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Abstract

In speculating that local public goods could be efficiently provided, Tiebout (1956)
envisioned head taxes which would both finance public goods and price access to them.
In practice, head taxes are not available, potentially leading to distortions. Hamil-
ton (1975, 1976) responded that zoning can mimic a head tax by creating a price (or
“admission ticket”) at the border. While the debate over the efficiency of the local pro-
vision of public goods continues, modern empirical work, including structural models
and simple hedonic pricing models, routinely imposes the restriction that amenities are
capitalized through the price of land or housing per unit. It has ignored the possibil-
ity of capitalization into tickets. This paper generalizes previous work to show more
precisely how land-use restrictions create tickets. It further advances the literature by
using a unique national level dataset of property transactions matched to very local
neighborhood amenities to measure the extent to which local public goods are capital-
ized into “intercept” (ticket prices) versus “slope” effects (varying prices per unit). We
find evidence for both, but the intercept effect is strongest when land use regulation is
greater, as predicted by the model.

1 Introduction

Since the seminal work of Tiebout (1956), the public finance literature has suggested that

local governments may provide local public goods efficiently. Tiebout’s basic argument was

that if local jurisdictions can finance public goods with non-distortionary head taxes, then

households can pick the jurisdiction in which to live based on their willingness to pay for public
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goods. As with a well-functioning market for private goods, the head tax serves as a price on

benefits, a price which optimally coordinates the distribution of public goods. Households will

sort into communities based on their demands for public goods, with high-demand households

together in a high-public good community, low-demand households together in a low-tax

community, and so forth. As a price on public benefits, the head tax is a “benefit tax” – that

is, a fee for services.

However, jurisdictions cannot realistically use head taxes to finance local public goods.

Instead, they typically use property taxes. This departure from Tiebout’s idealized model

gives rise to a potential “jurisdictional choice externality,” in which poorer households try

to buy the smallest house on the block in richer neighborhoods (Fischel 1985, Calabrese,

Epple, and Romano 2012). This dynamic is problematic if public goods are congested, so

that serving an additional household either subtracts from the benefit received by others or

requires additional funding. An example might be education, in which services are determined

by per capita expenditures. In such cases, the entry into the community of a lower-income

resident consuming less housing creates a transfer from richer households (with larger houses

and, hence, greater property tax burdens). The problem can be viewed as a case of the

“tragedy of the commons,” in which too many people crowd into a jurisdiction to take

advantage of its tax base. Richer households respond by voting for lower tax rates and lower

public good levels.

In a simulation model of Tiebout sorting, Calabrese, Epple, and Romano (2012) find

that too many people do crowd into the most desirable communities, creating congestion.

In fact, in their simulations, this congestion entirely negates any gain from Tiebout sorting

processes, with households better off with a single homogeneous community–that is, with

no menu of choices over public good levels at all. They find that this jurisdictional choice

externality is a much bigger problem then other distortions from the property tax, such as

lower consumption of housing capital (Zodrow 2001).

Hamilton (1975, 1976) extended Tiebout’s model to account for just such issues (see
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Fischel 1985, 2001 for discussion). He argued that, in special cases, zoning can prevent

such distortions by preventing too many people from crowding into a community. In this

paper, we argue that Hamilton’s results are more general than often perceived. Any friction,

such as local land use regulations, that places a binding constraint on the number of lots

(or housing units) rather than their size introduces a price on lots that mimics a head tax:

each jurisdiction will have its own “ticket” price for entry. Thus, housing costs consist of a

two-part tariff, an entry ticket plus a per-unit cost for additional housing services (see also

Glaeser and Gyourko 2003).

A large literature has debated the relative merits of these models and purported to em-

pirically test the Tiebout-Hamilton benefit view of the property tax against the “new view”

that it is distortionary (e.g., Fischel 1992, 2001, Mieszkowski and Zodrow 1989, Nechyba

2001, Ross and Yinger 1999, and Zodrow 2001). As discussed by Nechyba (2001), many of

these tests are unsatisfying. Some argue that “capitalization is everywhere,” with exogenous

amenities and exogenous shocks to tax levels priced into housing, and that such capitalization

is consistent with the benefit view. Others argue that capitalization is still consistent with

the new view of the property tax. Still others have gone further, arguing that, because in

Hamilton’s (1975) world the price of homogenous land is constant everywhere, capitalization

contradicts the benefit view. Indeed, Ross and Yinger (1999) call such evidence “overwhelm-

ing,” concluding that evidence of capitalization is proof against the benefit view.

Unfortunately, the participants in this debate appear to be talking past one another. The

question is not whether public good levels are capitalized, but how. In the absence of zoning,

amenities will be capitalized into the per-unit price of land and/or housing, as the demand

for housing increases. But in the presence of zoning, the increased demand to live in an area

may be capitalized into the tickets.

Unfortunately, to our knowledge, virtually all of the papers that have been interpreted

as disproving the benefit view do so only under maintained hypotheses that rule out such
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two-part pricing.1 This includes the model of Carroll and Yinger (1994), which restricts the

price of land to be uniform per square foot. Most notably, it includes any hedonic study,

such as those discussed by Ross and Yinger, that uses logged housing prices as the dependent

variable. A typical hedonic model is of the form ln(pin) = f(gn) + h(Li, xi), where i is an

individual house, n is a neighborhood, g is a vector of amenities, L is land, and x a vector of

other housing characteristics. Such a model imposes the condition that the amenities have

an effect on housing values that is proportionate to the housing services index h(). Similarly,

virtually all equilibrium models of sorting impose the restriction that capitalization is through

per-unit housing services (e.g. Bayer et al. 2009, Epple and Sieg 1999) as does the simulation

in Calabrese, Epple, and Romano (2012).2

In this paper, we first generalize models of capitalization by allowing public goods and

amenities to affect both the “ticket” prices and the unit prices of housing services. As

suggested by Nechyba (2001), there likely is some truth to both the benefit view and the new

view. Accordingly, we propose to account for both through the following family of models:

pcnit = αcn + βcnhc(Li, xi) + εcnit

where c indexes cities and t time. The terms α and β represent, respectively, the inter-

cept/ticket prices and the slope shifters/housing service gradient prices. If the α are all zero,

the model is equivalent to the standard view and the notion of entry tickets to a community is

rejected. If the β are all equal, the marginal cost of housing is the same across communities,

which would be consistent with Hamilton’s model with optimal zoning and only congested

public goods. If neither is true–as seems most likely–there is some pricing of public goods

1Lutz (2009) offers an important exception. He finds that decreases in the fiscal transfers within a
community result in increases in housing capital. On the face of it, this is inconsistent with a simple zoning
story in which capital is fixed. However, this too is not a clean test. For example, it is also consistent with
a story in which jurisdictions have minimum constraints on housing size.

2Typically, such models work by first estimating a hedonic regression of the form ln(pin) = αn +h(Li, xi),
with the neighborhood fixed effects capturing between-neighborhood differences in the price of housing ser-
vices due to amenities. There still is capitalization into tickets in the weak sense that there is an affect of
amenities even at x=0, but only proportionate to the effect at all values of x.
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through entry tickets and some through differential marginal costs for land and housing.

In addition to testing the basic model of two-part pricing, we consider the conditions

where capitalization into tickets is more likely to dominate capitalization into land/housing

prices. We would expect to find capitalization into tickets predominating in communities

with a fixed set of housing units (possibly a highly heterogeneous set), or at least with

high transaction costs to reconfigure the housing stock. This hypothesis can be tested using

data on the regulatory environment such as the Wharton residential land use regulatory index

(Gyourko et al. 2008). Using a difference-in-differences design, we test whether capitalization

through “tickets” (relative to that through land prices) is more pronounced in metro areas

with tighter zoning regulations than in those with more slack regulations.

To test these hypotheses, we have compiled what we believe to be the most comprehensive

hedonic data set ever assembled, combining breadth and depth. We have obtained virtually

every housing transaction between 2005-2011 in 95 urban areas the United States, complete

with housing characteristics and geocoding to the Census block level. Additionally, we have

matched each house to its elementary school attendance boundary and obtained school-

quality data for each school. To our knowledge this is the first national-level study to use

educational data at such a fine and precise spatial scale. Other amenities include air pollution,

hazardous waste sites, crime, and measures of centrality. Finally the Wharton residential land

use regulatory index also is matched to the data at the city level.

We find strong evidence of the existence of tickets and hence two-part pricing of housing.

Moreover, we find that, consistent with our hypothesis, amenities tend to be capitalized

into those ticket prices in cities with tighter regulatory controls, whereas they tend to be

capitalized into land/housing prices in cities with weaker controls.

Our findings have two key implications for the literature. First, they provide a new

interpretation of the old debate between the “benefit view” and the “new view” of the

property tax, which seemed to reach an impasse over how to interpret capitalization. Missing

from those debates has been the distinction between capitalization into tickets or into housing
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prices. If zoning is to mimic a head tax then capitalization should be into tickets, not land or

housing-services prices. This is precisely our finding. However, the normative implications

of our findings should be interpreted cautiously. If public goods are congested, a necessary

condition for efficiency is to price entry into the jurisdiction (Banzhaf 2014). Our findings

only show that this condition is met, not sufficient conditions. Moreover, zoning will induce

capitalization of amenities into ticket prices whether or not the amenities are congested,

raising the possibility of inefficiently high exclusion.

A second implication of our work is that the very large literature on “hedonic” housing

prices routinely employs models that are fundamentally mis-specified. This includes basic

hedonic models as well as hedonic models employed to find housing prices for use in sorting

models.

In general, our model relates to a growing literature on the regulatory costs of zoning. In

particular, the logic of our strategy parallels that of Glaeser and Gyourko (2003), who test

for differences in land at the intensive margin (a larger lot) and the extensive margin (an

additional lot), and the difference in those differences across tightly and loosely regulated

land markets. However, they do not interpret their findings in light of the debates over the

efficiency of residential sorting. Moreover, while they account for a single ”ticket price” at

the extensive margin of a lot, they allow amenities to be capitalized only through land prices;

in contrast, the possibility of amenities being capitalized through ticket prices is essential to

our model. Finally, they do not derive these two measures from a single data source, as we

propose to do.

Our model also relates to recent work by Turner, Haughwout, and van der Klaauw (2014)

and Albouy and Ehrlich (2016). These papers estimate the effect of zoning on housing prices

by decomposing it into two components, the regulatory cost of zoning and the spatial exter-

nality (such as the utility of additional green space). Turner et al.’s identification strategy

focuses on jurisdictional borders, relying on the idea that the regulatory cost of zoning falls

only within a given jurisdiction while the externality varies smoothly across jurisdictional
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boundaries. Their model ignores the possibility of a fiscal transfer from congested public

goods, which can be internalized from zoning, creating a public benefit that also changes dis-

cretely at the border. Albouy and Ehrlich take a more structural approach, estimating the

production function for housing as implied by a spatial equilibrium model. This approach

does not rely on jurisdictional boundaries, but ignores the possibility of ticket prices. In

contrast, our model allows for these effects, but ignores the regulatory costs.

2 Conceptual Framework

In a pair of influential papers, Hamilton (1975, 1976) argued that that zoning could replicate

the head tax present in Tiebout’s (1956) model, thus internalizing the jurisdiction choice

externality. Hamilton (1975) offered a model in which the number of jurisdictions was large

relative to the population, so minimum lot sizes induce perfect sorting across internally ho-

mogeneous communities. In contrast, Hamilton (1976) offered a model in which communities

had an exogenously set heterogeneous stock of housing, and fiscal transfers created a pre-

mium for smaller houses. These papers have provided tremendously important insights and

sparked fruitful debates. But, in our view, focus on the specific special cases has obscured

the generality of the insights. In this section, we generalize Hamilton’s results. First, to

set a baseline for comparison, we consider the properties of a hedonic equilibrium with no

land-use controls. To see the precise effects of zoning, we distinguish between two cases,

restrictions constraining the size of lots (or houses) and restrictions constraining the total

number of lots (or housing units). We argue that, relative to no land-use controls, minimum

lot sizes limit the heterogeneity of lot sizes in a neighborhood, whereas restrictions on the

total number of lots induce two-part prices with “tickets.” To emphasize that fiscal transfers

are not necessary to generate tickets, we focus on exogenous amenities.
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2.1 Hedonic Equilibrium with No Land-Use Controls

Consider a city with distinct neighborhoods indexed 1...n...N , as well as an outside option

0. Neighborhoods are ordered by a scalar-valued composite of exogenous amenities and local

public goods, Gn. On the demand side of the land market, a finite, countable set of hetero-

geneous households 1...i...I have preferences that are monotonic in G, land consumption h,

and numeraire consumption k. These preferences can be represented by a strictly increasing

differentiable utility function ui(k,G, h). Households choose one neighborhood and, condi-

tional on that neighborhood, the size of a lot to consume. On the supply side, developers

allocate land to lots to maximize the value of rents, subject to any land use constraints.3 The

price of a lot l in neighborhood n is a potentially nonlinear function of the size of the lot:

pln = pn(hln). (Note because Gn is uniform within neighborhoods, we implicitly subsume its

affect on prices into the neighborhood-specific price function.)

