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It enhances our current understanding of climate policy and explains crucial relations to the

broader audience. The model offers a novel framework to address climate change uncertain-

ties. The analytic solution overcomes Bellman’s curse of dimensionality for a wide range

of stochastic processes. I analyze the policy implications of the main climate uncertain-

ties and show the different welfare implications of “objective” uncertainty, epistemological

uncertainty, and anticipated learning. In contrast to earlier suggestions in the literature,

uncertainty is not more relevant to climate change evaluation than discounting, but un-

certainty makes the policy recommendations even more sensitive to the calibration of the

discount rates and its individual components than under certainty. The present Analytic Cli-

mate Economy (ACE) is the first analytic model comprising all the components considered

essential for quantitative policy advising.
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1 Introduction

Integrated assessment of climate change analyzes the interactions of long-term economic

growth, greenhouse gas emissions, and global warming. The present analytic climate econ-

omy (ACE) is a quantitative model competing with numeric models used to derive the US

federal social cost of carbon. The analytic solution permits new insights into the evalua-

tion of climate change, and it overcomes numeric obstacles in incorporating uncertainties.

The reader can evaluate the implications of changing contested parameters by immediate

inspection or changing simple formulas on a spreadsheet. The analytic nature of the present

quantitative model attempts to reconnect the integrated assessment community’s contribu-

tions published in field journals, the abstract climate thoughts published in general journals,

and the broad economic audience. An increasing number of economists is interested in

the biggest environmental problem of our generation, but hesitant to penetrate a world of

complex numeric models that appear to be black boxes to the outsider.

The paper’s focal point is the welfare and policy response to deterministic and uncer-

tain climate dynamics. It relates the optimal carbon tax directly to the characteristics of

the carbon cycle and the climate system. Recent stylized models find that uncertainty sur-

rounding climate change could be the major driver of welfare loss and mitigation policy.

Policy advising remains in the hands of deterministic models that explore and average large

samples of deterministic worlds. In these Monte-Carlo runs the decision maker is not aware

of the uncertainty and sees only one world at a time. In contrast, stochastic models integrate

uncertainty into the model, the welfare, and the decision making. Numeric stochastic inte-

grated assessment models (IAMs) are on the rise and have delivered major insights over the

recent years. New methods lessen Bellman’s curse of dimensionality, yet the dimensionality

of integrated assessment model still seriously restricts numeric analysis.1 These numeric lim-

itations make an analytic model like ACE particularly valuable as it can incorporate more

of the relevant climatic and informational states than contemporaneous stochastic numeric

IAMs.

The most frequently discussed uncertainty in climate change economics is the climate’s

sensitivity to atmospheric carbon dioxide concentrations. We currently do not know whether

a doubling of atmospheric carbon dioxide from its pre-industrial level will lead to a 1.5◦C or

a 4.5◦C warming (IPCC’s likely range) or even more. We have about 70% of the greenhouse

gases for an equivalent doubling already in the atmosphere, yet climate inertia is delaying

their impacts. Climate science itself pays even more attention to the uncertainty govern-

ing atmospheric carbon build-up. Carbon dioxide does not decay, it only moves between

1These numeric stochast dynamic programming models solve the full non-linear system on a state space
containing both economic and climate variables. A linearization around a steady state is generally unsat-
isfactory in a transiting climate economy with many non-linear interactions. The present model’s analytic
solution method also suggests a promising approach for reducing the numeric “curse” in related models that
defy a closed-form solution.
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reservoirs including the atmosphere, the oceans, and the biosphere (plants and soils). The

precise carbon flows between these reservoirs are largely uncertain. For example, an amount

of carbon weighing more than the entire human race walking this planet vanishes every year

from the atmospheric carbon budget into an unidentified sink. We do not know whether

this carbon will continue to leave the atmosphere in a warming climate, whether its flow will

stall, or whether it might return back into the atmosphere.

Economic models convey ideas and insights, here, governing the the main drivers of

climate policy and their interaction. Discount rates have long been assumed to be the

main determinant of optimal climate policy, changing optimal climate policy targets much

more than improved estimates of emissions, damages, or warming. Recently, Pindyck (2013)

argued that uncertainty is the crucial characteristic of climate change that outweighs all other

components and Weitzman (2009b) argues that fat-tailed temperature uncertainty makes the

choice of time preference largely irrelevant, an argument countered by Roe & Bauman (2013)

because of the major delay in climate response. I show that the welfare loss from uncertainty

is even more sensitive to discounting than its deterministic contribution, i.e., the contribution

from expected change. The sensitivity to nature’s uncertainty increases with the power of

the distributional moments. Thus, fat tails increase the sensitivity to discount rates instead

of reducing it.

Uncertainties in climate change have always called the climate skeptics on the table,

promoting a wait and see policy. Various studies demonstrate that learning is too slow to

substantially affect the optimal carbon policy (Kelly & Kolstad 1999, Leach 2007, Jensen

& Traeger 2013, Gerlagh & Liski 2014, Kelly & Tan 2015a). The present paper derives

analytic insights into the implications of a stochastic climate, of epistemological uncertainty

(scientific lack of knowledge), and of anticipated learning. I show that nature’s stochasticity

and epistemological uncertainty imply opposing sensitivies to time preference. Moreover,

knowledge updates make a Bayesian learning framework the most sensitive to time preference

because updates change the long-run picture of the future.

Guided by the long run risk literature, ACE disentangles risk aversion from consumption

smoothing to calibrate the risk-free discount rate and risk premia separately. Models lacking

this feature are forced to either discount the future too highly, or to disrespect the risk

premia. I show that the relevant risk aversion for climate change evaluation is not Arrow

Pratt’s measure of risk aversion, but by how much Arrow Pratt risk aversion exceeds the

desire to smooth consumption over time (intrinsic aversion to risk). Higher moments of the

uncertainty distribution are evaluated with higher powers of such risk aversion.

Economic models guide discussions and help in quantifying policy targets. The discussion

of the discount rate in the climate context is prominent for a good reason. It remains the

most relevant determinant of the optimal carbon tax. It also remains the input over which

economists are most divided. The analytic solution makes it easy to adjust parameters to

reflect individual perspectives, and to translate philosophical differences or different calibra-
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tion approaches into their quantitative policy implications. Ethical arguments as well as the

long run risk model’s calibration to asset prices lead to a low rate of pure time preference.

ACE’s analytic nature permits an easy solution for low rates of pure time preference. In de-

terministic models, these low discount rates require very long and computationally expensive

time horizons beyond the common model specifications. In stochastic models, a low discount

rate reduces the contraction of the Bellman equation and numeric issues frequently prevent

a solution. The model also shows why pure time preference can be much more important

for long-term climate change evaluation than the consumption discount rate.

ACE is the first IAM that splits up the carbon tax and welfare loss contributions between

the carbon cycle’s and the climate system’s contributions. Under certainty, the carbon cycle

is the main driver. The persistence of atmospheric carbon increases the optimal carbon

tax by a factor of 3-30 (depending on pure time preference), as compared to a 15-40% re-

duction resulting from a combination of warming delay and temperature persistence. Under

uncertainty, the relevance of the two components flips. Due to the non-linearities in the inter-

actions, carbon flow uncertainty plays a minor role whereas temperature uncertainty raises

the welfare loss and carbon tax substantially. These findings have immediate implications

for research priorities in the climate sciences.

