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Abstract 

Superior to the variance, "swap variance (SwV)" summarizes the entire probability distribution of 

returns and is unbiased to distributional asymmetry.  Retaining the same simplicity as mean-

variance (MV) model, the efficiency of mean-swap variance (MSwV) is necessary and sufficient 

conditions for that of stochastic dominance.  The SwV is composed of a quadratic volatility and a 

proxy of asymmetric variation (𝔸).  The mean-variance-asymmetry (MV𝔸) analysis, a three-

dimensional extension of the classical MV portfolio theory and the CAPM, is consistent with 

expected utility maximization for all risk-averse investors and those who are downside loss-averse 

but prefer the prospect of potential upside gains.   
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I. Introduction 

As is well known, the portfolio models provide a solution that separates the decision 

process from the question of utility maximization by restricting either the individual utility 

function or the assets' return distribution.  The classical mean-variance (MV) portfolio theory and 

CAPM assume investor utility functions are quadratic or the return distributions of assets are 

elliptically distributed.   These assumptions have been subject to much controversy over the 

decades.  Due to these restrictions, alternative risk-return measures have been proposed.  The 

theory of stochastic dominance (SD) for ranking investment choices does not restrict the class of 

utility functions, but rather it derives weak conditions for separation based on probability 

distributions.  The SD ranking rules consider the entire return distribution of assets and thus makes 

no assumption about the form of the underlying probability distributions.   Although general, the 

SD approach is subject to limitations.  Levy (2015) notes that SD performs well in applied 

economics and finance when the decision problem is the preference for a single asset or policy. 

But in optimal portfolio selection, stochastic dominance performs poorly in that one has to search 

through all possible combinations of assets to find the optimal one.   

Alternative models such as the mean-Gini approach (Yitzhaki 1982, and Shalit and 

Yitzhaki 1984) and the mean-lower partial moment (LPM) model (Bawa and Lindenberg 1977, 

Price, Price and Nantell 1982, and Harlow and Rao 1989) attempt to resolve the problems of SD 

optimization by transforming the stochastic dominance into a simple two-parameter framework.  

Nevertheless, since mean-Gini and mean-LPM efficiency are necessary but insufficient to the SD 

efficiency, the utility separation still fail to hold without further restrictions on probability 

distributions.1  To the best of our knowledge, for almost half a century, there is still no formal 

                                                            
1 That is, the SD implies mean-Gin and/or mean-LPM dominance, but not vise verse. 
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optimization produce for both necessarily and sufficiently constructing SD efficient portfolios that 

allow developing the separation and asset pricing theorems.2   

In this paper, we formally identify all expected utilities as a function of the mean and 

quantity, called swap-variance (SwV), without any restriction on the form of investors' utility 

function as well as that of assets' return distribution. 3   This affine transformation of utility function 

serves as a theoretical foundation for developing SD optimization and equilibrium fundamentally.   

Mathematically, SwV is the twice expected difference of arithmetic and logarithmic returns 

adjusted by the mean and is a convergence of a polynomial weighted sum of infinite return-

moments: 

SwV = 2[𝐸(𝑅 − 𝑟) − 𝑑𝜇] = (
𝜎

1+𝜇
)
2
+ 𝔸 ≥ 0,  (1) 

 

where 𝑅 is the one-period rate of return, 𝑟 =  𝑙𝑛(1 + 𝑅),  𝑅 − 𝑟 ≥ 0,  E is the expectation operator,   

𝜇 is the expected return of 𝑅, 𝑑𝜇 = 𝜇 − 𝑙𝑛(1 + 𝜇), 𝜎2 is the variance, 𝔸 = [∑ (−1)𝑘 (
2

𝑘
)

ℳ𝑘

(1+𝜇)𝑘
 ∞

𝑘=3 ], and  

ℳ𝑘 = 𝐸(𝑅 − 𝜇)𝑘
 is the k-th central moment of the return distribution, respectively.4   Precisely, the 

right-hand side of the equation (1) quantifies that SwV composes of two components.  The first is 

                                                            
2 Although Post (2003) has made an important step in this direction in that he introduced a technique to find whether 

the market portfolio is second degree efficient relative to all diversified portfolios composed from a given set of assets, 

we still do not have a stochastic dominance equilibrium.   
3 It is well known in financial literature (e.g. Neuberger, 1994, and Jiang and Oomen, 2008) that the variance swap 

contract can be replicated by a portfolio strategy of shorting a log-contract and simultaneously longing rebalanced 

forward contracts of the underlying asset. The profit/loss of such replication strategy accumulates to a quantity that is 

proportional to the realized variance (RV), if the jump-tail of return distribution is absent.  In a continuous-time limit, 

Jiang and Oomen (2008) show that this quantity, they call "swap variance (SwV)," can be calculated by the 

accumulated difference between simple returns and log returns. 
4 We assume asset returns are bounded with a finite range, 𝑅 ∈ [−1,1].  Based on a Taylor’s series of the log-return 

around 𝜇, we have  𝑟 = ln(1 + 𝑅) = ln(1 + 𝜇) +
𝑅−𝜇

1+𝜇
−

(𝑅−𝜇)2

2(1+𝜇)2
+ ∑ (−1)𝑘−1 (

1

𝑘
)

(𝑅−𝜇)𝑘

(1+𝜇)𝑘
 .∞

𝑘=3    Then, 2𝐸(𝑅 − 𝑟) = 

2[𝜇 − 𝑙𝑛(1 + 𝜇)] +
𝐸(𝑅−𝜇)2

(1+𝜇)2
 +∑ (−1)𝑘 (

2

𝑘
)

𝐸(𝑅−𝜇)𝑘

(1+𝜇)𝑘
 ∞

𝑘=3  = 2𝑑𝜇 +
𝜎2

(1+𝜇)2
+ 𝔸 .   Moreover, since SwV 

= 2[𝐸(𝑅 − 𝑟) − 𝑑𝜇] = 2[𝐸(ln(1 + 𝑅) − ln (1 + 𝐸(𝑅))], and 𝐸[ln(∙)] ≥ ln [𝐸(∙)] due to the concavity of 

logarithmic function, SwV must be non-negative. 
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symmetric (quadratic) variation of returns measured by the mean-adjusted variance, and the 

second, denoted 𝔸 and calculated merely by the difference between SwV and (
𝜎

1+𝜇
)

2

, characterizes 

the asymmetric (polynomial) variation of returns on a risky asset.  Intuitively, the fundamental 

difference between SwV and variance can be graphically observed from the distinctions of the two 

random variables, 2(𝑅 − 𝑟) and 𝑅2, accordingly (See Figure 1).  Both variables are non-negative, 

but 2(𝑅 − 𝑟) is asymmetric in nature, and 𝑅2 is less (higher) than 2(𝑅 − 𝑟) for negative (positive) 𝑅.  

This indicates that the variance understates (overstates) the downside (upside) variation if returns 

are asymmetrically distributed.  Figure 1 also helps to acknowledge that the distinction between 

SwV and variance is a summary statistic of the asymmetries in returns (𝔸).  

[Insert Figure 1 here] 

Noticeably, the alternating signs in the weighted sequence of third and higher order 

moments in the polynomial formulation of 𝔸 suggest that larger the positive (negative) odd 

moments produces smaller (larger) the SwV.   Since the odd moments distinguish the prospect of 

potential gain/loss, a significantly negative (positive) 𝔸 is associated with a prospect of substantial 

gain (loss) or a possibility of profoundly positive (negative) returns.  That indicates that a volatile 

distribution may not be necessarily risky, if the value of 𝔸 is significant negative.  In short, upside 

(downside) asymmetries in returns lead to relatively low (high) risk exposure so that SwV is small 

(larger) than the variance.  We explicitly apply this notion of asymmetry embedded in SwV to the 

theory of expected utility maximization and develop a model for preference of choice that is robust 

to risk-averse investors who dislike downside-losses but prefer potential upside-gains.  

We first show that the mean-SwV transformation of the expected utility function allows 

the derivation of both the necessary and sufficient condition for stochastic dominance, enabling 

risk-averse investors to discard from the efficient set of prospects that are stochastically dominated 
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by others.  Therefore, the mean-SwV (MSwV) approach separates both the knowledge of all 

prospects' probability distribution and that of investors' preference functions from the decision 

process on utility maximization.  In the application of MSwV to portfolio theory, we demonstrate 

that similar to the formulation of portfolio variance, the SwV of a portfolio is also a weighted sum 

of the co-swap-variance (CoSwV) between each component asset and the portfolio.  Structurally, 

the CoSwV contains not only the covariance but a summary of all higher order co-moments of 

return; thus, larger the odd co-moments (e.g., co-skewness), smaller the CoSwV, better the risk-

diversification, and higher the portfolio efficiency.5  Consequently, the SwV can replace the 

variance and the CoSwV can substitute covariance needed in portfolio theory whenever the MV 

model fails to provide consistent results of the utility maximization.  Precisely, we prove that the 

mean and CoSwV dominance is a necessary and sufficient condition for the second-degree 

marginal conditional stochastic dominance (MCSD) of Shalit and Yitzhaki (1994) for all concaved 

utility functions.  As a result, analogous to the MV analysis, the efficient set of second-degree 

stochastic dominance (SSD) portfolios can be determined by minimizing the portfolio's SwV for 

each given mean-return without searching through all possible combinations of assets as the 

traditional SSD algorithm requires. 

                                                            
5 Mounting empirical evidence suggests that higher-order market co-moments associated with distributional variations 

in addition to the market volatility do explain the expected returns on financial assets.   Notably, Harvey and Siddique 

(2000) demonstrate that under a quadratic pricing kernel, conditional skewness explains the cross-sectional variation 

in expected returns across assets.  Dittmar (2002) extends the pricing kernel to be a cubic in the market return and 

show that asset returns are affected by covariance, co-skewness, and co-kurtosis with return on aggregate wealth.  

From an aspect of asset pricing, Vendrame, Tucker and Guermat (2016) find that covariance is associated with a 

positive factor premium, co-skewness demands a negative premium, and co-kurtosis has a positive premium, 

respectively.  Furthermore, Chung, Johnson and Schill (2006) argue that although higher moment measure such as 

skewness and kurtosis individually provides some information about the tail of the investment return distribution, they 

fall far short of specifying the tail precisely.  Therefore, the likelihood of extreme outcomes of an investment must be 

measured jointly by the entire set of all possible moments and co-moments.  To specify the distributional tails of 

returns (or the sensitivity to the market tails) ideally, it requires information of an infinite number of moments and co-

moments. 
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Based on the decomposition of SwV shown in (1), we further quantify the expected utility 

as a function of three-parameters: mean, variance, and asymmetry (MV𝔸), respectively.    Serving 

as an extension of the SSD approaches, we show that MV𝔸 efficiency is robust to risk-averse 

investors and to those who prefer a prospect of upside-skewed payoffs but are averse to that of 

downside losses, where both MV and SSD efficient sets of assets are subsets of the MV𝔸 

efficiency.6  Notably, the MV𝔸 efficient set includes lottery-type securities (Kumar, 2009) that are 

SSD inefficient and commonly viewed as highly risky assets.  The MV𝔸 optimal portfolios can 

then be identified by minimizing 𝔸 of assets for every level of the mean and variance.   

Again, the main advantage of MSwV and MV𝔸 optimization is that the expected utility 

maximization of investors can be distinguished entirely by a function of finite summary statistics 

independent of individual preference function or the knowledge of probability or decision weight 

distribution.   Consequently, the MSwV and MV𝔸 optimal portfolios allow us to derive the SD 

equilibrium return on assets as well as the SD systematic risk measures.  Specifically, we show 

that similar to the MV beta coefficient in form, the MSwV-beta (or the SSD-beta) is a ratio between 

CoSwV and the market SwV.  Since CoSwV accommodates all possible higher order co-moments 

of returns between an asset and the SSD optimal (market) portfolio, the MSwV-beta is sensitive 

to the asymmetries in market returns.  It makes MSwV-beta becomes a more general proxy of 

systematic risk than the traditional MV-beta.   Finally, incorporating with upside-skewness 

preference and downside-asymmetry aversion, we develop a two-factor linear model as a result of 

the MV𝔸 equilibrium.  This model is an extension of the MSwV approach for quantifying the 

systematic impacts of symmetry and asymmetry separately on the required return on risky assets.  

                                                            
6 The MVA inefficient assets must also be dominated by SSD or MV rules. Note that the neither the MV efficient 

set is a subset of SSD, nor vice versa. 
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Empirically, the MV𝔸 two-factor pricing model is statistically valid as compared with the 

conventional multi-factor models.    

The rest of the paper is organized as follows: Section II derives the expected utility as a 

function of mean and SwV.  The stochastic dominance rules based on distributional moments and 

SwV are then defined and proved.  We also illustrate that the MV𝔸 model serves as an extension 

of the MSwV and MV approaches for incorporating with asymmetry-preference.   Section III 

shows the derivation of the co-SwV as well as its application to MCSD orderings.  Section IV 

demonstrates the application of MSwV and MV𝔸 to the determination of stochastic dominance 

optimal portfolios.  Based on the MSwV and MV𝔸 optimization, the stochastic dominance oriented 

asset pricing models are then developed in Section IV.  Section V illustrates the empirical analysis, 

and section VI contains brief concluding remarks. 