Consider first for purposes of comparison the case with no land controls and malleable

lots. The first-order conditions for profit maximization require that the marginal value of

land be the same at each lot within a neighborhood, otherwise developers would re-allocate

land from a lot where its marginal value is lower to one where it is higher. Likewise, this

marginal value must be equal to the average value of a lot (per square foot). Otherwise, if

it were higher, developers would develop fewer lots and make the remaining lots bigger, or

alternatively if it were lower they would develop more, smaller lots. Thus, without land-use

restrictions, the following two equilibrium conditions hold:

∂pn
∂h
|hln = βn for all l, n (1a)

∂pn
∂h
|hln =

pln
hl,n

for all l, n (1b)

3We abstract away from housing capital in the formal exposition of the model but return to it in our
empirical work. It would be straightforward to incorporate capital into the numeraire k. Alternatively, if
capital stocks are fixed we can think of h itself as a composite of land and capital.
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for some constant βn. Integrating Equation (1a) gives

pln = αn + βnhln, (2)

for some constant of integration αn. Dividing by square footage gives pln/hln = αn/hln + βn.

Equation (1b) then requires αn=0. Consequently, pn(hln) = βnhln. That is, because of

the no-arbitrage condition at the extensive margin, there are no tickets in the community

(for if there were, the average value of land would be higher than the marginal value and

developers would prefer to re-arrange their land into more lots). Instead, there is a single

price per square foot in the neighborhood, βn. Additionally, the price per square foot in

these neighborhoods must be strictly increasing in G, such that (βn′ − βn)(Gn′ −Gn) > 0 for

Gn′ 6= Gn. Otherwise, as utility is increasing in G, no households would choose to live in the

neighborhood with lower G and higher prices.

This model represents the consensus view of hedonic pricing, with amenities capitalized

into the per-unit price of land or housing. Such a relationship is depicted in Figure 1. The

figure shows the value of lots as an increasing function of lot size. Neighborhood 1 (n=1) is

an average community. The slope of its price line depicts the price of land. Neighborhood 2

has nicer amenities and Neighborhood 3 nicer still: their price lines are steeper, indicating

higher demand for land and hence higher prices per square foot.

2.2 Zoning as Minimum Lot Sizes

Consider now the case where the city adopts land use controls in the form of a minimum

lot size h and consider the case where this restriction is binding at least at some lots in at

least some neighborhoods, but not necessarily all. (The case where it is never binding is of

course equivalent to the previous sub-section.) Although such restrictions may affect density

in equilibrium, they are not binding on density, in the sense that total land area divided by

h is strictly greater than the number of lots when h is not binding at all lots. Moreover,

developers still can re-arrange land to ensure conditions (1a) and (1b) are met. (If h is not
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Figure 1: Pricing Under Consensus View of Capitalization

binding at all lots, there is “slack” land in the neighborhood that developers can re-allocate

to meet the conditions.) Thus, we still have pn(hn) = βnhn.

Conditional on living in neighborhood n, a household maximizes utility subject to the

minimum lot size constraint. Ignoring the non-negativity constraint on k which we assume

does not bind (and dropping the household index i), the problem can be written as:

max
k,hn

u(k,Gn, hn) + λ(y − k − βnhn) + µ(hn − h) (3)

The Kuhn-Tucker conditions pertaining to the household’s choice of h are

∂u

∂h
= λβn − µ, (4)

µ(hn − h) = 0, µ ≥ 0, (hn − h) ≥ 0. (5)

For those households for whom the constraint does not bind, we have in Condition (5)

µ = 0, (h − hn) > 0. For these households, the situation obviously is identical to the case

with no land use controls. For those households for whom the constraint does bind, we have

in Condition (5) µ > 0, (h − hn) = 0. For these households, it is useful to re-write the
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above constrained optimization problem using the following shadow pricing scheme (Neary

and Roberts 1980):

max
k,hn

u(k,Gn, hn) + λ̃(y + (β̃n − βn)h− k − β̃nhn). (6)

The first-order condition related to the household’s choice of h is:

∂u

∂h
= λ̃ β̃n. (7)

That is, the problem in Expression (3) where the household must buy h at a price per square

foot of βn is equivalent to one where it freely chooses to purchase h at a subsidized price per

square foot β̃n and where “virtual income” is adjusted by the fixed amount (β̃n−βn)h ≤ 0 to

compensate for the subsidy and leave real income unchanged.4 To see the equivalency of the

problem when the constraint binds, note the first-order conditions (4) and (7) are the same

if we just let λ̃ = λ and β̃n = β−µ/λ. In words, the marginal utility of income is unchanged

by the combination of a lower price and lower income, and the shadow price per square foot

is equivalent to the actual price, adjusted downward by the marginal utility of relaxing the

constraint (i.e. µ) converted into dollar units by λ. As the problems are equivalent, the

consumer chooses h = h. Figure 2 compares the primal and dual problems. Given prices

p, an unconstrained household would choose h∗ and achieve utility level u. The constraint

requires the household to consume at least h, creating a wedge between the slopes of p and

the indifference curve, of course lowering utility. However, there is a lower price p̃ supporting

the indifference curve at that point. With that lower price (and with income adjusted to

maintain this lower utility level), the consumer would freely choose h.

This dual shadow-pricing formulation of the problem is instructive because it shows why

4Note that, because h is a minimum purchase requirement, we have β̃n < βn. This is in contrast to the
more common rationing constraint in which there is an upper bound on the purchase. In the case of a rationing
constraint, the household’s problem is equivalent to facing a higher shadow price and an augmented income
to cover the additional expenditure and maintain utility. In the case of the minimum purchase requirement,
the inequality in the constraint is reversed and so are the sign of the change in the price and the lump-sum
adjustment to income.
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Figure 2: Optimization with Constraint and with Shadow Values

a minimum purchase requirement is equivalent to a two-part tariff (Wilson 1993). Because

β̃n < β, the price function becomes less steep. But recall also income is adjusted downward

by (β̃n−βn)h conditional on choosing the community. Obviously, this is equivalent to paying

a fixed fee αn = (β̃n−βn)h to enter the community followed by a lower price per square foot.

Hamilton (1975) presents a special case in which the constraint is (just) binding on ev-

erybody in a neighborhood, so all housing demands collapse to a single point. In that case, a

two-part tariff is observationally equivalent to a simple price. Either price function is consis-

tent with a single data point. Figure 3 illustrates this situation, with three communities each

with homogeneous lot sizes. The solid lines, the same as those in Figure 1, fit the data, but

so do the dashed lines which all have the same slope but different tickets. In the more general

case where the constraint binds for only some households in the neighborhood, the equiva-

lence is still there for those who are constrained but not for the unconstrained households.

Thus, if we are to assume everybody in the community faces the same price function, then

there are no tickets into the community. Consequently, the price function continues to take

the same form as the case with no land use restrictions, and G continues to be capitalized
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Figure 3: Pricing Under Hamilton (1975)

into prices, though the values of βn will differ.

Whether βn increases or decreases is an empirical question, even abstracting from any

effects of lot size restrictions on amenities such as green space and congestion (Glaeser and

Ward 2009, Ihlanfeldt 2007). On one hand the restriction per se reduces the utility a house-

hold can achieve in the neighborhood, reducing land demand at the extensive margin; on the

other hand by its nature it requires more land be consumed by the constrained households,

which is equivalent to a a reduction in supply faced by the unconstrained households. If

neighborhoods are sufficiently different (as in our model) and if a large number of people are

at the constraint, we would expect housing prices to increase, as we find in our simulations.

If so, an additional prediction is that the minimum lot sizes reduce the heterogeneity of land

consumption. The left tail of the distribution is cut of by the constraint, the right tail is

moved in because unconstrained households move up their demand curve as prices increase.

2.3 Zoning as a Transaction Cost on Reconfiguring Lots

But zoning is not limited to restrictions on lot size. Other regulations limit the number of

lots in a neighborhood. One straightforward example is the case of transferable development
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rights (TDRs), which set a quota on the number of allowable lots and allow these quotas to be

traded in the market (McConnell and Walls 2009). Another example, discussed by Hamilton

(1976), is the case where low-income housing or other diversity rules force a particular mix

of small and large housing units in the same neighborhood (and prevent arbitrage). More

generally, one can imagine any myriad of rules and restrictions locking in an older housing

stock and division of land, now out of equilibrium, and preventing adjustments (historical

preservation, height restrictions, difficulty obtaining permits, etc.). By preventing existing

lots from being subdivided or existing single family homes from being replaced by multid-

welling units, such restrictions restrict the number of housing units. Consequently, by making

housing units scarce per se, in addition to land, they induce a two-part tariff. To simplify

the exposition, in the remainder of this section we will speak of constraints on the number

of lots, but the broader implication for housing units applies.

Hamilton (1976) provides one explanation for why such lock-in induces something like a

head tax: fiscal transfers. Hamilton’s logic is depicted in Figure 4. The horizontal axis shows

the lot size and the vertical axis shows the net-of-tax value of a lot. The point labeled n=1

represents a homogenous community of all small lots; likewise the point n=3 represents a

homogenous community of all big lots. The dashed line connecting them illustrates a standard

price function through the origin, as depicted in Figure 1. N=2 represents a neighborhood

with mixed housing bundles, but in which the quantity of each type is fixed by zoning or

other restricts. Now, a small lot in n=2 has an advantage over an equal-sized house in n=1

because it enjoys the tax base of the larger lots. Hence, it is more expensive. By the same

token, the large house in n=2 has a disadvantage relative to an equal-sized house in n=3

because it must subsidize the public goods for residents who are pulling down the tax base.

Hence, it is less expensive. The crucial consequence of all this is a tilting of price function for

land within the second neighborhood: even if the marginal price of a square foot of land is

constant within a community, as illustrated here by the straight lines connecting the points,

the average cost (i.e. total cost divided by the lot size) is not constant. Prices must be
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Figure 4: Pricing Under Hamilton (1976 )

computed with a neighborhood-specific intercept (i.e. tickets) as well as a per-unit cost of

land.

Hamilton’s paper and subsequent discussion have given the impression that fiscal transfers

are necessary for this result. In fact, they are not. The transfers merely provide one reason

why more people would like to crowd into the community and why (barring the constraint)

arbitrage would lead to more dwelling units. But with the constraint on the number of

dwelling units, they cannot, so there is a scarcity value on lots per se. It is this scarcity at

the extensive margin – on the number of units – as well as on land at the intensive margin,

which gives rise to the two-part tariff, with or without fiscal transfers.

To emphasize this point, consider again our case with exogenous G (and hence no fiscal

transfers). If some neighborhood n has a relatively high value of Gn, so that there is a high

demand for living there, it will have a high per-unit cost of land. Even so, there is nothing to

guarantee that the price clearing the land market results in the number of lots being equal

to the constrained number. There may be “too many” small lots. In general, there are now

two equilibrium conditions to meet, market clearing in the number of lots as well as in total

land, and one price alone cannot guarantee both conditions are met. To the contrary, the
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additional quantity constraint on lots creates a shadow price on lots per se. TDRs are one

transparent example where there is a price on a lot as well as land.

Even without such a formal market, however, the scarcity on lots introduces a shadow

price for them. Consider some neighborhood n > 0 with a binding constraint on the number

of lots but no other land-use restrictions. Conditional on the number of lots, equilibrium

condition (1a) still is satisfied, i.e. ∂pn/∂hln = βn, otherwise developers could increase their

profits by redistributing land from one lot to another (without changing the number of lots).