Economic models guide research. Agreement on a single integrated assessment model is

not on the horizon, and likely not desirable either. ACE is a valuable contribution to the

set of models as it fleshes out assumptions of standard models and their implications. Some

of these assumptions will be, should be, and have been challenged. Building and discussing

new insights is easier with the transparency of an analytically tractable model. It can ac-

company numeric extensions with approximate interpretations of the changes. The analytic

benchmark serves as a tool for insight, quick quantification, and as a platform to challenge

ideas; and it can play the scapegoat, transparently representing common assumptions and,

thereby, furthering new research directions.

1.1 ACE’s Relation to Other Analytic IAMs

Analytic approaches to the integrated assessment of climate change go back at least to

Heal’s (1984) insightful non-quantitative contribution. A series of papers has used the linear

quadratic model for a quantitative analytic discussion of climate policy (Hoel & Karp 2002,

Karp & Zhang 2006, Karp & Zhang 2012). In linear quadratic models welfare responds to

uncertainty. In the wide-spread additive noise model, optimal policy remains unaffected by

risk (weak certainty equivalence). In Hoel & Karp’s (2001) multiplicative noise model also

the optimal policy responds to uncertainty. A disadvantage of the linear quadratic model

is its highly stylized representation of the economy and the climate system. In particular,

the model has no production or energy sector. Recently, Golosov et al. (2014) broke new

ground by amending the log-utility and full depreciation version of Brock & Mirman’s (1972)
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stochastic growth model with an energy sector and an impulse response of production to

emissions.

Golosov et al.’s (2014) elegant model makes use of two climate change characteristics.

First, a decadal time step is neither uncommon in IAMs nor particularly problematic given

the time scales of the climate change problem. Therefore, the full-depreciation assumption

is much more reasonable than in other macroeconomic contexts. The present paper further

weakens the full depreciation assumption. Second, planetary “heating” (radiative forcing)

is logarithmic in atmospheric carbon and damages are convex in temperature. As a conse-

quence, the authors argue for a linear relation between past emissions and present damages.

Their argument assumes that temperature responds immediately to atmospheric carbon in-

crease. However, reaching a new equilibrium temperature after increases in atmospheric

carbon can take decades to centuries. Gerlagh & Liski (2012) extend the model by intro-

ducing the empirically important delay between emission accumulation and damages. The

present paper follows the numeric IAMs used in policy advising and explicitly introduces

the logarithmic relation between carbon dioxide’s radiative forcing and temperature change

(Nordhaus 2008, Hope 2006, Anthoff & Tol 2014). Moreover, I incorporate a novel model

of ocean-atmosphere temperature dynamics that competes well with these numeric policy

models. As an additional payoff, ACE is the first analytic IAM to define and calibrate dam-

ages on temperature rather than on carbon. Integrating the non-linear relations between

carbon and temperature is crucial for an application to climate uncertainty.

Golosov et al.’s (2014) framework has been used to examine a multi-regional setting

(Hassler & Krusell 2012), non-constant discounting (Gerlagh & Liski 2012, Iverson 2013),

intergenerational games (Karp 2013), and regime shifts Gerlagh & Liski (2014). Golosov

et al.’s (2014) framework imposes strong certainty equivalence: not even welfare responds to

uncertainty. I show that this feature arises from simultaneously setting the intertemporal

elasticity of substitution and Arrow Pratt risk aversion to unity. Whereas unity is within

the estimated range of the intertemporal elasticity of substitution, Arrow Pratt risk aversion

is ubiquitously estimated higher. I solve ACE for arbitrary degrees of (disentangled) Arrow

Pratt risk aversion, accommodating for one of the most prominent criticisms of the model.

Constant relative Arrow Pratt risk aversion implies a decreasing coefficient of absolute risk

aversion. This stylized fact is widely believed to hold and contrasts with linear quadratic

AIAMs that only capture increasing absolute Arrow Pratt risk aversion or risk neutrality.

Alternatively, Li et al. (2014) and Anderson et al. (2014) leave the world of von Neumann

& Morgenstern’s (1944) axioms and introduce a preference for robustness to escape the

strong certainty equivalence of the Golosov et al. (2014) framework.2 The present paper

breaks with both strong and weak certainty equivalence, while maintaining von Neumann &

2Anderson et al. (2014) deviate from Golosov et al. (2014) by using a linear relation between the economic
growth rate, temperature increase, and cumulative historic emissions. Both Li et al. (2014) and Anderson
et al. (2014) combine a simpler analytic model with a more complex numeric IAM for quantitative simulation.
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Figure 1: The structure of ACE and most Integrated Assessment Models. Solid boxes characterize
the model’s state variables, dashed boxes are flows, and dashed arrows mark choice variables.

Morgenstern’s (1944) classic axioms for choice under uncertainty, which are often considered

desirable for rational or normative choice.

2 The Model

ACE’s structure follows that of most IAMs (Figure 1). Labor, capital, and technology

create production that is either consumed or invested. Production relies on energy inputs

which cause emissions. Emissions accumulate in the atmosphere, cause radiative forcing

(greenhouse effect), and increase global temperature(s), reducing production. This section

introduces the basic model of the economy, the energy sector, and the climate system.

It derives the necessary and sufficient assumptions to solve the model in closed form and

summarizes the underlying calibration.

2.1 The Basic ACE Economy

Utility is logarithmic and the social planner’s time horizon is infinite. The logarithmic util-

ity function captures only consumption smoothing over time. I assume a stable population

normalized to unity, but the approach generalizes to a population weighted sum of logarith-

mic per capita consumption with population growth. Gross production is a Cobb-Douglas

function of technology level A0,t, capital Kt, the energy composite Et, and the amount of

labor N0,t employed in the final consumption good sector

Y net
t = A0,tK

κ
t N

1−κ−ν
0,t Eν

t . (1)

The aggregate energy input Et is a smooth and monotonic function

Et = g(Et(At,Nt)) (2)
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of I ∈ N different energy sources, whose production levels Ei,t are collected in the vector

Et ∈ IRI
+. These decomposed energy inputs are produced using technologies At ∈ IRI

+ and

labor input levels Nt ∈ IRI
+. Total labor supply is normalized to unity,

∑I

i=0 Ni,t = 1. The

first Id energy sources are fossil fuel based and emit CO2 (“dirty”). I measure these energy

sources in units of their carbon content. Their extraction is costly, they are potentially

scarce, and I denote this subset of energy inputs by the vector Ed

t
∈ IRId

+ . Total emissions

from production amount to
∑Id

i=1 Ei,t. Renewable energy sources indexed Id + 1 to I are

costly but not scarce, and their production does not emit CO2 (“clean”). I assume a system

of energy sectors of the general form (2) that is sufficiently smooth and well-behaved to let

the value function converge and to avoid boundary solutions.3

The dirty fossil fuel energy sources are (potentially) scarce and their resource stock in

the ground Rd

t
∈ IRId

+ follows the equation of motion

Rt+1 = Rt −Ed
t ,

with initial stock levels R0 ∈ IRId

+ and Rt ≥ 0 at all times. The next section explains

how the energy sector’s carbon emissions increase the global atmospheric temperature T1,t

measured as the increase over the preindustrial temperature level. This temperature increase

causes damages, which destroy a fraction Dt(T1,t) of production. I normalize Dt(0) = 0 and

Proposition 1 characterizes the class of damage functions Dt(T1,t) that permit an analytic

solution of the model.

