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I. Introduction 

Artificial intelligence (AI) is undergoing a 

renaissance. Thanks for developments in 

machine learning – particularly, deep learning 

and reinforcement learning – there has been an 

explosion in the applications of AI in many 

settings. In actuality, however, far from 

providing new forms of machine intelligence in 

a general fashion, what AI has been able to do 

has been to reduce the cost of higher quality 

predictions in a drastic way (Agrawal et.al., 

2018). As deep learning pioneer Geoffrey 

Hinton put it, “Take any old problem where 

you have to predict something and you have a 

lot of data, and deep learning is probably going 

to make it work better than the existing 

techniques.” (Hinton 2016) Thus, when they 

are able to utilize AI, decision-makers know 

more about their environment including about 

future states of the world. 

These developments have brought about 

discussion as to the role of humans in that 

decision-making process. The view we take 

here (see also Agrawal et.al., 2017) is that 

humans still play a critical role in determining 

the reward functions in decisions. That is, if the 

decision can be formulated as a problem of 

choosing an action (x), in the face of 

uncertainty about the state of the world () with 

probability distribution function F(), in an 

ideal setting, an AI can transform that problem 

from 𝑚𝑎𝑥𝑥 ∫𝑢(𝑥, 𝜃)𝑑𝐹(𝜃) into 𝑚𝑎𝑥𝑥𝑢(𝑥, 𝜃) 

with actions being made in a state-contingent 

manner. However, this transformation relies on 

someone knowing the utility function, 𝑢(𝑥, 𝜃). 

We argue that, at present, only a human can 

develop this knowledge. 

That said, the value to understanding the 

utility function in all of its nuance is enhanced 

when the decision-maker knows that they will 

have accurate predictions of the state of the 

world. This is especially true when it comes to 

states that are unlikely to arise or as applied to 

decision-making in complex environments.  

Here we develop a model of utility function 

discovery in the presence of AI. In so doing, we 

choose to emphasize experiences as the means 

by which decision-makers come to know that 

function. Our goal here is to understand what 

this implies for the demand for AI and, in 

particular, how suppliers of AI services should 
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go about pricing their services. We show that 

learning leads to some interesting dilemmas in 

setting AI pricing. In particular, learning may 

lead decision-makers to discover they have 

dominant actions and so do not need AI for 

prediction at all. This presents challenges for 

the long-term pricing of AI services. The 

mechanism driving this result is related to the 

price discrimination literature on the strategic 

effects of firms gaining information about 

consumers (e.g. Hart and Tirole 1988; Villas-

Boas 2004; Acquisti and Varian 2005; Zhang 

2011; Fudenberg and Villas-Boas 2012). 

II. Model Set-Up 

Our baseline model is drawn from Agrawal 

et.al. (2017); itself inspired by Bolton and 

Faure-Grimaud (2009). The decision-maker 

faces uncertainty over two states of the world, 

{𝜃1, 𝜃2} with equal prior probabilities. There 

are two possible actions: a state independent 

action with known payoff of S (safe) and a state 

dependent action with unknown payoff, R or r 

as the case may be (risky). The agent does not 

know the payoff from the risky action in each 

state and must apply judgment to determine 

that payoff. We assume that there are only two 

possible payoffs from the risky action, R and r, 

where 𝑅 > 𝑆 > 𝑟. In the absence of judgment, 

the ex ante expectation that the risky action is 

optimal in state 𝜃𝑖 is 𝑣; common across states. 

That is, 𝑣 is the probability in state 𝜃𝑖 that the 

risky payoff is R rather than r. This is a 

statement about the payoff, given the state. 

In the absence of knowledge regarding the 

specific payoffs from the risky action, a 

decision can only be made on the basis of prior 

probabilities. In this case, the expected payoff 

from the risky action is 𝜌 ≡ 𝑣𝑅 + (1 − 𝑣)𝑟. 

We make the following assumptions: 

A1 (Safe Default) 𝜌 ≤ 𝑆  

A2 (Judgment Insufficient) 1
2
(𝑅 + 𝑟) ≤ 𝑆  

(A1) states that, in the absence of judgment, the 

safe action is the default in each state. (A2) 

states that, if the agent knows the payoffs in 

each state, judgment alone will not change that 

default. 