    

II. Swap-Variance, Asymmetry, and Stochastic Dominance 

Stochastic dominance provides a way of analyzing risky investment decisions when an 

investor's utility function 𝑈 is not fully known but is presumed to be in a class of real-valued 

functions.  An asset i unconditionally and stochastically dominates an asset j, if and only if 

𝐸𝑈(𝑅𝑖) ≥ 𝐸𝑈(𝑅𝑗),  where 𝐸𝑈(𝑅𝑖) and 𝐸𝑈(𝑅𝑗) are expected utilities of returns on assets 𝑖 and 𝑗, 

respectively.   Without loss of generality, we apply the Taylor-series of the utility function 𝑈(𝑅) 

about mean return and with some mathematical arrangements, the utility function can be expressed 

by the following equation:  

𝑈(𝑅) = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇) + 𝕌(𝑈, 𝜇, 𝑅)[2(𝑅 − 𝑟) − 2𝑑𝜇], (2) 
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where  𝑈′ ≥ 0,  𝕌(𝑈,𝜇,𝑅) = ∑ 𝑤𝑘𝐴𝑘
∞
𝑘=2 ,  is a weighted sum of all derivatives of the utility functions.  

Specifically, 𝐴𝑘 = [
[−(1+𝜇)]𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)], where 𝑈(𝑘) is the k-th derivative of the utility function, and 

 𝑤𝑘 = [
2(−1)𝑘

𝑘
(

𝑅−𝜇

1+𝜇
)

𝑘

] [2(𝑅 − 𝑟) − 2𝑑𝜇]⁄ .7   Next, based on the assumption that utility function is non-

decreasing, continuous and differentiable on 𝑅, we apply the mean value theorem for integrals to 

the expected utility of return such that: 

𝐸𝑈(𝑅) = 𝑈(𝜇) +  𝕌(𝑈, 𝜇, 𝑅𝑜) ∙ SwV (3) 

where = 𝐸(𝑅),  SwV = 2𝐸(𝑅 − 𝑟) − 2𝑑𝜇, as shown in (1), and 𝕌(𝑈, 𝜇, 𝑅𝑜) is the function of 𝕌(∙) 

at some point of return, 𝑅𝑜 ∈ (−1, 1) so that it equals the probability weighted average of 𝕌(𝑈, 𝜇, 𝑅), 

where the weights could be either objective-probability or subjective-decision oriented.  It is 

important to note that equation (3) holds for all forms of the utility functions in which 𝕌(U, μ, Ro) 

is negative, zero and positive for concave, linear, and convex function, respectively.8    

 

A. MSwV Stochastic Dominance Rules 

The implication of Equation (3) is crucial.  First, with no assumption on the form of either 

utility function or that of return distribution, the expected utility can be characterized as a function 

                                                            
7 𝑈(𝑅) = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇) + ∑

1

𝑘!
𝑈(𝑘)(𝜇)(𝑅 − 𝜇)𝑘∞

𝑘=2  = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇) +

∑ [
(−1)𝑘(1+𝜇)𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)] [

2(−1)𝑘

𝑘

(𝑅−𝜇)𝑘

(1+𝜇)𝑘
]∞

𝑘=2 . Now, let 𝐴𝑘 = [
(−1)𝑘(1+𝜇)𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)],  𝐵𝑘 = [

2(−1)𝑘

𝑘

(𝑅−𝜇)𝑘

(1+𝜇)𝑘
],  𝐵 =

∑ 𝐵𝑘 = 2(𝑅 − 𝑟) − 2𝑑𝜇 ∞
𝑘=2 , and  𝑤𝑘 =

𝐵𝑘

𝐵
.  Define 𝕌(𝑈, 𝜇, 𝑅) = ∑ 𝑤𝑘𝐴𝑘

∞
𝑘=2 =

1

𝐵
∑ 𝐴𝑘𝐵𝑘

∞
𝑘=2 . We have 

∑ 𝐴𝑘𝐵𝑘 
∞
𝑘=2 = 𝕌(𝑈, 𝜇, 𝑅)[2(𝑅 − 𝑟) − 2𝑑𝜇],  and consequently, 𝑈(𝑅) = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇) +

𝕌(𝑈, 𝜇, 𝑅)[2(𝑅 − 𝑟) − 2𝑑𝜇].   
 
8 For any risk-averse investor, his/her concave utility must be not greater than his/her equivalently risk-neutral utility 

(i.e., graphically, the tangency line at any return level) due to the utility-discount of risk.  That is, 𝐸𝑈(𝑅) − 𝑈(𝜇) ≤
0. Since 𝐸(𝑅 − 𝑟) − 𝑑𝜇 = ln(1 + 𝜇) − 𝐸[ln (1 + 𝑅)] ≥ 0 because of the concavity of logarithmic 

function, 𝕌(𝑈, 𝜇, 𝑅𝑜) =
𝐸𝑈(𝑅)−𝑈(𝜇)

(𝑆𝑤𝑉−2𝑑𝜇)
≤ 0.  On the other hand, for convex utilities, 𝐸𝑈(𝑅) − 𝑈(𝜇) ≥ 0, and 

𝕌(𝑈, 𝜇, 𝑅𝑜) > 0. 
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of the mean (𝜇) and SwV.  Second, the mean-SwV transformation makes the consistency between 

the expected utility maximization and the prospect theory, where the probability distribution is not 

necessarily required in decision making.   

 

Theorem 1 (First Degree Stochastic Dominance)  

Let 𝑅𝑖 and 𝑅𝑗 be two uncertain prospects.  Based on equation (3), the conditions, 𝜇𝑖 ≥ 𝜇𝑗 

and 𝑆𝑤𝑉𝑖 = 𝑆𝑤𝑉𝑗, are necessary and sufficient to have 𝐸𝑈(𝑅𝑖) ≥ 𝐸𝑈(𝑅𝑗) for all utility functions.     

 

 

Theorem 2 (Second Degree Stochastic Dominance: The Mean-Swap Variance Dominance)  

Let 𝑅𝑖 and 𝑅𝑗 be two uncertain prospects.  Based on equation (3), the conditions, 𝜇𝑖 ≥ 𝜇𝑗 and 

𝑆𝑤𝑉𝑖 ≤ 𝑆𝑤𝑉𝑗 are necessary and sufficient conditions to ensure that 𝐸𝑈(𝑅𝑖) ≥ 𝐸𝑈(𝑅𝑗) for all 

concave utility functions.     

 

The proof of Theorems 1 and 2 is given in the Appendix.  The main contribution of the above 

theorems is the convergence of the SD rules from the comparison of entire probability distributions 

to the two-statistic (MSwV) analysis that retains the same simplicity as the MV model.  The 

theorems indicate that the swap-variance is more generalized risk proxy than the variance is for all 

risk-averse expected utility maximizers.  Notably, there are risk characters, embedded in the SwV, 

other than return volatility that risk-averse investors care about in which the variance fails to 

measure them.   

 The following numerical example shows that the MSwV approach correctly discriminate 

SSD inefficient assets, but the MV model fails to do so.  Suppose returns on two securities, 𝑅1 and 

𝑅2, that are lognormally distributed, where 𝑟1~𝑁(0.1, 0.22) and 𝑟2~𝑁(−0.15, 0.24), respectively.  

Apparently, 𝑅2 is stochastically dominated by 𝑅1, and a profitable investment can be formed by a 

long/short position between 𝑅1 and 𝑅2, if investors know the form of return distributions.  Now, 
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without the knowledge of distributional forms, suppose investors employ the three methods, MV, 

SSD and MSwV, for security selection, we have the following results: 

 Security 1  Security 2 

𝜇 0.132 > -0.114 

𝜎2 0.0636 >  0.0465 

SwV 0.0484 <  0.0576 

SSD ∫
1

2
+

1

2
𝑒𝑟𝑓 [

ln(1+𝑡)−0.1

0.22√2
]

𝑅

−1
𝑑𝑡9  <10 ∫

1

2
+

1

2
𝑒𝑟𝑓 [

ln(1+𝑡)+0.15

0.24√2
]

𝑅

−1
𝑑𝑡  

 

According to the MV trade-off (𝜎1
2 > 𝜎2

2 and 𝜇
1

> 𝜇
2
), incorrectly, no dominance between the two 

securities makes them as efficient as to each other.  Nevertheless, consistent with SSD ordering, 

the MSwV rule ( 𝜇1 > 𝜇2, but SwV1 < SwV2) enables one to correctly discriminate the dominated 

security 𝑅2 from the dominating one,  𝑅1.  This example highlights a significant bias of the 

traditional MV model and the superiority of the MSwV analysis under the conventional 

assumption of log-normality.  The implication of this example is that if returns on risky assets are 

asymmetrically distributed, then many efficient assets or portfolios determined by the MV analysis 

are in fact inefficient.  The MSwV, on the other hand, used as convenient as the MV, provides 

unbiased results.   

 

B. 𝑀𝑉𝔸 and Stochastic Dominance Efficiency 

To further examine how return-variation other than the volatility affects expected utility of 

investors, we separate the second order of return-moment from the swap-variance and have a focus 

on the asymmetries in returns.  Again, without loss of generality, the utility function (2) can be 

further decomposed as follows: 

 

𝑈(𝑅) = 𝑈(𝜇) + 𝑈′(𝜇)(𝑅 − 𝜇) +
1

2
𝑈′′(𝜇)(𝑅 − 𝜇)2 + 𝕌(3)(𝑈, 𝜇, 𝑅) ∙ 𝒜  (4) 

                                                            
9 𝑒𝑟𝑓(∙) is error function, and it is monotonically increasing in its whole define of domain 
10 The “<” holds when the upper bound of holding period return is 16.28, so we consider asset 1 second-degree 

stochastically dominates asset 2. 
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where 𝒜 = [2(𝑅 − 𝑟) − 2𝑑𝜇] − (
𝑅−𝜇

1+𝜇
)
2
, 𝕌(3)(𝑈, 𝜇,𝑅) = ∑ 𝜔𝑘𝐴𝑘 < 0∞

𝑘=3 ,  𝐴𝑘 = [
(−1)𝑘(1+𝜇)𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)] 

and  𝜔𝑘 = [
2(−1)𝑘

𝑘
(

𝑅−𝜇

1+𝜇
)

𝑘

] 𝒜⁄ .
 11

   We note that 𝒜 depicts the asymmetries in return (see Figure 1 for 

the case that 𝜇 = 0).  The quantity 𝒜 is negative (positive) if 𝑅 is greater (less) than 𝜇.  Further, 

the inequality, 𝕌(3)(𝑈, 𝜇, 𝑅) < 0, holds if 𝑈‴ > 0.12  Now, from (1), (3), and (4), we can rewrite the 

expected utility as a function of mean, variance and the asymmetry measure 𝔸 as follows: 

𝐸𝑈(𝑅) = 𝑈(𝜇) +
1

2
𝑈′′(𝜇) ∙ 𝜎2 + 𝕌(3)(𝑈, 𝜇, 𝑅𝑜) ∙ 𝔸 (5) 

where  𝔸 = SwV − (
𝜎

1+𝜇
)
2
.  Since 𝕌(3)(𝑈,𝜇,𝑅𝑜) is non-positive, larger (smaller) the asymmetric 

risk, and more positive (negative) value of 𝔸, lower (higher) the expected utility.  Also, since the 

odd higher moments embedded in 𝔸 distinguish the prospect of potential gain/loss, a high (low) 𝔸 

results from either a significant chance of loss (gain) or a probability of substantially negative 

(positive) returns.  In the next theorem, we show that for all risk-averse investors who also prefer 

                                                            
11 𝑈(𝑅) = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇)+ 

1

2
𝑈"(𝜇)(𝑅 − 𝜇)2 + ∑ [

(−1)𝑘(1+𝜇)𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)] [

2(−1)𝑘

𝑘

(𝑅−𝜇)𝑘

(1+𝜇)𝑘
]∞

𝑘=3 . Now, let 𝐴𝑘 =

[
(−1)𝑘(1+𝜇)𝑘

2(𝑘−1)!
𝑈(𝑘)(𝜇)],  𝐵𝑘 = [

2(−1)𝑘

𝑘

(𝑅−𝜇)𝑘

(1+𝜇)𝑘
], ℬ = ∑ 𝐵𝑘 = [2(𝑅 − 𝑟) − 2𝑑𝜇 ]∞

𝑘=3 − (
𝑅−𝜇

1+𝜇
)

2

, and  𝜔𝑘 =
𝐵𝑘

ℬ
.  

Define 𝕌(3)(𝑈, 𝜇, 𝑅) = ∑ 𝑤𝑘𝐴𝑘
∞
𝑘=3 =

1

ℬ
∑ 𝐴𝑘𝐵𝑘

∞
𝑘=3 . We have ∑ 𝐴𝑘𝐵𝑘 

∞
𝑘=3 = 𝕌(3)(𝑈, 𝜇, 𝑅) {[2(𝑅 − 𝑟) − 2𝑑𝜇] −

(
𝑅−𝜇

1+𝜇
)

2

},  and consequently, 𝑈(𝑅) = 𝑈(𝜇) +  𝑈′(𝜇)(𝑅 − 𝜇) + 𝕌(3)(𝑈, 𝜇, 𝑅) {[2(𝑅 − 𝑟) − 2𝑑𝜇] − (
𝑅−𝜇

1+𝜇
)

2

}.   