Weakening Golosov et al.’s (2014) assumption of full depreciation, I assume the capital

stock’s equation of motion

Kt+1 = Yt[1−Dt(T1,t)](1− xt)

[
1 + gk,t
δk + gk,t

]

, (3)

where xt =
Ct

Yt[1−Dt(Tt)]
is the endogenous consumption rate and gk,t is an exogenous approx-

imation of the growth rate of capital. The consumption rate replaces absolute consumption

as the consumption-investment control to achieve additive separability between controls and

states for log capital. If either gk,t =
Kt+1

Kt
− 1 (actual capital growth rate) or δk = 1 (full

depreciation), then equation (3) coincides with the standard assumption on capital accumu-

lation (see Appendix B)

Kt+1 = Yt[1−Dt(T1,t)]− Ct + (1− δk)Kt .

The depreciation correction
1+gk,t
δk+gk,t

is larger the slower the capital stock depreciates and

the slower it grows. The factor makes the decision maker aware of the additional capital

3Sufficient but not necessary conditions are smoothness, interior solutions for the controls, and convexity
of the energy production set. See Golosov et al. (2014) for a three energy sector example, and note that
in the present setting substitutabilities can change over time accounting for progress in electricity storage
improving the substitutability between liquid fuels, coal, and renewables.
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in the next period and it can adjust ACE’s capital-output ratio and capital depreciation

to macroeconomic observation, addressing a critique raised against Golosov et al.’s (2014)

model.4

Yet, the factor has no impact on the optimal carbon policy, given current world output.

The relevant implication of the capital accumulation in equation (3) and the full depreciation

assumption is that the investment rate is independent of the system states. As a consequence,

climate policy will not operate through the consumption rate. Appendix B shows that the

consumption rate is approximately independent of the climate states also in an annual time

step version of the DICE model (and as well for non-logarithmic utility).

2.2 The Extended ACE Economy: Capital Persistence, Endoge-

nous Growth, and Capital Damages

I present a simple extension of the “base ACE” that incorporation capital persistence and

simple endogenous growth. It avoids the exogenous approximation or full depreciation as-

sumptions above. The model introduces a dedicated capital production sector

Vt = A−1,tK
κ̄
−1,tN

1−κ̄−ν̄
−1,t E ν̄

−1,t.

The investment good Vt is linear homogenous in capital, labor, and energy input in line with

the replication argument. The subindex −1 on these inputs labels the level dedicated to

capital production. A standard AK model reasoning would close the capital sector with the

assumption that innovations increase the freely available technology level A−1,t (ideas, blue

prints,...) as A−1,t = A−1,0Kt
1−κ̄.In ACE’s climate economy the energy sector can play a

more crucial role than in standard AK models, generalizing the classical ? assumption to

A−1,tE
ν̄
−1,t = A−1,0Kt

1−κ̄Ē ν̄
−1,t,

where Ē−1,t labels the detrended energy composite with long-term growth removed. This

detrended component Ē−1,t can respond to energy shocks and energy transition, and it can

affect the growth rate of the underlying economy.

The capital’s equation of motion, replacing equation (3) of the “base ACE”, is

Kt+1 = [(1− δ)Kt + Vt][1−DK(T1,t)],

introducing a dedicated damage function DK(T1,t) for the capital sector. Equation (1) now

characterizes production of an aggregate consumption commodity, and the capital input

into equation (1) changes to Kt−K−1,t because capital input is split between final good and

capital production.

4I note that already the model’s time step of 10 years makes the capital depreciation assumption more
reasonable than it might appear: instead of an annual decay that leaves 30%-40% after 10 years, the model
utilizes all of the capital during 10 years, and none afterwards.
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2.3 The ACE Climate System

The energy sector’s CO2 emissions enter the atmosphere. Land conversion, forestry, and

agriculture also emit smaller quantities of CO2. Following the DICE model, I treat these

additional anthropogenic emission as exogenous and denote them by Eexo
t . Carbon released

into the atmosphere does not decay, it only cycles through different carbon reservoirs. Let

M1,t denote the atmospheric carbon content and M2,t, ...,Mm,t, m ∈ N, the carbon content of

a finite number of non-atmospheric carbon reservoirs that exchange carbon. DICE uses two

carbon reservoirs besides the atmosphere: M2,t captures the combined carbon content of the

upper ocean and the biosphere (mostly plants and soil) and M3,t captures the carbon content

of the deep ocean. Scientific climate models often use additional reservoirs. The vector Mt

comprises the carbon content of the different reservoirs and the matrix Φ captures the

transfer coefficients. Then

Mt+1 = ΦMt + e1(
∑Id

i=1 Ei,t + Eexo
t ) (4)

captures the carbon dynamics. The first unit vector e1 channels new emissions from fossil

fuel burning
∑Id

i=1 Ei,t and from land use change, forestry, and agriculture Eexo
t into the

atmosphere M1,t.

An increase in atmospheric carbon causes a change in our planet’s energy balance. In

equilibrium, the planet radiates the same amount of energy out into space that it receives

from the sun. Atmospheric carbon M1,t and other greenhouse gases (GHGs) “trap” some

of this outgoing infrared radiation, which causes the (additional, anthropogenic) radiative

forcing

Ft = η
log M1,t+Gt

Mpre

log 2
. (5)

The exogenous process Gt captures non-CO2 greenhouse gas forcing measured in CO2 equiva-

lents. There is no anthropogenic radiative forcing if Gt = 0 and M1,t equals the preindustrial

atmospheric CO2 concentration Mpre. We can think of radiative forcing as a small flame

turned on (or up) to heat a big pot of soup (our planet with its oceans). The parameter η

captures the strength of this flame for a doubling of CO2 with respect to the preindustrial con-

centration Mpre. Whereas radiative forcing is immediate, the planet’s temperature (the big

pot of soup) reacts with major delay. After several centuries, the new equilibrium5 tempera-

ture caused by a new level of radiative forcing F new will be T new
1,eq = s

η
F new = s

log 2
log M1,eq+Geq

Mpre
.

The parameter s is known as climate sensitivity. It measures the medium to long-term tem-

perature response to a doubling of preindustrial CO2 concentrations. Its best estimates lie

5The conventional climate equilibrium incorporates feedback processes that take several centuries, but
excludes feedback processes that operate at even longer time scales, e.g., the full response of the ice sheets.
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currently around 3C, but the true temperature response to a doubling of CO2 is highly

uncertain.

Next period’s atmospheric temperature depends on the current atmospheric tempera-

ture, the current temperature in the upper ocean, and on radiative forcing. Next period’s

temperature in the upper ocean depends on current temperature in the adjacent layers: the

atmosphere and the next lower ocean layer. I denote the temperature of a finite number of

ocean layers by Ti,t, i ∈ {2, ..., l}, l ∈ N. I abbreviate the atmospheric equilibrium tempera-

ture resulting from the radiative forcing level Ft by T0,t =
s
η
Ft. A given ocean layer slowly

adjusts its own temperature to the temperature of the surrounding layers. I model next

period’s temperature in layer i ∈ {1, ..., l} as a generalized mean of its present temperature

Ti,t and the present temperatures in the adjacent layers Ti−1,t and Ti+1,t
6

Ti,t+1 = M
σ

i (Ti,t, w
−1
i Ti−1,t, wi+1Ti+1,t) for i ∈ {1, ..., l}. (6)

The weight matrix σ characterizes the (generalized) heat flow between adjacent layers, and

σforc characterizes the heat influx response to radiative forcing. The equilibrium tempera-

ture ratios wi =
Ti−1,eq

Ti,eq
are empirical adjustments reflecting that the equilibrium warming

does not coincide across all layers: in a warmer equilibrium the oceans lose more energy

through evaporation, keeping them cooler relative to the atmosphere. Based on the data,

my calibration in section 2.5 adjusts only for the equilibrium warming difference between

atmosphere and oceans (wi = 1 for i 6= 2). Proposition 1 in the next section characterizes

the class of means (weighting functions f) that permit an analytic solution.

