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Abstract

During historical periods in which US fuel economy standards were unchanging,

automakers increased performance but not fuel economy, contrasting with recent

periods of tightening standards and rising fuel economy. This paper evaluates the

welfare consequences of automakers forgoing performance increases to raise fuel

economy as standards have tightened since 2012. Using a unique data set and a novel

approach to account for fuel economy and performance endogeneity, we find

undervaluation of fuel cost savings and high valuation of performance. Welfare costs

of forgone performance approximately equal expected fuel savings benefits, suggesting

approximately zero net private consumer benefit from tightened standards.
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1 Introduction
Motivated by climate and energy security concerns, the US Environmental Protection

Agency (EPA) and National Highway Traffic Safety Administration (NHTSA) impose

standards for passenger vehicle greenhouse gas emissions and fuel economy. The agencies

project that the current standards will roughly double new vehicle fuel economy between

2011 and 2025, substantially reducing fuel consumption and greenhouse gas emissions.

In their benefit-cost analysis, EPA and NHTSA conclude that the standards create

climate and energy security benefits (EPA 2012; EPA et al. 2016). In addition to these

social benefits, the agencies argue that the standards create private welfare benefits

because there is a market failure for fuel economy, which is often referred to as the energy

efficiency gap: vehicle manufacturers and consumers fail to adopt technologies and increase

fuel economy even when the value of the fuel savings exceeds the adoption costs. An

extensive literature (e.g., NRC 2015) concludes that a gap exists by identifying numerous

specific fuel-saving technologies, the value of whose fuel savings exceeds the adoption costs.

The agencies argue that the standards increase consumer welfare by stimulating the

adoption of fuel-saving technologies and correcting distortions from the market failure. In

fact, the value of the fuel savings to consumers accounts for about 70 percent of the

estimated benefits of the standards. According to the agencies’ analysis, the standards

would increase social welfare even without counting energy security and climate benefits.1

The energy efficiency gap literature has focused on whether new vehicle consumers

undervalue fuel savings, meaning that they are willing to pay less for fuel savings than the

present discounted value of the savings.2 Undervaluation would be consistent with the

energy efficiency gap because it would imply that manufacturers have insufficient incentive

to adopt fuel-saving technology. Earlier studies yielded a wide range of results, from

approximately zero valuation to substantial overvaluation (see literature reviews by

Helfand and Wolverton 2009 and Greene 2010), but recent studies by Busse et al. (2013)

and Allcott and Wozny (2014) have found full or nearly full valuation, implying that there

is not an energy efficiency gap and that standards are unlikely to increase private consumer

welfare.

1The literature has established that fuel or carbon taxes are more efficient than fuel economy or emissions
standards at reducing energy security or climate market failures (e.g., Jacobsen 2013). However, because fuel
or carbon taxes do not address the market failure associated with the energy efficiency gap (Jaffe and Stavins
1994), if the gap is large enough, standards could be more efficient than fuel and carbon taxes (Fischer 2010;
Parry et al. 2007).

2A variety of factors could explain undervaluation, such as incomplete information about fuel economy
(Gillingham et al. 2009) and sticky information about fuel prices (Allcott and Wozny 2014).
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Economists and policy makers have focused on the energy efficiency gap under the

presumption that if there is a gap, tighter standards would raise private consumer welfare.

We argue that this inference is incorrect because it ignores the effects of tighter standards

on vehicle performance. Klier and Linn (2016) and Reynaert (2015) document that tighter

standards cause manufacturers to trade off performance for fuel economy, causing

performance to increase less than if standards had not tightened. Therefore, the private

welfare effects depend on the valuation of the forgone performance. However, for reasons

we explain below, estimates of willingness to pay (WTP) for performance in the literature

are likely to suffer from omitted variables bias. Moreover, estimates of WTP for fuel

economy that account for the endogeneity of fuel economy rely on fuel price variation to

identify WTP, and may not be relevant to regulatory-induced changes in fuel economy. We

present new estimates of WTP for fuel economy and performance that address these issues.

We find strong evidence that consumers undervalue fuel economy, suggesting the presence

of an energy efficiency gap. Notwithstanding the undervaluation, once we account for

changes in performance, we find that recent tighter standards have had approximately zero

net effect on private consumer welfare.

Next, we describe the paper in more detail. Knittel (2011) and Klier and Linn (2012)

argue that manufacturers can respond to tighter standards by trading off performance for

fuel economy. Manufacturers can use fuel-saving technology to increase fuel economy or

performance (such as towing capacity), for example, by retuning the engine so that the

new vehicle has the same fuel economy and greater performance than the original vehicle

(Klier and Linn 2012; Whitefoot et al. 2013; Zhou 2016).3 As we show in Section 2, during

time periods when fuel economy standards were not changing, manufacturers used fuel-

saving technology to increase performance while maintaining fuel economy, improving vehicle

efficiency by about 2 percent per year (Knittel 2011). During periods when the standards

tightened, manufacturers chose to trade off performance for fuel economy.

Because of the technological trade-offs, the effects of tighter standards on private

consumer welfare depend on changes in vehicle prices, fuel economy, and performance. In

the absence of tighter standards, manufacturers adopt fuel-saving technology and boost

performance. Tighter standards have two effects on vehicle attributes. First, tighter

standards increase the incentive to adopt fuel-saving technology, raising the rate at which

manufacturers add technology, as Klier and Linn (2016) demonstrate. This effect raises

3For example, between 1980 and 2014, Honda adopted a number of fuel-saving technologies to double the
Civic’s horsepower without changing its fuel economy. Certain technologies, such as turbochargers, improve
performance and reduce fuel economy, whereas other technologies increase fuel economy without affecting
performance. When adopting fuel-saving technologies, manufacturers can combine these technologies and
retune the engine to achieve the desired combination of fuel economy and performance increases.
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vehicle fuel economy and production costs, which may increase vehicle prices. Second,

tighter standards cause manufacturers to trade off performance for fuel economy. Note that

manufacturers may use these responses to increase fuel economy, in addition to reducing

the relative prices of vehicles with high fuel economy to increase their market shares

(Jacobsen 2013).

Given these manufacturer responses, undervaluation implies that marginally tightening

standards raises private consumer welfare if two conditions hold. The first condition is that

the marginal profit from increasing performance equals the marginal profit from increasing

fuel economy. If this condition does not hold, in the absence of tighter standards

manufacturers are at a corner solution such that all fuel-saving technology adoption is

devoted to improving performance while maintaining the level of fuel economy that the

standards require. Consequently, tightening standards reduces consumer welfare by

inducing a trade-off from performance to fuel economy. A second condition is that marginal

WTP for performance equals the cost of adopting fuel-saving technology adoption. A

setting in which this condition does not hold would imply a “performance gap” for the

adoption of fuel-saving technology that is analogous to the energy efficiency gap. Section

5.2 discusses these conditions in more detail.

Thus, the central questions regarding the effects of standards on private consumer welfare

are whether consumers undervalue fuel economy and whether one of the two conditions hold.

Whether one takes a structural or reduced-form approach to answering these questions, it

is necessary to estimate consumer valuation of fuel economy and performance. As we argue

next, nearly all existing WTP estimates are likely to be biased because they do not address

a fundamental omitted variables problem. Consequently, we focus on obtaining unbiased

estimates of consumer WTP for fuel economy and performance.

We make two improvements over the existing literature. First, most studies either have

not estimated WTP for performance or have assumed that performance is uncorrelated with

unobserved vehicle attributes.4 Because vehicle manufacturers simultaneously choose fuel

economy, performance, and other attributes, fuel economy and performance are likely to be

correlated with other unobserved attributes (Klier and Linn 2012). Most earlier studies (e.g.,

Berry et al. 1995) that estimate WTP for performance assume that performance is exogenous,

but a few recent papers, such as Whitefoot et al. (2013), instrument for performance. These

recent studies primarily rely on variation from the vehicle’s fuel type or drive type (e.g.,

4-wheel-drive). However, because consumers directly value fuel type and drive type, and

not just their effects on fuel economy and performance, the instruments are likely to be

4Recent papers that focus on consumer valuation of fuel economy, including Busse et al. (2013), Allcott
and Wozny (2014), and Sallee et al. (2016), do not attempt to estimate WTP for performance.
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correlated with unobserved vehicle attributes. For example, automakers may provide better

(unobserved) technology packages for 4-wheel-drive vehicles than for 2-wheel-drive vehicles,

causing biased estimates.

Second, our empirical analysis pertains directly to policies that affect fuel economy and

performance in the medium to the long run. In contrast, recent estimates of consumer

valuation of fuel economy (e.g., Busse et al. 2013; Allcott and Wozny 2014) are based on

consumer responses to changes in fuel costs induced by fuel price variation, focusing on fuel

price variation in the 1990s and early 2000s, when the stringency of fuel economy standards

was unchanging. These studies are relevant to policies that directly affect fuel prices, such as

carbon or fuel taxes, and they are relevant for the short run, in which attributes of market

vehicles are held fixed. However, emissions or fuel economy standards cause fuel economy

to increase over time without directly affecting fuel prices (Whitefoot et al. 2013; Reynaert

2015). Consumers could respond differently to fuel prices in the short run and fuel economy

in the medium and long run for a variety of reasons, such as information or uncertainty

about fuel prices and fuel economy (Metcalf and Hassett 1993; Dixit and Pindyck 1994).

We use a unique data set and a novel empirical strategy to account for the endogeneity

of both fuel economy and performance, identifying WTP from changes in these attributes

rather than from changes in fuel prices. Our data include 535,124 observations of new

vehicles that were purchased or leased between the fourth quarter of 2009 and the third

quarter of 2014. For each vehicle, we observe a vehicle transaction price, household

demographics, and a vehicle identification number (VIN), which we use to assign extensive

vehicle characteristics such as fuel economy, horsepower, torque, and weight. To compare

our results with the recent literature, we adapt the empirical framework of Busse et al.

(2013) to estimate average WTP for fuel economy and performance across all consumers in

the market. We adopt two strategies to account for the endogeneity. First, we include

vehicle fixed effects, defining vehicles at a highly disaggregated level, to control for

cross-sectional correlations among fuel economy, performance, and unobserved vehicle

attributes such as technology packages and safety features. Second, we use instrumental

variables (IVs) constructed from EPA microdata on fuel-saving technology adoption. The

instruments are indicators for the adoption of specific technologies in individual vehicle

trims, and they are strong predictors of fuel economy and performance, reducing concerns

about weak instruments bias. We report evidence supporting the underlying exclusion

restrictions.5

5Klier and Linn (2016) report rough welfare estimates of the forgone performance, but the underlying
WTP estimates are subject to shortcomings noted in the text. The estimation in this paper improves
on our previous attempts to address endogeneity of fuel economy and performance (Klier and Linn 2012;
Zhou 2016), by using actual transaction prices rather than manufacturer suggested retail prices, and by
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We find that consumers undervalue fuel cost savings arising from higher fuel economy.

The preferred estimates imply that consumers use a real discount rate of 12 percent to

discount future fuel cost savings, compared to reported real market interest rates of 1.3

percent in our sample. The fact that the implicit discount rate exceeds the market rates

suggests that consumers undervalue the fuel cost savings. An equivalent interpretation is

that if we use market rates to discount future fuel cost savings, consumers pay 54 cents for

$1 of discounted future fuel cost savings. In contrast, Busse et al. (2013) find full valuation

and Allcott and Wozny (2014) estimate that consumers pay 76 cents for $1 of discounted

fuel cost savings. We obtain similar undervaluation as in our baseline using our data and

the methodology in Busse et al. (2013), suggesting that differences in sample period, rather

than methodology, explain the discrepancies. The lower WTP for the most recent period

is consistent with Leard, Linn, and McConnell (forthcoming), who show that new vehicle

purchases responded differently in the late 1990s and early 2000s (when fuel prices were low

or rising) than in the late 2000s and early 2010s (when fuel prices were high and volatile,

and when fuel economy was increasing).

Consumers are willing to pay $94 for a 1 percent performance increase arising from fuel-

saving technology adoption. This corresponds to a WTP of $1,100 for a 1-second reduction

in the time needed to accelerate from rest to 60 miles per hour (0-to-60 time), which lies

in the middle of the range of estimates in the literature (e.g., Whitefoot and Skerlos 2012;

Greene et al. 2016). Comparing the ordinary least squares (OLS) and IV estimates, we

conclude that failing to account for the endogeneity of fuel economy and performance would

understate consumer valuation of fuel economy and performance.

The WTP estimates have three implications. First, combining our WTP estimates with

estimates of the technological trade-offs between fuel economy and performance (Knittel

2011; Klier and Linn 2016), suggests that consumers are willing to pay about three times

as much for a performance increase as for a fuel economy increase. This result is consistent

with the observation (documented below) that during the 1990s and early 2000s, when

vehicle standards were not tightening, manufacturers adopting fuel-saving technology used

the technologies to increase performance rather than fuel economy.

Second, the estimates imply that, after accounting for the welfare costs of lower

performance, recently tightened standards appear to have had approximately zero net

effect on private consumer welfare. We consider a hypothetical tightening of the standards

by 1 percent during our sample period. Using technology cost estimates from Leard et al.

(2016) (which are based on EPA 2012), and estimated trade-offs between fuel economy and

relaxing assumptions on consumer demand and the exogeneity of power train attributes. Copeland (2014)
demonstrates the importance of using transaction prices rather than retail prices.
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performance, we find that tighter standards reduce consumer welfare by 0.4 percent per

vehicle sold. This implication contrasts with the conclusion that one would obtain by

following the conventional approach that considers only the estimated undervaluation and

ignores performance changes. In that case, one would estimate that tighter standards raise

consumer welfare by 0.6 percent per vehicle. These results therefore demonstrate the

importance of including forgone performance in analyzing the welfare effects of the

standards.

Above, we noted that in the presence of undervaluation, tighter standards would raise

consumer welfare if two conditions hold. In practice, it appears that neither condition holds,

as the marginal WTP for performance relative to fuel economy exceeds the technological

trade-off between the two attributes, and the marginal WTP for performance exceeds the

technology adoption cost.