 
12 This is to prove that if 𝑈‴(𝑅) > 0, then 𝕌(3)(𝑈, 𝜇, 𝑅) < 0.  Take the Taylor Expansion on 𝑈‴(𝑅) around 𝜇, 

𝑈‴(𝑅) = 𝑈‴(𝜇) + 𝑈(4)(𝜇)(𝑅 − 𝜇) + ∑
𝑈(𝑘)(𝜇)

(𝑘−3)!
(𝑅 − 𝜇)𝑘−3∞

𝑘=5 . Define 𝑞(𝑅) = ∫ 𝑈‴(𝑠)𝑑𝑠
𝑅

𝜇
, 𝑞(𝑅) = 𝑈‴(𝜇)(𝑅 −

𝜇) +
𝑈(4)(𝜇)

2
(𝑅 − 𝜇)2 + ∑

𝑈(𝑘)(𝜇)

(𝑘−2)!
(𝑅 − 𝜇)𝑘−2∞

𝑘=5 .  Since𝑈‴(𝑅) > 0, 𝑞(𝑅) > 0 as 𝑅 > 𝜇 while 𝑞(𝑅) < 0 as 𝑅 < 𝜇. 

Now consider 𝑄(𝑅) = ∫ 𝑞(𝑠)𝑑𝑠
𝑅

𝜇
. Then 𝑄(𝑅) =

𝑈‴(𝜇)

2!
(𝑅 − 𝜇)2 +

𝑈(4)(𝜇)

3!
(𝑅 − 𝜇)3 + ∑

𝑈(𝑘)(𝜇)

(𝑘−1)!
(𝑅 − 𝜇)𝑘−1∞

𝑘=5 .  

Because of the property of 𝑞(𝑅), 𝑄(𝑅) reaches its minimum as 𝑅 = 𝜇. Thus, 𝑄(𝑅) > 0. Now, consider ℚ(𝑅) =

∫ 𝑄(𝑠)𝑑𝑠
𝑅

𝜇
. Then ℚ(𝑅) =

𝑈‴(𝜇)

3!
(𝑅 − 𝜇)3 +

𝑈(4)(𝜇)

4!
(𝑅 − 𝜇)4 + ∑

𝑈(𝑘)(𝜇)

𝑘!
(𝑅 − 𝜇)𝑘∞

𝑘=5 .  Since 𝑄(𝑅) > 0 for all 𝑅. 

ℚ(𝑅) is a monotonic increasing function with ℚ(𝜇) = 0, and thus ℚ(𝑅) > 0 as 𝑅 > 𝜇 while ℚ(𝑅) < 0 as 𝑅, 𝜇. 

Compared to equation (4), ℚ(𝑅) = 𝕌(3)(𝑈, 𝜇, 𝑅) ∙ 𝒜. So 𝕌(3)(𝑈, 𝜇, 𝑅) < 0 for all 𝑅. 
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(dislike) positively (negatively) asymmetric payoffs, the preference of choice can be made by the 

orders of the three parameters: mean, variance, and asymmetry, respectively.  

 

Theorem 3 (The Mean-Volatility-Asymmetry (MV𝔸) Dominance and Efficiency)  

Let 𝑅𝑖 and 𝑅𝑗 be two uncertain prospects. Based on equation (5), these inequalities, 𝜇𝑖 ≥ 𝜇𝑗, 𝜎𝑖 ≤

𝜎𝑗 , and 𝔸𝑖 ≤ 𝔸𝑗 are the sufficient condition for the expected utility inequality, 𝐸𝑈(𝑅𝑖) ≥ 𝐸𝑈(𝑅𝑗), 

and for all utility functions with 𝑈′ > 0,  𝑈′′ < 0, and 𝑈‴ > 0.  Since 𝑀𝑉𝔸 dominance must be 

the SSD dominance but not vice versa, the SSD efficient set is thus a subset of the 𝑀𝑉𝔸 efficiency.   

 

The proof of Theorem 3 is similar to that of Theorems 1 and 2, except that the dominance of MV𝔸 

is not a necessary condition to that of expected utility.13  Intuitively, the MV𝔸 model based on (4) 

and (5) takes both aversion of symmetric volatility (𝑈′′ < 0) and that of asymmetric variation 

(𝕌(3) < 0) into consideration.   Also, from (4), the inequality of  𝑈‴ > 0 ensures that of 𝕌(3) < 0.  

That indicates the efficient assets in the MV𝔸 set include those that are chosen by investor who 

prefer upside skewed outcomes as well as those who are downside asymmetry averse.  Noticeably, 

the MV𝔸 approach reduces to the MV model, if either 𝑈‴or 𝔸 is zero.   

To illustrate that some SSD (or MSwV) inefficient assets for risk-averse investors may not 

be viewed as the inferior assets for those who also prefer positively asymmetric outcomes, we use 

a simple counterexample.  Consider two random prospects 𝑋 and 𝑌 with discrete distributions of 

returns.  Both 𝑋 and 𝑌 have two possible investment outcomes: -0.20 with a probability of 90% 

and 0.65 with a probability of 10%, as well as -0.20 with a probability of 40% and -0.05 with a 

probability of 60%, respectively.  We summarize the key statistics are follows: 

 

                                                            
13 Specifically, the non-necessity of  MV𝔸 to expected utility dominance is because it is impossible that both   
𝑈′′(∙)

𝕌(3)(∙)
  and 

𝑈′(∙)

𝕌(3)(∙)
  simultaneously approach zero for non-decreasing concave utility functions with a non-negative 𝑈‴.  
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 Upside Gain Preference 

       X Prob.        Y Prob. 

Outcome 1 -0.20 90%  -0.20 40% 

Outcome 2 0.65 10%  -0.05 60% 
      

𝜇 -0.115  < -0.110  

𝜎2 0.065  > 0.005  

SwV 0.057  > 0.007  

𝔸 -0.026  < 0.000  

 

Based on the MSwV and MV ranking rules, asset Y is superior to X in that the mean (SwV or 

variance) of Y is higher (lower) than that of X.   Also, from the aspect of the probability distribution, 

𝑋 is also dominated by 𝑌 under the SSD rule.  Nevertheless, investors may be unwilling to 

discriminate X as a dominated choice in that a prospect of dramatic positive-payoff (0.65) could 

be attractive as compared with the alternative Y that has all negative investment outcomes.  

Consequently, if we take those investors who care about the upside potential into consideration, X 

may then be as efficient as Y in the risk-return tradeoff.  The MV𝔸 model can detect this efficiency; 

correctly, the negative 𝔸 shows that asset X has positively asymmetric (skewed) payoff and thus 

low asymmetric risk, which increases the expected utility as shown in (5).  For a graphical 

illustration, we depict the relationship of efficiency among FSD, MV𝔸, SSD, and MV in the 

following simple chart: 

                                 Efficient Sets  

 

 

 

 

 

MV𝔸 

SSD MV 

FSD 
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Apparently, the investment alternative X in the previous example can be viewed as a 

lottery-type security, defined by Kumar (2009), that has low negative expected returns, high 

variance, and a small probability of a substantial payoff (i.e., a significantly negative 𝔸).  Our 

analysis above indicates that the lottery-type securities, although they are dominated assets under 

the SSD and MV framework, could still be expected utility efficient for investors have preference 

of upside potential even if they are risk-averse in general.  Therefore, the traditional methodologies 

of security selection and portfolio efficiency analysis under the classical risk-aversion assumption 

may be too restrictive. 

In addition to the upside skewness preference, the MV𝔸 approach is also useful in detecting 

downside asymmetry (disappointment) aversion that the MV model fails to do so.14  Consider two 

mutually exclusive investment projects, G and H, have almost identical means.  As shown in the 

following table, G dominates H in the mean-variance tradeoff in that the variance of project G 

(0.014) is lower than that of project H (0.016): 

 Downside Loss Aversion 

       G Prob.        H Prob. 

Outcome 1 0.175 90%  0.01 50% 

Outcome 2 -0.225 10%  0.26 50% 
      

𝜇 0.135  ≈ 0.135  

𝜎2 0.014  < 0.016  

SwV 0.014  > 0.012  

𝔸 0.003  > 0.000  

 

Nevertheless, from the prospect payouts shown in the above table, risk-averse investors may not 

view G is a superior alternative to H for risk-averse investors.  In fact, H stochastically dominates 

G for that G has a larger SwV than H, and the downside asymmetry-risk (𝔸) of project G is greater 

than that of project H.    In short, unlike the variance, the sign of 𝔸 derived from the SwV provides 

                                                            
14 The downside asymmetry-aversion is closely related to the notion of disappointment aversion in Gul (1991). 
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valuable indications for the reference of choice between the upside gain-preference and the 

downside loss-aversion.   

Although the simplicity of MSwV and MV𝔸 rules shown in the above theorems 

demonstrates their superiority to the conventional stochastic dominance approach, the goal of this 

paper is applying them to the development of SD portfolio efficiency and equilibrium, consisting 

with the notion of expected utility maximization.  In the next section, we extend the MSwV and 

MVA to the marginal and conditional ordering conditions of assets within a portfolio for serving 

as an essential step toward the development of stochastic dominance optimization and capital 

market equilibrium. 

 

III. Co-SwV, Co-Asymmetry and MCSD 

Let 𝑅𝑝(= ∑ 𝑤𝑖𝑅𝑖
𝑁
𝑖=1 ) be the return on a core portfolio of N risky assets, where 𝑤𝑖  is the 

share of wealth invested in asset i, and ∑ 𝑤𝑖
𝑁
𝑖=1 = 1.  We assume investors are maximizing their 

expected utility of 𝑅𝑝.  Shalit and Yitzhaki (1994) showed this inequality,  

𝐸[𝑈′(𝑅𝑝)(𝑅𝑖 − 𝑅𝑗)] ≥ 0, (6) 

is the necessary and sufficient condition for all risk-averse investors to prefer marginally increase 

the share of one asset over another in the core portfolio.  In other words, asset i is said to marginally 

and conditionally stochastically dominate (MCSD) asset j, if and only if the inequality (6) holds.   

 

A.  The Co-Swap Variance and MCSD 

Analogical to (3), we transform the difference of expected marginal utility between returns on 

component assets i and j of a portfolio p as:  
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𝐸[𝑈′(𝑅𝑝)(𝑅𝑖 − 𝑅𝑗)] = 𝑈′(𝑅𝑝)(𝜇𝑖 − 𝜇𝑗) + 𝕌(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜)[𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑝) − 𝐶𝑜𝑆𝑤𝑉(𝑅𝑗 , 𝑅𝑝)]  (7) 

 

where 𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑝) is the co-swap variance between returns on asset i and those on the portfolio, 

and 𝕌(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜), previously defined in (3), is non-positive in value.15   The formulation of the co-

swap variance is shown in the following equation: 

𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑝) = 2𝐸 [(
𝑅𝑖 − 𝜇𝑖

𝑅𝑝 − 𝜇𝑝
) (𝑅𝑝 − 𝑟𝑝)] − 2𝑑𝜇𝑝 

 

(8) 

 =
𝐶𝑜𝑉(𝑅𝑖,𝑅𝑝)

(1+𝜇𝑝)
2 + ∑ (−1)𝑘 (

2

𝑘
)

𝐶𝑜ℳ𝑘(𝑅𝑖,𝑅𝑝)

(1+𝜇𝑝)
𝑘

∞
𝑘=3  ,  

 

where 𝑟𝑝 = 𝑙𝑛(1 + 𝑅𝑝), 𝑑𝜇𝑝 = 𝜇𝑝 − 𝑙𝑛(1 + 𝜇𝑝), 𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑝) =  𝐸[(𝑅𝑖 − 𝜇𝑖)(𝑅𝑝 − 𝜇𝑖)], and 

𝐶𝑜ℳ𝑘(𝑅𝑖 , 𝑅𝑝) = 𝐸[(𝑅𝑖 − 𝜇𝑖)(𝑅𝑝 − 𝜇𝑝)𝑘−1] is the k-th order co-moment between 𝑅𝑖 and 𝑅𝑝, 

accordingly.16   

Equation (7) shows that the marginal expected utility of return can be characterized by the 

mean and CoSwV without any restriction on the form of the utility functions and that of the return 

distributions.  Although the covariance plays the key role for risk-diversification, the higher orders 

of co-moments between assets and the portfolio, from equations (7) and (8), are crucial for the 

determination of portfolio efficiency.  We show, in the following theorems, that the mean and 

CoSwV can be employed to determine the necessary and sufficient condition for the MCSD.   

 

                                                            
15 Equation (7) can be derived as follows: 𝐸[𝑈′(𝑅𝑝)(𝑅𝑖 − 𝑅𝑗)] = 𝐸[𝑈′(𝑅𝑝)(𝜇𝑖 − 𝜇𝑗)] + 𝐸{𝑈′(𝑅𝑝)[(𝑅𝑖 − 𝜇𝑖) −

(𝑅𝑗 − 𝜇𝑗)]}, where 𝐸{𝑈′(𝑅𝑝)[(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]} = 𝐸 {[𝑈′(𝜇𝑝) + ∑
1

𝑘!
𝑈(𝑘)(𝜇𝑝)(𝑅𝑝 − 𝜇𝑝)

𝑘−1∞
𝑘=2 ] [(𝑅𝑖 − 𝜇𝑖) −

(𝑅𝑗 − 𝜇𝑗)]} = 𝐸 ∑
(1+𝜇𝑝)

𝑘

2(𝑘−1)!
(−1)𝑘𝑈(𝑘)(𝜇𝑝){

(−1)𝑘2

𝑘(1+𝜇𝑝)
𝑘 (𝑅𝑝 − 𝜇𝑝)

𝑘−1
[(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]}

∞
𝑘=2  

= 𝕌(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜)[𝐶𝑜𝑆𝑤𝑉(𝑅𝑖, 𝑅𝑝) − 𝐶𝑜𝑆𝑤𝑉(𝑅𝑗, 𝑅𝑝)]. 

