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1 Introduction

Context. In September 2000, a customer of Amazon.com accused Amazon of price discrimina-

tion (a.k.a. differential pricing): this customer realized that after having deleted the cookie that

identified him as a regular Amazon customer, he was offered some DVD for a much lower price

than the one he observed the first time he visited the web site. The company later apologized

and explained that the price difference was not the result of differential pricing but of random

price testing.1

Both the customer’s allegation and Amazon’s defense look plausible. Price variations may

indeed be an outcome of both price discrimination and price randomization. On the one hand,

firms can use random price variation to learn more about the shape of the demand they are

facing. When this is the case, consumers with the same valuation receive different prices. On

the other hand, the anecdote also suggests that consumers are not always aware that other

prices may be available to them, or that even if they are aware, it may be (too) costly to obtain

access to a lower price. This paves the way for firms to price discriminate some consumers

against others by selling the same good at different prices to different consumers. This practice

becomes increasingly prevalent nowadays as advances in digital tracking facilitate more accurate

consumer profiling, which in turn helps to facilitate first-degree price discrimination. Shiller

(2014) provides empirical evidence that web browsing data gives firms more information on

consumer willingness to pay compared to ‘old school’ demographic data, which increases profits

by around 12.2%.2 Firms are also more open nowadays regarding their use of differential pricing.

For instance, Ant Financial Services Group (the financing unit of Alibaba) announced in 2015 the

launch of Sesame Credit, a credit-scoring service that leverages big data and customer behavior

analytics to calculate personalized interest rates for micro loans or personalized premiums for

insurance services.3 Finally, recent regulatory changes in the U.S. are likely to make customer

data even more widely available to firms.4

While firms have, in data-rich environments, the opportunity to profile customers, firms often

differ in their ability to do so. This could be due to different capacities to collect and analyze

data (think of Amazon or Alibaba vs smaller online shops).5 This could also be due to having

obtained data products of different quality from data collecting and processing companies, so-

called ‘data brokers’. One such data broker is the Belgian Realdolmen, which details on its

1See Ramasastry (2005).
2Similarly, a report of McKinsey&Company (2016) shows that finer data analytics has improved customer

segmentation and firm’s profitability. See also Mikians et al. (2012), who empirically demonstrate the existence

personalized pricing.
3See Business Wire (2015).
4In October 2016, the US Federal Communications Commission, then under Democratic majority, imposed

a set of privacy rules on Internet service providers, requiring them to get opt-in consent from consumers before

using, sharing, or selling their Web browsing data, app usage history and other private information. Yet, on April

3 2017, President Donald Trump signed a repeal of these rules, following actions taken by both houses of the US

Congress (see, e.g., Brodkin, 2017).
5BenMark et al. (2017) describe the expertise that firms must develop to be effective in applying differential-

pricing solutions.

1



website that it offers ‘tailored’ data services.6

Storing and structuring huge amounts of data is one of our strengths. The challenge comes

from correlating various data sources. Our customers need a partner who can combine data

sets and understand how the whole process fits together. There aren’t any standard packages

for this; every process is different. Realdolmen’s strength comes from its ability to deliver

end-to-end custom packages.

Interestingly, Realdolmen is partially controlled by Belgian supermarket chain Colruyt.7

One may speculate that Colruyt, given its privileged relationship with Realdolmen, may have

an advantage when it comes to obtaining information about potential consumers compared to

other companies, including its competitors. This advantage may translate into asymmetric

abilities to profile and target consumers.

Against this backdrop, we study a model of price competition between firms in a homogenous

good setting. Thanks to a clever use of big data, firms are able to identify any consumer’s

willingness to pay and have the opportunity to charge a personalized price to consumers they

are able to ‘recognize’, while charging a ‘uniform’ price to all consumers who remain ‘anonymous’.

Yet, they can only do this imperfectly: there is always a positive probability that any particular

consumer will remain anonymous. This may be due to the available data being not sufficiently

precise, or to consumers acting to protect their privacy.8 Firms first set a ‘uniform’ price, which

they charge to any anonymous consumer; then, they set personalized prices for consumers whom

they can identify. Consumers may observe that firms charge different prices, but it is assumed

that they can only buy at the price they have been individually offered.9

We assume that firms have correlated (and potentially different) abilities to profile consumers

(which makes sense if they both use the services of the same data broker). Specifically, this means

that one firm has a better ‘profiling technology’ than the other firm, and when the firm with

the inferior technology can profile a consumer, the firm with the superior technology can also,

but not vice versa. Then, it is as if firms were competing on three distinct groups of consumers:

an ‘opaque’ segment where consumers are anonymous (no firm profiled them), a ‘transparent’

segment where consumers are fully identified (both firms profiled them), and a ‘translucent’

segment where consumers are anonymous/identified (the ‘better-informed’ firm profiled them

but not the other firm).

In this setting, we ask the following questions: Is being able to profile consumers enough to

obtain market power through price discrimination in a duopolistic setting? When it does, does

one also observe price dispersion? If profiling capacity of firms depends on the data they need

6http://www.realdolmen.com/tactical-ict/ict-trends/big-data, accessed on December 11, 2016; empha-

sis added.
7The Colruyt family owns 16% of Realdolmen and both Jef Colruyt and Wim Colruyt are members of the

board of directors of Realdolmen.
8Consumers can use obfuscation strategies such as clearing cookies from their browsers, logging off their Google

and Facebook accounts, or adopting proxy servers or ad-blockers. In our baseline model, we take such hiding as

exogenous; in Section 4.3, we discuss how our results could be affected if hiding was endogenized.
9In our model, firms do not behave like Amazon: they do not apologize and refund customers who paid higher

prices once price differences have been exposed.
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to purchase from a data-broker, would this data-broker sell these data exclusively to one firm?

If consumers would have the option to hide their characteristics, would they like to do so? If

uniform prices were observable (‘list prices’) would this lead to more competition?

Main results. Before sketching our results, note that without the possibility to price discrim-

inate, price competition in uniform prices would result in marginal cost pricing, the classical

Bertrand Paradox. We first show a partial irrelevance result: having the ability to profile con-

sumers does not automatically translate into market power (Proposition 1). It only does so

when both firms have the ability to profile consumers but one firm is better at it than the other.

The mechanism that yields market power in our model relies on the strategic effect of the less-

informed firm’s uniform price (set in stage 1) on both firms’ personalized prices. Indeed, there

will be a positive probability that the better informed firm recognizes consumers the other firm

does not and this firm can thus guarantee positive profits as long as the uniform price of the

less informed firm is positive. Hence, when the latter increases its uniform price, competitive

pressure on ‘profiled’ consumers decreases. Therefore, the less-informed firm will always have an

incentive to set a uniform price above its cost, yielding a price equilibrium that displays market

power. This mechanism breaks down in two scenarios: when both firms always profile the same

consumers (making the translucent segment disappear), and when the less informed firm can

never profile any consumer (making the transparent segment disappear). In these two cases, the

only equilibrium is the Bertrand paradox, where both firms charge all consumers a price equal

to marginal cost (irrespective of consumers being identified or not). Hence, having the ability

to price discriminate against profiled consumers does not necessarily imply market power.

Second, we contend that price variations may result from a combination of price discrimi-

nation and price dispersion, meaning that in the case presented above, both Amazon and its

customer may have been right. We show indeed that the coexistence of price discrimination and

price dispersion at equilibrium hinges on the coexistence of the three consumer segments. In

this event, each firm must balance the effects of all its prices on the three segments; moreover, it

has to do so without knowing exactly which consumers the competitor is able to profile on the

translucent segment. Hence, both price discrimination and price dispersion arise in equilibrium

when firms have imperfect and asymmetric profiling technologies. In particular, we show that

equilibrium personalized prices always exhibit price dispersion (proposition 2). We also show

that the dispersion of personalized prices may lead firms to randomize equilibrium uniform

prices as well (proposition 3). This is so when the transparent segment is not valuable enough

(i.e., when the firms’ profiling technologies are not very precise); in that case, the firm with the

inferior profiling technology cannot contend itself with the transparent segment and decides to

compete on the opaque segment as well, which requires the randomization of uniform prices to

avoid the Bertrand paradox.

In a nutshell, we establish that there may be three simultaneous explanations as to why

two consumers of the same good end up paying different prices: firms may charge them either

different personalized prizes (price discrimination), or randomized uniform prices (price disper-

sion), or randomized personalized prices (price discrimination and dispersion). The necessary
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ingredients for this result are price competition and ‘imperfect consumer profiling’, which refers

to the idea that firms are able to identify consumers’ valuations for the product but only in an

imperfect way. The profiling of consumers enables price discrimination, but its imperfect nature

makes firms uncertain about the competitor’s pricing strategy, which triggers strategic random

pricing. These results explain why, in contrast to classic competitive price discrimination models

(e.g., Thisse and Vives, 1988), the Bertrand paradox does not arise when firms can set both uni-

form and personalized prices. As long as both firms can track consumers, asymmetric profiling

technologies can generate a way out of the Bertrand paradox because they induce uncertainty

about the nature of market competition.

We also provide a set of comparative statics results with respect to the precision of the

profiling technology and the degree of asymmetry between firms’ profiling technologies. We show

that increasing the precision of profiling technologies increases both uniform and personalized

prices (Corollary 1), leading to instances in which some targeted consumers are right to fear

that they are being priced closer to their ‘pain point’ compared to the uniform price they would

receive if they would be able to hide. This provides incentives to hide so as to avoid excessive

prices, i.e., there is a demand for privacy. However, some consumers may gain from improved

profiling, namely those consumers with a low valuation, who start purchasing (and enjoying a

positive surplus) when they are no longer anonymous; as what they gain may outweigh what

other consumers lose, improved profiling may lead to an overall increase in consumer surplus.

We then show, in Corollary 2 that reducing the asymmetry between firms’ profiling tech-

nologies has a non-monotone effect on the uniform prices. More specifically, uniform prices are

at their highest level for an intermediate level of asymmetry. This has important implications

for the selling strategy of data brokers. In particular, data brokers (e.g., Colruyt’s subsidiary

Realdolmen) would find it optimal to provide data services of different quality to different firms.

This is akin to the result of Gabszewicz and Thisse (1979), where one firm selects the high

quality and the other selects the lower one (though they do not study the incentives of third

party sales). The consequence of our result is that data-brokers would like to ‘tailor’ their data

services in a non-exclusive way, not to satisfy the ‘needs’ of the firms that demand data services,

but rather to soften price competition in the product market.We also note in Corollary 3 that for

given uniform prices, personalized prices decrease as firms’ profiling technologies become more

symmetric, which is due to the higher intensity of competition between firms in the transparent

segment. This has interesting implications for consumer surplus. For relatively high levels of

symmetry between firms’ profiling technologies, further increasing the symmetry benefits the

consumers as it leads to both lower uniform prices and lower personalized prices. For relatively

low levels of symmetry, however, increasing the symmetry leads to higher uniform prices but

lower personalized prices.