The third implication regards the effect of fuel economy or greenhouse gas standards

on consumer demand for new vehicles. A particularly contentious aspect of the existing

standards is whether they reduce aggregate consumer demand for new vehicles, which the

marketing literature refers to as consumer acceptance of new vehicles. This possibility is a

manifestation of vintage differentiated regulation (Gruenspecht 1982; Stavins 2005)—that is,

the fact that the regulations apply to new vehicles but not existing vehicles. This form of

regulation raises the cost of purchasing a new vehicle compared with the cost of purchasing

a second-hand vehicle, reducing aggregate new vehicle demand. Lower demand reduces

manufacturer profits, and by delaying the replacement of older with newer vehicles, lower

demand also reduces the overall fuel and greenhouse gas savings of the standards (Jacobsen

and van Benthem 2015). We find that tightening standards by 1 percent reduces WTP for

new vehicles by $236, or 0.8 percent.

The results illustrate the importance of estimating WTP for performance, and of

accounting for the endogeneity of fuel economy and performance to estimate WTP. Our

preferred estimates of fuel economy valuation contrast with other recent estimates, in that

we find strong evidence of undervaluation. Yet, once we include the welfare costs of lower

performance in the analysis, we find that tighter standards have had approximately no net

effect on private consumer welfare, which contrasts with the conclusion that one would

obtain by ignoring the costs of lower performance.

2 Data and Summary Statistics

2.1 Data
We assembled the main data set from several sources, the most important of which

includes household survey data collected by MaritzCX. Based on vehicle registration
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information, MaritzCX contacts households that recently obtained new vehicles. The

survey is administered online or by mail, with a 9 percent response rate. Our data include

households that obtained new vehicles between October 2009 and September 2014. The

final sample includes 535,124 observations, which represents about 1 percent of all new

vehicles obtained during the five-year period.6

The survey includes questions about the new vehicle and household demographics. For

each transaction in MaritzCX, we use the transaction price net of state taxes, prior to a

trade-in, and without adjusting for trade-in credit.7 As in many other recent vehicle market

analyses (e.g., Busse et al. 2013; Copeland 2014), we use the transaction price, rather than the

manufacturer suggested retail price (MSRP), to reflect the outcome of any price negotiation

or unobserved incentives for the vehicle. In practice, we observe substantial differences

between the MSRP and transaction price. Household demographic characteristics in the

data include state of residence, household size and income, and the respondent’s age, years

of schooling, gender, marital status, and other characteristics.

The MaritzCX survey data include a vehicle identification number (VIN) for each

observation. We use the VIN to define a unique model-variant for each vehicle, which is the

combination of a vehicle’s manufacturer, make, model name, trim/series, fuel type, drive

type, displacement, and number of cylinders. For example, a unique model-variant is the

Toyota Lexus HS250H Premium, with front-wheel drive and a gasoline-powered engine that

has four cylinders and 2.4-liter displacement. Our definition of model-variant is similar to

the definition of a unique vehicle used in recent studies (e.g., Allcott and Wozny 2014).

Note that two versions of the same model-variant can have different body types, which we

also observe in the data. The final sample contains 2,166 unique model-variants and about

250 observations per model-variant (Table 1). Time is indexed by model year and quarter,

and the same model-variant may be observed in multiple time periods.

The VIN allows us to obtain an extensive set of vehicle attributes that are not found

in the MaritzCX data. We supplement the MaritzCX data with the Chrome Automotive

6The raw data include 930,000 observations of new vehicle transactions. We drop 262,000 observations
with missing transaction prices, and 126,000 observations with missing vehicle attributes or fuel-saving
technologies. Because of the IV strategy, we exclude plug-in vehicles (both all-electrics and plug-in hybrids),
which account for less than 1 percent of the MaritzCX sample. As explained in the text, we weight
observations in the final data set to reflect non-random sampling, response rates, or missing data.

7These transaction price data are provided by survey respondents about a month after making a purchase.
Given the short recall time and the high price associated with a new vehicle purchase relative to other
consumer durable purchases, there is little risk of recall bias and these data are likely to accurately represent
actual transaction prices. Some recent studies have used transaction prices reported by marketing companies
such as J.D. Power. Unfortunately, based on personal correspondence, J.D. Power are not currently available
for purchase by academic research teams.
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Descriptive Service database, and use the VIN to obtain vehicle characteristics such as vehicle

weight, horsepower, and torque.

In the empirical analysis, we use the ratio of horsepower to weight as a proxy for passenger

car performance, and the ratio of torque to weight as a proxy for light truck performance.

The performance definition follows previous studies that estimate vehicle demand, such as

Berry et al. (1995), and we use different measures for cars and light trucks. Car consumers

typically have stronger preference for acceleration (which is closely related to the ratio of

horsepower to weight) than for towing ability, whereas light-truck consumers often have

stronger preference for towing ability than acceleration (Knittel 2011). We note that several

aspects of vehicle performance may affect consumer purchasing decisions, such as the time

needed to accelerate from rest to 60 miles per hour, or the time needed to accelerate from

20 to 50 miles per hour (which is more relevant in certain situations such as merging onto a

highway). In practice, these performance measures are highly correlated with one another.

For example, the ratio of horsepower to weight accurately predicts 0-60 time (Greene et al.

2016; Linn 2016). The results are similar if we use the ratio of horsepower to weight for all

vehicles rather than just for passenger cars.

We obtain fuel economy ratings (miles per gallon, mpg) and fuel-saving technology data

from EPA.8 The technology data include indicator variables for whether the vehicle has

variable valve lift and timing, a turbocharger, a supercharger, gasoline direct injection,

cylinder deactivation, continuously variable transmission, and other advanced

transmissions. NRC (2015) concludes that each of these technologies raises a vehicle’s fuel

economy as well as production costs, holding fixed all other attributes including

performance. For example, NRC (2015) estimates that cylinder deactivation, which

effectively shuts off a subset of a vehicle’s engine cylinders when the vehicle operates under

a light load, raises fuel economy by as much as 5 percent, and raises production costs by

$118 to $133 per vehicle. Because EPA data do not recognize potential differences in fuel

economy across body types within a model-variant, we merge EPA data by vehicle model

year and model-variant. Therefore, fuel economy and fuel-saving technologies can vary

across model-variants but not within model-variants, and the definition of the

model-variant preserves 99 percent of the EPA estimated fuel economy variation across new

vehicles.9

8https://www3.epa.gov/fueleconomy/data.htm.
9We do not include fuel-saving technologies that were widely adopted at the beginning of the sample,

such as variable valve timing, or technologies that consumers value directly (either negatively or positively),
such as stop-start ignition. The EPA data include more detail on transmissions than Chrome. We average
the technology variables across transmission type (automatic or manual), and for most observations in the
final data set the technology variables are either zero or one, implying that the aggregation sacrifices little
variation. Below we refer to the technology variables as indicator variables for convenience.
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To correct for the non-random sampling of the MaritzCX survey, we obtained data on

US national vehicle registrations from Information Handling Service Market (IHS Market).

We observe the number of new vehicles registered by model year, model-variant, and body

type for all vehicles registered each quarter in the United States from October 2009 through

September 2014. We link the IHS to the MaritzCX data by vehicle model year, model-

variant, body type, year and quarter of the transaction. As we show below, although the

initial sample is not random, the weighted sample matches the distribution of new vehicle

buyers from other data sources.

Monthly fuel prices come from the US Energy Information Administration (EIA). The

data set includes the average monthly gasoline prices and diesel fuel prices by Petroleum

Administration for Defense District (PADD), for each of four districts (Midwest, Gulf Coast,

Mountain, and West Coast), and three subdistricts on the East Coast. When constructing the

fuel cost variables described in the next section, we use gasoline prices for gasoline powered

vehicles and flex-fuel vehicles, and diesel fuel prices for diesel fuel powered vehicles.10 We

deflate all transaction and fuel prices using the Consumer Price Index, and adjust them to

2010 US dollars.

We use measures of lifetime fuel costs in post-estimation calculations. Lifetime fuel

costs are estimated from annual vehicle miles traveled (VMT) data from the 2009 National

Household Travel Survey (NHTS), and proprietary data from R. L. Polk on annual scrappage

rates from 2003-2014. Using the NHTS, we estimate average VMT by model year, income

group, and vehicle class (cars or light trucks) following the methodology in Lu (2006). With

the R. L. Polk data, we estimate a survival rate as a function of vehicle age following Lu

(2006). The estimated schedules appear in Appendix Table B.5. We assume that vehicles

have a maximum lifespan of 35 years for cars and 40 years for light trucks. Appendix A.1

explains the methodology for computing scrappage rates and VMT in more detail.

2.2 Summary statistics
We report summary statistics from the main data set, discussing vehicle attributes first

and consumer demographics second. Panel A of Table 1 provides information about the

distributions of certain vehicle characteristics. Observations are weighted by registrations,

and the table indicates that most vehicles in the sample use gasoline rather than diesel fuel

(recall that the sample excludes plug-in vehicles). Mean fuel economy is about 23.9 mpg,

and the table indicates substantial variation in fuel economy and performance.

Figures 1 to 3 illustrate time series variation in several vehicle attributes and

technologies. We plot registration-weighted model-year averages of vehicle attributes and

10Flex-fuel vehicles can use fuel that has a high ethanol content, but in practice few owners of flex-fuel
vehicles use gasoline with ethanol content greater than 10 percent (Anderson and Sallee 2011).
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technology adoption rates over time. The fuel economy standards for light trucks tightened

throughout the period, and the standards for cars began tightening in model-year 2012.

Figure 1 shows that average fuel economy increases after 2011. Horsepower, torque, and

weight fluctuate over the same period.

Figure 2 reports statistics for engine and transmission attributes. Engine size, as

measured by the number of cylinders or displacement, decreases over the sample period.

Market shares of the three drive types are fairly stable over the time period. The market

share of diesel fuel vehicles increases between model years 2010 and 2014 (the Volkswagen

emissions scandal occurred after the end of the sample). The market shares of hybrids and

flex-fuel vehicles decrease at the end of the sample. The latter may reflect the elimination

of the flex-fuel vehicle credits that manufacturers could use to demonstrate compliance

with the fuel economy standards (Anderson and Sallee 2011).

Figure 3 shows the market shares of fuel-saving technologies that we use to instrument for

fuel economy and performance. In most cases the market shares increase over time, such as

an increase in the gasoline direct injection market share from 9 to 56 percent. Most decreases

in this figure arise from year-to-year changes in vehicle market shares rather than instances

of manufacturers removing technologies from particular vehicles. Klier and Linn (2016) and

Klier et al. (2017) suggest that tightening fuel economy standards as well as market factors

such as fuel prices explain the technology adoption.

Figures 4 and 5 illustrate monthly variation in fuel prices and vehicle prices, with each

dashed vertical line indicating the beginning of a calendar year. Although we do not use fuel

prices to identify WTP for fuel economy, for context we summarize the fuel price variation

during the sample. Panel A of Figure 4 shows that the sample includes periods of rising

fuel prices (2009 through mid-2011) and volatile or declining fuel prices (mid-2011 through

2014). Panel B shows that regional prices are positively correlated with one another, and

that prices in the West Coast and Midwest regions tend to be higher than in other regions.

Regional price differences vary somewhat over time. Both Figures 4 and 5 indicate regular

seasonal variation. Fuel prices tend to be higher in the summer than in other quarters, and

vehicle prices tend to increase over the year, before decreasing at the end of the year.

Turning to consumer attributes, Panel A of Figure B.1 displays a histogram of the

reported income distribution. The modal income is $75,000 to $100,000. Typical household

income of vehicle buyers in our sample is higher than the typical US household income

during this period, which reflects the fact that higher-income households are more likely

than lower-income households to obtain new vehicles. The income distribution in our data

is fairly close to the income distribution of new vehicle buyers as reported in the 2009 wave

of the NHTS, which is a nationally representative survey. Panel B of Table 1 shows further
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information about the households in the sample, including average household size as well as

the age, gender, urbanization, and marital status of the respondent.

Table B.1 reports information on the form of payment used to obtain the vehicle. About

two-thirds of consumers finance their purchases, with an average nominal loan rate of 3.34

percent for about 5 years. About one quarter of consumers purchase their vehicles entirely

via cash, and the remainder lease their vehicles.

Table 2 shows changes in vehicle fuel economy and horsepower since 1996 (we use data

from Leard, Linn, and McConnell (forthcoming)). Recall that fuel economy standards for

light trucks began increasing in 2005 and fuel economy for cars began increasing in 2012. The

table shows that fuel economy increased much more quickly and horsepower increased much

more slowly during periods when standards tightened; Klier and Linn (2016) demonstrate

that the standards caused these changes. This evidence motivates our analysis of the effects

of tightening standards on private consumer welfare, accounting for changes in fuel economy

as well as performance.

3 Empirical Strategy

3.1 Empirical framework
Our empirical objective is to estimate consumer valuation for fuel economy and

performance. We adapt the approach taken by Busse et al. (2013), which is to estimate

separate reduced-form price and quantity regressions, and combine the results to estimate

WTP. To illustrate this approach, we consider a hypothetical manufacturer that produces a

single type of vehicle. For convenience, we conceive of a Bertrand model with

heterogeneous products. (As we explain below, the empirical strategy does not depend on

the underlying market structure.) We abstract from fuel economy and emissions standards

for simplicity, and control for those standards in the empirical analysis as described below.

The manufacturer faces a downward-sloping residual demand curve for that vehicle. We

define the WTP for a fuel economy increase as the vertical shift of the demand curve

caused by the fuel economy increase; WTP for a performance increase is defined similarly.

The definition holds fixed all other attributes of the vehicle.

Figure 6 provides the intuition behind this approach. We describe the initial

equilibrium using demand curve D1 and marginal cost curve MC1. The manufacturer

chooses the price such that at the resulting quantity, Q1, the marginal revenue curve

(indicated by the downward sloping dashed line) intersects the marginal cost curve MC1.

The figure illustrates a hypothetical situation in which the manufacturer adopts fuel-

saving technology and increases the vehicle’s fuel economy. The higher fuel economy reduces

fuel costs, causing the demand curve to shift to D2. The technology adoption increases
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marginal costs to MC2, which results in the equilibrium price of P2 and equilibrium quantity

of Q2.