16The derivation of the closed-formed CoSwV is as follows:  𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑝) = ∑
2(−1)𝑘

𝑘(1+𝜇𝑝)
𝑘 ∫ (𝑅𝑖 −

𝑏

−1
∞
𝑘=2

𝜇
𝑖
) (𝑅𝑝 − 𝜇

𝑝
)

𝑘−1

𝑑𝐹(𝑅𝑖, 𝑅𝑝) = ∫
(𝑅𝑖−𝜇𝑖)

(𝑅𝑝−𝜇𝑝)
[∑

2(−1)𝑘

𝑘(1+𝜇𝑝)
𝑘 (𝑅𝑝 − 𝜇

𝑝
)

𝑘
∞
𝑘=2 ] 𝑑𝐹(𝑅𝑖, 𝑅𝑝) =

𝑏

−1
2𝐸 [(

𝑅𝑖−𝜇𝑖

𝑅𝑝−𝜇𝑝

) (𝑅𝑝 − 𝑟𝑝)] − 2𝑑𝜇𝑝. 
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Theorem 4 (Mean-CoSwV MCSD)  

Assume 𝑅𝑖 and 𝑅𝑗 are two uncertain prospects in a portfolio 𝑅𝑝. Based on equation (7), the 

conditions 𝜇𝑖 ≥ 𝜇𝑗 and 𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑝) ≤ 𝐶𝑜𝑆𝑤𝑉(𝑅𝑗 , 𝑅𝑝) are necessary and sufficient for 𝑅𝑖 to 

marginally and conditionally dominate 𝑅𝑗 for all concave utilities.17 

 

If returns on assets are symmetrically distributed, then from the above theorem, risk averse 

investors prefer to hold those assets with the larger expected return and lower correlations with the 

core portfolio.   

Further, let  𝐶𝑜𝔸(𝑅𝑖, 𝑅𝑝) = [𝐶𝑜𝑆𝑤𝑉(𝑅𝑖, 𝑅𝑝) −
𝐶𝑜𝑉(𝑅𝑖,𝑅𝑝)

(1+𝜇𝑝)2
] be the sensitivity of i-th asset’s 

return to the symmetric (asymmetric) price movement of the core portfolio.   Equation (7) can then 

be expanded as:  

 

𝐸[𝑈′(𝑅𝑝)(𝑅𝑖 − 𝑅𝑗)] = 𝑈′(𝑅𝑝)(𝜇𝑖 − 𝜇𝑗) + 𝑈′′(𝑅𝑝)[𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑝) − 𝐶𝑜𝑉(𝑅𝑗 , 𝑅𝑝)] 

(10) 

   +𝕌(3)(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜)[𝐶𝑜𝔸(𝑅𝑖 , 𝑅𝑝) − 𝐶𝑜𝔸(𝑅𝑗 , 𝑅𝑝)], 

 

where 𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑝) is the covariance between returns on asset i and those on the portfolio, and 

𝕌(3)(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜), previously defined in (5), is non-positive in value.18    

 

B. The Co-Asymmetry and MCSD 

In the following theorem, we demonstrate that for those investors who care about the 

potential gain/loss due to asymmetries in returns additional to price fluctuations, the co-asymmetry 

                                                            
17 Analogous to these of Theorems 2 and 3, we omit the proof of this theorem. 
18 The derivation of equation (10) is shown as follows:  𝐸[𝑈′(𝑅𝑝)(𝑅𝑖 − 𝑅𝑗)] = 𝐸[𝑈′(𝑅𝑝)(𝜇𝑖 − 𝜇𝑗)] +

𝐸{𝑈′(𝑅𝑝)[(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]}, where 𝐸{𝑈′(𝑅𝑝)[(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]} = 𝐸 {[𝑈′(𝜇𝑝) + 𝑈′′(𝜇𝑝)(𝑅𝑝 − 𝜇𝑝) +

∑
1

(𝑘−1)!
𝑈(𝑘)(𝜇𝑝)(𝑅𝑝 − 𝜇𝑝)

𝑘−1∞
𝑘=3 ] [(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]} = 𝑈′′(𝜇𝑝)[𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑝) − 𝐶𝑜𝑉(𝑅𝑗 , 𝑅𝑝)] +

𝐸 ∑
𝑘(1+𝜇𝑝)

𝑘

2(𝑘−1)!
(−1)𝑘𝑈(𝑘)(𝜇𝑝){

(−1)𝑘2

𝑘(1+𝜇𝑝)
𝑘 (𝑅𝑝 − 𝜇𝑝)

𝑘−1
[(𝑅𝑖 − 𝜇𝑖) − (𝑅𝑗 − 𝜇𝑗)]}

∞
𝑘=3  = 𝑈′′(𝜇𝑝)[𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑝) − 𝐶𝑜𝑉(𝑅𝑗 , 𝑅𝑝)] +

𝕌(3)(𝑈, 𝜇𝑝, 𝑅𝑝
𝑜) [(𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑝) −

𝐶𝑜𝑉(𝑅𝑖,𝑅𝑝)

(1+𝜇𝑝)
2 ) − (𝐶𝑜𝑆𝑤𝑉(𝑅𝑗 , 𝑅𝑝) −

𝐶𝑜𝑉(𝑅𝑗,𝑅𝑝)

(1+𝜇𝑝)
2 )].   
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(𝐶𝑜𝔸), in addition to the mean and variance, is an important ranking criterion for determining 

portfolio efficiency.   

 

Theorem 5 (Mean- 𝐶𝑜𝑉-𝐶𝑜𝔸 MCSD) 

Let 𝑅𝑖 and 𝑅𝑗 be two uncertain prospects, and  𝐶𝑜𝔸𝑖.𝑝 = [𝐶𝑜𝑆𝑤𝑉(𝑅𝑖, 𝑅𝑝) −
𝐶𝑜𝑉(𝑅𝑖,𝑅𝑝)

(1+𝜇𝑝)2
].  The 

inequalities: 𝜇𝑖 ≥ 𝜇𝑗 ,  𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑝) ≤ 𝐶𝑜𝑉(𝑅𝑗 , 𝑅𝑝),  and  𝐶𝑜𝔸(𝑅𝑖 , 𝑅𝑝) ≤ 𝐶𝑜𝔸(𝑅𝑗 , 𝑅𝑝) are 

sufficient conditions for 𝑅𝑖 to marginally and conditionally dominate 𝑅𝑗 and for all utility 

functions with 𝑈′ > 0,  𝑈′′ < 0, and 𝑈‴ > 0.   

 

The MCSD in Theorems 4 and 5 shows the essential roles of CoSwV, CoV, and Co𝔸 in portfolio risk 

diversification. Specifically, the minimization of these co-variations of asset returns maximizes 

the portfolio efficiency.   In the next section, we demonstrate that similar to the portfolio variance, 

the SwV and 𝔸 measures of a portfolio is a weighted sum value of component assets’ CoSwV and 

Co𝔸, respectively.  Consequently, the classical approach of portfolio optimization can be applied 

to the determination of stochastic dominance equilibrium.   

 

 

IV. SSD and 𝐌𝐕𝔸 Optimization & Equilibrium 

Based on (9), we show that the SwV of a portfolio is a weighted sum of CoSwV between 

returns on an asset and returns in the portfolio:19 

 

SwV𝑝 = 2𝐸(𝑅𝑝 − 𝑟𝑝) − 2𝑑𝜇𝑝 = ∑ 𝑤𝑖 ∙ 𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑝)𝑁
𝑖=1   (11) 

 

                                                            
19 𝑆𝑤𝑉𝑝 = 2𝐸(𝑅𝑝 − 𝑟𝑝) − 2𝑑𝜇𝑝 = 2𝐸 [(

𝑅𝑝−𝜇𝑝

𝑅𝑝−𝜇𝑝
) (𝑅𝑝 − 𝑟𝑝)] − 2𝑑𝜇𝑝 = 2𝐸 [(

∑ 𝑤𝑖(𝑅𝑖−𝜇𝑖)
𝑁
𝑖=1

𝑅𝑝−𝜇𝑝
) (𝑅𝑝 − 𝑟𝑝)] − 2𝑑𝜇𝑝 =

∑ 𝑤𝑖 × {2𝐸 [(
𝑅𝑖−𝜇𝑖

𝑅𝑝−𝜇𝑝
) (𝑅𝑝 − 𝑟𝑝)] − 2𝑑𝜇𝑝} 

𝑁
𝑖=1 = ∑ 𝑤𝑖 ∙ 𝐶𝑜𝑆𝑤𝑉(𝑅𝑖, 𝑅𝑝)

𝑁
𝑖=1  . 
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Recall Theorem 2, the SSD is indeed a tradeoff between mean and the SwV in which expected risk-

averse utility maximizing investors, who has no knowledge about the form of return distributions, 

prefer an investment alternative with high mean and low SwV.  Consequently, the SSD 

optimization and efficiency can be determined by choosing a securities mix that minimizes the 

SwV of the portfolio given its expected rate of return.   

A. Minimum-SwV Portfolios and MSwV Asset Pricing Model 

Proposition 1 (SSD Optimization and Efficiency)  

Suppose there are N assets and short selling is allowed. The SSD optimal portfolios can be 

determined by  

𝑀𝑖𝑛
𝑤𝑖

𝑆𝑤𝑉𝑝, 

Subjects to  𝜇
𝑝

= ∑ 𝑤𝑖𝐸(𝑅𝑖
𝑁
𝑖=1 ). 

 

Based on equations (9) and (11), the SSD optimal portfolios satisfy the following first order 

condition: 

          𝐸 [
𝑅𝑖𝑅𝑝∗

𝑆𝑤𝑉

1 + 𝑅𝑝∗
𝑆𝑤𝑉] = 0 (12) 

 

where 𝑅𝑝∗
𝑆𝑤𝑉= ∑ 𝑤𝑖∗

𝑆𝑤𝑉𝑅𝑖
𝑁
𝑖=1 , and where  𝑤𝑖∗

𝑆𝑤𝑉 is the SSD optimal share of wealth on i-th asset that 

satisfied the condition (12).  The SSD efficient portfolios are the minimum-SwV portfolios that 

offer the highest expected returns for the same level of SwV.  The SSD efficient frontier is concave 

in that the second order condition is equal to 𝐸 [
𝑅𝑖

2

(1+𝑅𝑝∗
𝑆𝑤𝑉)

2] and is non-negative, and the SSD 

optimal portfolio 𝑅𝑝∗
𝑆𝑤𝑉is unique in the MSwV space, if there is a risk-free asset.  

For an illustration, we simulate the SSD efficiency from a sample set of 300 assets 

randomly and jointly generated from a mixture of three different forms of return distributions: 

normal, lognormal, and gamma, respectively.  Specifically, the sample distributions have a mean 

ranged from -0.2 to 0.2, and a standard deviation within a range from 0.4 to 0.7.  In addition, the 
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correlation coefficient among assets is from -0.3 to 0.7, accordingly.  Figure 2 depicts the analytical 

results.  For a comparison, we also identify the MV efficient portfolios in the MSwV space.   

[Insert Figure 2 here] 

The main implication from our simulation is twofold.  Firstly, MSwV is capable of discriminating 

the stochastic dominated assets where MV can’t do, so that the efficient frontier of SSD could lie 

above that of the MV.  Secondly, with the risk-free asset, the portfolio-separation holds in the 

MSwV space as well, corresponding to an SSD efficient portfolio of risky assets.   

 Now, suppose a market portfolio is MSwV optimal and satisfies condition (12), where 

returns on this portfolio is denoted 𝑅𝑚
𝑆𝑤𝑉(= ∑ 𝑤𝑖∗

𝑆𝑤𝑉𝑅𝑖
𝑁
𝑖=1 ), we then can determine the SSD 

equilibrium condition for individual assets, shown in the following Proposition, analogous to the 

CAPM derivation. 

 

Proposition 2 (The SSD Equilibrium)  

Assume short-sell is allowed and investors are permitted to borrow and lend at the risk-free rate 

of return (𝑅𝑓).  Based on equation 3, if investors are risk-averse, then the expected utility is a 

function of two parameters: 𝜇, and SwV, respectively.  If investors are maximizing expected utilities 

of returns on an MSwV (SSD) efficient market portfolio, 𝑅𝑚
𝑆𝑤𝑉, then the risk-premium of risky 

assets in equilibrium, can be calculated by the following equation: 

𝐸(𝑅𝑖 − 𝑅𝑓) = 𝛽𝑖
𝑆𝑤𝑉𝐸(𝑅𝑚

𝑆𝑤𝑉 − 𝑅𝑓), (13.1) 

where 

𝛽𝑖
𝑆𝑤𝑉 =

𝐶𝑜𝑆𝑤𝑉(𝑅𝑖,𝑅𝑚
𝑆𝑤𝑉)

𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

 . (13.2) 

 

The formulation of SwV and CoSwV is shown in equations (1) and (8), accordingly.   
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The derivation of equations (13.1) and (13.2) is shown in the appendix.  The SSD equilibrium is 

similar to the MV equilibrium in form; however, the benchmark portfolio and the formulation of 

beta coefficient are different.  As we have intensively discussed in Section 2, although the SSD 

efficiency is robust to risk-aversion with downside asymmetry on returns, some of the SSD 

inefficient assets with a prospect of upside potential could be efficient for investors have upside 

skewness preference.  Consequently, the single factor equilibrium model in (13) could be biased, 

if we take the preference behavior of prospective gain into consideration.    

