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Abstract 

 

This paper examines the risk-avoidance behaviors of households in response to environmental 

hazards using the transboundary haze caused by forest fires in Indonesia as an exogenous shock. 

Using a unique panel dataset of hourly water consumption at the household level, monthly 

electricity consumption at the building level, and daily hotel performance indices obtained from 

multiple sources, this study finds significant positive responses in household utilities consumptions 

and economic losses in the hotel industry when transboundary haze occurs in Singapore. This 

study offers three key findings. First, we find evidence from the within-the-day variations and 

between the weekday to weekend variations in household water consumption that confirms the 

risk-avoidance responses of households during haze periods. People stay indoors to minimize their 

exposure to the possible health risks caused by the haze pollutants. These findings are robust to 

numerous specification checks as well as to when the perceived risk measures obtained from social 

media are used. Second, we find the long-term persistence of household responses via the high 

electricity consumption during the two-month haze period; however, electricity consumption 

responses revert to normal after the haze dissipates. Third, the hotel industry suffers significant 

losses during the haze period, which is evidence that could suggest the risk-avoidance of foreign 

visitors, who are informed of the transboundary haze alerts.  
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Risk-Avoidance and Environmental Hazard: Effects of Transboundary Haze Pollution in 

Singapore  

 

1. Introduction 

 

Open burning performed by irresponsible companies to clear forests for agricultural purposes has 

been a main cause of the massive wildfires seen in some countries. However, while the burning-

related air pollution is mostly caused by local sources of emissions, containing pollutants generated 

by forest fires, such as dust, haze, smoke, and toxic gases, within the source region is difficult. The 

prevailing winds can blow the airborne pollutants to faraway areas, giving rise to transboundary 

air pollution.  

                                            

The recent episodes of forest fires in Indonesia in October 2015 generated intense haze that 

shrouded not only the skies of Indonesia but also those of its closest neighbors, Singapore and 

Malaysia. Based on the sources cited by the Wall Street Journal,1 the Indonesian government alone 

incurred an estimated US$14 billion in haze-related economic losses, environmental damage, 

health expenses, and business losses.2 Moreover, Singapore is periodically affected by severe 

smoke haze from forest fires in the neighboring Indonesia. The haze crisis not only had adverse 

economic consequences for the Indonesian economy but also caused significant negative external 

consequences in its neighboring countries. The high concentrations of pollutants, especially that 

of the suspended particulate matter (PM), increase respiratory-related illnesses, while the poor 

visibility of haze-clouded skies can cause the grounding of flights. Further, the Ministry of 

Education of Singapore closed schools and rescheduled school examinations as mitigating 

measures to prevent haze-related health risks.3  

 

While prior research has mainly focused on the issues of air pollution in the US, limited studies 

have been conducted in other countries, especially in Southeast Asia, where the air pollution 

caused by forest fires has become rampant in recent years (Jayachandran, 2009; Rosales and 

Triyana, 2016). This paper extends the existing literature by addressing the issue of transboundary 

air pollution in Southeast Asia. Our study uses the haze crises of Indonesia as random exogenous 

shocks to set up a natural experiment to assess the direct impact of air pollution on the daily 

activities of local households. We use a unique dataset of household utilities consumption to 

rigorously test the environmental externalities and the risk-avoidance behavior of urban dwellers.  

 

The major challenge facing many studies on urban environmental risks is finding ways to 

disentangle the endogenous relationships between air pollution and human activities. The two 

events are highly correlated with coincident weather conditions, seasonal trends, and local 

economic activities.4 Instruments including the boat arrivals at the Port of Los Angeles (Moretti 

and Neidell, 2011) and the Clean Air Act Amendments (Greenstone, 2002; Chay and Greenstone, 

                                                        
1  A press release was issued on September 24, 2015 by the MOE of Singapore to close kindergartens, primary, 

secondary and special education schools on September 25, 2015.  
2  Source: “The numbers: Indonesia’s Haze”, the Wall Street Journal, October 27, 2015. 
3  Another unofficial source estimated the costs associated with Indonesia’s haze events to be as high as US$47 

billion. (Source: Francis Chan, “$47b? Indonesia counts costs of haze”, The Straits Times, October 11, 2015.) 
4  Graff Zivin and Neidell (2013) provide a comprehensive review of the environmental risk impacts on human health, 

and Deschenes (2012) reviews the literature that relates human health outcomes to temperature and temperature 

extreme adaptions. 
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2003; Bento, Freedman, and Lang, 2015) have been used in environment-related studies to 

simulate exogenous shocks. The transboundary haze events in Indonesia, which are likely to 

generate unanticipated negative and immediate reversal effects on human activities, are used as 

exogenous shocks in our natural experimental study.5 The exogenous haze shocks generated by 

forest fires in Indonesia are captured by the 24-hour Pollutant Standard Index (PSI). The National 

Environment Agency (NEA) in Singapore provides the 24-hour PSI readings, an hourly measure 

over a rolling 24-hour period, between January 1, 2012 and December 31, 2015. The fluctuations 

are independent of local economic activities and seasonal changes, but are correlated with the 

forest fires in neighboring Indonesia. To control for other weather confounders, we also collect 

weather data from The Weather Company (on an hourly interval) and Meteorological Service 

Singapore (on a monthly interval).  

 

Our empirical strategy exploits the random and high-frequency fluctuations in ambient air quality 

during the haze periods and tests whether the haze shocks significantly influence daily human 

activities and risk-avoidance behavior. We merge several unique datasets, which include two 

datasets on household utility consumption (at an hourly and monthly frequency) and one on the 

daily hotel performance in Singapore, to characterize the relationships between air pollution and 

human activities. 

 

There are three key findings from our analyses. First, based on a unique dataset provided by the 

Singapore Public Utilities Board (PUB), which contains detailed information of the hourly water 

consumption of 376 households from January 1, 2012 to December 31, 2014, we find that a 100% 

increase in the hourly 24-hour PSI reading is associated with an average water consumption 

increase of 5.1%. Based on the evidence from the same-day (daytime versus nighttime effects) and 

same-week variations (weekday versus weekend effects) of household water consumption, we also 

find that haze events increase water consumption significantly on weekday nights and weekends. 

The results support not only the positive haze effects on water consumption but also, more 

importantly, the positive responses of weekday-night and weekend-day water consumption, 

implying that households have reduced their exposure to air-pollution risks by staying indoors 

during weekday nights and weekend days. The results support the presence of risk-avoidance 

behaviors of households and remain robust after controlling for various confounders, such as “bad” 

weather conditions and peak-hour and off-peak-hour consumptions. In our heterogeneity tests, we 

find that water-consumption responses vary with race, such that Malay households show stronger 

consumption responses relative to those of Chinese and Indian households. We also use detailed 

data from a social media website (Twitter) to study the emotional and sentiment responses6 of 

households during the haze periods and their effects on household utility consumption. Our 

findings affirm that the negative sentiment related to haze could significantly predict increases in 

water consumption.  

 

                                                        
5  A temporary and exogenous shock is similar to the mechanisms widely used in behavioral experiments. For 

example, using the two-week shutdown of the US Federal Government in 2013 to examine a temporary and 

exogenous liquidity shock in a difference-in-differences setup, Gelman et al. (2016) studied the consumption 

responses of affected employees and found that most households have mechanisms to smooth consumption to cope 

with income and liquidity shocks. 
6  Bayer et al. (2009) and Smith and Huang (1995) argue that an individual’s behavior is dependent on perceived 

risk, rather than objective risk. Perceived risk considers the emotions and sentiments of an individual easily 

influenced by information on social media, such as Twitter. 
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The second finding presents a longer period (monthly) of household responses to haze and their 

effects on electricity usage. Based on the monthly electricity data for all the public and private 

residential buildings (based on 15,315 unique postal codes7) in Singapore for the period of January 

2013 to December 2015, as collected from the Energy Market Authority (EMA), our analysis 

reveals a statistically significant positive impact of the monthly average 24-hour PSI readings on 

household electricity consumption. A 100% increase in the monthly average 24-hour PSI readings 

is associated with an average electricity consumption increase of 2.34%. Our dynamic analysis of 

the long-term air-pollution effects shows significantly longer persistence of electricity 

consumption behavior than water-consumption behavior. While the households revert back to their 

original water-consumption behaviors one week after experiencing a short-term haze shock, the 

long-term haze episodes, which last for two months, impact the household electricity consumption 

habits, causing electricity consumption levels to continue rising over the two months following the 

long-term shocks.   

 

Third, we use the daily data of the hotel room prices and occupancy rates from a large sample of 

hotels in Singapore from the hotel data company Smith Travel Research (STR) as proxies of 

economic outcomes. We show that when the one-day-lagged and daily averages of the 24-hour 

PSI readings double, the average daily hotel room rates decline by 1.99% and 1.54%, respectively, 

across the hotels by class segment. Moreover, the haze outbreaks significantly influence hotel 

room demand. In particular, we find that the haze measurements do not affect the hotel occupancy 

levels of the same day due to the cancellation penalty that is in place at most hotels. However, 

hotel demand is significantly affected by the lagged haze measures, such that the coefficients 

remain economically and statistically significant for up to a six-day lag. The results imply that the 

risk-avoidance behavior is not only observed by local residents but also by foreigners, who avoid 

visits to Singapore during the haze periods to lower their haze-related health risks.  

 

This study presents the estimated economic costs associated with the transboundary haze in 

Singapore. Following the traditional manner of assessing environmental externalities and 

providing a lower bound of the estimated costs of these environmental externalities (Bento, 

Freedman, and Lang, 2015; Currie et al., 2015; Chang, Zivin, Gross, and Neidell, 2016), the back-

of-the-envelope estimations show that when a heavy-haze shock occurs (the 24-hour PSI reading 

increases from 60 to 300 and persists for one month, similar to the haze event in 2015), 

Singaporean household water spending increases by $12.99 million, and electricity spending 

increases by $11.67 million, while the revenues of Singapore’s hoteliers decrease by $5.20 million. 

This study demonstrates important policy implications for the governments related to the 

importance of international collaborations in the prevention and mitigation of forest fires and haze.  

Moreover, this paper makes three contributions to environmental and air-pollution literature. First, 

this is the first attempt to find significant evidence of the transboundary air-pollution effects on 

daily human activities in Southeast Asia. Unlike the earlier studies that use local or regional 

sources of pollution emissions as exogenous shocks, the haze used in our natural experiment was 

emitted by Indonesian forest fires and traveled across the country’s border to cloud Singapore’s 

skies, creating a clean and exogenous instrument (shock). We do not need to explicitly control for 

the confounding effects associated with local economic activities (Moretti and Neidell, 2011) or 

sorting by residents (Chay and Greenstone, 2003a, 2003b, 2005) and firms (Greenstone, 2002). 

                                                        
7 In Singapore, every building is given a unique postal code.  
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Furthermore, the tropical climates of Singapore and Indonesia reduce the effects of extreme 

seasonal and intraday temperature variations that may affect the causal effects of the transboundary 

haze in Indonesia on human daily activities during the tests.  

Second, we present new evidence of humans’ risk-avoidance behavior in response to the 

transboundary haze pollution using within-the-day (daytime and nighttime) and between-the-day 

(weekday and weekend) variations of their utilities consumption. When the haze level, as indicated 

by the 24-hour PSI readings, reaches an unhealthy range, we observe avoidance and mitigation 

behaviors. People reduce their exposure to haze risks by staying at home more after working on 

weekdays, by avoiding outdoor family outings on weekends when haze readings reach alarming 

levels, and by consuming more water and electricity after outdoor activities when following 

government advisories. The evidence of the household risk-avoidance and mitigation behaviors is 

intuitively and consistently reflected in the household water consumptions, which are significantly 

higher on weekday nights and weekend days. The same evidence is also found in the monthly 

electricity consumptions during haze periods. We find that households continue to increase their 

electricity consumption for as long as two months after the haze clears. Third, the transboundary 

haze has caused significant economic loss for Singapore’s hoteliers. The risk-avoidance behaviors 

of foreign visitors are reflected by the significant declines in the daily room prices and occupancy 

rates, as foreign visitors are more likely to stay away from haze-shrouded skies in Singapore.  

 

The remainder of this paper is as follows. Section 2 reviews the related empirical literature. Section 

3 provides some background on the transboundary haze that occurs in Singapore and the actions 

taken by the government to mitigate the health risks of the city’s residents. Section 4 describes the 

data sources and descriptive statistics. Section 5 discusses our identification strategy, econometric 

methodology, and testable hypotheses for the risk-avoidance behavior. Section 6 presents the main 

empirical results, which include those from the heterogeneous, robustness, and falsification tests. 

Section 7 presents the empirical results using the monthly electricity consumption and daily hotel 

performance indices as alternate outcomes; a general estimation of the welfare costs associated 

with the transboundary air pollution is also included. Finally, Section 9 concludes the study. 

 

2. Past Studies of Environmental Risks and Avoidance Behaviors  

 

Air pollution and its impacts on climate change have become major global concerns. The literature 

has increasingly linked air pollution to many of the catastrophic events of recent times. Rosales 

and Triyana (2016) show that the massive forest fires in Indonesia in 1997 had persistent and 

negative health impacts on Indonesian children residing in both urban and rural areas and that the 

children in urban areas with better access to health care services were equally vulnerable to 

pollution from forest fires. Studies in the US have shown alarming evidence of the negative 

impacts of air pollution on infant health. Chay and Greenstone (2003) show that approximately 

1,300 fewer infants died in 1972 than would have without the Clean Air Act Amendments of 1970. 

This work also shows that the 1% decline in the total PMs could have resulted in a 0.5% decline 

of the infant mortality rate between 1970 and 1972; a lower figure of a 0.35% decline of the infant 

mortality rate was estimated by a separate study from Chay and Greenstone (2003) for between 

1980 and 1982. In addition to the effects of a reduction of PMs, reductions of other pollutants, 

such as carbon monoxide (CO) (Currie and Neidell, 2005) and nitrogen oxide (NOx) (Deschenes, 
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Greenstone, and Shapiro, 2012), could also reduce the mortality rate.8 The study of environmental 

risks and human health outcomes has predominantly been found in health science literature. Many 

health science studies on the effects of PMs have shown that the absorption of certain chemicals 

can increase pulmonary cancer and hyperactivity in children (Coffin and Stokinger, 1977; 

Goldsmith and Friberg, 1977). Poor air conditions have also been found to increase the health risks 

of other wildlife species over the past two decades (Goldsmith and Friberg, 1977; Patz, 2002; Bell 

et al., 2011; De Sario et al., 2013). 

  

While a large body of literature links air pollution to poor health outcomes (Goldsmith and Friberg, 

1977; Dockery et al., 1993; Friemand et al., 2001; Patz, 2002; Pope et al., 2002; Chay and 

Greenstone, 2003a, 2003b; Bell et al., 2004; Currie and Neidell, 2005; Moretti and Neidell, 2011; 

De Sario et al., 2013), the empirical evidence of human behavioral responses to air-pollution risks 

is still relatively scattered, partially due to the scarcity of microdata and the difficulty of finding 

natural experimental settings that allow for the identification of the endogenous effects of air 

pollution on human activities.  

 

Indoor air quality is considerably better than outdoor air quality, allowing the reduction of human 

exposure to air-pollution risks (Chang et al., 2000). The exposure to pollution is endogenous, and 

individuals can respond to ambient pollution levels by reducing their time spent outdoors (Neidell, 

2009). This avoidance behavior is particularly common among individuals who are susceptible to 

air pollution (Janke, 2014). Some empirical studies have found evidence of the risk-avoidance 

behaviors of individuals who take various preemptive steps to minimize their exposure to 

environmental risks by staying indoors (Graff Zivin and Neidell, 2009; Neidell, 2009). Some 

individuals change consumption preferences, such as reducing canned fish consumption 

(Shimshack, Ward, and Beatty, 2007) and drinking bottled water (Graff Zivin, Neidell, and 

Schlenker, 2011) in response to environmental risk alerts. 