2.4 Solving ACE

Appendix C.3 solves ACE by transforming it into an equivalent linear-in-state model (Karp

2013). This transformation helps to understand which extensions maintain (or destroy) its

analytic tractability. Linear-in-state models rely on equations of motion that are linear in

the state variable, and on control variables that are additively separable from the states.

ACE is linear only after transforming some of the original state variables. The policymaker

optimizes labor inputs, consumption, and investment to maximize the infinite stream of

logarithmic utility from consumption, discounted at factor β, over the infinite time horizon.

The present paper assumes that the optimal labor allocation has an interior solution and

6A generalized mean is an arithmetic mean enriched by a non-linear weighting function f . It takes
the form Mi(Ti−1,t , Ti,t , Ti+1,t) = f−1[σi,i−1f(Ti−1,t) + σi,if(Ti,t) + σi,i+1f(Ti+1,t)] with weight σi,i =
1 − σi,i−1 − σi,i+1 > 0. The weight σi,j characterizes the (generalized) heat flow coefficient from layer j
to layer i. Heat flow between any two non-adjacent layers is zero. Note that the weight σi,i captures the
warming persistence (or inertia) in ocean layer i. The weight σ1,0 = σforc determines the heat influx caused
by radiative forcing. I define σl,l+1 = 0: the lowest ocean layer exchanges heat only with the next upper
layer. For notational convenience equation (6) below writes a mean of three temperature values also for the
deepest layer (i = l) with a zero weight on the arbitrary entry Tl+1. I collect all weights in the l × l matrix
σ, which characterizes the heat exchange between the atmosphere and the different ocean layers.
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that scarce resources are stretched over the infinite time horizon along the optimal path,

avoiding boundary value complications. Linear-in-state models are solved by an affine value

function. The following proposition summarizes the main result of Appendix C.3.

Proposition 1 An affine value function of the form

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ⊤
MMt +ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt

solves ACE if, and only if, kt = logKt, τt is a vector composed of the generalized temperatures

τi,t = exp(ξiTi,t), i ∈ {1, ..., L}, the damage function(s) takes the form

D(T1,t) = 1− exp[−ξ0 exp[ξ1T1,t] + ξ0], ξ0 ∈ IR (basic & extended ACE),

DK(T1,t) = 1− exp[−ξ̄0 exp[ξ1T1,t] + ξ̄0], ξ̄0 ∈ IR (extended ACE, section 2.2),

the mean in the equation of motion (6) for temperature layer i ∈ {1, ..., l} takes the form

M
σ

i (Ti,t, w
−1
i Ti−1,t, wi+1Ti+1,t) =

1

ξi
log
(

(1−σi,i−1−σi,i+1) exp[ξiTi,t]

+σi,i−1 exp[ξiw
−1
i Ti−1,t] + σi,i+1 exp[ξiwi+1Ti+1,t]

)

, (7)

and the parameters ξi take the values ξ1 = log 2
s

≈ 1
4
and ξi+1 = wi+1ξi for i ∈ {1, ..., l − 1}

(with wi, i ∈ {1, ..., l − 1}, given).

The coefficients ϕ in the value function are the shadow values of the respective state vari-

ables, and ⊤ denotes the transpose of a vector of shadow values. The coefficient vector on

the resource stock, ϕ⊤
R,t, has to be time-dependent: the shadow values of the exhaustible

resources increases over time following the endogenously derived Hotelling rule. The pro-

cess ϕt captures the value contribution of the exogenous processes, including technological

progress. The damage function is of a double-exponential form with a free parameter ξ0,

which scales the severity of damages at a given temperature level. The damage parameter ξ0
is the semi-elasticity of net production with respect to a change of transformed atmospheric

temperature τ1,t = exp(ξ1T1,t). The generalized mean M
σ

i uses the non-linear weighting

function exp[ξi · ]. Section 2.5 shows that these assumptions match the actual climate dy-

namics and current assumptions about economic damages. It calibrates the weight matrix

σ, the atmosphere-ocean equilibrium temperature difference w1, and the damage parameter

ξ0.

Expressed in terms of the vector of transformed temperature states τ , the temperatures’

equations of motion (7) take the linear form

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 .
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The parameter σforc is the weight on radiative forcing in the atmospheric temperature’s equa-

tion of motion. It determines the speed of the (initial) response of atmospheric temperature

to the greenhouse effect. Under the assumptions of Proposition 1, the optimal consumption

rate is x∗
t = 1− βκ .Society consumes less the higher the discounted shadow value of capital

(x∗
t =

1
1+βϕκ

with ϕk = κ
1−βκ

), resulting in a consumption rate that decreases in the capital

share of output κ. The other controls depend on the precise form of the energy sector.

2.5 Calibration

This section summarizes the model’s base calibration with an emphasis on the novel ocean-

atmosphere temperature system and the damage function. I use the carbon cycle of DICE

2013, the a capital share of κ = 0.3, and the International Monetary Fund’s (IMF) 2015

investment rate forecast of 1−x∗ = 25% to calibrate the annual rate of pure time preference

to ρ = 1.75%. Present world output Y is ten times (time step) the IMF’s global economic

output forecast of Y annual
2015 = 81.5 trillion USD.

Economic damages are crucial and yet hard to determine. The most wide-spread IAM

DICE uses the damage function D(T ) = 1
1+0.0028T 2 . Nordhaus (2008) calibrates the co-

efficient 0.0028 based on a damage survey for a 2.5C warming. I calibrate ACE’s dam-

age coefficient to match Nordhaus’ calibration points of 0 and 2.5◦C exactly, delivering

the damage semi-elasticity ξ0 = 0.0222. Figure 2 compares the resulting damage curve

to that of the DICE-2007 model. The figure also depicts the damage curve D(T ) =

1 − 1/
(
(1 + T

20.46
)2 + ( T

6.081
)6.754

)
suggested by Weitzman (2010), who argues that little is

known about damages at higher temperature levels, and that damages might turn out much

more convex at high temperatures than assumed in DICE. As compared to DICE-2007, the

base calibration of ACE’s damage function generates slightly higher damages below a 2.5◦C

warming, slightly lower damages above a 2.5◦C until a warming of 12◦C warming, and higher

damages at a warming above 12◦C, implying a hard-to-conceive change of life on the planet.

Figure 2 also depicts two dashed variations of ACE’s damage function. The lower curve

reduces the damage parameter by 50%, resulting in a damage function that lies almost ev-

erywhere below DICE. The higher curve increases the damage parameter by 50%, resulting

in a damage function that lies everywhere above that of DICE. The analytic solution permits

a simple evaluation of such changes in the damage calibration.