 

B. Minimum-𝔸 Portfolios and MV𝔸 Asset Pricing Model 

To identify the efficient set of assets and portfolios that includes those are chosen by 

investors who like (dislike) asymmetric gains (losses), we employ the MV𝔸 approach.  Consider 

that the return asymmetry of a portfolio is calculated as:  

𝔸𝑝 = 𝑆𝑤𝑉𝑝 − [(
𝜎𝑝

1+𝜇𝑝
)
2

] = [∑ (−1)𝑘 (
2

𝑘
)

ℳ𝑝
𝑘

(1+𝜇𝑝)𝑘
 ∞

𝑘=3 ]. (14) 

Since the value of  𝔸𝑝 is positive (negative) if returns on the portfolio are asymmetrically and 

negatively (positively) distributed, the MV𝔸 efficient portfolios can be determined by minimizing 

𝔸𝑝 subject to different levels of  𝜇𝑝 and 𝜎𝑝
2.    

Proposition 3 (MV𝔸 Optimization and Efficiency)  

Suppose there are N assets and short selling is allowed.   The 𝑀𝑉𝔸 optimal portfolios can be 

determined by  

𝑀𝑖𝑛
𝑤𝑖

𝔸𝑝, 

Subject to  𝜇
𝑝

= ∑ 𝑤𝑖𝐸(𝑅𝑖
𝑁
𝑖=1 ), and 𝜎𝑝

2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1  

 

Based on equations (9) and (10), the 𝑀𝑉𝔸 optimal portfolios satisfy the following first order 

condition: 
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𝐸 [
𝑅𝑖𝑅𝑝∗

MV𝔸

1 + 𝑅𝑝∗
MV𝔸

] = 0 (13) 

 

where 𝑅𝑝∗
MV𝔸= ∑ 𝑤𝑖∗

𝑀𝑉𝔸𝑅𝑖
𝑁
𝑖=1 , and where  𝑤𝑖∗

𝑀𝑉𝔸 is the 𝑀𝑉𝔸 optimal share of wealth on i-th asset 

that satisfied the first order condition (13).  The efficient 𝑀𝑉𝔸 portfolios are the minimum-𝔸 

portfolios that offer the highest expected returns and the lowest variances for the same level of 

SwV. The second order condition is non-negative and 𝑀𝑉𝔸 efficient space is concave.20 

  

For a graphical illustration, Figure 3 shows that the MV𝔸 efficient portfolios are located 

the spherical surface in a three-dimensional space of mean, variance, and the minimum-𝔸, 

respectively.  The MV𝔸 optimal portfolio 𝑃MV𝔸
∗  is the point on the MV𝔸 efficient-surface to which 

the MV𝔸 capital market line (MV𝔸-CML) is the tangent.  Intuitively, the MV𝔸 -CML, SSD-CML 

and the MV-CML all converge to one line, only if asymmetry-risk (𝔸) of all assets is zero, or none 

of the investors care about that.   

[Insert Figure 3 here] 

An important implication of Figure 3 is that with the risk-free asset, the optimal portfolio of MV𝔸 

is identical to that of MSwV (SSD).  The optimal portfolio of MSwV (SSD) is the tangent point on 

the efficient curve from the risk-free asset and is the one with largest MSwV Sharpe ratio, i.e., 

mathematically,  𝑀𝑖𝑛
𝑤𝑖

𝜇𝑝−𝑅𝑓

𝑆𝑤𝑉𝑝
= 𝑀𝑖𝑛

𝑤𝑖

𝜇𝑝−𝑅𝑓

𝜎𝑝
2+𝔸𝑝

.   On the other hand, the optimal portfolio of MV𝔸 in Figure 

3 also has the highest Sharpe ratio in the three-dimensional MV𝔸 space, which is determined by 

the tangent of the angle between the MV𝔸 capital market line and its projection line on 𝔸𝑝 −

𝜎𝑝
2 plane. Since 𝔸𝑝 is orthogonal to 𝜎𝑝

2, the optimal portfolio of  MV𝔸 can be determined from this 

                                                            
20 The derivation of Proposition 3 is similar to that of Proposition 1.  We omit the detail description. 
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minimization process: 𝑀𝑖𝑛
𝑤𝑖

𝜇𝑝−𝑅𝑓

√(𝜎𝑝
2)2+(𝔸𝑝)2

 , or equivalently, 𝑀𝑖𝑛
𝑤𝑖

𝜇𝑝−𝑅𝑓

𝜎𝑝
2+𝔸𝑝

.  As a result, the optimal portfolio 

of MV𝔸 is the SSD optimal portfolio.    

 Figure 3 highlights that although the tow-fund separation holds between the risk-free fund 

and the optimal SSD portfolio, the risk-return tradeoff of expected utility maximization is 

determined by the three parameters: mean, volatility and asymmetry, respectively.21  Figure 3 also 

shows the bias of the MV model is from the ignorance of the impact of distributional asymmetry 

on investment decision making.  Thus, the asymmetry in addition mean and volatility is necessary 

to be jointly considered in the portfolio efficiency, performance analysis as well as capital asset 

pricing.   

For developing the MV𝔸 equilibrium, it is necessary to identify two orthogonal benchmark 

portfolios that mimic the symmetry and asymmetry of returns on the SSD optimal market portfolio.   

First, we identify the efficient portfolios with symmetric returns by minimizing SwV𝑝 subject 

to 𝜇𝑝 = ∑ 𝑤𝑖𝐸(𝑅𝑖
𝑁
𝑖=1 ), and 𝔸𝑝 = 0. Then, the optimal symmetry-factor portfolio, with returns 

denoted 𝑅𝑚
𝕊⊥

 (= ∑ 𝑤𝑖∗
𝕊⊥

𝑅𝑖
𝑁
𝑖=1 ),  is the one has the highest Sharp Ratio.  Second, returns on the 

factor portfolio of asymmetry (denoted 𝑅𝑚
𝔸⊥

) have to be independent to 𝑅𝑚
𝕊⊥

, but the sum of these 

two returns must be proportionally equal to 𝑅𝑚
𝑆𝑤𝑉 , the returns on the SSD optimal portfolio.   

Mathematically, 𝑅𝑚
𝔸⊥

must then satisfy the following two conditions:   

𝑤𝑖∗
𝔸⊥

= (1 − 𝜃)𝑤𝑖∗
𝑆𝑤𝑉 − 𝑤𝑖∗

𝕊⊥
   for all i , (14.1) 

and  

𝐶𝑜𝑉(𝑅𝑚
𝔸⊥

, 𝑅𝑚
𝕊⊥

) = 0, (14.2) 

 

                                                            
21Under the two-fund separation, 𝐸𝑈[(1 − 𝑤)𝑅𝑓 + 𝑤𝑅𝑝∗

𝑆𝑤𝑉] = 𝐸𝑈[(1 − 𝑤)𝑅𝑓 + 𝑤𝑅𝑝∗
MV𝔸].  Then, according to 

equations (3) and (5), the risk-measure of the optimal investment can be linearly decomposed such that  𝑆𝑤𝑉(𝑅𝑝∗
𝑆𝑤𝑉) =

𝛾 ∙ 𝑉𝑎𝑟(𝑅𝑝∗
MV𝔸) + 𝛿 ∙ 𝔸(𝑅𝑝∗

MV𝔸), where 𝛾 =
𝑈′′

2𝕌
> 0, and 𝛿 =

𝕌(3)

𝕌
> 0.     
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where 0 ≤ 𝜃 ≤ 1.  Finally, solve for 𝜃 from the equations (14.1) and (14.2) simultaneously. We 

then can calculate returns on the optimal asymmetry-factor such that 𝑅𝑚
𝔸⊥

= ∑ 𝑤𝑖∗
𝔸⊥

𝑅𝑖
𝑁
𝑖=1 .  

From Figure 3 and Theorem 3, although the optimal portfolio of MV𝔸 is equivalent to that 

of SSD, the efficient set of MV𝔸 is larger than that of SSD.  That is, the MV𝔸 equilibrium is more 

general than the SSD equilibrium in that the MV𝔸 efficiency is valid not only for risk-averse 

investors but also for those who have upside (downside) asymmetry preference (aversion).  We 

formally derive the formulation of risk-premium for individual assets under the MV𝔸 equilibrium 

in the following proposition: 

 

Proposition 4 (The MV𝔸 Equilibrium)  

Assume short sell is allowed and investors are permitted to borrow and lend at 𝑅𝑓. Based on 

equation (5), for all utility functions with 𝑈′ > 0,  𝑈′′ < 0, and 𝑈‴ > 0, the expected utility can 

be transformed as a function of three parameters: 𝜇, 𝜎2, and 𝔸, respectively.  Let 𝑅𝑚
𝕊⊥

 and 𝑅𝑚
𝔸⊥

 be 

orthogonal returns on the symmetric and asymmetric factor portfolios determined from the SSD 

optimal portfolio based on (14.1) and (14.2), respectively.   The risk-premium of risky assets, in 

equilibrium, can be calculated by the following equation: 

 

𝐸(𝑅𝑖 − 𝑅𝑓) = 𝛽𝑖
𝕊𝜆𝕊  + 𝛽𝑖

𝔸𝜆𝔸, 
(15.1) 

where  

𝛽𝑖
𝕊 =

𝐶𝑜𝑉(𝑅𝑖𝑅𝑚
𝕊⊥

)

𝑉𝑎𝑟(𝑅𝑚
𝕊⊥

)
,     (14.2) 

  

 

   𝛽𝑖
𝔸 =

[
 
 
 
 𝐶𝑜𝑆𝑤𝑉(𝑅𝑖,𝑅𝑚

𝔸⊥
)− 

𝐶𝑜𝑉(𝑅𝑖,𝑅𝑚
𝔸⊥

)

[1+𝐸(𝑅𝑚
𝔸⊥

)]
2  

𝑆𝑤𝑉(𝑅𝑚
𝔸⊥

) − 
𝑉𝑎𝑟(𝑅𝑚

𝔸⊥
)

[1+𝐸(𝑅𝑚
𝔸⊥

)]
2  

]
 
 
 
 

, (14.3) 

  

 

 𝜆𝕊  = 𝐸(𝑅𝑚
𝕊⊥

− 𝑅𝑓), and  𝜆𝔸 =  𝐸(𝑅𝑚
𝔸⊥

− 𝑅𝑓).  
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 Serving as an extension of the CAPM, the two-factor linear model (15), derived 

theoretically from the expected utility maximization, demonstrates that two deterministic 

components: the symmetry and the asymmetry, are sufficient to explain the market price dynamics. 

Again, the ignorance of the impact of asymmetry on market return variations causes the failure of 

the traditional CAPM.   Many empirical pricing factors, such as SBM, HML, and others, do 

successfully fulfill the incompleteness of the CAPM.  Nevertheless, all those factors, perhaps, 

capture just the systematic asymmetry in equilibrium price determination partially.   

 

V. Empirical Analysis 

The primary source of sample data for our empirical analysis comes from CRSP equity 

database that covers all firms incorporated in the US and listed on the NYSE, AMEX, or 

NASDAQ.  We select stocks that have a CRSP share code of 10 or 11 to be consistent with the 

Fama-French asset pricing factors in Kenneth French's Database.  Further, to avoid survivorship 

bias, stock return information before July 1969 is eliminated.  The ending sample period is 

December 2015.  Also, sample returns of  fourteen hedge funds listed on the Credit Suisse Hedge 

Fund Index over a period a from April 1994 to December 2015 are employed as well.   

[Insert Table 1 here] 

A. The Impact of Return Asymmetry on Portfolio Performance 

The difference between SwV and variance is symmetries in returns as shown in (1).  

Therefore, to illustrate the impact of asymmetry on portfolio performance, we apply both models 

of MV and MSwV to hedge fund index data.  Table 1 presents the summary statistics of our 

analysis.   Although the SwV of funds seems to be similar to their variance in value, a significant 

difference appears in the ranking of Sharpe ratios.  The number of the ranking inconsistency is 
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nine out of fourteen.  This piece of evidence demonstrates the impact of distributional asymmetry 

of returns on fund performance analysis is significant and should not be ignored.    Also, Table 1 

shows the considerable distinction between MV-beta and MSwV-beta that highlights the 

importance of return co-asymmetry (e.g., co-skewness and higher co-moments) in the systematic-

risk determination.  Specifically, for all hedge fund data, the MV-beta is significantly larger than 

MSwV-beta, which suggests that the co-asymmetry of hedge funds tends to be positive and 

provides diversification benefits, according to (7) and (8).    

Traditional portfolio theory suggests return volatility (𝜎) can be reduced by forming 

portfolios if returns on assets are not perfectly correlated.   Is this true as well for the return 

asymmetry (𝔸)?  Further, unlike the volatility, the quantity 𝔸 could be negative (positive) 

corresponding to the prospect of potential upside-gains (downside-loss).   Is the risk-diversification 

concerning return asymmetry different between the aspect of downside and that of upside, and 

which type of portfolios performs better among positive asymmetry, symmetry, and negative 

asymmetry?   We find the answer to the above questions in Table 2 empirically. 

[Insert Table 2 here] 

B. Volatility, Asymmetry, Diversification and Stability 

Twenty equally weighted portfolios are formed by grouping all stocks in our database 

according to their 𝔸 measures.  The average value of individual stocks' 𝔸 ranges from -483.28 to 

265.50 basis-point (b.p.).  To examine the consistency between ex-post and ex-ante measurements, 

we conduct our analysis under both the in-sample and the out of sample frameworks.   Table 2 

illustrates that the relationship between 𝔸 and 𝜎 is truncated and concave; higher (lower) the 

positive (negative) 𝔸, larger the 𝜎.  That is consistent with our theory shown in Figure 3.  Table 2 

also demonstrates that forming a portfolio significantly reduces the magnitude of asymmetry of 
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individual assets.  The range of 𝔸 of the 20 sorted portfolios decreases to -7.37 (-14.04) b.p. to 

6.27 (6.38) b.p. from the in-sample (out-of-the sample) analysis.  Interestingly, the portfolio of 

stocks that have the most negatively asymmetric returns (portfolio #20) has the most significant 

reduction of 𝔸 (from 265 to 3.92).  Thus, the implication is that returns on portfolios are more 

symmetrically distributed than those on individual securities.  Since a portfolio's 𝔸 is a weighted 

sum of component assets' 𝐶𝑜𝔸 (see Sections 2 and 3), the magnitude deduction of 𝔸 from portfolio 

formation is due to the effects of the co-asymmetry of individual securities. Implicitly, assets have 

a relatively high prospect of downside losses (upside gains), tends to have more negative (positive) 

co-asymmetry with the core portfolio.    