 

Neidell (2009) showed that information on environmental risks, such as smog alerts, could have 

significant and negative impacts on the attendance rates of two major outdoor facilities in Southern 

California: the Los Angeles Zoo and Griffith Park Observatory. The results imply that individuals 

take preemptive steps to reduce their exposure to health risks, and risk-avoidance behavior is a 

source of endogenous bias, which, if not properly accounted for, can lead to the overestimation of 

the health impacts of air pollution. The risk-avoidance behavior was also found by Agarwal, 

Rengarajan, Sing, and Vollmer (2016) in their empirical tests of the effects of noise pollution from 

construction activities on residential electricity consumption in Singapore. They show that the 

electricity consumption of households living close to the construction sites increased by 6% 

compared to those who were not affected by the construction activities.  

 

Recent studies have provided new economic evidence of the effects of exogenous air pollution on 

labor productivity in the agricultural, industrial, and service sectors, suggesting that air-pollution 

controls generate a sizable fraction of total welfare benefits (Evans and Jacobs, 1981; Greenstone, 

2002; Deschenes and Greenstone, 2011; Deschenes, Greenston, and Shapiro, 2012; Graff Zivin 

                                                        
8  Currie and Neidell (2005) estimated that the reduction in CO that occurred during the 1990s saved approximately 

1,000 infant lives in California. Deschenes, Greenstone, and Shapiro (2012) show that the imposition of a NOx 

emission cap through the NOx Budget Trading Program could reduce the summer mortality rate in the US by 0.5%, 

or about 2,200 fewer premature deaths per summer, mainly among individuals aged 75 and older.  
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and Neidell, 2012; Bento, Freedmand, and Lang, 2015; Chang, Graff Zivin, Gross, and Neidell, 

2016; Heyes, Saberian, and Neidell, 2016). Using data of the productivity of agricultural workers, 

Graff Zivin and Neidell (2012) showed that a 10-parts-per-billion drop in ozone concentration 

results in a significant 5.5% increase in the productivity of agricultural workers. Chang, Graff 

Zivin, Gross, and Neidell (2016), however, showed that outdoor air pollution could penetrate 

indoors and influence the productivity of indoor workers in a pear-packing factory in Northern 

California. The study showed that an increase of 10 micrograms per cubic meter (μg/m3) in PM2.5 

could reduce labor productivity, which is estimated to be approximately 6% of the average hourly 

earnings. This negative relationship is reversed when the PM2.5 threshold exceeds 15 μg/m3. Heyes, 

Saberian, and Neidell (2016) extended this research to highly skilled workers and showed a 

negative link between six-day PM2.5 variations and S&P500 movements.   

 

The topics of air pollution and its detrimental effects on physical and mental health, the ecosystem, 

and labor productivity have started to attract attention in economic literature in recent years. Graff 

Zivin and Neidell (2013) provide a comprehensive review of the economic inquiries into the 

subject, organizing the studies neatly into three themes: contamination, exposure, and dose-

response. Contamination refers to emission sources 9  and transmission mediums, which are 

important in empirical designs because the concentration and deposition patterns of the selected 

air pollutions help to identify the causality between pollution and health outcomes. Humans 

naturally respond to environmental risk information by reducing their exposure to the risk. This 

risk-avoidance behavior, if unaccounted for, could create a biased estimation of the environmental 

impact. The non-linear dose-response effects cause a discontinuity in human responses to 

environmental risks. Controlling for the confounders from local economic activities and other 

environmental variables is therefore essential to avoid spurious outcomes. Deschenes (2012) also 

provides another comprehensive survey of the literature covering the issues of health outcomes, 

temperature variations, and adaptions to extreme temperature.  

 

There are two significant gaps in the literature that this study aims to fill. First, while previous 

research invariably focuses on the economic and physical health aspects of human behavior in the 

presence of air pollution, few studies correlate ambient pollutant fluctuations with daily activities 

and risk-avoidance using data of household utility consumptions. We use a unique set of utility 

consumption data to show evidence of the risk-avoidance behavior of households in response to 

air-pollution risks. Households choose to stay indoors to avoid exposure to high concentrations of 

PMs in polluted outdoor air environments. Second, our study finds a randomized and exogenous 

shock of air pollution and controls for other confounders, such as weather conditions and seasonal 

temperature, which have been a challenge for previous studies. While some past studies use policy 

changes, such as the Clean Air Act Amendments in the US (Greenstone, 2002; Chay and 

Greenstone, 2003; Bento, Freedman, and Lang, 2015), others use temporal variations in the levels 

of different pollutants, such as total suspected particulates (TSPs) (Chay and Greenstone, 2003), 

ozone (O3) (Currie and Neidell, 2005; Graff Zivin and Neidell, 2012; Chang, Graff Zivin, Gross, 

and Neidell, 2016), NOx (Deschenes, Greenstone, and Shapiro, 2012), and the year-to-year 

changes in temperature (Deschenes and Greenstone, 2011; Deschenes, 2012), to set up exogenous 

shocks to test for the environmental effects on human health outcomes and activities.  

 

                                                        
9  Moretti and Neidell (2011) show that boats from countries with less stringent environmental regulations contribute 

over 20% of the NOx emissions in the Los Angeles area when they arrive in the port of Los Angeles.   
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We use the transboundary haze in Singapore caused by the forest fires in Indonesia as the 

exogenous shock in our natural experimental design. In Singapore, most of the polluted oil 

refineries and petrochemicals are confined to Jurong Island, a reclaimed island to the west of the 

main island. A set of stringent industrial emission standards and guidelines has also been strictly 

enforced by the government via its industry agency, the JTC Corporation. Moreover, generous 

provisions for green buffers have been provided by the government’s urban planning authority, 

the Urban Redevelopment Authority (URA), as part of its “city in the garden” planning vision. 

These are among the policies that have been put in place by the government to create a sustainable 

living environment, which is clear of industrial pollution. Therefore, Singapore offers an ideal 

environment to identify the clear effects of air pollution in our natural experiment. After all, the 

transboundary haze shock is random and exogenous as the shock is purely caused by the forest 

fires on the neighboring Indonesian islands. The high concentration of PM2.5 pollutants in 

Singapore’s skies is independent of the local industries activities. 

 

3. Background of Forest Fires in Indonesia and Haze Alerts in Singapore  

 

It has been common practice for many years for farmers and agricultural landowners in Southeast 

Asia to use open burning as a cheap, but illegal, way of clearing forestlands for agricultural uses, 

such as for oil palm plantations. In Indonesia, some peatlands, which are waterlogged lands filled 

with decomposing forest debris, decaying organisms, and vegetation, have been drained and 

cleared for oil palm plantations as well as other uses. Drained peatlands are highly susceptible to 

fires, and when such fires occur, they are difficult to extinguish, especially during the dry El Niño 

seasons. The smoldering fires occur not just on the surface of peatlands, but permeate up to three 

meters underneath them.10 Aerial water bombing from planes, which is widely used to extinguish 

surface flames, is less effective in peatland fires that occur deep beneath the surface. The 

smoldering peatland fires can quickly spread to a large area, and the fires underneath the ground 

can resurface and flare up after a short time, causing extended periods of haze that persist for days 

or weeks.  

 

The combustion of carbon-rich matter in peatlands and the burning of matured trees in monsoon 

forests produce plenty of toxic pollutants, such as PM2.5, CO, and sulfur dioxide. The toxic gases 

emitted as well as the ashes, dust, and smoke result in the climate phenomenon commonly referred 

to as haze. Containing haze within the source locations is difficult. Pollutants, smoke, and dust in 

the haze could be easily transmitted via prevailing winds that transverse the geographical 

boundaries of neighboring countries. The haze causes irritation to eyes and when inhaled for a 

prolonged period of time, can have harmful and damaging long-term effects on the lung and 

respiratory systems of humans. 

  

In recent years, recurring peatland and forest fires have been the main causes of haze problems, 

which reduces the visibility of the skies of Indonesia and the neighboring countries of Malaysia 

and Singapore. Singapore has been affected almost annually by severe smoke haze from forest 

fires occurring in many areas in Indonesia. Singapore was worst hit by the recent smoke haze that 

occurred in October 2015, when the hourly PSI readings hit a record high of approximately 471 

(NEA Singapore, 2016). Two senior diplomats made the following comments in a local newspaper: 

 

                                                        
10   Tan, Tam Mei, “Haze is 'biggest environment crime' of 21st century,” The New Paper, November 4, 2015. 
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“Once again, the forests of Kalimantan, South Sumatra and parts of Riau are on fire. 

The fires are destroying Indonesia's forests, rich biological diversity and natural 

heritage. The fires are also endangering the health of Indonesians, Malaysians and 

Singaporeans. The people most affected by the haze are Indonesians living in 

Kalimantan and South Sumatra. 

 

The haze is causing economic loss to the three countries. The fires are also causing 

harm to the world because of the carbon emitted into the atmosphere.”11 

 

Severe haze affects many aspects of urban life. In Indonesia, the country that is the source of these 

emissions, haze costs millions in economic losses tied to trying to extinguish the forest and 

peatland fires. The effects of the haze also spill over into the country’s two closest neighbors 

(Malaysia and Singapore), generating negative externalities in terms of the drops in hotel room 

demand, flight cancellations, and school closures. If unabated, the haze problem could impede 

industrial development and economic growth (Brandt and Rawski, 2008). For urban residents, the 

prolonged exposure to haze could also have serious health and social impacts, which include illness 

and death.  

 

Daily activities are likely to be interrupted during the haze periods. The government, through its 

NEA,12 makes haze pollution information freely available to the public. The NEA reports and 

disseminates one-, three-, and 24-hour PSI readings on a regular basis to inform residents of air 

quality via mass media, such as television, radio, the Internet, and mobile applications. The PSI is 

a composite measure of the concentrations of multiple pollutants, which include particulate matter 

(PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), O3, and CO.13 

The PSI readings provide a more accurate and comprehensive measure of air pollution than a single 

pollutant reading does. For ease of reference, the NEA also provides five different PSI descriptors 

to indicate the levels of pollution risks based on the PSI measures:14   

 

                                                        
11  This was extracted from an opinion piece (by invitation) published in the Straits Times, “The Haze, international 

law and global cooperation,” on Oct 6, 2015, by Professor S. Jayakumar, the Chairman of the International 

Advisory Panel, and Professor Tommy Koh, the Chairman of the Government Board, The Centre for International 

Law, National University of Singapore. 
12 A statutory body of the Singapore’s government that is responsible for protecting the environment from pollution, 

maintaining a high level of public health and providing timely meteorological information. This agency is 

responsible for providing timely haze alerts and advisories to help households deal with the transboundary haze 

risks and shocks in Singapore.  
13  PM2.5 is the most hazardous pollutant, which, if inhaled deep into the lungs, could enter into the bloodstream and 

cause complications to the respiratory and cardiovascular systems (Chang et al., 2016).  
14  Source: http://www.haze.gov.sg.  

http://www.haze.gov.sg/


9 

 

PSI Value PSI Descriptor 

0-50 Good 

51-100 Moderate 

101-200 Unhealthy 

201-300 Very unhealthy 

Above 300 Hazardous 

 

On the days when the PSI levels are in an unhealthy range, the NEA will update the PSI readings 

every hour and issue haze alerts to all residents to advise them to reduce their exposure to the 

pollution outdoors. The NEA’s advisories to residents include simple daily tips, including to wear 

masks, long-sleeved shirts, and pants when they are outside; to drink more water to flush out any 

toxins absorbed through their skin and lungs; to wash their hands and faces; and to shower 

immediately after outdoor activities. Social media sites, such as Facebook, Twitter, and Instagram, 

are informal, but popular, channels used by people to share haze-related information. We collect 

real-time tweets and analyze their frequency and context to provide an alternative measure of the 

human perceptions of air pollution. 

 

During air-pollution events, some households may adopt a passive approach, hoping that the 

government will implement swift steps to stop the haze and smoke from forest fires. However, 

other households take more proactive approaches by taking steps to mitigate the impacts of air 

pollution on their health. Individuals who stay indoors are more likely to shut their doors and 

windows to keep the haze and pollutants out of their houses. In Singapore, where a typical day’s 

temperature is approximately 30 degrees Celsius and shows little variation, households that keep 

their windows and doors shut are likely to turn on fans, air conditioners, and/or air purifiers to 

maintain a comfortable indoor environment that is clear of hazardous pollutants.  

 

Staying indoors instead of going outdoors is a form of risk-avoidance that can be taken by residents 

to minimize their exposure to outdoor pollution. During the haze periods, individuals who spend 

longer periods indoors with their windows and doors closed and their air conditioners on are likely 

to use more electricity and to use more water in cleaning, showering, and washing clothes as well 

as in cooking at home, since the number of individuals eating out is reduced during haze periods. 

Therefore, we hypothesize that household utility (both electricity and water) consumptions are 

positively correlated with the amounts of time spent indoors.  

 

Our study is designed to examine whether individuals change their usual daily activities and stay 

indoors outside of school and working hours on weekdays and during non-working weekends. 

Risk-avoidance behavior can be identified from the household utility consumption for the days 

“with” and “without” high haze pollution via the difference-in-difference framework. By using the 

matched hourly household utility consumption and pollution data, we empirically test the 

underlying mechanisms driving the avoidance behaviors of individuals who are exposed to and 

informed of the haze pollution events. The testable hypotheses are defined in Section 5.  
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4. Data Sources 

 

For the purposes of testing the effects of air pollution on the daily life of urban populations, we 

need to both identify the appropriate outcome variables to measure changes in individual behaviors 

and find comparable pollution indicators that are available with the same frequency. We collect 

data from multiple sources, but the data can be grouped into two broad categories: outcomes of 

human activities and measures of ambient conditions.   

 

4.1.  Outcomes of Daily Human Activities 

 

a.  Household Water-Consumption Data 

 

We obtain a unique dataset containing the hourly water-consumption records of a random sample 

of 376 households from public housing flats15 from Singapore’s water agency, the PUB. The 

public housing households were randomly selected in the automated meter-reading experiment, 

such that the real-time water meter readings of these households were recorded and collected for 

a 36-month period (26,304 hours) between January 2012 and December 2014. The panel data 

contains 8,537,868 observations. For each sample household, we have information about their 

hourly water consumption, ethnicity, and the floor level of the unit. In total, the sample includes 

314 (83.5%) Chinese households, 38 (10.1%) Malay households, and 24 (6.4%) Indian households, 

a composition that closely mirrors the overall racial composition of Singapore’s residential 

population.16 The richness of the high-frequency water-reading data over this long time period 

gives us the flexibility to exploit the variations in the consumption patterns within the day, within 

the week, and within the month (with different weather conditions) in our analyses.  

 

 b.  Electricity Consumption Data 

 

We collected the average monthly electricity consumption data in kWh at the building level (where 

each building is identified by a unique postal code in Singapore) for all public and private 

residential buildings in Singapore for the period between January 2013 and December 2015. The 

data are provided by the EMA in Singapore and consist of 469,808 building-month observations. 

Figure 1 shows the distribution of residential buildings across the island, superimposed with the 

demarcation of the five NEA air-quality reporting regions (north, south, east, west, and central 

Singapore). We use the ArcGIS tool to sort the buildings by postal code into each of the NEA’s 

air-quality monitoring regions. We aggregate the average monthly electricity consumption of the 

four different dwelling types (one/two-, three-, four-, and five-room/executive) to derive the 

building-month panel electricity consumption data. 

