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Abstract

We study models of learning in games where agents with limited memory use social
information to decide when and how to change their play. When agents only observe
the aggregate distribution of payoffs and only recall information from the last period,
we show that aggregate play comes close to Nash equilibrium behavior for (generic)
games, and that pure equilibria are generally more stable than mixed equilibria. When
agents observe not only the payoff distribution of other agents but also the actions
that led to those payoffs, and can remember this for some time, the length of memory
plays a key role. When agents’ memory is short, aggregate play may not come close
to Nash equilibrium, but it does so if the game satisfies an acyclicity condition. When
agents have sufficiently long memory their behavior comes close to Nash equilibrium
for generic games. However, unlike in the model where social information is solely
about how well other agents are doing, mixed equilibria can be favored over pure ones.
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1 Introduction

This paper develops and analyzes two models of learning in games based on social compar-
isons, where agents have limited information and memory. We examine both a low infor-
mation and a high information model. We discuss the low information model first. Here,
agents observe the highest utility realized in their own population without observing the
corresponding actions. If they are getting close to the highest payoff in their population,
then they are content, and continue to play the same action. Otherwise, they become dis-
content and experiment at random with different actions in hopes of doing better. Memory
is limited in the sense that agents do not remember all the things that happened in the
past, just whether they are content, and if so, what they did last period.1 In addition, the
behavior we specify implicitly supposes that agents do not try to influence the future play of
others; this “strategic myopia” makes the most sense when the population is relatively large.

When people can observe the strategies that worked well for others, it seems natural to
mimic those strategies. When they do not observe each others’ strategies but can observe
their payoffs, people may experiment if they find they are doing less well than others. We
are motivated by the fact that, for example, individuals may learn from reading newspapers
or watching television which report aggregate data on the economy payoffs (stock index,
average wages per industry, and income distribution). This restricted form of information
seems plausible in many real world social interactions in which it is difficult for people
to obtain detailed information about other people’s behavior.2 It is also of relevance to
laboratory experiments on games with large extensive forms, such as indefinitely repeated
games: Here it is feasible to tell participants the payoffs that other participants received
in past plays of the repeated game, but not to tell them the exact strategies used by the
participants who obtained high payoffs.3

In addition to the random play of discontent agents, our low information model has
1In a recent paper, Fudenberg and Peysakhovich (2014) find experimentally that last period experi-

ences have a larger impact on behavior than do earlier observations, and that individuals approach optimal
strategies when provided with summary statistics. For a discussion of recency effects in decision making
experiments, see Erev and Haruvy (2016). Recency effects have also been found in the field, for example, in
the credit card market as in Agarwal et al. (2008), in the stock market as in Malmendier and Nagel (2011),
or in consumers’ choices made from a list as in Feenberg et al. (2017).

2Of course in some environments people have access to public records that aggregate information. How-
ever, many institutions delete all records after a fixed period of time (due to storage costs or law), and
record-keeping devices depreciate.

3See for example the repeated prisoner’s dilemma experiments surveyed in Dal Bó and Fréchette (2016).
In many of these, a substantial minority of participants defects most or all of the time, and receive a much
lower overall payoff than subjects who appear to be “conditionally cooperative,” which raises the question
of what would happened if participants were told something about the payoffs that others have received in
previous plays of the repeated game.
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three other components that are also common to our high information model. First, with a
probability that we send to 0, content agents tremble and become discontent, which triggers a
wide search on the strategy space. Second, agents only reassess their play with a probability
that is bounded away from 1. Finally, we assume there is a small number of committed agents
who play specific actions regardless of what they observe so that no strategy ever vanishes
from play. Trembles make the resulting system ergodic,4 so that all of the states with positive
probability in the limit of the ergodic distributions as the probability of trembling goes to
zero – that is, the “stochastically stable” states – assign probability one to states where all
but the committed agents are getting about the same payoff. Moreover, the presence of the
committed agents means that every possible action has positive probability even when there
are no trembles, so in generic games these limit states must be approximate Nash equilibria.
We provide an equilibrium selection criterion based on the fact that the stochastically stable
states are those where the largest number of shocks is required to lead the system to another
equilibrium state; these numbers are the “radii” of the equilibria (Ellison (2000)). We find
that while the radius of a pure equilibrium is generally large, growing linearly with the size
of the population, every mixed equilibrium has radius one. We use this to show that in large
populations mixed equilibria are significantly less stable than any of the pure equilibria,
even pure strategy equilibria that are not stochastically stable, and even when the mixed
equilibrium gives the players a higher payoff in line with experimental evidence (see, for
example, Van Huyck et al. (1990)).5 Moreover we show that the same conclusion holds
when the noise in the system comes from noisy observation of others’ payoffs as opposed to
exogenous trembles.

Our high information model explores the effect of allowing the agents to use more in-
formation and memory while still basing their decisions mainly on social information. It
supposes that agents observe the highest payoff realized in their own population together
with the corresponding action, and moreover that they recall the actions that were best
responses in the last finite T periods.6 Since agents generally experiment less when they are
more experienced we assume that discontent agents randomize over the set of remembered

4This rules out the long-run effect of history or initial conditions epitomized in Schelling’s (1960) focal
points, which allows us to make predictions based solely on the payoff matrix of the game; we view this as
an approximation of social norms or conventions where payoff considerations are the most important forces.

5This is the first such result we know of for this sort of process. Fudenberg and Imhof (2006) characterize
the relative frequencies of various homogeneous steady states in a family of imitation processes, but the
processes they study can in some games spend most of their time near non-Nash states. Levine and Modica
(2013) like us examine the relative amount of time spent at different steady states corresponding to Nash
equilibria but examine a dynamic based on group conflict rather than driven by learning errors.

6In contrast, Young’s (1993) adaptive learning rule has one agent revising at a time that observes a sample
of size K from the last T periods and chooses among those actions that are best response to the empirical
distribution of actions in the sample.
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best responses and last period action instead of over all actions. If agents only recall best
responses in the last period, we show that our social learning process and the standard best
response with inertia dynamic (Samuelson (1994)) predict the same stochastically stable set.
In particular both models can have stochastically stable cycles, and we believe that it is
more likely that the system would be bogged down in a best response cycle rather than
moving to a mixed equilibrium in generic games.7 However, when there is sufficiently long
memory, the high-information learning process leads to stochastic stability of approximate
Nash equilibria in generic games, even games that have only mixed Nash equilibria, unlike
the best response with inertia dynamic. We highlight the role of memory by showing only
Nash equilibria are stochastically stable if agents have a memory at least k × l, when the
game is k × l acyclic, meaning that from any strategy profile there is a best response path
to a k × l curb block (Basu and Weibull (1991)). Because every game is acyclic for k and
l at least as large as the action spaces, this means that stochastic stability is guaranteed in
any game when memory is sufficiently long. Finally, we show by example that in the high
information case with long memory, mixed equilibria can be favored over pure ones.

The main methodological contribution of the paper is to characterize the learning dynam-
ics combining the standard theory of perturbed Markov chains and the method of circuits
(see Levine and Modica (2016)), adapting their Theorem 9 to the case in which there is
a single circuit. To illustrate the complementarity between this approach and past work,
we show how to find the stochastically stable set by constructing circuits of circuits, and
alternatively by using Ellison’s (2000) radius-coradius theorem. Our results also contribute
to the long-standing debate about pure versus mixed equilibria, providing a clear connection
between what players observe and equilibrium selection. We show that, in large populations,
pure equilibria are more stable in environments where agents only know that there is a better
response, but mixed equilibria are sometimes more stable in environments where agents have
enough information that they know the best response.

Related Literature

In addition to its focus on learning from summary statistics based on social information, this
paper contributes to the larger literature that uses non-equilibrium adaptive processes to
understand and predict which Nash equilibria are most likely to be observed. The literature
on belief-based learning models such as stochastic fictitious play (Fudenberg and Kreps
(1993), Fudenberg and Levine (1998), Benaïm and Hirsch (1999), Hofbauer and Sandholm
(2002)) concludes that stable equilibria can be observed while unstable equilibria cannot be,

7We are not aware of a general characterization for best response with inertia dynamics.
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but also concludes there can be stable cycles. The same conclusion applies in the literature
that studies deterministic best-response-like procedures perturbed with small random shocks
(Foster and Young (1990), Kandori et al. (1993), Young (1993), others), although that
literature, unlike the one on stochastic fictitious play, does generically provide a way of
selecting between strict equilibria; for example it selects the risk-dominant equilibrium in
2 × 2 coordination games, as does our social comparison dynamic. In larger coordination
games, the two dynamics can make different selections; we discuss this further in Section 7.
Young (1993), Hurkens (1995), Young (1998) consider models with one agent in each player
role, where the players observe and best respond to subset of the actions taken in the last
T periods, and relate the long run outcomes to curb blocks.8 Oyama et al. (2015) study
a continuous time model with a continuum of agents, where agents respond to a finite and
possibly small sample of current play. Babichenko (2013), Pradelski (2015) analyze models of
social influence in which agents’ payoffs depend on an aggregate statistic and agents observe
and best respond either to information about the actions played.9

The idea that players observe outcomes and update play with probability less than 1
appears in the Nöldeke and Samuelson (1993) analysis of evolution in games of perfect
information; our model differs in that agents are able to observe the average payoff and/or
action distribution not the outcomes of all matches for the current round of play.10 The
ideas that agents only change their actions if they are “dissatisfied” and/or that they have
information about the distribution of payoffs have also been explored in the literature; these
papers (for example Björnerstedt and Weibull (1996), Binmore and Samuelson (1997)) have
assumed that agents receive information about the actions or strategies used by agents they
have not themselves played. Our committed agents resemble the “non-conventional” agents
proposed by Myerson and Weibull (2015) in that committed agents consider a (strict) subset
of actions, however, we focus on committed agents with singleton action sets.

A more recent literature has considered learning procedures that involve a substantial
amount of randomization when players are “dissatisfied.” These papers are oriented at de-
termining when all stochastically stable points are Nash equilibria.11 By contrast we are

8These papers differ in whether sampling is with or without replacement and in how beliefs are related
to the sample that is observed.

9Pradelski (2015) considers two models. In the adoption model agents best respond to the current state
with no sampling error, and there are action trembles that are used to compute the stochastically stable sets.
In the usage model agents only sample from the last T periods and best respond to the cumulative state. In
Babichenko’s (2013) models, agents observe actions and either play a best or a distorted best response.

10As in our model, this stochastic observation technology means that every sequence of one-move-at-a-time
intentional adjustments has positive probability; they use this to show that if a single state is selected as
noise goes to 0, it must be a self-confirming equilibrium (Fudenberg and Levine (1993)).

11See for example Foster and Young (2003; 2006), Young (2009), Pradelski and Young (2012), Foster and
Hart (2015). Additionally papers such as Hart and Mas-Colell (2006), Fudenberg and Levine (2014) study
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focused on long-run comparative statics: we compare a range of different learning proce-
dures to characterize which ones lead to the stochastic stability of Nash equilibria in which
types of games, and we also determine the relative time spent at different steady states,
for example, mixed versus pure. Building on Young (2009), Pradelski and Young (2012)
consider a different learning process that can spend almost all the time at efficient action
profiles that are not Nash equilibrium, and show that an efficient equilibrium is selected in
generic games for which a pure Nash equilibrium exists. In contrast, our procedure selects
the risk dominant equilibrium in 2 × 2 coordination games, whereas their procedure does
not; and spends most of the time at Nash equilibria.

2 Setup

Let G = ((uj, Aj)j=1,2) be a finite two player normal-form game where Aj is the finite set of
actions for player j, uj : Aj × A−j → R is the utility function for player j, and uj(aj, a−j)
is player j’s utility when choosing action aj ∈ Aj against the opponent playing a−j ∈ A−j.
For any finite set X, we let ∆(X) denote the space of probability distributions over X. We
extend uj to mixed strategy profiles α ∈ ∆(Aj) ×∆(A−j) in the usual way. For ζ ≥ 0, we
say that âj ∈ Aj is a ζ-best response to α−j ∈ ∆(A−j) if uj(âj, α−j) + ζ ≥ uj(aj, α−j) for all
aj ∈ Aj.

We are interested in the population game generated when G is played by agents in two
populations, indexed by i. Agent i of each population j chooses an action aji ∈ Aj. There
are N agents in each population, and agents are matched round robin12 against each agent
of the opposing population. Aggregate play in population j can be represented by the mixed
strategy αj ∈ ∆(Aj), and αj(aj) can be interpreted as the proportion of agents i playing
aji = aj. The utility of agent i is uji (a

j
i , α

−j) since he plays each opponent in the opposing
population in turn. For any integerK and any set X let ∆K(X) be the subset of ∆(X) where
each coordinate is an integer multiple of 1/K. We will want to deal with the population
fractions playing different actions. We call ∆N(Aj) the grid for population j; the grid is the
product space ∆N(A) = ∆N(A1) ×∆N(A2). We will also make use of the grids for subsets
of the population.

We make the following assumptions about payoffs:

procedures that converge with probability one to Nash equilibrium.
12Equivalently we may think of each agent playing against an average of the opposing population. This

can be thought of as an approximation to a situation where each agent is randomly matched against the
opposing population a substantial number of times. See Ellison et al. (2009) for conditions under which this
approximation is valid.

5



Assumption 1. For each player j and every α−j ∈ ∆N(A−j), arg maxaj∈Aj uj(aj, α−j) is a
singleton.

This assumption holds for generic payoff functions. It implies in particular that there is
a unique best response to any pure action. Since a unique best response must be strict and
there are only finitely many pure actions, we may define g > 0 as the smallest difference
between the utility of the best response and second best response to any pure strategy.