The consumer WTP for the fuel economy increase corresponds to the vertical shift of the

demand curve, which is equal to the sum l1 + l2. As explained in the next subsection, we

use a regression of the vehicle’s equilibrium price on its fuel costs to identify the first part

of the sum, l1 ≡ P2 − P1. We use a quantity regression to identify the equilibrium quantity

effect Q2 −Q1. The term l2 depends on the equilibrium quantity change, as well as the slope

of the demand curve. Therefore, to estimate WTP for fuel economy, we estimate the effects

of fuel economy on the equilibrium price and quantity, and calculate WTP by assuming a

particular slope of the demand curve. As Busse et al. (2013) note, an alternative approach

would be to estimate the demand curve directly, which would require certain assumptions on

the structure of the demand at the outset. In contrast, the reduced-form approach requires

only an assumption on the slope of the demand curve, which is made after estimating the two

equations. An advantage of the reduced-form approach is that it facilitates accounting for

the endogeneity of fuel economy and performance. Below, we show that the main conclusions

are insensitive to the assumed demand elasticity.

3.2 Price regression
This subsection describes the estimation of the equilibrium relationship between a

vehicle’s transaction price, pijt, and its attributes, where the subscript indicates that

household i obtained new passenger vehicle j in month t. The approach is similar to that

taken in the hedonic literature (e.g., Rosen 1974). Specifically, we assume a log-log

relationship between price and attributes:

ln pijt = αf ln fcijt + αp ln perfjt +Xijtδ + εijt (1)

where fcijt is the vehicle’s fuel costs; perfjt is the vehicle’s performance; Xijt is a vector of

variables described next; ejt is an error term; and the αs and δ are coefficients to be estimated.

The performance variable is the horsepower-to-weight ratio for cars and the torque-to-weight

ratio for light trucks. The vector Xijt includes PADD-month-fuel type fixed effects to account

for aggregate and regional supply and demand shocks, as well as seasonality in fuel or vehicle

prices (see Figures 4 and 5); state fixed effects to control for state-level demand or supply

shocks; a model-year fixed effect to control for macroeconomic shocks and the demand for

used vehicles; an indicator if the vehicle has flex-fuel capability; fixed effects of the number

of transmission speeds, as well as the interactions of these variables with an indicator equal

to one if the vehicle is a light truck; and controls for fuel economy regulatory stringency. At

the end of the subsection, we explain the motivation for controlling for transmission speeds

and flex-fuel capability.
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The controls for fuel economy regulatory stringency incorporate two sources of stringency

variation. First, under the current standards, a vehicle’s fuel economy requirement depends

on its size; manufacturers selling smaller vehicles must attain a higher overall level of fuel

economy. Second, at the outset of the sample period, manufacturers varied in the difference

between the level of fuel economy required by the standards and the level of fuel economy

their vehicles actually attained (Jacobsen 2013). Stringency is measured as in Klier and Linn

(2016), by computing the difference between the fleet level fuel economy a manufacturer must

attain to meet the standards in model-year 2016 and the manufacturer’s average fuel economy

at the beginning of the sample. The stringency variable is interacted with model-year fixed

effects, to allow for the possibility that regulatory pressure varies over time.

In equation (1) we separate fuel costs and performance from the other attributes because

estimating separate consumer valuation of fuel costs and performance is the main focus of

the paper. The fuel cost variable (measured in dollars per mile) is equal to the price of

fuel in the month and the PADD region in which the vehicle is obtained, divided by the

vehicle’s fuel economy (mpg). Under the assumption that the expected real fuel price follows

a random walk, which is consistent with Anderson et al. (2013), the ratio of the fuel price to

fuel economy is proportional to the present discounted value of fuel costs over the lifetime

of the vehicle (Busse et al. 2013). The PADD-month-fuel type interactions absorb the direct

effect of fuel prices on fuel costs, because of which the coefficient αf is identified by fuel

economy variation.

Because the price, fuel costs, and performance variables enter equation (1) in logs, the

coefficients represent elasticities. We expect the fuel cost coefficient to be negative because

higher fuel costs raise the total cost of the vehicle over its lifetime, and we expect the

performance coefficient to be positive. We interpret these estimates as the effect of fuel

economy or performance on the average transaction price across all vehicles in the

market.11 The interpretation of the coefficients does not depend on the underlying demand

or competitive structure of the market.

Note that we do not interpret the fuel cost and performance coefficients as being

proportional to parameters in a consumer’s utility function. The log-log functional form is

not derived from an underlying utility function. Rather, we use the log-log functional form

to approximate equilibrium relationships among vehicle prices and attributes; likewise,

(Busse et al. 2013) use a functional form that approximates an equilibrium relationship

rather than deriving the functional form from a utility function.

11We have estimated versions of equation (1) that allow the fuel cost and performance coefficients to vary
across vehicles, such as by car or light truck. Although we find some evidence that the coefficients vary
across vehicles, in many cases the differences are imprecisely estimated.
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Although equation (1) yields a straightforward economic interpretation of the

coefficients, the main identification concern is that the vehicle characteristics included in

the regression may be correlated with omitted vehicle or household characteristics. For

example, vehicles with high performance may include more comfortable seating or better

entertainment devices than vehicles with lower performance. Although our data include an

extensive set of characteristics, and more than the vehicle demand literature has typically

used, we do not observe all vehicle characteristics that consumers value. For example, we

observe seating material (cloth vs. leather), but overall seating comfort depends on other

factors, such as lower back support, which our data do not include. OLS estimates of

equation (1) would be biased if we fail to include all vehicle attributes that consumers

value.

For expositional purposes we use the term quality to refer to the combined effect of

all unobserved vehicle characteristics on the equilibrium price. The term includes seating

comfort, entertainment devices, and anything else about the vehicle that consumers value

but that is not included in equation (1). Quality also depends on consumer perceptions of

the unobserved attributes. Using this definition, quality can vary across vehicles and within

a vehicle over time. Obtaining unbiased estimates of WTP for fuel costs or performance

therefore amounts to controlling for quality.

One approach to control for quality would be to include a full set of model-variant fixed

effects—i.e., to adapt the approach taken in Busse et al. (2013) and several other recent

studies of new vehicle demand. The fixed effects control for time-invariant vehicle quality,

but they do not fully address the potential omitted variables bias because within-model-

variant changes over time in fuel economy or performance may be correlated with changes

in quality. Specifically, when a manufacturer redesigns a model-variant and alters its fuel

economy or performance, it may change other vehicle quality attributes at the same time;

the fixed effects do not control for such changes. Moreover, the fixed effects do not control

for changes in consumer perceptions over time.

We could include interactions of model-variant fixed effects and model year, and identify

the fuel cost coefficient by cross-sectional and time series variation in fuel prices. However,

there would be two problems with this approach. The first is that the coefficient would be

identified by fuel price variation rather than fuel economy variation. As we argued in the

introduction, the consumer response to fuel economy is directly relevant to standards that

affect fuel economy and not fuel prices, and consumers may respond differently to the two

sources of variation in fuel costs. The second problem is that it is not possible to identify the

performance coefficient because the model-variant by year interactions would be perfectly

colinear with performance.
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Given these considerations, we address potential omitted variables bias in equation (1) by

adding vehicle model-variant fixed effects and instrumenting for fuel costs and performance.

The estimating equation is

ln pijt = αf ln fcijt + αp ln perfjt +Xijtδ + ηj + εijt (2)

where ηj denotes a fixed effect for vehicle model-variant j. There is no fuel economy variation

within a model-variant and model year, but fuel economy can vary across model-variants and

within a model-variant over time. The fixed effects absorb the vehicle’s fuel type and whether

the power train is a hybrid, but they do not absorb the number of transmission speeds or

whether the vehicle is flex-fuel capable. Consequently, we include those attributes in Xijt.

The instruments are seven indicators for the fuel-saving technologies shown in Figure 3:

variable valve lift and timing, turbocharger, supercharger, gasoline direct injection, cylinder

deactivation, continuously variable transmission, and other advanced transmissions. EPA

(2014) and NRC (2015) identify these technologies as improving the efficiency of the engine

or transmission. We further interact these instruments with an indicator equal to one if the

vehicle is a light truck, which allows for the possibility that the technologies have different

effects on fuel economy or performance across cars and light trucks (NRC 2015). Because

of the model-variant fixed effects in equation (2), the first stage is identified by variation

within a model-variant in fuel economy, performance, and technologies; that is, roughly

speaking, by the time series variation illustrated in figures 1 and 3. The fact that fuel

costs and performance enter equation (2) in logs is consistent with engineering assessments

of the technologies that indicate that they affect fuel economy proportionately. That is,

using the level of fuel costs rather than the log would be inconsistent with the technological

relationships between the instruments and fuel economy.

Variation of the instruments arises from the tightening fuel economy and emissions

standards, combined with the timing of vehicle redesigns. During the period of analysis,

fuel economy standards tightened by about 4 to 5 percent per year after a long period in

which they were unchanged. As Klier and Linn (2016) show, the tighter standards doubled

the rate at which technologies were adopted, causing adoption to be more widespread

across vehicles in the market than previously observed. Vehicles are typically redesigned in

4- to 6-year cycles, and manufacturers stagger the redesigns across vehicles. Because of the

staggering, manufacturers do not adopt technologies simultaneously on all of their vehicles.

Note that because we control for regulatory stringency, the first stage is identified by

variation induced by the tightening standards interacting with staggered vehicle redesign.

The IV strategy is valid if the instruments predict fuel economy and performance and

are uncorrelated with the error term in equation (2). Failing to satisfy the first condition

would raise concerns about weak instruments bias. However, the results reported in the next
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section indicate a strong correlation among the instruments, fuel economy, and performance,

minimizing such concerns. Moreover, the results in the next section indicate that the values

of fuel costs and performance predicted in the first stage are sufficiently uncorrelated with

one another that we can identify the coefficients on fuel costs and performance in the second

stage, equation (2).

The second condition is supported both by theoretical arguments that we present in

this section and by empirical evidence that we present in the next section. First, we choose

technology variables that consumers do not value per se (as opposed to the fuel economy or

performance increase that they enable). If consumers valued the technologies, the

technologies would violate the second condition because they would be correlated with the

error term in equation (2). For this reason, we exclude technologies for which there are

widespread reports of consumer dissatisfaction. For example, the Atkinson cycle

gasoline-powered engine that Mitsubishi installed in some of its vehicles received negative

reviews from consumers because it harmed performance or other vehicle attributes.12 This

feature of the IVs represents an improvement over other studies, such as Whitefoot et al.

(2013), which have used power train characteristics as instruments because consumers

likely value those characteristics directly, yielding biased WTP estimates.

Second, the fact that the standards roughly doubled the rate of technology adoption

implies that manufacturers focused more on adopting technology during redesigns than

they do typically. The source of technology variation is distinct from typical decisions

about whether to install technology, when manufacturers may be more likely to redesign

the vehicle to adopt technology as well as improve quality. For example, given time and

resource constraints for redesigning vehicles, during our sample period a manufacturer is

less likely to change vehicle quality in response to a demand shock than during prior

periods in which standards were not tightening. Therefore, the tightening standards,

combined with staggered redesigns, reduces the likelihood that the technology variables are

correlated with quality.

Note that this consideration reduces concerns that household demographics, which

equation (2) does not include, may be correlated with quality. For example, high-income

households may have higher WTP for seating comfort. The fact that the standards drove

fuel-saving technology adoption during the sample period reduces the likelihood that

omitted demographics are correlated with quality; in the robustness analysis below, we

show that the instruments are uncorrelated with demographics.

12There have been a few negative reports related to consumer perceptions of continuously variable
transmission and cylinder deactivation. We prefer to include them because these technologies have been
widely adopted (see Figure 3), and because the negative reports are scarce. In the robustness analysis we
show that the coefficient estimates are similar if we omit these variables as instruments.
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Third, manufacturers sometimes adopt fuel-saving technology in luxury vehicles before

adopting it in other vehicles. This behavior would cause technology adoption to be

correlated with unobserved quality at any point in time. For example, manufacturers may

adopt technology first for luxury versions of a particular model, or they may adopt

technology first for higher-end models prior to lower-end models (such as a Lexus sedan

prior to a Toyota sedan). The model-variant fixed effects address cross-sectional and

time-invariant correlations between quality and technology adoption. For example, the

fixed effects control for situations in which a luxury vehicle has a fuel-saving technology

throughout the sample period, whereas another vehicle does not have the technology

during the period.

The main remaining concern is that manufacturers simultaneously change quality and

adopt technology. We have argued that this is less likely to be the case during our sample

than during historical periods of technology adoption. Moreover, Section 4.3 shows that the

results are robust to adding several proxies for quality to equation (2).

3.3 Quantity regression
The empirical strategy for the quantity regression is similar to that for the price regression.

We use the log of quarterly registrations as the dependent variable and estimate the equation

at the household level:

ln qjt = βf ln fcijt + βp ln perfjt +Xijtγ + ξj + νijt (3)

where the independent variables are the same as in equation (2). We use vehicle fixed effects

and the same instruments to account for the endogeneity of fuel economy and performance.

Note that vehicle fixed effects ξj are defined by trim, fuel type, drive type, and body type, to

match the aggregation of the registration data. Because of the fixed effects, as with equation

(2), in equation (3) the fuel cost coefficient is identified by variation in fuel economy rather

than fuel prices.

The fact that the fuel cost and performance coefficients in equation (3) are identified

by the same variation as the corresponding coefficients in equation (2) is an important

aspect of our empirical strategy because it implies that the coefficients are identified by the

same underlying consumer preferences and manufacturer supply responses. Consequently, we

interpret the coefficients in both equations as the average equilibrium effects across vehicles in

the market. In contrast, if we were using different estimation samples or empirical strategies

for the two equations, one might be concerned that the coefficients represent averages across

different sets of vehicles, in which case it would not be appropriate to combine the results to

infer WTP for fuel economy and performance.
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An important difference between interpreting the price and quantity regressions is that for

the quantity regressions the signs of the fuel cost and performance coefficients are ambiguous.

On the one hand, an increase in fuel economy (or performance) causes the demand curve to

shift away from the origin, increasing equilibrium quantity (see Figure 6). This effect would

cause a negative fuel cost coefficient and a positive performance coefficient. On the other

hand, because the manufacturer adopts technology to raise fuel economy or performance,

marginal costs increase, which reduces equilibrium quantity and pushes the coefficients in

the opposite direction as the demand curve shift. The net equilibrium effect on quantity is

ambiguous.