 Table 2 depicts that the ex-post estimate of return asymmetry is consistent with the ex-ante 

measure.  Again, the ranking difference between Sharps ratios of MV and MSwV indicates the 

importance of asymmetry in portfolio performance analysis.  Portfolios with slightly negative 

asymmetry (positive 𝔸) perform better than others.  Regardless the in-sample or out-of-sample, 

the worst performed portfolio (#20) is the one has the most highly negative return-asymmetry.  

From the MV Sharpe ratios, it shows that portfolio #1 (the one with most positively skewed 

returns) has the best performance; however, the MSwV and MV𝔸 analyses do not show that.  As 

we have discussed in Section II that highly upside skewed securities (e.g., the lottery-type stocks) 

are SSD inefficient assets with a substantial volatility.  They may be MVA efficient but are 

probably not dominating alternatives for all risk-averse investors.  Also, these securities tend to be 

positively correlated, and the portfolio #1 should not outperform the overall market.  That again 

highlights the potential bias of the MV model in fund performance analysis that ignores the impact 

of return-asymmetry. 
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C. Performance of the Optimal MSwV and 𝑀𝑉𝔸 Market Portfolios 

 One of the main contribution of this article is the development of optimal stochastic 

dominance portfolios based on simple and basic optimization procedures shown in Propositions 1 

and 3, respectively.  Since optimal market portfolio shown in Figure 3 should outperform other 

index portfolios in theory, it is important to examine empirically the performance of MSwV and 

MV𝔸 Market Portfolios.  For developing market indexes, we determine the optimal weights 

according to the MSwV and MV𝔸 optimization procedures and based on past 60 monthly excess 

returns on all CRSP stocks.  We then apply the optimal weights to the following month to calculate 

the returns on indexes.  Therefore, the MSwV and MV𝔸 optimal indexes are tradeable funds.   

[Insert Table 3 here] 

 For a comparison purpose, Table 3 summarizes the basic statistics and Shape ratios of the 

MSwV and MV𝔸 optimal market funds vs. Fama-French’s factor portfolios as well as major US 

market indexes including S&P500 (SPX), Dow Jones Industrial Average (DOW) and NASDAQ, 

accordingly.  Noticeably, the quantity 𝔸 for all market and factor indexes is negative in value 

indicating return distribution of all indexes are positively skewed, and the magnitude of asymmetry 

is positively correlated with the volatility.   Corresponding to Figure 3, the optimal market portfolio 

of MV𝔸 converges to that of MSwV (SSD) in the MV𝔸 space.  Although all other indexes may be 

located on the MV𝔸 efficient plane, the slope of their capital allocation lines will be lower than 

that of the optimal portfolio.  We find the empirical evidence that supports our theoretical argument 

from the Sharpe Ratios shown in Table 3.   Specifically, the distributional statistics of MSwV and 

MV𝔸 optimal (market) portfolios are almost identical, and they have the highest Sharpe ratios 

among all funds.   

 

D. Testing for MSwV (SSD) and MV𝔸 Asset Pricing Models 
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In this paper, we derive the asset pricing models under the MSwV and MV𝔸 frameworks 

following the same derivation procedures as that of CAPM.  To examine the validity of these 

models, we follow the Fama-MacBeth (1973) two-stage testing methodology.  Based on equations 

(13.2), (15.2), and (15.3), over the sample period, we first calculate the estimates of factor 

loadings, �̂�𝑖
𝑆𝑤𝑉, �̂�𝑖

𝕊, and �̂�𝑖
𝔸, on the monthly basis for all securities i with respect to the past 60 

monthly returns on indexes, 𝑅𝑚
𝑆𝑤𝑉, 𝑅𝑚

𝕊 , and 𝑅𝑚
𝔸 , accordingly.  Secondly, to eliminate the impact of 

idiosyncratic risk of securities on the analysis and have a focus on the systematic risk premium, at 

the beginning of each period, we form sixty equal-sized portfolios, sorted by the factor loadings 

of all individual securities that estimated from the first step.   We then regress cross-sectional 

returns on the sixty portfolios against their factor loadings to estimate the factor premium, �̂�𝑆𝑤𝑉, 

�̂�𝕊, and �̂�𝔸, respectively.   

[Insert Table 4 here] 

 Table 4 presents the results of the Fama-MacBeth test.  It appears that all estimates of factor 

premium are statistical significant at least at the five percent level.  Thus, the empirical evidence 

supports that from a cross-sectional aspect,  𝜆𝑆𝑤𝑉 is a common pricing factor for risk-averse and 

expected utility maximizing investors.   If investors also have preference (aversion) for (to) the 

prospect of potential upside gains (downside losses), then the common factors,  𝜆𝕊 and  𝜆𝔸, are 

necessary to be considered in the determination of return generating process for all risky assets.  

That is, the MV𝔸 asset pricing model can be viewed as an important extension of the traditional 

approach purely based on risk-aversion assumption in that it takes the main argument of the 

prospect theory into consideration.   

 To further examine the robustness of the MV𝔸 pricing model, we test the sufficiency of the 

common factors in explaining the equilibrium returns on assets.  If MV𝔸 model shown in (15) is 
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valid, then the residual returns of individual assets, 휀𝑗,𝑡 = 𝑅𝑗,𝑡 − (�̂�𝑗
𝕊𝑅𝑚,𝑡

𝕊 + �̂�𝑗
𝔸𝑅𝑚,𝑡

𝔸 ), should be 

idiosyncratic.  Thus, no other common factors would have explanatory power to 휀𝑗,𝑡.  For an 

illustration, in this paper, we focus on four important empirical factors of Fama and France (1993, 

2015): SMB, HML, RMW, and CMA, respectively.  Again, by employing Fama-MacBeth approach, 

we first calculated the factor loadings from the following regression model: 휀𝑗,𝑡 = 𝛼𝑗 + 𝛽𝑗
𝑆𝑀𝐵𝑆𝑀𝐵𝑡 

+ 𝛽𝑗
𝐻𝑀𝐿𝐻𝑀𝐿𝑡 +𝛽𝑗

𝑅𝑀𝑊𝑅𝑀𝑊𝑡 + 𝛽𝑗
𝐶𝑀𝐴𝐶𝑀𝐴𝑡 + 𝑒𝑗,𝑡, over the past 60 months.  Then, at the beginning 

of each period, sixty equal-sized portfolios sorted by the beginning-of-period beta estimates are 

formed from the entire sample.  To calculate estimates of factor-premium, �̂�𝑆𝑀𝐵, �̂�𝐻𝑀𝐿, and �̂�𝑅𝑀𝑊, 

and �̂�𝐶𝑀𝐴, accordingly, we then, in a cross-sectional framework, regress all portfolio residuals, 

휀𝑝, against multiple beta estimates of factor loading, �̂�𝑝
𝑆𝑀𝐵, �̂�𝑝

𝐻𝑀𝐿,  �̂�𝑝
𝑅𝑀𝑊, and  �̂�𝑝

𝐶𝑀𝐴, respectively.  

[Insert Table 5 here] 

 Panel 1 of Table 5 reports factor premium estimates of Fama-French original two-factor 

approach.  We exclusive the market factor in that it is already embedded in the MV𝔸 factors.  Panel 

2 shows the results from the multiple cross-sectional regression of Fama-French newly proposed 

four empirical pricing factors.   Statistically, we found none of the 𝜆 estimates is significant, 

indicating the Fama-French empirical pricing factors have no impact on the residual returns of 

assets calculated from the MV𝔸 model.  The MV𝔸 asset pricing model is robust in describing the 

cross-sectional returns on risky equity securities.  From the previous discussion, the traditional 

MV model is a valid approach, if returns on the asset are symmetrically distributed.  Therefore, 

intuitively, the difference between MV𝔸 and MV models is merely the impact of asymmetries in 

returns, and the asymmetry factor  𝜆𝔸 characterizes this difference.   

In short, logically, the symmetry is unique; however, the appearance of asymmetry could 

be infinite; similar to the case that there is an endless number of distributional moments in 
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determining the return asymmetry.  Therefore, at least in theory, it is possible to have infinite 

amounts of empirical factors identified from the sample data that can describe the phenomenon of 

pricing asymmetry in equilibrium.  The contribution of this paper is to provide a simple 

methodology that converges all possible distributional or pricing asymmetries into a summary 

statistic or a common factor.   

 

VI.    Conclusion  

The swap variance (SwV), formulated merely by the twice expected difference of 

arithmetic and logarithmic returns adjusted by the mean, summarizes the entire probability 

distribution of returns.  Since variance measures the quadratic (symmetric) variation of returns, the 

difference between SwV and the variance thus characterizes the asymmetries (denoted 𝔸) in 

returns.   We prove mathematically that the expected utility can be completely transformed as a 

function of mean and SwV as well as that of mean, variance, and 𝔸, accordingly, without any 

restriction on the form of utility functions and that of return distributions.  Therefore, the MSwV 

and MVA analyses, consistent with expected utility maximization, serve as an extension of the 

classical MV model by considering distributional asymmetries.  Importantly, the MSwV efficiency 

is necessarily and sufficiently second-degree stochastic dominance (SSD) efficient for all risk-

averse investors.  The efficient set of MVA, on the other hand, is much broader than that of SSD 

for that it also includes investors who prefer (dislike) the prospect of potential upside gains 

(downside losses).  That makes some of the highly risky assets, e.g., the lottery-type securities, to 

be included in the MVA efficient set but be excluded from the SSD efficient set. 

 Similar to the portfolio variance, the SwV of a portfolio is also a weighted sum of CoSwV 

between individual assets and the portfolio, where CoSwV is the covariance pluses a polynomial 

combination of all higher co-moments.  Thus, the CoSwV is different from covariance by the co-
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asymmetry (denoted Co𝔸), which captures the jointly asymmetric variation between an asset and 

the core portfolio.  The return asymmetry of a portfolio is then a weighted sum of Co𝔸.  

Consequently, the SSD efficient frontier can be determined from the minimum SwV assets in the 

mean-SwV space, and the MV𝔸 efficient plane can be defined by the minimum 𝔸 portfolios in the 

three-dimensional mean-variance-asymmetry space.    

 By employing conventional methods of expected utility optimization, we develop the 

equilibrium pricing models under the frameworks of MSwV and MV𝔸, respectively.  The MSwV 

approach is a single factor model and is similar to the CAPM.  However, for calculating the beta 

coefficient, the market factor needs to be replaced by the MSwV optimal portfolio, and the 

covariance (variance) has to be substituted by the CoSwV (SwV).  We show empirically that the 

MSwV model is superior to the MV approach mainly for returns are asymmetrically distributed.   

The MV𝔸 asset pricing approach, a two-factor model that serves as an extension of the 

CAPM, quantifies the deterministically systematic components of equilibrium returns on risky 

assets between symmetry and asymmetry, respectively.  Crucially, the MV𝔸 model is unbiased 

not only to the risk-aversion but the upside gain-preference as well as the downside loss-aversion.  

Based on the Fama-MacBeth tests, we showed that the MV𝔸 is empirically robust.  Based on data 

from the US equity markets, we further find that with the MV𝔸 factors of symmetry and 

asymmetry, the conventional empirical pricing factors lose their explanatory power to the cross-

sectional expected returns on assets.  Our analysis implies that since only two fundamental factors 

are sufficient for determining the systematic risk of assets, most empirically defined factors 

perhaps capture just parts of the phenomenon of pricing asymmetry in equilibrium. 

In summary, the simplicity and generality of MSwV and MV𝔸 approaches make them as 

a powerful tool in analyzing investment decision making under risk and uncertainty.  Instead of 



33 
 

replacing the MV model, the MV𝔸 analysis enhances the conventional methods of security 

selection, asset allocation, portfolio efficiency analysis as well as the asset valuation to a general 

framework by taking asymmetries in return as well as investors' prospect of gain and loss into 

consideration. 
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Appendix 

Proof of Theorems 1 and 2 

Suppose 𝑅𝑖 stochastically dominate 𝑅𝑗 such that 𝐸𝑈(𝑅𝑖) ≥ 𝐸𝑈(𝑅𝑗).  From (3), we have  

𝐸𝑈(𝑅𝑖) − 𝐸𝑈(𝑅𝑗) = 𝑈(𝜇𝑖) − 𝑈(𝜇𝑗) + 𝜃 ∙ (𝑆𝑤𝑉𝑖 − 𝑆𝑤𝑉𝑗) ≥ 0  (A-1) 

where 𝜃 =
𝕌(𝑈,𝜇𝑖,𝑅𝑖

𝑜
)𝑆𝑤𝑉𝑖−𝕌(𝑈,𝜇𝑗,𝑅𝑗

𝑜
)𝑆𝑤𝑉𝑗

𝑆𝑤𝑉𝑖−𝑆𝑤𝑉𝑗
. Based on mean value theorem, 𝜃 is a number between 

𝕌(𝑈,𝜇𝑖, 𝑅𝑖
𝑜
) and 𝕌 (𝑈,𝜇𝑗, 𝑅𝑗

𝑜), and thus 𝜃 ≤ 0.  The conditions that 𝜇𝑖 ≥ 𝜇𝑗, and 𝑆𝑤𝑉𝑖 = 𝑆𝑤𝑉𝑗 are 

necessary to ensure the inequality (A-1) for all investors who prefer more to less (𝑈′ ≥ 0) without 

further restriction on the utility function.  For risk-averse investors where 𝕌(𝑈, 𝜇, 𝑅𝑜) ≤ 0, in 

addition to higher mean return, the condition 𝑆𝑤𝑉𝑖 ≤ 𝑆𝑤𝑉𝑗 is necessary for the inequality (A-1).   