Assumption 2. No player j has an action âj ∈ Aj such that uj(âj, α−j) ≥ maxaj∈Aj uj(aj, α−j)
for all α−j ∈ ∆N(A−j).

This condition rules out games where one player has a strategy that weakly dominates
all others. Throughout the paper, we maintain this and all other numbered assumptions
from the point they are stated.

3 Low Information Social Learning

We propose a learning procedure in which agents have no direct information about the
behavior of others, but observe only the frequency of utilities in their own population. In
addition we assume that agents have only partial ability to keep track of that information
over time due to limited memory.

The population game described above is played in every period t = 0, 1, 2, . . .. In each
population there is a fixed set Ξj of committed agents. An agent ξj ∈ Ξj is committed
to the action aj(ξj) ∈ Aj. We assume that there is at least one agent committed to each
action. We refer to the other agents as learners. An agent’s type at the start of period t is
θjt ∈ Θj ≡ Aj ∪ {0} ∪ Ξj. If θjit ∈ Aj the learner is content with the action θjit, and if θjit = 0
the learner is discontent. The process begins with an exogenous initial distribution of these
types.

Committed agents play the action they are committed to and never change their type.
Each learner trembles with independent probability ε, meaning that the agent randomizes
uniformly over all actions.13 We assume the action choice is held fixed throughout the round
robin. A discontent learner randomizes uniformly even if he does not tremble, while a content
learner who does not tremble plays ajit = θjit.14

13Notice that learners tremble whether or not they are discontent, but discontent learners play the same
way whether they tremble or not.

14In place of uniform play we can allow state dependent probability distributions that may have a bias
towards certain actions. As long as these probabilities are bounded away from zero independent of ε our
results are robust.
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A learner who trembled is discontent, θjit+1 = 0. Each non-trembling learner has an
independent probability 1 > p > 0 of being active and complementary probability 1 − p

of being inactive. Inactive learners do not change their type so that θjit+1 = θjit. Given
the population play αt, let U j(α−jt ) denote the finite vector of utilities corresponding to
uji (a

j
it, α

−j
t ) for each ajit ∈ Aj, and let φj(αt) ∈ ∆(U j(α−jt )) be the frequency of utilities of

population j.15 Let uj(φj(αt)) denote the highest time-t utility received in population j.16

If uji (a
j
it, α

−j
t ) > uj(φj(αt))− ν the active learner becomes or remains content, so θjit+1 = ajit.

Otherwise he becomes or remains discontent, so θjit+1 = 0.17 Note that this social comparison
allows the agent to determine whether he is playing a ν-best response, since there is always
a committed agent playing a ν-best response. However, agents cannot identify which actions
are ν-best responses, as they do not see the actions played by others. Instead we assume
that if an agent learns he is not playing a ν-best response, he chooses an action uniformly
at random.18

In summary, the play of the learners is governed by three parameters: the probability ε
of trembling, the probability p of being active and the social comparison parameter ν, the
tolerance for getting less than the current highest possible payoff.19

We assume that the social comparison parameter is less than the smallest utility difference
g between the best response and second best response to any pure strategy.

Assumption 3. ν < g.

This assumption implies there is a unique ν-best response to every pure strategy. Note
that this will hold even in the population game with committed agents, provided there are
not too of them relative to N . In conjunction with Assumption 2, Assumption 3 implies that
there is not an approximately dominant strategy. Formally, there is no player j and action
âj ∈ Aj such that uj(âj, α−j) + ν ≥ maxaj∈Aj uj(aj, α−j) for all α−j ∈ ∆N(A−j).

15Let Aj(uj , α−jt ) ⊆ Aj be the possibly empty subset of actions ajit for which u
j
i (a

j
it, α

−j
t ) = uj . Then the

time-t frequency of utility level uj is φj(αt)[uj ] =
∑
aj

it
∈Aj(uj ,α−j

t ) α
j
t (a

j
it).

16Agents observe the average payoff frequency of actions played, not the payoff frequency across matches.
17This is a very naive and non-Bayesian form of learning; active agents acquire information passively and

make no effort to observe anything else.
18For simplicity we assume that the agent randomizes over all actions, including the one he used the

previous period; our theorems still hold under the alternative specification where the agent randomizes over
all other actions.

19We assume that the learning model parameters are common to all players, and that the actions of the
discontent players are drawn from a uniform distribution. As long as all errors and actions have positive
probability and the order of magnitude of the error rates is common to all players these assumptions do not
change our conclusions.
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4 Aggregate Dynamics with Low Information

The behavior of individual agents gives rise to a Markovian dynamic. Let Φj
t ∈ ∆N(Θj) be

a vector of population shares of the player j types in period t. Define the (finite) aggregate
state space Z = ∆N(Θ1)×∆N(Θ2) to be the set of vectors z = (Φ1,Φ2). We derive the exact
formula for the aggregate transition probabilities Pε(zt+1|zt) in Appendix A.1. Our interest
is in studying this Markov process and how it depends upon ε, the tremble probability of
each learner.

We start by identifying those states that correspond to approximate Nash equilibria. We
refer to these as ζ-robust states.

Definition 1. For any number ζ≥ 0, a state z is ζ-robust if all the learners i from each
population j are content and playing a ζ-best response to α−j(z).

Note that a ζ-robust state is automatically ζ ′-robust for any ζ ′ > ζ. Note that by
assumption content agents all use pure actions, but not all of those actions need be same.
We say that a state z is pure for population j if all learners in population j have the same
type, and that the state is pure if it is pure for both populations. Otherwise, we refer to as
a mixed state. Notice that the fact that the learners are playing a ζ-best response to α−j(z)
and that the committed agents are playing their committed actions means that aggregate
play of the learners corresponds to a ζ-Nash equilibrium, that is, the learners’ action profile
α̃(z) is a ζ-Nash equilibrium.

In what follows, we will set the robustness measure ζ to equal the social comparison
parameter ν. Intuitively, a mixed state can correspond to a mixed strategy Nash equilibrium,
with different learners using different actions. However, the fact that the population is
finite means that some mixed equilibria can only be approximated, for example those with
irrational mixing probabilities. Define M ≡ max{#Ξ1,#Ξ2} to be the maximum number of
committed agents in the two populations. To ensure existence of ν-robust states it suffices
for the social comparison parameter ν to be greater than 0, and for M to be small relative
to N . All omitted proofs are presented in the Appendix or the Online Appendix.

Lemma 1. If ν > 0, there is an η such that if N/M > η a ν-robust state exists.

The next lemma says that if N/M is large then it is also the case that best responses are
robust to small changes in opponents’ play.

Lemma 2. There is a η such that if N/M > η then if aj is a strict best response to a−j ∈ A−j

then aj is a strict best response to all α−j ∈ ∆N(A−j) such that α−j(a−j) > 1−M/N . In
particular if aj is the only ν-best response to a−j ∈ A−j and ν < g then it is a strict best
response to a−j, so the same conclusion obtains.
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Assumption 4. N/M ≥ η where η is large enough that Lemmas 1 and 2 hold.

This assumption and our maintained Assumption 3 yield the following result.

Lemma 3. In any 0-robust state, the action profile of the learners must be a pure strategy
Nash equilibrium, and any pure strategy Nash equilibrium corresponds to the play of learners
in some 0-robust state.

As shown by Lemma B4 (Online Appendix B.2), Pε is irreducible and aperiodic. This
implies that for ε > 0 the long-run behavior of the system can be described by a unique in-
variant distribution µε ∈ ∆(Z) satisfying µεPε = µε. We denote by µεz for each z the (ergodic)
probability assigned to state z. To characterize the support of the ergodic distribution on
states as ε→ 0, we use the concept of the resistance of the various state transitions. Because
Pε(z′|z) is a finite polynomial in ε for any z, z′, it is regular, meaning that limε→0 Pε = P0

exists, and if Pε(z′|z) > 0 for ε > 0 then for some non-negative number r(z, z′) we have
limε→0 Pε(z′|z)ε−r(z,z′) exists and is strictly positive. We then write Pε(z′|z) ∼ εr(z,z

′); let
r(z, z′) ∈ [0,∞] denote the resistance of the transition from z to z′. Moreover if Pε(z′|z) = 0
then this transition is not possible and we set r(z, z′) = ∞, while if P0(z′|z) > 0 we have
r(z, z′) = 0. A path z is a finite sequence of at least two not necessarily distinct states
(z0, z1, . . . , zt) and its resistance is defined as r(z) = ∑t−1

k=0 r(zk, zk+1). Notice that we allow
for loops where some states are revisited along the path, and that some transition probabil-
ities are bounded away from zero independent of ε.

5 Analysis of the Low Information Model

Our main goal is to characterize the long-run behavior of the Markov process aggregate
play. We will show that in case of games with pure strategy equilibria, the states that have
ν-robust states with the largest radius (in the sense of Ellison (2000)) are most likely to be
observed in the long run, and in games without pure strategy equilibria, all ν-robust states
are about equally likely to be observed. To do this we first identify which transitions between
states are most likely.

5.1 Characterizing the Least-Resistance Paths

The next lemma shows that if all the learners are currently playing a ν-best response, there
is a zero resistance path to a ν-robust state in which they play the same way. To state
this precisely, we define a partial ordering � over states. Let Dj(z) be the number of
discontent agents of player j in state z. Let αj(z) ∈ ∆N−Dj(z)(Aj) be the action profile
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corresponding to the content and committed types in z. We write z � z′ if for j = 1, 2
Dj(z) ≥ Dj(z′) and αj(z) is consistent with αj(z′) in the sense that (N − Dj(z′))αj(z′) =
(N −Dj(z))αj(z) + (Dj(z)−Dj(z′))α̃j for some action profile α̃j ∈ ∆Dj(z)−Dj(z′)(Aj). This
says that we can get from z′ to z by making some agents discontent.

Lemma 4. If z � ẑ and ẑ is ν-robust then there exists a zero resistance path (of length 1)
z from z to ẑ.

The next lemma says that in calculating least resistance paths we may assume that
discontent agents remain discontent. We refer to it as the no cost to staying discontent
principle.

Lemma 5. For any path z = (z0, z1, . . . , zt) starting at any z0 then there is a path z̃ =
(z̃0, z̃1, . . . , z̃t̃) with z̃0 = z0 and r(z̃) ≤ r(z) satisfying the property that z̃τ � z̃τ−1 and z̃t̃ � zt

for all 1 ≤ τ ≤ t.

These two lemmas combined enable us to compute least resistance paths between ν-
robust states by determining how many agents must switch actions to move from one to
the other and then computing the resistance to making those agents discontent. In effect it
enables us to compute least resistance by “counting the least number of trembles.”

We introduce a concept that captures the support of mixed strategy profiles that cor-
respond to the play of content agents. More precisely, the j-width of a state z denoted
wj(z) ∈ Z+ is the number of distinct types for content learners of player j. The width of a
state z is w(z) = w1(z) + w2(z). Observe that pure ν-robust states z have w(z) = 2.

We then define a proto ν-robust state z, which is a state in which all content agents
from each population j are playing a ν-best response to α−j(z). We divide these into three
types: a totally discontent state is one in which w(z) = 0 so all learners of both players
are discontent; a semi-discontent state in which all learners of one player are discontent
but w(z) > 0 so at least one learner of the other player is content, and a standard state
in which at least one learner of each population is content. The next result characterizes
transitions between states that involve proto ν-robust states with the property that paths
have no resistance.

Lemma 6. (1) If z is totally discontent there is a zero resistance path to every ν-robust
state.

(2) If z is proto ν-robust but not totally discontent there is a zero resistance path to a
ν-robust state ẑ; and if z is standard we can choose ẑ so that w(z) ≥ w(ẑ).

(3) If z is not proto ν-robust there exists a zero resistance path to a state z̃ with w(z) >
w(z̃).
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5.2 Absorbing States and Approximate Nash Equilibria

Our first theorem shows that when there are no trembles the ν-robust states are exactly the
absorbing states, with all other states transient.

Theorem 1. If ε = 0 then every ν-robust state z is absorbing and all other states are
transient.

Proof. First we establish that if ε = 0 a ν-robust state z is absorbing. Start in a ν-robust
zt. Since ε = 0 nobody trembles. By assumption all learners are content so they all remain
at θjit+1 = ajit. The committed agents never change state by assumption. This implies that
zt+1 = zt with probability 1.

If states are proto ν-robust there is a zero resistance path to a ν-robust state by Lemma
6 part (2), otherwise, by Lemma 6 part (3), there is a zero resistance path to a state with
strictly less width. As long as the system does not reach a proto ν-robust state, it has
positive probability of moving along zero resistance paths to states with strictly lower width,
applying part (2) and (3) of Lemma 6, until it visits a proto ν-robust state with w > 0 or
reaches a totally discontent state, from which it has a positive probability of being absorbed
at a ν-robust state as established in Lemma 6 part (1).

Since there are a finite number of states, every state is either recurrent or transient,
when ε = 0 the system will eventually be absorbed at a ν-robust state (and thus at a ν-
Nash equilibrium). We consider both pure equilibria (as in Kandori et al. (1993), Young
(1993), Young (2009) and others) and mixed equilibria (similar to Foster and Young (2006),
Hart and Mas-Colell (2006), Pradelski and Young (2012), Fudenberg and Levine (2014)),
though unlike those papers, we also characterize the stochastically stability of approximate
equilibria.