Lastly, we confirm in Section 5.3 that when consumers can always purchase the product at

the ‘list’ price, competitive pressure is higher. The intuition is simple: a firm that wants to

price discriminate does not just compete against the prices of its competitor but also against its

own uniform price. The effect is very stark in our model: marginal cost pricing prevails again

at the subgame perfect equilibrium, bringing us back in the Bertrand Paradox. Firms thus have
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incentives to prevent consumers from having access to multiple prices. In addition, we show in

a simplified version of our model in which consumers can only be of two types, that no other

(mixed strategy) subgame perfect equilibrium exists.

Related literature. Our paper contributes to oligopoly theory in two dimensions. First, we

provide a partial irrelevance result in the sense that the ability to profile consumers does not allow

firms to obtain market power when consumer profiling is fully symmetric or when only one firm

can profile consumers. Second, we provide a novel explanation of the simultaneous observation of

price dispersion (including of uniform prices) and of price discrimination in the classic Bertrand

model. In the existent literature, price dispersion is attributed, for example, to differences in

search costs on the buyer’s side (Varian, 1980), differences in the cost structure on the seller’s

side (Spulber, 1995), uncertainty about the number of active firms on the market (Janssen and

Rasmusen, 2002), and uniform price constraints on the seller (Gautier and Wauthy, 2010). This

paper, however, emphasizes that it is the uncertainty about the nature of price competition

that may generate market power and price dispersion of both uniform and personalized prices.

Moreover, the papers mentioned above assume away price discrimination, whereas we explore

two sources of price variations (discrimination and dispersion). Hence, this leads us to very

different implications from analyses that focus only on price dispersion.10

Our paper also provides some important insights into the debate on privacy regulation. An

early contribution, Calzolari and Pavan (2006), focuses on the incentives of firms to share pri-

vate information about consumers. More recently, the literature on targeting and privacy has

grown considerably, aided by advances in digital tracking; see Acquisti et al. (2016) for a survey.

However, this literature focuses on independent targeting, whereas we study correlated target-

ing. With this, we cover the whole spectrum from no discrimination to perfect discrimination,

depicting different intensities of price discrimination, which have not been considered in the

literature.

Moreover, pricing with imperfect targeting has rarely been studied in an oligopoly setting be-

fore (see Belleflamme and Vergote (2016), and Valletti and Wu (2016) for a monopoly analysis).

Although Chen and Iyer (2002) consider an oligopoly analysis, there are a number of differences

between their paper and ours. First, their analysis focuses on personalized pricing whereas this

paper characterizes the interaction between personalized and uniform pricing fully.11 Second,

they consider differentiated products and focus on firms having the same but uncorrelated pro-

filing technologies, whereas this paper considers homogeneous products and also the possibility

of having asymmetric and correlated profiling technologies.

Finally, this paper relates to the literature that studies the incentives of data brokers. For

example, Clavor̈ı¿œ Braulin and Valletti (2016) and Montes et al. (2015) also consider compet-

itive targeting. However, there are two important differences. First, we consider homogeneous

10Note also that our model differs with respect to discount and poaching models, as firms here can set person-

alized prices above the previously set uniform price.
11They discuss the interaction between personalized and uniform pricing in their section Extension and Caveats

only loosely, without clarifying the assumptions made, for instance whether the uniform prices are observed by

consumers or not.
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products, whereas they consider differentiated products. Second, we examine the mixed strate-

gies equilibria under different ‘degrees’ of asymmetry in profiling technologies, but they focus on

the pure strategies equilibria under perfectly asymmetric profiling technologies (i.e., one firm is

unable to track). When products are differentiated vertically (Clavor̈ı¿œ Braulin and Valletti,

2016) and horizontally (Montes et al., 2015), they find that the data broker finds it profitable

to sell its data exclusively to only one firm. We, however, show that the ability to track is irrel-

evant to market power if firms’ profiling technologies are fully symmetric or fully asymmetric,

as in both cases the Bertrand paradox prevails. Because of this irrelevance result, we find that

in contrast to the result of Clavor̈ı¿œ Braulin and Valletti (2016) and Montes et al. (2015),

the data broker may have incentives to sell its data to all competing firms, though the data

set obtained by each firm is of different qualities. Another example is Jentzsch et al. (2013),

who study price discrimination in two dimensions (group and individual price discrimination)

in a Hotelling model. However, they do not study the effect of imperfect profiling; that is, in

their model, each firm knows its rival’s information set. Therefore, price discrimination arises

in equilibrium but not price dispersion, though they also find that partial information sharing

is profitable for firms.

The rest of the paper is organized as follows. In Section 2, we present our modeling framework.

In Section 3, we look at the two benchmark cases where either the translucent or the transparent

segment vanishes, and the Bertrand paradox continues to prevail. In Section 4, we consider

the case where firms are both able to profile consumers but with different abilities; we then

characterize the equilibrium of the pricing game and establish our main result, namely the

coexistence of price discrimination and price dispersion at equilibrium; we also derive a number

of insightful comparative statics results. In Section 5, we examine the implications of our results

for firms and consumers; we also extend the baseline model for the case where uniform prices

are made public. Finally, in Section 6, we draw some policy implications, discuss the limitations

of our setting and propose some directions for future research.

2 The model

We consider a market where two firms produce a homogeneous product at a constant marginal

cost, which is set to zero for simplicity. We describe in turn the main assumptions regarding

consumers and firms, as well as the timing of the game.

Consumers. There is a unit mass of consumers who vary in the valuation that they attach to

the homogeneous product. The valuation of consumer x is noted r(x), which is randomly and

independently drawn according to the distribution function F (.) : R→ [0, 1] with support [0, r̄],

and with associated continuously differentiable density function f(.) : R→ R. Consumers wish

to purchase at most one unit of the product and they do so from the firm that offers the lowest

price (we say more on this below). Noting this price p, we can express the expected demand from

consumer x at p as the probability that the consumer has a valuation that is at least as large as

p, i.e. prob(r(x) > p). This probability is given by the survival function S(.) : R→ [0, 1] where

6



S(p) = 1−F (p). Since we assume that the mass of consumers is equal to 1 and that valuations

are drawn independently, the survival function also represents the aggregate expected demand

(referred to hereafter as the ‘demand’). We impose the additional assumption that demand is

log-concave: S′(p)/S(p) = −h(p) is non-increasing in p, where h(p) is the hazard rate.12

Firms. Each firm has access to a ‘profiling technology’ that allows it to identify the valuation

of a consumer probabilistically.13 Without loss of generality, assume that this probability is

equal to λA = λ ∈ [0, 1] for firm A and λB = αλ for firm B, where 0 ≤ α ≤ 1. The parameter λ

can be interpreted as the precision of the profiling technology of firm A. Alternatively, 1−λ can

be interpreted as the capacity of consumers to hide from firm A. We assume that the profiling

technologies are correlated: when firm B can profile a consumer, so can firm A; yet, the reverse

is not true: any consumer profiles by firm A can be profiled by firm B only with probability α.

So, we can interpret 1 − α as the advantage in precision that firm A enjoys over firm B when

it comes to profiling consumers. We would in general expect that the profiling technologies of

firms are correlated: when one firm profiles a consumer, it increases the chances that the other

firm will do so as well. We study the following limit case: if the firm with the worst profiling

technology profiles a consumer then the other firm will certainly do so as well. While this

assumption of perfect correlation is a strong one, it makes characterizing the equilibria tractable

while allowing us to transmit the message that asymmetric imperfect profiling technologies will

lead to price dispersion. When a firm identifies the valuation of a consumer, it is in a position

to price discriminate and charge this consumer a personalized price. For the consumers whom

a firm does not profile, the firm sets a uniform price.

Timing of the game. Before the game starts, firms acquire some profiling technology, with

respective precisions λA and λB. The values (λA, λB) are assumed to be common knowledge. In

the first stage of the game, firms set their uniform price pi, with i ∈ {A,B}, for the consumers

that they are not able to profile. In the second stage, after observing the uniform prices, firms set

personalized prices for the consumers that their profiling technology allows them to profile; these

prices are noted pi(x), with x referring to the identity of the consumer with valuation r (x). In

stage 3, consumers decide whether or not to buy the product, and from which firm to buy after

observing the price offered to them by each firm. We assume that consumers receive only one

price offer from each firm, either a uniform or a personalized price. As a consequence, profiled

consumers are not able to arbitrage between their personalized price and the uniform price. This

assumption is not unreasonable if price offers are sent out electronically and if consumers have

to incur some search cost to know about the uniform price. The fact that profiled consumers do

not (or have a hard time to) observe uniform prices is not incompatible with the fact that firms

do observe each other’s uniform price. Firms may indeed infer the other firm’s uniform price

12This is equivalent to requiring that S(p)/f(p)= (1− F (p))/f(p) = 1/h(p) is non-increasing in p.
13For now, we take these technologies as exogenous. In Section 5, we discuss about how to endogenize the

technologies by introducing a data broker in the game. We argue that such data broker would find it profitable

to sell asymmetric profiling technologies to the firms.
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by using sophisticated technologies (such as robots) that are not accessible to consumers.14 We

also need to set a couple of tie-breaking rules to decide how consumers choose when firms charge

them the exact same price. For this, we assume that although consumers observe only one price

from a given firm, they can determine whether this price is a personalized price or a uniform

price.15 If both firms quote the same price but one price is personalized while the other is a

uniform price, we assume that the consumer chooses the firm offering the personalized price.16

If both prices are the same and of the same nature (both personalized or both uniform), then

we assume that the consumer chooses to purchase from each firm with equal probability.

To sum up, our model only differs from the canonical Bertrand model of price competition

in that firms can detect the willingness to pay of consumers probabilistically and adjust their

pricing accordingly. We now characterize the subgame-perfect Nash equilibria (SPNE) of this

game.

3 Symmetric profiling or profiling by only one firm

We start by examining two limit cases where the possibility to target consumers and set person-

alized prices does not help firms to escape from the Bertrand paradox. In the first case, both

firms have a profiling technology of the exact same precision (α = 1 so that λA = λB = λ). In

the second case, only firm A is able to profile consumers (α = 0, so that λB = 0). The two cases

have in common that they only feature one market segment besides the opaque segment: the

transparent segment when α = 1, and the translucent segment when α = 0.17 As we now show,

the subgame-perfect equilibrium is the same in the two cases: both uniform and personalized

prices are equal to marginal cost for both firms.

Symmetric profiling. First suppose that both firms use the same profiling technology (α =

1). This means that they obtain exactly the same information about each consumer x: either

they both profile consumer x (with probability λ) or none of them does. Then it is as if

they compete on two fully separated markets: the opaque segment (with a mass 1 − λ of

consumers) and the transparent segment (with a mass λ of consumers). In the subgames in

which a firm profiles some consumer x, then it knows that the other firm also profiles this

consumer. This means that ‘classic’ Bertrand competition prevails for any consumer on the

transparent segment. It follows that equilibrium personalized prices are (p∗A(x), p∗B(x)) = (0, 0)

for all x. This equilibrium outcome is independent of any uniform price pi that may prevail

on the opaque segment; in other words, no such uniform price pi will have an effect on the

personalized prices. As a consequence, competition for consumers on the opaque segment is also

equivalent to Bertrand competition, leading to regular prices that also equal marginal cost in

14This is a common assumption made in the literature.
15For instance, because personalized offers are made on a first-name basis.
16That is, we assume that consumers have lexicographic preferences: first over prices and then over personal-

ized/uniform price offers.
17Recall that the opaque, transparent and translucent segments contain, respectively, consumers whom no firm,

both firms, or only the better-informed firm manage to profile.
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equilibrium: (p∗A, p
∗
B) = (0, 0).