4 Estimation Results

4.1 Baseline estimates of willingness to pay for fuel cost savings

and performance
Table 3 reports the main coefficient estimates. Column 1 shows the OLS estimates of

equation (1) and the corresponding quantity regression, and column 2 includes model-variant

fixed effects instead of the vehicle attributes that define the model-variant. We report the

OLS results for comparison with our preferred IV estimates of equations (2) and (3) in

column 3. The regressions include the independent variables indicated in the table notes,

which control for demand and supply shocks at the regional, monthly, or state level, as well

as for the stringency of fuel economy standards. The model-variant fixed effects in columns

2 and 3 control for model-variant-level unobservables that may be correlated with fuel costs

or performance. Table B.2 reports the first stage estimates for fuel costs and performance.13

Because the transaction price, fuel costs, and performance enter equations (2) and (3)

in logs, we interpret the fuel cost and performance coefficients as elasticities. Panel A

reports the estimates of the price regression, equation (2). Comparing columns 1 and 2

shows that the model-variant fixed effects increase the magnitude of the fuel cost

coefficient. Comparing columns 2 and 3, the OLS estimate of the fuel cost coefficient is

-0.156, and the IV estimate is -0.354, both of which are negative and statistically significant

at the one percent level. In both columns the fuel cost coefficient is identified by fuel

economy variation because the other independent variables absorb the fuel price variation.

The larger magnitude of the IV estimate suggests that time-varying quality is positively

correlated with fuel costs (and negatively correlated with fuel economy), which biases the

OLS estimate toward zero. The OLS estimate of the performance coefficient in column 2 is

13Some of the first stage coefficients have unexpected signs, which appears to be due to the high correlation
among the instruments. Below we confirm the overall positive relationships among technology adoption, fuel
economy, and performance.
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negative, implying counterintuitively that in equilibrium consumers pay less for vehicles

with better performance (i.e., those having a higher ratio of horsepower or torque to

weigh). In contrast, the IV estimate of the performance coefficient is 0.203, which is

positive and significant at the one percent level, suggesting that consumers are willing to

pay for better performance. Comparing the OLS and IV estimates of the performance

coefficient in columns 2 and 3 suggests that when model-variant fixed effects are included,

unobserved quality is negatively correlated with performance. Thus, failing to account for

the endogeneity of fuel costs and performance yields substantially biased estimates; adding

model-variant fixed effects to the OLS equation in column 1 does not address the omitted

variables bias.

Panel B reports the estimated coefficients from the quantity regression, equation (3).

In column 3 the IV coefficient on fuel costs is -0.338 and the coefficient on performance is

0.371, both of which are statistically significant at the one percent level. Whereas Busse

et al. (2013) find larger quantity than price responses, we find quantity and price responses

of comparable magnitudes to one another. Below we discuss potential explanations for the

differences between our results and theirs.

We briefly discuss the economic magnitudes of the estimated coefficients on fuel costs

and performance. The baseline estimates in column 3 suggest that a 1 percent fuel economy

increase (which reduces fuel costs by 1 percent) raises the equilibrium transaction price and

quantity by about 0.3 percent. A 1 percent performance increase raises the transaction price

by 0.2 percent and raises the quantity by 0.4 percent. To convert these estimates to WTP, we

first compute the marginal equilibrium price effect (l1 in Figure 6) using the price regression

coefficients. Then we adjust for the quantity change (l2 in Figure 6) using the the quantity

regression coefficients and the assumed own-price elasticity of demand. For the baseline we

assume an elasticity of -3, which lies in the middle of the range considered in Busse et al.

(2013).14

Panel C converts the coefficient estimates to estimates of the WTP for a 1 percent fuel

economy or performance increase. The baseline estimates suggest that consumers are willing

to pay about $133 for a 1 percent fuel economy increase and about $94 for a one percent

performance increase. The OLS estimates in column 1 are positive, as expected, but they

are smaller than the IV estimates. The OLS estimates in column 2 yield a larger WTP

for fuel economy than the preferred IV estimate, but an implausibly negative WTP for

performance. For the IV estimates, Appendix Table B.4 reports estimates of l1 and l2; l1

14Because the dependent variables are logs of price and quantity, to predict the levels of prices and
quantities we would need to account for fact that the error term is log-normally distributed. However,
because we are interested in changes in prices and quantities caused by attribute changes, the correction
term cancels in these calculations, yielding unbiased WTP estimates.
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explains 76 percent of the WTP for fuel economy and 62 percent of the WTP for performance.

Using the estimated relationship between the ratio of horsepower to weight and 0-to-60 time

from Greene et al. (2016), the performance coefficient estimate implies that consumers are

willing to pay about $1,100 for a 1-second decrease in 0-to-60 time, which is similar to many

estimates in the literature.15

4.2 Do consumers undervalue fuel cost savings?
In this section we use two measures of consumer valuation from the literature to

interpret the magnitude of the fuel cost coefficients in column 3 of Table 3. The next

section compares this magnitude with the performance estimate and draws implications for

the energy efficiency gap.

The first measure is the valuation ratio, which is the amount the marginal consumer is

willing to pay for a 1 percent fuel economy increase divided by the present discounted value

of the associated future fuel cost savings. If the ratio equals one, the consumer fully values

the fuel economy improvement; a value less than one implies undervaluation and a value

greater than one implies overvaluation.

The amount the consumer pays for the fuel economy increase is reported in Panel C

of Table 3, i.e., $133. For a vehicle purchased in year y, the present discounted value of

future fuel costs is given by PDVfc =
∑y+T

τ=y
πτVτfτ
m(1+r)τ

, where T is the maximum lifetime of the

vehicle, πτ is the probability that the vehicle is not retired before year τ (which is sometimes

referred to as the survival probability rate), Vτ is the number of miles the vehicle is driven

in year τ , fτ is the real fuel price in year τ , m is the vehicle’s fuel economy, and r is the

real discount rate. See Section 2.1 for a summary of the methodology for estimating T ,

πτ , and Vτ , and Appendix Sections A.1 and A.2 for details. The real discount rate r is

computed using the observed average annual percentage rate (APR) adjusted by the average

inflation rate. For consumers who lease or finance their purchases, the rate represents the

opportunity cost of the monthly lease or loan payments. For consumers paying by cash,

the rate represents the opportunity cost of investing the cash in other financial instruments

(Allcott and Wozny 2014). In our sample, the average borrowing rate is about 3.3 percent

and the average inflation rate is 2.0 percent, implying a 1.3 percent real borrowing rate. We

15In theory, households expecting to drive their vehicles intensively should have higher WTP for fuel
economy than other households. We test this hypothesis using survey information about the household’s
expected annual miles traveled for the new vehicle. We compute the average mileage by household income
group and vehicle type (car or light truck). We add to the baseline specification the interaction of this
variable with log fuel costs. The interaction term has the expected positive sign (see Table B.9). The
magnitude of the interaction coefficient implies relatively little variation across households. The estimated
WTP for performance is similar to the baseline.
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set household discount rates equal to this real borrowing rate.16 Given the evidence reported

in Anderson et al. (2013), we assume that real fuel prices follow a random walk, in which

case the current price equals the expected real future price. We note that Allcott and Wozny

(2014) and Sallee et al. (2016) directly estimate the valuation ratio, whereas we estimate the

WTP and calculate the valuation ratio subsequently; inferences for consumer undervaluation

do not depend on the approach. We choose this approach because it facilitates computation

of multiple measures of consumer valuation that we can compare with the broader literature.

Panel A of Table 4 reports the valuation ratio results. The baseline calculation of the fuel

cost savings is $249. For consistency with the WTP in Table 3, we weight the fuel cost savings

PDVfc,j of each vehicle using the number of registrations. Combining our calculation of fuel

cost savings, $249, with the WTP in Table 3 Panel C, we compute a valuation ratio of 54

percent, meaning that the marginal consumer pays 54 cents for $1 of present discounted fuel

cost savings (where future fuel costs are discounted using the market rate). This valuation

ratio is lower than the 76 percent reported in Allcott and Wozny (2014) and 100 percent in

Sallee et al. (2016), but as we noted in the introduction, the broader literature has yielded

a wide range of valuation ratios, from close to zero to much greater than 1.

Computing the valuation ratio requires a number of assumptions, and we report

alternative calculations based on differing assumptions. Busse et al. (2013) evaluate the

extent of consumer undervaluation using the same methodology from Lu (2006), but using

older data than we use. If we use their data instead of ours, the present discounted value of

fuel cost savings declines from $249 to $184. Using their data we obtain a valuation ratio of

73 percent, showing that the undervaluation is robust to the choice of data.

Table B.6 shows that the undervaluation is robust to other demand elasticities. The

table also reports results using alternative real discount rates that have been used in the

literature, of 5, 7, 10, and 12 percent. To put these alternative higher discount rates in

context, a 7 percent real discount rate is about the national average interest rate for a 24-

month personal loan, and 12 percent is close to the credit card real interest rate in our sample

period.17A potential argument for using the credit card rate as the discount rate is that a

substantial share of US households have credit card debt, and for these households the credit

card rate would represent the marginal cost of borrowing. However, new vehicle buyers have

16Alternatively, for households paying cash and not taking out an auto loan, we could impute their discount
rate using other market rates, such as the real rate of return of stocks or bonds. We prefer to use the APR
because households that paid for their vehicle with cash could have taken out an auto loan that would have
had a similar APR to the average APRs we observe. The decision not to take out a loan reveals that the APR
is an upper bound to the opportunity cost of funds for these households. That is, if the opportunity cost of
funds were higher than the APR, we would observe these households taking out auto loans and purchasing
higher-yield investments. We evaluate the sensitivity of this assumption as a robustness check.

17Data on credit card interest rates are from the federal reserve: here.
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higher income than typical households, and are less likely to have credit card debt than the

typical household. In our sample, about 75 percent of survey respondents report having

perfect credit with no late payments. For these households, it would be inappropriate to

use credit card rates as the discount rate because the credit card rate does not represent the

marginal cost of borrowing. Thus, the conclusion about undervaluation is robust to using

discount rates that are appropriate for our sample. Moreover, we find undervaluation if,

instead of assuming that fuel prices follow a random walk, we use projected fuel prices from

the Energy Information Administration’s Annual Energy Outlook. Thus, we consistently

find undervaluation when we vary the survival probability, miles traveled, demand elasticity,

discount rate, and fuel price projection.

We report a second valuation measure, which is the implicit discount rate. This is the

discount rate that implies a valuation ratio equal to one. In other words, if a consumer

uses the implicit discount rate to discount future fuel cost savings, the consumer would be

willing to pay $134 (i.e., the amount reported in Panel C of Table 3) for a 1 percent fuel

economy increase. An implicit discount rate equal to market borrowing rates would imply

full valuation of fuel economy increases; a discount rate higher than market rates would

imply undervaluation; and a discount rate below market rates would imply overvaluation.

Panel B in Table 4 reports the baseline estimated implicit discount rate of 12 percent. This is

much higher than the average reported real borrowing rate in our data, which is 1.3 percent,

implying undervaluation of fuel economy improvements.

Our conclusion that the implicit discount rate exceeds market borrowing rates contrasts

with Busse et al. (2013), who estimate implicit discount rates that are roughly equal to

market borrowing rates. The second column in Table 4 shows that this difference does not

arise from the fact that our baseline estimate is based on differing assumptions on vehicle

miles traveled and survival probability. Using their assumptions yields a similar implicit

discount rate to our baseline.

Another possible explanation for the difference between our results and theirs is that they

identify consumer valuation from fuel cost variation induced by fuel price variation. If the

consumer response to fuel price induced changes in fuel costs differs from the response to

fuel economy induced changes in fuel costs, this could explain the discrepancy between our

results and theirs.

However, our replication of their methodology using our data suggests otherwise (see

Tables B.7 and B.8 for the estimation results). Table 5 shows that whereas Busse et al.

(2013) report discount rates of -4.0 to 9.8 percent, using our data and their methodology we

estimate higher discount rates of 2.1 to 25 percent (see Table B.6). Thus, we find consistent

evidence of consumer undervaluation regardless of the estimation strategy or parameter
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assumptions.18 This replication exercise also shows that differences between our functional

form and theirs does not explain the differing results. Differences in the sample period

could explain these results, if WTP depends on fuel prices (which were higher during our

sample), on macroeconomic conditions (our sample includes the recovery from the 2008 to

2009 recession), or on other factors that differed between the two sample periods.19

4.3 Addressing potential sources of bias
As discussed in Section 3, the IV strategy would yield biased estimates if time-varying

vehicle quality is correlated with the technology instruments, after controlling for average

quality of each vehicle model-variant. This subsection provides evidence supporting the

validity of the IV estimates.

If the instruments are correlated with quality, we would expect that the fuel economy and

performance estimates would change if we add variables that are likely to be correlated with

quality. We address this possibility in two ways, first by including variables that may directly

measure vehicle quality, and second by including variables that may be indirectly correlated

with quality. We begin by collecting variables from Chrome that are typically not included

in vehicle demand models, and which may therefore reflect quality that is unobserved in

these other studies. Specifically, in column 2 of Table 6 we add controls for the number of

passengers, cubic feet of passenger volume, cubit feet of cargo volume, and a dummy for

a moonroof or a sunroof. These variables are not observed for some of the observations in

our data, which reduces the sample size. The coefficient estimates in the transaction price

equation remain similar to the benchmark specification, while the fuel cost coefficient in the

new registrations equation increases in magnitude. As a result, the implied willingness to

pay for fuel economy is higher (as shown in Panel C of Table 2), suggesting a valuation

ratio of 0.77. Although this ratio is higher than in the benchmark, the conclusion holds that

consumers undervalue fuel economy. Moreover, the welfare conclusions in the next section

are the same if we use these estimate rather than the baseline.

As an alternative measure of quality, we include consumer experience ratings reported in

the MaritzCX survey. Respondents report ratings for a number of vehicle attributes, such

as the vehicle’s appearance and the quality of the sound system. We include 10 of these

18Given that Busse et al. (2013) rely on variation in fuel costs across models, the fact that we get similar
results with both methods is consistent with consumers valuing fuel cost savings within model-variants in
the same way that they value fuel cost savings across models or segments.

19Another commonly used measure of consumer valuation of fuel economy is the payback period. We
follow the definition of payback period that EPA and NHTSA use, and compute the number of years from
the time of purchase until the discounted stream of fuel savings equals the estimated WTP for a 1 percent fuel
economy increase. Under our baseline assumption, the payback period for 1 percent fuel economy increase
is 7 years. Under assumptions used in Busse et al. (2013), the payback period is 9 years.
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attributes as covariates in column (3).20 Although these measures are subjective, they are

likely to be correlated with the consumer’s perceived quality, and hence the transaction price.