 To prove the sufficiency of FSD, consider risk-neutral investors in which  
𝜃

𝑈′(0)
 approaches 

zero, the condition 𝜇𝑖 ≥ 𝜇𝑗  must hold to have the inequality (A-1).  Even for the most risk-averse 

(risk-loving) investors, where the ratio 
𝜃

𝑈′(0)
 is extremely positive (negative), the condition 𝑆𝑤𝑉𝑖 =

𝑆𝑤𝑉𝑗 is sufficient to have the stochastic dominance. 

 The sufficiency of SSD can be determined by considering the most (least) risk-averse 

investors.  That is, even if the ratio 
𝜃

𝑈′(0)
 is extremely negative (approaches zero) in value, the 

condition, 𝑆𝑤𝑉𝑖 ≤ 𝑆𝑤𝑉𝑗 (𝜇𝑖 ≥ 𝜇𝑗) must hold for the stochastic dominance. 

 

Derivation of Proposition 2 

Suppose the optimal market portfolio is MSwV efficient with returns denoted 𝑅𝑚
𝑆𝑤𝑉 , we define the 

Lagrange function of expected utility with respect to its mean and SwV as well as the risk-free 

rate.  
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𝐿 = 𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉), 𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)] − 𝜆(1 − ∑ 𝑤𝑖𝑖 − 𝑓),  (A-2) 

where 𝜆 is the Lagrange multiplier, and 𝑓 is the weight of risk-free asset. Now, take the partial 

derivative of the Lagrange function with respect to 𝑤𝑖 and 𝑓, respectively, we have  

𝜕𝐿

𝜕𝑤𝑖
=

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝜇(𝑅𝑚
𝑆𝑤𝑉)

∗
𝜕𝜇(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑤𝑖
+

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

∗
𝜕𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑤𝑖
− 𝜆 = 0,  (A-3) 

and 

𝜕𝐿

𝜕𝑓
=

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝜇(𝑅𝑚
𝑆𝑤𝑉)

∗
𝜕𝜇(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑓
+

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

∗
𝜕𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑓
− 𝜆 = 0.  (A-4) 

 

Subtract (A-4) from (A-3), and note that 
𝜕𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑤𝑖
= 𝐶𝑜𝑆𝑤𝑉(𝑅𝑖, 𝑅𝑚

𝑆𝑤𝑉), 
𝜕𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑓
= 0, and  

(
𝜕𝜇(𝑅𝑚

𝑆𝑤𝑉)

𝜕𝑤𝑖
−

𝜕𝜇(𝑅𝑚
𝑆𝑤𝑉)

𝜕𝑓
) = 𝐸(𝑅𝑖 − 𝑅𝑓), we obtain the equilibrium condition for individual assets 

corresponding to the optimal portfolio as:   

𝐸(𝑅𝑖 − 𝑅𝑓) =
−𝐶𝑜𝑆𝑤𝑉(𝑅𝑖,𝑅𝑚

𝑆𝑤𝑉)
𝜕𝐸𝑈[𝜇(𝑅𝑚

𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)]

𝜕𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝜇(𝑅𝑚
𝑆𝑤𝑉)

.  (A-5) 

 

The condition in (A-5) also holds for the market portfolio that  

𝐸(𝑅𝑚
𝑆𝑤𝑉 − 𝑅𝑓) =

−𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝑆𝑤𝑉(𝑅𝑚
𝑆𝑤𝑉)

𝜕𝐸𝑈[𝜇(𝑅𝑚
𝑆𝑤𝑉),𝑆𝑤𝑉(𝑅𝑚

𝑆𝑤𝑉)]

𝜕𝜇(𝑅𝑚
𝑆𝑤𝑉)

.  (A-6) 

  

Finally, divide (A-5) by (A-6), we have equations (13.1) and (13.2). 

Proof of Proposition 4: 

Suppose the optimal market portfolio is MV𝔸 efficient with returns denoted 𝑅𝑚
MV𝔸 (= 𝑅𝑚

𝕊⊥
 + 𝑅𝑚

𝔸⊥
).  

We define the Lagrange function of expected utility with respect to its mean, variance and 𝔸, as 

well as the risk-free rate. 



36 
 

𝐿 = 𝐸𝑈[𝜇(𝑅𝑚
MV𝔸), 𝑉𝑎𝑟(𝑅𝑚

MV𝔸), 𝔸(𝑅𝑚
MV𝔸)] − 𝜆(1 − ∑ 𝑤𝑖𝑖 − 𝑓),  (A-7) 

Since U is the aggregated utility, the optimal portfolio is the market portfolio in equilibrium.  Then, 

the first order condition of (A-7) can be written as: 

𝜕𝐿

𝜕𝑤𝑖
= [

𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

∙
𝜕𝜇(𝑅𝑚

MV𝔸)

𝜕𝑤𝑖
] + [

𝜕𝐸𝑈

𝜕𝑉𝑎𝑟(𝑅𝑚
MV𝔸)

∙
𝜕𝑉𝑎𝑟(𝑅𝑚

MV𝔸)

𝜕𝑤𝑖
] + [

𝜕𝐸𝑈

𝜕𝔸(𝑅𝑚
MV𝔸)

∙
𝜕𝔸(𝑅𝑚

MV𝔸)

𝜕𝑤𝑖
] − 𝜆 = 0, (A-8) 

 

and 

𝜕𝐿

𝜕𝑓
=

𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

∙
𝜕𝜇(𝑅𝑚

MV𝔸)

𝜕𝑓
− 𝜆 = 0. (A-9) 

 

Since 𝑉𝑎𝑟(𝑅𝑚
MV𝔸) = 𝑉𝑎𝑟(𝑅𝑚

𝕊⊥
), and 𝔸(𝑅𝑚

MV𝔸) = 𝔸(𝑅𝑚
𝔸⊥

),  equation A-8 can be rewritten as: 

𝜕𝐿

𝜕𝑤𝑖
= [

𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

∙
𝜕𝜇(𝑅𝑚

MV𝔸)

𝜕𝑤𝑖
] + [

𝜕𝐸𝑈

𝜕𝑉𝑎𝑟(𝑅𝑚
𝕊⊥

)
∙
𝜕𝑉𝑎𝑟(𝑅𝑚

𝕊⊥
)

𝜕𝑤𝑖
] + [

𝜕𝐸𝑈

𝔸(𝑅𝑚
𝔸⊥

)
∙
𝜕𝔸(𝑅𝑚

𝔸⊥
)

𝜕𝑤𝑖
] − 𝜆 = 0, (A-10) 

 

Subtract (A-9) from (A-10), and note that 
𝜕𝑉𝑎𝑟(𝑅𝑚

𝕊⊥
)

𝜕𝑤𝑖
= 𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑚

𝕊⊥
), 

𝜕𝔸(𝑅𝑚
𝔸⊥

)

𝜕𝑤𝑖
= 𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑚

𝔸⊥
) −

 
𝐶𝑜𝑉(𝑅𝑖,𝑅𝑚

𝐴⊥
)

[1+𝜇(𝑅𝑚
𝔸⊥

)]
2, and  [

𝜕𝜇(𝑅𝑚
MV𝔸)

𝜕𝑤𝑖
−

𝜕𝜇(𝑅𝑚
MV𝔸)

𝜕𝑓
] = [𝐸(𝑅𝑖) − 𝑅𝑓], we obtain the following equation for individual 

assets corresponding to the optimal portfolio:   

𝐸(𝑅𝑖) − 𝑅𝑓 = 

−[
𝜕𝐸𝑈

𝜕𝑉𝑎𝑟(𝑅𝑚
𝕊⊥

)
]

[
𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

]

 𝐶𝑜𝑉(𝑅𝑖 , 𝑅𝑚
𝕊⊥

)  + 

[
𝜕𝐸𝑈

𝔸(𝑅𝑚
𝔸⊥

)
]

[
𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

]

[𝐶𝑜𝑆𝑤𝑉(𝑅𝑖 , 𝑅𝑚
𝔸⊥

) − 
𝐶𝑜𝑉(𝑅𝑖,𝑅𝑚

𝐴⊥
)

[1+𝜇(𝑅𝑚
𝔸⊥

)]
2]      (A-11) 

 

 

𝐸 (𝑅𝑚
𝕊⊥

− 𝑅𝑓) = 

−[
𝜕𝐸𝑈

𝜕𝑉𝑎𝑟(𝑅𝑚
𝕊⊥

)
]

[
𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

]

 𝑉𝑎𝑟(𝑅𝑚
𝕊⊥

)        (A-12) 
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𝐸 (𝑅𝑚
𝔸⊥

− 𝑅𝑓) = 

[
𝜕𝐸𝑈

𝔸(𝑅𝑚
𝔸⊥

)
]

[
𝜕𝐸𝑈

𝜕𝜇(𝑅𝑚
MV𝔸)

]

[𝑆𝑤𝑉(𝑅𝑚
𝔸⊥

)  − 
𝑉𝑎𝑟(𝑅𝑚

𝔸⊥
)

[1+𝜇(𝑅𝑚
𝔸⊥

)]
2]      (A-13) 

 

 

Finally, substitute (A-12) and (A-13) into (A-11), we have (15.1) and (15.2). 
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             Figure 1: Symmetric 𝑹𝟐  vs. Asymmetric  2(𝑹 − 𝒓) 
               This figure shows that the asymmetries in return, quantified by the difference between 

2(𝑅 − 𝑟) and 𝑅2, where 𝑅 > −1,  𝑟 =  𝑙𝑛(1 + 𝑅),  and 𝒜 = [2(𝑅 − 𝑟) − 𝑅2] =

∑ (−1)𝑘 (
2

𝑘
)𝑅𝑘∞

𝑘=3 .  𝑅2 is less (higher) than 2(𝑅 − 𝑟) if  𝑅 is negative (positive).  That 

implies the variance understates (overstates) the downside (upside) risk if returns are 

asymmetrically distributed.   

0 R

𝑅2

2(𝑅 − 𝑟)𝒜< 0
𝒜> 0 
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Figure 2. SSD Efficiency and Portfolio Separation This figure depicts a simulated MSwV efficient 

frontier of portfolios (solid line) generated from random returns of three hypothetical distributions: 

normal, lognormal, and gamma, respectively. The random sample has means ranging from -0.2 to 0.2, 

standard deviations from 0.4 to 0.7, and correlation coefficients from -0.3 to 0.7, accordingly. For a 

comparison, we also plot the MV efficient frontier (dash line) in the MSwV space.  With a risk-free 

asset, an optimal SSD portfolio of risky assets, denoted 𝑃𝑆𝑆𝐷
∗ , can then be determined by the point on 

the SSD efficient curve to which the SSD capital market line (SSD-CML) is the tangent with the 

highest risk-adjusted mean return.  The convex curves, IC1 and IC2, are indifference curves. The 

convexity of indifference curve presents the diminishing marginal rates of substitution between 

expected return and SwV. 
 

 
 

 

 

SSD-CML

𝐸 𝑅𝑝

𝑆𝑤𝑉𝑝 − 2𝑑𝜇𝑝 

RF 

𝑃𝑆𝑆𝐷
∗  

∗ 

IC1 

 

IC2 

MV efficient frontier  

SSD (MSwV) efficient frontier 
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Figure 3.   𝐌𝐕𝔸 Efficient Plane and Capital Market Line (CML) This figure depicts the efficient set 

of portfolios a three-dimensional space concerning mean, variance and 𝔸, where 𝔸𝑝 = 𝑆𝑤𝑉𝑝 − (
𝜎𝑝

1+𝜇𝑝
)
2

.    

The  MV𝔸 efficient assets are the minimum-𝔸 portfolios for every level of the mean return and those of 

the variance.  Both the SSD and MV efficient frontiers lie on the  MV𝔸 efficient plane.   With a risk-free 

asset, the  MV𝔸 optimal portfolio is unique and is the point on the  MV𝔸 efficient plane to which the 

MV𝔸 capital market line (MV𝔸-CML) is the tangent with the highest risk-adjusted mean return.   

MSwV (SSD) efficient curve 

𝐸(𝑅) 

𝜎2 

𝔸 

0 

Rf 

𝑃MV𝔸
∗   

𝔸MV𝔸
∗

  

MV𝔸-CML 
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Table 1 

Summary Statistics  
This table summarized the statistics of monthly portfolio returns from 14 hedge fund indexes. The sample period is from January 1995 to December 

2015. The numbers after Sharpe ratios are the ranks among hedge funds. The MSwV Sharpe ratio is the expected excess return over the SwV.   If 

the ranks are different under the two framework, the ranking numbers are in bold font.  The MSwV beta is calculated based on (13.2) with respect 

to the MSwV optimal portfolio returns.  To test the difference between MV-beta and MSwV-beta, we use Monte Carlo approach by data 

randomization. We randomly select 1,000 sets of 500 random returns from the total 559 observations in the sample and compute the t-test statistics.   