Profiling by only one firm. Now suppose that only firm A can profile a consumer x (with

probability λ), while firm B cannot profile any consumer (α = 0). The two segments featured

here are the opaque segment (with a mass 1 − λ of consumers) and the translucent segment

(with a mass λ of consumers). In contrast with the previous case, the two segments are not

separated as firm B sets its uniform price on the two segments. However, the subgame-perfect

equilibrium is the same. Here is why. In the translucent segment, i.e., in subgames in which A

identifies some consumer x, this consumer will have received an offer pB from firm B. Since

consumers only care about prices, firm A can undercut any offer pB > 0 with a personalized

price. It follows that whenever pB > 0, firm B will never make any sales to consumers that are

targeted by firm A. As such, firm B is competing only in the opaque segment, i.e., for consumers

who also remain anonymous to firm A. But then Bertrand competition ensues on the opaque

segment, as for any uniform price pB > 0, firm A has an incentive to slightly undercut this price;

this yields to a unique equilibrium (p∗A, p
∗
B) = (0, 0). Now, if p∗B = 0, then being able to profile

consumers gives no advantage to firm A on the translucent segment, as firm A cannot do better

than setting p∗A(x) = 0 for all x. Again, the Bertrand paradox continues to prevail.

We record our results in the following proposition.

Proposition 1. If firms are equally able to profile consumers or if only one firm is able to

profile consumers, then profiling does not allow firms to escape from the Bertrand paradox and

make positive profits.

4 Asymmetric profiling

As Proposition 1 shows, introducing probabilistic profiling of consumers (and so, the possibility

to price discriminate) is not enough, by itself, to get out of the Bertrand paradox. We now show

that if firm B (the ‘less-informed’ firm) is able to profile consumers, but not as well as firm A (the

‘better-informed’ firm), i.e. if 0 < α < 1, then prices above marginal cost become sustainable.

What is more, both uniform and personalized prices equal and above the ‘monopoly’ price will

be observed with positive probability in equilibrium. Before establishing these results formally,

let us discuss the intuition behind them.

The major force driving the results is the uncertainty that the two firms face regarding

the pricing strategy of their competitor. In particular, when the better-informed firm (firm A)

profiles some consumer, it is uncertain as to whether the other firm has profiled her as well or

not. Firm A knows that with probability (1− α), firm B did not profile this consumer (who

belongs then to the translucent segment) and offered her its uniform price pB; in that case, firm

A can win this consumer with an appropriate personalized price and assure itself positive profits.

However, with probability α, firm B did profile the consumer, which implies that firms compete

for this consumer through personalized prices (we are then on the transparent segment). We

show below that this uncertainty leads to equilibrium price dispersion of personalized prices:

the personalized prices of both firms are always positive (i.e., above marginal cost), but are
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chosen randomly from some distribution, which depends on firm B’s uniform price pB. This

equilibrium will yield positive expected profits from profiling for both firms. In fact, we will

show that the higher pB, the higher firm B’s (and firm A’s) profits from profiling. Anticipating

this, firm B will never set a uniform price equal to its marginal cost. But given that there is price

competition for consumers that are not identified, we will obtain in some cases that equilibrium

price dispersion will also prevail for uniform prices. To understand this, note that firm B will

consider two options when setting its uniform price. The first option is to forego anonymous

consumers altogether. In that case, firm B focuses on the transparent segment and chooses a

uniform price pB that only matters for the translucent segment, with a view to maximize its

expected profits from personalized price competition; this also implies that firm A enjoys a

monopoly position on the opaque segment where it can set the monopoly price. In the second

option, firm B finds it worthwhile to compete for the consumers that it does not identify; both

firms are then active on the three segments, which leads to a mixed strategy equilibrium in

uniform prices.

In short, the possibility to price discriminate together with uncertainty about the nature

of price discrimination competition (did one firm recognize the consumer or did they both?),

generates strictly positive prices and price dispersion of personalized prices, and possibly

of uniform prices. We now characterize this subgame perfect Nash equilibrium in detail.

4.1 Stage 2: Equilibrium personalized prices

We first study the optimal personalized prices, given the observed uniform prices (pA, pB). That

is, we focus on the competition that takes place on the translucent and transparent segments,

which have respective masses of consumers equal to (1− α)λ and αλ. In other words, firms

choose their personalized prices (pA(x), pB(x)) for consumers identified by firm A and, possibly

(with probability α) by firm B. As a first step, we show that any equilibrium price strategy

must involve mixed strategies when firm A is able to undercut the uniform price of firm B (i.e.,

for pB > 0). For future reference, we define pxB ≡ min {pB, r (x)}.

Lemma 1. If pB > 0, then no pure strategy equilibrium (pA(x), pB(x)) exists.

Proof. Given r(x) > 0, firm A can always guarantee itself a positive expected profit from that

consumer either by matching firm B’s uniform price (if pB ≤ r (x)) or by charging this consumer

her valuation (if pB > r (x)). This strategy will work if the consumer is on the translucent

segment, i.e., if firm B did not profile her, which happens with probability (1− α). We have

thus that firm A’s expected minimum profit is equal to (1− α) pxB. It follows that any price

below (1 − α)pxB can never be a best reply for firm A. Hence, if a pure strategy equilibrium

exists, it must be such that firm A chooses pA(x) ≥ (1 − α)pxB. But in the event that firm B

profiles consumer x, then it will undercut pA(x); since the strategy space is continuous, there is

no best response and pA(x) cannot be part of a pure strategy equilibrium.

Note that when pB = 0, the competition through personalized prices is akin to Bertrand

competition: firm A cannot profitably serve consumer x if this consumer is on the translucent
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segment (i.e., if firm B does not identify her); if on the other hand, the consumer is on the

transparent segment, then undercutting will lead to marginal cost pricing. This is summarized

in the following lemma:

Lemma 2. If pB = 0, then (pA(x), pB(x)) = (0, 0) is the unique equilibrium.

Proof. Clearly, pA(x) = 0 is a (weakly) best reply to pB(x) = 0 and vice versa. Then (pA(x), pB(x)) =

(0, 0) is a Nash equilibrium. No other equilibrium in pure strategies can exist, since there would

be a profitable deviation. Suppose that there exists an equilibrium in mixed strategies. The

support of these strategies must contain only strictly positive prices (and be symmetric). But

then, the upper limit of the support must have positive mass. If not, playing this price will yield

an expected payoff of zero. Yet, for any point with positive mass in the support, there is an

incentive to slightly undercut this price as to increase profit.

A first important insight can be gained from noting that Lemmata 1 and 2 imply that while

marginal cost pricing can still be a Nash Equilibrium of the two stage pricing game, it can never

be a subgame perfect Nash equilibrium. That it is a Nash Equilibrium follows from Lemma

2: if the other firm’s strategy is to set its uniform and personalized prices equal to marginal

cost, then a best response is to do the same. That it is not a SPNE follows from Lemma 1: by

setting a uniform price above marginal cost in stage 1, the less informed firm will induce above

marginal cost personalized prices in stage 2. Setting its uniform price equal to marginal cost

can thus never be optimal for this firm, anticipating the second stage Nash Equilibrium. We

now characterize a personalized price equilibrium in mixed strategies.

Proposition 2. For any consumer x, let pxB ≡ min {pB, r (x)} and define

Gx (p) =

{
p−(1−α)pxB

αp for p ∈ [(1− α)pxB, p
x
B] ,

0 otherwise.

If pB > 0, then the following personalized strategies targeting consumer x constitute a Nash

equilibrium: firm B draws pB(x) from the distribution Gx (p); firm A does so as well with

probability α, and sets pA(x) = pxB with probability 1 − α. At equilibrium, both firms obtains

expected profits equal to π̃x = (1− α) pxB for each consumer x on the transparent segment.

The formal proof is relegated to Appendix 6.1. Here, we merely sketch the argument. We

know from the proof of Lemma 1 that for any consumer x, firm A never sets a personalized price

pA(x) below (1− α) pxB; it is also easy clear that firm A cannot make any profit from consumer

x when setting pA(x) > pxB. That defines the relevant interval for the price distribution. The

next step consists in showing that if firm B draws its price from some distribution Gx (p) on this

interval, then firm A achieves an expected profit of π̃ = (1− α) pxB when setting its price at any

of the two bounds of the interval. But π̃ must also be the profit that firm A achieves for any price

p chosen within this interval. That is, we must have (1− α) pxB = (1− α) p + α(1 − GxB(p))p,

where the first term is firm A’s profit when firm B does not profile consumer x (with probability

1−α), and the second term is firm A’s profit when firm B profiles consumer x but sets a larger

personalized price than p. Solving the previous equation for Gx (p) gives the expression in the
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proposition. The rest of the proof consists in showing that firm A’s best conduct is to draw

its price from the same distribution if firm B profiles consumer x (i.e., with probability α) or,

otherwise, to set pA(x) = pxB (i.e., to match firm B’s uniform price if pB ≤ r (x), or to charge this

consumer’s valuation if pB > r (x)). It is interesting to note that for a given pxB, personalized

prices become more dispersed when α increases (i.e., when the profiling technologies of the two

firms become more similar). We observe indeed that the lower bound of the mixed-strategy

equilibrium is decreasing in α, while Gx(p) is increasing in α. However, it remains to be seen

how pxB changes with α.

Knowing how firms will play at the second stage of the game, we can now move back to the

first stage where firms set their uniform price. Note that the two stages are linked through firm

B’s uniform price pB, as this price shapes the distribution Gx (p), i.e., the way firms randomize

their personalized prices in stage 2.

4.2 Stage 1. General price equilibrium

We learned from Lemma 2 that the less informed firm (firm B) would obtain zero profits if it

were setting its uniform price at marginal cost. We also know from Proposition 2 that firm

B can secure positive profits by setting its uniform price pB above marginal cost. In fact, the

higher pB, the higher the profit firm B can expect on the transparent segment. In contrast, the

better-informed firm (firm A) cannot directly influence profits obtained from profiling consumers

(on the translucent and transparent segments) through its uniform price pA (since these profits

only depend on the uniform price of its competitor). However, it can do so indirectly, as firm B

will set pB so as to best-reply to pA.

