these component betas are seemingly correlated leading to mixed rejections of 

the hypotheses around whether standard betas can be expressed as a weighted combination of 

diffusion and jump beta. Thus, we can say that under market conditions where the component 

market returns are not strongly correlated, such as crisis periods, the hypothesis that the 

standard beta or systematic risk on an asset is the weighted average of the diffusion and jump 

betas i.e. both the diffusion and jump (market) risks is not rejected. 
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Appendix: 

A1. Jump Test 

We apply the nonparametric jump-detection methods prosed by Barndorff-Nielsen and 

Shephard (2006), hereafter, BNS, to detect jumps in the Nikkei 225 index. BNS propose two 

general measures based on realized power variations to test for jumps and to estimate the 

contribution of jumps to total variation- realized variance (RV) and bi-power variation (BV). 

The realized variance (RV) is defined as the sum of squared intraday-returns, 

𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑠
2

𝑛

𝑠=1

, 𝑡 = 1, … . , 𝑇                                                                                                     (𝐴. 1) 

where n is the sampling total sample (usually daily/monthly) and 𝑟𝑡,𝑠  is the intraday 

logarithmic return. Note that equation (A.1) uses only returns from within each trading day 

(intraday returns), discarding any overnight returns (intraday-returns). As a result, any jumps 

resulted from overnight returns are excluded from realized variance. When 𝑀 goes to zero, 

realized variance converges to integrated variance plus the jumps (Barndorff-Nielsen and 

Shephard 2004; Andersen and Bollerslev 1998). We can re-write this as: 

𝑅𝑉𝑡

𝑝
→ ∫ 𝜎𝑠

2
𝑡

𝑡−1

𝑑𝑠 + ∑ 𝑘𝑠
2

𝑞𝑡

𝑆 =𝑞𝑡−1

, 𝑡 = 1, … . , 𝑇                                                                         (𝐴. 2) 

Where, 𝑀 = sampling frequency, 𝜎𝑠
2 is the time-diffusion intergrade variance function and 𝑘𝑠

2 

is the squared discrete jump term. It is clear that realized variance is not a robust measure of 

the variance 𝜎𝑠
2 in the presence of jumps.  

Therefore, to improve the robustness of variance estimation in the presence of jumps, BNS 

propose bi-power variation (BV) 

𝐵𝑉𝑡 = 𝜇1
−2

𝑛

𝑛 − 1
∑|𝑟𝑡,𝑠||𝑟𝑡,𝑠−1|

𝑛

𝑠=2

,     𝑡 = 1, … . , 𝑇                                                                       (𝐴. 3) 

where 𝜇1 = √2/𝜋 . (Barndorff-Nielsen and Shephard 2004), show that BV consistently 

estimates the diffusion true or integrated variance (i.e. jump free) when the sampling 

frequency goes to zero. Intuitively, in the presence of any jump, one of the two consecutive 

returns is bound to be larger. The product of the smaller return and the larger returns, 

however, will be small and thus neutralize the effect of the jumps.  Therefore, 

𝐵𝑉𝑡 → ∫ 𝜎𝑠
2

𝑡

𝑡−1

𝑑𝑠, 𝑓𝑜𝑟 𝑀 → 0                                                                                                 (𝐴. 4) 

Combining equations (𝐴. 2) and(𝐴. 3), for 𝑀 → 0 
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𝑅𝑉𝑡 − 𝐵𝑉𝑡 → ∑ 𝑘𝑠
2

𝑞𝑡

𝑆 =𝑞𝑡−1

,     𝑡 = 1, … . , 𝑇                                                                                        (𝐴. 5) 

Thus, the difference between the 𝑅𝑉𝑡 and 𝐵𝑉𝑡 consistently estimates the jump contribution to 

the total variation. 

Following Huang and Tauchen (2005), we define the jump ratio statistic  

𝑅𝐽𝑡 =
𝑅𝑉𝑡 − 𝐵𝑉𝑡

𝑅𝑉𝑡
,                                                                                                                               (𝐴. 6) 

which converges to a standard normal distribution when scaled by its asymptotic variance in 

the absence of jumps. That is  

𝑍𝐽𝑡 =
𝑅𝐽𝑡

√[(
𝜋

2
)

2

+ 𝜋 − 5]
1

𝑀
max (1,

𝐷𝑉𝑡

𝐵𝑉𝑡
2)

𝑑
→  𝑁(0,1)                                                                    (𝐴. 7) 

where 𝐷𝑉𝑡 is the quad-power variation robust to jumps as shows in Barndorff-Nielsen and 

Shephard (2004) and Andersen et al. (2007). The quad-power varaition is defined as 

𝐷𝑉𝑡 = 𝑛𝜇1
−4 (

𝑛

𝑛 − 3
) ∑|𝑟𝑡,𝑠−3||𝑟𝑡,𝑠−2||𝑟𝑡,𝑠−1||𝑟𝑡,𝑠|,

𝑛

𝑠=4

   𝑡 = 1, … . , 𝑇                                       (𝐴. 8)  

The 𝑍𝐽𝑡 statistic in equation (𝐴. 7) can be applied to test the null hypothesis that there is no 

jump in the return process during a trading day, t. Huang and Tauchen (2005) show that this 

test has very good size and power properties and is quite accurate for detecting jumps. 

Significant jumps are identified by the realizations of 𝑍𝐽𝑡  in excess of the 99.9% critical 

value ∅𝛼. 

𝐽𝑡,𝛼 = 𝐼[𝑍 > ∅𝛼]. [𝑅𝑉𝑡 − 𝐵𝑉𝑡]                                                                                                        (𝐴. 9) 

where 𝐼 refers to the indicator function equal to one if a jump occurs and zero otherwise. 

 

 

 

 

 

 

 