5.3 Characterization of the Limit Invariant Distribution

Our next result is a corollary that characterizes the relative frequency of different ν-robust
states. Because the transition kernel Pε is regular, Young (1993, Theorem 4) implies that
as ε → 0 the ergodic distributions µε have a unique limit distribution µ, which is one of
the possibly many invariant distributions for P0. We remind the reader of the definition
of stochastically stable states (Foster and Young (1990)), which are the states z such that
limε→0 µ

ε
z > 0. By Theorem 1 when ε is small but positive, the invariant distribution µε puts

almost all the probability on one or more ν-robust states. The basin of the ν-robust state z
is the set of states for which there is a zero resistance path to z, and no zero resistance path
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to some other ν-robust state z′.20 We let rz denote the radius of the ν-robust state z; this is
defined to be the least resistance of paths from z to states out of its basin.

In characterizing the ergodic distribution µε for small ε, we combine some standard
technical tools and the more recent method of circuits developed by Levine and Modica
(2016). Let R(z, z′) denote the least resistance of any path that starts at z and ends at z′.
We say a set of ν-robust states Ω is a circuit if for any pair z, z′ ∈ Ω there exists a least
resistance chain, meaning a sequence z = (z0, z1, . . . , zt) with z0 = z to zt = z′ with zk ∈ Ω
and R(zk, zk+1) = rzk for k = 0, . . . , t− 1. That is, one of the most likely (lowest order of ε)
transitions from z0 is to z1, one of the most likely transitions from z1 is to z2, and so forth.
The next corollary follows directly from Theorem 9 in Levine and Modica (2016), specialized
to the case where the only recurrent classes when ε = 0 are singletons, and there is a single
circuit.

Corollary 1. If all ν-robust states are in the same circuit then µεz
µε
z′
∼ εrz′−rz , and in particular

the set of stochastically stable states is exactly the ν-robust states with the largest radius.

For completeness we sketch two proofs. First we use the method of Ellison (2000) to show
that the stochastically stable states are those with the largest radius. For any target z = zt

define themodified resistance from z′ = z0 to bemr(z′, z) = min z=(z′,z1,...,z)
∑t−1
k=0R(zk, zk+1)−∑t

k=1 rzk and the modified co-radius as cz = max z′mr(z′, z). If S is a union of recurrent
classes, then the radius rS is the least resistance path from S out of the basin of S, that
is, to states where there is a positive probability of being absorbed outside of S. Define the
modified co-radius cS of a set of recurrent classes S to be the minimum over z ∈ S of cz.
Ellison shows that a sufficient condition for a set S of ν-robust states to be stochastically
stable is that rS > cS. If we let r̄ denote the largest radius of any ν-robust state then the
set S of ν-robust states with radius r̄ itself has radius rS at least equal to r̄. By assumption,
all ν-robust states are in the same circuit, so we can compute an upper bound on cS by
considering, for each state z′ /∈ S, a least resistance chain from z′ to z, meaning a sequence
of states for which the resistance R(zk, zk+1) = rzk . The modified resistance of this chain is
mr(z′, z) = rz′ and since rz′ < r̄ = rS the conclusion follows.

For the sharper result that µεz
µε
z′
∼ εrz′−rz , we use the method of Levine and Modica (2016).

For any ν-robust state z we consider trees with root z, where the nodes of the tree are all
of the ν-robust states and the resistance of the tree is the sum of all the R(zk, zk+1) where
zk+1 is the successor of zk. Using the Markov chain tree formula (see for example Bott and
Mayberry (1954)) it follows, as noted by Freidlin and Wentzell (1984), that log(µεz/µεz′)/ log ε

20Equivalently, the basin of the ν-robust state z is the set of starting states that lead to state z with
probability one according to P0.
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converges to the difference in resistance between the least resistance tree with root z and
that with root z′. Notice that since each ν-robust state must be in the tree, the resistance
of connecting that node is at least rzk , so that the least resistance tree cannot have less
resistance than the sum of the radii of all nodes except the root. We now show there is a
tree with exactly that resistance by building it recursively. Place the root z first. There
must be some remaining node that can be connected to the tree at resistance equal to the
radius because all stable states are in the same circuit. Add that node to the tree with that
resistance. Continuing in this way we eventually construct a tree in which the resistance is
exactly the sum of radii of all but the root node. It follows that the difference in resistance
between the least resistance tree with root z and root z′ is exactly the difference in the radii
which is what is asserted in the Corollary.

5.4 Exact Pure Strategy Equilibria and Stochastic Stability

In this section, we characterize the stochastic stability of pure strategy Nash equilibria. We
assume that pure strategy Nash equilibria exist, and set the social comparison parameter
ν = 0. (Recall that every pure strategy Nash equilibrium corresponds to the play of learners
in a 0-robust state.)

Learners play a fundamental role in determining least resistance paths. On a path that
moves away from a 0-robust state, content learners must tremble, and so the path has positive
resistance. In addition to the random mistakes, every active learner that is not playing a
best response transitions to discontentment with no resistance irrespective of her current
type. For each 0-robust state z, we define rjz ∈ Z+ for player j to be the least number of
learners of player −j that need to deviate for there to be a learner of player j such that
is not using a best response. Then in finding least resistance paths out of the basin of a
0-robust state z, we will establish that the critical threshold to be considered is the smaller
of r1

z , r
2
z . We will use this to characterize the radius of a 0-robust state z, and show that the

minimum resistance to any other 0-robust state z′ is the same for every z′.

Theorem 2. (1) If z is a 0-robust state, its radius is rz = min{r1
z , r

2
z} > 0. Moreover for

any 0-robust state z 6= z there is a path from z to z that has resistance rz.

(2) If z and z′ are 0-robust states, then µεz
µε
z′
∼ εrz′−rz and in particular those states with

largest radius are stochastically stable.

Proof. Consider a least resistance path z from a 0-robust state z to any 0-robust state z.
From Lemma 5 we know that there exists a path z̃ = (z̃0, z̃1, . . . , z̃t) from z̃0 = z with
r(z̃) ≤ r(z) and z̃t � z . Since z̃t � z and z is 0-robust, by Lemma 4 there is a zero
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resistance path from z̃t to z. Then it is sufficient to compute r(z̃) in order to obtain the
radius of z.

We begin by characterizing the basin of the 0-robust state z. Lemma 5 implies it suffices
to consider Dj(z̃τ ) for τ ≤ t, since discontent learners stay discontent on the path z̃. If for
both players j Dj(z̃τ ) < rz we show that z̃τ is in the basin of z. Suppose discontents play the
unique best response aj in each population j, which gives rise to a feasible profile of actions,
that they do not tremble, are active and become content. This transition has no resistance.
In the resulting state all learners are content and playing aj the unique best response to any
feasible α−j; that is, the state is z. Hence we have a zero resistance path back to z. However
to be in the basin there must not be a zero resistance path to some different 0-robust state
ẑ. We show that any such path starting at z̃τ has a resistance of at least one. Moving along
any such path requires that for all content agents of at least one player j it must be that
âj 6= aj, from Assumption 1. Since Dj(z̃τ ) < rz for j = 1, 2 all content agents are playing a
best response which implies that any transition (z̃τ , z′) on the path to ẑ we must have that
Dj(z′) > Dj(z̃τ ) for at least one player j. But in this transition at least one content agent
who is playing a best response becomes discontent so this transition has resistance at least
one.

Next, we establish that any path from z to any other 0-robust state ẑ has resistance rz.
We show that if Dj(z̃τ ) ≥ r−jz for either player j then there exists a zero resistance path to
any 0-robust state. Suppose that Dj(z̃τ ) ≥ r−jz for one player j. Then consider a transition
where the profile αj is such that all content agents in −j are active and observe a better
response played by a committed agent, so become discontent, while learners in population
j are inactive and do not tremble. This transition has zero resistance. The next transition
has a profile α−j so that contents in j are active and get a signal about a better response
provided by a committed agent, do not tremble, and become discontent while agents in −j
do not tremble, are inactive, and continue to be discontent. It follows that this transition
has no resistance. By Lemma 6 there is a zero resistance path to any 0-robust state. Hence
part (2) follows directly from Corollary 1.

We have shown that computing the radius is determined by two thresholds, one for each
player role, that represent the least number of learners that are able to move all learners to
discontentment. In words, part (1) establishes that as long as the system remains within
the basin of a pure equilibrium, not too many discontent agents are experimenting with new
strategies, and the rest of the learners are content, and playing a best response. Thus from
states in this basin the discontent learners are likely to find their way back to equilibrium.
Interestingly, we find that once the system leaves the basin of a pure equilibrium, there
must be lots of agents trying new strategies, which in turn pushes everyone into the state
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of searching. Since once all learners are discontent the system may transition to any other
pure equilibrium with no resistance, this implies that there is a single circuit containing all
0-robust states.

Theorem 2 also shows that for any pair of pure strategy Nash equilibria z and z′ respec-
tively, the system spends approximately εrz′−rz times as much time at the pure equilibrium
z as at the pure equilibrium z′. It follows from the fact that if the probability of leaving z
is of order εrz , then the expected length of time spent at z is ε−rz . We provide a charac-
terization for computing all relative ergodic probabilities of equilibria, and shows that the
system spends most of the time at Nash equilibrium that have big radii as they are hard
to leave. This characterization is based on the property that random search is relatively as
likely to find one equilibrium as another, meaning that once an equilibrium is left there is
no differentiation as to which equilibrium the system is likely to move next, what matters
is the leaving time. Note that our characterization is simple in that it only requires one to
compute the radius rz of each equilibrium.

5.5 Stability of Approximate and Mixed Strategy Equilibria

We now analyze the ergodic distributions and stochastically stable states in general finite
two player games, where pure strategy equilibria need not exist. We provide the complete
structure of the transitions between equilibria. We will show that the system starting at
a mixed equilibrium either moves with resistance 1 towards mixed equilibria with smaller
supports, or transitions along resistance 1 paths to every equilibrium. On the other hand
we establish that if the system begins at pure equilibria, it transitions to every equilibrium.

We now set the social comparison parameter ν > 0, since exact mixed strategy equilibria
need not be attainable by population play represented on the grid ∆N(A).21 In this case
Lemma 2 ensures that a ν-robust state exists. As we observed above, in ν-robust states,
aggregate play corresponds (modulo the play of the committed types) to an approximate
equilibria. That is, in any ν-robust state z the action profile of the learners α̃ is such that for
every learner in each population j, uji (a

j
i , α

−j) ≥ uji (ã
j
i , α

−j) − ν for each aji in the support
of α̃j and all ãji ∈ Aj.

There is an essential difference between the structure of basins of pure ν-robust states in
the case ν = 0 and the case ν > 0. Note first that, starting at a pure Nash equilibrium â, as
the play of learners in population −j shifts to put increasingly more weight on actions other
than â−j, eventually two things happen to the learners j’s best responses. First, additional
actions may become ν-best responses to the play of population −j in addition to âj, and

21We then consider content agents that play ν-best responses for ν > 0.

15



second âj will eventually no longer be a ν-best response to the play of the opposing population
−j. In the case ν = 0 the assumption of unique best responses on the grid (Assumption
1) assures that these two changes take place for exactly the same play of −j. However,
with ν > 0, in general additional ν-best responses arise before âj is no longer a ν-best
response. This raises the possibility that play might transition from a pure Nash equilibrium
by modifying the play of both players so that both have additional ν-best responses. When
ν = 0 this possibility does not exist: Since the point at which one player has a different best
response already gets out of the basin, it cannot be the least resistance path for both players
to tremble so that both are ready to switch. In the following we impose an assumption to
rule out this possibility when ν > 0 as well.

To rigorously describe the structure of the basin for any pure ν-robust state z with
content actions corresponding to a given pure action a, we define rjz ∈ Z+ for player j to be
the least number of learners of player −j that need to deviate so that aj is no longer the
only ν-best response to any feasible play of population −j. Similarly, let rjz ∈ Z+ be the
least number of learners of player −j that must deviate for there to be a learner of player j
that is not playing a ν-best response. Observe that rjz ≥ rjz and N −#Ξ−j ≥ rjz, r

j
z ≥ 0 for

all j. If for both j rjz > r1
z + r2

z then “sidewise” escape where both players tremble will have
lower resistance than “direct” escape where only one player trembles. However, as ν → 0
both |rjz − rjz| → 0 so we next find conditions under which there is no sidewise escape.

Lemma 7. There is a χ and γ with N/M > γ and ν < χ such that for every pure ν-robust
state z, there is at least one j that rjz ≤ r1

z + r2
z, and rjz ≥ 1 for both j.

We assume that the parameters ν and N/M are such that Lemma 7 holds, and we
establish a separation between pure ν-robust states so that direct escape has lower resistance.

Assumption 5. ν < χ and N/M ≥ γ where γ is large enough and χ is small enough that
Lemma 7 holds.

We next characterize the least resistance to leave the basin of a pure ν-robust state z in
terms of the thresholds r1

z and r2
z . Note that if a is a pure equilibrium, the least number

of learners that must deviate before the original actions fail to be a best response increases
linearly with N .

Lemma 8. The radius of a pure ν-robust state z is rz = min{r1
z, r

2
z}, and if z is any ν-robust

state there is a path from z to z with resistance equal to rz.

We introduce a notion that captures the largest mass of learners in the support of the
current frequency of content actions: for any state z let the height h(z) ∈ Z+ be the largest
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number of learners playing an action in the support of α(z) the action profile that corresponds
to the aggregate play of contents and committed agents.

We now determine the least resistance to leave the basin of mixed ν-robust states. In
general, there will be multiple mixed approximate equilibria in a neighborhood of mixed equi-
librium, so one might expect to move between those mixed approximate equilibria through
one agent changing play at a time. The next lemma shows that, unlike the case of pure
ν-robust states, the radius of mixed ν-robust states is 1 regardless of N , and that once the
process leaves the basin of a mixed ν-robust state it either moves to another mixed ν-robust
state with weakly smaller support or to a pure ν-robust state.