Coming back to firm B, we see that it faces the following trade-off when raising its uniform

price: on the one hand, a higher pB increases expected profits on the transparent segment but on

the other hand, it lowers expected profits on the opaque and translucent segments (as it makes

it easier for firm A to undercut B’s price). Given this trade-off, one option for firm B is to focus

exclusively on the transparent segment and to forgo any profit on the opaque and translucent

segments (where it does not profile any consumer). To do so, firm B simply needs to set pB > pA

for any pA. What would be firm B’s expected profit under that option? From Proposition 2, we

know that firm B obtains expected profits equal to π̃xB = (1− α) pxB for each consumer x on the

transparent segment. Aggregating over all consumers and recalling that pxB = min {pB, r (x)},
we have that for any pB > pA,

π̊B(pB) =

∫ pB

0
(1− α) rf(r)dr +

∫ r̄

pB

(1− α) pBf(r)dr. (1)

It is easily seen that the latter expression is an increasing function of pB.18 It follows that if firm

B chooses to focus on the transparent segment, it will set the largest possible uniform price:

pB = r̄. As the transparent segment has a mass of αλ, this strategy will guarantee firm B an

18We have dπ̊B/dpB = (1− α) pBf(pB) + (1− α)S(pB)− (1− α) pBf(pB) > 0.
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expected profit of (no matter the regular price pA set by firm A)

πmin
B = αλπ̊B(r̄) = α (1− α)λr̂, (2)

where r̂ =

∫ r̄

0
rf(r)dr is the average valuation.

If firm B chooses that option and sets pB = r̄, firm A’s best response is to set the optimal

monopoly price, pm, which solves maxp pS (p).19 This is obvious because firm A is the only

active firm on the opaque and translucent segments and because the choice of its uniform price

bears no impact on which personalized prices firms will set afterwards. We need now to examine

under which condition setting pB = r̄ is firm B’s best response when firm A sets pA = pm.

The best alternative for firm B is to set pB = pm − ε so as to compete as well on the opaque

segment without sacrificing too much profit on the transparent segment later on. What would

be its expected profit in that case? With probability αλ, firm B competes for consumers on the

transparent segment and obtains expected profits (almost) equal to π̊B(pm); with probability

1− λ, it competes on the opaque market and, as it slightly undercuts firm A, it achieves profits

(almost) equal to πm ≡ pmS (pm). In sum, firm B’s expected profit when both firms set the

monopoly price is competed as

Πe
B(pm)|pA=pm = αλπ̊B(pm) + (1− λ)πm. (3)

We have thus proved the following lemma:

Lemma 3. In the first stage of the game, the pair (pA, pB) = (pm, r̄) is an equilibrium in pure

strategies if and only if πmin
B ≥ Πe

B(pm)|pA=pm, which is equivalent to

α (1− α)λr̂ ≥ α (1− α)λ

[∫ pm

0
rf(r)dr +

∫ r̄

pm
pmf(r)dr

]
+ (1− λ)πm. (4)

Condition (4) directly follows from expressions (1) to (3). When it is met, there exists thus

a pure-strategy equilibrium in which firm A is a monopolist in the segments where consumers

are not profiled, while firm B gives up any sales to consumers it does not profile and chooses a

uniform price that maximizes its expected profits in the transparent segment.

Otherwise, if Condition (4) is not met, firm B will choose to compete on the opaque market

as well; but then, firm A will have no reason to set the monopoly price. As competition ensues

on the opaque segment, both firms must randomize prices, as it is the only way for them to

make positive profits and, thereby, to be indifferent with the previous situation where firm B

stays out of the opaque segment (and firm A monopolizes it). That is, firms draw their uniform

price from some distribution, which we note HA (p) and HB (p), and they do so with respective

probabilities noted ∇A and ∇B (meaning that with probability 1 − ∇A, firm A sets pA = pm

and with probability 1−∇B, firm B sets pB = r̄).

As we formally show in Appendix 6.2, the distributions HA (p) and HB (p) must be defined

on the same connected price interval. The upper bound of this interval is clearly the monopoly

price, pm. As for the lower bound, which we denote pl, it is implicitly defined in the following

19Our assumption that demand is log-concave makes sure that such price exists.
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way. Let us first express firm B’s expected profit of setting some price p < pm when firm

A behaves as just described (i.e., with probability ∇A, firm A draws pA from the distribution

HA (p) defined on [pl, p
m) and, with probability 1−∇A, sets pA = pm). In the spirit of expression

(3), we find

Πe
B(p) = αλπ̊B(p) + (1− λ)p (1− F (p)) [(1−∇A) +∇A (1−HA (p))] .

As firm B must be indifferent between charging pl and r̄, we have that Πe
B(pl) = πmin

B , which

implicitly defines pl. Firm B must also be indifferent between charging any price p in the

support of HB and r̄, implying that Πe
B(p) = πmin

B for all p in [pl, p
m) . We can then solve the

latter equation to derive the value of HA (p). Finally, firm B must achieve the same profit when

charging pm or r̄; this implies that Πe
B(pm) = πmin

B , from which we can derive the value of ∇A
(which is shown to be positive only if Condition 4 is violated).

Turn now to firm A. When firm B draws pB from the distribution HB (p) defined on [pl, p
m)

with probability 1 −∇B, and sets pB = r̄ with probability 1 −∇B, firm A’s expected profit is

given by

Πe
A (p) = λπ̂A(∇B, HB) + (1− λ) p (1− F (p)) (1−∇B +∇B (1−HB (p))) ,

where π̂A(∇B, HB) is firm A’s expected profit on the transparent segment given firm B’s uniform

price. If ∇A > 0, it must be that firm A is indifferent between charging pm and pl, or Πe
A (pm) =

Πe
A (pl). Using the fact that HB (pm) = 1 and HB (pl) = 0, we can solve this equation to derive

the value of ∇B. To find the value of HB (p), we note that firm A must also be indifferent

between setting any price in the interval [pl, p
m) or setting pl, implying that Πe

A(p) = Πe
A(pl).

Combining Lemma 3 and the previous discussion, we can describe the equilibrium at the

first stage of the game as follows.

Proposition 3. At the subgame-perfect Nash equilibrium of the game, the firms choose their

uniform price according to the following strategies. Firm A draws pA from the distribution HA (p)

with probability ∇A, or sets pA = pm with probability 1 − ∇A. Firm B draws pB from the

distribution HB (p) with probability ∇B, or sets pB = r̄ with probability 1−∇B. The distributions

HA (p) and HB (p) are defined on the interval [pl, p
m). If Condition (4) is met, then ∇A = ∇B =

0 and the pair (pA, pB) = (pm, r̄) is an equilibrium in pure strategies.

Proof. See Appendix 6.2 for the proof and for the exact expressions of HA(p), HB(p), ∇A, ∇B,

and pl.

4.3 Comparative statics

Our objective is now to understand how the equilibrium prices depend, for any log concave

demand function, on the two key parameters of the model: the level of precision of the detection

technology λ and the level of asymmetry in the profiling technology α. We state our main results

in this section and examine their implications in the next section.
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Improved profiling. How do firms modify their pricing behavior when their profiling tech-

nologies become more precise, i.e., when λ increases? Recall that we assume that the profiling

technologies of the two firms are correlated, with respective precision levels λA = λ and λB = αλ.

Hence, an increase in λmakes it easier for both firms to profile consumers. The following corollary

summarizes the answer to this question.20

Corollary 1. Higher precision of the detection technology increases the uniform prices in the

sense of first-order stochastic dominance, and it does not affect the distribution of personalized

prices. Hence, more precision leads to higher uniform and personalized prices.

It is clear from Proposition 2 that for a given uniform price of firm B, pB, the distribution of

personalized prices is independent of λ. However, increasing λ has three effects on the uniform

prices. First, it increases the lowest possible uniform price charged by both firm A and firm

B, i.e. ∂pl/∂λ > 0. Second, it increases the probability that both firms charge their respective

highest uniform price, i.e. ∂∇A/∂λ < 0 and ∂∇B/∂λ < 0. Finally, they tend to charge higher

prices when they randomize their uniform prices, i.e. ∂HA(p)/∂λ < 0 and ∂HB(p)/∂λ < 0. In

sum, all three effects push the distribution of uniform prices to the right. Since the precision of

the detection technology λ has no effect on the distribution of equilibrium personalized prices,

we can be sure that more precision leads, ceteris paribus, to higher prices. Intuitively, when

detection becomes more precise, it is more likely that firms will be competing in the transparent

segment, which relaxes competition in the opaque segment and thus raises uniform prices.

More symmetric profiling technologies. Let us now consider the effect on the pricing

behavior of both firms of increasing the symmetry between the profiling technologies (measured

by the parameter α). It would seem logical to expect that as the profiling technologies become

more similar, competition between the two firms would get more intense and prices would go

down. However, things are not as simple here, as stated in the following corollary.

Corollary 2. The uniform prices are at their highest level in the sense of first-order stochastic

dominance when the level of asymmetry is intermediate (i.e. α = 1/2).

As above, we can show that the lower bound of the uniform price distribution, the probability

of firms charging the highest uniform price, and the probability of firms charging higher uniform

prices when they randomize their uniform prices are at their highest level when α = 1/2. This

implies that more symmetry increases the uniform prices when firms’ detection technologies are

very different, but decreases the uniform prices when firms’ technologies are slightly different.

There is thus an intermediate level of asymmetry, α = 1/2, that maximizes the profits of the

two firms.

Another effect of increasing α (i.e., of making the profiling technologies of the two firms more

symmetric) is to push personalized prices down for given uniform prices. This is due to the more

intense competition between firms in the transparent market.21

20The proofs of all comparative statics results can be found in Appendix 6.3.
21However, this result ignores the indirect effect a higher level of symmetry has on personalized prices through
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Corollary 3. For given uniform prices, the personalized prices decrease with the symmetry

between firms in the sense of first-order stochastic dominance.

We now illustrates the previous comparative statics results with a specific example.

Example 1. Uniform distribution

We know from Proposition 3 that the mixed-strategy equilibrium in uniform prices is as

follows: with probability 1 − ∇A, firm A plays pA = pm and with probability ∇A, it draws a

price from the distribution HA(p) defined on [pl, p
m) ; with probability 1 − ∇B, firm B plays

pB = r̄ = 1 and with probability ∇B, it draws a price from the distribution HB(p) defined on

[pl, p
m). Suppose that consumer valuations are uniformly distributed on the unit interval and,

to ease the exposition, define k ≡ α (1− α). Then, supposing that 2(1 − λ) > λk, we find the

following results:22

∇A =
2(1− λ)− λk

2(1− λ)
, ∇B =

(
2(1− λ)− λk
2(1− λ) + λk

)2

,

HA (p) =
1

p

(2 (1− λ) + λk) p− λk
2 (1− λ)− λk

,

HB (p) =
(2 (1− λ) (1− p)− λkp) (2 (1− λ) p− λk (1− p))

p (1− p) (2(1− λ)− λk)2 ,

pl =
λk

2(1− λ) + λk
, pm =

1

2
.