 Mean       𝜎2    SwV  Sharpe Ratio  Beta Coefficient 

Hedge Fund Portfolios (%)  (× 104)  (× 104)  MV Rank MSwV Rank  MV MSwV Difference 

Hedge Fund Index 0.717 4.098 2.116  0.251 5 12.562 6  0.281 0.258 0.023 *** 

Convertible Arbitrage 0.618 3.534 1.981  0.218 9 11.322 7  0.159 0.171 -0.012 *** 

Dedicated Short Bias -0.408 22.381 4.679  -0.130 14 -2.783 14  -0.860 -0.863 0.004 *** 

Emerging Markets 0.611 14.339 4.016  0.106 11 2.739 11  0.505 0.431 0.075 *** 

Equity Market Neutral 0.454 7.903 3.209  0.088 12 2.358 12  0.184 0.185 -0.001 *** 

Event Driven 0.722 3.185 1.906  0.288 3 15.932 4  0.266 0.250 0.016 *** 

Distressed 0.805 3.279 1.973  0.330 2 17.976 3  0.256 0.268 -0.012 *** 

Multi-Strategy 0.686 3.762 2.035  0.247 6 12.586 5  0.275 0.239 0.036 *** 

Risk Arbitrage 0.480 1.385 1.255  0.231 8 19.672 2  0.142 0.115 0.027 *** 

Fixed Income Arbitrage 0.451 2.372 1.612  0.158 10 9.830 9  0.115 0.138 -0.023 *** 

Global Macro 0.926 6.760 2.714  0.276 4 10.815 8  0.145 0.168 -0.023 *** 

Long/Short Equity 0.832 7.256 2.767  0.232 7 8.716 10  0.448 0.391 0.057 *** 

Managed Futures 0.471 11.524 3.371  0.077 13 2.301 13  -0.054 -0.012 -0.041 *** 

Multi-Strategy 0.678 1.900 1.588  0.341 1 24.633 1  0.137 0.098 0.039 *** 

***, ** and * denote statistics significant at 1 percent, 5 percent and 10 percent levels, respectively. 
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Table 2 

MV, SSD and 𝐌𝐕𝔸 Sharpe Ratios 

This table reports the rankings of Sharpe ratios of asymmetry portfolios (PFL) that formed according to their in-sample asymmetry measure (Pre-
𝔸). We conduct a two-stage analysis. On the first stage, 20 portfolios are formed based on sorted annualized 𝔸, calculated from the monthly returns 

on all CRSP stocks with share code 10 and 11. We then report the summary statistics as well as Sharp ratios for the in-sample as well as the out-

of-sample (one-month lag) calculations.  The sample period covers from 1969 to 2015. 
 

 In-Sample Rankings Ave. 

Stock 

Pre-𝔸 

Out-of-Sample Rankings 

     Sharp Ratios     Sharp Ratios 

PFL  𝜇   𝜎2  𝑆𝑤𝑉        𝔸 
MV 

R
an

k 

MSwV 

R
an

k 

𝜇 𝜎2 𝑆𝑤𝑉 𝔸 
MV 

R
an

k 

MSwV 

R
an

k 

 
(%)  (× 104)  (× 104)  (× 104) (× 104) (%)  (× 104)  (× 104) (× 104) 

1 4.72 251.54 222.01 -7.37 1.719 8 1.948 8 -483.28 4.08 253.13 219.63 -14.04 1.455 10 1.677 8 
2 1.54 104.65 98.80 -2.70 1.093 11 1.158 11 -85.20 1.36 105.68 99.60 -3.26 0.912 13 0.968 11 
3 1.02 68.89 67.08 -0.43 0.905 13 0.930 12 -42.61 0.94 69.89 68.06 -0.53 0.778 15 0.799 12 
4 0.68 51.70 50.98 -0.02 0.549 15 0.557 15 -25.44 0.69 52.13 51.41 -0.01 0.563 17 0.571 15 
5 0.59 39.82 39.69 0.34 0.487 16 0.488 16 -16.46 0.59 40.20 40.07 0.34 0.482 18 0.483 16 
6 0.52 30.91 30.91 0.32 0.400 18 0.400 18 -11.09 0.59 31.36 31.47 0.48 0.618 16 0.615 18 
7 0.46 24.90 25.00 0.33 0.256 19 0.255 19 -7.62 0.51 25.50 25.70 0.46 0.446 19 0.442 19 
8 0.49 20.07 20.34 0.46 0.467 17 0.461 17 -5.26 0.56 20.61 20.88 0.50 0.794 14 0.784 17 
9 0.50 16.89 17.14 0.42 0.614 14 0.605 14 -3.49 0.59 17.39 17.72 0.54 1.114 12 1.093 14 

10 0.53 14.29 14.67 0.53 0.936 12 0.912 13 -2.05 0.61 14.90 15.37 0.65 1.434 11 1.391 13 
11 0.56 13.10 13.62 0.66 1.249 10 1.202 10 -0.71 0.66 13.84 14.44 0.78 1.906 8 1.826 10 
12 0.75 14.52 15.44 1.14 2.437 6 2.290 6 0.75 0.81 14.90 15.92 1.26 2.777 6 2.599 6 
13 0.99 17.22 18.66 1.78 3.447 4 3.181 4 2.56 1.05 17.39 18.92 1.89 3.759 4 3.455 4 
14 1.22 21.25 23.33 2.59 3.876 2 3.531 1 5.04 1.24 21.34 23.52 2.70 3.953 2 3.587 1 
15 1.38 25.10 27.88 3.46 3.919 1 3.529 2 8.48 1.42 25.20 27.98 3.48 4.062 1 3.658 2 
16 1.62 32.15 35.52 4.39 3.806 3 3.445 3 13.70 1.62 31.92 35.40 4.49 3.833 3 3.457 3 
17 1.63 41.47 45.29 5.14 2.975 5 2.724 5 21.99 1.64 41.22 45.02 5.13 3.018 5 2.762 5 
18 1.60 54.61 58.52 5.62 2.204 7 2.057 7 36.71 1.65 53.73 57.76 5.76 2.333 7 2.171 7 
19 1.47 79.74 83.72 6.27 1.346 9 1.282 9 69.03 1.54 76.56 80.64 6.38 1.494 9 1.418 9 
20 0.11 160.53 164.10 3.92 -0.178 20 -0.174 20 265.50 0.25 148.11 151.54 4.16 -0.099 20 -0.097 20 
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Table 3 

A Comparison of Market and Factor Portfolios  
This table reports the summary statistics of symmetry and asymmetry of monthly returns on the 

MSwV (SSD) optimal portfolio, the MV𝔸 optimal portfolio, the MV optimal portfolio, Fama-French 

(FF) factor portfolios, and the key US market indexes. The Sharp ratios according to MSwV and 

MV𝔸 models are also reported. To find the SSD and MV𝔸 optimal portfolios, we determine the 

optimal weights based on past 60 monthly excess returns on all CRSP stocks, and apply the optimal 

weights to the following month to form the portfolios.  The sample period covers from 1995 to 2016. 

           Sharp Ratios 

 𝜇 (%) SwV × 104 𝜎2 × 104 𝔸 × 104 M𝑆𝑤𝑉 MV𝔸 

SSD* MKT 1.106 5.918 10.736 -5.798 19.26 7.55 

MV𝔸∗ MKT 1.107 5.916 10.731 -5.798 19.32 7.57 
       

FF-MKT 0.872 10.196 19.556 -9.779 7.12 3.12 

FF-SMB 0.210 5.163 10.424 -5.262 0.20 0.09 

FF-HML 0.260 4.959 9.934 -4.991 1.24 0.55 

FF-RMW 0.332 4.447 8.749 -4.354 3.69 1.36 

FF-CMA 0.283 2.340 4.681 -2.394 3.69 1.59 

FF-MOM 0.417 14.449 27.091 -12.591 1.52 0.73 
       

SPX 0.695 9.476 18.373 -9.125 5.51 2.44 

DOW 0.714 9.172 17.803 -8.887 5.94 2.62 

NASDAQ 0.979 22.890 44.608 -21.809 3.55 1.59 
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Table 4  

Fama-MacBeth Tests for MSwV (SSD) and MV𝔸 Pricing Models 
 

Following Fama-MacBeth (1973), this table reports the estimated factor premium of MSwV 

model (�̂�𝑆𝑤𝑉) and that of MV𝔸 model (�̂�𝕊, and �̂�𝔸), respectively.  First, estimated factor 

loadings, �̂�𝑆𝑤𝑉, �̂�𝕊, and �̂�𝔸 are calculated, based on (13.2), (14.2), and (14.3), from returns on 

individual securities to returns on indexes, 𝑅𝑚
𝑆𝑤𝑉, 𝑅𝑚

𝕊 , and 𝑅𝑚
𝔸 , respectively, over the past 60 

months.  Second, at the beginning of each period, sixty equal-sized portfolios sorted by the 

beginning-of-period estimated betas are formed from the entire sample.  We then regress all 

portfolio returns for the period against the estimated betas to determine the risk-premium for 

each factor. The sample contains all CRSP-listed ordinary common equities from July 1969 to 

December 2015. The mean coefficient estimates (�̂�) across the sample period are reported with 

their t-statistics.  
 

 

Panel 1: MSwV (SSD) Model  
 

 

 �̂�𝑺𝒘𝑽   R2 
 

Adj. R2 

�̂�𝒑
𝑺𝒘𝑽-sorted 

0.0057 

(2.04) 

 

** 

 
0.4971  0.4886 

 
 

Panel 2: MV𝔸 Model  

 

 �̂�𝕊 
 �̂�𝔸 

  R2 
 

Adj. R2 

�̂�𝒑
𝕊-sorted 

0.0057 

(2.33) 

 

** 

-0.0508 

(-3.24) 

 

*** 

 
0.5779  0.5634 

�̂�𝒑
𝔸-sorted 

0.0078 

(2.14) 

 

** 

-0.0072 

(-1.98) 

 

** 

 
0.6247  0.6118 

 
 

***, ** and * denote statistics significant at 1 percent, 5 percent and 10 percent levels, respectively. 
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Table 5 

Fama-MacBeth Tests for the Validity of MV𝔸 Pricing Model 

 

If MV𝔸 asset pricing model shown in (14) is valid, then the residual returns of individual assets, 

휀𝑗,𝑡 = 𝑅𝑗,𝑡 − (�̂�𝑗
𝕊𝑅𝑚,𝑡

𝕊 + �̂�𝑗
𝔸𝑅𝑚,𝑡

𝔸 ), should be idiosyncratic.  Thus, no other common factors could 

explain the residual returns.  To examine the validity of the MV𝔸 Model, we first calculated the 

factor loadings of 휀𝑗,𝑡 with respect to multiple common factors (e.g., SMB and HML) from the 

following regression model: 휀𝑗,𝑡 = 𝛼𝑗 + 𝛽𝑗
𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑗

𝐻𝑀𝐿𝐻𝑀𝐿𝑡 +𝛽𝑗
𝑅𝑀𝑊𝑅𝑀𝑊𝑡 + 𝛽𝑗

𝐶𝑀𝐴𝐶𝑀𝐴𝑡 

+ 𝑒𝑗,𝑡, over the past 60 months.  Then, at the beginning of each period, sixty equal-sized 

portfolios sorted by the beginning-of-period estimated betas are formed from the entire sample.  

We then regress all portfolio returns for each period against the estimated betas (e.g., �̂�𝑝
𝑆𝑀𝐵and 

�̂�𝑝
𝐻𝑀𝐿) to determine the risk-premium for each factor. The sample contains all CRSP-listed 

ordinary common equities from July 1969 to December 2015. The mean coefficient estimates 

(λ ̂) across the sample period are reported with their t-statistics. 
 

 

Panel 1: Two-Factor Test 

 

Portfolios �̂�𝑺𝑴𝑩 
 �̂�𝑯𝑴𝑳  R2 

 
Adj. R2 

�̂�𝒑
𝑺𝑴𝑩-sorted 

0.0003 

(0.22) 

 0.0008 

(0.27) 

 0.2607  0.2348 

�̂�𝒑
𝑯𝑴𝑳-sorted 

-0.0034 

(-1.10) 

 0.0002 

(0.09) 

 0.3112  0.2870 

 

 

Panel 2: Four-Factor Test 

 

Portfolios �̂�𝑺𝑴𝑩 
 �̂�𝑯𝑴𝑳 

 �̂�𝑹𝑴𝑾 
 �̂�𝑪𝑴𝑨 

 R2 
 

Adj. R2 

�̂�𝒑
𝑺𝑴𝑩-sorted 

-0.0005 

(-0.26) 

 0.0020 

(0.69) 

 0.0018 

(0.89) 

 -0.0020 

(-1.05) 

 0.3156  0.2659 

�̂�𝒑
𝑯𝑴𝑳-sorted 

0.0005 

(0.17) 

 0.0013 

(0.54) 

 0.0026 

(1.17) 

 -0.0006 

(-0.32) 

 0.3091  0.2589 

�̂�𝒑
𝑹𝑴𝑾-sorted 

-0.0016 

(-0.60) 

 0.0002 

(0.07) 

 0.0005 

(0.24) 

 -0.0031 

(-1.58) 

 0.3274  0.2786 

�̂�𝒑
𝑪𝑴𝑨-sorted 

0.0001 

(0.04) 

 0.0008 

(0.32) 

 0.0010 

(0.51) 

 -0.0007 

(0.09) 

 0.3093  0.2591 

 
 

***, ** and * denote statistics significant at 1 percent, 5 percent and 10 percent levels, respectively. 
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