Identification rests on the assumption that the instrumented fuel economy and performance

are uncorrelated with these quality measures, which is confirmed in column 3.

Recall that manufacturers typically make major redesigns of individual vehicles every

5-7 years; each redesign results in a new “generation” of the model. During a redesign,

manufacturers are more likely to make major changes to the vehicle that could affect quality,

compared to changes that are typically made between redesigns. This market regularity

suggests that quality variation across generations may be more strongly correlated with the

instruments, than quality variation within generations. If this is the case, interacting model-

variant fixed effects with model generation fixed effects would cause WTP estimates to differ

from the baseline. Columns 4 and 5 show that this is not the case. In column 4, we interact

model-variant fixed effects with model generation fixed effects, and in column 5, we interact

model-variant fixed effects with an indicator that equals to one if the model year represents

a new generation. In each of these specifications, the implied valuations for fuel economy

and performance (shown in Panel C of Table 2) are similar to those found in the benchmark

model.

Next we turning to indirect proxies for quality in Table 7. First, we consider the

example that vehicles may have (unobserved) automated safety features, such as blind spot

detection. If manufacturers add automated safety features at the same time as adopting

fuel-saving technology, quality would be correlated with the instruments. However, in this

case quality would also be correlated with income and household size, as one expects

households that have higher income or that include children to have higher WTP for

automated safety features. Based on this reasoning, we add to the baseline IV specification

of equations (2) and (3) six demographic controls: respondent’s age, household size, male

indicator, urban indicator, fixed effects for the respondent’s education group (12 groups),

and fixed effects for 23 household income groups. Note that the sample is smaller than the

baseline because of missing demographics data. Column 2 of Table 7 reports the coefficient

estimates when including these controls (column 1 repeats the baseline estimates for

convenience), with Panel A reporting price regressions and Panel B reporting quantity

regressions. The estimates are similar to the baseline. We estimate equations (2) and (3)

with additional demographic controls in column 3, including the number of wage earners,

number of children, an indicator equal to one if the respondent’s spouse is employed, fixed

effects for the respondent’s race (6 categories), and fixed effects for the respondent’s

20Each of these attributes is measured on a scale of 1 to 5. We represent these ratings as continuous
variables.
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occupation (20 categories). The additional demographics further reduce the sample size,

but the coefficient estimates are similar to the baseline.

Quality may also vary geographically over time. Returning to the safety example, we may

expect residents of the Northeast to have higher WTP for safety features because of the poor

weather conditions in that region. The state fixed effects control for the average probability

that the vehicles contain these features, but preferences or costs of the features may vary over

time. If preference or cost changes are correlated with technology adoption, the IV estimates

would be biased. In column 4 we include richer time fixed effects by interacting state fixed

effects with model-year fixed effects, and interacting state fixed effects with month-of-year

fixed effects. The coefficient estimates are similar to the baseline.

Above, we noted that there have been a few negative reports of consumer experiences

with continuously variable transmissions and cylinder deactivation, particularly when these

technologies first entered the market. If consumers value (either negatively or positively)

these technologies for reasons other than their effects on fuel economy and performance,

the IV estimates would be biased because the instruments would be correlated with quality.

Column 5 shows that omitting these variables as instruments does not affect the point

estimates, reducing such concerns.

If households face borrowing constraints, changes in financial market conditions could

affect borrowing costs and the composition of households that choose to purchase a new

vehicle. If WTP varies across households and the variation is correlated with borrowing

costs, the WTP estimates could be biased. However, column 6 shows that controlling for

financing arrangement and payment type does not affect the results, reducing this concern.

Likewise, column 7 shows that the results are similar if we omit observations from 2009,

when borrowing rates were relatively high following the economic recession.

As a final validation of the IV strategy, we report the reduced-form relationship between

transaction prices and the fuel-saving technology instruments. Because the technologies can

increase both fuel economy and performance, we expect a positive and monotonic relationship

between a vehicle’s price and the number of technologies it contains. In contrast, although we

expect a positive correlation between the number of technologies and quality, the relationship

between the number of technologies and quality is not necessarily monotonic. Therefore, if

quality is correlated with the instruments, we may observe a non monotonic relationship

between the number of fuel-saving technologies in a vehicle and its transaction price. We

compute the number of technologies for each vehicle in the sample (we top-code the count

at five because few observations contain more than five technologies). We regress the log of

the transaction price on the same independent variables as in the baseline specification of

equation (2), as well as fixed effects for the number of fuel-saving technologies. The top panel
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of Figure 7 plots the coefficients and 95 percent confidence intervals. The figure illustrates a

positive and monotonic relationship between the transaction price and the technology count.

We estimate a second reduced-form regression of the transaction price on indicator

variables for each technology. If the instruments are valid, each technology should increase

the transaction price. However, if quality is positively correlated with some instruments

and negatively correlated with others, we could observe negative correlations among

transaction price and the latter technologies. The bottom panel of Figure 7 reports the

estimated coefficients and confidence intervals. All coefficients are positive and most are

statistically significant at the 5 percent level. Overall, both sets of reduced-form regressions

support the IV strategy.

5 Implications
In this section we discuss the implications of our estimates for the effects of fuel economy

and greenhouse gas emissions standards on consumer welfare. The approach is to consider

small hypothetical changes in fuel economy and emissions standards, and to use the empirical

estimates to infer the consumer welfare implications. For simplicity and consistency with

EPA and NHTSA benefit-cost analysis, we focus on a representative consumer and assume

that markets are imperfectly competitive with free entry and exit. Manufacturers pass to

consumers cost changes, and profits are unaffected in these examples.

5.1 Comparing consumer valuation of fuel economy and

performance
In this subsection we compare the magnitudes of the WTP for fuel economy and

performance. Manufacturers can use fuel-saving technology, such as variable valve lift and

timing, to increase fuel economy or performance. Historically, during periods of time in

which the stringency of fuel economy standards was not changing, manufacturers have

adopted fuel-saving technology and retuned engines to improve performance while

maintaining fuel economy. Between 1990 and 2005 the standards did not change, and the

market-wide average fuel economy was unchanged while the ratio of horsepower to weight

increased by 33 percent (Klier and Linn 2012). We showed in Table 2 that when light truck

standards began to tighten in 2005, the rate of horsepower improvements slowed while fuel

economy began increasing. For cars, standards began to tighten in 2011, and we observe

the same shift from horsepower to fuel economy improvements. Klier and Linn (2016) show

that the tightening standards caused a shift to improving fuel economy and a shift away

from improving other vehicle attributes. Because manufacturers typically use fuel-saving
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technology to raise performance when fuel economy standards are not tightening, these

patterns suggest that consumers value performance more than fuel economy.

To assess whether our WTP estimates are consistent with these patterns, we combine the

estimates with the estimated technological trade-off between fuel economy and performance

from the literature. Our WTP estimates suggest that consumers would pay $133 for 1

percent fuel economy increase. Alternatively, suppose a manufacturer uses the same fuel-

saving technology that would raise fuel economy by 1 percent, and increases performance

rather than fuel economy. Knittel (2011) and Klier and Linn (2016) estimate technical

trade-offs among fuel economy, horsepower, and other attributes. These estimates imply

that, holding weight and marginal costs constant, rather than increasing fuel economy by

1 percent the manufacturer could increase performance by 3 to 6 percent (depending on

market segment and the estimates from the two previous articles). Our WTP estimates

suggest that consumers would pay about $394 for the performance increase, far exceeding

the value of the fuel economy increase. Consumers would value vehicles more if automakers

use fuel-saving technology to raise performance rather than fuel economy. Our estimates are

therefore consistent with historical patterns of manufacturer attribute choices. The results

suggest that the ratio of the marginal WTP for performance, relative to the marginal WTP

for fuel economy, is about 0.7, which exceeds the technological trade-offs between the two

attributes, which ranges from 0.17 to 0.33. This suggests that the passenger vehicle market

is at a corner solution in the performance - fuel economy space, such that when fuel economy

standards are unchanging over time, manufacturers use fuel-saving technology to increase

performance and leave fuel economy unchanged.

5.2 How do tighter standards affect private consumer welfare?
In this subsection, we use our WTP estimates to assess the effect on private consumer

welfare of tightening standards. Klier and Linn (2016) show that tighter standards cause

manufacturers to adopt fuel-saving technology more quickly than they would have if

standards had not tightened. The additional technology adoption raises fuel economy as

well as vehicle production costs and vehicle prices. Klier and Linn (2016) show that the

tighter standards cause manufacturers to trade off performance for fuel economy, despite

the fact that consumers appear to have a high WTP for performance. This trade-off

implies causes performance to be lower than if standards had not tightened.

Undervaluation implies that a marginal increase in the stringency of fuel economy

standards raises private consumer welfare if two conditions hold. The first condition is that

manufacturers equate the technological trade-off between fuel economy and performance to

the ratio of the marginal WTP for performance to the marginal WTP fuel economy. The

second condition is that manufacturers choose levels of performance for each vehicle such
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that the technology cost of increasing performance equals the marginal WTP for

performance.21 If either condition does not hold, tighter standards would reduce

performance, which would cost consumers more than the benefit of higher fuel economy.

The previous subsection suggests that the first condition does not hold, and in this

subsection we show that the second condition does not hold, either.

To estimate the effects of tighter standards on private consumer welfare, this paper focuses

on providing reliable estimates of consumer valuation. For technological trade-offs, as in the

previous subsection we use the estimates from Klier and Linn (2016). We use technology

adoption cost estimates from EPA (2012) and Leard et al. (2016).

For consistency with the marginal WTP estimates, we focus on the changes in vehicle

attributes and prices caused by a 1 percent tightening of the standards in a single year.

The estimates in Klier and Linn (2016) imply that, in response to a 1 percent fuel economy

tightening, manufacturers adopted technology that increased vehicle efficiency and fuel

economy by 0.12 percentage points more than they would have if the standards had not

been tightened. Manufacturers trade off performance for fuel economy to attain the

remaining 0.88 percentage points. Therefore, the total cost of the 1 percent fuel economy

increase includes the cost of adopting the fuel-saving technology, as well as the welfare cost

of the lower performance (i.e., relative to the counterfactual in which performance increases

due to fuel-saving technology adoption). We compare these costs with the present

discounted value of the fuel savings.

In Section 4.2, we reported that this fuel economy increase yields a present discounted

value of fuel savings of $249. Based on technology cost estimates in EPA (2012), Leard

et al. (2016) estimate that increasing fuel economy by 0.12 percent, while holding other

attributes constant, raises costs by $11 per vehicle (this estimate includes the increase in

marginal costs as well as average fixed costs).22 Using the same assumptions as in the

last subsection, the welfare cost of reducing performance to increase fuel economy by 0.88

percent is $347. Therefore, the tighter standards reduce private consumer welfare by $109 per

vehicle, or 0.4 percent of the average transaction price in the sample. The negative estimate

is robust to statistical uncertainty in Klier and Linn (2016) regarding the additional efficiency

improvement; we have redone the calculations using the 95 percent confidence intervals from

Klier and Linn (2016), which yields changes of private consumer welfare of -0.3 to -0.5

21This can be shown using the model in (Klier and Linn 2012) and applying the envelope theorem to a
marginal tightening of the standards.

22Implicit in our analysis is the assumption that manufacturers comply with tighter fuel economy standards
by adopting technology. In practice, they may also reduce the relative prices of vehicles with low fuel economy
(Goldberg 1998), which would reduce the cost relative to our estimate. However, Klier and Linn (2012)
suggest that this effect would be small in magnitude.
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percent. Efficiency improvements would have to account for at least half of the fuel economy

improvement for tighter standards to increase private consumer welfare.

We make two observations about this result. The first is that the estimate is much

different from the estimate one would obtain by ignoring the costs of forgone performance.

Contrary to recent evidence in the literature, in their benefit-cost analysis of the standards

EPA and NHTSA assume that tighter standards do not cause manufacturers to trade off

performance for fuel economy. Instead, to meet the 1 percent fuel economy increase required

in this example, manufactures adopt sufficient fuel-saving technology to increase fuel economy

by 1 percent. Using the same technology cost assumptions as in the preceding calculation,

tighter standards raise vehicle prices by $91 per vehicle. Accounting for the value of the fuel

savings, tightening standards by 1 percent would increase private consumer welfare by $158

per vehicle, or about 0.6 percent of the average transaction price.

Second, the consumer welfare effects depend on the effect of the standards on the rate

of technology adoption. The more that standards increase this rate, the less manufacturers

trade off performance for fuel economy, causing the standards to have less of a negative effect

on consumer welfare. Our estimate of -$109 per vehicle is based on the estimated effect of

standards on technology adoption from the post-2010 time period. Estimates from Klier and

Linn (2016) for earlier periods indicate larger technology adoption effects of tighter standards.

Those estimates imply that tightening standards by 1 percent changes consumer welfare by

-$25 per vehicle, or 0.1 percent of average transaction price. The calculations imply negative

consumer welfare effects and indicate some of the uncertainty around the point estimate

of -$109. Overall, we conclude that tighter standards are unlikely to substantially improve

consumer welfare, and our central estimate is that tighter standards have approximately zero

effect.

These conclusions are subject to several caveats. The technology cost estimates are based

on interpolations described in Leard et al. 2016. The reduction in consumer welfare refers to

the private welfare of new vehicle consumers; it does not include the social benefits arising

from improved energy security or climate—that is, the current standards may increase social

welfare, even if standards do not noticeably increase private consumer welfare. Moreover, this

conclusion does not account for potential induced innovation caused by tighter standards,

market failures associated with insufficient market incentives for innovation (e.g., Fischer

2010; Porter and van der Linde 1995), market failures associated with imperfect competition

(such as the possible underprovision of fuel economy), and interactions between the new and

used vehicle markets (Jacobsen and van Benthem 2015). Finally, the conclusion does not

account for transitional dynamics. Klier and Linn (2016) find that tighter standards increase

the rate of technology adoption, implying that standards may trade off higher fuel economy
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in the near term for lower performance in the long term. Accounting for these effects would

require a dynamic analysis of new vehicle standards, which remains for future research.