If an AI is deployed to assist in this decision-

making, what it does is provide an ex ante 

prediction of the state. To keep things simple, 

we assume that prediction is perfect and so, 

with an AI, the decision-maker knows the state 

with certainty. By (A2), without judgment, 

having an AI does not change the decision or 

payoff. With both judgment and a prediction, 

optimal state-contingent decision-making is 

possible and the decision-maker’s expected 

payoff is 𝜌∗ ≡ 𝑣𝑅 + (1 − 𝑣)𝑆 in each period. 

III. Judgment Through Experience 

Judgment does not come for free. In Agrawal 

et.al. (2017), we assume that it takes thought (at 



the cost of time). By contrast, here we assume 

that judgment arises from experience. 

Specifically, an agent must actually experience 

a given state in order to, potentially, learn the 

payoffs from that state. If they do not know the 

state, they cannot learn. 

Decision-makers discount with factor  < 1. 

If a state arises, there is a probability, , that 

they will gather enough experience to 

determine the optimal action in that period and 

can make a choice based on that judgment. 

Otherwise, they can make a decision in the 

absence of that judgment. Importantly, they 

cannot learn the payoff associated with the state 

if they take the default action. Ignorance 

remains and their per period payoff is S. 

The timing of the game is as follows: 

1. (Prediction) The decision-maker is 

informed by the AI of the state that period. 

2. (Judgment) With probability, 1 − 𝜆, the 

decision-maker does not learn the payoffs 

for the risky action in that state. With 

probability 𝜆, the decision-maker gains this 

knowledge and retains it into the future.  

3. (Action) Based on these outcomes, the 

decision-maker takes an action and payoffs 

are realized and we move to the next time 

period.  

There are three phases to experience: (i) Full 

experience: when the agent has learned payoffs 

in both states, resulting in a discounted payoff 

from this point of: 1

1−𝛿
𝜌∗. (ii) Partial 

experience: Let 𝜋𝑖 denote the expected present 

discounted value if the agent already knows 

what the optimal action is in 𝜃𝑖. Then: 𝜋𝑖 =

1

2
(𝜌∗ + 𝛿𝜋𝑖) +

1

2
((1 − 𝜆)(𝑆 + 𝛿𝜋𝑖) + 𝜆 1

1−𝛿
𝜌∗) 

⟹ 𝜋𝑖 =
(1+ 𝜆

1−𝛿
)𝜌∗+(1−𝜆)𝑆

2(1−(1−1
2
𝜆)𝛿)

 

And finally, (iii), no experience with expected 

discounted payoff of: 

Π = 𝜆(𝜌∗ + 𝛿𝜋𝑖) + (1 − 𝜆)(𝑆 + 𝛿Π) 

⟹ Π =
(1−𝛿)(1−𝜆)2𝑆+(2−𝛿)𝜆𝜌∗

(1−𝛿)(2−(2−𝜆)𝛿
 

Thus, there is a learning period of uncertain 

length followed by a period whereby the agent 

can apply full experience to decisions into the 

future earning 𝜌∗ on average. As  increases, 

so does Π, showing that prediction and 

judgment are complements in this model. 

IV. Pricing AI as a Service 

Without any judgment or experience, the net 

present discounted value earned by the agent 

would be 1

1−𝛿
𝑆. Without initial access to an AI, 

the agent cannot apply judgment and gain 

experience to improve upon this. This suggests 

that a monopolist provider of AI could charge 

a fixed sum of Π − 1

1−𝛿
𝑆. Moreover, as Π is 

increasing in , that provider would want to 

target agents with judgment ability (or ease) as 



 

high as possible first before moving on to 

worse judges. 

There are several challenges to pricing AI 

with a once off payment. First, such algorithms 

often are run by the provider and not hosted as 

a distinct app by the user. Therefore, there are 

on-going costs to be recouped and users may be 

reluctant to pay up front for such a service. 