Thus, Condition (2) also is satisfied, so pln = αn +βnhln for some constant of integration αn.

However, equilibrium condition (1b) is no longer satisfied. Instead,

∂pn/∂hln < pln/hl,n.

The marginal value of land at the intensive margin is lower than its value at the extensive

margin, so developers would like to shrink the lots to create new ones if they could, but they

are restricted from doing so (Glaeser and Gyourko 2003). As a consequence, the average

value is shrinking in the lot size, which requires a constant term αn > 0 in the price function,

or ticket. The ticket is the shadow value of the constraint on the number of lots.

As we noted in the previous sub-section, Hamilton’s (1975) paper is a special case where

a minimum lot size restriction is binding on all lots. Interestingly, that is precisely the case

where a minimum lot size restriction is equivalent to a restriction on the maximum number

of lots. That is why, as shown in Figure 3, we can characterize the difference in neighborhood

housing prices either with land prices or with tickets. In general, lower bounds on lot size

enter into land prices and upper bounds on the number of lots require tickets.

Moreover, we would normally expect such ticket prices to be increasing in G. As a starting

point, consider an equilibrium in which Gn = Gn+1 and binding constraints on the number

of lots create tickets in both neighborhoods. Now imagine an increase in Gn+1. Unless land

demand is strongly complementary to G, we would not expect much increase in land demand

from current residents in n + 1. But with higher G, and no increasing in land prices, we
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would expect more people to want to enter n + 1 (and fewer to enter n). This will increase

the ticket price in n + 1 relative to n. However, we cannot rule out a second-order effect

through changes in the sorting equilibrium: as the population characteristics change in n+1,

land demand may increase enough to increase land prices, and hence feedback on the desire

to enter the community, depressing ticket prices. Nevertheless, we conjecture that the first-

order effect dominates and that, in the presence of restrictions on the number of lots, G will

be capitalized into tickets.

2.4 Simulations

We illustrate these predictions with three policy simulations. We consider a city with two

neighborhoods, each with land area fixed at 3,333 units and with G1 = 1 and G2 = 1.5. An

outside option (alternative city) is available with a fixed land price at $12,000 per unit and

G0 = 0. We simulate 10,000 households i with utility functions

ui = (1− θi)ln(z) + θiln(h) + φiG (8)

and indirect utility functions

vi = max
n,hn

(1− θi)ln(yi − αn − βnhn) + θiln(hn) + φiGn, (9)

with yi ∼ u(40000, 100,000), θi ∼ u(0.2, 0.4), and φi ∼ u(0.1, 0.9).

We consider three policy scenarios. In the first scenario, there are no land use controls.

In the second, we introduce a minimum lot size in the city (i.e. in n = 1, 2) of 0.75 units.

In the third scenario, we replace the minimum lot size restriction with a restriction on the

maximum number of lots, or density restriction (calibrated to be the same as the number

of lots in neighborhood 2 in the second scenario’s equilibrium. Table 1 and Figures 5-7

summarize data across the three scenarios. In the figures, the horizontal axis indicates the

size of the lot and the vertical axis indicates its value. The dots represent the lower and upper
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Table 1: Summary Statistics from Simulations

Attribute Neighborhood Scenario 1 Scenario 2 Scenario 3

Housing Units
1 3,075 4,037 4,036
2 6,323 4,416 4,036

Avg Lot Size
1 1.08 0.83 0.83
2 0.53 0.75 0.82

Price of Land
1 19,956 25,045 19,990
2 38,713 43,889 21,419

Price of Ticket
1 0 0 6,439
2 0 0 20,156

Mean Income
1 69,719 60,778 62,432
2 70,213 79,052 79,229

Mean θ
1 0.31 0.29 0.30
2 0.29 0.30 0.30

Mean φ
1 0.29 0.44 0.46
2 0.64 0.67 0.69

bounds of the support over h in each community, plus a 1-in-20 sample of lots in between.

Table 1 and Figure 5 show that, in Scenario 1, the price of land is almost twice as high

in Neighborhood 2 as in Neighborhood 1 and there are of course no ticket effects. The table

also shows that households with φ (i.e. higher tastes for public goods) sort into the high-G

neighborhood, as we would expect. The total number of residents is 9,398, or almost the

entire population, with about two-thirds living in the high-G neighborhood.

In Scenario 2, the minimum lot size reduces the total population in the city to 8,453,

and especially reduces the density in the high-G neighborhood. Land prices increase in

both neighborhoods. Moreover, the heterogeneity in lot sizes decreases, as can be seen in

Figure 6 (where the vertical line indicates the minimum lot size), but it does not collapse

to zero, with the lot size restriction remaining non-binding on about 35% of households in

Neighborhood 1 and 8% of households in Neighborhood 2. (Indeed, average lot size actually

falls in Neighborhood 1, as migrants from Neighborhood 2 and the constraint on low-demand

types increases the price for unconstrained households.)

Finally, in Scenario 3, we see land prices falling and the difference between prices in the
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Figure 5: Simulation: No Land-Use Controls

Figure 6: Simulation: Minimum Lot Size
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Figure 7: Simulation: Maximum Number of Lots

two neighborhoods collapsing, but we also see the introduction of entry tickets. Figure 7

shows the clear tilting of the price functions, as the intercept becomes non-zero and the

slopes decrease. Interestingly, with tickets there is more sorting on φ (tastes for G) than in

the other scenarios, because now the market prices access to G directly, rather than through

land.

3 Empirical Strategy

The above discussion suggests some testable implications to bring to the data. In particular,

we look for three patterns.

3.1 Patterns in the Raw Data

The first two patterns involve simple regularities. First, we expect that the between-neighborhood

variance in housing values will increase with lot size (or housing services), but less rapidly

in heavily zoned cities, especially those with density restrictions. This insight can be seen
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from a comparison of Figures 1 and 4. Figure 1, without zoning, shows prices fanning out

with lot size. Figure 4, with density restrictions, shows a constant difference in the between-

neighborhood price differences, regardless of lot size.

Second, we expect that a standard hedonic price regression of the form ln(pin) = αn +

h(xi), will at small lots (or houses) yield higher residuals in highly zoned cities than in

weakly zoned cities, and the reverse at large lots (houses). Again, this insight can be seen

by comparing Figures 1 and 4. If Figure 4 is correct, fitting a mis-specified model motivated

by Figure 1 will fail to adequately capture the tilt in the price functions, underestimating

housing values at small lots and overestimating them at large lots.

Beyond inspecting the patterns of data in these first two ways, our main strategy involves

a more formal effort to recover the pieces of the two-part tariff pricing function and to describe

the relationship between these prices and local amenities, and how it changes with zoning.

This involves two steps: first recovering the prices (including the intercepts α and the slopes

β), then exploring how they capitalize amenities and how this capitalization varies by zoning.

3.2 Recovering Prices

The first step is to recover the “ticket” and “housing services” prices for each neighborhood.

The basic hedonic regression is

pcnit
Ict

= αcn + βcnhc(Li, xi) + εcnit (10)

where pcnit is the transaction price of property i, located in neighborhood n of city c, occurring

at time t. Ict is a deflator from the FHFA.5 The αcn and βcn terms are the variables of

interest: respectively, the ticket and housing series prices. Finally, hc(L, x) is the housing

service function (which may vary by city) of land (L) and a vector of other characteristics x.

Selecting the appropriate housing services function h( ) is a challenge both conceptually

5As an alternative, we also use a deflator estimated with our own data, and achieved similar results. We
estimate pcnit = Ict(αcn + βcnhc(xi)) + εcnit using non-linear regression on a subset of the data, to recover
Îct, which we then use to adjust the dependent variable in the remaining data.
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and practically. Conceptually, it is difficult to know precisely what constitutes “housing

services” to households. Presumably, it includes land, living area, structure age (through

quality, maintenance and aesthetics), and room partitioning (bedrooms, bathrooms, other

rooms), but the exact functional form is unknown and is probably highly nonlinear. Thus,

the function h( ) either must be estimated or defined a priori by the econometrician. The

practical issue is that the reporting of these housing attributes varies across counties and

metro areas in the sample. While virtually all assessors in our data report lot size, living

area, and age of structure, they vary in their reporting of room partitions.

We approach these difficulties three ways. The first is to constrain βcn to differ only for

land, while still conditioning on the physical capital characteristics of the property:

pcnit
Ict

= αcn + βcnLi + hc(xi) + εcnit. (11)

Within the scheme of this first approach, we consider three specifications of the control hc(xi).

The first uses flexible functions of the observed x. In practice, we use linear and quadratic

terms for living area, dummy variables for age of structure (in decadal bins), and dummies

for the number of bedrooms, bathrooms, and/or total rooms (depending on the available

information in each city). The second specification is similar, but uses only those attributes

that are available in all counties in our sample (namely, living area and age). The third

specification assigns a house with characteristics xi in city c into discrete categories for which

we have estimates of the replacement cost of capital from the RS Means construction cost

estimates. We then assign hc(xi) to be this replacement cost value and subtract it from the

left hand side of the estimating equation. Similar approaches to isolating land prices have

been used by Glaeser and Gyourko (2003, 2005) and others.

These specifications allow local public goods to be capitalized into the slope of the land

price function as well as a ticket price. Their main advantage is in ease of estimation.

However, this tractability comes at the expense of imposing that capitalization occurs only

through land, assuming away any capitalization occurring in the physical structure of the
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property. It assumes, for example, that a good school district is capitalized into a four-

bedroom property (more fit for a family with children) and smaller two bedroom (more fit

for a household without children) in the same way if they are on the same sized parcel of

land.

Our second approach actually simplifies the previous model by omitting the conditioning

on hc(xi). If amenities truly are capitalized only into land, as in Equation 11, then clearly

this creates an omitted variables problem. But if amenities are capitalized into housing

characteristics x as well as land, and if lot size is correlated with the size of a house, in may

be better to omit x and simply take L as a proxy for hc(L, x)

In future work, we plan also to consider models in which intercepts occur through housing

services generally, and to estimate those services as a function of land and housing capital.

Whereas the model above can be estimated on a city-by-city basis, this variant requires

estimating a function h(Li, xi) that is constant across cities, making it more computationally

challenging. Our plan is first to estimate the following equation with non-linear constraints

on a small national subsample of the data:

pcnit
Ict

= αcn + βcnh(Li, xi) + εcnit,

where h( ) is a highly parameterized flexible function. From this initial estimate, we will

obtain a consistent estimate of h() which we denote ĥ. We will then impose that function on

the remaining data and estimate

pcnit
Ict

= αcn + βcnĥ(Li, xi) + εcnit.

Once we have estimated these models, we first test for whether αcn = 0 for all n and

whether βcn = βc for all n. Rejecting the first implies capitalization through tickets. Rejecting

the second implies traditional capitalization through unit housing prices. We expect to reject

both hypotheses.
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3.3 The Pricing of Local Public Goods

The second step is to relate these two forms of prices to local public goods and zoning. This

involves using the price parameter estimates from the first stage and our measures of local

amenities in neighborhoods. We estimate the following model using non-linear least squares:

α̂cn = ac + (1 + aZZc)γ
′gcn + να (12a)

β̂cn = bc + (b0 + bZZc)γ
′gcn + νβ. (12b)

That is, we measure the relationship of both price components (α and β) to an index of local

amenities G = γ′g which is estimated from the data with a cross-equation restriction forcing

it to be the same for both components. The ac, bb terms represent city dummies, which play

a dual role. First, as usual, they capture city-wide characteristics such as climate and labor-

market conditions as well as the direct effects of land-use restrictions. Second, because we

estimated housing services functions hc( ) separately by city, we cannot separately identify

differences in the scale of these services from the mean β in the city. The b0 term captures

the different way G is normalized into slopes (in dollars per 1000 square feet) relative to

intercepts (dollars per lot).6 The aZ , bZ terms measure the interaction of local public goods

with city-level land use restrictions Z. Because the purpose of our study is not to recover the

overall hedonic price functions but to test how capitalization into the extensive and intensive

portions of the pricing function differs with land use restrictions, αZ and βZ are the main

variables of interest. The model suggests that places in which land use is heavily restricted

will have more of their local public goods capitalized into ticket prices and less into the

housing services slope. Hence, we expect aZ > 0, bZ < 0. As we discuss further below, we

treat Z both as a scalar (an overall measure of land use restrictions) and as a vector with

6Note that we cannot separately identify a0, and b0, and all terms of γ to scale, so we set a0 = 1.
Additionally, we cannot identify G to location separately from ac, bc, and b0, so G does not contain a
constant term.
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two parts, an index of minimum lot size and restrictions that might constrain the number of

lots.