5.3 Tighter standards and consumer acceptance
A contentious issue regarding the fuel economy and greenhouse gas emissions standards

is whether the standards reduce overall consumer demand for new vehicles. If the

standards reduce demand, tighter standards could cause some consumers to forgo obtaining

a new vehicle and instead obtain a used vehicle or continue using their existing vehicles

longer than they would have. Lower demand would reduce the total number of new

vehicles that manufacturers sell and their profits. In addition, lower demand would

decrease the rate at which lower-emitting new vehicles replace higher-emitting existing

vehicles, reducing equilibrium social welfare benefits of the standards.

We estimate the effects of tighter standards on consumer demand for a typical new

vehicle—i.e., the marginal change in consumer surplus for the new vehicle—accounting for

changes in vehicle prices, fuel economy, and performance. These calculations are identical

to those used in the previous section, except that we use the WTP for fuel economy to

value the fuel economy increase, rather than the discounted value of the fuel cost savings.

This change is appropriate because consumers choose vehicles based on WTP rather than

the discounted value of fuel savings. This measure is relevant to the effects of standards on

consumer acceptance of new vehicles and aggregate vehicle demand.

Our estimates suggest that tighter standards reduce consumer demand in the short run.

Specifically, tightening standards by 1 percent in our sample causes fuel economy to increase

by the same amount, which increases WTP by $133. However, the same tightening of the

standards raises vehicle prices by $11 and reduces WTP for performance by $347. Overall,

consumer WTP for new vehicles, net of vehicle price, fuel economy, and performance changes,

decreases by $227 per vehicle, or 0.8 percent of the average transaction price.

The result carries the same caveats as in the previous subsection. We leave for future

work quantifying the welfare implications of this effect of fuel economy standards on total

sales.

6 Conclusion
If an energy efficiency gap exists for passenger vehicles, new vehicle fuel economy or

greenhouse gas emissions standards would increase private welfare of new vehicle consumers

and producers. NHTSA and EPA argue that a gap exists and conclude that the benefits of

the fuel savings from existing standards exceed the costs of achieving the standards; these

benefits account for about 70 percent of the total benefits of the standards.
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To draw welfare implications for standards, the literature has assessed whether there is

an energy efficiency gap by asking whether consumers undervalue fuel economy. However,

we argue that the literature has focused narrowly on consumer valuation of fuel economy

and has not considered the welfare costs of forgone performance increases. Manufactures

can use those fuel-saving technologies to increase either fuel economy or performance.

There are certain fuel-saving technologies that manufacturers adopt regardless of whether

standards tighten. If manufacturers use those technologies to increase performance if

standards do not tighten, and if tighter standards cause manufacturers to use those

technologies to increase fuel economy instead of performance, manufacturers forgo the

opportunity to increase performance. The forgone performance reduces consumer welfare,

opposing the positive consumer welfare effect of fuel savings caused by standards. As we

explain, under certain conditions tighter standards could reduce private consumer welfare

even in the presence of undervaluation.

We use a unique data set and novel identification strategy to estimate consumer valuation

of fuel economy and performance. Consumers are willing to pay about 54 cents for $1 of

discounted future fuel savings. This estimate is smaller than Busse et al. (2013) and Allcott

and Wozny (2014), which likely reflects differences in sample period rather than methodology.

The performance estimates imply that consumers pay about $94 for a 1 percent performance

increase, which corresponds to $1,100 for a 1-second reduction in 0-to-60 time.

The estimated undervaluation of fuel economy would seem to suggest that tighter

standards increase private consumer welfare. However, the estimated consumer valuation of

performance is sufficiently large that the entire welfare cost of increasing fuel economy,

including costs of adopting technology and reducing performance, approximately equals the

value of the fuel savings. This conclusion is subject to the caveats we discuss in Section 5.2,

and we note that standards may increase social welfare after accounting for the energy

security and climate benefits.

Our WTP estimates suggest two puzzles related to technology adoption costs. First, the

estimated WTP for a 1 percent performance increase ($394) exceeds the cost of adopting fuel-

saving technology and increasing performance ($89), suggesting that manufacturers should

adopt fuel-saving technology more quickly than they do. Second, the WTP for performance

implies that manufacturers would avoid trading off performance for fuel economy because

consumers value the performance so highly. Yet, the patterns in Table 2 as well as estimates

in Klier and Linn (2016) suggest that manufacturers do make this trade-off when facing

tighter standards. Future research can investigate whether hidden costs, consumer preference

heterogeneity, or other factors explain these apparent puzzles.
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Although fuel economy standards may not increase consumer welfare, other policies could

improve consumer welfare by targeting the cause of the undervaluation. For example, if

consumers lack information about fuel cost savings, and the lack of information causes them

to undervalue savings, then improving information could increase consumer welfare. Future

research could attempt to determine the cause of undervaluation and identify appropriate

policies to correct market failures.

The results have implications for the effects of fuel economy and emissions standards on

demand for new vehicles. Our estimates imply that tightening standards by 1 percent reduces

consumer valuation by 0.8 percent per vehicle, although we suggest that these results should

not be extrapolated far out of sample because they are based on marginal WTP. Future work

could incorporate these effects in a comprehensive welfare analysis of the standards.
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Figures

Figure 1: Fuel Economy, Weight, Horsepower, and Torque by Model Year,
2010–2014

Panel A. Registration-weighted averages
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Notes: Panel A reports registration weighted average fuel economy, weight (in pounds, lb), horsepower, and
torque (newton meters, nm) by model year. Panel B reports percent changes in these variables since the
2010 model year.
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Figure 2: Engine and Transmission Variables by Model Year, 2010–2014
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Note: The figure shows registration-weighted number of cylinders and engine displacement, as well as the
market shares of drive train type and fuel type.
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Figure 3: Market Penetration of Selected Fuel-Saving Technologies, 2010–2014
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Note: The figure reports the the registration-weighted market shares of the engine and transmission variables
used to construct the IVs.
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Figure 4: Monthly Fuel Prices, 2009–2014
Panel A. National average monthly gasoline and diesel fuel prices
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Notes: Panel A shows monthly average national gasoline and diesel fuel prices. Panel B shows monthly
gasoline prices by petroleum administration for defense district. Dashed vertical lines indicate the beginning
of calendar years.
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Figure 5: Vehicle Transaction Prices, 2009–2014
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Figure 6: Effects of Fuel Economy Increase on Equilibrium Prices and Quantities
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Figure 7: Reduced-Form Relationships: Prices and Fuel-Saving Technologies
Panel A. Number of fuel-saving technologies
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Notes: Panel A reports the coefficients on fixed effects for the number of fuel-saving technologies from a regression of log
transaction price on the count fixed effects and the other independent variables from column 3 of Table 3. The number of
technologies is top-coded at five because fewer than 1 percent of observations have more than five technologies. Panel B reports
results from a similar regression, except that the count fixed effects are replaced by fixed effects for each technology. The vertical
lines indicate 95 percent confidence intervals.
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Tables

Table 1: Summary Statistics
Mean Std. dev. Min. Max.

Panel A. Price and vehicle characteristics

Transaction price (2010 USD) 28,693 11,402 5,998 191,622

Fuel economy (miles/gallon) 23.9 6.6 12 50

Horsepower (hp) 226 78 70 662

Torque (newton meter, nm) 306 113 92 856

Weight (pounds, lb) 4,055 1,264 1,808 8,200

Engine displacement (liters) 3.0 1.2 1 8.4

Hybrid 0.05 0.21 0 1

Flex fuel 0.11 0.32 0 1

All-wheel/4-wheel-drive 0.37 0.48 0 1

Panel B. Demographics of respondent

Household size 2.5 1.2 1 6

Age (years) 52.6 15.4 15 99

Male 0.61 0.49 0 1

Urban 0.55 0.50 0 1

Number of unique vehicle models 450

Number of unique vehicle trims 1,351

Number of unique vehicle model-variants 2,166

Number of observations 535,130
Notes: Panel A reports the registration-weighted average, standard deviation, minimum, and maximum of the variables indicated
in the row headings. Engine displacement is the volume of the engine cylinders, in liters. Hybrid, and flex fuel are indicator
variables for whether the vehicle has a hybrid power train, or is capable of using E85 fuel. All-wheel/4-wheel-drive is an
indicator for whether the vehicle has all-wheel- or 4-wheel-drive. A unique model has a unique company name, manufacturer
name, vehicle series name, and vehicle “nameplate” description. A unique trim is a unique model and a unique trim name. A
unique model-variant is a trim with a unique combination of drive train specification (front-wheel-drive, rear-wheel-drive, or
all/4-wheel-drive), fuel type (gasoline, diesel fuel, or other), displacement, and number of cylinders.

Table 2: Annual Percent Growth of Vehicle Attributes by Time Period
Cars Light trucks

Fuel economy Horsepower Weight Fuel economy Horsepower Weight

1996–2000 -0.6 1.9 0.6 0.2 4.0 1.3

2001–2004 0.4 1.8 0.7 -0.6 4.7 3.2

2005–2011 0.2 1.2 0.4 1.0 1.0 -0.3

2012–2015 2.1 0.2 1.2 2.5 0.7 -0.9
Notes: The table reports annual percent growth rates for cars and light trucks by time period. The data are from Leard, Linn,
and McConnell (forthcoming).
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Table 3: Willingness to Pay for Fuel Cost Savings and Performance

(1) (2) (3)

Estimated by OLS OLS IV

Panel A. Dependent variable is log

transaction price

Log fuel cost (dollars/mile) -0.113*** -0.156*** -0.354***

(0.018) (0.020) (0.075)

Log performance (hp/lb or nm/lb) 0.068*** -0.230*** 0.203***

(0.014) (0.020) (0.074)

Model-variant fixed effect Yes Yes

Number of observations 457,525 535,124 535,124

RMSE 0.13 0.13 0.13

F-stat (fuel cost or fuel economy, excl var) - - 185.5

F-stat (performance, excl var) - - 243.4

Panel B. Dependent variable is log new

registrations

Log fuel cost (dollars/mile) -1.651*** -0.636*** -0.338***

(0.119) (0.045) (0.116)

Log performance (hp/lb or nm/lb) -0.578*** -0.030 0.371***

(0.061) (0.028) (0.083)

Model-variant fixed effect Yes Yes

Number of observations 457,525 535,124 535,124

RMSE 0.6 0.39 0.39

F-stat (fuel cost or fuel economy, excl var) - - 112.1

F-stat (performance, excl var) - - 150.1

Panel C. Willingness to pay (2010 USD)

For 1 percent increases in

• fuel economy 190.9 105.6 133.4

• performance 74.7 68.7 93.6

* p<0.10 ** p<0.05 *** p<0.01

Notes: Robust standard errors in parentheses, clustered by vehicle model-by-state. Performance for cars is the ratio of
horsepower to weight and performance for trucks is the ratio of torque to weight. All specifications include as independent
variables fixed effects for number of transmission speeds and a dummy variable for flex fuel capability, as well as the interactions
of these variables with a dummy variable for light trucks. All specifications include fixed effects for state, model year, and
PADD region-month-fuel type, as well as a lease dummy and a CAFE stringency variable interacted with model-year fixed
effects (see text for details). In all price regressions, observations are weighted by the number of registrations, and all quantity
regressions are not weighted. In column 1, regressions include trim fixed effects, displacement, weight, length, width, height,
fuel tank volume, maximum number of passengers, and wheelbase. Column 1 in Panel A includes the number of cylinders and
fixed effects for drive type and fuel type. Column 1 in Panel B includes fixed effects for body type, drive type, and fuel type.
For column 2 and column 3, price regressions include model-variant fixed effects as defined in the Maritz data and Panel B
includes model-variant fixed effects as defined in the IHS data. Column 1 and 2 are estimated by OLS and column 3 by IV.
In column 3, log fuel costs and performance are instrumented using indicator technologies for the fuel-saving technologies from
Figure 3, as well as the interactions of the indicator variables with a light truck indicator variable. First-stage results for price
regressions are in Table B.7, and quantity regressions are in Table B.8. Panel C reports the change in WTP caused by a one
percent increase in fuel economy or performance, assuming an own-price elasticity of demand equal to -3.
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Table 4: Valuation Ratios and Implicit Discount Rates

Our assumptions Busse et al. (2013)

assumptions

Panel A. Valuation ratio (percentage)

Real discount rate = real reported APR 1.3
percent

Demand elasticity = 3

53.6 72.7

Panel B. Implicit discount rate (percentage)

Demand elasticity = 3 12.25 7.30

Notes: Panel A reports the valuation ratio, which is the ratio of the estimated WTP for a 1 percent fuel
economy increase to the present discounted value of future fuel cost savings. Panel B reports the implicit
discount rate, which is the discount rate that results in a valuation ratio of one. Both the valuation ratio and
implicit discount rate are reported in percentages. The first column uses the baseline parameter assumptions
and the second column uses the assumptions from Busse et al. (2013). See text for details on calculations
and parameter assumptions.