Lemma 9. The radius of a mixed ν-robust state z is rz = 1, and there is either a path with
resistance 1 to every ν-robust state z or to a ν-robust state z̃ with w(z̃) ≤ w(z) and either
w(z̃) < w(z) or h(z̃) > h(z).

Equipped with these lemmas, we can determine which states are stochastically stable:

Theorem 3. For every pair z, z′ of ν-robust states, µεz
µε
z′
∼ εrz′−rz , so in particular the

stochastically stable states are those with the largest radius.

Proof. The fact that all ν-robust states are connected by least resistance paths follows from
Lemmas 8 and 9. The first conclusion follows from Corollary 1, and the second follows
immediately from the first.

A key implication of our characterization is the analysis of the relative likelihood of pure
and mixed approximate equilibria.

Corollary 2. If z is a mixed ν-robust state and z′ is a pure ν-robust state, and N is large
enough that rz′ > 1, then µεz

µε
z′
→ 0 as ε→ 0.

Proof. Since rz′ increases linearly with N by Lemma 8, choose N so that rz′ > 1. From
Lemma 9 it follows rz = 1. Then εrz′−rz → 0 as ε→ 0.

Thus for large populations of interacting agents we can conclude that in games with
pure equilibria the stochastically stable states must be pure ν-robust, and hence the pure
equilibria will be selected over mixed ones in the long run. Applying Theorem 8 of Levine
and Modica (2016) we can also conclude that the system will spend on average more time
in the part of the basin of the stochastically stable pure Nash equilibrium that excludes the
equilibrium itself than it will at any non-stochastically stable Nash equilibrium. To see this,
suppose that there exists a pure ν-robust state z. Note that moving from z to a state where
one agent is discontent has resistance 1. During the period of time at the ν-robust state
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z before reaching another ν-robust state z′, the ratio of time spent with one agent being
discontent to the ν-robust state z is roughly ε as there is zero resistance from one discontent
agent to z and with large population N the radius of z is larger than 1 so the bounds in
Theorem 8 of Levine and Modica (2016) are tight. Consider another ν-robust state z′ with
smaller radius rz′ < rz, the ratio of time spent at z′ to the other stochastically stable state z
is approximately εrz−rz′ which is much smaller than ε since again with large population the
difference in radii is considerably larger than 1.

6 High Information Social Learning

Our learning procedure thus far has focused on agents that have very limited social infor-
mation and very limited memory. We now consider “high information” models where agents
both observe and remember more.

6.1 The Learning Procedure

We make three changes to the learning procedure. Previously we assumed that in every
period t an agent observed φj(αt), the frequency of utilities corresponding to actions actually
played. Now we assume that an agent observes the joint frequency of utilities and actions
played in the population game22

Υj(αt)[uj, aj] =

 αjt (ajit) for ajit ∈ Aj(uj, α−jt ),

0 for ajit /∈ Aj(uj, α−jt ).

Concerning recall, we now assume that at the beginning of a period agents can recall which
actions were ν-best responses during the last finite T ≥ 1 periods, and that all agents recall
the last action they played, not only the content agents.23

Formally an agent’s type is θjt ∈ Θj
T ≡ (Aj × {0, 1} × TAj) ∪ Ξj. There is a given initial

type distribution. Subtype 0 indicates the agent is discontent, and subtype 1 indicates the
agent is content. Thus, the first part of a type for learners Aj × {0, 1} gives the previous
action taken ajit−1 for both content and discontent agents. The rules concerning the dynamics
of contentment do not change. The final part characterizing the learner’s type T jit[aj] is the
amount of time since each action aj was observed to be a ν-best response to α−jt−1: T jit[aj] = 0
if aj was a ν-best response to α−jt−1, otherwise T jit[aj] = min{T, T jit−1[aj]+1}. Since this is the

22Recall that Aj(uj , α−jt ) ⊆ Aj is the possibly empty subset of actions ajit for which u
j
i (a

j
it, α

−j
t ) = uj .

23Note that actions that are best responses are those with the highest utilities since agents observe the
payoff to each action given the presence of committed types.
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same for all learners of player j we refer to this as the common memory of player j and the
actions aj for which T jit[aj] < T as the players’ common memory set, which we denote by Aj

T .
This simplifies the description of the state since we can use a single memory that is relevant
for all agents of a player.24 The individual memory set of agent i of player j is the union of
the common memory set and the last action that agent played, that is, Aj

i = Aj
T ∪ {a

j
it−1}.

The impact of the memory set is only on the behavior of discontent agents. We assume
they play uniformly only over their individual memory set Aj

i rather than over all actions
Aj. Even though the behavior of the agents in this model can depend on their memory, we
will use the same definition of a ν-robust state: It is a state where each learner is content
and playing a ν-best response to the aggregate play of the other population. Therefore, the
pure ν-robust states will still be the pure strategy Nash equilibria, and the mixed ones will
correspond to a mixed approximate equilibrium.

Notice that our procedure differs from the formulation of Young (1993) where in every
period only one agent per player role moves at that period and takes a size K random sample
of play from the last T periods without replacement. Given this sample, certain actions are
best responses, and only those have positive probability of being played. In contrast, our
model allows agents to choose actions from the last T periods that were ν-best responses in
the period they were used based on that period’s cross-section information. Our model also
differs from Young (1993), Hurkens (1995), Young (1998), Oyama et al. (2015) and related
papers in that in our model agents do not take random samples.

6.2 Equivalence between T = 1 and the Best Response Dynamics

Observe that when T = 1, discontent agents randomize over the last period action and the
current ν-best response. This is similar to the two-population version of the best-response-
plus-mutation dynamic in Kandori et al. (1993) (KMR henceforth). The specific version of
their model we focus on is called best-response with inertia: It assumes that in each period
with some probability 1 > λ > 0 each agent independently continues to play the same
action as in the previous period, with probability 1− λ− ε they play a best response to the
population distribution of opponent’s actions, and with probability ε they choose randomly
over all possible actions. While in the one population case the assumption that λ > 0
plays little role, as KMR show by example it can lead to better behaved and more sensible

24We think of this common memory set as the amount of public information available to each population.
As we discussed the bounded memory assumption is motivated by the limitation of record-keeping devices:
borrower’s credit history is limited, insurance companies only have access to the most recent driving records
that are cleared after a certain number of years; and in informal markets information is usually transmitted
through word of mouth that naturally fades away.
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dynamics in the two population case with results similar to those with one population.25 For
an analysis of this dynamic see Samuelson (1994). We will show that when T = 1, ν = 0,
the high information social learning and best response with inertia dynamic have the same
recurrent classes and same resistance transitions from one recurrent class to another, which
in turn implies that the stochastically stable set and (for ε > 0) the ergodic probabilities of
the recurrent classes are the same.

In order to make this comparison formally, we must extend the state space to incorporate
the current population play. Let Φj

t ∈ ∆N(Θj
T ∪A−j) be a vector of population shares of the

player j types in period t, which includes the description of play of the opposing population
α−jt−1 in period t − 1. Both our dynamic and the best-response with inertia dynamic are
Markov processes on this extended state space.

As in Section 5.4 we restrict attention to exact best responses, that is, ν = 0. We
remark that Assumption 1 implies that for each population j there is a single action aj with
T jit[aj] = 0 and all the other actions ãj 6= aj have T jit[ãj] = 1. All actions that are not best
responses to the previous population play have been forgotten. Finally, for compatibility we
assume that #Ξj = 0 for each population, that is there are no committed agents, but rather
that players directly observe which actions are best responses. Since we assume that N/M
is large this is a reasonable approximation.

Theorem 4. High information social learning with T = 1 is equivalent to best response with
inertia in the sense that they have the same recurrent classes and the same least resistance
between any pair of such classes.

Proof. Define z to be equivalent to z′ if they have the same action distribution, and consider
the equivalence classes {z}. In the best response with inertia dynamic the non-action part of
the state (subtypes and common memory sets) never changes so, given the initial condition,
there is a unique point in each {z} that will ever occur. This in turn implies that, along
the least resistance path from that unique point in {zt} to the unique point in {zt+1}, the
least resistance is given by taking all the actions that are not best responses to α−jt−1 and the
increase in the number of agents playing those actions by j summed for j = 1, 2. In high
information social learning with T = 1 dynamic regardless of the starting point in {zt} the
least resistance over all targets in {zt+1} is exactly the same since agents that are not playing
a best response to α−jt−1 must have trembled: content and discontent agents play the unique
best response to α−jt−1. Hence if we have a recurrent class with respect to best response with
inertia dynamics, a subset of the equivalence classes of states in that recurrent class are a

25In the study of Markov chains this sort of inertia is called “laziness,” and is used to turn periodic
irreducible chains into aperiodic ones; it serves the same purpose here by ruling out limit cycles.
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recurrent class with respect to high information social learning with T = 1 dynamics, and
the least resistance between recurrent classes is the same for both dynamics.

6.3 Learning Dynamics with T Limited Memory

We next consider special classes of games in which the stochastic stability of Nash equilibria
depends on the memory length. As the amount of memory increases, we can show stochastic
stability of Nash equilibria under less restrictive conditions on the game, and if memory is
long enough we obtain stochastic stability for generic games.

It is convenient to define a block to be any set W = W 1 ×W 2 with non-empty subsets
of actions W j ⊆ Aj for j = 1, 2 and the associated block game GW is the original game
restricting payoffs and actions to the block W . A block W is curb (“closed under ratio-
nal behavior”) if arg maxaj∈Aj uj(aj, α−j) ⊆ W j for every action profile α ∈ ∆(A), where
αj(aj) = 0 for aj /∈ W j, and every player j (see Basu and Weibull (1991)). That is, a set of
action profiles is curb if it contains all best responses to itself. Define a best response path to
be a sequence of action profiles (a1, a2, . . . , at) ∈ (A1×A2)t in which for each successive pair
of action profiles (ak, ak+1) only one player changes action, and each time the player who
changes chooses a best response to the action the opponent played in the previous period.
We now develop a notion of acyclicity in the spirit of Young (1993), but for movement to
curb blocks.

Definition 2. A game is k× l acyclic if for every action profile a there exists a best response
path starting at a and leading to a curb block W , with #W 1 = k and #W 2 = l.

Notice that every game is #A1 ×#A2 acyclic since the entire game is a curb block and
that any 1 × 1 acyclic game is acyclic (Young (1993)). The following game is 2 × 2 acyclic
but is not acyclic:26

H T U D
H 2,0 0,2 0,0 0,0
T 0,2 2,0 0,0 0,0
U 0,0 0,0 5,5 8,2
D 0,0 0,0 9,1 2,8

A more general class of k× l acyclic games that includes this example consists of #A1×
#A2 games, where #A1 = n × k and #A2 = m × l, with k × l blocks along the diagonal

26The game is not acyclic because there are two best response cycles, but is 2× 2 acyclic since from any
action profile either curb block {H,T} × {H,T} or {U,D} × {U,D} can be reached along a best response
path.
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in which payoffs are strictly positive and in each block there is a unique mixed strategy
equilibrium, and all other payoffs are zero. This class is similar to coordination games but
with mixed equilibria on the blocks along the diagonal instead of pure strategy equilibria.

From Theorem 4 and Lemma B5 in Online Appendix B.4 (see also Samuelson (1994)),
we know that only Nash equilibria are stochastically stable for acyclic games and T = 1.27

We next show that our learning procedure leads agents to equilibrium if more memory is
combined with our weaker notion of k × l acyclicity where best response paths need to end
up in a curb block. In particular, as memory grows the requirement of k × l acyclicity is
weakened. If we consider memory length equal to the largest curb block, we obtain that
agents’ behavior approaches equilibria regardless of the payoff structure of the game. The
next result shows that, unlike best response with inertia, high information social learning
without trembling converges with probability one to a Nash equilibrium for generic two
player games, if memory is sufficiently long.

Theorem 5. If the game G is k× l acyclic then, with memory T ≥ k× l and ε = 0, ν-robust
states are absorbing and other states are transient.

Proof. Starting at a ν-robust state z since all learners are playing a ν-best response, all
content agents remain content with their action, so such states are absorbing. We next
prove that from any non ν-robust state there is a zero resistance path to a ν-robust state.

Pick any state zt and suppose it is not ν-robust. Then, there is zero resistance to a state
zt+1 in which all learners of one population, say j, play the same action and are inactive,
while one committed agent in population −j plays the ν-best response a−j to αjt , and all
learners of population −j are active and those agents that are not playing a ν-best response
become discontent. From zt+1 there is zero resistance to a state zt+2 where learners of
population j are inactive and hold their actions fixed, while all learners of population −j
play the same ν-best response a−j to αjt+1 in the common memory set. We proceed similarly
starting at zt+2 and moving to zt+3, we assume agents in population −j hold their play fixed
and are inactive, whereas one committed agents in population j plays the ν-best response
aj to α−jt+2, and agents of player j are all active and those not playing a ν-best response
become discontent. Consider the transition to state zt+4 in which agents in population −j
play the previous action and are inactive, while learners in population j all play the same
best response aj to a−j in the memory set and are inactive. The resulting state zt+4 is pure.