4 Data

The starting point for our data is a large data set of national property transactions. We

divide these transactions by city, and then sub-divide cities into neighborhoods, which are

represented by elementary school attendance zones. We then link these housing data to a

rich set of national public goods at this neighborhood level. In this section, we describe these

data in more detail.

4.1 Housing Data

The housing data come from the real estate analytics firm Dataquick (since acquired by Core-

Logic). The data merge two assemblages of public information: (1) records of transactions

on the property deed (such as a sale or lien), including transaction dates, parties, values,

and loan information; and (2) county tax assessor information, which includes information

on property characteristics such as lot size, living area, year of construction, bedrooms, bath-

rooms, etc. (Dataquick’s collection method overwrites tax assessor data each year, so this

information is observed only for the final year of data – either 2011 or 2012, depending on

the county.) The data also include latitude and longitude coordinates of the property, which

we use to match the properties to their neighborhood.7

We have data on nearly 13.2 million transactions from 2005-2011 at 105 large US cities

with nearly 20,000 neighborhoods. We clean the data of non arms-length transactions and

those with nominal prices, properties that transact multiple times on the same day, and

transactions involving partial property sales, subdivisions of parcels, and sales of vacant land.

These cuts leave us with normal, market rate transactions. We are additionally interested

7We are particularly indebted to Pat Bayer and Chris Timmins, as well as Eduardo Jardim, Gary Thomp-
son, and Joshua Smith for assistance in accessing the data.
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in the property characteristics, so we further clean the data of properties with missing or

obvious misreporting (parcels and or living areas less than 500 sqft.) in the assessor file. We

also drop two neighborhoods as having lot and dwelling area sizes that are outliers relative

to their cities. These steps lead to a final estimation sample of 10,329,393 transactions in

20,353 neighborhoods.

Table A1 in the appendix reports the data available by city. Table A2 reports summary

statistics by metro area for the main variables in the first stage regressions, which is used to

get estimates of αcn, βcn from (10).

4.2 Public Goods

Because our empirical include city-specific dummies, we have begun by focusing on four

amenities or public goods that vary within metropolitan areas: education, distance to the

city center, crime, and environmental quality. (In contrast, climate, arts, and employment

vary more between cities than within cities.) Using latitutude and longitude provided in

the Dataquick data, we match each property to its US census block. We then assign blocks

values of the amenities and aggregate blocks up to neighborhoods.

Among the attributes we consider, public school quality is the one that changes most

sharply at discrete boundaries. Accordingly, we use school boundaries to define neighbor-

hoods. In particular, we have collected a national set of school zone maps, with 4th grade

school attendance boundaries for the entire country, through the School Attendance Bound-

ary Information System (SABINS) (The College of William and Mary and the Minnesota

Population Center 2011).8 Using these SABINS maps and GIS software, we were able to

place 60.3% of Census blocks (comprising 69 percent of our housing transactions) into their

2010 4th grade school attendance boundary. For the remaining observations, we first assigned

the blocks to their school district and then to the nearest school within the district, as in

Downes and Zabel (2002). Recent work by Reinhardt (2016) suggests such a procedure works

8These data and additional documentation are available at https://www.sabinsdata.org/.
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well and creates little measurement error. Finally, using crosswalks provided by SABINS to

the Common Core data, for each school we also have measures of 4th grade school quality,

including math test scores and reading test scores. (In principle, teacher-student ratios are

also available, but only for about 58% of schools.)

To measure neighborhood centrality within the metro area, we take the straight line

surface distance (i.e. great circle distance), in miles, of the block latitude/longitude to the

tallest structure in the metro area as a proxy for the city center. If there is more than one

principal city in the metro area (e.g. Dallas and Fort Worth, Texas), we use distance to the

closest.

We also obtained two environmental variables. First, as a measure of air polluiton,

we obtained the number of high-ozone days (exceeding the National Ambient Air Quality

Standards) for each monitor in the US in 2009 from the US EPA. Distances from each

monitor to each of over 11 million US Census blocks were computed, and each Census block

was given an inverse-weighted average of the three nearest monitors. We then aggregated up

these block-level data to our neighborhoods. Second, as a measure of undesirable land use,

we obtained the number of sites listed under the Comprehensive, Environmental, Response,

Cleanup, and Liability Act (CERCLA, commonly known as Superfund) within 3- and 5 km

of each block centroid to account for point-source environmental disamenities. Again, we

averaged these blocks up to neighborhoods.

Finally, we obtain crime statistics from the Federal Bureau of Investigations Uniform

Crime Reports database from each local jurisdiciton in the US, taking the sum of property and

violent crime rates per 10,000 residents. For each block, we take an inverse-distance-weighted

average of the three closest reporting jurisdictions in the metro area (a procedure also used

by Bishop and Murphy 2011). We then average across blocks to obtain a neighborhood level

measure of crime.

Many of these amenity variables are correlated with one another. Our main goal is to

derive an index of local amenities, not to derive willingness to pay estimates for each separate
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attribute.

Table 2 reports summary statistics across all metro areas for our amenity variables. Ta-

ble A3 in the appendix reports summary statistics for our amenity variables by city.

Table 2: Summary Statistics For Local Public Goods & Zoning Data

Attribute Mean StDev Min Max
Math Test Scores 0.263 0.829 -3.77 3.65
Distance to Tallest Bldg (km) 22.1 80.9 0.29 1,028.9
Ozone Nonattainment Days 3.57 9.85 0.00 82.28
CERCLA Sites wi 3 km 0.12 0.42 0.00 8.65
Crime Rate 3,515.3 1,611.0 324.2 15,191.3
Wharton Reg. Index 0.2079 0.5744 -1.453 1.870

NOTES: Statistics are taken across all neighborhoods in all metro areas for the final sample of 19,620 neighborhoods.

4.3 Zoning Data

As an indicator of the restrictiveness of zoning Z, we use the Wharton residential land

use regulatory index (WRI) (Gyourko, Saiz, and Summers 2008). These data have been

widely used in peer-reviewed work for similar purposes. This index is based on surveys of

local jurisdictions. We use the metro-wide measure of zoning since the municipality with

zoning/regulatory authority in most cases does not correspond to the scholar attendance

boundary. In our view, the individual jurisdictions that respond to the survey are best

thought of as a random sample representing their municipality.

The WRI is broken down into a variety of indicators, which we use to split land use controls

into those binding on lot sizes and those binding on the number of lots. For the former, we

use the Density Restrictions Index (DRI) which is an indicator at the local jurisdiction for

minimum lot sizes greater than or equal to one acre, and which we average up to municipality

level.9 For the latter, we use the WRI purged of this DRI sub-index, so that the remainder

includes measures of political and court involvement, open space rules, and approval delays.

This indictor can be thought of as representing the general difficulty of adjustments to the

9We also experimented with our own versions of a density restrictions index using the micro data in
Gyourko et al (2008), with similar results.
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housing capital stock and hence to the number of lots and/or housing units. Our model

predicts public goods will be capitalized into tickets especially in cities where this second

sub-index is high. An alternative perspective on the WRI is that these sub-indices should

not be drawn too finely, and that they are all best thought of as indicators of overall land

use restrictions. Accordingly, we also consider the overall WRI.

The last row of Table 2 reports reports the summary statistics for the index across cities

in our sample. It is (roughly) mean-zero, with positive values indicating more regulation.

Table A3 in the appendix reports the WRI for each city in our data. A few cities for which

we have transactions and amenity data lack an estimate of WRI and must be excluded from

our second stage regressions specified in Equation (12a) and (12b).

5 Results

5.1 Patterns in the Raw Data

Before coming to our regression results based on Equations (11), (12a), and (12b), we first

test for simple patterns in our data consistent with our hypotheses.

5.1.1 Housing Stock Similarity Within Neighborhoods

Our first prediction is that land use regulation homogenizes the housing stock within commu-

nities. To test this, we measure the within-neighborhood variance in lot size, by metro area,

and compare it to the metro-wide measure of regulation. In this exercise, we use all housing

stock from the tax assessor data, not only the homes that transact. However, because for

computational reasons we cannot map all such properties to school attendance zones, for this

exercise we use the census block group as the definition of neighborhoods. This definition

does not pose a problem, however, as for purposes of this exercise we are merely trying to

measure the component of variance due to a contiguous measure of space, not to map local

amenities. Using this full set of properties, we decompose, by city, the variance in housing
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stock attribute x due to within-neighborhood variation and between-neighborhood variation.

Table 3 reports a summary of the within-neighborhood variance for lot size, living area,

and year built across our sample of cities that have WRI data. On average, 60 percent

of the variance in lot size is due to within-neighborhood variation (40 percent attributable

to between-neighborhood variation). The lower panel reports the results from regressing

the city’s within-neighborhood variation on the city’s regulation index. The first column

shows that higher regulation is associated with less within-neighborhood variance; that is,

neighborhoods have are more homogeneous parcels in regulated cities. A standard deviation

increase in regulation is associated with about a one-third standard deviation decrease to

residual variance (0.0356/0.0951). Column 2 adds the subindex for minimum lot size and the

average year built for the housing stock city-wide. These do not affect the WRI coefficient

and themselves show no significant relationship to residual lot size variance. This is a bit

surprising, especially for the minimum lot size index, as it directly cuts off the lower support

of the lot size distribution. It is possible that the mere existence of a lower bound on lot size

would not substantially homogenize neighborhoods if few lots are at the constraint. Also,

the lot size/density subindex may be measured with more error than the wider regulation

index. In any case, the results suggest to us that the broad measures of “frictions” are good

candidates for testing the theory.

Columns 3 and 4 examine living area and columns 5 and 6 examine year built. There is

more within-neighborhood variation in home size than lot size, about 73 percent of the total

variance on average. As with lot size, more regulated cities show less within-neighborhood

variance (more homogeneity) in home size, although the regression estimate is somewhat

noisy. For the age of stock, about half the variance in year built in attributable to the

neighborhood. Regulations do not apparently contribute to this. However, column 6 shows

that the average age of the stock is significantly negatively associated to within-neighborhood

variance. That is, newer cities have more similarity in vintage within neighborhood, which

is consistent with more recently developed neighborhoods (such as suburbs) being built all
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Table 3: Variance Decomposition Analysis of Housing Stock Attributes

1 2 3 4 5 6
Lot Size Living Area Year Built

Summary
Mean, within- 0.6085 0.73014 0.52370
neighborhood variance
Std Dev 0.0951 0.09181 0.11606

City Level Regressions
City Reg Index -0.0326 -0.0312 -0.0178 -0.0170 0.00752 -0.0000

(0.01533)** (0.01567)** (0.01467) (0.01507) (0.01868) (0.01827)
City MLS Index 0.04025 -0.0223 0.06184

(0.05602) (0.05486) (0.06652)
City Year built 0.00024 0.00043 -0.0029

(0.00084) (0.00083) (0.00100)***
Cons 0.60764 0.08655 0.72939 -0.1084 0.52401 6.23788

(0.00978)*** (1.67561) (0.00956)*** (1.64047) (0.01218)*** (1.98900)***

R2 0.0485 0.0548 0.0161 0.0213 0.0018 0.0996
J 91 91 92 92 92 92

NOTES: Standard Errors in Parentheses. ***Significant at 1% level, **5%, *10%

at once. In summary, we find that regulations materially homogenize the stock of housing,

especially lot size, within neighborhoods

5.1.2 Evidence of Ticket Capitalization

We first explore the data for regularities that would be consistent with the presence of tickets

before proceeding to the formal test of amenity capitalization via tickets.

Tickets are an extensive margin price for the right to access to housing services. That is,

in the presence of tickets, even an arbitrarily small amount of housing services in a desirable

neighborhood commands a price. There is, of course, no observed “arbitrarily small amount

of housing services, but a practical way to test for a pattern in the data consistent with

tickets is to compare the ratio of prices for smaller and larger amounts of housing services.

The higher is the ratio, the more the contribution of the ticket (intercept) to the price of

housing.