It is readily checked that ∇A, ∇B, HA (p), and HB (p) are decreasing function of λ and k,

while pl is an increasing function of λ and k. This means first, as stated in Corollary 1, that

the distribution of uniform prices are pushed to the right for both firms when the profiling

technologies become more precise. Second, recalling that k ≡ α (1− α) is bell-shaped in α with

a maximum at α = 1/2, we also have that the distribution of uniform prices of both firms are

also pushed to the right when α comes closer to 1/2, as indicated in Corollary 2. Third, we

observe in this example that HB (p) > HA (p) for all p, meaning that firm B always puts more

weight on lower prices than firm A whenever both firms randomize. Figure 1 illustrates these

results by representing HA (p) and HB (p) for different values of λ and α: going from left to

right, the first locus is HB (p) for (λ, α) = (1
2 ,

2
3), the second is HA (p) for (λ, α) = (1

2 ,
2
3), the

third is HA (p) for (λ, α) = (3
4 ,

2
3), and the fourth is HA (p) for (λ, α) = (3

4 ,
1
2).

the effect it has on uniform prices. The expected uniform price is:

EpB = (1−∇B)r̄ +∇B
∫ pm

pl

phB(p)dp = (1−∇B)r̄ +∇B

[
pl +

∫ pm

pl

(1−HB(p))dp

]
.

We can show that ∂EpB
∂α

> 0 when α < 1
2
, which means that the expected highest personalized prices are

maximized when α = 1/2.
22If 2(1−λ) ≤ λk, then ∇A = ∇B = 0, meaning that, with probability 1, firm A sets pA = 1/2 and firm B sets

pB = 1. See Appendix 6.3 for the detailed computations.
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Figure1.pdf

Figure 1: Impacts of improved profiling on price distributions

5 What’s at stake for firms and consumers?

In this section, we exploit the previous results to draw important implications for firms and

consumers. As for firms, we examine what our results imply regarding the supply of profiling

technologies. As for consumers, we investigate further how asymmetric profiling by competing

firms affects their surplus; we also consider an alternative scenario where all consumers can

observe the uniform prices chosen by the two firms.

5.1 Data: Happy to share but not equally

So far, we have not been very specific concerning the origin of the profiling technologies. We

have simply indicated that profiling was made possible by the use of big data and that it was

reasonable to assume that the two profiling technologies were correlated if firms had access to

‘similar’ data sets. We discuss here two potential origins of such correlated technologies: the

sharing of data among firms and the provision of data by a common third party.

Data sharing. We showed in Corollary 2 that uniform prices reach a maximum (in the sense

of first-order stochastic dominance) when α = 1/2, i.e., when the less-informed firm uses a

profiling technology that is just half as efficient as its rival’s technology. A direct consequence of

this finding is that there are circumstances in which the better informed firm has an incentive

to share some of its data (i.e., its ‘ability to profile’) with the less informed firm. Intuitively,

when firm B has a very low precision of profiling compared to firm A, it mainly competes

in the opaque segment. So, improving firm B’s technology enables it to also compete in the

transparent segment, which in turn relaxes competition in the opaque segment (and hence the

higher uniform prices). However, when firm B’s technology is very similar to that of firm A, both

of them mainly compete in the transparent segment. Improving firm B’s profiling technology

makes competition in the transparent segment even more intense, which in turn leads to more

competition in the opaque segment (and hence the lower uniform prices).

Data brokerage. In the introduction, we documented the activities of data brokers, which

provide firms with sets of data, allowing them to identify consumer valuations. Let us then

extend our baseline model by assuming the presence of a single data broker that supplies the

two firms with similar data sets (leading then to correlated profiling technologies). If we had to

endogenize the behavior of such data broker, we already know that the data broker would never

provide the two firms with the exact same set of data (implying α = 1), nor would it give an

exclusive access to data to one firm (implying α = 0). We indeed know from Proposition 1 that
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each firms’ willingness-to-pay for data is equal to zero in these two scenarios.

The data broker’s optimal conduct would thus be to provide data to both firms but with

asymmetric qualities. Yet, the effect of asymmetry on prices in not univocal: increasing α will

sometimes push prices up and sometimes down. This is not surprising since we know that in

the two extremes (α = 1 and α = 0), prices equal marginal cost. There is thus an intermediate

level of asymmetry that maximizes the joint profits of the two firms and this level of asymmetry

would be the one chosen by a data broker who can sell datasets of different qualities to firm A

and B.

In our setup it follows from Corollary 2 that the optimal level of asymmetry is to put

α = 1/2 for all log-concave demand functions. Indeed, a data broker would want to avoid too

much and too little symmetry, and the profit maximizing balance is struck at the intermediate

level α = 1/2. This implies that the data broker would always wish to share its data with

both firms, but in an asymmetric way: it prefers to give one firm an advantage over the other

firm when it comes to detecting the willingness to pay of consumers. As we discussed in the

introduction this result is in contrast to the exclusivity results of Clavor̈ı¿œ Braulin and Valletti

(2016) and Montes et al. (2015), as in our model the data broker will always have incentives to

sell its data to all competing firms, though the data set obtained by each firm will be of different

qualities.

We can reinterpret these results in a duopoly setting in which two data brokers can sell

datasets of different quality. As long as each one of them cannot offer a menu of datasets of

different qualities, they will vertically differentiate the data sets they sell at equilibrium. Ignoring

investments costs, we note that the data broker who sells the highest quality data will earn more

profits. This is due to the following result:

Corollary 4. Firm A, which has the better profiling technology, earns higher expected profits

than firm B.

Proof. We know that firms are indifferent between all equilibrium uniform prices. Hence, the

expected profit from any uniform price is equal to the expected profit from playing the lowest

possible uniform price pl. When setting their price equal to pl, both firms will have the same

expected profit from the opaque segment. Moreover, firm A will get additional profits from the

translucent segment since she will have a lower targeted price than firm B’s observed uniform

price. Finally, the expected profit from the transparent market is higher for firm A than for firm

B, since firm B minimizes profits from the transparent market by setting pB = pl. Firm A’s

expected profits on the transparent market are averaged over all possible uniform prices firm B

may choose, either between pl and pm or equal to r̄, and these expected profits do not depend

on its own uniform price, pA. Adding these three effects, we see that A enjoys higher expected

profits.

5.2 Consumer surplus and demand for privacy

Many observers of the data revolution fear its negative effects on consumer welfare. This is

eloquently expressed by Newman (2014, emphasis added):
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“The darker version of online marketing is that it can facilitate what economists call ‘price

discrimination,’ selling the same exact good at a variety of prices in ways unknown to the

buyers. This is based on the reality that people have different maximum prices that they are

willing to pay, a so-called ‘pain point’ after which they won’t buy the product. The ideal

for a seller would be to sell a product to each customer at their individual ‘pain point’ price

without them knowing that any other deal is available.”

Such fears have lead the Council of Economic Advisers of the Whitehouse to release a study

on big data and differential pricing in 2015, in which it is equally recognized that firms may be

engaging in random price testing.23

How does our analysis contribute to this debate? Although it seems extremely hard to

perform a general analysis of the impacts of asymmetric profiling on consumer surplus,24 we are

able to shed some light on a number of interesting issues and, thereby, to provide some useful

insights. In a nutshell, we show that consumers are unequal in front of improved profiling:

although many consumers may lose (and would thus be willing to protect their privacy), some

other consumers may win; it may even be the case that the winners would benefit sufficiently

so that they could compensate the losers, i.e., consumers as a group would welcome improved

profiling.

Do consumers necessarily suffer from improved profiling? To answer formally this

question, we decompose the effects that improved profiling may have on different categories of

consumers. We know from Corollary 1 that an increase in λ decreases the probability that

either firm will charge any uniform price below some price p. This unequivocally implies that

all prices go up. It may then seem natural to conclude that the consumer surplus goes down.

But there is a twist: the impact of these higher prices is only clear for consumers whose status

does not change, i.e., those who remain anonymous (who face higher uniform prices) and those

who remain profiled (who face higher personalized prices). Yet, the impact on consumers who

switch status remains unclear. Improved profiling indeed means that some consumers who used

to be anonymous are now profiled. Among them, consumers with a low valuation will start

purchasing (which they did not do when they were anonymous), and will thus enjoy a larger

surplus; consumers with a larger valuation, who continue to purchase, may also benefit if they

are now charged a lower personalized price than the uniform price they were paying before. As

23Big Data and Differential Pricing. [Washington, D.C.]: Executive Office of the President of the United States,

Council of Economic Advisors, 2015.
24Writing down the consumer surplus supposes being able to complete the following list of tasks. First, for each

consumer with value r, we need to obtain the (expected) prices that she is likely to face, taking into account that

she will face (i) the minimum of the two (potentially random) uniform prices if she is not profiled by any firm,

(ii) the minimum of both firms’ random personalized prices if she is profiled by both firms, or (iii) the minimum

of firm A’s random personalized price and firm B’s (potentially random) uniform price if she is profiled only by

firm A. Second, for each minimum of prices, we need to calculate the densities of these minimum prices and

the corresponding surplus to this consumer. Third, we need to integrate over all prices to obtain the expected

surplus of this consumer. Finally, we need to integrate over all consumers to get the total consumer surplus. One

understands that these operations are complex to perform, even in the case of simple distributions such as the

uniform distribution. Moreover, performing comparative static exercises would add another layer of complexity.
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the following example shows, the positive impact on ‘switchers’ may be sufficiently important to

outweigh the negative impact on ‘non switchers’, so that improved profiling ends up increasing

consumer surplus on aggregate.

Example 2. Uniform distribution (continued)

Suppose that α = 1/2 and λ > 8/9, which implies that 2(1 − λ) − αλ(1 − α) < 0, so that

∇A = 0. Under these conditions, firm A plays pA = pm = 1/2 with probability 1, whereas

firm B plays pB = 1 with probability 1. Consumers thus face the monopoly price when they

remain anonymous. For the consumers that they profile, both firms draw their personalized

price from the interval [r/2, r] according to the distribution function G(p) = 2 − (r/p), with

density g(p) = r/p2. Hence, when consumers are profiled only by firm A, they face one draw

from G(p). When they are profiled by both firms, they face the minimum of two draws from

G(p), which follows the distribution Γ (p) = G(p)2, with density γ(p) = 2G(p)g(p). Consumer

surplus is then:

CS(λ)|λ≥8/9 = (1− λ)

∫ 1

1
2

(
r − 1

2

)
dr +

λ

2

∫ 1

0

(
r −

∫ r

r
2

pg(p)dp

)
dr

+
λ

2

∫ 1

0

(
r −

∫ r

r
2

pγ(p)dp

)
dr = (1− λ)

1

8
+ λ

4− 5 ln 2

4
.

It follows that

∂CS(λ)

∂λ

∣∣∣∣
λ≥8/9

= −1

8
+

4− 5 ln 2

4
=

7− 10 ln 2

8
≈ 0, 0086 > 0.

We observe that in aggregate, consumer surplus increases with λ in this particular case.

To understand this result, let us divide the group of ‘switchers’ into three subgroups. We have

first the ‘Low value switchers’ (group L), who did not purchase before precision improved; then

we have the ‘Middle value switchers’ (group M), who would have purchased at the monopoly

price but have now access, with higher precision, to a lower price (in expectation); finally, we

have the ‘High value switchers’ (group H), who would have purchased at the monopoly price

but are now faced with a targeted price that is higher than the monopoly price in expectations

(these consumers would prefer to ‘hide’). In the present example, the benefits to groups L and

M (a market expansion effect) outweigh the losses for group H (a price discrimination effect).