Table 5: Implicit Discount Rates Using Busse et al. (2013) Methodology

Assumed demand elasticity Implicit discount rate

Results reported in

Busse et al. (2013)

Our results using

Busse et al. (2013)

methodology

-2 -4.0 2.1

-3 1.0 9.8

-4 5.5 17.6

-5 9.8 25.3

Notes: The implicit discount rate is computed by comparing vehicles in the fourth fuel economy quartile
(highest fuel economy) with vehicles in the first fuel economy quartile (lowest fuel economy) assuming the
own-price demand elasticities indicated in each row. Busse et al. (2013) results are repeated from their Table
9 column “NHTSA VMT and NHTSA PSR” and rows “Q1 versus Q4”. To produce our results using their
methodology, we estimate a price regression in Table B.7 (column 4) and quantity regression in Table B.8.
We convert our estimates to implicit discount rates using the spreadsheet provided by Busse et al. (2013).
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Table 6: Directly Control for Vehicle Quality
(1) (2) (3) (4) (5)

Baseline

Panel A. Dependent variable is log transaction price

Log fuel cost -0.354*** -0.385*** -0.312*** -0.172*** -0.297***

(0.075) (0.078) (0.054) (0.055) (0.056)

Log performance 0.203*** 0.280*** 0.205*** 0.335*** 0.255***

(0.074) (0.041) (0.048) (0.039) (0.045)

Control for vehicle quality Quality

attributes

Consumer

experience

ratings

Model-variant
FE interacted

with model

generation FE

Model-variant
FE interacted

with generation

change dummy

Number of observations 535,124 410,770 454,660 535,124 535,124

RMSE 0.13 0.13 0.13 0.39 0.13

F-stat (fuel cost) 185.5 163.5 174.6 110.0 163.1

F-stat (performance) 243.4 102.1 216.0 206.3 272.0

Panel B. Dependent variable is log new registrations

Log fuel cost -0.338*** -0.860*** -0.319*** -0.722*** -0.258**

(0.116) (0.149) (0.115) (0.154) (0.117)

Log performance 0.371*** 0.353*** 0.320*** 0.298*** 0.362***

(0.083) (0.099) (0.084) (0.074) (0.078)

Control for vehicle quality Quality

attributes

Consumer

experience

ratings

Model-variant
FE interacted

with model

generation FE

Model-variant
FE interacted

with generation

change dummy

Number of observations 535,124 410,770 454,660 535,124 535,124

RMSE 0.39 0.40 0.39 0.39 0.39

F-stat (fuel cost) 112.1 104.5 110.8 110.0 118.4

F-stat (performance) 150.1 229.4 141.9 206.3 210.4

Panel C. Willingness to pay (2010 USD)

For 1 percent increases in

• fuel economy 133.4 192.5 119.7 118.2 109.6

• performance 93.6 113.8 89.2 124.3 107.5

* p<0.10 ** p<0.05 *** p<0.01

Notes: Robust standard errors in parentheses, clustered by vehicle model by state. Column 1 repeats the
baseline in Table 3. Column 2 includes additional characteristics from the Chrome dataset to capture vehicle
quality: number of passengers, passenger volume (cubic ft), cargo volume (cubic ft), , and “moonroof” or
“sunroof” dummy variables. Column 3 adds controls of consumers’ experience rating in the MaritzCX survey
on a scale of 1 to 5: overall appearance; usefulness for carrying passengers; performance of entertainment
system; exterior styling and workmanship; overall front room; interior material including seating and interior
styling; quietness inside the vehicle; well equipped to prevent theft and vandalism; and exterior workmanship
and attention to detail. In column 4, we further interact model-variant fixed effects with model generation
fixed effects. In column 5, we further interact model-variant fixed effects with an indicator if the model is a
new generation in the observed model year.
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Table 7: Including Proxies for Vehicle Quality and Other Sources of Bias
(1) (2) (3) (4) (5) (6) (7)

Baseline

Panel A. Dependent variable is log transaction price

Log fuel cost -0.354*** -0.351*** -0.352*** -0.356*** -0.387*** -0.333*** -0.336***

(0.075) (0.055) (0.056) (0.054) (0.083) (0.055) (0.054)

Log performance 0.203*** 0.221*** 0.228*** 0.207*** 0.200*** 0.215*** 0.210***

(0.074) (0.048) (0.050) (0.046) (0.050) (0.045) (0.047)

Control for

vehicle quality

Demo-

graphic

Demo-

graphic

Richer

time

controls

Drop
CVT,

deactiv-

-ation

Finance control Yes

Drop 2009 Yes

Num. of obs. 535,124 497,867 450,515 535,124 535,124 515,994 507,461

RMSE 0.13 0.13 0.13 0.13 0.13 0.13 0.13

F-stat (fuel cost) 185.5 182.3 181.0 186.3 68.4 187.9 182.8

F-stat (perform.) 243.4 239.9 233.4 247.2 290.8 229.6 229.7

Panel B. Dependent variable is log new registrations

Log fuel cost -0.338*** -0.348*** -0.334*** -0.325*** -0.055 -0.339*** -0.363***

(0.116) (0.116) (0.118) (0.037) (0.142) (0.116) (0.102)

Log performance 0.371*** 0.363*** 0.345*** 0.356*** 0.505*** 0.371*** 0.184**

(0.083) (0.084) (0.083) (0.022) (0.136) (0.083) (0.075)

Control for

vehicle quality

Demo-

graphic

Demo-

graphic

Richer

time

controls

Drop
CVT,

cylinder
deactiv-

-ation

Finance control Yes

Drop 2009 Yes

Num. of obs. 535,124 497,867 450,515 535,124 535,124 515,994 507,461

RMSE 0.39 0.40 0.40 0.39 0.40 0.39 0.38

F-stat (fuel cost) 112.1 111.2 109.2 112.5 77.9 112.9 112.3

F-stat (perform.) 150.1 147.6 143.0 149.5 127.3 149.8 138.2

Panel C. Willingness to pay (2010 USD)

For 1 percent increases in

• fuel economy 133.4 133.7 132.6 132.9 116.0 127.7 130.8

• performance 93.6 97.2 98.1 93.2 105.4 96.9 77.6

* p<0.10 ** p<0.05 *** p<0.01
Notes: Robust standard errors in parentheses, clustered by vehicle model by state. Column 1 repeats the baseline in Table
3. Column 2 adds to column 1 six demographic controls: respondent’s age, household size, indicator for male, urbanization
indicator, 12 respondent education group fixed effects, and 23 household income group fixed effects. Column 3 adds to column
2 five additional demographic controls: number of wage earners, number of children, indicator equaling one if the respondent’s
spouse is employed, six respondent race fixed effects, and 20 respondent occupation fixed effects. Column 4 includes state by
model-year fixed effects and state by month-of-year fixed effects. In column 5, we drop continuously variable transmission,
cylinder deactivation, and their interactions with truck as instruments. In column 6, we include fixed effects for financing source
(arrange own financing, finance via dealership, or do not finance) and fixed effects for payment type (automaker’s loan/lease,
bank loan/lease, friend/relative, cash, credit union loan, another finance company loan/lease, or other). In column 7, we drop
observations if a transaction took place in 2009.
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Appendix for Online Publication

A Vehicle Miles Traveled and Survival Rate

A.1 Vehicle Miles Traveled Schedules
We estimate vehicle miles traveled (VMT) over the lifetime of each vehicle by building on the

models presented in Lu (2006). The data source we use to estimate VMT schedules is the 2009

National Household Travel Survey (NHTS). We use the publicly available data files on vehicle and

household information, which contain 309,163 individual vehicles held by 150,147 surveyed

households. We estimate the relationship between VMT and two variables: vehicle age and

household income. We include household income as a covariate to account for the effect that the

recession had on driving. We follow Lu (2006) in specifying a cubic relationship between VMT

and vehicle age, where vehicle age is measured in years. We take a semi parametric approach in

specifying the relationship between VMT and household income. We create 13 bins of household

income, which correspond to bins present in both the NHTS and Maritz survey data, and we

aggregate bins where necessary to make the bins consistent between the surveys. Furthermore, we

convert income bins from the NHTS to 2014$ corresponding to bins in the 2014 wave of the

Maritz survey data. We do this to be able to apply our estimated VMT model to households in

the Maritz data, which we convert all incomes to 2014$. We estimate a separate intercept for each

income group by regressing VMT on a fixed effect for each group. We also interact these fixed

effects with a linear age variable to capture differences in VMT across income groups for different

vehicle vintages. The interaction effects model the possibility that household driving intensity

over the lifetime of a vehicle varies by income. Following Lu (2006), we estimate separate VMT

models for cars and light trucks. We aggregate vehicle/household level observations to vehicle age

by household income bin averages, giving us a total of 869 and 785 observations for the car and

light truck specifications, respectively. The estimates for both models appear in Appendix Table

B.11.

The estimates are plausible and most are statistically significant. For both vehicle classes, VMT

increases with household income. The vehicle age/household income interaction terms are mostly

negative and significant and are decreasing in household income. This implies that the marginal

reduction in VMT from a vehicle aging by one year is larger for high-income households. This seems

plausible given the preferences that high income households have for driving new vehicles more

frequently by substituting miles away from their older vehicles to their newer vehicles. Conversely,

low-income households tend to keep vehicles longer and drive them more when they are older. This

relationship is apparent by plotting VMT schedules as a function of vehicle age for high- and low-

income groups. Appendix Figure A.1 illustrates this effect for cars and light trucks, respectively.

To account for the effect of fuel prices on VMT, we adjust the estimated VMT schedules by the

change in national average fuel prices between the period of the 2009 NHTS (March 2008 to April

2009) and each year of the Maritz sample, assuming an elasticity of VMT to fuel prices of -0.1.
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Figure A.1: Estimated Vehicle Miles Traveled by Vehicle Age and Household
Income

Passenger cars Light trucks

A.2 Vehicle Survival Schedules
We update the vehicle survival schedules in Lu (2006) using R. L. Polk data on vehicle

registrations from 2002 to 2014. The R.L. Polk data are disaggregated by vehicle class (e.g., car

and light truck), vehicle age, and year, where registrations are recorded for each vehicle age up to

age 14. We drop observations with age 1 due to the increase in some vehicle counts from vehicle

ages 1 and 2 across consecutive years, which would imply survival rates above 1. We estimate the

following model:

ageit = γ0 + γ1 ln(− ln(1 − rateit))

The variable is the survival rate of vehicles of age in year and is computed as the number of registered

vehicles of age in year divided by the number of registered vehicles of age in year. Inverting the

above equation yields a model that is comparable to the coefficient estimates in Lu (2006):

rateit = 1 − exp(− exp(−γ0/γ1 + ageit/γ1))

Defining A = −γ0/γ1 and B = 1/γ1, Appendix Table B.12 presents estimates comparable to Lu

(2006).

Appendix Figure A.2 plots the survival schedules for cars and light trucks, respectively. The

figure illustrates that cars and light trucks are lasting longer than they have been historically. This

is consistent with Lu (2006), who documents longer survival schedules than earlier time periods.

The figures also highlight the importance of using more recent data for estimating vehicle survival

schedules, as the newer data suggest greater VMT–and hence greater expected fuel costs–over

vehicle lifetimes.
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Figure A.2: Vehicle Survivability Schedule
Passenger cars Light trucks
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B Additional Summary Statistics, First-stage Results,

and Robust Results

Figure B.1: Distributions of Income and Education
Panel A. Household income
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Table B.1: Summary Statistics on Financing and Purchase Terms, 2009–2014
Payment method Share of

vehicles (%)

Annual

percentage rate

(%)

Length

(months)

Monthly

payment

(USD)

Down

payment

(USD)

Panel A. Purchased

1. Financed 63.7 3.34 59.6 471 2,884

2. Cash 23.6 NA NA NA NA

Panel B. Leased 12.7 NA 37.0 423 9,417

Notes: Annual percentage rate, length of the loan or lease, and payment information are weighted by
registrations.

Table B.2: First-Stage Coefficient Estimates from Baseline Price Specification

Dependent variable Log fuel cost Log performance

Supercharger 0.013** (0.006) 0.156*** (0.003)

Turbocharger -0.006** (0.003) 0.086*** (0.027)

Gasoline direct injection -0.055*** (0.007) 0.070*** (0.004)

Var. valve lift and timing 0.023*** (0.005) 0.001 (0.002)

Cylinder deactivation 0.033*** (0.006) 0.006*** (0.002)

Cont. variable transmission -0.126*** (0.004) -0.035*** (0.006)

Advanced transmission -0.024*** (0.004) -0.011*** (0.004)

Supercharger × truck -0.002 (0.007) -0.177*** (0.019)

Turbocharger× truck -0.029*** (0.007) 0.110*** (0.031)

Gasoline direct inject. × truck 0.056*** (0.009) -0.042*** (0.005)

Var. valve lift and timing × truck -0.088*** (0.006) 0.021*** (0.004)

Cylinder deactivation × truck -0.015** (0.006) -0.014*** (0.002)

Cont. variable transmission × truck 0.026*** (0.007) 0.047*** (0.006)

Advanced transmission × truck -0.019*** (0.005) 0.002 (0.005)

Num. of observations 535,124 535,124

F-stat (1st stg excl var.) 185.5 243.4

* p<0.10 ** p<0.05 *** p<0.01

Notes: Robust standard errors in parentheses, clustered by vehicle model and state. The table reports the
first stage coefficient estimates for the baseline specification from column 3 of Table 3, Panel A. The bottom
row reports the F-statistic on the test that the instruments are jointly equal to zero.
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Table B.3: First Stage Coefficient Estimates from Baseline Quantity Specification

Dependent variable Log fuel cost Log performance

Supercharger 0.053*** (0.014) 0.270*** (0.021)

Turbocharger -0.081*** (0.006) -0.033*** (0.012)

Gasoline direct injection 0.016*** (0.005) 0.103*** (0.009)

Var. valve lift and timing -0.033*** (0.008) 0.006 (0.009)

Cylinder deactivation 0.109*** (0.007) 0.216*** (0.011)

Cont. variable transmission -0.096*** (0.009) -0.056*** (0.011)

Advanced transmission 0.007* (0.004) -0.014 (0.008)

Supercharger × truck -0.066*** (0.021) -0.098*** (0.023)

Turbocharger × truck -0.020* (0.010) 0.149*** (0.015)

Gasoline direct inject. × truck -0.004 (0.008) -0.093*** (0.012)

Var. valve lift and timing × truck 0.040*** (0.010) 0.014 (0.012)

Cylinder deactivation × truck -0.076*** (0.008) -0.102*** (0.014)

Cont. variable transmission × truck 0.071*** (0.015) 0.024* (0.013)

Advanced transmission × truck -0.008*** (0.001) 0.005*** (0.001)

Num. of observations 535,124 535,124

F-stat (1st stg excl var.) 112.1 150.1

* p<0.10 ** p<0.05 *** p<0.01.

Notes: Robust standard errors in parentheses, clustered by vehicle model and state. The table reports the
first stage coefficient estimates for the baseline specification from column 3 of Table 3, Panel B. The bottom
row reports the F statistic on the test that the instruments are jointly equal to zero.