The thought experiment is to take two properties of different size and place them about

neighborhoods in the metro area, comparing their relative prices by the different neighbor-
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hoods price functions. We use the first stage regression estimates to construct the predicted

price of a property at the 25th and 75th percentiles of the housing services distribution ac-

cording to our various models of housing services. The amount of housing services offered

within a particular neighborhood is endogenous and is in part the outcome of the zoning

regime. Thus we calculate the housing services distribution at the metro level as well as

within the neighborhood level for comparison.10 We then calculate the 25-75 price ratio for

each neighborhoods housing price function.

Table ?? contains the results for three models of housing services. The predicted prices

are the neighborhoods ticket plus the estimate slope times the 25th or 75th percentile point

in the distribution of lot size. For the models that remove the capital component (hedonic

and construction cost models), we add back the predicted amount of capital contribution to

house price for lots in the lower or upper half of the distribution.

The table shows that for the hedonic model using the metro level lot size distribution, a

25th percentile-sized property costs on average 73 percent as much as the 75th percentile-sized

property. For the neighborhood level lot size distribution, the smaller property is 87 percent

of the larger property price. The larger ratio reflects properties being more similarly sized

within neighborhoods than across the entire metro area. The lower panel then reports a

regression of the neighborhood price ratios on the metro level zoning index. The positive

coefficient indicates that the ratio increases in more heavily zoned areas. A one standard

deviation increase in the zoning index implies a seven percent larger 25-75 ratio. That is,

the ticket component of the price function comprises a greater contribution to pricewith the

slope component contributing relatively lessas zoning increases. This is consistent with the

“tilting of the price function as suggested by Hamilton and depicted in Figure 4. The results

are largely similar with the construction cost model. The land only model is not as clear,

although this makes no adjustment at all for the capital improvement to the property.

While this results suggests the presence of tickets and the role of zoning in producing

10This is also a reason to use the regression estimates rather than raw data, so that we compare price
functions for properties of arbitrary size.
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Table 4: Neighborhood Component of Variance in Property Value, by Property Size

1 2 3 4 5 6
Model: Hedonic Construction Cost Land Only

Percentiles By: MSA N’hood MSA N’hood MSA N’hood

Mean 0.7353 0.8644 0.6959 0.7741 0.7904 0.8588
SD 0.7414 0.6786 0.3419 0.2038 0.2278 0.1738

Regression
WRI 0.0725 0.0247 0.0847 0.0459 -0.010 -0.000

(0.0100)*** (0.0092)*** (0.0043)*** (0.0026)*** (0.0029)*** (0.0022)
Constant 0.7207 0.8594 0.6782 0.7645 0.7924 0.8588

(0.0059)*** (0.0054)*** (0.0026)*** (0.0015)*** (0.0017)*** (0.0013)***

them, note that it is not actually a test for capitalization of local amenities via tickets or

slopes. One needs a measure of local amenities to conduct such a test, so we view this

a suggestive evidence, while the formal test of the conceptual framework derives from our

econometric model in 12a,12b.

The second regularity is that the ubiquitous semilog hedonic price model, which imposes

an effect of capitalization proportional to the amount of housing services, would be, in the

presence of tickets, misspecified in a predictable way. In particular, if the true model involves

tickets, forcing capitalization to be proportionate to land and/or housing services should

under-predict the values of smaller properties and over predict the values of larger ones.11

To test this conjecture, we run a standard semilog hedonic price regression, accounting for

property characteristics and neighborhood fixed effects, and recover the residuals for each

property. We then regress these residuals on indicator variables for large and small properties,

again first cutting only by lot size and then by lot size and living area jointly.

The results are reported in Table 5. Column 1 shows that the value of small lot properties

is under predicted by about seven percent, and large properties over predicted by about eight

(minus seven plus 15) percent. Splitting by land and living area in column 2, we see that

the misspecification is more pronounced when comparing small lot/small house properties

11To be clear, the log price hedonic model does not disallow a shift in neighborhood intercept. Rather, it
imposes that any such shift also proportionally tilts the price per unit as well.
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Table 5: Residuals From Log Price Hedonic Model

1 2 3 4
Cons -0.071 -0.121 -0.075 -0.122

(0.0002)*** (0.0002)*** (0.0002)*** (0.0003)***
Large Lot 0.1509 0.1579

(0.0003)*** (0.0003)***
Small Lot, Large Home 0.1278 0.1240

(0.0004)*** (0.0005)***
Large Lot, Small Home 0.0999 0.1084

(0.0004)*** (0.0005)***
Large Lot, Large Home 0.2653 0.2663

(0.0004)*** (0.0004)***
Small Lot X City Reg. Index -0.004 -0.003

(0.0004)*** (0.0004)***
Large Lot X City Reg. Index 0.0045 0.0043

(0.0004)*** (0.0004)***
NOTES: Standard Errors in Parentheses. ***Significant at 1% level, **5%, *10%

to large lot/large house properties. Thus, the misspecification is predictably related to the

amount of housing services. Columns 3 and 4 go another step further, interacting the city’s

regulation index separately for small and large lot properties. We find that the pattern of

underprediction for small lots and overprediction for large lots is more pronounced in cities

with greater regulation, as predicted by our model. These results are fully consistent with

capitalization through tickets and cast some concern over the use of the semilog hedonic price

model.

5.2 Recovering Prices

Our main empirical tests rely on estimates stemming from the property value regression

model, (11), which yields the α (intercept, or “ticket”) and β (slope, or unit price) coefficients

for each neighborhood in each city in our data. As an initial matter, we test statistically

whether there is evidence of capitalization through each channel. Our preferred specification

of the land price function (we present others below) includes separate city dummies for the

αs and βs, and controls for housing capital characteristics (living area and age and, where

available, bathrooms, bedrooms and total rooms) in the first stage using a flexible hedonic
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function (in levels, of course, not logs).

The test for equality of β is rejected at the 0.01 percent level for 103 of the 105 cities in our

sample.12 As expected, some capitalization of local public goods comes through differences

in the unit price of land.

The test for equality of α is rejected at the 0.01 percent level for 98 of the 105 cities in

our sample.13 This indicates that a statistically significant amount of price variation between

neighborhoods come through differences in the intercept; hence, some capitalization comes

through ticket prices.

We can test the significance of individual α coefficients, though the theory offers no

prediction on their particular values. Instead, the model predicts that better neighborhoods

(in terms of G) will have greater α to the extent that capitalization occurs in ticket prices.

So we are interested in whether some of these are non zero, which would be evidence that

at least some capitalization occurs via a ticket. Testing the coefficients individually, we find

that all cities but two have at least one neighborhood with an α statistically different from

zero.14

In summary, we find evidence for capitalization via both channels. Next, we examine

whether this pattern varies with regulatory frictions in a way consistent with our model.

5.3 The Pricing of Local Public Goods

Our main empirical test of the model is through the regression model of (12a), (12b), using

estimates from the first stage model, (11). The results from these regressions are presented

in Table 6. Each column of the table represents a separate specification. All the reported

specifications use the FHFA index to deflate prices and use heteroskedastic-robust standard

12Failure to reject is likely a lack of power. The two cities that do not reject are Myrtle Beach, SC, with 22
neighborhoods and 13,566 transactions, and Huntsville, AL, with 21 neighborhoods and 1,542 transactions.

13The cities that fail to reject (with counts of neighborhoods and total transactions) are: Mobile, AL (3,
46) (Mobile is dropped from our second stage regression.); Huntsville, AL (21, 1,542); Myrtle Beach, SC (22,
13,566); Columbia, SC (83, 15,762); Tulsa, OK (118, 66,155); St. Louis, MO (308, 156,251); Denver, CO
(398, 236,002). For all except the last two, we suspect a lack of power.

14The cities without any nonzero α’s are Myrtle Beach, SC, and Dover, DE.
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errors. The first column is our preferred specification, with first stage model as noted above,

and weights for the second stage observations by the inverse of their standard error. Our

key estimates of aZ and bZ are largely consistent with the model. Our estimate of aZ is 0.65

and highly statistically significant, whereas our estimate of bZ is small in absolute value and

statistically indistinguishable from zero. This suggests that a unit increase in the index G

(conditional on the city’s mean) increases the value of a neighborhood’s ticket price by an

additional $0.65 for every unit increase in the Wharton Regulatory Index Z. In contrast, an

increase in the Wharton Index does not affect the capitalization into land prices (although

it does not decrease them either). Our estimate of b0 merely adjusts the scale of G (which

is normalized such that a 1-unit increase in G increases a ticket by $1 at the mean value of

Z) into the price per 1000 square feet of land. It suggests a 1-unit increase in G increases

the price per square foot by 0.8 cents, or $16 for 20,000 sq ft lot, so at the mean Z there

is more capitalization into land than into tickets. Finally, the individual components of the

G index are sensible. At the average value of the Wharton Index, a one point increase

in the normalized z-score on the state’s math test increases housing prices by $24,599 at

the extensive margin, plus $186 per 1,000 square feet of lot area (=0.00757*24,559). The

parameters on distance to the city center (represented by the tallest building), air pollution

(ozone days), and crime rates are all negative and statistically significant, as one would

expect. The coefficient on the number of CERCLA sites is negative, though not statistically

significant (p=.15) at standard levels.

Figure 8 illustrates the estimated relative effect of an increase in G (from a value of

the index at the 25th percentile of the neighborhood distribution to the 75th), for a relative

low value of the Wharton Index (at the 25th percentile) and high value (75th percentile)

respectively. To emphasize the difference-in-differences nature of our identification strategy,

the vertical axis plots the change in housing prices from a reference scenario (i.e. the reference

location would have a normalized horizontal price line through the origin in the figure). The

dashed line shows the effect of the increase in G at the low value the Wharton Index. It
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Figure 8: Estimated Change in Housing Prices from Change in G, for Low- and High-Z
Cities, Respectively

shows that even here there is substantial capitalization into tickets (the intercept) but also

into land prices (the slope). The solid shows the effect at the high value of the Wharton

Index. As predicted by our theoretical model, capitalization into tickets is now stronger,

with the line shifting up but, somewhat surprisingly, we find that capitalization onto land is

no less, with little change in the slope (bZ ≈ 0).15

The remaining columns report the results from alternative specifications. Column (2)

omits the city dummies, replacing them with a constant term and a linear interaction with

Z. This actually has little effect on our estimates of aZ and bZ , but changes the parameters

of the G index, flipping the signs on CERCLA sites and ozone. Such effects are unsurprising

as we do not control for city-level amenities like climate. The next two columns consider

alternative weighting schemes. Column (3) weights by the square-root of the neighborhood’s

first-stage sample size; Column (4) weights all neighborhoods equally. The results are gener-

15Although we emphasize the importance of city dummies to our identification strategy, it is interesting
to note that we do find that the city-specific bc terms are lower in cities with greater values of the Wharton
Index, suggesting a flattening of the overall price function as predicted by our model. In other words, it
appears that the plotted changes in prices shown here are off of a flatter baseline price line for the high-Z
cities.
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ally robust to these alternatives. Column (5) breaks the Wharton Index into two components.

The first is the DRI Index of Gyourko et al. (2008), which captures restrictions on minimum

lot size of at least one acre (at the jurisdiction level and averaged up to the metro area). The

second is the overall Wharton Index purged of this sub-index. As discussed in our theoret-

ical model, we expect the first to affect land prices (ambiguously) without creating tickets,

whereas we expect the frictions created by the remaining portions of the index to create tick-

ets. The results shown in Column (5) are consistent with this hypothesis. Minimum lot sizes

have essentially no effect on capitalization into tickets, whereas the indicators of frictions do.

Neither indicator has any discernible effect on capitalization into land prices. We also consid-

ered alternative indicators of minimum lot size (including an indicator for any such regulation

and an average of the acreage required), finding broadly similar patterns. Columns (6)-(8)

consider alternative treatments of controls for housing capital. Column (6) restricts the set

of hedonic controls to flexible functions of living area and age, which are available in all

cities; Column (7) alternatively subtracts the RS Means estimates of construction costs. The

results are broadly robust to these alternatives.