The calibration of temperature dynamics (equation 7) uses the Representative Concen-

tration Pathways (RCP) of the recent assessment report by the Intergovernmental Panel on

Climate Change IPCC (2013). I use the Magicc6.0 model by Meinshausen et al. (2011) to

simulate the RCP scenarios over a time horizon of 500 years. The model emulates the re-

sults of the large atmosphere-ocean general circulation models (AOGCMs) and is employed

in the IPCC’s assessment report. DICE was calibrated to a (single) scenario using an earlier

version of Magicc. My calibration of ACE uses three ocean layers (upper, middle, and deep)
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Figure 2: ACE’s damage function compared to that of DICE-2007 and a highly convex damage
function suggested by Weitzman (2010). All three lines coincide for a 2.5◦C warming, the common
calibration point based on Nordhaus (2008). The dashed curves depict ACE’s damage function for
a ±50% variation of the base case damage coefficient ξ0 ≈ 0.022.
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Figure 3: ACE’s response vis a vis Magicc’s response to the color coded radiative forcing scenarios
used in the latest IPCC assessment report. RCP 3 is the strongest stabilization scenario and RCP
8.5 is a business as usual scenario. The Magicc model (solid lines) emulates the large atmosphere-
ocean general circulation models and is used in the IPCC’s assessment reports. ACE (dashed lines)
matches Magicc’s temperature response very well for the “moderate” warming scenarios where the
lines hardly differ and reasonably well for RCP 8.5. By courtesy of Calel & Stainforth (2015) the
figure presents as well the corresponding temperature response of DICE 2013, PAGE 09, and FUND
3.9, the numeric IAMs used for the interagency report determining the official SCC in the United
States. ACE performs better in all scenarios.

compared to Magicc’s 50 and DICE’s single ocean layer(s).

Figure 3 shows the calibration results. The solid lines represent Maggic’s response to

the radiative forcing of the RCP scenarios (benchmark), whereas the dashed lines repre-

sent ACE’s atmospheric temperature response. In addition to the original RCP scenarios,

I include two scenarios available in Magicc6.0 that initially follow a higher radiative forcing

scenario and then switch over to a lower scenario (RCP 4.5 to 3 and RCP6 to 4.5). These

12



scenarios would be particularly hard to fit in a model tracing only atmospheric temperature.

The ability to fit temperature dynamics across a peak is important for optimal policy anal-

ysis. ACE’s temperature model does an excellent job in reproducing Magicc’s temperature

response for the scenarios up to a radiative forcing of 6W/m2. It performs slightly worse for

the high business as usual scenario RCP8.5, but still well compared to other IAMs.

3 Results from the Deterministic Model

The social cost of carbon (SCC) is the money-measured present value welfare loss from an

additional ton of CO2 in the atmosphere. The economy in section 2.1 decentralizes in the

usual way and the Pigovian carbon tax is the SCC along the optional trajectory of the

economy. In the present model, the SCC is independent of the future path of the economy

and, thus, this unique SCC is the optimal carbon tax. The present section discusses the

interpretation and quantification of its closed-form solution. It explores the social cost of

global warming and the social benefits of carbon sequestration. A proposition establishes

that mass conservation in the carbon cycle makes the SCC highly sensitive to pure time

preference (and not to the consumption discount rate in general).

3.1 The Price of Atmospheric Carbon

Appendix C.3 solves for the shadow values and derives the optimal CO2 tax. It is propor-

tional to output Yt and increases over time at the rate of economic growth as in Golosov

et al. (2014). ACE avoids the infinite sum of an impulse response formulation and derives

in detail how climate dynamics impacts the optimal tax.

Proposition 2 (1) Under the assumptions of section 2, the SCC of the basic ACE model

in money-measured consumption equivalents (USD 2015) is

SCCt =
βYt

Mpre

ξ0
︸︷︷︸

2.2%
︸ ︷︷ ︸

25.5 $
tC

[
(1− βσ)−1

]

1,1
︸ ︷︷ ︸

1.4

σforc

︸︷︷︸

0.42

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

3.7

= 56.5 $/tC (8)

where [·]1,1 denotes the first element of the inverted matrix in squared brackets, and the

numbers rely on the calibration discussed in section 2.5.

The ratio of production to pre-industrial carbon concentrations Mpre sets the units of the

carbon tax. The discount factor β reflects a one period delay between temperature increase

and production impact. The damage parameter ξ0 represents the constant semi-elasticity of

net production to a transformed temperature increase, i.e., to an increase of τ1 = exp(ξ1T1).

In the absence of any interesting climate dynamics, these terms would imply a carbon tax

of 25.5$ per ton of carbon.
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A von Neumann series expansion of the (bounded operator) βΦ helps to interpret the

terms in square bracket governing carbon and temperature dynamics, e.g.,

(1− βΦ)−1 =
∑∞

i=0 β
iΦi .

The element [Φi]1,1 of the transition matrix characterizes how much of the carbon injected

into the atmosphere in the present remains in or returns to the atmospheric layer in period i,

after cycling through the different carbon reservoirs. E.g., [Φ2]1,1 =
∑

j Φ1,jΦj,1 states the

fraction of carbon leaving the atmosphere for layers j ∈ {1, ...,m} in the first time step and

arriving back to the atmosphere in the second time step. Thus, the term [(1− βΦ)−1]1,1
characterizes in closed form the discounted sum of CO2 persisting in and returning to the

atmosphere in all future periods. The discount factor accounts for the delay between the

act of emitting CO2 and the resulting temperature forcing over the course of time. Quanti-

tatively, the persistence of carbon increases the earlier value of 25.5$/tC by a factor of 3.7.

The resulting carbon tax would be 95$/tC – if ignoring temperature dynamics.

The terms [(1− βσ)−1]1,1 σ
forc capture the atmosphere-ocean temperature dynamics re-

sulting in both delay and persistence. Analogously to the interpretation in the case of carbon,

the expression [(1− βσ)−1]1,1 characterizes the generalized heat flow that enters, stays, and

returns to the atmospheric layer. Thus, the simple closed-form expression for the carbon

tax in equation (8) captures an infinite double-sum: an additional ton of carbon emissions

today causes radiative forcing in all future periods, and the resulting radiative forcing in any

given period causes warming in all subsequent periods. The parameter σforc captures the

speed at which the atmospheric temperature responds to radiative forcing. The response

delay, a factor around 0.4, substantially reduces the SCC. However, at the same time, the

ocean implied temperature persistence increases the SCC by a factor of 1.4. Together, the

ocean-atmosphere temperature dynamics reduce the carbon tax by a factor of 0.6 resulting

in the value of 56.5 USD per ton of carbon.7

Expressed in tons of CO2, this SCC is 15.5 USD, coinciding up to one dollar to the DICE-

2007 carbon tax for 2015.8 At the gas pump, the SCC translates into 14 cent per gallon or

4 cent per liter. The (dashed) variation of the damage function in Figure 2 implies a ±50%

variation of the semi-elasticity ξ0 and, thus, the SCC. Ignoring the transitory atmosphere-

ocean temperature dynamics calibrated in Figure 3 would overestimate the carbon tax by

7Golosov et al. (2014) and Gerlagh & Liski (2012) use an emission response model mostly equivalent to
the common carbon cycle models that I adopt here. Their models do not explicitly incorporate radiative
forcing, temperature dynamics, and damages as a function of temperature. However, Gerlagh & Liski (2012)
introduce a reduced form damage delay component that gets at the important delay between peak emissions
and peak damages. This delay multiplier contributes a factor of .45 in their closest scenario (“Nordhaus”),
which cuts the tax a little more than ACE’s factor of 1.4 ·0.42 ≈ .6 based on an explicit model of temperature
dynamics.

8DICE expresses the carbon tax in 2015 in USD of 2005, which have to be translated into 2015 USD for
the comparison.
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70%. Ignoring carbon persistence would result in a carbon tax that is only 27% of its actual

value.