Take any pure state zt. Since the game is finite and k× l acyclic, the best response path
from this state goes to a k × l curb block W in a finite number of steps. Notice that in the
following transitions when moving along best response path we use only best responses to

27Samuelson (1994) does not provide a proof of this so we give one for completeness.
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play in the previous period, so it suffices to have T = 1. First, a committed agent in one
population, say j, plays a ν-best response aj to the population play −j, all other agents play
their previous actions and all learners from population j are active so those not playing aj

become discontent. In the next transition, all discontent learners of population j (who played
the ν-best response aj which belongs to the common memory set Aj

T ) are inactive. All agents
in population −j play the same actions as in the previous period and are active, and there
is a committed agent in population −j whose committed action a−j is a ν-best response to
the population j play α−j, so the active learners in population −j become discontent. We
continue until the state is such population play of learners corresponds to the k × l curb
block.

Start at zt where population play of learners lies in a k × l curb block W , and pick any
Aj
T ⊆ W j for each j with T = k× l. If in each population j all content agents are playing a

ν-best response, and for each j the common memory set Aj
T only contains actions that are

ν-best responses to any feasible α−j(zt), then there is zero resistance to discontents choosing
ajit ∈ Aj

T , all agents being active and becoming or staying content, hence reaching a ν-robust
state. Otherwise, there exists at least one agent in one of the populations that is not playing
a ν-best response to any feasible α−j(zt). Consider the transition where all agents play the
same previous action and in one population j those agents that are not playing a ν-best
response are active and become or stay discontent because they observe a ν-better response
played by some committed agent which implies that #Aj

T increases by 1 and that Aj
T ⊆ W j.

If there are agents in population −j that are not playing a ν-best response, we proceed to
repeat the argument which results in a larger memory set A−jT ⊆ W−j. Eventually, after
k× l steps we have not lost any relevant memory since T = k× l so all learners are discontent
and we have expanded each memory set Aj

T to include all actions in the k × l curb block
W , which contains a ν-Nash equilibrium by definition. From there, there is zero resistance
to a state where all discontents play the action profile corresponding to such equilibrium,
all learners are active and become content; therefore reaching the corresponding ν-robust
state.

As we have seen, only pure ν-robust states have radii that increase linearly with popula-
tion size N . The following result shows that the radii of mixed ν-robust states can increase
with N under high information social dynamic, and that the support of those ν-robust states
belongs to a curb block that does not include all equilibria.

Lemma 10. If a curb block does not contain all Nash equilibria then there exists a constant
κ > 0 such that the radius of the set of ν-robust states for which content agents play entirely
within the curb block is at least κN .
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In particular this applies to a curb block that does not contain all Nash equilibria but
contains only one completely mixed equilibrium. We can also conclude from this lemma
that for intermediate values of T the equilibrium selection problem has two levels, first
selection among curb blocks, and then selection within the curb blocks. Similar to Young
(1993), Hurkens (1995) considers a learning model where a single player in each population is
randomly selected to play the game and draws a sample of K observations with replacement
from the set of the last T actions of the opponent. He shows that when T is large ergodic sets
correspond to minimal curb blocks, and that if the game has a unique equilibrium then for
large enough histories the probability that players are playing the equilibrium tends to one.
Building on this model, Young (1998) develops a learning procedure where agents draw a
sample without replacement from the last T observations with the possibility of trembles. He
finds that absorbing states correspond to minimal curb blocks and in the limit as ε vanishes
stochastically stable minimal curb blocks are those with minimal stochastic potential.

7 Examples

In this section, we compare the equilibrium selection of high and low information models in
two examples. We observe that when there are no committed agents, #Ξj = 0 for j = 1, 2,
and agents are able to directly observe the best responses, the computation of the radius and
co-radius with high information model is exactly the same as for best response with inertia.

Example 1. Our first example illustrates that the low information dynamic can select
different equilibria than the high information dynamic with low memory. Consider the game
G1:

A B C D
A 5,5 0,0 0,0 0,0
B 0,0 10,10 0,9 9,0
C 0,0 9,0 10,10 0,9
D 0,0 0,9 9,0 10,10

This game is 1× 1 acyclic (acyclic (Young (1993))), so from Theorem 4 and Lemma B5
the limit invariant distribution for the high information with T = 1 dynamic contains only
singleton pure Nash equilibria. There are four pure strategy equilibria (A,A), (B,B), (C,C)
and (D,D). Initially we consider ν = 0. We will show that (A,A) has the largest radius, so
it is stochastically stable in the low information model, yet in the high information dynamic
with T = 1 the equilibria (B,B), (C,C) and (D,D) are stochastically stable as they are under
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best response with inertia. Note that in either dynamic (B,B), (C,C) and (D,D) have equal
ergodic probability by symmetry.

We start by observing that to escape from (A,A) requires about N/3 of one population
to tremble, say to (B,B), so that is the radius of (A,A). On the other hand to escape from
(B,B), (C,C) or (D,D) requires only about N/11 of one population to tremble, from (B,B) to
(C,C), from (C,C) to (D,D) and from (D,D) to (B,B), so those are the radii of (B,B), (C,C)
and (D,D). Hence with low information dynamic (A,A) is stochastically stable according
to Theorem 2 as it has the largest radius among pure strategy equilibria. To analyze the
best response with inertia dynamic, define S to be the union of the three equilibria (B,B),
(C,C), (D,D). The radius rS of S is at least N/2 since if 1/2 of one population is playing
in either of the three equilibria (B,B), (C,C), (D,D) one of those strategies must earn at
least (1/2)(6 + 1/3) while playing (A,A) yields no more than 5/2. On the other hand, the
co-radius of S is about N/3 since (A,A) is the only pure Nash equilibrium outside of S and
it takes at least that amount to escape from (A,A). Hence by Ellison’s theorem the radius
of S is bigger than the co-radius so S contains all stochastically stable states.

One of the reasons that the set S is stochastically stable under the best response with
inertia dynamic is that when agents are at the equilibrium (B,B) and enough opponents
switch to strategy (C,C), agents’ behavior adjusts immediately because they can see that
choosing (C,C) is the optimal strategy. Observing other agents’ payoffs, but not their actions,
allows the system to move from (B,B) to (A,A), and once it arrives at (A,A) to stay there
for a long time.28

As we have seen, the stochastically stable set consists of the three points (B,B), (C,C),
(D,D) and any one of them could become uniquely stochastically stable with a small payoff
perturbation in the high information dynamic when ν = 0 and T = 1. In Online Appendix
B.5 we use the results of Levine and Modica (2016) to show that this is still true when
T > 16 and ν > 0.

Example 2. In this example we focus on how the stability of mixed equilibria depends on
information conditions. Consider the game G2:

28The low information dynamic can also predict a different equilibrium than best response with inertia
even when the KMR dynamic with inertia has a singleton stochastically stable set. Suppose that a player
obtains κ > 0 instead of 0 when choosing (B,B) against (C,C). To escape from (B,B) now about N/(11− κ)
of one population needs to mutate so this is the radius of (B,B). Our dynamic selects (A,A) as it continues to
have the largest radius among pure strategy equilibria. The set S equal to the union of (B,B), (C,C), (D,D)
still contains all stochastically stable states. Let S′ be the union of (A,A), (B,B). The radius of S′ is about
N/(11−κ) of one population since escaping from S′ requires this agents to move to (C,C) or (D,D); and the
co-radius is about N/11. Because the radius of S′ is larger than its co-radius the stochastically stable states
are in S′. Combining this with the fact that they also lie in S shows that the unique stable state is (B,B)
although its radius is smaller than the radius of (A,A).
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H T P
H 5,3 3,5 1,1
T 2,5 5,2 1,1
P 1,1 1,1 2,2

This game is 3 × 3 acyclic and has three equilibria: the strict equilibrium (P,P), and
two mixed equilibria ((3

5H,
2
5T), (2

5H,
3
5T)) and (( 3

19H,
2
19T,

14
19P), ( 2

19H,
3
19T,

14
19P)). Suppose

that there is a population of N > 13 agents of which 3 are committed to each action. Let
0 < ν < 1. We first observe that the set of actions profiles for ν-robust states consists of
the state in which learners play (P,P), along with the sets of mixed approximate equilibrium
profiles B and C.29

Lemma 9 shows that ν-robust states which correspond to either B or C move along a
path of resistance 1 to any other ν-robust state. We also know from Lemma 8 that ν-robust
states in which learners play (P,P) may transition to any ν-robust state along a path of
resistance d(N(1 + ν) − 8)/5e. Our characterization of the relative likelihood of different
equilibria (Corollary 2) enables us to conclude that relatively ε1−d(N(1+ν)−8)/5e times as long
is spent at the pure ν-equilibrium as at either mixed ν-equilibrium. Since N > 13 and all
mixed equilibria have a radius of 1, Corollary 2 says that the pure equilibrium is far more
likely than the mixed equilibria in the long run: The fact that the mixed equilibria have
radius one means a single experiment can shift the population away from them, and N > 13
implies that once a pure equilibrium is reached it is relatively likely to stick.

Next consider the predictions of the high information model with memory T = 1. We
denote the block {H,T}×{H,T} by HT . Here we can easily show from the radius co-radius
argument that the block HT contains the stochastically stable set.30 Within this set play
follows a deterministic best response cycle, so that each outcome of the block game GHT

2 will
have equal weight in the limit invariant distribution. Since the limit invariant distribution is
continuous in λ, this means that the agents’ time average payoff for small λ is approximately
15/4, which is less than their minmax payoff, which is not a desirable property of a learning
procedure (see, for example, Fudenberg and Kreps (1993), Fudenberg and Levine (1995)).31

29B = {α : |N−1(N−3)(3α̃1(T)−2α̃1(H))+N−1| < ν, |N−1(N−3)(3α̃2(H)−4α̃2(T))+N−1| < ν, α̃j(P) =
0} and C = {α : |N−1(N−3)(3α̃1(T)−2α̃1(H))+N−1| < ν, |N−1(N−3)(2α̃2(H)+4α̃2(T)−α̃2(P))+5N−1| <
ν, |N−1(N − 3)(3α̃2(H)− 4α̃2(T)) +N−1| < ν, |N−1(N − 3)(4α̃2(H) + 2α̃2(T)− α̃2(P)) + 5N−1| < ν}, where
α̃j corresponds to the population play of content agents in j.

30To see this, the radius of the block HT is at least 2N/3 because if 2/3 of one population is playing in
block HT any of these strategies must earn at least (2/3)(3 + 4/5) while playing (P,P) yields at most 4/3.
But, the co-radius of block HT is about N/5 since at least 1/5 of one population has to mutate to escape
from (P,P) and is the only pure Nash equilibrium outside of block HT . Since the radius of block HT is
larger than its co-radius the stochastically stable states are contained in block HT .

31To the best of our knowledge, there is no general characterization of stochastically stability of mixed
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The high information model with large T > 9 exhibits very different behavior than
the low memory case. First, the block HT still contains the stochastically stable set
by radius co-radius argument. Since the block HT also contains only the equilibrium
((3

5H,
2
5T), (2

5H,
3
5T)), the stochastically stable set is a subset of ν-robust states in a neighbor-

hood of ((3
5H,

2
5T), (2

5H,
3
5T)). Importantly, the behavior in the block HT does not exhibit

deterministic best response cycles and agents do not receive less than the minmax payoff in
the long-run.

8 Discussion and Extensions

8.1 Noisy Information

In the analysis so far, there is a fixed and small (relatively toN) number of committed agents,
and agents play all their opponents in round-robin tournaments so there is no sampling
error in agents’ observations about whether they are playing a ν-best response. In practice,
however, there could be noise about what learners observe either because of sampling or
because utility is a random function of the actions that are played in matches. Our results
would change substantially if this noise is held fixed while the probability ε trembles goes
to 0, because then the noise would be the only driving force, but it seems natural to allow
learners to average over matches within a period to push the noise down.

The population game continues to be played in every period t = 0, 1, 2, . . .. As in the
low-information model, let Ξj be a fixed set of committed agents, with at least one agent
committed to each action, and we refer to the other agents as learners. Types θjt ∈ Θj ≡
Aj ∪ {0} ∪ Ξj determine the play of agents: committed types play the action they are
committed to, content learners play the action they are content with, and discontent learners
play uniformly. Each agent holds their chosen action fixed as they play the entire opposing
population round robin.

We now provide a simple alternative specification to the original low information model
which we will then use to study the effect of noisy observations. Previously we assumed
that each learner has probability p of being active and observing the entire frequency of
payoffs received by other agents in the same player role. We now assume instead that
with probability p one learner of each player is chosen to be active, and that this active
learner is matched with one randomly chosen comparison agent from the same population.
Previously we assume that each learner had independent probability ε of trembling, playing

approximate equilibria under the best response with inertia dynamic. Still, we believe it is more typical for
the system to be trapped in a best response cycle than to move to a mixed approximate equilibrium, as in
our example.
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uniformly and becoming or staying discontent prior to taking an action. We simplify by
instead assuming that after being matched with the comparison agent the active learner has
independent probability ε of becoming or staying discontent. Otherwise, with probability 1−ε
the active learner changes type (or not) based on the social comparison: if the comparison
agent has higher utility the active learner is discontent, and if the comparison agent has no
higher utility the active learner is content with the current action.