Finally, column (8) omits all controls for housing characteristics. If such characteristics are

correlated with lot size, then this specification can be thought of as a crude effort to allow

capitalization into overall housing services (proxied by land) and not just into land after

conditioning on capital. The results are quite suggestive. The estimated effect of zoning on

tickets is now somewhat lower, but still statistically significant. On the other hand, we find

more capitalization into land prices than, say, Column (1) at the mean level of Z, but now

a statistically significant decrease in that capitalization by Z (bZ < 0), as predicted by our

model. This suggests it may be important, in future work, to consider capitalization into the

entire housing bundle of land and capital more rigorously.
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6 Conclusions and Future Work

This paper addresses how local public goods are capitalized–whether through ticket prices, or

the slope of the land/housing price function. Not surprisingly, we find some evidence of both.

Most importantly, we find empirically that more restrictively regulated cities exhibit more

capitalization in ticket prices (intercepts), and less in the slope of the land price function.

Hence, regulation seems to induce a two-part tariff to the capitalization of local amenities.

To this point, we have restricted capitalization into land only. In future work, we will

consider capitalization into a function of housing services as well. We also will consider

focusing on a small sample of cities with detailed zoning data varying within the metropolitan

area.

Our main contribution has been to increase our understanding of how capitalization of

amenities “works” in the presence of zoning (and, vice versa, the effect of zoning on capi-

talization). Beyond this basic point, our work has three further implications. First, it lends

additional insights into why the semilog hedonic model may so often be a preferred functional

form in empirical work, as well as the limitations of this specification.16 The concavity of this

functional form may help capture the “tilting” induced by tickets. Nevertheless, by forcing

capitalization to be proportionate to prices, such hedonic functional forms are mis-specified

in the presence of tickets. This may bias the hedonic estimates of the willingness to pay for

amenities, most certainly so for applications interested in the heterogeneity of willingness to

pay by demographic groups consuming different housing bundles. The exercise we report in

Table 5 suggests this concern is not just academic.

Second, many structural sorting models adopt a discrete-continuous framework in which

households choose a community, and then a continuous quantity of housing. At the choice of

community, households trade-off housing prices against amenities (and, in some applications,

wages) (e.g. Bayer et al. 2007, Sieg et al. 2004, Kuminoff 2012; see Kuminoff, Smith, and

Timmins 2013 for a review). Invariably such studies assume housing services are purchased

16see Kuminoff et al. (2010) for discussion of hedonic specifications.
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solely on a per-unit basis, without tickets (typically by first estimating a semilog hedonic

model to recover community-specific price indices). One of the empirical regularities such

models confront is the surprising degree of income heterogeneity within jurisdictions, which is

greater than one might expect from Tiebout’s model. Empirical sorting models often explain

this result with dispersed distributions of unobserved tastes for amenities, tastes which often

are estimated to be slightly negatively correlated with income. However, this result may be

forced on the models through the mis-specification of assuming price relationships like Figure

1. Essentially, the models must confront the fact that some richer households are (seemingly)

willing to live in a community with poorer households and pay the same marginal price for

housing as those households. The models explain this by assigning them low tastes for public

goods, so that they are not willing to join a richer community. However, an alternative

explanation, consistent with tickets, is that in fact they are paying a lower price for housing

in that community than assumed by the model. Some richer households are in lower-ranked

communities, not because of a low unobserved taste for public goods, but because they pay

less for the large houses there.17

Finally, our model and findings have implications for old debates between the “new”

and the “benefit” views of the property tax – debates about whether the gross-of-tax price

of housing simulates a market for public goods, as Tiebout (1956) envisioned. Previous

tests of one model or the other often have conflated questions of whether amenities should

be capitalized into housing prices with questions as to how they should be. We generalize

Hamilton’s (1975,1976) models to show that they should be capitalized into ticket prices in

the presence of zoning, especially when it constrains the number of lots in an area. In the

presence of congested publicly provided goods, efficiency requires pricing access to the goods

per se – not just land – to close the commons (Fischel 1985, Banzhaf 2014). Our results

are consistent with the notion that zoning creates such a price. We take a broad view on

the congestibility of public goods and amenities. Air quality, for example, typically taken

17This conjecture also is consistent with the low price elasticities estimated by Sieg et al. (2004), which
may stem from assuming “too much” variation in housing prices.
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for a pure public good, is congestable (hence rivalrous) in the context of community choice.

Adding more people into a spatial area likely will reduce local air quality through traffic

congestion etc. Or to put it another way, as more people crowd into an area, maintaining

constant air quality may require more expensive formulations of gasoline, more expense on

roads to maintain traffic flow, and so forth (Banzhaf 2014). Nevertheless, we emphasize

that the existence of such capitalization is far from sufficient evidence that public goods

are allocated optimally. In particular, our model predicts capitalization into ticket prices in

the presence of restrictions on the number of lots, regardless of whether the public good is

congested or not, but such pricing is only optimal in the presence of congestion. Thus, while

we cannot pass judgement based on our work alone, we suggest that future work evaluating

the normative aspects of spatial sorting should consider two-part pricing.
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A Data and Summary Statistics

Table A1: Data Available by Metro Area

Rooms Reported?
City CBSA code Neighborhoods Transactions Properties Beds Baths Total
Akron OH 10420 110 56,658 46,416 1 1 0
Albany Schen NY 10580 137 68,700 55,984 1 1 0
Allentown Be PA 10900 93 54,534 46,274 1 1 0
Atlanta GA 12060 631 433,873 319,767 1 1 0
Augusta Aike GA 12260 81 41,910 33,979 1 1 0
Austin TX 12420 229 31,336 30,070 0 1 0
Bakersfield CA 12540 20 78,018 60,259 1 1 0
Baltimore MD 12580 389 217,031 174,942 0 1 0
Bend OR 13460 24 28,556 21,929 1 1 0
Birmingham AL 13820 34 17,503 14,819 0 1 0
Boston MA 14460 616 259,814 214,129 1 1 0
Boulder CO 14500 47 26,915 22,626 1 1 0
Bridgeport CT 14860 150 55,110 47,630 1 1 0
Buffalo Niag NY 15380 152 91,335 72,938 1 1 0
Fort Myers C FL 15980 31 176,513 129,706 1 1 0
Charleston N SC 16700 60 48,087 39,684 1 1 0
Charlotte Ga NC 16740 178 165,449 135,909 1 1 0
Chattanooga TN 16860 64 37,613 30,328 0 0 0
Chicago Gary IL 16981 426 233,166 185,372 0 1 0
Chicago Gary IL 16982 291 175,653 148,385 0 1 0
Chico CA 17020 21 15,133 12,572 1 1 0
Cincinnati OH 17140 249 158,519 126,255 1 1 0
Cleveland OH 17460 307 170,691 142,314 1 1 0
Colorado Spr CO 17820 118 72,666 58,160 1 1 0
Columbia SC 17900 117 67,871 54,831 1 1 0
Columbus OH 18140 283 157,036 130,312 1 1 0
Corvallis OR 18700 15 6,092 5,122 1 1 0
Dallas Fort TX 19100 766 26,649 26,086 1 1 0
Dayton Sprin OH 19380 115 63,155 50,793 1 1 0
Daytona Beach FL 19660 46 62,673 50,368 1 1 0
Denver Bould CO 19740 417 280,547 221,154 1 1 0
Des Moines IA 19780 93 57,732 46,433 1 1 0
Detroit MI 19820 481 199,780 163,413 0 1 0
Dover DE 20100 20 14,345 12,607 1 1 0
Durham Chapel Hill NC 20500 64 40,903 34,460 1 1 0
Eugene Sprin OR 21660 66 27,037 21,986 1 1 0
Fayetteville NC 22180 48 28,642 23,578 1 1 0
Fresno CA 23420 171 44,041 35,628 1 1 0
Gainesville FL 23540 24 24,017 19,890 1 1 0
Grand Juncti CO 24300 25 20,332 15,451 1 1 0
Grand Rapids MI 24340 23 4,402 3,561 1 1 0
Greensboro W NC 24660 106 41,062 34,717 1 1 0
Greenville S SC 24860 70 59,412 45,546 1 1 0
Harrisburg L PA 25420 89 33,377 28,170 1 1 0
Hartford Bri CT 25540 180 77,193 66,296 1 1 0
Huntsville AL 26620 48 25,267 21,780 0 1 0
Jacksonville FL 27260 157 181,748 144,363 1 1 0
Knoxville TN 28940 78 61,073 48,336 1 1 0
Lakeland Win FL 29460 64 91,375 69,471 1 1 0
Lancaster PA 29540 81 37,666 32,083 1 1 0
Las Vegas NV 29820 201 303,784 236,122 1 1 0
Lincoln NE 30700 47 22,310 18,967 1 1 0
Little Rock AR 30780 115 41,454 34,454 0 1 0
Los Angeles CA 31101 970 434,348 353,084 1 1 0
Los Angeles CA 31102 259 109,518 90,245 1 1 0
Manchester NH 31700 56 29,050 22,325 1 1 0
Medford OR 32780 33 17,915 14,446 1 1 0
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Memphis TN 32820 148 111,061 84,565 1 1 0
Miami Hialea FL 33100 448 753,685 580,593 1 1 0
Milwaukee WI 33340 1 56,999 47,208 1 1 0
Minneapolis MN 33460 351 310,390 246,630 1 1 0
Mobile AL 33660 51 22,881 18,392 1 1 0
Myrtle Beach SC 34820 24 60,632 48,464 1 1 0
Naples FL 34940 30 72,922 58,173 0 0 0
Nashville TN 34980 202 192,891 152,238 0 1 0
New Haven CT 35300 155 56,248 47,375 1 1 0
New York Nor NY 35621 382 313,377 265,745 0 0 0
New York Nor NY 35622 767 313,806 267,558 0 0 0
New London N CT 35980 50 17,656 15,257 1 1 0
Oklahoma Cit OK 36420 189 90,248 71,557 1 1 0
Omaha NE 36540 203 71,250 60,006 1 1 0
Orlando FL 36740 206 327,104 244,607 1 1 0
Ventura Oxna CA 37100 78 48,050 39,679 1 1 0
Melbourne Ti FL 37340 54 77,819 62,289 1 1 0
Panama City FL 37460 20 27,381 22,173 1 1 0
Pensacola FL 37860 46 52,746 43,591 0 1 0
Philadelphia PA 37980 702 421,831 356,086 1 1 0
Phoenix AZ 38060 290 681,128 504,978 0 0 1
Pittsburgh B PA 38300 270 130,265 112,393 1 1 0
Portland Van OR 38900 330 188,543 154,991 1 1 0
Poughkeepsie NY 39100 107 37,255 32,401 1 1 0
Providence F RI 39300 267 102,741 79,664 1 1 0
Raleigh Durh NC 39580 139 126,500 105,933 0 1 0
Reno NV 39900 65 48,611 39,745 1 1 0
Richmond Pet VA 40060 116 77,473 62,809 1 1 0
Riverside Sa CA 40140 482 439,368 342,387 1 1 0
Rochester NY 40380 112 29,406 27,503 1 1 0
Sacramento CA 40900 217 181,888 146,724 1 1 0
St Louis MO 41180 350 170,379 136,582 1 1 0
Salem OR 41420 72 31,185 25,236 1 1 0
San Diego CA 41740 206 146,777 123,301 1 1 0
San Francisc CA 41860 413 255,945 211,413 1 1 0
San Jose CA 41940 78 88,894 74,446 1 1 0
Seattle Ever WA 42660 537 262,057 224,584 1 1 0
Springfield MA 44140 119 44,376 35,486 1 1 0
Stockton CA 44700 114 60,608 47,784 1 1 0
Tampa St Pe FL 45300 250 386,782 305,187 0 1 0
Toledo OH 45780 105 45,112 35,671 1 1 0
Tucson AZ 46060 129 109,998 88,391 0 1 1
Tulsa OK 46140 132 74,346 59,120 0 1 0
Norfolk VA B VA 47260 84 53,115 43,691 1 1 0
Washington DC 47900 743 487,432 390,087 1 1 0
Wilmington NC 48900 39 43,061 35,982 1 1 0
Winston Salem NC 49180 62 37,056 31,377 1 1 0
Worcester MA 49340 135 53,619 42,269 1 1 0
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Table A2: Summary Statistics for First Stage Regression

Name Price ($) Price-Replacement ($) Lot Size (1000sqf) Living Area (1000 sqf) Year built
Mean SD Mean SD Mean SD Mean SD Mean SD