Moreover, the benefits for switchers with low and middle valuations also outweigh the losses for

all consumers who do not switch status.25

But if consumers as a group benefit, does it necessarily imply that firms will have lower

profits? The answers is no. In fact, in the above example firm A’s profit remain constant,

25The benefits of market expansion are also put forward by Ant Financial Services Group about its credit-scoring

system, Sesame Credit: “Sesame Credit is the first credit agency in China to use a scoring system based on online

and offline data to generate individual credit scores for consumers and small business owners. These ratings provide

lenders, merchants and other companies with a reliable tool for assessing their customers’ creditworthiness, hence

giving more consumers access to a host of borrowing services such as home loans, mobile-phone service contracts,

car loans and other types of installment credit.” (Business Wire, 2015; emphasis added).
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while firm B’s profit increases when λ increases. For any λ > 8/9, firm A’s expected profit is

computed as:

ΠA(λ)|λ≥8/9 = (1− λ)

∫ 1

1
2

1

2
dr + λ

(
1

2

∫ 1

0

∫ r

r
2

pg(p)dpdr +
1

2

∫ 1

0

∫ r

r
2

p(1−G(p))g(p)dpdr

)

= (1− λ)
1

4
+ λ

1

2

∫ 1

0

∫ r

r
2

r2

p2
dpdr = (1− λ)

1

4
+ λ

[
1

2

∫ 1

0
rdr

]
=

1

4
,

which is invariant with λ. As for firm B, we have

ΠB(λ)|λ≥8/9 = λ
1

2

∫ 1

0

∫ r

r
2

p(1−G(p))g(p)dpdr = λ
1

2

∫ 1

0

∫ r

r
2

r r−p
p2
dpdr = λ1

4 (1− ln 2) ,

which is an increasing function of λ (as ln 2 < 1).

Hence, the market expansion effect dominates for firms as well. This is no surprise for firm B,

since she only obtains positive profits on the transparent segment and prices in the transparent

segment are not affected by an increase in λ. For firm A the loss of profits on the opaque

segment is just compensated by the gain in profits in the transparent and translucent segments.

Hence, somewhat surprisingly, while consumers as a group are better off on average, this does

not happen at the expense of the firms’ profits. To the contrary, consumers (as a group) and

firms (as a group) strictly benefit from higher precision. This is due to the market expansion

effect and the corresponding reduction in the deadweight loss.

We can also study how consumers are affected when only the profiling technology of the

less-informed firm improves (i.e., when α increases). In this case, we see from Corollary 3 that

the impact depends of where we start from. For relatively high levels of symmetry between

firms’ profiling technologies (α > 1/2), increasing further the symmetry benefits consumers as

it leads to both lower uniform prices and lower personalized prices. In contrast, for relatively

low levels of symmetry (α < 1/2), increasing the symmetry leads to higher uniform prices but

lower personalized prices.

Exogenous and endogenous privacy. So far, we have assumed that it is not possible for

consumers to escape being identified by the firms when profiling technologies are effective. In

reality, consumers may resort to obfuscation strategies that make profiling technologies inoper-

ative; for instance, consumers may delete cookies, use tools to browse the web anonymously, or

purchase ad blockers. Although a full analysis of this possibility goes beyond the scope of this

paper, we can discuss under which conditions consumers may wish to ‘hide’ themselves.

As we saw from Proposition 3, firm B may, when the opaque segment is relatively small, have

an incentive to focus only on consumers it can profile, by charging the choking price of demand as

its uniform price, while firm A charges the monopoly price as its uniform price. This pushes up

prices on the transparent segment, leading in some cases to a situation in which all personalized

prices lie above the monopoly price (charged to consumers that a firm does not profile). In this

case, some of these consumers would prefer to hide, as they will face lower prices in the opaque

segment. We saw in Corollary 1 that this situation becomes more likely the higher the precision

of the detection technology. This implies that the less privacy regulation there is (the higher λ),
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the more it will lead to a demand for (endogenous) privacy. As a consequence, better privacy

regulation (lower λ) would tend to push prices down, increasing consumer surplus, and lower

the need for consumers to hide. We conclude that the fear for consumers to face higher prices

when they are ‘in the open’ rather than ‘in the dark’ does not disappear when it is not just one

but several competing firms that have the ability to profile consumers.

5.3 What if uniform prices are made public?

We now study the consequences of having ‘observable’ uniform prices. We have in mind what

is commonly known as list prices, i.e., (uniform) prices that any consumer can observe and can

thus claim to buy at. The immediate consequence of the presence of such prices is that firms

now face an upper bound on the personalized prices they can charge to the consumers they

profile. Hence, a firm does not just compete against the prices of its competitor but also against

its own uniform price. We expect that this would lead to more competition and lower prices in

equilibrium. We provide two results that allow us to confirm this conjecture.

First, it is immediate that setting all prices equal to marginal cost is now a subgame-perfect

equilibrium of the game. In contrast to the case where consumers only receive one price from

each firm, no firm has an incentive to increase its uniform price at stage 1, as all consumers

(profiled or not) always keep the possibility to purchase at the lowest listed uniform price. We

conclude that the observability of uniform prices restores the Bertrand Paradox even when firms

have asymmetric profiling technologies.

Proposition 4. If all consumers can purchase a good at the (observed) uniform price, then

marginal cost pricing is a subgame perfect Nash equilibrium of the pricing game.

It remains to show, however, that this is the only equilibrium. Our second result gives an

indicative answer. We show that, in a simplified version of our model where consumers can have

valuations of only two types, high and low, no other equilibrium can exist.

Example 3. Two types of consumers

Assume that there is a unit mass of consumers and that any consumer x can be one of two

types. With probability ϕ ∈ (0, 1), they have a high valuation for the homogeneous product:

r(x) = 1; with probability 1−ϕ, they have a low valuation for the homogeneous product: r(x) =

ζ < 1. We also assume that if the market was served by a (non discriminating) monopolist, this

firm would set a uniform price equal to ζ and so, serve the whole market; this happens when

ϕ < ζ. In this setting, we can show (see Appendix 6.4) that there cannot exist a subgame-perfect

Nash equilibrium of the game, in which both firms draw from a connected interval
[
p, ζ
)

in which

firm A draws pA according to the distribution HA (p) with probability ∇A, or sets pA = ζ with

probability 1−∇A and in which Firm B draws pB from the distribution HB (p) with probability

∇B, or sets pB = ζ with probability 1−∇B.

Given the previous two findings, there are good reasons to believe that list prices exert

downward pressure on equilibrium prices in our model.
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6 Discussion and concluding remarks

We have examined price competition in a homogenous goods setting in which firms can im-

perfectly profile consumers. When they do, they can charge these consumers a personalized

price, but firms (potentially) differ in their ability to profile. This asymmetry between the firms’

detection technologies leads to uncertainty about the nature of price competition, generating

market power. We establish that there may be three simultaneous explanations as to why two

consumers end up paying different prices: firms may charge them either different personalized

prizes (price discrimination), or randomized uniform prices (price dispersion), or randomized

personalized prices (price discrimination and dispersion). The necessary ingredients for this

result are price competition and ‘imperfect consumer profiling’, which refers to the idea that

firms are able to identify consumers’ valuations for the product but only in an imperfect way.

The profiling of consumers enables price discrimination, but its imperfect nature makes firms

uncertain about the competitor’s pricing strategy, which triggers strategic random pricing. In

sum, as long as both firms can track consumers, asymmetric profiling technologies can generate

a way out of the Bertrand paradox. Our results also imply that when only one firm can profile

consumers, it does not manage to obtain any market power: a partial irrelevant result arises. As

a consequence, upstream data owners/brokers have incentives to provide both firms with data

as long as the quality of the data is different; that is, vertical data differentiation arises.

Our analysis allows us to draw the following policy implications. First, making privacy rules

less protective (as decided in April 2017 in the US) has ambiguous impacts on consumers: on the

one hand, some consumers will pay higher prices because firms can profile them more easily; but

on the other hand, some consumers who used to be anonymous will now be profiled and among

them, those with a low valuation will start purchasing and will thus enjoy a larger surplus. We

even show the possibility that the positive impact on the latter consumers may be sufficiently

important to outweigh the negative impact on the former ones, so that improved profiling (made

possible by more lenient privacy rules) ends up increasing consumer surplus on aggregate. Yet,

we also demonstrate that all consumers should be better off if firms had the obligation to make

their uniform prices public. With such observable uniform prices, firms would face an upper

bound on the personalized prices they can charge to the consumers they profile, which is likely

to drive prices down (possibly back to marginal costs). Finally, we also show that exclusivity

contracts offered by data brokers do not necessarily harm consumers. Indeed, in our model

exclusivity leads to more and not to less competition.

In terms of empirical implications, we show that when there is uncertainty regarding the

nature of price competition, firms may randomize both their uniform and personalized prices,

and hence, price discrimination and price dispersion can happen together. Meanwhile, a recent

report by Bourreau et al. (2017) shows that although there is a lack of evidence of price

discrimination, a large volatility of prices is observed. A related implication of our result is that

the absence of direct observation of price discrimination should not be taken as proof that such

a pricing tactic is not practiced, as it cannot be distinguished from price dispersion in some

cases. In particular, when the nature of price competition is uncertain, it would be useful to
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account for all sources of price variations empirically, not just any of them.

It is important to highlight some of the limitations of our model. We assume that profiling

technologies are correlated, implying that one firm is always better informed about consumers’

willingness to pay. We speculate that relaxing this assumption by introducing imperfectly corre-

lated profiling technologies will not change the key insights we have obtained. More importantly,

it would be interesting to analyze the impact of endogenous privacy choices by consumers. We

have established that high value consumers would have an incentive to hide and become anony-

mous. Such hiding behavior would affect the firms’ pricing strategies and this, in turn, will affect

hiding behavior. Once established an equilibrium with endogenous hiding, one could study the

effect of consumer hiding on firms’ profits and consumer surplus.
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Appendix

6.1 Proof of Proposition 2

Denote by π̃i(p) firm i’s expected profit obtained from consumer x when pricing pi(x) = p at

stage 2.26 Supposing that firm B draws its price pB (x) from some distribution GxB (p) that is

defined on the interval [(1− α)pxB, p
x
B], let us show that firm A achieves the same expected profit

when playing pA(x) = (1− α) pxB or pA(x) = pxB. As GxB((1− α) pxB) = 0 and GxB(pxB) = 1, we

have indeed that

π̃A((1− α) pxB) = (1− α)2 pxB + α (1−GxB((1− α) pxB)) (1− α) pxB

= (1− α) pxB,

π̃A(pxB) = (1− α) pxB + α (1−GxB(pxB)) pxB = (1− α) pxB.

For firm A to be indifferent among any price p ∈ [(1− α)pxB, p
x
B], its expected profit must always

be equal to (1− α) pxB; that is

π̃A(p) = (1− α) p+ α(1−GxB(p))p = (1− α) pxB,

from which we obtain

GxB(p) =
p− (1− α) pxB

αp
= Gx (p) .