The revised model allows the possibility that a learner who is not playing a best response
becomes content without resistance after being matched with a comparison agent who hap-
pens to be playing a relatively worse action. However, as this probability will be bounded
away from 1 (due to the presence of committed agents) there is no cost to staying discontent
so the no cost to staying discontent principle still applies. (This follows since one cannot
lower the resistance of the path constructed in the proof of Lemma 5 by having one learner
accidentally become content.) Thus a learner playing a best response becomes discontent
with resistance ε in both the original model and this variation and so the stochastically stable
set does not change.32

We now modify the above model to allow noisy observation of the realized payoffs. First,
we eliminate the exogenous probability of becoming discontent (trembling in the original
model) of the active learner. Next, we replace the single round of round robin play with K
rounds of round robin play against the opposing population, still holding fixed the actions
of all agents. Now we introduce noise by assuming that in round τ active learner i of
player j with comparison agent k observes their own utility uj(ajit, α

−j
t ) and a noisy signal

uj(ajkt, α
−j
t ) + ηjτt of the utility of the comparison agent. We assume that the random shocks

ηjτt are iid with zero mean, have support on the entire real line and have a moment generating
function, and that this function is twice continuously differentiable. Moment generating
functions are always log concave; we strengthen this slightly by assuming that the second
derivative of the log moment generating function is strictly negative. We also assume that
both populations face the same distribution of payoff shocks.

We now replace the assumption that contentment is determined by own utility with
that of a comparison agent with the assumption that it is determined by comparing the
average own signal over the K rounds with the average comparison signal. That is, letting

32Although only one learner can be active at a time in the new model, the number of active learners played
no role in the analysis. The fact that a learner who becomes discontent plays uniformly at the beginning of
the next period likewise plays no role. Hence while the resistance of paths can be different in the two models,
the resistance of many events defined in terms of collections of states remains unchanged: the resistance of
the ratios of ergodic probabilities described in Theorem 2 as well as the waiting times described in Levine
and Modica (2016).
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τ = 1, 2, . . . K denote the rounds, the active learner is discontent if

uj(ajit, α
−j
t ) + ν <

1
K

K∑
τ=1

(
uj(ajkt, α

−j
t ) + ηjτt

)
,

and is content otherwise. This can be written as

1
K

K∑
τ=1

ηjτt > ν + uj(ajit, α
−j
t )− uj(ajkt, α

−j
t ),

that is, if the sampling error is large relative to the utility difference.
Our interest is in the case where K is large so the the probability of “accidental” dis-

contentment (or “trembling”) is small. To this end, take K = − log ε. The key fact is that
resistances in the sampling error model differs from those in the simplified model only in
that when positive instead of being a fixed exogenous constant they are now an endogenously
determined constant. Since which events have zero resistance and which have positive resis-
tance have not changed this preserves the basic qualitative features of the simplified model,
and in particular the no cost to staying discontent principle still applies. Therefore all equi-
libria still lie in a single circuit and their relative ergodic resistances are still computed by
differences in the radii between the equilibria. Thus the conclusion of Theorem 2 still applies.

Of course to give the theorem content we need to know what the radii are: To compute
them, we must determine for each given configuration the least resistance to a learner who is
playing a best response becoming discontent. Let L[x] denote the logarithm of the moment
generating function of ηjτt.33 Assume that uj(ajit, α

−j
t )+ν > uj(ajkt, α

−j
t ) and let r(aji , a

j
k, α

−j)
denote the resistance of an active learner playing aji for whom the comparison agent is playing
ajk both against α−j to becoming discontent. The large deviations theorem from probability
theory (see Theorem I.4 of Den Hollander (2008)) shows that

r(aji , a
j
k, α

−j) = min
x

[
L[x]−

(
ν + uj(aji , α−j)− uj(a

j
k, α

−j)
)
x
]
.

This resistance is minimized over comparison agents’ actions when uj(aji , α−j)−uj(a
j
k, α

−j) =
0 so that in fact the least resistance to a learner becoming discontent when playing a best
response is minx [L[x]− νx], a positive constant.34 In the original model this was 1 but
the exact value of the constant does not matter for computing the stochastically stable
set, what is important is that a constant probability of becoming discontent gives the same

33Note that in the case of normal errors this function is quadratic.
34Note that the least resistance is positive because of our assumption that ν > 0 but sufficiently small.

If ν = 0 and the observational errors have symmetric distribution around zero then the probability that
observational error exceeds zero is 1/2 so people would be discontent almost all the time.
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quantitative result as the original model, that is, the radius is computed by counting number
of deviations to reach the edge of the basin for each population then taking the smaller of
the two numbers.

Notice that we have ruled out error in observing own payoff, for example because instead
of playing round robin opponents are sampled at random, or because the stage game has
noisy outcomes. The key point is that while the noise in observation of the comparison payoff
may be reasonably taken to be independent of the actions the same is not true of sampling
error or noisy outcomes. In this case the logarithm of the moment generating function of
the errors would be a function of actions L(ajit, akit, α

−j
t )[x] which in turn would lead to the

least resistance to a learner becoming discontent minx
[
L(ajit, akit, α

−j
t )[x]− νx

]
would also

depend on the actions. The result that stochastic stability is determined entirely by the
radius would be unchanged, but the radii of different equilibria would change.35

8.2 Performance of the Learning Rules

We conclude by showing that the learning rules we study do well in environments in which
the system spends most of the time at some approximate Nash equilibrium. Specifically, in
such environments no agent could improve his expected time average payoff by more than ν
by using a different learning procedure, given the play of the other agents. This is true even
when the alternative learning procedures use any amount of information, including knowing
in advance what the agents of the other player are going to do.36

Formally, in a state z agent i’s learning rule gives expected utility Ui(z) that depends
only on z. Given the state z there is a unique probability distribution π−j(z)[α−j] over
α−j ∈ ∆N(A−j). Suppose that action distributions α−j of the opposing population are
drawn from π−j(z), that the agent i observes the outcome α−j and chooses a best response
to it. Let Vi(z) be the corresponding expected utility with respect to π−j(z).37 Let u denote
the largest difference between any two utilities in the game. Taking expectations with respect
to Pε, and letting S denote the stochastically stable set we compute

lim sup
ε→0

lim sup
τ→∞

1
τ
E

τ∑
t=1

(Vi(zt)− Ui(zt)) ≤ ν + (1− µεS)u.

The reason for this is simply that zt is at a ν-robust state except for a fraction of the time
35For a formal result about when this sampling error has negligible impact on the stochastically stable set

in a related model, see Ellison et al. (2009).
36This is not a “universal consistency property,” (see, e.g., Hannan (1957), Fudenberg and Levine (1995),

and Hart and Mas-Colell (2000)) since it depends on the fact that the other agents are also using the same
learning procedure.

37No learning rule using any information can do better than this.
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(1 − µεS), and when it is at a ν-robust state Ui(zt) cannot do more than ν-worse (for the
learners) than any strategy regardless of how it is learned.

Put differently, if the agent knew that agents of the other population were going to
follow a stationary strategy for very long periods of time τ (where τ depends on ε) and that
committed agents in his own population were going to reveal what the agents of the other
population are doing, despite their limited memory and information, the agent could not
do much better than either our low information learning procedure or our high information
learning procedure with large T .

9 Conclusion

In many settings people have aggregate information about the payoffs and/or behaviors of
others, and may use this information to help select their strategies. Most people also have
bounded memory. We have considered two learning models that incorporate these ideas, and
showed that behavior comes close to approximate Nash equilibria, and related the amount
of social information and memory used to which equilibria we should expect to see in the
long run.

We considered a low information social learning model in which agents observe aggregate
information about how well others are doing, but not how they obtain those payoffs, so
agents are not able to directly imitate successful actions. Here we assume that agents
use their limited memory to keep track of their own actions that recently did well and a
“search state” that indicates that there might be better actions to experiment with. In
principle agents might do better by using more memory, for instance, building a picture of
the payoff matrix by remembering past play. Nonetheless this is likely to be cognitively
and computationally costly, and it will work well only if the environment is stationary. We
demonstrated that pure strategy equilibria should be expected to be seen a larger fraction
of the time than mixed strategy equilibria when people cannot easily see what actions did
well. By way of examples, we compared the predictions of our learning model to those of
the best response with inertia dynamic.

Our high information social learning model supposes that people observe aggregate infor-
mation about how well and what others did, which might describe some sorts of consumption
and financial decisions, and that when people experiment they use actions that performed
well recently. When people recall only the last action and approximate best responses, we
found that our learning dynamic predicts the same stochastically stable states as best re-
sponse with inertia, and so can be trapped in cycles in the long run. When agents have more
memory, cycles become improbable, and mixed strategy equilibria can be relatively more
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stable than pure strategy equilibria.
If we think of greater information and greater memory as corresponding to greater so-

phistication, we can summarize our results in the following way: In a game with both mixed
and pure equilibria low sophistication leads to pure equilibria, while high sophistication can
lead to either pure or mixed equilibrium depending on the game. Intermediate degrees of
sophistication may not lead to any equilibrium at all.

Which of these models is a better description for how people learn to play Nash equilibria
will of course depend on the information available to the agents and to the cognitive effort
they put into processing it. Neither one should be expected to apply literally to a wide
spectrum of situations, but we hope they will provide a useful complement to the widely-
used best response dynamic in making predictions about long run social outcomes. We
believe that it would be interesting to explore our learning models in controlled laboratory
experiments because our results establish sharp predictions depending on observability and
memory.
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A Appendix

A.1 Description of the Aggregate State Process

The Markov process we are interested in describes the evolution of the states z describing
the population shares of the different types. This aggregate-level process is generated by a
micro-level process that describes the evolution of the agent-states describing the types of
individual agents. Define the (finite) agent state x = (x1, x2) to be an assignment of types
to agents xj ∈ (Θj)N . An agent state x induces population shares of player types (Φ1,Φ2); it
is consistent with a state z if the shares match those in z, in which case we write x ∈ X(z).

To determine the aggregate transition probability Pε(zt+1|zt) from zt to zt+1 start by
choosing an agent state xt ∈ X(zt). For any xt+1 ∈ X(zt+1) we define the agent-state tran-
sition probability Pε(xt+1|xt), and we then compute Pε(zt+1|zt) ≡

∑
xt+1∈X(zt+1) Pε(xt+1|xt).38

Let Dj(xt) be the number of discontent agents of population j in xt, and let C(xt) be the
set of content agents in xt. Let T j denote the trembling learners of player j and let N j be

38This is well defined since while Pε(xt+1|xt) depends on which xt ∈ X(zt) is chosen the sum does not. If
we permute the names in xt and the names in xt+1 the same way then the agent-state transition probability
is unchanged.
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the non-trembling learners. Let Rj ⊆ N j be the active learners. Denote an assignment of
actions to all agents by σj ∈ (Aj)N .

Lemma A1. The aggregate transition probabilities are given by

Pε(zt+1|zt) =
∑

xt+1∈X(zt+1)

∑
T ,σ,R

∏
j=1,2

ε#T
j(1− ε)#N j

(
1

#Aj

)Dj(xt)+#(T j∩C(xt))

p#Rj(1− p)#N j−#Rj

︸ ︷︷ ︸
≡P (T ,σ,R,xt+1|xt)

,

if σj is feasible with respect to T j and xt, that is, if it is consistent with the play of the
non-trembling content and committed types, and if xt+1 ∈ X(zt+1); otherwise Pε(zt+1|zt) = 0.

Proof. The determination of Pε(xt+1|xt) has several steps involving interim variables. The
probability of a given set of tremblers and non-tremblers is ε#T j(1 − ε)#N j . Choose any
σj ∈ (Aj)N . Such an action assignment has probability defined as Γj(xt, T j)[σj] that is
calculated below. Given σj and the corresponding αt, we compute the frequency of payoffs
φj(αt). For the non-tremblers i ∈ N j and each subset Rj ⊆ N j of active non-tremblers,
there is probability p#Rj(1 − p)#N j−#Rj that exactly this subset of agents is active and
updates its type according to this period’s highest payoff.

Now we use these interim variables to compute the transition probabilities. If i /∈ Rj

then θjit+1 = θjit. If i ∈ Rj and uji (a
j
it, α

−j
t ) > uj(φj(αt)) − ν then θjit+1 = ajit, otherwise

θjit+1 = 0. We also compute feasible strategy profiles conditional on T j. Let αj(xt, T j) ∈
∆#Ξj+#(N j\C(xt))(Aj) be the strategy profile corresponding to the play of the committed and
non-trembling content types in xt.39 A strategy profile αj ∈ ∆N(Aj) in xt is feasible with
respect to T j if Nαj = (#Ξj + #(N j \ C(xt)))αj(xt, T j) + (Dj(xt) + #(T j ∩ C(xt)))α̃j for
some strategy profile α̃j ∈ ∆Dj(xt)+#(T j∩C(xt))(Aj).40 In particular, let αj(zt) ≡ αj(xt, ∅) be
the strategy profile corresponding to the aggregate play of contents and committed agents in
state zt which is well-defined since αj(xt, ∅) is independent of xt ∈ X(zt), and define Aj(zt)
to be the set of all corresponding feasible αj. Finally, let T = (T 1, T 2), R = (R1,R2) and
σ = (σ1, σ2).

We compute the joint conditional probability P (T , σ,R, xt+1|xt) of the terminal agent
state xt+1 and the interim variables T , σ,R considering two sets of events. In the first case,
if σj is not feasible given T j and xt, or if xt+1 /∈ X(zt+1) this probability is zero. Ob-
serve that the non-trembling content agents are playing the action with which they are
content and all other learners are playing uniformly; this implies that Γj(xt, T j)[σj] =

39Where the non-trembling content agents play the action corresponding to their type and the committed
types play their committed action.

40That is, if it is consistent with the play of the non-trembling content and committed types.
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(1/#Aj)Dj(xt)+#(T j∩C(xt)). Then for the other case, the probability is given by

P (T , σ,R, xt+1|xt) =
∏
j=1,2

ε#T
j(1− ε)#N j

(
1

#Aj

)Dj(xt)+#(T j∩C(xt))

p#Rj(1− p)#N j−#Rj .