 

[Insert Figure 1 about here] 

  

                                                        
15  Public housing flats are built and sold by the government through its public housing agency, the Housing and 

Development Board (HDB), at subsidized prices. Public housing is sold only to Singaporean citizens who meet a 

set of income and family-related eligibility criteria. 
16   The ethnic distribution of Singapore’s residence population is estimated at Chinese: 74.3%; Malay: 13.3% and 

Indian: 9.1%, based on the Department of Statistics’ figures in 2014. 
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c. Hotel Performance Data  

 

We collect daily hotel performance data, which includes hotel room rates and occupancy rates of 

a sample of 33,472 hotel rooms in 2015, as an alternative outcome measure to assess the economic 

losses associated with environmental externalities in Singapore. The hotel room samples account 

for approximately 76.8% of the hotel rooms in Singapore as of June 30, 2016. The daily hotel 

performance indices are obtained from STR, a data analytics company that tracks hotel 

performance in Singapore. The hotels are sorted by class segments into Upper Midscale, Midscale, 

and Economy as well as by geographic area into Marina Bay, Sentosa, Orchard, and River Valley. 

Further, 73% of the sample hotel rooms are located in the central region of Singapore. Hotels 

located outside of the central region are excluded from the sample due to the unavailability of data.  

 

4.2.  Weather and Haze Data  

   

a. 24-Hour PSI Readings  

 

There are five air pollution and weather monitoring stations located in the north, south, east, west, 

and central regions of Singapore that provide updated information on air pollution. The 24-hour 

PSI value provides an hourly indication of the air quality by averaging the data collected over the 

past 24 hours. We plot the 24-hour PSI readings from January 2012 to December 2015 in Figure 

2. For the period prior to August 24, 2012, the 24-hour PSI readings were recorded only once per 

day, whereas a more regular reporting of three 24-hour PSI readings are available per day for the 

period from August 24, 2012 to June 20, 2013. We use a linear interpolation method to address 

the missing observations, and this approach may reduce the precision of the pollution measures. 

We explore different methods, which include using two different subsample periods—between 

August 24, 2012 and December 31, 2014 and between June 20, 2013, and December 31, 2014—

and aggregating the hourly PSI and water-consumption records into their daily frequencies as 

robustness tests. 

 

[Insert Figure 2 about here] 

 

b. Weather Information and Haze Indicator 

 

Poor weather conditions could be possible confounders of the influence of air pollution in 

households’ decisions to stay indoors. To resolve this potential endogeneity issue, we collect the 

hourly weather data from The Weather Company, the world’s largest private weather enterprise. 

The data are retrieved from two weather stations located in the northeastern region of Singapore 

(Seletar and Paya Lebar) for the period from January 2012 to December 2015.  

 

The data contain hourly information on temperature, dew point, humidity, pressure, visibility, wind 

direction, and wind speed. The data also include 18 weather keywords used to indicate the weather 

status of each hour. Based on these keywords, we create the “BadWeather” indicator, which has a 

value of 1 when the hourly weather status contains the keywords of “heavy rain,” “heavy rain 

showers,” “heavy thunderstorms and rain,” “rain showers,” “thunderstorm,” and “thunderstorms 

and rain,” and 0 when the keywords include “clear,” “light rain,” “light rain showers,” “light 

thunderstorms and rain,” “mostly cloudy,” “overcast,” “partly cloudy,” “rain,” and “scattered 
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clouds.” The weather status indicators also contain three haze-related keywords, which are used to 

measure the severity of the haze: “light haze,” “haze,” and “heavy haze.” The hourly “haze” 

indicators can be used as a supplement to the 24-hour PSI reading.  

 

The data also contain a variable that measures visibility, based on the distance at which an object 

or light can be detected. The visibility is measured in a range from 0 to 10, where 0 indicates no 

visibility and 10 indicates very clear visibility. Visibility is affected by particles and gases in the 

atmosphere that absorb and deflect light. Figure 3 plots the daily visibility levels and haze statuses 

from 2012 to 2015. 

 

[Insert Figure 3 about here] 

 

In addition, we collect high-resolution daily weather records from various weather stations in 

Singapore from the NEA. Figure 1 illustrates the geographic locations of the weather stations. 

Thirty-nine weather stations (yellow circle) located in different subzones collect daily rainfall and 

temperature records, and 13 weather stations (black star) report wind data. The daily weather data 

is further aggregated into monthly frequencies. We use ArcGIS to locate the weather station closest 

to each residential building and collect the temperature, rainfall, and wind data from the nearest 

weather stations. Other island-wide weather measures, such as monthly averages of bright 

sunshine hours and relative humidity, are also collected. 

 

 

c. Social Media (Twitter) Data 

 

The perception of air pollution by households may differ from the NEA’s PSI readings, which 

represents an objective measure of the severity of haze pollution. To measure the perceptive views 

and feelings toward the haze risks, we collect social media data from the Twitter accounts of public 

users who were based in Singapore for the period from January 1, 2012 to December 31, 2015. 

Private users’ Twitter accounts are not open to the public and, thus, are excluded from this study. 

We analyze several aspects of social media activities, including tweet activities, tweet responses, 

and emotional states. Based on the haze-related keywords in the Twitter data, three types of 

activities are defined: “Haze,” “Environment,” and “Health.” “Haze” is represented by a set of 

keywords: “haze,” “hazy,” “NEA,” “psi,” and “Singapore haze.” “Environment” includes the 

keywords of “forest,” “fire,” “smoke,” and “burn.” Finally, “Health” includes the keywords of 

“asthma,” “breath,” “respiratory,” “n95,” and “mask.”  

 

We measure the total number of tweets that contain the above keywords per hour and their 

responses; for instance, we include the number of likes and forwards. Using the sentiment analysis 

technique,17 we analyze the contents of the tweets and assign each tweet an emotion score ranging 

from -1 to 1. An emotion score of -1 in a Twitter post indicates the strongest negative emotion, 

while a score of 1 indicates the strongest positive emotion; a score of 0 indicates a neutral feeling. 

Figure 4 shows the daily tweets generated by Singapore users during the major haze episodes. 

                                                        
17  The technique has also been used by the Living Analytics Research Center, at Singapore Management University 

(2014) to analyze people’s subjective responses to the haze events. "HAZE in the eye of social media." Palanteer, 

Living Analytics Research Center, Singapore Management University, 2014. Web. 17 July 2016. 
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Figure 5 shows the proportion of tweets with negative emotions posted every month, which 

account for as much as one-third of all haze-related tweets during the peak haze hours. 

 

[Insert Figure 4 about here] 

 

[Insert Figure 5 about here] 

 

  

5. Empirical Methodology and Strategy 

 

5.1. Identifying Haze Episodes 

 

The continuous hourly 24-hour PSI readings are the most direct way of measuring the haze 

intensity, as these measurements are less volatile than the spot hourly PSI reading (one-hour PSI 

reading, which were reported only after 2017) because the 24-hour reading is an hourly measure 

over a rolling 24-hour period. Therefore, our sample of hourly haze measurements does not contain 

observations greater than 300, which is considered “hazardous” to human health.  

 

We conduct an empirical analysis on an hourly, a daily and a monthly basis. Since the 24-hour PSI 

reading at 12 am is the average of the past 24 hours, we use this value as the daily average. Further, 

we convert the daily average PSI readings into the monthly averages to perform an analysis of the 

monthly water and electricity consumption data. During the study period, the extreme haze 

episodes lasted only for a few days, and the averaging method was used to compute the average 

monthly PSI readings, which could have caused significant smoothing of the PSI value; thus, the 

monthly readings are less volatile than the spot daily PSI readings.    

 

We also use the data from The Weather Company and Twitter to obtain four alternate measures of 

the haze episodes. In the weather dataset, we create a binary indicator of haze when the weather 

status contains certain keywords, such as “light haze,” “haze,” and “heavy haze.” We also define 

a categorical variable, which has a value of 1 for “light haze,” 2 for “haze,” and 3 for “heavy haze,” 

to represent the intensity of the haze experienced by the studied households. Moreover, the hourly 

visibility measurements, which range from 0 to 10, are an alternative indicator of air quality. 

Further, the Twitter data provides a continuous measure of the public consciousness of haze 

conditions, which are subjective and more perceptive in nature when compared to the objective 

24-hour PSI readings.  

 

 

5.2. Empirical Models  

 

First, we use ordinary least squares regressions to investigate the reduced-form relationships 

between the different haze measurements (hourly, daily, and monthly 24-hour PSI readings, as 

well as a binary indicator of haze, category variable of haze, hourly/daily visibility, and daily haze-

related tweets) and household energy consumption. Our basic reduced-form regression model is 

as follows:  

 

(1).  𝑌𝑖,𝑡 = 𝛽 × 𝐻𝑎𝑧𝑒𝑖𝑡 + 𝑋𝑡 + 𝜏𝑡 + 𝛼𝑖 + 𝜖𝑖,𝑡. 
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Here, the dependent variable, 𝑌𝑖,𝑡, is the periodic logarithmic term of the water consumption for 

each household 𝑖 at the end of hour 𝑡. 𝐻𝑎𝑧𝑒𝑙𝑡 is the logarithmic term of the air-pollution level at 

each weather station 𝑙 from 2012 to 2015. 𝛽 captures the average periodic energy consumption 

during the haze episodes. This first step allows us to predict how changes in utility consumption 

are associated with the percentage increases in the 24-hour PSI reading. 𝑋𝑡 is a vector of the control 

variables, which include the logarithmic terms of temperature and humidity. 𝜏𝑡 is the annual fixed 

effect and monthly fixed effect, which are used separately to absorb the time variations of the 

water-consumption trends and to average out all the other concurrent aggregate factors. Finally, 

𝛼𝑖 is the household fixed effect dummy, which is included to absorb the systematic differences in 

the water usage preferences at the household level.   

 

In addition, we study the dynamics of the water-consumption responses following Agarwal and 

Qian (2014) by estimating the following distributed lag model:  

 

(2).   𝑌𝑖,𝑡 = ∑ 𝛽𝑎+𝑏 ×  𝐻𝑎𝑧𝑒 × 1𝑡  +𝑏
−𝑎 𝐻𝑎𝑧𝑒𝑖,𝑡 + 𝑊𝑖,𝑡 +  𝜏𝑡 + 𝛼𝑖 + 𝜖𝑖,𝑡. 

 

Here, the coefficient 𝛽0  measures the immediate water usage response during a haze period. 

[𝛽1,…, 𝛽𝑏] are the marginal coefficients that measure the additional responses from the current 

period up to period 𝑏 after the haze event. Similarly, the coefficients [𝛽−1,…, 𝛽−𝑎] capture the 

changes in the water-consumption trends from period 𝑎  before the haze event. 1𝑡  is a binary 

variable that is equal to 1 in period t. To examine the cumulative impact of haze episodes on water 

consumption, we use the cumulative coefficient 𝛽𝑎+𝑏 to describe the cumulative response of water 

usage after the 𝑎 + 𝑏 period. For instance, when the water-consumption increases by 𝛽0=0.19 

during the haze shock and rises by 𝛽1=0.07 one period after the shock, then the cumulative 

consumption increases by 26% on a 100% increase in the 24-hour PSI value. We also measure the 

cumulative water consumption before the haze episodes, and we expect the coefficient to be 

economically and statistically insignificant. 

 

All standard errors are robust and are clustered at the household level (for water-consumption 

analysis) or at the building level (for electricity consumption analysis), which allows an arbitrary 

variance-covariance matrix to capture the potential serial correlations in the residual error terms.  

 

5.3. Testable Hypotheses on Risk-Avoidance Behavior 

 

Utilizing the hourly household consumption and pollution data, in this section, we explain the 

mechanism by which the haze effects impact water and electricity consumption. To better 

understand household utility consumption on haze days, we examine the relationship between 

water consumption and haze levels in a day (6 am to 6 pm) and at night (6 pm to 12 am) on 

weekdays and weekends separately.  

 

Avoiding air-pollution episodes requires one to stay indoors, which is costly for those who are 

full-time employees and students. We construct the following three hypotheses to describe the 

changes in household water consumption with respect to household behaviors during haze 

episodes to establish evidence of risk-avoidance behavior in households.   
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Hypothesis 1: On weekdays, water usage remains unchanged during the day and increases 

significantly at night.  

 

Households face a trade-off between the health benefits of staying at home and the salary or 

educational gains of going to work or school. As employees and students need to commute, the 

opportunity costs of avoiding air pollution are relatively high during weekdays. Households who 

have been exposed to ambient air pollution are more likely to clean more regularly and thoroughly 

after work or school. The probabilities of households taking longer showers, washing their clothes 

more regularly, and cleaning their homes more frequently increase. Hence, while the household 

water-consumption behaviors remain unchanged during the day, the water usage behavior may 

change at night due to the daytime exposures to haze.  

 

Hypothesis 2: On weekends, when most households choose to go outdoors, water usage remains 

unchanged or decreases during the day and increases significantly at night. When households 

choose to stay at home to avoid exposure to air pollution, the change in water usage is ambiguous 

and needs to be tested.  

 

The opportunity costs of risk-avoidance for households are relatively lower on weekends, when 

most households do not have work or school commitments. During weekends with haze episodes, 

households are likely to stay indoors (e.g., home, shopping mall, community center, or a friend’s 

home) to avoid exposure to air pollution. These risk-avoidance behaviors are particularly prevalent 

when the government announces a pollution warning through its website or other mass media 

channels. If households are accustomed to spending time indoors, their usual behaviors may not 

change in response to the exogenous haze shocks; otherwise, they may choose to go out despite 

the pollution warning. Households sensitive to their utility bills may choose to go out and enjoy 

free air-conditioning environments at shopping malls or community centers. If households go out 

during the day on weekends, we would expect an increase in water usage for washing and 

showering after they return home.  

 

However, when the haze risk level is “hazardous” and households are strongly advised by the 

government to stay home, the change in water consumption during the weekend is ambiguous. 

Households turn on air conditioners or fans to lower the room temperature, but the necessity of 

taking longer showers and washing more clothes decreases. However, more water may be used for 

cleaning and cooking during the day. Therefore, the change in water usage is uncertain. 

Understanding how households respond to haze on weekends remains crucial.  

 

Hypothesis 3: On weekends, when households choose to travel abroad, water usage decreases 

during both the day and night. 

 

Some households may even choose to travel abroad to get away from the haze. When households 

do not stay in Singapore, the consumption of both electricity and water decreases. However, we 

are unable to test this because the data do not contain information on whether the households stay 

at home. Moreover, the possibility of households traveling on weekends only decreases the water 

and electricity usage; therefore, the estimated impact of air pollution on utilities on weekends could 

be a lower-bound estimate.  
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In summary, to examine the three testable hypotheses (i.e., to support the risk-avoidance behavior 

hypothesis), we expect the coefficients that measure the impacts of haze on water consumption to 

be significantly positive at night on weekdays, insignificantly positive during the day on weekdays, 

and significantly positive at night on weekends. The sign of the coefficient of the effects is 

uncertain during the day on weekends; when the coefficient remains positive during the weekend 

day, we can assert that the households’ decision to stay at home leads to an increase in water 

consumption during the weekend day as opposed to during the weekend night.  

 

6. Main Results 

 

6.1. Haze Effects on Water Consumption 

 

First, we examine the causal effects of the haze pollution that occurred from 2012 to 2014 using 

data on the hourly water consumption and the hourly 24-hour PSI data. The baseline results, as 

shown in Column 1 of Table 1, show a highly significant positive response in the hourly water 

consumption in relation to the change in the 24-hour PSI reading, as predicted by Equation (1). 