Suppose now that firm A plays the following strategy for any consumer x: with probability

∆A, it draws pa (x) from some distribution GxA (p) that is defined on the interval [(1− α)pxB, p
x
B],

while with probability 1 − ∆A, it sets pa (x) = pxB. As GxA((1− α) pxB) = 0, firm B’s expected

profit from playing pB(x) = (1− α)pxB is equal to

π̃B((1− α)pxB) = ∆A (1−GxA((1− α) pxB)) (1− α) pxB + (1−∆A) (1− α) pxB

= (1− α) pxB.

By taking limits, we also obtain that firm B’s expected profit from playing pB(x) = pxB is given

by

lim
p→pxB

π̃B(p) = lim
p→pxB

(∆A (1−GxA(p)) p+ (1−∆A) p) = (1−∆A) pxB.

For firm B to be indifferent between playing pB(x) = (1 − α)pxB or pB(x) = pxB, firm A must

choose ∆A such that (1− α) pxB = (1−∆A) pxB, or ∆A = α. In addition, firm B must also

be indifferent between any p ∈ [(1− α)pxB, p
x
B], which requires (1− α) p + α(1 − GxA(p))p =

(1− α) pxB, which is equivalent to

GxA(p) =
p− (1− α) pxB

αp
= Gx (p) .

Given that pB > 0, it follows that for any x such that r (x) > 0, both firms make positive

expected profits equal to (1− α) pxB = (1− α) min {pB, r (x)}.
26These profits are conditional on being on markets where personalized prices are relevant (i.e., the translucent

and transparent segments for firm A, with probability λ, and the transparent segment for firm B, with probability

αλ).
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6.2 Proof of Proposition 3

In any mixed strategy equilibrium, firm B must be indifferent between charging any price p

in the support of HB, pl, limp→pm , and r̄. Recall that by choosing r̄, firm B can secure a

profit of πmin
B = α (1− α)λr̂. If firm B chooses some price p, then with probability αλ, firm B

competes for consumers on the transparent segment and will obtain expected profits of π̊B(p);

with probability 1 − αλ, firm B does not recognize consumers and will only obtain positive

profits if firm A does not recognize consumers either (the segment is opaque), which happens

with probability (1− λ) / (1− αλ) (conditional on the event in which firm B does not recognize

a consumer). Therefore, the probability that firm B is active on the opaque segment is (1− λ).

Given that with probability ∇A, firm A draws pA from the distribution HA (p) defined on

[pl, p
m] and, with probability 1 − ∇A, sets pA = pm, we can compute firm B’s expected profit

from choosing price p as

Πe
B(p) = αλπ̊B(p) + (1− λ)p (1− F (p)) [(1−∇A) +∇A (1−HA (p))] .

As firm B must be indifferent between charging any price p in the support of HB and r̄, we

must have that Πe
B(p) = πmin

B , from which we obtain

HA (p) =
αλ (̊πB(p)− (1− α) r̂) + (1− λ)p (1− F (p))

(1− λ)p(1− F (p))∇A

= 1− αλ ((1− α) r̂ − π̊B(p))− (1− λ) (1−∇A) p (1− F (p))

(1− λ)p(1− F (p))∇A
.

As HA (pl) = 0, firm B achieves the following expected profit when charging pl:

Πe
B(pl) = αλ

∫ pl

0
(1− α) rf(r)dr + αλ

∫ r̄

pl

(1− α) plf(r)dr + (1− λ) pl (1− F (pl))

= αλ

∫ pl

0
(1− α) rf(r)dr + (αλ (1− α) + 1− λ) pl (1− F (pl)) .

As firm B must be indifferent between charging pl and r̄, we have that Πe
B(pl) = αλ (1− α) r̂,

which implicitly defines pl as a function of α, λ and F :

pl =
αλ (1− α)

(
r̂ −

∫ pl
0 rf(r)dr

)
(αλ (1− α) + 1− λ) (1− F (pl))

.

As HA (pm) = 1, firm B’s expected profit from charging pmis obtained as follows

Πe
B(pm) = αλπ̊B(pm) + (1− λ)pm (1− F (pm)) (1−∇A) ,

which must be equal to πmin
B = α (1− α)λr̂. We obtain thus

1−∇A =
αλ (1− α)

(
r̂ −

∫ pm
0 rf(r)dr − πm

)
(1− λ)πm

> 0.

It must also be that ∇A > 0. This is satisfied when

(1− λ)πm ≥ αλ (1− α)

(
r̂ −

∫ pm

0
rf(r)dr − πm

)
.
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When this condition is not satisfied, then ∇A = 0 and firm A plays pA = pm with probability

1. In this case, firm B’s optimal response is to play pB = r̄ with probability 1. In other words,

we obtain an equilibrium in pure strategies in which firm A will be a monopolist in markets for

consumers which are not identified, while firm B gives up any sales to consumers it does not

identify and chooses a price that maximizes its expected profits in the transparent segment.

Now assume that ∇A > 0, it must be that firm A is indifferent between charging pm and pl.

Denote by π̂A(∇B, HB) the expected profit of firm A given firm B’s regular price strategy. We

then have:

Πe
A (p) = λπ̂A(∇B, HB) + (1− λ) p (1− F (p)) (1−∇B +∇B (1−HB (p))) .

As HB (pm) = 1 and HB (pl) = 0, it follows that

Πe
A (pm) = λπ̂A(∇B, HB) + (1− λ) pm (1− F (pm)) (1−∇B) ,

Πe
A (pl) = λπ̂A(∇B, HB) + (1− λ) pl (1− F (pl)) .

For firm A to be indifferent, we need Πe
A (pm) = Πe

A (pl), which is equivalent to

1−∇B =
pl (1− F (pl))

pm (1− F (pm))
=

πl
πm

.

Since πl ≤ πm, it must be that ∇B ∈ [0, 1]. It must also be the case that Πe
A(p) = Πe

A(pl), from

which we obtain

HB (p) = 1− πl − p (1− F (p)) (1−∇B)

p (1− F (p))∇B

= 1−
πl − p (1− F (p)) πl

πm

p (1− F (p))
(
1− πl

πm

)
= 1− πl

πm − πl

(
πm

p (1− F (p))
− 1

)
.

This completes the proof.

6.3 Comparative statics results

6.3.1 Proof of Corollary 1

1. Let us show that ∂pl
∂λ > 0. We have that

pl (αλ (1− α) + 1− λ) (1− F (pl)) = αλ (1− α)

(
r̂ −

∫ pl

0
rf(r)dr

)
.

Totally deriving with respect to λ we obtain

∂pl
∂λ

[(αλ (1− α) + 1− λ) (1− F (pl)− plf(pl))] + pl (α (1− α)− 1) (1− F (pl))

= α (1− α)

(
r̂ −

∫ pl

0
rf(r)dr

)
− ∂pl
∂λ

αλ (1− α)

∫ pl

0
rf(r)dr.
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or
∂pl
∂λ

[
(αλ (1− α) + 1− λ) (1− F (pl)− plf(pl)) + αλ (1− α)

∫ pl

0
rf(r)dr

]
︸ ︷︷ ︸

=A

= α (1− α)

r̂ − ∫ pl

0
rf(r)dr − pl(1− F (pl))︸ ︷︷ ︸

=B

+ pl(1− F (pl))

Since pl < pm we have that 1 − F (pl) − plf(pl) > 1 − F (pm) − pmf(pm) = ∂π
∂p

∣∣∣
p=pm

=

0, from which we obtain that A > 0. Also note that (1− α) r̂ = π̊B(r̄) > π̊B(pl) =

(1− α)
(∫ pl

0 rf(r)dr + pl(1− F (pl))
)

and hence B > 0. From this, it follows that ∂pl
∂λ > 0.

2. Let us show that ∂∇A
∂λ < 0 . Observe that

∇A = 1−
α (1− α)

(
r̂ −

∫ pm
0 rf(r)dr − πm

)
πm

× λ

1− λ

and hence

∂∇A
∂λ

= −
α (1− α)

(
r̂ −

∫ pm
0 rf(r)dr − πm

)
πm

× 1

(1− λ)2 < 0

Which can be rewritten as:

∂∇A
∂λ

= −ηA ×
1

λ (1− λ)
< 0

3. Let us show that ∂HA(p)
∂λ > 0 . Recall that:

HA(p) = 1−
α (1− α) (r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

p(1− F (p))
× λ

(1− λ)∇A
+

1−∇A
∇A

;

∂HA(p)

∂λ
= −

α (1− α) (r̂ −
∫ p
0
rf(r)dr − p(1− F (p)))

p(1− F (p))
×

(1− λ)∇A − λ
(
∂∇A
∂λ

(1− λ)−∇A
)

((1− λ)∇A)2

+
− ∂∇A

∂λ
∇A − ∂∇A

∂λ
(1−∇A)

(∇A)2
;

Grouping terms, we obtain

∂HA(p)

∂λ
= −

α (1− α) (r̂ −
∫ p
0
rf(r)dr − p(1− F (p)))

p(1− F (p))
×
∇A − ∂∇A

∂λ
λ(1− λ)

((1− λ)∇A)2
−

∂∇A
∂λ

(∇A)2
.

Note that ∇A − ∂∇A
∂λ λ(1− λ) = 1− ηA + ηA = 1 and hence we have

∂HA(p)

∂λ
= −

α (1− α) (r̂ −
∫ p

0 rf(r)dr − p(1− F (p)))

p(1− F (p))
× 1

((1− λ)∇A)2 +
ηA

λ (1− λ) (∇A)2 .

Since
α (1− α) (r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

p(1− F (p))
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=
α (1− α)λ(r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))
× 1− λ

λ
> ηA

1− λ
λ

,

we have that

∂HA(p)

∂λ
< −ηA

1− λ
λ
× 1

((1− λ)∇A)2 +
ηA

λ (1− λ) (∇A)2

or
∂HA(p)

∂λ
< − ηA

λ (1− λ) (∇A)2 +
ηA

λ (1− λ) (∇A)2 = 0.

4. Let us show that ∂∇B
∂λ < 0. Recall that ∇B = 1 − pl(1−F (pl)

πm . Since ∂pl
∂λ > 0 and pl < pm,

we have that:
∂∇B
∂λ

= −
∂pl
∂λ (1− F (pl)− plf(pl))

πm
< 0.

5. Let us show that ∂HB(p)
∂λ < 0. Recalling that

HB(p) = 1− 1−∇B
∇B

×
(

πm

p(1− F (p))
− 1

)
,

we observe that
∂HB(p)

∂λ
=

(
πm

p(1− F (p))
− 1

) ∂∇B(p)
∂λ

(∇B)2

and hence ∂HB(p)
∂λ < 0 since ∂∇B(p)

∂λ < 0.

6.3.2 Proof of Corollary 2

We demonstrate here that for high levels of asymmetry (α < 1
2), increasing α increases the

uniform prices, whereas the opposite is true when the level of symmetry is high (α > 1
2). That

is, we show

∂pl
∂α

S 0⇔ α R
1

2
and

∂∇A
∂α

,
∂∇B
∂α

,
∂HA(p)

∂α

∂HB(p)

∂α
S 0⇔ α S

1

2
.