Second, algorithms hosted by the provider may 

improve at a more rapid rate. The provider may 

then want a means of monetizing those 

improvements.  

For these reasons, we consider pricing of AI 

as an ongoing service with a subscription fee of 

p per period. If the AI provider does not have 

knowledge of the experience level – and 

indeed, the experience – of each agent, this is a 

non-trivial pricing problem. 

To see this, let us consider the purchase 

decisions of fully experienced agents who 

know their payoff function. For some of these 

agents, they would have found that neither the 

safe nor risky action is dominated and their per 

period expected payoff is 1
2
(𝑅 + 𝑆). They can 

realize these payoffs with prediction but in the 

absence of prediction, they earn S per period 

(by A1). Thus, their willingness to pay for 

prediction is 1
2
(𝑅 − 𝑆). For other agents, their 

experience has shown them that one of the 

actions is dominated. Those agents either earn 

R or S per period but do not need prediction to 

do so. What this means is that the long-term 

market for prediction is at most a share 2𝑣(1 −

𝑣) of the original market; that is, prediction is 

only valuable to those who have found neither 

action to be dominated. To keep things simple, 

in this section we assume that 𝑣 = 1

2
. In this 

case, a fully experienced agent will continue to 

purchase AI if 1
2
(𝑅 − 𝑆) ≥ 𝑝. If the provider, 

charges a price based on this, they will earn 

1

4
(𝑅 − 𝑆) per period. 

What determines whether a partially 

experienced agent pays for the AI service? If 

they have learned that the risky action is 

optimal in one state, their expected discounted 

payoff is 𝜋𝑅 where: 

𝜋𝑅

=
1

2
(𝑅 + 𝛿𝜋𝑅)

+
1

2
((1 − 𝜆)(𝑆 + 𝛿𝜋𝑅) + 𝜆

(3𝑅+𝑆−2𝑝)

4(1−𝛿)
) − 𝑝

⟹ 𝜋𝑅 =
𝑅+ 𝜆

4(1−𝛿)
(3𝑅+𝑆−2𝑝)+(1−𝜆)𝑆−2𝑝

2(1−(1−1
2
𝜆)𝛿)

 

If this agent did not have access to an AI after 

this point, their expected discounted payoff 

would be: 1

1−𝛿
max{

1

4
(3𝑅 + 𝑟), 𝑆}. On the other 

hand, if a partially experienced agent learned 

the safe action was optimal in one state, their 

expected discounted payoff is 𝜋𝑆 where: 



𝜋𝑆

=
1

2
(𝑆 + 𝛿𝜋𝑆)

+
1

2
((1 − 𝜆)(𝑆 + 𝛿𝜋𝑆) + 𝜆

(𝑅+3𝑆−2𝑝)

4(1−𝛿)
) − 𝑝

⟹ 𝜋𝑆 =
𝑆+ 𝜆

4(1−𝛿)
(𝑅+3𝑆−2𝑝)+(1−𝜆)𝑆−2𝑝

2(1−(1−1
2
𝜆)𝛿)

 

If this agent did not have access to an AI after 

this point, their expected discounted payoff 

would be: 1

1−𝛿
𝑆. These two options differ both 

in terms of the payoffs they generate while 

learning as well as what the potential upside is 

from moving to full experience. If the agent has 

learned that the risky action is optimal, this 

upside is 3

4
𝑅 + 1

2
𝑆 − 𝑝 while otherwise it is 

1

2
𝑅 + 3

4
𝑆 − 𝑝. Thus, 𝜋𝑅 > 𝜋𝑆.  

This leads to a pricing dilemma on the part of 

an AI provider. They have two pricing options: 

they can set p so that min{𝜋𝑅 −

1

1−𝛿
max {

1

4
(3𝑅 + 𝑟), 𝑆} , 𝜋𝑆 −

1

1−𝛿
𝑆} ≥ 0 

thereby, selling to the entire market or price 

above this level so that either 𝜋𝑅 ≥

1

1−𝛿
max {

1

4
(3𝑅 + 𝑟), 𝑆} or 𝜋𝑆 ≥

1

1−𝛿
𝑆 and sell 

to half of the market. The following proposition 

demonstrates, however, that, for a far-sighted 

AI provider, servicing the entire market is the 

more profitable approach; however, the AI 

provider does not extract the full value of the 

prediction despite having perfect knowledge of 

the state. 