Using all observations, we estimate that a 100% increase in the 24-hour PSI reading causes hourly 

water consumption to increase by 5.10%. To control for the differences in the water consumption 

at peak versus off-peak hours, we include the hourly period fixed effects, where the within-the-

day variations of water consumption are controlled for using four subperiods of the daily water-

consumption data: 12 am to 5 am, 6 am to 11 am, 12 pm to 5 pm, and 6 pm to 11 pm. When we 

control for the hourly period fixed effects in Column 2, the incremental water-consumption values 

are significant but have a lower rate of 2.89% when the hourly 24-hour PSI reading doubles. 

 

[Insert Table 1 about here] 

 

The weather conditions could influence the haze effects, and thus, we try to separate the possible 

confounding effects of weather conditions from the haze pollution. Using information obtained 

from The Weather Company, we drop the time periods during which both haze and “bad” weather 

conditions coexist, as identified by the data. We drop 2,077 observations, and the regression results 

from a small number of observations (subsample 1) are summarized in Columns 3 and 4 in Table 

1 (with hourly fixed effects). The regression results are very similar to those of the full-sample 

analysis, and the haze-induced increases in water consumption remain positive and significant. 

Next, we further exclude the days with “bad” weather conditions, that is, we keep only the 

observations during normal weather conditions and haze periods (subsample 2), and the results of 

this smaller sample size show that the haze effects are still positive and significant; however, a 

smaller increase in the hourly water consumption, specifically that of 2.76%, were recorded during 

the haze shocks. Moreover, the haze-induced water-consumption responses disappear when the 

hourly fixed effects are controlled for in Column 6.   

 

Figure 2 plots the daily average PSI readings (blue line – top) and the first difference of the daily 

PSI readings (red line - bottom) (month-to-month changes) for the period from January 2012 to 

January 2015. The short-term air pollution shock occurring in mid-June 2013 is shown in the 

corresponding spike of the two charts. The hourly 24-hour PSI readings, as reported by the NEA, 

are smoothed readings that may underestimate the real-time haze pollution in the air, and the use 

of the smoothed PSI measurements may underestimate the effects of air pollution on water 
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consumption. According to the US Environmental Protection Agency, haze occurs when sunlight 

is filtered or deflected by tiny pollution particles, and thus, the clarity and color of the air is greatly 

reduced. Further, the visibility in the skies is particularly low during humid weather conditions.  

 

We use three different measures of weather conditions, which are visibility, temperature, and 

humidity as provided by The Weather Company, as indirect proxies of the haze shocks. Figure 3 

shows the daily visibility measurements (blue line - top) (with values ranging between 0 and 10) 

and the number of “haze” statuses per day (red line – bottom) as reported in the weather status 

reports of The Weather Company. With these alternate haze proxies, we estimate the water-

consumption responses using Equation (1) and report the results in Table 2. In Column 1, where 

the hourly water-consumption data are used in the model, the ln(visibility) coefficient is negative 

and significant, which implies that when the visibility level is halved during haze days, the average 

hourly water consumption increases by approximately 3.14%. When the effects are measured at a 

daily level, the coefficient of ln(visibility), as shown in Column 2, is still significant at the 5% level, 

and the magnitudes of the water-consumption responses are relatively larger. In other words, when 

the visibility level is halved (i.e., when the haze level doubles), household water consumption 

increases by 10.9%. The temperature variables have significant and positive coefficients, but the 

humidity coefficients are insignificant in predicting both hourly and daily water consumption in 

the models. The visibility and temperature can be used as indirect proxies of the haze effects, which 

produce significant responses in water consumption.  

 

[Insert Table 2 about here] 

 

We replace the smoothed 24-hour PSI readings with [Haze_Indicator=1], which is derived from 

the keywords of “light haze,” “haze,” or “heavy haze” as reported in the hourly weather statuses 

in The Weather Company’s database. In addition, we estimate the water-consumption models in 

Table 2(B). Column 3 reports the results estimated using the full-sample set, whereas Column 4 

reports the results estimated using a smaller subsample, where the periods with “bad” weather 

conditions and visibilities of 2 or below are dropped. The coefficients of Haze_Indicator in 

Columns 3 and 4 are statistically significant, and the magnitudes of the two coefficients are similar, 

which supports a 4.3% increase in water consumption during the haze shocks. Column 5 uses a 

smaller sample of the daily weather keywords, as opposed to the hourly keywords of Columns 3 

and 4, and the haze-shock effects are much stronger and statistically significant.  

 

Next, we look at the dynamics of the consumption responses as a function of the pollution shock. 

Following Equation (2), we study the dynamic relationship between the temporary changes in air 

quality and the behavioral changes of households in the post-shock periods. Figure 6 shows the 

weekly water-consumption trend (Panel A), and the one-week-long haze period occurring over the 

third week of June 2013 is identified as week “77,” whereas the other numbers correspond to the 

13-week window before and after June 2013 (week 77). We observe a sharp rise in the weekly 

water consumption during the period when the haze started in week 76 and when the haze hit its 

peak in week 77. 

 

For the purpose of the dynamic analysis of the weekly water-consumption responses, we use an 

“event study” approach that denotes the haze week in June 2013 as the event week (t=0) and 

considers the six-week pre-haze (t=-6 to t=-1) and post-haze periods (t=1 to t=6). The effect 
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increases slightly as soon as the households become aware of the haze in week 76 and jumps 

sharply in week 77 when the haze reaches an extremely high level. The coefficient 𝛽0, which is 

equal to 0.17, quantifies the immediate water usage responses during the haze period. The 

estimated coefficients are statistically 0 during the pre-haze periods. 𝛽−1 and 𝛽1 are equal to 0.074 

and 0.078, respectively. As the air pollution experienced by the households is likely to wear off 

quickly, the effects on consumption behaviors concurrently dissipate. We find that the behavior of 

increased water usage only lasts one week after the end of the haze episode. Panel B of Figure 6 

graphs the entire path of the cumulative coefficients 𝛽𝑎+𝑏 , and the dashed lines represent the 

corresponding 95% confidence intervals. The results seem to suggest significant “rebound” effects 

of the water-consumption responses of households to the short-term air-pollution events, which 

persist for only one week. People may revert to their usual daily norms after the haze has dissipated. 

 

[Insert Figure 6 about here] 

 

6.2. Risk-Avoidance Behavior: Evidence from Hourly Water Consumptions  

 

We find evidence of the risk-avoidance behaviors by examining the within-the-day hourly water-

consumption behaviors of households during the haze periods. Household daily weekend activities 

(e.g., staying at home, going out, and traveling abroad) and weekday activities (e.g., going to work 

and attending classes) could influence the intraday (day versus night) variations of water 

consumption in response to the haze pollution. To better understand the household utilities 

consumption on haze days, we examine the relationships between water consumption and haze 

levels during the day (6 am to 6 pm) and at night (6 pm to 12 am) on weekdays and weekends. The 

water-consumption data from 1 am to 5 am are excluded to avoid a spurious relationship between 

haze measurements and water usage. While the haze level may increase significantly at night, most 

people are asleep during this time, which means that the water consumption stays low. Table 3 

reports the estimation results using the hourly water consumption and haze data from January 1, 

2012 to December 31, 2014.  

 

[Insert Table 3 about here] 

 

Columns 1 and 2 in Table 3 show that the effect of haze shocks on water consumption is significant 

and positive on weekends but insignificant on weekdays. Similar results are also found during the 

day, between 6 am and 6 pm on weekdays (Column 3) and weekends (Column 4). The coefficient 

of ln(24-hour PSI) is significant only when predicting weekend daytime water consumption but is 

insignificant when predicting variations in daytime water consumption on weekdays. The results 

are consistent with our expectations that the impacts of haze shocks on the daytime water 

consumption on weekdays are insignificant, as most people have to commute to work or school 

and do not stay at home between 6 am and 6 pm on weekdays. In addition, the significant positive 

response during the day on weekends suggests that households try to avoid exposure to air 

pollution by staying at home; as a result, water consumption increases. 

  

For the nighttime water consumption between 6 pm and 12 am, the coefficient of ln(24-hour PSI 

value) in Columns 5 and 6 of Table 3 indicates that a 100% increase in the 24-hour PSI value is 

associated with 4.92% and 4.30% increases in nighttime water consumption on both weekdays and 

weekends, respectively. This impact is positive and significant for nighttime water consumption 
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of both weekdays and weekends, when individuals return home and consume more water for 

cleaning and washing purposes. Based on the positive relationship between the haze level and 

water consumption, we could not reject the risk-avoidance hypothesis. 

 

Table 4 presents the results of the water-consumption models on weekdays and weekends during 

an intensive haze period of June 2013 in Panels A and B, respectively. We include a binary variable, 

Heavy_Haze, in the model specification to represent different thresholds of the hourly 24-hour PSI 

values, ranging from 80 to 200. In Column 1, Heavy_Haze is equal to 1 when the 24-hour PSI 

value is greater than or equal to 80; otherwise, the value is equal to 0. We test four different cutoffs 

[80, 100, 150, and 200] to explore how household water usages respond to different levels of air 

pollution. We also include a binary variable, Night, which indicates the period between 5 pm and 

12 am, and its interaction term, Heavy_Haze*Night, which measures the difference between the 

daytime and nighttime haze effects.  

 

[Insert Table 4 about here] 

 

The weekday water-consumption models are shown in Columns 1 to 4 of Table 4. The results 

show that the coefficient of the haze intensity dummy is significant and positive only when the 24-

hour PSI hits 200 or more. The results imply that households stay indoors and use approximately 

9.83% more water when the haze pollution reaches the “very unhealthy” and “hazardous” levels. 

The coefficients of the Night dummy variable show that water consumption after 6 pm is higher 

than that of the daytime on typical weekdays. However, during the haze periods, we find that 

nighttime water consumption increases by an average of 5.84% to 9.36% as indicated by the 

interaction term, Heavy_Haze*Night. These results are consistent with the household risk-

avoidance responses, which are evident during the haze-shock periods. Individuals cannot easily 

avoid haze due to work or school commitments during the daytime on weekdays, and they tend to 

stay indoors after work or school to minimize haze risks; thus, they use more water at night on 

weekdays during the haze periods.  

 

We use the same regression models to analyze the nighttime water consumption of households 

during the weekends, and the results are summarized in Columns 5 to 8 of Table 4. While the 

effects of haze shocks on water consumption on weekends are not significantly different, the 

nighttime water consumption is higher than the daytime consumption on weekends because 

households may still choose to go out during the day on weekends.   

 

Most importantly, we find more discerning evidence of risk-avoidance when we study the 

interactions of the Heavy_Haze and Night variables in the models. The results in Column 5 show 

that households use 7.72% more water at night on weekends with mild-haze shocks, such that the 

hourly 24-hour PSI readings are more than 80. When the 24-hour PSI values reach 100 or more, 

the Heavy_Haze*Night coefficients are positive but insignificant, suggesting that the different haze 

effects are marginally different for the daytime and nighttime water consumptions on weekends. 

The results imply that when the haze risk reaches the “very unhealthy” (24-hour PSI>100) and 

“hazardous” levels (24-hour PSI>200), the risk-avoidance behaviors of households become highly 

significant. Households are more willing to minimize health risks by sacrificing their outdoor 

activities during weekends; therefore, they are more likely to refrain from going out on weekends 

at the expense of being exposed to haze risks.  
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6.3.  Robustness and Falsification Tests 

 

We perform robustness tests to further separate the possible confounding effects of weather 

conditions on household water-consumption decisions. For instance, households are more likely 

to use more water (e.g., take more baths) during warmer days. We construct a matched sample of 

treatment (hours with high 24-hour PSI readings) and control groups (hours with low 24-hour PSI 

readings) using the propensity score matching (PSM) methodology. For matching purposes, we 

create a haze_dummy to represent the treatment period, where the haze_dummy is equal to 1 when 

the hourly PSI readings at said period exceed the referenced cutoff and is 0 otherwise (the control 

period). We use four different cutoffs [24-hour PSI=60, 65, 100, and 150] to identify the treatment 

periods in our experiment.  

 

In addition, we compute the propensity scores based on a logistic regression using a rich set of 

weather conditions, such as temperature, humidity, pressure, wind speed, and rain status. 

Household energy consumptions are notably different on weekends than on weekdays; therefore, 

the matching also considers the differences in the days of the week. Then, we perform nearest 

neighbor matching with replacement based on the computed propensity score to pair the treatment 

and control samples. The results are shown in the Appendix (Table A1). The PSM significantly 

reduces the post-matching differences between the treatment and control periods in all observable 

weather conditions.  

 

We could reduce the selection bias when estimating the water-consumption response models using 

this balanced panel of treatment and control periods, which share similar weather conditions. In 

the robustness checks, we use four different subsets of matched samples to rerun Equation (1) and 

present the results in Table 5. Column 1 shows the results of the full-sample analysis without 

matching, which predicts that as the haze intensity doubles, as represented by the ln(24-hour PSI) 

variable, the water consumptions of the households increase by 2.89%. Columns 2 to 5 show the 

regression results using the PSM matched samples with different treatment cutoffs. When the mild-

haze effects are examined using the lower PSI cutoffs of 60 (Column 2) and 65 (Column 3), the 

coefficients of ln(24-hour PSI) are significantly positive, which indicates that a 100% increase in 

the 24-hour PSI reading causes the water consumption to increase by 8.67% and 12.1%, 

respectively. The incremental responses in water consumption are insignificant when the more 

stringent PSI cutoff of 100 is used. The results imply that water-consumption behavior is positively 

influenced by gradual increases of the haze-shock intensities. Households are more sensitive to the 

haze shocks when the PSI readings go above 100. In other words, most households are less able to 

discern a PSI value of 100, which is in the “moderate” range, from a PSI value of 101, which is in 

the “unhealthy” range. 

 

[Insert Table 5 about here] 

 

Next, we perform falsification tests to further investigate possible confounders of water 

consumption by randomly selecting “placebo” treatment periods with no haze shocks. We re-

estimate the models by randomly assigning 30 “placebo” haze days to each year for the three 

consecutive years to test household water-consumption responses. The randomization process is 

repeated over 500 times. Figure 7 shows the results of the randomization process and compares 
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them with the findings of the actual “treatment” pollution periods. We find that the randomly 

assigned air-pollution periods do not have significant impacts on the household water-consumption 

behaviors. The top panel of Figure 7 presents the distribution of the estimated parameters with 

random assignments, whereas the lower panel shows the t-statistics of the falsification tests. The 

falsification tests show that the parameter estimates with the random assignments of haze episodes 

are normally distributed about 0, with most coefficients being insignificant, suggesting that the 

haze effects experienced in Singapore are unlikely to arise randomly.  

 

[Insert Figure 7 about here] 

 

6.4. Heterogeneity Tests 

 

We run additional heterogeneity tests on the differential responses of households from different 

ethnic groups, dwelling types, and floor levels to the sharp jumps in the 24-hour PSI readings. 

Panel A of Table 6 presents the water-consumption responses by ethnicity, which includes Chinese, 

Indian, and Malay households. The results show that Malay households respond more strongly to 

haze shocks relative to the responses of the Chinese and Indian households. Panel B compares the 

water-consumption responses of households living in different dwelling types. We find significant 

and positive responses of households living in four- and three-room Housing and Development 

Board (HDB) flats (5.54% and 4.32%, respectively). The water-consumption responses are 

stronger for households with the bigger four-room units and are specifically estimated to be 1.22% 

higher than those of the households with the smaller three-room units.  