The SCC in equation (8) is independent of the atmospheric carbon concentration and of

the prevailing temperature level. A corresponding independence already prevails in Golosov

et al. (2014), and it opposes the common perception that slacking on climate policy today

will require more mitigation in the future. This result might sound like good news, but

what the model really says is: if we delay policy today, we will not compensate in our

mitigation effort tomorrow, but live with the consequences forever. Yet, the result contains

some good news for policy makers and modelers. Setting the optimal carbon tax requires

minimal assumptions about future emission trajectories and mitigation technologies. The

policy maker sets an optimal price of carbon and the economy determines the resulting

optimal emission trajectory. The result also explains the generality of equation (2), and

why some seemingly important parameters in numeric models hardly influence the optimal

tax. These findings connect immediately to the debate on the slope of the marginal damage

curve in the “taxes versus quantities” literature (Weitzman 1974, Hoel & Karp 2002, Newell

& Pizer 2003). ACE states that the marginal social damage curve for CO2 emissions is

flat. In consequence, taxes eliminate the welfare cost under technological uncertainty and

asymmetric information, and the policy maker does not have to adjust the tax to technology

shocks from period to period.

The common intuition that the SCC ought to increase in the CO2 concentration and the

prevailing temperature level results from the convexity of damages in temperature. ACE

clearly has such a convex damage function (Figure 2) and yet marginal damages from re-

leasing a ton of CO2 are independent of a the emission level, the CO2 concentration, and

the temperature level. The main (but not the only) reason lies in the radiative forcing

equation (5): the higher the CO2 concentration, the less does an additional ton of emissions

contribute to further forcing and, thus, warming. A simple intuition is that CO2 traps (ab-

sorbs) a certain spectrum of the wavelength that our planet radiates out into space, thereby

warming the planet. If there is already a high concentration of CO2 in the atmosphere, most

of the energy leaving the planet in this wavelength is already trapped. An additional unit of

CO2 emissions has a lower warming impact than the earlier units. In addition, the prevailing

temperature level does not affect the CO2 because a higher temperature level at a given CO2

concentration implies less warming in the future. Whether the “saturation” effect in CO2

absorption and the temperature dynamics indeed align with the convenient formula of ACE’s

SCC formula is an empirical question. ACE translates these assumptions into (i) the shape

of a damage function on temperature that cancels the logs of radiative forcing and (deter-

ministic) welfare, and (ii) a novel functional form and calibration of the ocean-atmosphere

temperature dynamics. Figures 2 and 3 state that, indeed, damages seem reasonable enough

given the current sate of knowledge, and temperature dynamics are surprisingly well aligned

with the model’s assumptions.
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3.2 The Role of Calibration, Discounting, and Interactions

The formula for the SCC derived in the preceding section directly lays out its dependence on

world output and damages. It also explained the basic dependence on carbon and temper-

ature dynamics and its interaction with time preference. This section takes a more careful

look at this interaction and the role of discounting. It also compares the SCC between the

basic ACE (Ramsey) and the extended (endogenous growth) model. Finally, I present an

alternative formula for the social cost of carbon that does not depend on the endogenous

world output, which itself responds to climate policy. The formal results are summarized in

the following proposition.

Proposition 3 (1) A carbon cycle (equation 4) satisfying mass conservation of carbon im-

plies a factor (1−Gβ)−1, approximately proportional to 1
ρ
, in the closed-form solution of the

SCC (equation 8).

(2) In money-measured capital equivalents (USD 2015) the SCC is

SCC∗,basicACE
t =

Kt

κ
ξ0

[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1

SCC∗,extendedACE
t =

Kt

κ

(

(1− β) ξ0+βκξ̄0

)[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1
.

(3) Let all damage coefficients coincide within and between the two models: ξbasic0 = ξextended0 =

ξ̄. Then, for the range of reasonable model calibrations,9 it is SCCbasicACE
t < SCCextendedACE

t

when expressing the social cost in consumption units and SCC∗,basicACE
t > SCC∗,extendedACE

t

when expressing the social cost in capital units.

It is well-known that the consumption discount rate plays a crucial role in valuing long-run

impacts. Finding (1) is different. It states that the interaction of pure time preference and

carbon cycle dynamics is the main sensitivity when it comes to discounting. The consumption

discount rate is the sum of pure time preference and growth based discounting (higher future

wealth reducing marginal utility from a unit of future consumption). Finding (1) sheds new

light on a debate between Stern (2007) and (Nordhaus 2007). The Stern Review of Climate

Change argues in favor of a vanishingly small rate of pure time preference on normative

grounds and finds an unusually high SCC. (Nordhaus 2007) argues that such a choice of

the pure rate of time would not make a difference if only the Stern Review had adjusted

the growth part of the discount rate to match observed rates. Yet, Proposition 3’s part (1)

9Let κb denote the capital share in the basic ACE model and let κe denote the capital share in the final

goods sector of the extended ACE model. Then, the cited inequalities holf if and only if κe < (1−β)κb

1−βκb . In the

present paper’s calibration with κb = .3 and ρ ≤ 1.75% a sufficient condition is that the capital intensity in
the final goods sector is κe > 10%. Stacking the cards against the condition, an overall capital share κb = .4
and a rate of pure time preference ρ = 3% would still require a capital share in the final goods sector κe

below 15% to flip the sign of the cited inequalities.
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points out that the main sensitivity is indeed pure time preference and not growth-based

discounting.

The composition of the social discount rate has crucial implications for optimal climate

change mitigation. Thus, it is important to reconsider the standard calibration procedure in

integrated assessment, which assumes that a representative agent with an infinite planning

horizon invests in a market giving her the average observed return with certainty. First,

Schneider et al. (2013) show in a continuous time overlapping generations model how the

common infinitely-lived-agent based calibration of IAMs overestimates the rate of pure time

preference under limited altruism. Second, decades of asset pricing observation and theory

tell us that the risk-free interest (or discount) rate is far from the average market return.

Bansal et al. (2012) calibrate the rate of pure time preference to ρ = 0.11%, carefully

disentangling risk attitude and risk premia from consumption smoothing and the risk-free

discount rate. Their model explains observed asset prices substantially better than any

asset pricing approach based on the standard economic model with higher time preference.

Traeger (2012a) shows how uncertainty-based discounting of an agent whose risk aversion

does not coincide with her consumption smoothing preference (falsely) manifests as pure time

preference in the economic standard model, and discusses implications for climate change

evaluation.

The descriptive approach by Bansal et al. (2012), the Stern Review’s normative reasoning

tied to a dual role of individuals taking consumption and large-picture policy decisions

(Hepburn 2006), and Schneider et al.’s (2013) approach to life cycle-based time preference

calibration all lead to a pure rate of time preference around 0.1%, which delivers

SCCt =
βYt

Mpre

ξ0
︸︷︷︸

2.2%
︸ ︷︷ ︸

✟
✟✟26 $
tC

30 $
tC

[
(1− βσ)−1

]

1,1
︸ ︷︷ ︸

✟✟1.4 2

σforc

︸︷︷︸

0.42

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

✟✟3.7 26

=✟
✟❍
❍57660

$

tC
.

The formula emphasizes that, under certainty, the main determinant of the optimal carbon

tax is the interaction of time preference and carbon dynamics, delivering a factor 7 increase

by itself. The intuition connects closely to a discussion in Section 3.1. First, the optimal

policy asks us to live with the consequences of historic overindulgence in carbon instead of

making up by additional mitigation efforts in the future. Second, carbon does not decay.