Proposition 1. For  sufficiently high, the AI 

provider will maximize profits by covering the 

entire market with a price equal to: 

𝑝 =
𝜆

2(𝜆+4(1−𝛿))
(𝑅 − 𝑆). 

PROOF: We first examine the prices in the 

proposition that would result in full inclusion. 

The prices are such that 𝜋𝑅 ≥
1

1−𝛿
𝑚𝑎𝑥{1

4
(3𝑅 +

𝑟), 𝑆} and 𝜋𝑆 ≥
1

1−𝛿
𝑆 so there is full inclusion 

with partially experienced agents. Specifically, 

note that the price where 𝜋𝑅 =
1

1−𝛿
𝑆, 𝑝 =

(4(1−𝛿)+3𝜆)

2(𝜆+4(1−𝛿))
(𝑅 − 𝑆) > 𝜆

2(𝜆+4(1−𝛿))
(𝑅 − 𝑆) which is 

the price where 𝜋𝑆 =
1

1−𝛿
𝑆. It is useful to 

examine whether these prices will result in 

inclusion with fully experienced agents. Note 

also that the price where 𝜋𝑅 =
1

4(1−𝛿)
(3𝑅 + 𝑟), 

𝑝 = 2(2𝑆−𝑅−𝑟)(1−𝛿)+𝜆(𝑅−𝑆+𝛿(2𝑆−𝑅−𝑟))

2(𝜆+4(1−𝛿))
>

𝜆

2(𝜆+4(1−𝛿))
(𝑅 − 𝑆). Thus, the price in the 

proposition is the only price that will support 

full inclusion at the partially experience phase. 

Will this price also support inclusion at the 

fully experience stage; that is, is 𝑝 ≤ 1

2
(𝑅 − 𝑆)? 

Note that 
𝜆

2(𝜆+4(1−𝛿))
< 1

2
 so this is satisfied. 

Note, however, that (4(1−𝛿)+3𝜆)
2(𝜆+4(1−𝛿))

(𝑅 − 𝑆) > 1

2
(𝑅 −

𝑆) and that, as 𝛿 → 1, 

2(2𝑆−𝑅−𝑟)(1−𝛿)+𝜆(𝑅−𝑆+𝛿(2𝑆−𝑅−𝑟))

2(𝜆+4(1−𝛿))
→

(𝑅−𝑆+𝛿(2𝑆−𝑅−𝑟))

2
> 1

2
(𝑅 − 𝑆). Thus, under these 

conditions, setting a price that excludes some 

agents at the partial experience phase, causes 



 

future demand by fully experienced agents to 

fall to 0. 

When we examine pricing to agents with no 

experience, note that: 

Π

= 𝜆
1

2
(𝑅 + 𝛿𝜋𝑅 + 𝑆 + 𝛿𝜋𝑆) + (1 − 𝜆)(𝑆

+ 𝛿Π) − 𝑝 ⟹ Π

=
𝜆1
2
(𝑅 + 𝛿𝜋𝑅 + 𝑆 + 𝛿𝜋𝑆) + (1 − 𝜆)𝑆 − 𝑝

1 − (1 − 𝜆)𝛿
 

The issue is whether an AI provider can charge 

a price that extracts the maximal rents at this 

phase; i.e., so that Π = 1

1−𝛿
𝑆. If this could be 

done, p will be: 𝑝 = 𝜆1
2
(𝑅 + 𝛿𝜋𝑅 + 𝑆 + 𝛿𝜋𝑆 −

2

1−𝛿
𝑆). If  

Substituting and solving for p we have: 

𝑝 = 𝜆
(2−𝛿)(1−(1−𝜆)𝛿)

4−𝛿(8−𝜆(6+𝜆)−𝛿(4−6𝜆))
(𝑅 − 𝑆) 

However, it easy to check that at this price 

𝜋𝑆 <
1

1−𝛿
𝑆, so this would not result in full 

inclusion beyond that phase. Moreover, as 𝛿 →

1, this price becomes (𝑅 − 𝑆). Therefore, the 

price in the proposition is the only fully 

inclusive price resulting in a long-run per 

period payoff of more than 1
2
𝑝 = 𝜆

4(𝜆+4(1−𝛿))
(𝑅 −

𝑆) as the provider always serves half of the 

fully experienced agents. 