 

[Insert Table 6 about here] 

 

As dense suspended PMs in the haze are likely to precipitate nearer to the ground, households in 

the lower-level units are likely to be exposed to more “concentrated” pollutants (or blanketed by 

thicker haze pollution) than those in higher-level units. Nevertheless, some experiments conducted 

in China18 have established that the concentration of air pollutants (e.g., PM10, PM5, PM2.5, and 

PM1) decreases with respect to building height, but the studies find different vertical distributions 

of the pollutants above ground level.19 Panel C of Table 6 shows the results of the tests using 

samples from households of different floor levels. We find significant and positive responses of 

households in all the subsamples of households from flats below the 20th floor. However, the 

responses of households living on the higher floors (between the 21st and 25th floors) are 

insignificant. These results are consistent with earlier findings that implied that haze pollutants are 

likely to be more dissipated in the air when the unit is above the 21st floor. 

  

 

 6.5.  Social Media Responses and Average Daily Household Water Consumption  

                                                        
18  “Building Height and the Risk of Lung Cancer (2012).” Hebei Technology University News. 22 Feb, 2012. Web. 

30 May 2016.   
19  Researchers at Tsinghua University, who studied the haze concentrations in Beijing from October to December 

2003, show that large variations in the concentrations of PM2.5 in the air are found in the range of eight to 32 meters 

above the ground (approximately between the second and 10th floors of a building), and the PM2.5 concentration 

decreases by 19% at a height of 64 meters from the ground (approximately at the 20th floor). In a separate study 

conducted in the city of Shijiazhuang, Hebei Province, the average daily concentration of pollutants in the air was 

shown to be non-linearly distributed from 1.5 to 72 meters above the ground. 
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The role of emotions has been largely ignored in determining household energy consumption. 

Raghunathan and Tuan Pham (1999) posit that negative emotions may shape decisionmakers’ 

motives and, thus, determine decisions. Therefore, Twitter data was collected as a proxy of the 

changes in emotions during the study period, providing a unique identification strategy to study 

the impact of negative emotions caused by air pollution on household energy consumption.  

 

We use daily Twitter data to capture the personal emotions of households toward the haze episodes. 

From public Twitter accounts, we collected hourly haze-related tweets and assigned an emotion 

score to each of the tweets (ranging from -1 to 1) using the sentiment analysis technique.20 

Moreover, our Twitter-data analysis is based on the daily aggregation of hourly Twitter data. 

Figure 3 plots the tweet count per day (red line - bottom) and the change in the tweet count per 

day (blue line - top). Panel A in Table 7 presents the relationship between the number of haze-

related tweets and water consumption using the full sample of tweets per day. Column 1 shows a 

significantly positive coefficient with ln(Number of Tweets), indicating that water consumption 

increases as much as 7.11% when the number of haze-related tweets doubles. Column 2 uses only 

tweets with a negative emotional score to study the relationship between social media responses 

and water consumption, and the results show that a 100% increase of the number of negative daily 

haze-related tweets causes the water consumption to increase by 3.72%.  

 

[Insert Table 7 about here] 

 

Further, we sort the tweets by topic into three broad categories—“Haze,” “Environment,” and 

“Health” (see Figure 5)—and estimate the water-consumption response models in Columns 3 to 8 

in Panel A of Table 7. We estimate the water-consumption responses to the Twitter scores as 

having magnitudes varying from 1.01% for the “Haze” category to 12.3% for the “Environment” 

category. When we use only the tweets with negative emotions, the “Environment” category 

(Column 6) generates stronger water-consumption responses of 6.42%, which suggests that 

households who tweet more on the issues related to the environmental impact of wildfires show 

stronger responses in their water consumptions. Next, we use only the tweets that have been “liked” 

or “retweeted” (shared), and replicate the early analyses. The results are summarized in Panel B 

of Table 7. The number of observations drops significantly, and most of the coefficients of 

ln(Number of “Likes” or “Retweets”) are positive; however, some are insignificant. Still, the 

increases in the number of “Likes” and “Retweets” in the tweets that are related to “Environment” 

and “Health” topics show significant and positive effects on water consumption, ranging from 2.68% 

to 3.34%, respectively. The Twitter-data analyses indicate that Singaporeans closely monitor air-

pollution events via social media responses and are particularly strongly concerned with issues 

relating to the “Environment” and “Health” effects of air-pollution. 

 

 

7. Other Empirical Results  

 

7.1. Responses of Electricity Consumption 

 

                                                        
20  We perform a sentiment analysis and decode the tweet contents using “TextBlob,” a Python library for processing 

textual data, which provides a simple API that could support some common, natural language processing tasks.  
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We collect panel data of the building-level monthly electricity records for 4,200 private and 9,336 

public residential buildings; the data are available on a monthly frequency, covering the period 

from 2013 to 2015. Using monthly building-level electricity consumption as an alternative 

outcome variable, we test the average household responses of monthly electricity consumption to 

the change in the monthly average 24-hour PSI readings using the same model structure as 

Equation (1). Table 8 presents the regression results by progressively including more pollution and 

weather measures. The haze effects, as represented by the ln(PSI) variable, are statistically and 

economically significant in all models. In Column 5, where we control for the monthly average 

temperature, total rainfall, sunshine hours, average wind level, and relative humidity, the results 

show that a 100% increase in the monthly average 24-hour PSI value increases the building-level 

electricity consumption by 2.34%. Table A4 presents the electricity consumption responses by 

room type, which include 1-or-2-room, 3-room, 4-room and 5-room or Executive HDB. The results 

show that households living in smaller units (1-or-2-room HDB) are less sensitive to the haze 

shocks than the households living in larger HDB flats. Larger flat types (usually with larger 

household sizes) are more likely to have elderly residents or children, who are sensitive to air 

pollutants and, thus, exhibit stronger avoidance behaviors during haze episodes by increasing their 

electricity consumption more than smaller flat types (usually occupied by single or married but 

without children residents).  

 

[Insert Table 8 about here] 

 

We run a series of robustness tests; due to the spatial constraints, the results are reported in the 

Appendices. Like Raghunathan and Tuan Pham (1999), we use the negative emotional scores from 

the Twitter data as an alternative measure of the haze shocks and find that, with the tweets 

expressing negative emotion, a 100% decrease in the emotion score percentage (people’s 

dissatisfaction with the haze condition increases) is associated with a 12% increase in household 

electricity consumption occurs (see Table A2 in the Appendix). Based on both the private-housing 

and resale-public-housing transaction price data, available from public sources,21  we sort the 

sample buildings by building-level-per-square-meter housing prices into four categories and then 

conduct the water consumption and haze effect tests (see Table A3 in the Appendix). We find that 

households in lower-price houses respond more significantly and strongly to the haze shocks than 

those in higher-price houses. If unit housing prices are a reasonable proxy for household wealth, 

we may infer that the haze-shock effects on electricity consumptions are stronger in the low-

income households and are marginally smaller for wealthier households. More future tests could 

be conducted to study the income effects on the responses to air-pollution risks.  

 

Next, by merging the monthly electricity consumption data into the aggregated monthly water 

consumption data of the nine experimented HDB buildings (where automated water meter readings 

are available) for the period between January 2013 and December 2014, we test the cross-domain 

relationship between water and electricity consumption. The results, which are reported in the 

Appendix (Table A5), affirm that water and electricity are complementary consumptions for 

households during the haze periods. The cross-elasticity of water consumption with respect to 

                                                        
21  The private transaction price data are obtained from the “REALS” system of the URA of Singapore, whereas, the 

resale-public-housing transaction price data are obtained from the database of the HDB. Both public agencies 

publish timely real-estate transaction data.  
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electricity consumption is significant, indicating that a 1% increase in building-level electricity 

consumption is associated with a 0.542% increase in building-level water consumption.  

 

Moreover, we analyze the dynamic monthly electricity consumption trends when Singapore’s 

skies were first shrouded by the haze during the first week of September 2015. We plot the dynamic 

monthly (Panel A) and cumulative month-to-month electricity consumptions (Panel B) in Figure 

8 and do the same for a seven-month window that spans the duration of the second heavy-haze 

episode that occurred in Singapore between September 2015 and October 2015. The two months 

with the haze shocks are coded using the annual-monthly variable with the corresponding numbers 

of “668” (September 2015) and “669” (October 2015).  

 

We find that persistent and high levels of electricity consumption were reported (Panel A) and that 

the slope of the months of September (668) and October (669) of 2015 was steeper in the 

cumulative chart (Panel B) during these two months with serious haze shocks caused by forest 

fires from Indonesia. The two-month high and persistent levels of electricity consumption show 

the significant behavioral responses (inelastic in electricity consumption) of households to the haze 

shocks. Moreover, households continued to use more water and electricity after the haze clears. 

 

The long-term haze episode, which lasted for two months, impacted household consumption habits 

and caused the electricity consumption levels to continue rising in the two months following the 

long-term shocks. While the risk-avoidance behavioral responses are not transitory, we do observe 

rebound effects after the haze shocks. Future works could study the asymmetric differential 

responses of the haze episodes and normal periods.     

  

7.2. Hotel Performance Outcomes and Haze Shock 

 

The exogenous haze shock from Indonesia could have had an adverse economic impact on the 

source and neighboring countries. The haze outbreaks reduced visitor arrivals and inflicted 

significant economic losses on the tourism industry in Singapore. In this section, we use the daily 

hotel room rates and daily occupancy levels as outcome variables to assess the economic costs of 

air pollution. The current and lagged haze effects on the changes in the daily hotel room rate and 

daily hotel occupancy are modeled using the following specification:  

 

(3).  𝑌𝑖,𝑡 = 𝛽 × 𝐻𝑎𝑧𝑒𝑖,𝑡 + 𝛾 ×  𝐻𝑎𝑧𝑒𝑖,𝑡−𝑛 + 𝛿 × 𝑋𝐸𝑡 + 𝜆 × 𝑆𝑇𝐼𝑡 + 𝜏𝑡 + 𝛼𝑖 + 𝜖𝑖,𝑡. 

 

Here, 𝑌𝑖,𝑡 is the logarithmic term of the daily room rates and daily occupancy levels for a hotel 

sample i sorted by class, [Upper Midscale, Midscale, Economy], and region, [Marina Bay, Sentosa, 

Orchard, River Valley], at 𝑡. 𝐻𝑎𝑧𝑒𝑙𝑡 is the logarithmic term of the daily, average air-pollution level 

reported at the three PSI measurement stations (central, east, and south). 𝛽  and 𝛾  capture the 

immediate and lagged effects of air pollution on hotel performance. 𝛿 is the coefficient vector of 

the foreign exchange rates, XE. 𝜆 is the coefficient of the log of the Singapore’s Straits Times 

Index (stock market indicator). 𝛼𝑖 is a hotel-class and hotel-location fixed effect. t is the monthly, 

yearly and daily fixed effects that account for variations of hotel performance indices over time. 

Finally, 𝜖𝑖,𝑡 is an error term to allow for serial correlation in the hotel performance indices. 
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We use the daily indices of the hotel room rates and the occupancy rates constructed by the Smith 

Travel Resource, which cover a representative sample of 76.8% by class and 73% by region, 

respectively, of all hotels in Singapore (see Table A6 in the Appendix). We use the daily exchange 

rates to control for the levels of tourism expenditure in the hotel performance models. We include 

only the daily exchange rates of Singapore’s top three tourism-receipts-generating 22 markets, 

which are the Indonesian Rupiah (“IDR”), Chinese Yuan Renminbi (“CNY”) and Indian Rupee 

(“INR”) against the Singapore Dollar (“SGD”) as control variables in the models. In addition, the 

US dollar (“USD”) is included to account for external global economic growth; the natural log of 

the stock market indicator, the Straits Times Index (“STI”), is also included to capture Singapore’s 

economic growth. The exchange rates and stock-market-index data are collected from the 

Bloomberg database. 

 

First, we examine the hotel room occupancy (demand) models in Table 9 (by class) and Table 10 

(by region) and test the demand responses to the haze outbreak in October 2015. Most hotels 

impose a penalty on same-day cancellation, and thus, we use lagged haze shocks in the models. 

The results of the two hotel demand models show consistent results and that the coefficients of the 

lagged haze shocks, PSIt=k, where k=[-6, -5, …, -1], are generally significant and negatively affect 

the hotel occupancy rates. The results imply that hotel demand is significantly and adversely 

affected by the lagged haze shocks. Since most hotel cancellation policies include penalty fees for 

same-day cancellations, the haze measures do not affect the hotel occupancy levels of the initial 

haze period (the coefficient PSIt=0 remains economically and statistically insignificant).  

 

[Insert Tables 9 and 10 about here] 

 

Based on the daily data covering the period spanning the two-month haze outbreak in 2015, we 

estimate the relationships of hotel performance with the concurrent and lagged haze shocks in the 

models. The results of the hotel performance models are separated by class (Panel A) and region 

(Panel B) and are summarized in Table 11. The coefficients of the concurrent haze shock, (ln_PSI), 

and the lagged haze shock, (L1.ln_PSI), are significant and negative across all four models. The 

results predict that the daily hotel room rates decline by 1.99% (by class) and 1.82% (by region) 

when the contemporaneous 24-hour PSI readings double; the daily hotel room rates decline by a 

smaller magnitude of 1.54% (by class) and 1.31% (by region) when the daily average of the lagged 

24-hour PSI readings doubles.  

 

[Insert Table 11 about here] 

 

 

The declines in the daily occupancy rates and daily hotel room rates for hotels in Singapore 

represent the economic losses endured by hoteliers during the haze periods, which are business 

risks beyond their control. More importantly, the negative performances of the hotel industry 

during Indonesia’s forest-fire periods could be positive evidence indicating the risk-avoidance of 

foreign visitors, who shun the haze that “shrouds” the skies of Singapore.  

 

7.3. Externality Costs of Transboundary Haze  

                                                        
22 The expenditure share of the accommodation sector made up more than 20% of the total tourism receipts in 2015 

(Quote STB). 
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This paper utilizes outcome variables from the daily life of a household to measure the impact of 

air pollution on everyday life, which affects a substantial part of the economy but has been ignored 

in the existing literature. Our findings from our baseline model suggest that, as the haze readings 

double, the household-level hourly water consumptions increase by 5.1% and the building-level 

monthly electricity consumptions increase by 2.34%. Moreover, a haze outbreak creates 

significant negative externalities for hotel performance. Given this information, placing our 

findings in a larger context and providing an informal estimate of the economic costs in order to 

value and quantify the partial economic-welfare effects of haze on the urban population in 

Singapore. 

 

The computations are based on two scenarios: (1) a mild-haze shock, where the PSI readings 

increase by 100%, and (2) an extreme haze shock, where the PSI readings increase six-fold (500%); 

a linear relationship is assumed between the PSI readings and utility consumptions. In Scenario 

(2), when the PSI readings increase from 50 to 300, the hourly water consumption per household 

and monthly electricity consumption per building will increase by 25.5% and 11.7%, respectively, 

on a linear scale.  

 

Using the informal estimation method, we convert the increases in water and electricity 

consumption into the economic costs23 of the negative externalities caused by the forest fires in 

Indonesia. We obtain the water and electricity consumption statistics from the Department of 

Statistics and derive the estimated nation-wide monthly consumptions of water and electricity. 

Then, we apply the appropriate tariff rates to derive the estimated externality costs for a one-month 

haze shock in Singapore.  