1. Let us show that ∂pl
∂α > 0⇐⇒ α < 1

2 . We have that

pl (αλ (1− α) + 1− λ) (1− F (pl)) = αλ (1− α)

(
r̂ −

∫ pl

0
rf(r)dr

)
.

Totally deriving with respect to α we obtain

∂pl
∂α

[(αλ (1− α) + 1− λ) (1− F (pl)− plf(pl))] + plλ (1− 2α) (1− F (pl))

= λ (1− 2α)

(
r̂ −

∫ pl

0
rf(r)dr

)
− ∂pl
∂α

αλ (1− α)

∫ pl

0
rf(r)dr.

or
∂pl
∂λ

[
(αλ (1− α) + 1− λ) (1− F (pl)− plf(pl)) + αλ (1− α)

∫ pl

0
rf(r)dr

]
︸ ︷︷ ︸

=A
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= λ (1− 2α)

r̂ − ∫ pl

0
rf(r)dr − pl(1− F (pl))︸ ︷︷ ︸

=B


Since pl < pmwe have that 1 − F (pl) − plf(pl) > 1 − F (pm) − pmf(pm) = ∂π

∂p

∣∣∣
p=pm

=

0, from which we obtain that A > 0. Also note that (1− α) r̂ = π̊B(r̄) > π̊B(pl)) =

(1− α)
(∫ pl

0 rf(r)dr + pl(1− F (pl))
)

and hence B > 0. From this, it follows that ∂pl
∂α S

0⇐⇒ α R 1
2 .

2. Let us evaluate ∂∇A
∂α . Recall that

∇A = 1− α (1− α)

(
λ

(1− λ)πm

(
r̂ −

∫ pm

0
rf(r)dr − πm

))
, so that

∂∇A
∂α

= − (1− 2α)

(
λ

(1− λ)πm

(
r̂ −

∫ pm

0
rf(r)dr − πm

))
.

We thus have that

∂∇A
∂α

= −∂ηA
∂α

= −ηA ×
1− 2α

α (1− α)
S 0⇐⇒ α S

1

2
.

3. We now turn to ∂HA(p)
∂α . Recall that:

HA(p) = 1− α (1− α)

∇A
λ(r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))
+

1−∇A
∇A

, so that

∂HA(p)

∂λ
= −

λ(r̂ −
∫ p

0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))
×

(1− 2α)∇A −
(
∂∇A
∂α α (1− α)

)
(∇A)2 −

∂∇A
∂α

(∇A)2

= −
λ(r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))
× (1− 2α)∇A + (1−∇A) (1− 2α)

(∇A)2

+
(1−∇A) (1− 2α)

α(1− α) (∇A)2

=
1− 2α

(∇A)2

 1−∇A
α(1− α)

−
λ(r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))︸ ︷︷ ︸
C

 .
Note that, since p ≤ pm, we have

λ(r̂ −
∫ p

0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))
≥

λ(r̂ −
∫ pm

0 rf(r)dr − pm(1− F (pm)))

(1− λ)pm(1− F (pm))
=

1−∇A
α (1− α)

.

Hence we obtain that C ≤ 0, which implies that ∂HA(p)
∂α S 0 ⇐⇒ α S 1

2 . In other words,

when α is low, increasing α increases prices on the opaque segment, as firms avoid cut-

throat competition. In other words, when α is relatively high, increasing α make the firms

even more symmetric, thereby increasing competition and lowering prices.
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4. Now we consider ∂∇B
∂α . Recall that ∇B = 1 − pl(1−F (pl)

πm . We then obtain, since ∂pl
∂α > 0

and pl < pm, that:

∂∇B
∂α

= −
∂pl
∂α (1− F (pl)− plf(pl))

πm
S 0⇐⇒ α S

1

2
.

5. We finally discuss the sign of ∂HB(p)
∂α . As

HB(p) = 1− 1−∇B
∇B

×
(

πm

p(1− F (p))
− 1

)
,

we observe that
∂HB(p)

∂α
=

(
πm

p(1− F (p))
− 1

) ∂∇B(p)
∂α

(∇B)2

and hence
∂HB(p)

∂α
S 0⇐⇒ α S

1

2
.

6.3.3 Proof of Corollary 3

Let us consider ∂Gx(p)
∂α for p ∈ [(1− α)pxB, p

x
B].

∂Gx(p)

∂α
=

∂

∂α

(
1

α
−
pxB
p

1− α
α

)
=
pxB − p
α2p

> 0 for any p < pxB.

6.3.4 Uniform distribution

Let F (.) be the uniform distribution on [0, 1]. It follows that the average valuation (r̂) and the

monopoly price (pm) are both equal to 1/2; the monopoly profit is computed as πm = 1/4.

Furthermore, we have

π̊B(p) =

∫ p

0
(1− α)rf(r)dr + (1− α)p(1− F (p)) = (1− α)(p− 1

2p
2),

and

πminB = 1
2λα(1− α).

The lower bound of uniform price pl is then defined by

pl =
αλ(1− α)(r̂ −

∫ pl
0 rf(r)dr)

(αλ(1− α) + 1− λ)(1− F (pl))
⇔ pl =

αλ(1− α)

2(1− λ) + αλ(1− α)
.

We observe that pl is increasing in λ, increasing in α if α ≤ 1/2, and decreasing in α if α > 1/2.

This implies that the uniform price is less dispersed as tracking technologies become more precise

and the difference in profiling technologies between the two firms are neither too large nor too

small (i.e., pl is at the highest level when α = 1/2).

The probability of firm A randomizing its uniform price is defined by

∇A = 1− αλ(1− α)

(1− λ)πm

(
r̂ −

∫ pm

0
rf(r)dr − πm

)
= 1− αλ(1− α)

2(1− λ)
.

This probability is decreasing in λ, decreasing in α if α ≤ 1/2, and increasing in α if α > 1/2.
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When 2(1 − λ) ≤ αλ(1 − α), we have ∇A = 0, so that firm A plays pA = pm = 1/2 with

probability 1, whereas firm B plays pB = 1 with probability 1. When 2(1− λ) > αλ(1− α), we

have ∇A > 0; the probability of firm B randomizing its uniform is then defined by

∇B = 1− pl(1− F (pl))

pm(1− F (pm))
=

(
2(1− λ)− αλ(1− α)

2(1− λ) + αλ(1− α)

)2

.

The latter probability is decreasing in λ, decreasing in α if α ≤ 1/2, and increasing in α if

α > 1/2.

Thus, firm B plays pB = 1 with probability 1 − ∇B, and draws a price from [pl, 1/2] with

probability ∇B and with a distribution

HB(p) = 1− 1−∇B
∇B

(
1

4p(1− p)
− 1

)
,

which is increasing in ∇B.

Firm A plays pA = 1/2 with probability 1 − ∇A, and draws a price from [pl, 1/2] with

probability ∇A and with a distribution

HA(p) =
1

∇A

(
1− λα(1− α)(1− p)

2(1− λ)p

)
.

6.4 Proof of the result in Example3

1. Personalized prices

Note first that the second stage equilibrium prices are still characterized by proposition 2:

Gx (p) =

{
p−(1−α)p′xB

αp for p ∈ [(1− α)p′xB , p
′x
B ] ,

0 otherwise.

Where p′xB ≡ min {pA, pB, r (x)} . Given any uniform prices pA and pB, the expected payoff from

personalized pricing is equal to π̃ = (1− α) p′xB . Note that we assume that in stage one, no firm

will charge more than ζ and hence that p′xB ≡ min {pA, pB, r (x)} = min {pA, pB, } .
2. Uniform prices

Note that in any subgame perfect ’mixed strategy’ Nash equilibrium players must choose

prices from the same interval and only the upper bound of the interval can be assigned positive

mass by at most one firm. No firm wants to charge a price below the lower bound of the interval

since this decreases both first stage and second stage expected profits. No firms wants to charge

above the upper bound of the interval since this will guarantee zero profits on anonymous

consumers and does not affect expected profits obtained from personalized pricing. Now take

any price p in the interval different from the upper bound and suppose that at least one firm,

say firm A, plays this price with positive probability. Firm B should be indifferent between

playing price p and any other price p′ in the interval. However, since firm A plays p with

positive probability, firm B will always find a price p′ = p− ε that will guarantee higher profits:

instead of sharing the consumers at this price p it can sell to the consumer for sure by slightly

undercutting price p. However, it cannot be firm B that plays the upper bound, p = ζ with
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positive probability. The expected payoff to firms A and B from setting a uniform price equal

to p is equal to:

Πe
A(p) = λ

{
∇B

(∫ p

p
(1− α)phB(ρ)dρ+ (1− α)p(1−HB(p))

)
+ (1−∇B)(1− α)p

}
+(1− λ)p [1−∇B +∇B(1−HB(p))]

Πe
B(p) = αλ

{
∇A

(∫ p

p
(1− α)phA(ρ)dρ+ (1− α)p(1−HA(p))

)
+ (1−∇A)(1− α)p

}
+(1− λ)p [1−∇A +∇A(1−HA(p))]

The first term is the expected payoff from personalized pricing given that the other firm

follows the strategies as defined in the proposed mixed strategy equilibrium. The second terms

is the expected profits to be obtained from consumers it will not recognize given that the other

follows the strategies as defined in the proposed mixed strategy equilibrium.

Suppose first that ∇A < 1 and hence that ∇B = 1. Now consider the expected payoff to

firm A from setting a uniform price equal to p ∈
[
p, ζ
)

is equal to:

Πe
A(p) = λ

{∫ p

p
(1− α)phB(ρ)dρ+ (1− α)p(1−HB(p))

}
+(1− λ)p [1−HB(p)]

It must be that firm A is indifferent between any p in the interval
[
p, ζ
)
. We hence have that

∂ΠeA(p)
∂p = 0 for all p ∈

[
p, ζ
)
:

(1− λ)phB(p)− (1−HB(p))(1− λ+ (1− α)λ) = 0

The explicit solution of this differential equation is HB(p) = cp−
1−λα
1−λ + 1. But then it must

be that HB(ζ) = 1 = cζ−
1−λα
1−λ + 1 and hence that c = 0, a contradiction.

Suppose now that ∇B < 1 and hence that ∇A = 1. Now consider the expected payoff to

firm B from setting a uniform price equal to p ∈
[
p, ζ
)

is equal to:

Πe
B(p) = αλ

{∫ p

p
(1− α)phA(ρ)dρ+ (1− α)p(1−HA(p))

}
+(1− λ)p [1−HA(p)]

It must be that firm B is indifferent between any p in the interval
[
p, ζ
)
. We hence have

that
∂ΠeB(p)
∂p = 0 for all p ∈

[
p, ζ
)
:

(1− λ)phA(p)− (1−HA(p))(1− λ+ (1− α)αλ) = 0

The explicit solution of this differential equation is HA(p) = cp−
1−λ+(1−α)αλ

1−λ + 1. But then it

must be that HA(ζ) = 1 = cζ−
1−λ+(1−α)αλ

1−λ + 1 and hence that c = 0, again a contradiction.
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