We have also shown that for  sufficiently 

high, any candidate exclusionary price will 

result it prices that exceed 1
2
(𝑅 − 𝑆). Thus, for 

 sufficiently high, the AI provider will not find 

it profitable to exclude agents at any stage.  

 

Intuitively, when some initial judgment is 

complete, there is either good news (in that the 

risky strategy is optimal) or bad news (in which 

it is not). An inclusion strategy requires price 

to be low enough that following bad news, 

learning still occurs. However, while the upside 

potential for the user following good news is 

higher than that following bad news, the value 

of prediction after full experience is gained is 

the same. Thus, the AI provider has no 

mechanism by which they can share in the 

upside. In the absence of that mechanism, they 

choose to price low and not exclude any users 

at this stage. Half of the users eventually opt 

out when they find that either the safe or risky 

action is dominant. What this means is that an 

AI provider who cannot implement upfront 

pricing is restricted in the value they can 

appropriate. While learning can yield good or 

bad news to the decision-maker, good news 

may cause prediction to lose its value as the 

decision-maker discovers the risky action is 

dominant. Thus, the AI provider must sacrifice 

rents in order to ensure that they can capture 

some rents as the decision-maker gains 

experience. 

Can versioning – selling an AI product which 

has lower performance – improve this outcome 



for the AI provider? The intuition would be that 

until they are fully experienced, users will 

purchase the lower performing product 

allowing the AI provider to charge more in the 

long-term. The downside is a lower performing 

product may slow the gathering of experience 

and push that long-term out further. The details 

of this are left to future work. 

V. Judgment Through Experimentation 

Using an experience frame to judgment 

suggests an alternative way of ‘learning’ the 

reward function: experimentation. In 

particular, when coupled with prediction, a 

decision-maker could, by choosing the risky 

action, evaluate whether that is the right action 

for that state. The expected cost would be 𝑆 −

𝜌. In this conception, we have the following: 

𝜋𝑖 =
1

2
(𝜌∗ + 𝛿𝜋𝑖) +

1

2
(𝜌 + 𝛿

1

1−𝛿
𝜌∗) 

⟹ 𝜋𝑖 =
1

1−𝛿
𝜌∗ + 𝜌

2 − 𝛿
 

Thus, the expected present discount payoff 

prior to any experience is:  

Π = 𝜌 + 𝛿𝜋𝑖 

⟹ Π =
1

2−𝛿
((3 − 𝛿)𝜌 +

𝛿

1−𝛿
𝜌∗) 

The convenient property of this frame is that it 

relates the cost of judgment explicitly to the 

expected cost of experimentation. In particular, 

as r decreases, experimentation becomes more 

costly.  

These calculations presume that the decision-

maker finds it worthwhile to experiment. If no 

experiment is undertaken, the present 

discounted payoff is 1

1−𝛿
𝑆. Thus, it may be the 

case that there is no value for an AI as the cost 

of experimentation may be too high.  

Even if this were not the case, in assessing 

the demand for AI under experimentation, we 

need to consider the fact that decision-makers 

can use experimentation to discover whether 

they have dominated actions or not. Depending 

on v, by running repeated experiments, even in 

the absence of knowledge of which state has 

arisen, the decision-maker can potentially infer 

whether the risky or safe action is preferred in 

both states. In this case, as we noted earlier, 

there would be no further demand for an AI. 

Working out the full equilibrium outcome 

under experimentation is beyond the scope of 

our analysis in this short paper. However, we 

believe that, in some environments, this could 

prove to be an interesting driver of the demand 

for AI and how it evolves. 
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