 

Based on the annual sales of domestic potable water of 219,200,000 m3 in 2014, we derive the 

monthly water consumptions by Singaporean households to be 24,266,667 m3. Given that the 

current water tariff for an average consumption of 40 m3 and above is $1.40 per m3 and the water 

conservation tax is 45%, and given the other fees, including the waterborne fee and sanitary 

appliance fee (approximately 5%), the per m3 water cost for a typical household is assumed to be 

approximately $2.10 per m3. We apply the per m3 water cost to derive the externality costs of 

Scenario (1) (S$2.60 million, US$1.83 million) and Scenario (2) (S$13.00 million, US$9.13 

million) when the PSI readings increase by 100% and 500%, respectively.24 

 

For electricity, the monthly household electricity consumption is given as 493.6 gWh, which is 

equivalent to 493,600,000 kWh, and applying the current tariff of $0.20 per kWh for residence, 

we estimate the monthly increases in electricity costs incurred by Singaporean households during 

the one-month haze period to be S$2.33 million (US$1.64 million) for Scenario (1) and S$11.67 

million (US$8.2 million) for Scenario (2) when the PSI readings increase by 100% and 500%, 

respectively.  

                                                        
23  The calculation is based on the current tariffs in Singapore. The electricity tariff for households is $0.20 per kWh 

(in effect from July 1, 2016 to September 30, 2016). The water tariffs for households are $1.17 per cubic meter 

(below 40 m3) and $1.40 per cubic meter (above 40 m3). An additional water conservation tax is charged for the 

use of water. The tax rate is 30% of the water bill when the monthly usage is under 40 cubic meters and 45% for 

consumption above that. 
24  The Singapore$ to US$ exchange rate as of October 1, 2015 was 1.4235, based on the source at finance.yahoo.com. 
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Based on the last five haze records, forest fires cause, on average, one month of haze-shrouded 

skies per year in Singapore. Moreover, the conservative, estimated externality costs, based only 

on utilities costs alone, are estimated to be around S$24.66 million (US$17.32 million). The 

Indonesian government estimates US$14 billion in economic losses related to the fires, including 

explicit environmental costs, health expenses, and business losses (source: the Wall Street 

Journal25). Although the externality costs on utility consumptions incurred in Singapore end up 

being a marginal fraction of the stated environmental costs of US$14 billion, which were incurred 

by Indonesia during the haze period, the additional water and electricity consumed during random 

and exogenous haze shocks are private goods that are purchased and consumed by households but 

have been ignored by households, the government, and existing studies.  

 

8.  Conclusions 

  

Singapore’s skies have been periodically covered by smoke and haze blown over by winds from 

the forest and peatland fires of Indonesia. The transboundary haze events impact the daily activities 

of Singaporean households, and their utility consumptions increase significantly during haze 

periods. The haze episodes have also caused significant economic losses, which include the decline 

in hotel room demand suffered by hoteliers in Singapore.  

 

This paper uses multiple sources of outcome data describing utility consumption and hotel room 

performance, and merges them with the 24-hour PSI readings, haze-related tweets, and weather 

data. We find significant and positive relationships between the haze shocks and household 

responses in utility consumption. The results show that a 100% increase in the 24-hour PSI value 

is associated with a 5.1% increase in water consumption and a 2.34% increase in electricity 

consumption. We provide three new contributions to the current literature. First, we find robust 

empirical evidence of the risk-avoidance of households based on the within-the-day and between-

weekday-and-weekend variations of water consumption during the haze periods. When the haze-

related health risks are high, people will stay indoors after work and school on weekdays, resulting 

in significantly higher nighttime (6 pm to 12 am) water consumption when haze alerts are issued 

by the government. On weekends, when the 24-hour PSI readings reach an “unhealthy level” 

(>100), the daytime water consumption is not significantly different from that at nighttime, 

implying that people cancel their family outings during the day and stay indoors to minimize their 

families’ exposure to the haze risks. The evidence is robust to withstand various robustness and 

falsification tests. When there are different haze measurements that reflect households’ subjective 

risk perceptions and emotions, using Twitter and other weather condition status data, the results 

remain robust and consistent.  

 

Second, we find that the behavioral persistency of household utility consumptions varied based on 

the duration of air-pollution events. In particular, water consumption rises sharply in response to 

air-pollution events, and households’ increased water-consumption behaviors are transitory; the 

high consumptions revert back to the norm when the haze shock lasts for only a few days. With 

haze shocks that last for months, households would continue to use more electricity, even two 

months after the haze clears. More studies could be conducted in the future to explore the rebound 

effects of the behavioral responses of households to the haze risks. 

                                                        
25  Source: “The numbers: Indonesia’s Haze”, the Wall Street Journal, October 27, 2015.    
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Third, using the daily hotel performance data from Singapore, we find significant declines in the 

daily occupancy rates and daily room rates during the haze periods in 2015. The declines of the 

hotel room demands are consistent with the risk-avoidance of foreign visitors, who shun Singapore 

as a tourist destination when the haze risk alerts are issued by their respective governments. These 

declines provide additional evidence that long-term haze shocks not only harm the personal utility 

costs of an individual but also lead to enormous social costs and a slowdown in economic activity. 

 

This study aims to raise public awareness of how air-pollution affects not only our health and 

productivity but also every aspect of the urban quality of life. The unique, high-frequency dataset 

allows us to address this issue from a microperspective. This study is the first of its kind to quantify 

the influence of air pollution on household utility consumptions, complementing other recent 

works on pollution outside of the US, and the basic cost analysis provides estimates of the 

considerable economic costs of the haze affecting Singapore. 

 

These estimates are particularly important in light of the dramatic increase of urban air pollution 

in Singapore in recent years. This paper contributes to the air-pollution literature by assessing the 

exogenous haze shocks that are responsible for the short-run dynamics of urban activities. The 

empirical analyses and findings on the air-pollution externalities on urban activities can provide 

valuable insights for government agencies, utility suppliers, local communities, and the hotel 

industry for demand forecasting when similar events occur in the future. The findings of the partial 

economic-welfare effects associated with increased utility consumption and decreased hotel 

revenue can aid government authorities and policymakers in justifying the usage of public funding 

in taking preventive and protective measures against transboundary haze.  

 

Moreover, transboundary haze has been a primary concern of the ASEAN community for decades. 

Regional cooperation in combating the haze pollution is important to reduce the potential social 

and economic impacts of forest fires on source and neighboring countries. Singapore’s Parliament 

passed the Transboundary Haze Pollution Act in 2014, which allows the government to investigate 

and prosecute companies and households that are reasonably thought to have contributed to 

burning forests in neighboring regions and causing severe air pollution. The Coase theorem also 

suggests that a solution to the collective action problem could be resolved by subsidizing the party 

for restraining the forest burning activities that cause air pollution. Singapore has offered various 

financial supports and technical assistance to Indonesia to fight forest fires since 2005, and 

increasing these collaborations to include better fire monitoring and alerts could further help to 

minimize the reoccurrence of haze episodes.  
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Table 1:  Hourly Water Consumption and 24-Hour PSI Reading 
 

Dependent Variable: 

ln(Water Consumption) 

Regression 

(1) 

Regression 

(2) 

Regression 

(3) 

Regression 

(4) 

Regression 

(5) 

Regression 

(6) 

 Full 

Sample 

Full 

Sample 

Sub- 

sample 1 

Sub- 

sample 1 

Sub- 

sample 2 

Sub- 

sample 2 

ln(24-hour PSI reading) 0.0510*** 0.0289*** 0.0509*** 0.0290*** 0.0276** 0.0204 

 (0.00955) (0.00933) (0.00954) (0.00932) (0.0129) (0.0129) 

Constant 2.014*** 1.236*** 2.014*** 1.235*** 1.977*** 1.155*** 

 (0.0452) (0.0618) (0.0452) (0.0618) (0.0589) (0.0821) 

Observations 4,757,132 4,757,132 4,755,055 4,755,055 1,728,745 1,728,745 

R-squared 0.148 0.211 0.148 0.211 0.195 0.223 

Year FE Yes Yes Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes Yes Yes 

DOW FE Yes Yes Yes Yes Yes Yes 

Household FE Yes Yes Yes Yes Yes Yes 

Hour-period FE No Yes No Yes No Yes 

Notes: This table shows results on the average response in hourly water consumption to the change in the hourly 24-

hour PSI reading by applying Equation (1). Individual, year, month, and day of week fixed effects are included in all 

regressions. Column 1 presents the results of our baseline, which includes all the observations. Column 3 repeats 

the same analysis using a smaller sample, which drops the time periods during which both haze and “bad” weather 

conditions coexist. Column 5 conducts a regression analysis by further excluding the days with “bad” weather 

conditions, that is, we keep only the observations during normal weather conditions and haze periods. Regressions 

(2), (4), and (6) include additional hour fixed effects. Robust standard errors are reported in parentheses under the 

coefficient estimates and are clustered at the household level. *Significant at the 10 percent level; **significant 

at the 5 percent level; ***significant at the 1 percent level. 

 

  



33 

 

Table 2: Average Daily Household Water Consumption and Weather Status 

 
Dependent variable: Panel (A): Visibility Panel (B): Haze Indicator 

 (1) Hourly (2) Daily (3) Hourly (4) Hourly (5) Daily 

ln(Water Consumption) Visibility Visibility Haze Status Haze Status Haze Indicator 

Sample Full Sample Full Sample Full Sample Sub-sample 3 Full Sample 

ln(Visibility) -0.0314** -0.109**    
 (0.0126) (0.0539)    
ln(Temperature) 0.0266*** 0.691**   0.587*** 

 (0.00303) (0.312)   (0.128) 

ln(Humidity) -0.0883 0.0605   0.203 

 (0.0734) (0.160)   (0.144) 

Haze Indicator   0.0424*** 0.0428*** 0.210*** 

   (0.0128) (0.0128) (0.0364) 

Constant 1.574*** 9.244*** 1.992*** 1.993*** 10.80*** 

 (0.116) (0.970) (0.0544) (0.0544) (0.483) 

Observations 3,572,190 1,053 8,537,868 8,510,342 220,224 

R-squared 0.183 0.771 0.224 0.224 0.458 

Year-month FE Yes Yes No No Yes 

Day of Week FE Yes Yes Yes Yes Yes 

Hour FE No No Yes Yes No 

Year FE No No Yes Yes No 

Month FE No No Yes Yes No 

Household FE Yes Yes Yes Yes Yes 

Notes: Column 1 reports the relationship between visibility level and hourly water consumption. Column 5 

explores the relationship between visibility level and daily aggregate water consumption. Columns 2 to 4 analyze 

the average response of the households’ water consumption to haze episodes, which we identify as a period 

dummy using various measures. Column 3 reports the results estimated using the full sample, whereas Column 

4 reports the results estimated using a smaller subsample, where the periods with “bad” weather conditions and 

visibility of 2 or below are dropped. We identify hazeIndicator =1 if the hourly weather status contains the 

keywords “light haze”, “haze”, or “heavy haze”. Individual, year, month (or year-month), and day of week fixed 

effects are included in all regressions. Robust standard errors are reported in parentheses under the coefficient 

estimates and are clustered at the household level. *Significant at the 10 percent level; **significant at the 5 

percent level; ***significant at the 1 percent level. 
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Table 3: Effect of Haze on Household Water Consumption (2012-2014) 

 

Dependent Variable: ln(Water Consumption) 
Model (1) (2) (3) (4) (5) (6) 

Dependent variable: 

ln(Water 

Consumption) 

Testing Periods 

Weekdays  

Full-day 

after 6am 

Weekends  

Full day 

after 6am 

Weekdays  

Daytime  

6am to 6pm 

Weekends  

Daytime  

6am to 6pm 

Weekdays 

Nighttime 

6pm to 24am 

Weekends  

Nighttime 

6pm to 24am 

ln(24-hour PSI) 0.0165 0.0350*** 0.00716 0.0374*** 0.0492*** 0.0430*** 

 (0.0106) (0.0118) (0.0105) (0.0119) (0.0137) (0.0163) 

Constant 1.036*** 0.806*** 1.049*** 0.753*** 1.849*** 2.084*** 

 (0.0731) (0.0634) (0.0722) (0.0629) (0.0669) (0.107) 

Observations 2,752,337 1,096,849 1,834,769 733,876 917,568 362,973 

R-squared 0.249 0.210 0.257 0.236 0.258 0.193 

Year FE Yes Yes Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes Yes Yes 

DOW FE Yes Yes Yes Yes Yes Yes 

Hour FE Yes Yes Yes Yes Yes Yes 

Household FE Yes Yes Yes Yes Yes Yes 

Notes: Table 3 reports the estimation results using hourly water consumption and haze data from 2012 to 2014. The 

water consumption data between 1am and 5am are excluded in the following analysis to avoid a spurious relationship 

between haze measure and water usage. Columns 1 and 2 show that changes in haze level is significant and positively 

associated with water usage on weekends. Columns 3 and 4 present the estimates on the day-time (between 6am and 

6pm) water consumption on weekdays and weekends, respectively. Columns 5 and 6 show the haze effects on night-

time (6pm to 12 midnight) water consumption on weekdays and the weekends, respectively. Robust standard errors 

are reported in parentheses under the coefficient estimates and are clustered at the household level. *Significant at the 

10 percent level; **significant at the 5 percent level; ***significant at the 1 percent level. 
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Table 4: Effect of Haze on Household Water Consumption in the Heavy Haze Period 

Dependent Variable: ln(Water Consumption) 

Panel A: 6am-midnight on weekdays in June 2013 

Model (1) (2) (3) (4)

24-Hour PSI

Cutoff

80 100 150 200

Heavy_Haze -0.0171 -0.00827 0.00743 0.0983** 

(0.0247) (0.0242) (0.0293) (0.0397) 

Night 1.396*** 1.397*** 1.402*** 1.402*** 

(0.0739) (0.0740) (0.0738) (0.0738) 

Heavy_Haze 

*Night

0.0668*** 0.0584*** 0.0626** 0.0936* 

(0.0215) (0.0223) (0.0300) (0.0522) 

Constant 0.935*** 0.934*** 0.933*** 0.934*** 

(0.0551) (0.0550) (0.0550) (0.0549) 

Observations 138,680 138,680 138,680 138,680 

R-squared 0.292 0.292 0.292 0.293 

Year FE Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes 

DOW FE Yes Yes Yes Yes 

Hour FE Yes Yes Yes Yes 

Household FE Yes Yes Yes Yes 

Panel B:  6am-midnight on weekends in June 2013 

Model (5) (6) (7) (8)

24-Hour PSI

Cutoff

80 100 150 200

Heavy_Haze -0.0213 -0.0381 0.00990 -0.00944

(0.0288) (0.0296) (0.0333) (0.0502)

Night 1.504*** 1.506*** 1.513*** 1.512*** 

(0.0618) (0.0623) (0.0624) (0.0625) 

Heavy_Haze 

*Night

0.0772** 0.0381 0.0342 0.0392 

(0.0338) (0.0397) (0.0455) (0.0704) 

Constant 0.761*** 0.762*** 0.756*** 0.756*** 

(0.0418) (0.0418) (0.0416) (0.0414) 

Observations 68,753 68,753 68,753 68,753 

R-squared 0.251 0.251 0.251 0.251 

Year FE Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes 

DOW FE Yes Yes Yes Yes 

Hour FE Yes Yes Yes Yes 

Household FE Yes Yes Yes Yes 



36 

 

Notes: This table presents the estimation results on weekends and weekdays separately in Panels A and B. Heavy_Haze 

is a binary variable indicating the 24-hour PSI value above a certain level. We test four different cutoffs from 80 to 

200 to explore how household water usage responds to different levels of air pollution. Night is a binary variable 

indicating the period between 5pm and midnight. The coefficient of interest is the interaction of Haze_Haze*Night, 

which measures the difference between the daytime and nighttime haze effects. Robust standard errors are reported in 

parentheses under the coefficient estimates and are clustered at the household level. *Significant at the 10 percent 

level; **significant at the 5 percent level; ***significant at the 1 percent level.
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Table 5: Average Responses of Water Consumption (P-score Matching) 

 
 (1) (2) (7) (4) (5) 

Dependent Variable: 

ln(Water Consumption) 

Full Sample 

Without 

Matching 

PSI=60  

PSM  

PSI=65 

PSM 

PSI=100  

PSM 

PSI=150 

PSM 

      

ln(24-hour PSI) 0.0289*** 0.0867** 0.121** 0.447 0.263 

 (0.00933) (0.0389) (0.0499) (0.829) (2.284) 

Constant 1.236*** 1.786*** 0.186 -0.0743 0.146 

 (0.0618) (0.609) (1.248) (3.392) (7.196) 

      

Observations 4,757,132 156,683 69,826 2,538 2,323 

R-squared 0.211 0.237 0.250 0.407 0.363 

Year FE Yes Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes Yes 

DOW FE Yes Yes Yes Yes Yes 

Hourly period FE Yes Yes Yes Yes Yes 

Notes: This table presents the results using the nearest neighborhood matching with replacement based on the 

computed propensity score. The propensity scores based on a logistic regression using a rich set of weather 

conditions, such as temperature, humidity, pressure, wind speed, and rain status. Then we use different sub-samples 

to re-run Equation (1).  