Table B.4: Composition of Willingness to Pay for Fuel Cost Savings and
Performance

Willingness to pay (2010 USD) for 1 percent increases in Fuel economy Performance

(1) (2)

Panel A. WTP (Baseline)

• price effect l1 101.2 58.2

[98.5, 104.0] [56.1, 60.3]

• quantity effect l2, assuming elasticity = 3 32.2 35.4

[28.3, 35.9] [31.3, 39.2]

• overall equilibrium effect, assuming elasticity = 3 133.4 93.6

Panel B. Average alternative elasticity

• overall equilibrium effect, assuming elasticity = 2 149.5 111.3

• overall equilibrium effect, assuming elasticity = 4 125.4 84.7

• overall equilibrium effect, assuming elasticity = 5 120.5 79.4

Notes: For equilibrium price effect l1 and additional price from quantity effect l2, we report 95% confidence
interval in parentheses using delta method.
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Table B.5: Assumptions for Implicit Discount Rate Calculations
Our assumptions Assumptions of Busse et al. (2013)

Vehicle age

(years)

VMT

cars

VMT

trucks

Survival

rate cars

Survival

rate trucks

VMT

cars

VMT

trucks

Survival

rate cars

Survival

rate trucks

1 13,379 14,821 0.9972 0.9982 14,231 16,085 0.9900 0.9741

2 12,963 14,334 0.9944 0.9964 13,961 15,782 0.9831 0.9603

3 12,563 13,864 0.9897 0.9933 13,669 15,442 0.9731 0.9420

4 12,179 13,409 0.9823 0.9885 13,357 15,069 0.9593 0.9190

5 11,810 12,969 0.9714 0.9813 13,028 14,667 0.9413 0.8913

6 11,456 12,545 0.9564 0.9711 12,683 14,239 0.9188 0.8590

7 11,117 12,136 0.9367 0.9574 12,325 13,790 0.8918 0.8226

8 10,792 11,742 0.9122 0.9399 11,956 13,323 0.8604 0.7827

9 10,482 11,363 0.8828 0.9184 11,578 12,844 0.8252 0.7401

10 10,185 10,997 0.8488 0.8927 11,193 12,356 0.7866 0.6956

11 9,902 10,646 0.8168 0.8724 10,804 11,863 0.7170 0.6501

12 9,633 10,309 0.7650 0.8345 10,413 11,369 0.6125 0.6040

13 9,376 9
”
985 0.7093 0.7922 10,022 10,879 0.5094 0.5517

14 9,131 9675 0.6515 0.7466 9,633 10,396 0.4142 0.5009

15 8,900 9,377 0.5932 0.6986 9,249 9,924 0.3308 0.4522

16 8,680 9,093 0.5357 0.6493 8,871 9,468 0.2604 0.4062

17 8,471 8,821 0.4804 0.5996 8,502 9,032 0.2028 0.3633

18 8,274 8
”
561 0.4280 0.5505 8,144 8,619 0.1565 0.3236

19 8,088 8314 0.3791 0.5027 7,799 8,234 0.1200 0.2873

20 7,913 8,078 0.3341 0.4568 7,469 7,881 0.0916 0.2542

21 7,748 7,854 0.2931 0.4133 7,157 7,565 0.0696 0.2244

22 7,593 7,642 0.2562 0.3724 6,866 7,288 0.0527 0.1975

23 7,448 7,440 0.2231 0.3343 6,596 7,055 0.0399 0.1735

24 7,312 7,250 0.1938 0.2992 6,350 6,871 0.0301 0.1522

25 7,186 7,070 0.1679 0.2670 6,131 6,739 0.0227 0.1332

26 7,068 6
”
900 0.1451 0.2377 6,663 0.1165

27 6,959 6,740 0.1252 0.2111 6,648 0.1017

28 6,857 6,591 0.1079 0.1871 6,648 0.0887

29 6,764 6,451 0.0928 0.1655 6,648 0.0773

30 6,678 6,320 0.0797 0.1462 6,648 0.0673

31 6,600 6,199 0.0684 0.1290 6,648 0.0586

32 6,528 6,086 0.0587 0.1137 6,648 0.0509

33 6,463 5,982 0.0503 0.1001 6,648 0.0443

34 6,404 5,887 0.0431 0.0880 6,648 0.0385

35 6,352 5,800 0.0369 0.0773 6,648 0.0334

36 5,720 0.0679 6,648 0.0290

37 5,648 0.0596

38 5,584 0.0522

39 5,527 0.0458

40 5,477 0.0401

Notes: The table reports the estimated vehicle miles traveled (VMT) and survival probability for cars and light trucks by vehicle
age. Our estimates are from the 2009 wave of the National Household Travel Survey following the methodology of Lu (2006).
The four columns on the right of the table show the assumptions from Busse et al. (2013).



Table B.6: Alternative Assumptions for Computing Valuation Ratios and Implicit
Discount Rates

Our assumptions

of VMT and

survival

probability

Assumptions of Busse

et al. (2013)

Panel A. Valuation ratio (percentage)

A.1 Alternative demand elasticity

A.1.1 Real discount rate = 1.3 percent, demand elasticity

= 2

60.0 81.4

A.1.2 Real discount rate = 1.3 percent, demand elasticity

= 3 (base)

53.6 73.0

A.1.3 Real discount rate = 1.3 percent, demand elasticity

= 4

50.3 68.3

A.1.4 Real discount rate = 1.3 percent, demand elasticity

= 5

48.4 65.6

A.2 Alternative real discount rate

A.2.1 Real discount rate = 1.3 percent, demand elasticity

= 3 (base)

53.6 73.0

A.2.2 Real discount rate = 5 percent, demand elasticity = 3 69.1 89.5

A.2.3 Real discount rate = 7 percent, demand elasticity = 3 77.7 98.6

A.2.4 Real discount rate = 10 percent, demand elasticity =

3

90.4 112.4

A.2.4 Real discount rate = 12 percent, demand elasticity =

3

98.9 121.5

A.3 Alternative future gasoline price assumptions

A.3.1 Gasoline price follows random walk (base) 53.6 72.7

A.3.1 Gasoline price follow EIA AEO projection 57.2 77.6

Panel B. Implicit discount rate (percentage)

Alternative demand elasticity

B.1 Real discount rate = 1.3 percent, demand elasticity = 2 9.72 4.95

B.2 Real discount rate = 1.3 percent, demand elasticity =

3 (base)

12.25 7.30

B.3 Real discount rate = 1.3 percent, demand elasticity = 4 13.79 8.71

B.4 Real discount rate = 1.3 percent, demand elasticity = 5 14.83 9.63

Notes: The table reports valuation ratios in Panel A and implicit discount rates in Panel B, in percentages. The calculations
use the same assumptions as in Table 4, except as indicated in the column and row headings.



Table B.7: Price Regression Using Busse et al. (2013) Methodology

Dependent variable: price (1) (2) (3) (4)

Gas prices × MPG quartile 1 (least efficient) -142.052*** -149.354*** -104.193*** -112.484***

(25.341) (25.611) (23.813) (24.062)

Gas prices × MPG quartile 2 -22.614* -25.443** -20.104* -24.213**

(11.584) (11.171) (11.102) (10.967)

Gas prices × MPG quartile 3 -40.029** -40.828** -37.303** -38.539**

(15.435) (17.662) (16.854) (18.531)

Gas prices × MPG quartile 4 (most efficient) 25.754 31.412* 6.596 12.342

(16.824) (18.694) (18.303) (20.767)

State FE Yes Yes

Model-year FE Yes Yes

Month-of-year FE Yes Yes

State × year FE Yes Yes

State × month-of-year FE Yes Yes

Include demographics Yes Yes

Number of observations 535,130 457,324 535,130 457,324

R-squared 0.90 0.90 0.90 0.90

Differences in WTP of Q1 versus Q4 $167 $180 $110 $135

* p<0.10 ** p<0.05 *** p<0.01

Notes: Standard errors in parentheses, clustered by trim. The specifications are similar to Busse et al. (2013).
The dependent variable is the transaction price, and the reported independent variables are interactions of the
fuel price with fixed effects for the vehicle’s fuel economy quartile. Observations are weighted by registrations,
and regressions include model-variant fixed effects as well as the fixed effects indicated at the bottom of the
table.

Table B.8: Quantity Regressions Using Busse et al. (2013) Methodology

Dependent variable: quantity Coef. SE Average new cars

registered per

month per state

(100)

Percentage

change

Gas prices × MPG quartile 1 (least efficient) -6.353*** (1.928) 87.99 17.41

Gas prices × MPG quartile 2 -3.479* (2.057) 96.62 20.47

Gas prices × MPG quartile 3 8.848*** (2.489) 109.73 24.27

Gas prices × MPG quartile 4 (most efficient) 25.442*** (5.668) 122.57 30.84

Number of observations 12,182

R-squared 0.87

* p<0.10 ** p<0.05 *** p<0.01

Notes: Standard errors in parentheses, robust to heteroskedasticity. The regression follows the Busse et al.
(2013) methodology reported in their Tables 6 and 7. The dependent variable is the registrations by fuel
economy quartile, state, and month. The regression reported in this table includes interactions of state fixed
effects and transaction year fixed effects, interactions of state fixed effects and month of year fixed effects,
and fuel economy quartile fixed effects. Observations are weighted by registrations.
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Table B.9: Baseline WTP by Expected Vehicle Miles Traveled (VMT)
(1) (2)

Baseline

Panel A. Dependent variable is log transaction price

Log fuel cost -0.354*** 2.894***

(0.075) (0.785)

Expected VMT (in 1 million miles) -35.329***

(8.564)

Log fuel cost × expected VMT -17.508***

(4.251)

Log performance 0.203*** 0.176***

(0.074) (0.050)

Number of observations 535,124 450,635

RMSE 0.13 0.14

F-stat (fuel cost) 185.5 185.5

F-stat (fuel cost by VMT) 188.6

F-stat (performance) 243.4 243.4

Panel B. Dependent variable is log new registrations

Log fuel cost -0.338*** -13.131***

(0.116) (3.695)

Expected VMT (in 1 million miles) 133.401***

(38.981)

Log fuel cost × expected VMT 67.245***

(19.642)

Log performance 0.371*** 0.498***

(0.083) (0.086)

Number of observations 535,124 450,635

RMSE 0.39 0.43

F-stat (fuel cost) 112.1 112.1

F-stat (fuel cost by VMT)

F-stat (performance) 150.1 150.1

Panel C. Willingness to pay (2010 USD)

For 1 percent increases in

• fuel economy 133.4

at average VMT at 0.19 million miles 156.3

with one s.d. of VMT at 0.01 million miles [141.3, 172.0]

• performance 93.6 97.9

* p<0.10 ** p<0.05 *** p<0.01

Notes: Robust standard errors in parentheses, clustered by vehicle model by state. Column 1 repeats the
baseline in Table 3. In column 2, we include expected lifetime VMT as an exogenous variable and its
interaction with fuel costs as an endogenous variable. The lifetime VMT depends on household income
group and broad market segment (car or truck). We construct it from survival data and annual VMT data
as described in Section A.1.
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Table B.10: Alternative Measure for Performance

Dependent variable: log price or quantity (1) (2)

Baseline

Panel A. Price regression estimates

Log fuel cost -0.354*** -0.334***

(0.075) (0.111)

Log performance (hp/lb, or nm/lb) 0.203***

(0.074)

Log performance (hp/lb) 0.217*

(0.123)

Number of observations 535,124 535,130

RMSE 0.13 0.13

F-stat (fuel cost) 185.5 19.1

F-stat (performance) 243.4 98.0

Panel B. Quantity regression estimates

Log fuel cost -0.338*** -0.580***

(0.116) (0.038)

Log performance (hp/lb, or nm/lb) 0.371***

(0.083)

Log performance (hp/lb) 0.589***

(0.026)

Number of observations 535,124 535,130

RMSE 0.39 0.40

F-stat (fuel cost) 112.1 1540.2

F-stat (performance) 150.1 2047.9

* p<0.10 ** p<0.05 *** p<0.01.

Notes: Standard errors in parentheses, clustered by trim. Column 1 repeats the baseline. Column 2 use
horsepower-to-weight ratio for all vehicles. Column 2 uses torque-to-weight ratio for all vehicles.
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Table B.11: Estimates for Predicting Vehicle Miles Traveled

Dep. var.: vehicle miles traveled (1) (2)

Variables Cars Light truck

Vehicle age -298.5*** (16.87) -341.0*** (21.61)

Vehicle age squared 6.493*** (0.582) 5.013*** (0.839)

Vehicle age cubed -0.0391*** (0.00698) -0.0152 (0.0110)

Household income $20,000-$25,000 -206.2 (258.2) -538.1* (322.5)

Household income $25,000-$30,000 810.5*** (252.5) -258.2 (319.3)

Household income $30,000-$35,000 557.0** (232.4) 37.95 (284.9)

Household income $35,000-$40,000 1,607*** (262.1) 710.3** (328.7)

Household income $40,000-$45,000 1,099*** (225.5) 953.9*** (277.1)

Household income $45,000-$50,000 2,132*** (257.6) 1,651*** (327.5)

Household income $50,000-$55,000 2,096*** (227.5) 1,331*** (276.1)

Household income $55,000-$65,000 2,608*** (207.6) 1,883*** (261.6)

Household income $65,000-$75,000 2,878*** (216.3) 1,988*** (262.4)

Household income $75,000-$85,000 3,061*** (213.3) 2,311*** (262.8)

Household income $85,000-$100,000 3,647*** (201.8) 2,828*** (249.5)

Household income >$100,000 3,526*** (182.8) 3,098*** (231.3)

Vehicle age x household income $20,000-$25,000 21.99 (19.35) 27.94 (22.45)

Vehicle age x household income $25,000-$30,000 -45.81** (18.53) 7.359 (21.73)

Vehicle age x household income $30,000-$35,000 -12.81 (17.57) -13.43 (19.01)

Vehicle age x household income $35,000-$40,000 -50.82** (20.03) -21.02 (24.13)

Vehicle age x household income $40,000-$45,000 -25.37 (16.73) -52.54*** (19.57)

Vehicle age x household income $45,000-$50,000 -80.87*** (20.01) -65.82*** (25.24)

Vehicle age x household income $50,000-$55,000 -71.09*** (17.42) -68.50*** (17.42)

Vehicle age x household income $55,000-$65,000 -86.40*** (15.27) -82.73*** (19.13)

Vehicle age x household income $65,000-$75,000 -88.93*** (16.78) -88.46*** (19.75)

Vehicle age x household income $75,000-$85,000 -94.87*** (16.25) -91.95*** (20.13)

Vehicle age x household income $85,000-$100,000 -119.1*** (15.16) -111.6*** (18.92)

Vehicle age x household income >$100,000 -125.9*** (13.64) -131.2*** (16.74)

Constant 11,069*** (177.7) 12,937*** (228.6)

Observations 869 785

R-squared 0.893 0.905

* p<0.10 ** p<0.05 *** p<0.01

Table B.12: Estimates for Survival Rate

(1) (2)

Cars Light truck

Age ≤ 10 Age > 10 Age ≤ 10 Age > 10

A = −γ0/γ1 1.90 2.28 1.96 2.21

B = 1/γ1 -0.13 -0.16 -0.12 -0.14
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