Akron OH 141,998 436,856 -35,291 558,182 27.53 142.17 1.95 4.79 1960.9 34.3
Albany Schen NY 219,164 772,365 12,997 891,904 58.37 356.37 2.23 8.36 1952.7 42.9
Allentown Be PA 229,993 644,014 15,952 858,863 24.16 243.51 2.30 8.44 1953.1 43.9
Atlanta GA 221,194 990,971 -28,399 1,309,007 54.48 1300.44 2.57 14.11 1984.4 23.5
Augusta Aike GA 156,652 355,392 -55,095 677,062 72.33 898.09 2.28 7.00 1984.7 26.2
Austin TX 265,112 1,081,702 60,633 849,511 26.67 360.22 2.34 9.82 1988.0 20.4
Bakersfield CA 205,113 160,520 60,076 113,517 21.51 1323.99 1.66 0.68 1982.7 24.7
Baltimore MD 271,463 812,403 116,847 959,917 44.61 3295.76 1.70 7.16 1960.3 35.4
Bend OR 281,555 325,270 108,701 338,255 58.87 685.93 1.92 3.30 1993.0 18.0
Birmingham AL 212,369 301,459 64,696 353,412 33.91 199.22 0.91 1.44 1995.1 14.4
Boston MA 448,325 2,620,627 221,253 1,183,738 22.07 117.19 1.85 1.57 1948.0 44.7
Boulder CO 387,741 605,321 212,781 428,610 62.50 1859.68 1.93 5.01 1981.2 22.8
Bridgeport CT 643,064 1,992,681 406,186 1,384,599 26.42 105.42 2.19 1.69 1959.6 35.4
Buffalo Niag NY 141,319 4,035,204 -74,274 4,081,852 42.19 251.33 2.31 8.61 1946.5 35.5
Fort Myers C FL 244,528 394,221 87,053 414,006 18.67 120.77 1.77 3.45 1994.6 14.7
Charleston N SC 310,780 443,837 140,114 484,240 15.47 425.39 1.92 3.95 1987.6 27.1
Charlotte Ga NC 231,927 804,043 1,320 758,749 43.87 285.01 2.47 9.65 1989.6 22.6
Chattanooga TN 167,640 664,366 -70,264 883,334 58.21 721.16 2.53 7.29 1973.9 28.3
Chicago Gary IL 286,058 1,348,522 -279,177 11,000,000 5.95 11.20 5.28 101.82 1943.2 39.5
Chicago Gary IL 281,861 899,714 88,894 761,730 9.88 190.48 1.88 7.72 1979.5 25.9
Chico CA 252,543 237,999 49.69 287.13 1.76 2.55 1977.9 24.3
Cincinnati OH 168,001 901,948 -16,309 917,434 24.79 159.03 1.97 4.04 1962.6 36.5
Cleveland OH 148,672 835,774 -25,117 833,855 33.73 149.50 1.90 3.58 1955.7 34.0
Colorado Spr CO 239,888 597,171 41,160 987,612 45.38 358.12 2.15 12.05 1985.1 24.0
Columbia SC 159,021 833,106 -354,985 2,496,838 41.10 568.33 5.09 22.78 1986.7 21.9
Columbus OH 170,892 411,163 -15,266 935,847 32.34 527.11 2.03 10.25 1972.4 32.1
Corvallis OR 271,186 252,440 29.56 176.84 2.11 3.86 1977.3 26.3
Dallas Fort TX 248,799 2,334,984 5,448 2,176,910 16.64 94.86 2.71 11.18 1994.5 14.8
Dayton Sprin OH 124,396 335,284 -46,051 390,848 31.83 536.65 1.88 3.51 1959.6 30.6
Daytona Beach FL 201,147 361,138 45,919 303,991 17.41 155.26 1.62 2.48 1983.6 20.0
Denver Bould CO 294,908 5,327,734 112,146 5,292,273 53.83 3000.47 1.99 8.48 1978.3 26.8
Des Moines IA 158,857 321,564 647 609,679 29.86 2197.95 1.74 7.32 1972.7 35.3
Detroit MI 91,312 140,150 -50,243 1,267,705 20.18 1803.19 1.57 11.97 1955.5 25.0
Dover DE 226,195 368,052 51,777 239,451 44.38 331.21 1.84 0.79 1987.2 29.0
Durham Chapel Hill NC 253,449 1,098,616 -3,223 1,215,950 42.58 195.68 2.68 9.48 1985.3 24.9
Eugene Sprin OR 222,072 124,094 89,339 101,850 24.77 147.60 1.55 0.66 1975.0 25.3
Fayetteville NC 141,643 245,692 32.21 422.00 1.80 4.73 1986.3 19.6
Fresno CA 240,072 303,593 63,508 613,674 41.47 351.74 1.97 7.00 1970.3 23.0
Gainesville FL 205,232 689,286 32.16 298.09 1.85 6.31 1985.8 19.7
Grand Juncti CO 218,127 209,015 66,118 208,077 111.47 2335.65 1.72 1.92 1984.4 25.8
Grand Rapids MI 114,436 92,585 -4,668 87,912 149.19 544.77 1.38 0.55 1961.7 40.4
Greensboro W NC 180,093 758,964 -50,603 1,026,179 47.87 263.44 2.43 9.93 1978.6 26.6
Greenville S SC 171,563 3,303,747 30.38 406.49 1.80 1.95 1986.1 21.0
Harrisburg L PA 165,163 422,281 -7,318 439,415 48.37 554.27 1.86 3.98 1954.9 41.1
Hartford Bri CT 271,917 644,360 85,644 468,062 30.78 137.02 1.86 1.74 1961.6 36.8
Huntsville AL 218,440 1,595,598 58,841 1,617,602 12.19 184.77 1.80 3.66 1987.1 20.5
Jacksonville FL 219,320 501,065 34,484 733,021 25.65 611.88 2.03 8.20 1987.2 23.2
Knoxville TN 177,845 561,845 5,416 672,862 94.81 5513.12 1.90 5.20 1976.5 28.3
Lakeland Win FL 162,238 217,049 7,185 264,131 19.80 145.26 1.78 2.82 1989.4 20.9
Lancaster PA 194,302 648,034 20,717 823,233 43.12 276.77 1.90 9.13 1956.6 44.6
Las Vegas NV 269,780 814,866 69,472 1,512,064 6.31 23.94 2.16 13.73 1996.0 13.2
Lincoln NE 156,181 216,543 8,714 329,935 21.55 132.44 1.65 3.55 1972.4 31.7
Little Rock AR 162,211 353,935 -30,497 431,500 41.08 3246.97 2.09 5.94 1978.6 24.0
Los Angeles CA 605,889 2,384,390 403,624 2,150,966 54.70 2340.33 2.19 7.82 1964.0 26.5
Los Angeles CA 601,443 906,258 438,812 690,999 4.57 18.90 1.80 4.68 1968.5 14.7
Manchester NH 266,205 563,815 65,631 203,736 51.26 192.56 1.93 1.55 1962.8 41.2
Medford OR 257,823 199,256 102,539 147,306 97.56 3812.55 1.70 0.74 1980.4 27.5
Memphis TN 152,510 416,016 -43,389 449,289 34.70 437.03 2.11 4.29 1975.0 25.6
Miami Hialea FL 322,960 943,365 165,001 995,643 8.83 58.26 1.76 7.75 1983.4 18.7
Milwaukee WI 170,416 473,392 -25,055 552,427 11.80 66.94 2.11 6.19 1946.5 33.2
Minneapolis MN 264,316 932,088 76,830 1,674,546 22.09 178.56 1.93 17.44 1973.0 32.9
Mobile AL 198,077 1,082,471 1,500 1,181,470 2.95 64.97 2.16 6.86 1985.9 19.9
Myrtle Beach SC 243,219 5,867,544 67.67 3327.69 1.44 2.15 1994.9 14.3
Naples FL 464,223 936,726 13.99 264.45 1.18 4.17 1994.1 12.4
Nashville TN 213,281 780,594 4,321 1,096,215 108.67 2539.19 2.26 10.10 1984.7 25.2
New Haven CT 258,506 480,046 81,912 291,254 18.80 57.04 1.83 1.55 1955.6 36.8
New York Nor NY 871,137 12,400,000 550,205 8,714,088 12.32 387.65 2.75 29.81 1951.9 33.4
New York Nor NY 444,573 2,459,695 252,808 2,553,680 316.94 14503.39 1.86 7.15 1961.5 32.9
New London N CT 280,921 804,757 108,088 256,496 49.14 181.13 1.77 1.30 1959.1 45.0
Oklahoma Cit OK 166,159 1,597,729 -49,200 1,676,793 27.63 192.11 2.31 9.08 1975.3 26.0
Omaha NE 172,691 511,395 -7,611 1,418,724 48.68 5140.29 1.88 13.05 1971.7 34.3
Orlando FL 241,365 663,995 49,824 1,677,583 13.28 451.34 2.11 15.78 1991.4 17.4
Ventura Oxna CA 552,810 593,305 375,916 465,670 12.87 46.82 1.90 2.18 1979.4 19.0
Melbourne Ti FL 199,978 310,715 41,552 347,603 12.82 69.00 1.80 4.01 1987.6 16.9
Panama City FL 244,375 349,629 98,553 402,447 41.66 348.85 1.67 3.10 1990.1 18.4
Pensacola FL 183,144 266,606 10,064 1,005,902 40.29 393.75 1.92 10.23 1985.5 21.5
Philadelphia PA 238,451 686,074 63,061 571,338 58.28 4167.33 1.88 6.10 1955.4 36.0
Phoenix AZ 259,351 946,653 47,810 929,747 11.31 120.42 2.28 8.63 1991.6 16.8
Pittsburgh B PA 135,652 199,214 -20,648 167,829 30.12 444.07 1.72 1.58 1948.4 35.1
Portland Van OR 299,076 879,840 128,664 912,584 33.41 1222.46 1.87 5.59 1975.6 30.1
Poughkeepsie NY 306,779 430,053 115,281 461,382 72.00 372.06 2.08 4.97 1962.3 40.8
Providence F RI 266,099 458,550 81,301 287,559 22.62 103.57 1.88 1.64 1949.7 40.6
Raleigh Durh NC 243,361 753,292 15,324 697,414 32.40 607.17 2.44 9.22 1994.0 18.9
Reno NV 327,093 665,746 132,156 570,594 22.86 287.13 2.13 6.23 1989.5 18.6
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Richmond Pet VA 272,001 676,070 61,130 536,753 95.12 9676.82 2.21 6.28 1987.0 20.5
Riverside Sa CA 315,450 390,663 133,501 399,738 15.50 102.35 2.00 4.85 1987.3 20.6
Rochester NY 134,156 203,894 -73,680 2,781,475 50.02 350.83 2.13 25.29 1952.0 36.9
Sacramento CA 329,363 1,278,423 168,694 1,248,819 74.65 5086.70 1.81 3.06 1984.1 21.4
St Louis MO 179,025 1,742,242 10,909 1,815,233 17.45 131.22 1.83 7.91 1960.5 32.5
Salem OR 208,004 225,504 44,469 234,224 39.92 319.91 1.84 2.75 1976.6 27.7
San Diego CA 521,052 1,159,567 349,838 940,298 25.04 110.95 1.89 3.73 1975.6 18.4
San Francisc CA 660,193 1,555,332 463,706 2,462,976 17.36 661.15 2.09 22.13 1966.4 29.7
San Jose CA 707,864 1,062,623 522,666 734,247 8.38 34.30 1.98 6.01 1974.3 22.6
Seattle Ever WA 409,663 1,127,689 217,028 1,024,536 48.11 236.03 2.08 9.25 1978.5 28.2
Springfield MA 203,350 357,377 40.11 203.36 1.86 1.84 1947.3 40.1
Stockton CA 279,874 190,991 113,766 219,538 13.07 89.24 1.87 1.72 1983.7 25.1
Tampa St Pe FL 216,168 672,392 51,397 563,533 48.54 4420.26 1.85 7.65 1982.5 21.1
Toledo OH 114,422 205,698 -73,895 921,709 24.32 218.60 2.04 9.28 1950.1 35.0
Tucson AZ 231,839 456,469 64,801 462,062 11.19 102.21 1.85 5.92 1988.0 18.8
Tulsa OK 160,765 1,714,034 -46,017 1,775,040 33.52 296.52 2.25 7.77 1973.9 24.2
Norfolk VA B VA 263,756 383,574 96,876 457,961 19.04 1635.31 1.87 4.04 1981.0 18.9
Washington DC 448,090 1,939,030 260,121 1,538,170 26.97 358.38 2.00 8.76 1979.3 26.3
Wilmington NC 260,994 338,559 87,052 461,111 26.08 958.26 1.94 4.23 1991.5 21.0
Winston Salem NC 172,014 433,461 -35,024 992,465 37.92 226.82 2.24 10.80 1981.5 26.6
Worcester MA 278,707 1,533,782 79,086 1,270,436 42.91 189.60 1.92 1.63 1953.6 45.6
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Table A3: Summary Statistics for Second Stage Regression