Column 1 shows the results of the full-sample analysis without matching. Columns 2 to 5 show the regression 

results using the PSM matched samples with different treatment cutoffs. Year, month, day of the week, hourly 

period and household fixed effects are included in all regressions. Robust standard errors are reported in parentheses 

under the coefficient estimates and are clustered at the individual level. *Significant at the 10 percent level; 

**significant at the 5 percent level; significant at the 1 percent level 



Table 6: Heterogeneity Tests: Race and Dwelling Type 
 

Panel (A) 

Race 
       Panel (B) 

 Dwelling Type 

Panel (C) 

Floor Level 

Dependent Variable: (1) 
 
Chinese 

(2) 
 
Indian 

(3) 
 

Malay 

(4) (5) (1) (2) (3) (4) (5) 

ln(Water Consumption) 3-room 
HDB 

4-room 
HDB 

Levels  
1-5 

Levels  
6-10 

Levels 
11-15 

Levels 
16-20 

Levels 
21-25 

ln(24-hour PSI reading) 0.0490*** 0.0279 0.0778*** 0.0554*** 0.0432*** 0.0829*** 0.0290* 0.0567** 0.0396* 0.0349 

 (0.0104) (0.0580) (0.0261) (0.0117) (0.0137) (0.0176) (0.0153) (0.0225) (0.0205) (0.0244) 

Constant 1.979*** 2.257*** 2.223*** 2.047*** 1.979*** 1.984*** 2.031*** 1.915*** 2.224*** 2.058*** 

 (0.0486) (0.2620) (0.1490) (0.0526) (0.0737) (0.0886) (0.0874) (0.0939) (0.110) (0.115) 

Observations 4,065,367 180,993 455,984 2,384,273 2,361,090 888,781 1,333,329 1,478,573 633,179 411,501 

R-squared 0.143 0.111 0.153 0.173 0.127 0.138 0.145 0.144 0.158 0.173 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

DOW FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Hour-period FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: This table presents the results of the heterogeneous tests by race, [Chinese, Indian, and Malay], by dwelling type, [3-room HDB, 4-room HDB], and by 

floor level sub-samples [Levels 1-5; Levels 6-10; Levels 10-15; Levels 16-20; Levels 21-25]. Year, month, day of the week, hour-period and individual fixed 

effects are included in all regressions. Robust standard errors are reported in parentheses under the coefficient estimates and are clustered at the household level. 

*Significant at the 10 percent level; **significant at the 5 percent level; significant at the 1 percent level. 
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Table 7: Average Daily Household Water Consumption and Social Media Responses 
Independent Variable:  

ln(Water 

Consumption)  

(1)  (2) (3)  (4) (5) (6) (7) (8) 

All Three Topics Topic: Haze Topic: Environment Topic: Health 

Total 

Tweets 

Tweets with 

Negative Emotion 

Total 

Tweets 

Tweets with Negative 

Emotion 

Total 

Tweets 

Tweets with 

Negative Emotion 

Total 

Tweets 

Tweets with 

Negative Emotion 

Panel A:  Total Number of Tweets Per Day 

ln(Number of Tweets) 0.0711*** 0.0372*** 0.0101* 0.0168 0.123*** 0.0642*** 0.0313*** 0.0258** 

(0.0176) (0.0115) (0.00581) (0.0140) (0.0347) (0.0167) (0.00999) (0.0120) 

Constant 11.46*** 11.85*** 12.01*** 12.17*** 11.01*** 11.67*** 11.88*** 12.06*** 

 (0.182) (0.122) (0.125) (0.0896) (0.329) (0.156) (0.110) (0.0765) 

Observations 1,096 1,073 614 272 1,096 1,036 1,076 705 

R-squared 0.735 0.727 0.723 0.854 0.749 0.741 0.726 0.817 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes Yes Yes Yes Yes 

Weekend FE Yes Yes Yes Yes Yes Yes Yes Yes 

Household FE Yes Yes Yes Yes Yes Yes Yes Yes 

Panel B:  Total Number of Likes and Reposts of Haze-related Tweets Per Day 

 (1)  (2) (3)  (4) (5) (6) (7) (8) 

ln(Number of Likes 

and Reposts) 

0.0154 0.00990 0.00395 0.00384 0.0268*** 0.0176* 0.0334*** 0.0169 

(0.0149) (0.0208) (0.00750) (0.0212) (0.00680) (0.00963) (0.00848) (0.0327) 

Constant 12.17*** 12.23*** 12.27*** 12.05*** 12.03*** 12.14*** 12.05*** 12.27*** 

 (0.0390) (0.0418) (0.162) (0.213) (0.0543) (0.0702) (0.0702) (0.215) 

Observations 1,045 701 227 106 1,022 606 623 213 

R-squared 0.737 0.764 0.854 0.960 0.777 0.767 0.700 0.858 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes Yes Yes Yes Yes 

Weekend FE Yes Yes Yes Yes Yes Yes Yes Yes 

Household FE Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: The topic “haze” contains the following keywords: “haze”, “hazy”, “nea”, “psi”, “air pollution” and “singapore haze”. 

The topic “environment” includes the following keywords: “forest”, “fire”, “smoke”, and “burn”. The topic “health” includes the following keywords: “asthma”, 

“breath”, “respiratory”, “n95”, and “mask”. Panel A presents the relationship between the number of haze-related tweets and water consumption per day. Even 

columns use tweets with a negative emotion score to study the relationship between social media responses and water consumption. Columns 3 to 8 explore how 

tweets in each topic affect water consumption. Panel B reports the regression results using the total number of likes and reposts of haze-related tweets per day. 

Individual, year, month, and weekend fixed effects are included in all regressions. Robust standard errors are reported in parentheses under the coefficient estimates 

and are clustered at the household level. *Significant at the 10 percent level; **significant at the 5 percent level; ***significant at the 1 percent level.



Table 8: Average Response of Electricity Consumption to Haze Episode 

 

Independent Variable:  

ln(electricity) 

(1) (2) (3) (4) (5) (6) 

VARIABLES PSI +temperature +rainfall +humidity +sunshine +wind 

       

ln(PSI) 0.0550*** 0.0411*** 0.0409*** 0.0464*** 0.0275*** 0.0234*** 

 (0.000970) (0.00102) (0.00102) (0.00104) (0.00131) (0.00134) 

ln(temperature)  0.703*** 0.754*** 0.918*** 1.132*** 1.148*** 

  (0.0216) (0.0221) (0.0247) (0.0274) (0.0275) 

ln(rainfall)   0.00793*** -0.00176*** 0.000368 -0.000905 

   (0.000504) (0.000613) (0.000612) (0.000615) 

ln(humidity)    0.389*** 0.0764*** 0.0342* 

    (0.0144) (0.0177) (0.0179) 

ln(sunshine)     -0.0590*** -0.0592*** 

     (0.00202) (0.00202) 

ln(wind)      -0.0291*** 

      (0.00234) 

Constant 6.097*** 3.824*** 3.641*** 1.388*** 2.216*** 2.432*** 

 (0.00336) (0.0703) (0.0723) (0.126) (0.126) (0.126) 

       

Observations 469,664 469,389 469,389 469,389 469,389 469,389 

R-squared 0.898 0.899 0.899 0.899 0.899 0.899 

Year FE Yes Yes Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes Yes Yes 

Building FE Yes Yes Yes Yes Yes Yes 

Notes: This table presents the results on the average response in monthly electricity consumption to the change in the 

24-hour PSI reading by applying Equation (1) and progressively adding haze and weather measures. We include 

weather controls, such as monthly average temperature, total rainfall, sunshine hours, and relative humidity, in the 

subsequent columns. 39 weather stations (yellow circle) located in different subzones collect daily rainfall and 

temperature records, and 13 weather stations (black star) report wind data. The daily weather data is further aggregated 

into monthly frequency. Other island-wide weather measures, such as monthly average bright sunshine hours and 

relative humidity, are also collected We use ArcGIS to locate the weather station closest to each residential building 

and collect the temperature, rainfall, and wind data from the nearest weather stations. Year, month, and building fixed 

effects are included in all regressions. Robust standard errors are reported in parentheses under the coefficient 

estimates and are clustered at the building level. *Significant at the 10 percent level; **significant at the 5 percent 

level; ***significant at the 1 percent level.  
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Table 9: Room occupancy impact of haze outbreak in 2015  

(By Class Segment) 

 
Dependent variable:  

ln(occupancy) 

By Class Segment 

Model (1) (2) (3) (4) (5) (6) 

Time lag (day) t=6 t=5 t=4 t=3 t=2 t=1 

L6.ln_PSI -0.0143**      

 (0.00632)      

L5.ln_PSI  -0.0255***     

  (0.00620)     

L4.ln_PSI   -0.0242***    

   (0.00591)    

L3.ln_PSI    -0.0220***   

    (0.00599)   

L2.ln_PSI     -0.0146**  

     (0.00670)  

L1.ln_PSI      -0.00712 

      (0.00665) 

USD/SGD 0.771** 0.811*** 0.804*** 0.766** 0.743** 0.722** 

 (0.312) (0.310) (0.310) (0.310) (0.311) (0.312) 

IDR/SGD 89.91 449.3 311.7 421.8 442.4 640.5 

 (1,874) (1,827) (1,830) (1,832) (1,850) (1,863) 

CNY/SGD -3.431** -3.667** -3.425** -3.251** -3.217** -3.104** 

 (1.549) (1.534) (1.529) (1.529) (1.539) (1.544) 

INR/SGD 17.88 17.51 16.91 16.40 15.16 14.74 

 (11.07) (10.85) (10.84) (10.85) (10.90) (10.99) 

ln_STI 0.337** 0.302** 0.322** 0.328** 0.332** 0.328** 

 (0.133) (0.133) (0.132) (0.133) (0.133) (0.133) 

Constant -1.458 -1.077 -1.283 -1.303 -1.317 -1.378 

 (1.096) (1.093) (1.091) (1.092) (1.097) (1.099) 

Year-month FE YES YES YES YES YES YES 

DOW FE YES YES YES YES YES YES 

Hotel region FE YES YES YES YES YES YES 

Observations 992 992 992 992 992 992 

R-squared 0.381 0.388 0.388 0.386 0.381 0.378 

Notes: The dependent variable is the hotel room occupancy rate (daily index) in logarithm term across 

different hotel class submarket (luxury, upper upscale, and upscale). Current and lagged value of 24-

hour PSI index in logarithm term are the explanatory variables to examine the effect of haze one week 

ago on hotel performance. The coefficient on PSIt=0 stays statistically insignificant and is not included 

in the table. Singapore Straits Times Index (STI) in natural logarithm form and currency exchange rates 

with Indonesian rupiah (IDR), Chinese Yuan Renminbi (CNY), Indian Rupee (INR), and the United 

States Dollar (USD) being compared to the Singapore dollar (SGD) are included in the regression. 

Month-year fixed effects and day of the week fixed effects are included to account for the variations of 

hotel performance indices over time. Standard errors are reported in parentheses under the coefficient 

estimates. *Significant at the 10 percent level; **significant at the 5 percent level; ***significant at the 

1 percent level. 
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Table 10: Room occupancy impact of haze outbreak in 2015  

(By Geographic Area) 

 
Dependent variable:  

ln(occupancy) 

By Geographic Area 

Model (1) (2) (3) (4) (5) (6) 

Time lag (day) T=-6 T=-5 T=-4 T=-3 T=-2 T=-1 

L6.ln_PSI -0.0190***      

 (0.00551)      

L5.ln_PSI  -0.0329***     

  (0.00537)     

L4.ln_PSI   -0.0310***    

   (0.00512)    

L3.ln_PSI    -0.0272***   

    (0.00520)   

L2.ln_PSI     -0.0215***  

     (0.00583)  

L1.ln_PSI      -0.0119** 

      (0.00581) 

USD/SGD 0.968*** 1.016*** 1.007*** 0.955*** 0.935*** 0.908*** 

 (0.272) (0.268) (0.268) (0.269) (0.271) (0.272) 

IDR/SGD -270.5 230.5 55.83 220.3 125.3 348.8 

 (1,634) (1,582) (1,585) (1,591) (1,611) (1,627) 

CNY/SGD -3.838*** -4.120*** -3.807*** -3.569*** -3.592*** -3.461** 

 (1.350) (1.328) (1.324) (1.328) (1.340) (1.349) 

INR/SGD 16.31* 15.62* 14.84 14.05 12.98 12.72 

 (9.646) (9.392) (9.384) (9.425) (9.495) (9.600) 

ln_STI 0.387*** 0.341*** 0.368*** 0.375*** 0.380*** 0.374*** 

 (0.116) (0.115) (0.115) (0.115) (0.116) (0.117) 

Constant -1.969** -1.497 -1.756* -1.792* -1.791* -1.863* 

 (0.956) (0.946) (0.944) (0.949) (0.956) (0.960) 

Year-month FE YES YES YES YES YES YES 

DOW FE YES YES YES YES YES YES 

Hotel type FE YES YES YES YES YES YES 

Observations 992 992 992 992 992 992 

R-squared 0.339 0.356 0.356 0.350 0.341 0.334 

 Notes: The dependent variable is the hotel room occupancy rate (daily index) in logarithm term across 

different geographic regions(Marina Bay, Sentosa, Orchard, and River Valley). Current and lagged value 

of 24-hour PSI index in logarithm term are the explanatory variables to examine the effect of haze one 

week ago on hotel performance. The coefficient on PSIt=0 stays statistically insignificant and is not 

included in the table. Singapore Straits Times Index (STI) in natural logarithm form and currency 

exchange rates with Indonesian rupiah (IDR), Chinese Yuan Renminbi (CNY), Indian Rupee (INR), and 

the United States Dollar (USD) being compared to the Singapore dollar (SGD) are included in the 

regression. Month-year fixed effects and day of the week fixed effects are included to account for the 

variations of hotel performance indices over time. Standard errors are reported in parentheses under the 

coefficient estimates. *Significant at the 10 percent level; **significant at the 5 percent level; 

***significant at the 1 percent level. 
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Table 11: Room Price Impact of Haze Outbreak in 2015 

 
Dependent variable:  

ln(price) 

Panel A: By Class Segment  Panel B: Geographic Area 

Model (1) (2)  (3) (4) 