Carbon only cycles through the different reservoirs.10 It is pure time preference that matters

rather than consumption discounting because damages grow proportional to output. The

10The fact that some of it eventually turns into limestone is negligible for even very long human planning
horizons. A comparison of scientific carbon cycle models finds that on average 18% of a 100Gt carbon emission
pulse, approximately 10 years of present CO2 emissions, still remain in the atmosphere after 3000 years (Joos
et al. 2013). In DICE 2013’s carbon cycle adopted here, 6% of an anthropogenic emission unit stays in the
atmosphere forever, which is calculated as follows. The maximal eigenvalue of the transition matrix Φ is
unity. The corresponding eigenvector governs the long-run distribution as the transitions corresponding to
all other eigenvectors are damped. I obtain the 0.06 as the first entry of the corresponding eigenvector.
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important take-away is twofold. First, the composition of the consumption discount rate

matters. Second, discounting related model calibration matter hugely because of carbon

persistence.

ACE’s functional forms flesh out and explain a particularly important discounting sen-

sitivity. Several changes in functional forms can reduce the sensitivity of 1
ρ
. Two recent

studies derive approximate formulas for the SCC that show a decreasing sensitivity as we

move away from logarithmic utility (van den Bijgaart et al. 2016, Rezai & der Ploeg 2016).

These changes simultaneously imply that we clean up more of our historic sins, explaining

why we worry less about the long-run. More generally, the sensitivity on pure time pref-

erence depends on the combination of the intertemporal elasticity of substitution and the

elasticity between damages and output. A different change can make the model even more

sensitive to pure time preference. Assume a growing population at rate g instead of normal-

izing population to unity. Then, the common welfare measure using population-weighted per

capita consumption results in the factor 1
ρ−g

rather than 1
ρ
, making the optimal carbon tax

even more sensitive to low rates of pure time preference. The intuition for this result is of

more general interest to understand how population growth affects the optimal carbon tax in

integrated assessment models: population weighted per-capita consumption puts additional

weight on future generations that are more numerous, acting as a reduction of time prefer-

ence. Finally, I note that the temperature dynamic system does not give rise to a similar

sensitivity because heat is constantly exchanged with outer space (no hysteresis). Appendix

C.1 illustrates Proposition 3’s Part (1) for a two-layer carbon cycle, and Appendix C.2 the

absence of such sensitivity for a two-layer atmosphere-ocean temperature system. It also

shows how a frequently used decay approximation of the carbon cycle misses the sensitivity

to pure time preference.

Part (2) of Proposition 3 spells out a different representation of the optimal carbon

tax. Imposing an optimal carbon tax affects world output. Therefore, earlier closed-form

approaches such as Golosov et al. (2014) and Gerlagh & Liski (2012) have been criticized

for their reliance on world output in the SCC’s formula. The concern is that the tax value

calculated before imposing the tax will no longer be optimal after imposing the tax because

world output changes in response to the tax. Most IAMs suggest an output response in the

low percentage order when switching from business as usual to optimal policy, making it

more of a theoretical concern of internal model consistency than of quantitative importance.

Part (2) of Proposition 3 shows how to prevent the concern by presenting the SCC in units

of the pre-determined capital stock. Quantitatively, the calibration gives similar results as
Kt

κ
≈ Yt. More precisely, the estimates of κ and the capital stock are usually entangled, and

differences would emerge mostly because models used to estimate κ and capital can deviate

from the assumed Cobb-Douglas specification.

Expressing the SCC in capital units is most interesting to compare the SCC deriving from

the basic ACE model to that of the extended ACE. Part (2) of Proposition 3 shows that
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the endogenous growth specification with the dedicated capital sector replaces the damage

parameter ξ0 by the factor (1 − β)ξ0 + βκξ̄0. In addition, κ in the extended ACE merely

characterizes the capital intensity of the final consumption goods sector, which is lower than

the overall capital intensity of the economy represented by κ in the basic ACE model. In

both models, ξ0 specifies the fractional loss of final output in response to a temperature

increase. In the basic ACE model final output affects both consumption and investment.

In the extended ACE model of section 2.2, ξ0 only governs consumption and the seperate

parameter ξ̄0 governs the damages to the capital stock. To understand the formula, note

that 1−β is the weight on the present period, in which consumption damages arise, and β is

the weight on the future affected through capital damages. In addition, the damages to the

capital stock translate into welfare relevant consumption loss only through the consumption

sector’s capital value share κ.

Part (3) of Proposition 3 further examines the case where damages in the consumption

and the capital sector coincide. Then, the SCC of the extended model is larger than the

SCC resulting from the basic ACE when using consumption equivalents to obtain the USD

value. This relation flips if we use capital units to convert the welfare loss into USD equiv-

alents. The reason is that the endogenous growth AK version gives rise to a higher shadow

value of capital. A higher shadow value of capital implies a larger welfare loss from a given

temperature increase. Using present consumption for value conversion implies a higher op-

timal carbon tax. Yet, if we use capital units as the basis for value conversion, then the

consumption damages weigh less in the extended ACE as they are converted into the more

valuable capital units. Karp & Rezai (2017) point out the importance of non-substitutability

between consumption and capital units to understand the relative value changes that distin-

guish winners and losers (in particular in their OLG economy). The extended ACE permits

such a distinction and points out that different ways to calibrate the Ramsey versus AK

model results in different relative rankings of the SCC.

4 Uncertainty: the Stochastic ACE

The occurrence of climatic change is no longer uncertain. Data over the past centuries and

over pre-historic time scales suggest a strong correlation between climate and atmospheric

carbon dioxide. Basic causal interactions including carbon dioxide’s absorption of outgoing

radiation (greenhouse effect) can be measured in the laboratory. Yet, the warming that

results from a given emission trajectory is highly uncertain. First, we have a limited under-

standing of how carbon dioxide builds up in the atmosphere and, second, the temperature

response to an increase in atmospheric carbon dioxide is highly uncertain. This section

extends ACE to incorporate uncertainty. In particular, it characterizes a general class of

stochastic processes for which ACE permits analytic solutions.
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4.1 The Main Climate Uncertainties

Over 10% of the annual flow of anthropogenic carbon emissions leave the atmosphere into an

unidentified sink. These missing 1Gt+ in the carbon budget are over twice the weight of all

humans walking the planet. Current research is not conclusive, but a likely candidate for at

least part of the “missing sink” are boreal or tropical forests. Most importantly, our lack of

understanding current carbon flows implies major uncertainties in predicting future carbon

dynamics and whether e.g. the missing sink uptake is permanent or temporary. Society

invests substantial sums into the reduction of these uncertainties, including the launching

of satellites and new supercomputing facilities. ACE can produce a simple estimate of the

welfare costs of these uncertainties, serve as a formal model for quantifying the benefits of

uncertainty reduction, and analyze the implications for the optimal mitigation policy.

Even if we knew future atmospheric carbon concentrations, we remain uncertain about

the implied warming. The deterministic ACE assumed that a doubling of the pre-industrial

CO2 concentration from 280 ppm to 560 ppm yields a medium-term temperature increase

of 3C (climate sensitivity). At present, CO2 levels are up to almost 400 ppm. Including

the CO2 equivalent forcing of other GHGs, the level is already close to 480 ppm. The

present warming is still much below the corresponding equilibrium increase because of the

atmosphere-ocean temperature interaction discussed in sections 2.3 and 3.1. The assumed

3C warming is a guesstimate. The value depends on a set of uncertain feedback processes

that either increase or decrease the initial warming. A simple feedback example is that

higher temperatures imply more evaporation, and water vapor itself is a powerful GHG. The

value of 3C was cited as the best guess in the first four IPCC assessment reports. The latest

report deleted this best guess and only cites a likely range of 1.5-4.5C (IPCC 2013), where

likely characterizes a 66% probability interval.