Name Zoning/Regulation Math Scores CERCLA Sites Particulate Matter Employment Access
Index Mean SD Mean SD Mean SD Mean SD

Akron OH -0.06 -0.04 0.95 0.02 0.14 11.63 0.24 36,859 9,671
Albany Schen NY -0.13 0.19 0.70 0.09 0.29 7.34 0.20 33,418 14,465
Allentown Be PA -0.09 0.39 0.63 0.15 0.37 9.05 0.67 35,570 12,771
Atlanta GA -0.14 0.30 0.83 0.00 0.00 11.62 0.17 113,411 50,194
Augusta Aike GA -1.18 0.25 0.83 0.06 0.27 11.25 0.34 17,391 6,957
Austin TX -0.08 0.56 0.52 0.00 0.00 9.58 0.26 66,423 28,457
Bakersfield CA 0.12 -0.09 0.55 0.01 0.12 19.30 2.73 15,685 8,884
Baltimore MD 0.88 0.29 0.73 0.13 0.35 10.55 0.43 92,794 38,078
Bend OR 0.80 0.31 0.00 0.00 6.44 0.52 5,830 2,582
Birmingham AL -0.24 0.58 0.41 0.00 0.05 10.06 0.06 32,781 11,804
Boston MA 1.36 -0.11 0.85 0.15 0.39 8.80 0.70 66,996 35,871
Boulder CO 0.58 0.36 0.00 0.07 6.94 0.26 22,793 6,351
Bridgeport CT 0.29 0.19 0.77 0.09 0.28 9.22 0.16 42,877 12,618
Buffalo Niag NY -0.54 0.14 1.03 0.11 0.41 9.26 0.17 54,186 20,211
Fort Myers C FL -0.34 0.53 0.41 0.00 0.00 6.50 0.03 20,193 6,716
Charleston N SC -1.00 0.59 0.72 0.03 0.19 9.01 0.09 25,762 10,086
Charlotte Ga NC -0.60 0.38 0.76 0.03 0.20 10.21 0.06 61,163 23,953
Chattanooga TN -0.90 0.41 0.97 0.10 0.30 10.32 0.26 26,903 10,858
Chicago Gary IL -0.12 -0.15 0.69 0.00 0.06 11.46 0.65 261,817 76,115
Chicago Gary IL -0.12 0.59 0.44 0.09 0.42 10.14 0.64 163,687 49,319
Chico CA 0.72 -0.15 0.56 0.09 0.42 9.16 0.93 7,078 4,740
Cincinnati OH -0.74 0.06 1.09 0.09 0.30 12.47 0.63 78,804 28,518
Cleveland OH -0.33 -0.08 1.11 0.01 0.12 11.45 0.78 71,135 25,593
Colorado Spr CO 0.49 0.63 0.28 0.00 0.00 5.25 0.17 29,986 12,575
Columbia SC -0.89 0.50 0.65 0.03 0.21 10.38 0.19 26,078 10,916
Columbus OH 0.01 -0.06 0.99 0.01 0.09 11.14 0.11 70,275 26,024
Corvallis OR 0.79 0.46 0.01 0.10 7.64 0.01 6,625 3,536
Dallas Fort TX -0.52 0.72 0.42 0.00 0.07 9.53 0.03 133,830 34,747
Dayton Sprin OH -0.69 -0.29 1.16 0.20 0.46 12.16 0.14 39,622 10,689
Daytona Beach FL 0.39 0.45 0.01 0.11 7.10 0.02 13,580 6,178
Denver Bould CO 0.68 0.39 0.53 0.08 0.35 7.12 0.71 97,921 37,345
Des Moines IA -1.01 -0.10 1.25 0.10 0.30 9.20 0.03 37,831 12,727
Detroit MI -0.08 0.37 0.66 0.07 0.27 10.40 0.46 46,155 19,353
Dover DE 0.44 0.58 0.52 0.44 0.57 9.45 0.10 6,385 2,404
Durham Chapel Hill NC -0.14 0.83 0.00 0.05 9.26 0.27 27,918 10,345
Eugene Sprin OR 0.17 0.45 0.45 0.00 0.01 7.77 0.46 16,593 9,651
Fayetteville NC -0.82 0.02 0.64 0.09 0.29 9.54 0.07 17,313 5,133
Fresno CA 0.83 0.37 0.74 0.08 0.27 16.69 0.67 34,472 14,005
Gainesville FL -0.12 0.51 0.68 0.12 0.32 7.06 0.07 15,356 5,666
Grand Juncti CO 0.38 0.38 0.00 0.00 9.49 0.19 9,600 5,369
Grand Rapids MI -0.31 0.75 0.21 0.00 0.02 9.91 0.13 14,238 3,376
Greensboro W NC -0.60 0.25 0.65 0.00 0.00 9.32 0.28 32,735 12,251
Greenville S SC 0.70 0.41 0.14 0.38 10.33 0.26 30,789 12,313
Harrisburg L PA 0.35 -0.05 1.13 0.05 0.21 12.07 0.12 33,527 13,005
Hartford Bri CT 0.32 0.20 0.83 0.06 0.28 8.63 0.30 46,724 17,199
Huntsville AL -1.45 0.35 0.86 0.00 0.00 9.95 0.03 23,249 10,006
Jacksonville FL -0.16 0.55 0.63 0.07 0.27 7.85 0.13 39,245 15,864
Knoxville TN -0.60 0.50 0.80 0.02 0.12 9.04 0.12 30,382 9,977
Lakeland Win FL 0.04 0.07 0.45 0.06 0.24 7.23 0.14 14,045 6,436
Lancaster PA 0.14 0.31 0.61 0.06 0.24 11.79 0.29 26,671 11,791
Las Vegas NV -0.85 0.27 0.64 0.00 0.00 7.56 0.35 88,447 37,709
Lincoln NE 0.59 0.74 0.29 0.02 0.13 8.12 0.10 29,347 8,062
Little Rock AR -1.05 -0.05 1.02 0.06 0.31 11.03 0.29 33,381 13,974
Los Angeles CA 0.34 0.53 0.74 0.12 0.41 14.21 2.32 244,428 85,658
Los Angeles CA 0.34 0.81 0.63 0.04 0.20 12.09 1.45 115,095 36,440
Manchester NH 1.45 0.26 0.55 0.21 0.44 8.19 0.26 25,956 10,637
Medford OR 0.66 0.32 0.53 0.00 0.00 8.80 1.03 9,053 4,472
Memphis TN 0.96 -0.05 1.13 0.09 0.34 9.78 0.02 52,887 17,748
Miami Hialea FL 0.59 0.44 0.60 0.16 0.47 6.58 0.40 120,643 34,011
Milwaukee WI 0.10 0.07 0.28 11.49 0.26 94,478 26,868
Minneapolis MN 0.15 0.70 0.66 0.24 0.64 9.79 0.32 113,331 50,100
Mobile AL -1.31 0.75 0.57 0.02 0.15 9.44 0.06 19,333 7,537
Myrtle Beach SC -0.94 0.75 0.34 0.00 0.00 9.62 0.07 12,608 5,242
Naples FL 0.53 0.49 0.00 0.00 6.41 0.04 17,317 7,386
Nashville TN -0.59 0.43 0.98 0.00 0.03 10.21 0.34 46,819 24,229
New Haven CT 0.10 0.77 0.15 0.42 9.35 0.33 36,603 10,583
New York Nor NY 0.47 0.57 0.52 0.27 0.60 9.84 0.82 80,401 27,765
New York Nor NY 0.47 0.30 0.79 0.36 0.75 9.04 0.88 70,468 33,397
New London N CT 0.11 0.18 0.71 0.02 0.15 8.16 0.38 13,164 5,883
Oklahoma Cit OK -0.58 0.32 0.96 0.06 0.34 9.15 0.13 51,999 18,093
Omaha NE -0.68 0.39 0.63 0.04 0.19 9.12 0.32 53,282 18,324
Orlando FL 0.20 0.45 0.56 0.04 0.20 7.04 0.04 69,666 26,391
Ventura Oxna CA 0.73 0.66 0.06 0.24 10.24 0.13 31,577 8,118
Melbourne Ti FL 0.32 0.63 0.51 0.04 0.20 7.15 0.09 16,525 6,421
Panama City FL 0.55 0.41 0.00 0.02 9.04 0.09 8,555 4,603
Pensacola FL -1.04 0.51 0.63 0.15 0.44 8.81 0.08 14,167 8,183
Philadelphia PA 0.84 0.17 0.95 0.34 0.67 10.49 0.52 159,978 66,719
Phoenix AZ 0.53 0.68 0.65 0.02 0.15 8.90 1.53 92,747 41,071
Pittsburgh B PA -0.12 0.38 0.83 0.03 0.20 12.70 0.69 84,893 34,777
Portland Van OR 0.12 0.53 0.60 0.16 0.52 7.83 0.28 81,472 33,023
Poughkeepsie NY 0.20 0.63 0.12 0.33 8.07 0.37 4 348
Providence F RI 1.54 0.19 0.82 0.16 0.45 8.06 0.42 53,510 22,724
Raleigh Durh NC 0.42 0.45 0.52 0.05 0.21 9.06 0.16 42,091 14,916
Reno NV -0.35 0.72 0.62 0.00 0.00 7.63 0.30 25,079 10,785
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Richmond Pet VA -0.55 0.50 0.49 0.06 0.25 9.05 0.10 45,864 16,238
Riverside Sa CA 0.41 0.45 0.63 0.03 0.18 11.28 3.88 46,052 20,350
Rochester NY -0.46 0.12 0.79 0.00 0.02 7.80 0.18 48,201 21,674
Sacramento CA 0.29 0.43 0.63 0.03 0.18 9.49 0.87 55,143 20,948
St Louis MO -0.90 -0.12 1.19 0.05 0.25 11.29 0.29 90,777 34,568
Salem OR 0.17 0.32 0.56 0.00 0.02 7.74 0.17 16,269 8,834
San Diego CA 0.33 0.83 0.74 0.00 0.00 10.74 1.65 95,532 33,316
San Francisc CA 0.69 0.45 0.88 0.05 0.25 10.04 0.24 131,680 68,862
San Jose CA 0.00 0.51 0.70 0.70 1.75 9.74 1.05 112,811 37,349
Seattle Ever WA 0.80 0.61 0.88 0.13 0.43 8.86 0.34 103,848 46,399
Springfield MA 0.46 -0.62 0.84 0.01 0.10 8.86 0.25 27,525 11,836
Stockton CA 0.34 -0.29 0.61 0.13 0.33 11.39 0.68 20,205 7,267
Tampa St Pe FL -0.33 0.31 0.62 0.08 0.42 7.63 0.12 67,615 25,458
Toledo OH -0.85 0.03 0.89 0.00 0.00 11.23 0.20 35,762 9,272
Tucson AZ 1.07 0.46 0.78 0.00 0.02 6.17 0.76 34,754 17,248
Tulsa OK -1.00 0.24 0.88 0.05 0.24 10.62 0.03 47,355 17,901
Norfolk VA B VA -0.15 0.09 0.54 0.04 0.20 9.19 0.05 54,093 16,734
Washington DC 0.19 0.24 0.62 0.04 0.19 9.73 0.33 129,428 72,354
Wilmington NC -0.81 0.37 0.52 0.03 0.19 9.31 0.21 12,086 7,872
Winston Salem NC 0.37 0.66 0.00 0.05 9.69 0.12 25,105 9,755
Worcester MA 1.87 -0.28 0.90 0.01 0.12 8.79 0.20 28,088 13,795
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