Time lag (day) t=0 t=-1  t=0 t=-1 

ln_PSI -0.0199***   -0.0182***  

 (0.00444)   (0.00591)  

L1.ln_PSI  -0.0154***   -0.0131** 

  (0.00463)   (0.00615) 

USD/SGD 0.968*** 0.976***  0.943*** 0.948*** 

 (0.216) (0.217)  (0.287) (0.288) 

IDR/SGD -2,575** -2,072  -4,769*** -4,264** 

 (1,302) (1,297)  (1,732) (1,722) 

CNY/SGD -5.474*** -5.266***  -4.229*** -4.017*** 

 (1.073) (1.076)  (1.427) (1.428) 

INR/SGD 1.639 -1.603  6.035 2.846 

 (7.698) (7.657)  (10.24) (10.16) 

ln_STI 0.398*** 0.400***  0.388*** 0.390*** 

  (0.0925) (0.0930)  (0.123) (0.123) 

Constant -0.562 -0.640  -0.508 -0.593 

 (0.763) (0.765)  (1.015) (1.016) 

Year-month FE YES YES  YES YES 

DOW FE YES YES  YES YES 

Hotel type FE YES YES  No No 

Hotel region FE No No  YES YES 

Observations 992 992  992 992 

R-squared 0.916 0.915  0.816 0.815 

Notes: The dependent variable is the hotel room price (daily index) in logarithm term. Panel A shows 

the effects of haze on daily hotel room rates estimated for each hotel class submarket (luxury, upper 

upscale, and upscale). Panel B presents the haze impact on daily room across different geographic 

regions(Marina Bay, Sentosa, Orchard, and River Valley). Singapore Straits Times Index (STI) in natural 

logarithm form and currency exchange rates with Indonesian rupiah (IDR), Chinese Yuan Renminbi 

(CNY), Indian Rupee (INR), and the United States Dollar (USD) being compared to the Singapore dollar 

(SGD) are included in the regression. Month-year fixed effects and day of the week fixed effects are 

included to account for the variations of hotel performance indices over time. Standard errors are reported 

in parentheses under the coefficient estimates. *Significant at the 10 percent level; **significant at the 5 

percent level; ***significant at the 1 percent level. 
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Figure 1: Singapore Residential Housing Location, Weather Stations and Air 

Quality Reporting Regions 

 

 
 

Notes: The panel data contains monthly aggregated electricity records for 4,200 private residential 

buildings and 9,336 public residential buildings from Jan 2013 to Dec 2015. The GIS map shows the 

geographical distribution of residential housing in the sample. Residential properties are randomly 

distributed among the five NEA air quality-reporting regions (north, south, east, west, and central 

Singapore). Geographic boundary of the five haze-reporting regions, Masterplan subzone boundaries, 39 

weather stations (yellow circle) collected daily rainfall and temperature records, and 13 weather stations 

(black star) reported wind data.  
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Figure 2: Average Daily 24-Hour PSI Value from January 1, 2012, to December 

31, 2014 

 

 
 

Notes: This figure plots the 24-hour PSI readings from January 2012 to December 2015. The red line 

represents the variation of average daily 24-hour PSI readings and the blue line stands for the day-to-day 

changes of the average daily PSI measure.  
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Figure 3: Daily Haze Status and Visibility Measure from January 2012 to 

December 2015 

 

 

Notes: This figure presents the daily visibility level and haze status from 2012 to 2015. The blue line 

stands for the visibility measure, which ranges from 0 to 10, where 0 indicates no visibility and 10 

indicates very clear visibility. The red line represents the number of counts per day with “haze” as the 

weather status reported by The Weather Channel.  
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Figure 4: Daily Haze-related Tweets from January 1, 2012 to December 31, 2015 

 

 

 

Notes: This figure shows the daily haze-related tweets generated by Singapore users during the major 

haze episodes in the study periods. The red line represents the daily counts of haze-related tweets, and 

the blue line represents the day-to-day change in daily counts.  
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Figure 5: Monthly Haze-related Tweets from January 2012 to December 2015 

 

 

Notes: We categorize the Twitter data into three topics: haze, environment, and health. This figure shows 

the trends of the three topics from 2012 to 2015. Solid lines represent the monthly tweet counts of each 

topic, and dashed lines represent tweets with negative emotion. The topic “haze” contains the following 

keywords: “haze”, “hazy”, “nea”, “psi”, “air pollution”, and “singapore haze”. The topic “environment” 

includes the following keywords: “forest”, “fire”, “smoke”, and “burn”. The topic “health” includes the 

following keywords: “asthma”, “breath”, “respiratory”, “n95”, and “mask”. 
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Figure 6: Short-term Haze Episodes and Estimated Water Consumption 

Responses 

Panel A. Dynamic Water Consumption Response to Haze Episodes in Mid-June 2013   

 

Panel B. Cumulative Water Consumption Response to Haze Episodes in Mid-June 

2013   

 

Notes: These figures plot the weekly water consumption trend. The one-week-long haze period 

occurring in the third week of June 2013 is identified by week “77,” whereas other numbers correspond 

to the 13-week window before and after June 2013 (week 77). Panel A graphs the impact of the one-

week air pollution event over time. Panel B graphs the entire path of the cumulative coefficients 𝛽𝑎+𝑏. 

The dashed lines represent the corresponding 95% confidence intervals.  
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Figure 7: Distribution of the Parameter Estimates and T-statistics 
with the Random Assignment of Hazy Days 

 

 

 

Notes: These figures show the distribution of parameter estimates and T-statistic of falsification tests by 

randomly assigning 30 “placebo” hazy days in each year for the three consecutive years, and repeat the 

randomization process over 500 times.  The top panel of Figure 7 presents the distributions of the 

estimated parameters with random assignment, whereas the lower panel shows the t-statistics of the 

falsification tests. 
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Figure 8: Long-term Haze Episodes and Estimated Electricity Consumption 

Responses 

Panel A. Dynamic Electricity Consumption Response to Haze Episodes in Sept and Oct 

2015   

 
Panel B. Cumulative Electricity Consumption Response to Haze Episodes in Sept and 

Oct 2015   

 
 

Notes: This figure plots the dynamic response of electricity consumption to the two-month long haze 

shock, for a seven-month window. Panel A graphs the dynamic monthly electricity consumption, and 

Panel B shows the month-to-month cumulative responses of experiencing such long-term haze episodes. 

The dashed lines represent the corresponding 95% confidence intervals. The two months with the haze 

shocks are coded using the year-month variable with the corresponding numbers of “668” (September 

2015) and “669” (October 2015).  
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Appendix 

 

Table A1: Weather Conditions Summary Statistics for P-score Matching 

Panel A. Weather conditions of the treatment and control groups (before matching) 

 Two-sample T Test with Equal Variances 

  Control Group Treatment Group   

Variables Observations Mean  Observations Mean  Mean Diff 

Temperature 3319151 28.475 265444 29.646 -1.171*** 

Humidity 3319151 0.762 265444 0.7 0.061*** 

Visibility 3309470 7.447 264020 7.087 0.360*** 

Pressure 3319151 578.702 265444 846.399 -267.697*** 

Wind Speed 3271963 8.735 258975 9.315 -0.580*** 

Rain Status 7807358 0.115 731498 0.055 0.060*** 

      

Panel B. Weather conditions of the treatment and control groups (after matching) 

Two-sample T Test with Equal Variances 

  Control Group Treatment Group   

Variables Observations Mean  Observations Mean  Mean Diff 

Temperature 1036 29.356 256006 29.713 -0.357*** 

Humidity 1036 0.719 256006 0.696 0.023*** 

Visibility 1036 7.638 256006 7.116 0.523*** 

Pressure 1036 841.106 256006 846.06 -4.954 

Wind Speed 1036 9.53 256006 9.321 0.209 

Rain Status 1036 0.198 256006 0.156 0.042*** 

Notes: We perform nearest neighbor matching with replacement based on the computed propensity score 

to pair the treatment and control samples. This table reports the summary statistics of the treatment and 

control samples, both before and after the nearest neighborhood propensity score matching. The 

treatment sample consists of hourly periods with 24-hour PSI readings over 60 from 2012 to 2014. The 

PSM significantly reduces the post-matching differences between the treatment and control periods in 

all observable weather conditions.  
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Table A2: Electricity Consumption and Emotional Changes Expressed by 

Twitter Users 

 
Dependent Variable: ln(Average 

Negative 

Emotion) 

ln(Electricity Consumption)  

ln(-Average Negative Emotion Score) 0.122*** 

 (0.00609) 

Constant 6.383*** 

 (0.00647) 

  

Observations 237,144 

R-squared 0.842 

Building FE Yes 

Year FE Yes 

Month FE Yes 

Notes: This table presents the results of estimating Equation (1) using the emotion score as an 

independent variable. We analyze the contents of each tweet using sentiment analysis techniques and 

give each tweet an emotion score, which ranges from -1 to 1. We include tweets with negative scores in 

the analysis and take the absolute value of the negative score. Year, month, and building fixed effects 

are included in all regressions. Robust standard errors are reported in parentheses under the coefficient 

estimates and are clustered at the building level. *Significant at the 10 percent level; **significant at the 

5 percent level; ***significant at the 1 percent level.  
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Table A3: Heterogeneity in Housing Price/Sq. m. 

 (1) (2) (3) (4) 

Dependent Variable: 

ln(Electricity Consumption) 

Below $10,000 Between 

$10,000 and 

$20,000 

Between 

$20,000 and 

$30,000 

Above 

$30,000 

ln(meanPSI) 0.0903*** 0.0877*** 0.0603* 0.0428 

 (0.00975) (0.00763) (0.0339) (0.104) 

ln(AirTemperatureMax) 0.0430 -0.194*** -0.383 0.572 

 (0.0890) (0.0664) (0.236) (0.716) 

ln(TotalRainfallMillimetre) -0.00994*** -0.00669** -0.0283*** -0.0147 

 (0.00336) (0.00276) (0.00968) (0.0235) 

ln(BrightSunshineDailyMeanHour) -0.0494*** -0.0178 -0.0640 -0.0333 

 (0.0173) (0.0134) (0.0559) (0.129) 

ln(HoursMeanRelativeHumidity) 0.542*** 0.438*** 0.636 0.672 

 (0.136) (0.122) (0.526) (1.453) 

Constant 3.430*** 4.618*** 4.921* 1.685 

 (0.681) (0.635) (2.686) (7.998) 

Observations 44,191 86,355 9,105 1,348 

R-squared 0.768 0.761 0.789 0.800 

Public Housing Dummy  0.768 0.761 0.789 0.800 

Year FE Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes 

Building FE Yes Yes Yes Yes 

Notes: This table provides the results of a heterogeneous test that show how the effects of exogenous air 

pollution events vary with different levels of housing prices. Private housing prices are collected from 

REALIS (Real Estate Information System), and HDB prices are collected from Singapore Statistics. We 

use the last housing transaction that was recorded in the period from 2013 to 2015 to proximate the 

housing value. Year, month, and building fixed effects are included in all regressions. Robust standard 

errors are reported in parentheses under the coefficient estimates and are clustered at the building level. 

*Significant at the 10 percent level; **significant at the 5 percent level; ***significant at the 1 percent 

level. 
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Table A4: Heterogeneity in Dwelling Type  

 

Dependent 

Variable: 

ln(electricity) 

Sub-sample 

(1) (2) (3) (4) (5) 

1 or 2-room 

HDB 

3-room 

HDB 

4-room 

HDB 

5 or executive 

room HDB 

whole HDB 

building 

      

ln(PSI) -0.00113 0.0254*** 0.0261*** 0.0248*** 0.0244*** 

 (0.0104) (0.00274) (0.00140) (0.00137) (0.00156) 

ln(temperature) 1.334*** 1.249*** 1.177*** 1.143*** 1.245*** 

 (0.180) (0.0562) (0.0286) (0.0281) (0.0317) 

ln(rainfall) -0.0111*** -0.00236* -0.00302*** -0.00179*** -0.00205*** 

 (0.00405) (0.00134) (0.000668) (0.000645) (0.000764) 

ln(humidity) 0.0823 0.157*** 0.0598*** 0.0106 0.0456** 

 (0.152) (0.0397) (0.0194) (0.0179) (0.0218) 

ln(sunshine) -0.0680*** -

0.0609*** 

-0.0616*** -0.0614*** -0.0601*** 

 (0.0140) (0.00401) (0.00208) (0.00206) (0.00241) 

ln(wind) 0.00458 -0.00504 -0.0369*** -0.0467*** -0.0388*** 

  (0.0142) (0.00493) (0.00271) (0.00282) (0.00287) 

Constant 0.313 0.736*** 1.804*** 2.371*** 2.071*** 

 (0.958) (0.280) (0.137) (0.127) (0.153) 

      

Observations 15,824 89,300 217,782 194,542 318,549 

R-squared 0.650 0.662 0.703 0.750 0.913 

Year FE Yes Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes Yes 

Building FE Yes Yes Yes Yes Yes 

Notes: This table provides the results of a heterogeneous test that show how the effects of exogenous air 

pollution events vary with different dwelling types of HDB flats. Year, month, and building fixed effects 

are included in all regressions. Robust standard errors are reported in parentheses under the coefficient 

estimates and are clustered at the building level. *Significant at the 10 percent level; **significant at the 

5 percent level; ***significant at the 1 percent level. 
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Table A5: Cross-domain Elasticity 

ln(total water) (1) 

VARIABLES Elasticity 

ln(building_electricity) 0.542** 

 0.00862 

ln(medPSI) (0.123) 

 -0.563 

ln(AirTemperatureMax) (0.423) 

 0.00472 

ln(TotalRainfallMillimetre) (0.0182) 

 -0.257 

ln(BrightSunshineDailyMeanHour) (0.217) 

 -1.917** 

ln(HoursMeanRelativeHumidity) (0.777) 

 0.00862 

Constant (0.123) 

 -0.563 

  

Observations 192 

R-squared 0.904 

Year FE Yes 

Month FE Yes 

Building FE Yes 

Notes: We construct a subsample of nine HDB building records between January 2013 and December 

2014 by merging monthly water consumption data with electricity consumption data. This table presents 

the cross-domain elasticity by regressing monthly electricity on total water consumption at the building 

level. Year, month, and building fixed effects are included in all regressions. Robust standard errors are 

reported in parentheses under the coefficient estimates and are clustered at the building level. 

*Significant at the 10 percent level; **significant at the 5 percent level; ***significant at the 1 percent 

level.  
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Table A6: Sample Construction of Hotel Room Rates and Occupancy Indices 

Panel A: Room rates and occupancy aggregated at class segment – day level  

Class Segment Population 1 

(Total Rooms) 

Sample 1 

(Total Rooms) 

Sampling 

Fraction 

Luxury 11,428 9,543 83.5% 

Upper Upscale 17,261 15,022 87.0% 

Upscale 14,890 8,907 59.8% 

Total 43,579 33,472 76.8% 

 

Panel B: Room rates and occupancy aggregated at geographic region – day level 

Central Region 
Population 2 

(Total rooms) 
Sample 2 

(Total Rooms) 
Sampling 

Fraction 

Marina Bay 17,098 12,749 74.6% 

Sentosa 3,324 2,293 69.0% 

Orchard 13,347 10,507 78.7% 

River Valley 8,462 5,274 62.3% 

Total 42,231 30,823 73.0% 
Notes: This table illustrates the market-wide room prices index and the occupancy index of two datasets 

used in the empirical analysis. Panel A presents the daily level room rates and occupancy level 

categorized by hotel class. Panel B shows the daily hotel performance by geographic area. 

 

 

 
 
 