Now we can compute Pε(xt+1|xt) = ∑
T ,σ,R P (T , σ,R, xt+1|xt).

Next we formally show that an agent who is doing well will never get a signal that suggests
he is doing poorly, so these agents only become discontent when they tremble.

Lemma A2. If σj is feasible with respect to T j and some content agent i ∈ Rj is playing
an ajit which is a ν-best response to α−jt , and θjit+1 6= ajit in xt+1, then P (T , σ,R, xt+1|xt) ≤ ε.

Proof. Since i ∈ Rj is content and playing a ν-best response to α−jt it cannot be that
uji (a

j
it, α

−j
t ) ≤ uj(φj(αt)) − ν. Hence agent i must either remain content with ajit or must

have trembled: in the latter case the whole transition has probability at most ε.

A.2 Proofs in Section 5.1

Since Pε(z′|z) is defined as a sum, and the terms in the sum are P (T , σ,R, xt+1|xt), it is
sufficient when analyzing resistance to look for a target xt+1 ∈ X(zt+1) and realizations
T , σ,R for which the probability P (T , σ,R, xt+1|xt) has the least resistance. Denote this
resistance as r(xt, xt+1). For it to be finite σj must be feasible given T j for j = 1, 2, in which
case the resistance is equal to number of trembles, r(xt, xt+1) = #T 1 + #T 2. In particular
to show that the aggregate resistance is zero it is sufficient to find an agent state resistance
for the transition that has resistance zero.

Lemma 4. If z � ẑ and ẑ is ν-robust then there exists a zero resistance path (of length 1)
z from z to ẑ.

Proof. Let xt ∈ X(z) and zt = z. Since z � ẑ and ẑ is ν-robust we have for each j

that Nαj(ẑ) = (N − Dj(z))αj(z) + Dj(z)α̃j for some α̃j ∈ ∆Dj(z)(Aj). This implies that
Aj(ẑ) ⊆ Aj(z), hence if αjt ∈ Aj(ẑ) then αjt ∈ Aj(z), and αjt ∈ Aj(ẑ) implies that all
learners are playing ν-best responses in αjt . Then there is zero resistance to none of the
learners trembling and all learners being active so all become or stay content with ajit. The
resulting agent state xt+1 therefore satisfies xt+1 ∈ X(ẑ) and by construction the resistance
of this transition is 0.

The next lemma will be used in the proof of Lemma 5.
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Lemma A3. If z = (z0, z1, . . . , zt) is a path then there exists a path z̃ = (z̃0, z̃1, . . . , z̃t̃)
with z̃0 = z0 and z̃t̃ = zt with r(z̃) ≤ r(z), and agent states x̃τ ∈ X(z̃τ ) for τ = 0, 1, . . . , t̃
that have transitions between x̃τ−1 and x̃τ in which no discontent agent trembles and every
content agent, including those who tremble, plays the action with which they are content.

Proof. First observe that we can replace the discontent agents who tremble with discontent
agents who play the same way and who are inactive and strictly lower the resistance, so there
is a path to the target with no greater resistance if no discontent agent ever trembles. To show
that we can have every content agent playing the same action, we replace each transition
zτ , zτ+1 with two transitions zτ , z̃2τ+1, zτ+1. Let xτ ∈ X(zτ ) together with Tτ , στ ,Rτ , xτ+1 ∈
X(zτ+1) have resistance r(zτ , zτ+1). For the transition zτ , z̃2τ+1 choose the same xτ , set
T̃τ = Tτ , and σ̃τ such that all content agents play the action with which they are content, σ̃jt is
consistent with αj(xτ , ∅), and all agents are inactive. Then r(xτ , x̃2τ+1) = r(xτ , xτ+1) so that
r(zτ , z̃2τ+1) ≤ r(xτ , xτ+1) = r(zτ , zτ+1). For the transition z̃2τ+1, zτ+1 take T̃ j2τ+1 = ∅, σ̃2τ+1 =
στ and R̃2τ+1 = Rτ so that the terminal state is xτ+1 ∈ X(zτ+1) and r(x̃2τ+1, xτ+1) = 0
implying r(z̃2τ+1, zτ+1) = 0 and concluding that r(zτ , z̃2τ+1)+r(z̃2τ+1, zτ+1) ≤ r(zτ , zτ+1).

Lemma 5. For any path z = (z0, z1, . . . , zt) starting at any z0 then there is a path z̃ =
(z̃0, z̃1, . . . , z̃t̃) with z̃0 = z0 and r(z̃) ≤ r(z) satisfying the property that z̃τ � z̃τ−1 and z̃t̃ � zt

for all 1 ≤ τ ≤ t.

Proof. If r(z) =∞, for any x̃0 ∈ X(z0) and any t̃ = 1, take x̃1 to have all learners discontent
Dj(z̃τ ) = N−#Ξj for both j and note that r(z̃) <∞ since we may have all learners tremble.
It follows that z̃1 � z̃0, zt.

Next, suppose that r(z) <∞. We may assume from Lemma A3 that in z the least resis-
tance transitions have agent transitions in which no discontent trembles and every content
plays the action with which they are content. We will now find a path with t̃ = t and prove
that if z̃τ � zτ we can find a state satisfying z̃τ � zτ , z̃τ−1 and r(z̃τ , z̃τ+1) ≤ r(zτ , zτ+1).
To do this use the fact that z̃τ � zτ to order the agents of each player j so that the
first N − Dj(z̃τ ) − #Ξj agents in x̃τ ∈ X(z̃τ ) have exactly the same type as the first
N −Dj(z̃τ )−#Ξj agents in xτ ∈ X(zτ ). Observe that r(zτ , zτ+1) is determined by a partic-
ular target xτ+1 ∈ X(zτ+1) and realizations Tτ , στ ,Rτ , and that r(zτ , zτ+1) = #T 1

τ + #T 2
τ

since στ is feasible as we have assumed a finite resistance path. Denote by Aj(z) the set of
feasible αj ∈ ∆N(Aj) such that Nαj = (N −Dj(z))αj(z) +Dj(z)α̃j for some action profile
α̃j ∈ ∆Dj(z)(Aj). Because z̃τ � zτ we have Aj(zτ ) ⊆ Aj(z̃τ ) and the realization στ is feasible
for x̃τ so we set σ̃τ = στ . We also define R̃τ to be Rτ applied only to those agents who are
content in x̃τ , that is, discontent agents are inactive, but content agents are active if and
only if the corresponding agent did in Rτ . Now let T̃τ be Tτ applied to those learners who
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are content in x̃τ . Given σ̃τ , T̃τ and R̃τ , take x̃τ+1 ∈ X(z̃τ+1) to be the corresponding agent
state. Then r(z̃τ , z̃τ+1) = #T̃ 1

τ + #T̃ 2
τ ≤ #T 1

τ + #T 2
τ = r(zτ , zτ+1) since Tτ applies to every

agent to which T̃τ applied. By construction no agent is content in x̃τ+1 unless she has the
same type as in x̃τ so certainly z̃τ+1 � z̃τ . Also by construction every agent who is content
in x̃τ+1 has the same type as the corresponding agent in xτ+1 so indeed z̃τ+1 � zτ .

Lemma 6. (1) If z is totally discontent there is a zero resistance path to every ν-robust
state.

(2) If z is proto ν-robust but not totally discontent, there is a zero resistance path to a
ν-robust state ẑ; and if z is standard we can choose ẑ so that w(z) ≥ w(ẑ).

(3) If z is not proto ν-robust there exists a zero resistance path to a state z̃ with w(z) >
w(z̃).

Proof. Suppose zt = z is totally discontent and ẑ is ν-robust. Take xt ∈ X(z) and action
assignment σt in which αjt ∈ Aj(ẑ). This is feasible since Aj(ẑ) ⊆ Aj(z) for j = 1, 2. Suppose
next that the transition does not involve any learner trembling and has all learners being
active. Since ẑ is ν-robust the learners are all playing a ν-best response and hence have zero
resistance to becoming content. The resulting state xt+1 ∈ X(ẑ), so the process reaches ẑ
with zero resistance and showing part (1).

Now consider a proto ν-robust state zt = z that is not totally discontent with w(z) > 0.
Let population j have at least one content learner so wj(z) ≥ 1. Since z is proto ν-robust
and wj(z) ≥ 1, one content learner in j plays an action âj that is a ν-best response to
α−j(z). Take any xt ∈ X(z), and consider the following zero resistance transition to z′ : In
population j, learners do not tremble and are active, content agents play the same action
as in the last period, and discontent learners play the action âj; in population −j learners
do not tremble, play the same actions as the previous period, and are inactive. For the
next transition, we consider two cases. Suppose first that there is no content learner in
population −j, that is w−j(z)= w−j(z′) = 0. By Lemma 2, there is a M/N such that â−j is
a strict best response to αj(z′) with αj(âj) > 1 −M/N . Along the transition from z′ to ẑ
suppose in population j nobody trembles and all learners are inactive, while in population
−j all learners do not tremble, discontent learners play â−j and are active. In the resulting
state ẑ all learners are content and playing a ν-best response, and w(ẑ) > w(z). If instead
w−j(z) = w−j(z′) = 1 the content learner in −j is playing the ν-best response â−j to αj(z′).
Then, in the transition from z′ to ẑ assume learners in population j do not tremble and are
inactive, and all learners in population −j do not tremble, discontent agents play â−j and
are active. The resulting state ẑ is ν-robust with w(z) ≥ w(ẑ). By construction, unless z
was semi-discontent, we did not increase the width which is claimed in part (2).
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Finally, to show part (3) suppose that zt = z is not proto ν-robust with w(z) > 0. Then
in at least one population j there is at least one content agent with aji that is not a ν-best
response to some α−j ∈ A−j(z). Pick any xt ∈ X(z). There is zero resistance to having
population −j play α−j if no learner trembles, all agents are inactive and discontent learners
play the same action, it does not also add resistance to this transition if one committed agent
of player j plays a ν-better response than aj and play of population j corresponds to some
αj ∈ Aj(z). Moreover, there is zero resistance when all learners of player j do not tremble so
the learners in state aj become discontent. Then xt+1 ∈ X(zt+1) with w(zt+1) < w(z).

A.3 Proofs in Section 5.5

Lemma 8. The radius of a pure ν-robust state z is rz = min{r1
z, r

2
z}, and if z is a ν-robust

state there is a path from z to z with resistance equal to rz.

Proof. Let z be a least resistance path from a pure ν-robust state z to any ν-robust state z.
Lemma 5 implies there is a path z̃ = (z̃0, z̃1, . . . , z̃t) from z̃0 = z with r(z̃) ≤ r(z). Moreover,
since z̃t � z and z is ν-robust there is a zero resistance path from z̃t to z by Lemma 4. Hence
the radius of z may be computed as the resistance of z̃. Let aj, a−j be the profile of content
actions corresponding to z.

Suppose for player j rj ≤ r1
z + r2

z and rj ≤ r−j. It suffices to consider the case where
Dj(z̃τ ) < r−j and rj < D−j(z̃τ ) < rj. In population −j content agents are playing a ν-best
response while discontent learners need not be. Consider the transition in which nobody
trembles, discontents play a−j and are active. This transition has no resistance. If discontent
agents in population j do not play a ν-best response, are active and nobody trembles; we
reach this transition with zero resistance. In the former case, since z̃τ � z̃τ−1, zτ for all τ
the number of discontent learners in population j can be increased only if Dj(z̃τ ) < r−j

increases, and since r−j ≥ 1 this requires at least one content agent that is playing a ν-best
response to become discontent so this transition has resistance at least one by Lemma A2.
This characterizes the basin of z. Next, we show that as long as we leave the basin we can
reach any other ν-robust state. Assume D−j(z̃τ ) ≥ rjz, then player j content agents are
not playing a ν-best response to some feasible profile of actions α−j ∈ A−j(z̃τ ). Let them
be active, and no agents tremble. This transition has no resistance. In the following state,
suppose that all the discontent agents in j induce a feasible action so that content agents
in −j are not playing a ν-best response. Then discontent agents in j and −j are inactive,
content agents in −j are active to the fact that they are not playing ν-best response and
there are no trembles. This zero resistance transition results in a state where all agents are
discontent. By Lemma 6 part (1) there is a zero resistance path to any ν-robust state.
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Lemma 9. If a ν-robust state z has w(z) > 2, its radius is rz = 1, and there is either a
path with resistance 1 to every ν-robust state z or to a ν-robust state z̃ with w(z̃) ≤ w(z)
and either w(z̃) < w(z) or h(z̃) > h(z).

Proof. By Lemma 6 it suffices to consider paths z from z to any proto ν-robust state z′. Be-
cause z is ν-robust, all learners are content and play a ν-best response. Hence any transition
from z to some other proto ν-robust state ẑ has r(z, ẑ) ≥ 1, since by Lemma A2 at least one
content learner that is playing a ν-best response must tremble for the system to leave z. We
apply the following algorithm to construct least resistance paths between ν-robust states. In
z, identify an action ãj for one player j that is played by the largest number of learners in
supp(αj(z)). Suppose that in the transition from z to z′ one content player j agent in state
aj ∈ Aj trembles and become discontent, while all the other content agents are inactive and
do not tremble. This implies that r(z, z′′) = 1, and w(z′′) ≤ w(z) by construction. If z′′ is
proto ν-robust , consider the transition from z′′ to z′′′ where the unique discontent learner
plays the action ãj 6= aj (notice that ãj ∈ supp(αj(z′′))), is inactive, and does not tremble,
while the rest of the learners do not tremble and are inactive. Thus z′′′ is ν-robust and
h(z′′′) > h(z). Otherwise, z′′ is not proto ν-robust, so there is a zero resistance path z from
z′′ to a state z̃ with w(z̃) < w(z′′) by Lemma 6. If z̃ is a proto ν-robust state we are done. If
z̃ is not a proto ν-robust state we proceed as in the last step, applying repeatedly Lemma 6,
we construct a zero resistance path z′ from z′0 = z̃ to other state z′t = z with w(zτ+1) < w(zτ )
for t ≥ τ ≥ 0 until we reach a proto ν-robust state z (which could be totally discontent or
not). By Lemma 6, from a totally discontent state we can reach any ν-robust state.

A.4 Proof of Lemma 10

Lemma 10. If a curb block does not contain all Nash equilibria then there exists a constant
κ > 0 such that the radius of the set of ν-robust states for which content agents play entirely
within the curb block is at least κN .

Proof. Let z be any ν-robust state such that the support of α ∈ A(z) is a curb block, and
denote that block by W . Let ẑ be any ν-robust state such that the support of α̂ ∈ A(ẑ)
intersects A \W . Define κjz to be the least fraction of learners from population −j that play
a−j ∈ A−j \W−j such that any ν-best response played by the agents from population j lies in
Aj \W j. Let κz = min{κ1

z, κ
2
z}. Any z′ such that for either population Dj(z′) < κN belongs

to the basin of z since the system returns to z with probability 1. This is because Aj
T ⊆ W j

for both j which in turn implies that discontent agents choose a ν-best response, and when
active become content, and supp(α) = W . If Dj(z′) ≥ κN for at least one population j,
then committed agents in population −j may reveal a ν-better response â−j in the support
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of α̂−j so that A−jT is not contained in W−j and all agents in population −j that are active
become discontent. Next all discontent agents in population−j play â−j /∈ W−j with positive
probability and a committed agent in population j may play a ν-better response âj in the
support of α̂j so that all agents with positive probability are active. Then, discontent agents
in population j play âj in Aj

T with positive probability, reaching the state ẑ.

B Online Appendix

B.1 Proofs in Section 4

Lemma 1. If ν > 0, there is an η such that if N/M > η a ν-robust state exists.

Proof. Since the game is finite it has a mixed strategy Nash equilibrium, and for any ν > 0
and any such Nash equilibrium α̂ ∈ ∆(A), there is an open neighborhood U of α̂ in which
every element is a ν/2 equilibrium. For N sufficiently large there is a grid point α ∈ ∆N(A)
in U , and consequently for large enough N/M if the learners are content with this grid point
it is ν-robust. We may choose N/M large enough that the behavior of the committed agents
does not move the grid point outside of U .

Lemma 2. There is a η such that if N/M > η then if aj is a strict best response to a
pure strategy a−j ∈ A−j then aj is a strict best response to all α−j ∈ ∆N(A−j) such that
α−j(a−j) > 1−M/N . In particular if aj is the only ν-best response to a−j ∈ A−j and ν < g

then it is a strict best response to a−j so the same conclusion obtains.

Proof. The hypothesis ν < g implies that ν-best responses are strict best responses,41 and
for each pure opponent’s action a−j for which some aj is the (unique) strict best response,
there is a γ ≥ 0 such that aj is also a best response to any mixed strategy α−j ∈ ∆(A−j)
such that α−j(a−j) ≥ 1 − γ. Because A−j is finite, there is a γ such that for all γ ∈ (0, γ)
the previous conclusion holds for all such best responses aj, which proves the statement.

Lemma 3. In any 0-robust state, the action profile of the learners must be a pure strategy
Nash equilibrium, and any pure strategy Nash equilibrium corresponds to the play of learners
in a 0-robust state.

Proof. If z is 0-robust all learners are content and are playing a best response to the unique
α−j(z) ∈ Aj. By Assumption 1, content learners in each population j must be playing the
same best response âj and so z is pure. This implies that at the 0-robust state αj(âj) >

41Note that this is true even for ν = 0.
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1−M/N for each j , so âj is a strict best response to â−j and and (â1, â2) is a pure strategy
Nash equilibrium.

Conversely, suppose that â is a pure equilibrium, and that all learners in each population
j are playing âj and are content. Since â is strict, by Lemma 2, there is a N/M sufficiently
large such that for each j the action âj is a strict best response to any α−j(â−j) > 1−N/M,

and for such N/M there is a 0-robust state for the learners to play â.

B.2 Auxiliary Result of Section 4

The following result was noted in Section 4.

Lemma B4. When ε > 0 the Markov process Pε generated by the low-information model is
irreducible and aperiodic.

Proof. Pick any state ẑ where Dj(ẑ) = N − #Ξj for each population j. Start with any
state zt and take any agent state xt ∈ X(zt). There is probability ε#T

j that all learners
tremble, and #T j = N − #Ξj , so Dj(zt+1) = N − #Ξj for j = 1, 2. Take αjt+1 ∈ Aj(ẑ)
and choose x̂t+1 ∈ X(ẑ) with an action assignment σ̂j consistent with αjt+1. Starting at
x̂t+1 there is probability (1/#Aj)2N−#Ξ1−#Ξ2 that all agents play σ̂j. There is probability
(1− p)2N−#Ξ1−#Ξ2 that all agents are inactive so they all stay discontent, hence entering ẑ.

Next we observe that once at ẑ there is positive probability of staying there for any
finite length of time. That is, starting at an agent state x̂ ∈ X(ẑ) consistent with ẑ there
is positive probability that no agent trembles and is active so that learners will all remain
with their contentment and action. Since starting at any state there is a positive probability
of reaching a single state ẑ where the system may rest for any length of time with positive
probability implies that the system is irreducible and aperiodic.

B.3 Proof of Lemma 7

Lemma 7. There is a χ and γ with N/M > γ and ν < χ such that for every pure ν-robust
state z we have for at least one j that rjz ≤ r1

z + r2
z and for both j that rjz ≥ 1.

Proof. For each pure Nash equilibrium â = (âj, â−j) of the game G define ρj
â
(ν) for player

j to be the maximum probability α−j(â−j) such that âj is not the only ν-best response to
â−j. Analogously, let ρjâ(ν) for player j be the supremum probability α−j(â−j) such that âj

is not a ν-best response to â−j. From Assumption 1 ρj
â
(0) = ρjâ(0) for each player j , and

by Assumption 2 ρjâ(0) > 0 for each j. By definition of equilibrium ρj
â
(0) < 1 for both j.

Then, since ρj
â
(0) = ρjâ(0) it follows that for each player j we have (1−ρjâ(0)) < (1−ρ1

â
(0))+
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(1 − ρ2
â
(0)) and ρj

â
(0), ρjâ(0) < 1. Notice that ρj

â
(ν) is continuous at ν = 0 by Assumption

3, and that ρjâ(ν) is continuous at ν = 0 by Assumption 2 and Assumption 3. Hence for
sufficiently small ν > 0 for each player j we still have (1− ρjâ(ν)) < (1− ρ1

â
(ν)) + (1− ρ2

â
(ν))

and ρj
â
(ν), ρjâ(ν) < 1. Since there are finitely many pure equilibria, we may choose ν so that

these conditions are satisfied at all such equilibria for all ν ≤ ν.

Take any ν ≤ ν. Since (1 − ρjâ(ν)) < (1 − ρ1
â
(ν)) + (1 − ρ2

â
(ν)) and ρj

â
(ν), ρjâ(ν) < 1 it

must be that for sufficiently large N −M we have (N −M)(1− ρjâ(ν)) + 3 < (N −M)[(1−
ρ1
â
(ν)) + (1 − ρ2

â
(ν))]. Denote by dxe (resp. bxc) the smallest (resp. the largest) integer

greater than or equal to x (resp. not larger than x) so that rjz = d(N −M)(1 − ρjâ(ν))e
and rjz = b(N −M)(1− ρj

â
(ν))c. Since there are finitely many equilibria there is therefore a

constant Γ such that for N −M ≥ Γ we have rjz ≤ r1
z + r2

z. Since M ≥ 1 there is a γ such
that for N/M ≥ γ we have N −M ≥ Γ. Since ρjâ(ν) > 0, a similar argument establishes
that rjz ≥ 1 for both j.

B.4 Absorbing States with Stochastic Best Response with Inertia
Dynamic

We next provide a proof that in acyclic games with a unique best response to each pure
action of the opponent, the limit invariant distribution for the best response plus mutation
dynamic with inertia contains only singleton pure Nash equilibria.

Lemma B5. Every state that does not correspond to a pure strategy Nash equilibrium is
transient under best response with inertia dynamic.

Proof. Fix a time t and suppose that the state does not correspond to a pure strategy
equilibrium. There is positive probability that this period all agents of one player, say j, do
not adjust their play while all agents of the other player −j play the best response to the
date-t state, and that at date t + 1 all agents of j play the best response to the date t + 1
state while all agents of player −j hold their actions fixed. Thus there is positive probability
that play in each population corresponds to a pure strategy from period t + 2 on. Because
the game is finite and acyclic, the best response path from this state converges to a pure
strategy Nash equilibrium in a number of steps no greater than J ≡ #A1 × #A2. There
is positive probability that the populations will take turns adjusting, all of the −j agents
adjusting in periods t, t+2, t+4, . . ., and all of the j agents adjusting at t+1, t+3, t+5, . . .,
so this equilibrium has probability bounded away from 0 of being reached in 2 + J steps,
showing the initial time t state is transient.
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B.5 Analysis of Example 1 (Continued)

We show that when T > 16 and ν > 0 in the high information dynamic the stochastically
stable set consists exactly of the three equilibria (B,B), (C,C) and (D,D).

The block game GBCD
1 has seven Nash equilibria: the pure equilibria (B,B), (C,C)

and (D,D), the binary mixed equilibria ((10
11C,

1
11D),(10

11C,
1
11D)), ((10

11B,
1
11D),(10

11B,
1
11D)),

((10
11B,

1
11C),(

10
11B,

1
11C)); and a mixed equilibrium in which players randomize uniformly

across B, C and D.42 Since all ν-robust states of this dynamic do not belong to the same
circuit, we have to analyze circuits of circuits, but first we must establish what the structure
of the circuits is.43

First, the three pure ν-robust states corresponding to the equilibria (B,B), (C,C) and
(D,D) form a circuit since we can move from one of these equilibria to the next with resistance
equal to the common radius of these equilibria, which is about N/11.

The mixed ν-robust states corresponding to a binary mixed equilibrium have a simple
structure. Consider a binary mixed equilibrium. As weight shifts from one of the two actions
for one of the players to the other until we reach an extremal point at which a further shift
causes the other player no longer to be playing a ν-best response for both of his actions.
The structure of these equilibria is that of a square: for each player there is a sequence of
consecutive grid points between the two actions for which the opponent’s two actions are
a ν-best response. The complete collection of mixed ν-robust states corresponding to the
binary mixed equilibrium is then the Cartesian product of these two sets. Each of these
collections form a circuit, but these collections are also in a common circuit with the pure
equilibria that we call the “pure/binary” circuit.44

The structure of the mixed ν-robust states corresponding to the mixed equilibrium over
B, C and D is more complicated, since shifts are no longer one-dimensional for each player.
However, the least resistance from a ν-robust state in the pure/binary circuit to some ν-
robust state corresponding to the completely mixed equilibrium is about N/2.45 Since this
is greater than N/11 none of the ν-robust states corresponding to the completely mixed
equilibrium are in the pure/binary circuit. Moreover, transitions from these mixed ν-robust

42Notice that when analyzing ν-robust states there is a subset of ν-robust states in a neighborhood of each
mixed equilibrium.

43Recall that a circuit is a set of ν-robust states such that for any pair of states z, z′ there exists a least
resistance chain from z to z′.

44Because they can be reached from the corresponding pure equilibria with resistance equal to about N/11,
while within each collection corresponding to a binary mixed equilibrium there is always a ν-robust state
from which we can move to either of the two pure equilibria in the support of the mixed equilibrium with
resistance one.

45As half of one population may play the remaining action to make it a ν-best response and be in the
memory set.
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states to the pure/binary circuit all have resistance 1.
Finally, (A,A) lies also in a separate circuit. This is because the least resistance from a

ν-robust state in the pure/binary circuit to (A,A) is about N/2.46 Being greater than N/11
implies that (A,A) does not belong to the pure/binary circuit. We can move from (A,A) to
any ν-robust state in the pure/binary circuit with resistance N/3.

We next need to compute the modified resistance of going from one circuit to the next
circuit, which is the least resistance from one circuit to the next circuit minus the least
resistance path out of the circuit. We can then define circuits of circuits, which are collections
of circuits such that for any pair of circuits in the collection we have a route from one to the
other such that at each step the modified resistance of moving from one circuit to the next
is the least resistance of moving from the one circuit to any other.

Although the structure of ν-robust states corresponding to the mixed equilibrium over
B,C, D involves several circuits, note that transitions from the pure/binary circuit to any
circuit containing such ν-robust states have a modified resistance of N/2−N/11.47 Moving
on the other direction requires a modified resistance of no more than 1. Hence from Theorem
10 of Levine and Modica (2016) we know that the stochastically stable set belongs to the
pure/binary circuit, and within that circuit we look for the largest radii: the three pure
equilibria.

46Since if 1/2 of one population is playing in the block BCD one of those strategies must earn at least
19/6 while playing (A,A) yields no more than 5/2.

47Transitions from a pure ν-robust state to any ν-robust state corresponding to the mixed equilibrium
over B,C and D have resistance of about N/2 while the radius of such a pure ν-robust state is about N/11.
Moving on the other direction requires a modified resistance of no more than 1.
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