I suggest two conceptually different ways to think about these uncertainties. In the first

interpretation, the decision maker worries merely about (unpredicted) changes in the carbon

flows or temperature feedbacks over time. A small persistent shock moves the carbon or

heat flow and either increases or decreases sink uptake or temperature. Over time, these

shocks accumulate and so does the uncertainty in forecasting future carbon levels, tem-

peratures, and economic damages. In the second interpretation, the main uncertainty is

epistemological: it reflects a lack of knowledge in the scientific community. The present de-

cision maker is uncertain about the dynamics, possibly including the variance and skewness

of the underlying distributions. This uncertainty prevails today, but we expect to acquire

more knowledge about the true underlying dynamics in the future, making the system in-

creasingly predictable. I start out with a generic treatment of uncertainty until explicitly

distringuishing between the two conceptual differences in section 5.2.
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4.2 Risk Attitude

Logarithmic utility provides a reasonable description of intertemporal substitutability. How-

ever, the assumption performs poorly in capturing risk attitude. The long-run risk litera-

ture estimates the coefficient of relative risk aversion of a representative household closer

to 10 than to unity (Vissing-Jørgensen & Attanasio 2003, Bansal & Yaron 2004, Bansal

et al. 2010, Chen et al. 2013, Bansal et al. 2012).11 Merely increasing the utility function’s

curvature would result in high risk-free discount rates that cannot be reconciled with market

observation (risk-free rate puzzle) and would unwarrantedly discount away worries about

the future climate. Moreover, the market rejects the assumption that the intertemporal

eslasticity of substitution fully determines risk attitude, which is an assumption built into

the intertemporally additive expected utility (standard) model but is not implied by the

von Neumann & Morgenstern (1944) axioms. I follow the asset pricing literature, an in-

creasing strand of macroeconomic literature, and some recent numeric approaches to climate

change assessment in using Epstein-Zin-Weil preferences. This approach accommodates a

realistic coefficient of risk aversion, disentangling it from the unit elasticity of intertemporal

substitution.

I denote the underlying probability space by (Ω,F , IP). Some scenarios require explicit

informational states denoted by the vector It. The Bellman equation under uncertainy is

V (kt, τt,Mt,Rt, It, t) = max
xt,Nt

log ct (9)

+
β

α
log
(

Et exp
[
α
(
V (kt+1, τt+1,Mt+1,Rt+1, It+1, t)

)])

.

Expectations Et are conditional on time t information.12 The non-linear uncertainty aggrega-

tor is a generalized mean f−1
Et f with f(·) = exp(α ·). A positive parameter α characterizes

intrinsic risk loving, and a negative parameter characterizes intrinsic risk aversion.

Epstein & Zin’s (1991) original definition of disentangled Arrow-Pratt risk aversion de-

livers the coefficient of constant relative risk aversion RRA= 1− α
(1−β)

. In the present model,

it is not Arrow-Pratt risk aversion that drives risk averse behavior, but the parameter −α

itself. Intuitively, −α measures how much more averse a decision maker is to risk than to

deterministic consumption fluctuations. The limit α → 0 recovers the usual Bellman equa-

tion where risk aversion is merely generated by aversion to intertemporal inequality. Traeger

(2014) gives an axiomatic definition of α as an intrinsic measure of risk attitude. The asset

pricing literature estimates Epstein & Zin’s (1991) Arrow-Pratt risk aversion parameter RRA

in the range of [6, 9.5], which implies α ∈ [−1.5,−1]. Figure 6 in Appendix F.1 illustrates

11Nakamura et al. (2013) obtain one of the lowest estimates by combining the long-run risk model and the
Barro-Riesz model, still resulting in a coefficient of relative risk aversion of 6.4.

12The space will be equipped with the filtration {F t}t∈N generated by the stochastic processes driving
carbon accumulation and temperature. The filtration F t captures all information available at time t and
Et(·) ≡ E(·| F t). The state vector It captures the structural information affecting the value function.
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the corresponding risk aversion for a small and a large binary lottery. The analytic formulas

make it easy for the reader to vary the degree of risk aversion for the quantitative results.

4.3 Stochastic Motion and General Solution

I focus on the uncertainty induced by the stochastic evolution of carbon Mt and tempera-

ture τt. The scenarios incorporating structural uncertainty or perisistent shocks require an

additional equation of motion for their informational variables

It+1 = h
(

Φ,σ,Mt, τt, It,
∑Id

i=1 Ei,t + Eexo
t , σ

forc

Mpre
, Gt, ω

)

,

where updating the information depends on the realization ω ∈ Ω.

The proposition below characterizes a class of stochastic processes that permit an analytic

solution of the stochastic ACE model. A solution can either result in an explicit formula for

the optimal carbon tax or it can define the optimal policy implicitly by translating the dy-

namic optimization problem into a set of simultaneous algebraic equations. The proposition

relies on the following observations. First, an affine value function solves the deterministic

model. Second, if the value function is affine, then the expectation formation in the Bellman

equation (9) resembles a cumulant generating function GX(z) ≡ log [E exp(zX)] of a ran-

dom vector X. The cumulant generating function is the logarithm of the moment generating

function. Third, if we find a cumulant generating function that preserves the value function’s

affine structure, then the same procedure that solves the deterministic model promises to

solve the stochastic model.

Proposition 4 Let Xt = (Mt, τt, It) ∈ IRN follow an affine process whose conditional

cumulant generating function satisfies

GXt+1
(z) = log [E (exp(zXt+1)|Xt)] = a(z) +

∑N

i=1 bi(z)Xt,i . (10)

Then, an affine value function solves ACE’s dynamic programming problem if and only if

the set of shadow values ϕ⊤
M ,ϕ⊤

τ ,ϕ
⊤
I solves the algebraic equations

ϕM,i =
β

α
bMi (αϕ⊤

M , αϕ⊤
τ , αϕ

⊤
I ) ∀i = 1, ...,m

ϕτ,i =
β

α
bτi (αϕ

⊤
M , αϕ⊤

τ , αϕ
⊤
I )− δi,1(1 + βϕk)ξ0 ∀i = 1, ..., l

ϕI,i =
β

α
bIi (αϕ

⊤
M , αϕ⊤

τ , αϕ
⊤
I ) ∀i = 1, ..., N − l −m ,

where (bM1 , ..., bMm , bτ1, ..., b
τ
l , b

I
1, ..., b

I
N−l−m) = (b1, ..., bN ) and δi,j denotes the Kronecker-delta

(one if i = j and zero otherwise). The shadow value ϕM,1 determines the optimal carbon

tax. The function a(z) does not affect the optimal policies. It directly affects welfare.
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Proposition (11) transforms a high dimensional and difficult-to-solve stochastic dynamic

optimization problem on the state space into a simple root finding problem for the shadow

values (co-states), which solves either in closed form or trivially on a computer.

Most analytic assessments of climate change under uncertainty have focused on the wel-

fare impact under uncertainty. Proposition (11) points out that even major welfare losses

may not change the optimal carbon tax if the uncertainty operates through the affine part

a(z) of equation (11). The impact of uncertainty on the optimal policy depends on it’s

interaction with the state variables. The set of stochastic processes satisfying equation (11)

is large and includes the autoregressive shock model with almost arbitrary distributions, the

normal-normal Bayesian learning model, the Gaussian square root process, and the autore-

gressive gamma model (Gourieroux & Jasiak 2006, Le et al. 2010).

5 Results under Uncertainty

The section discusses policy and welfare change under uncertainty. First, I compare the

optimal carbon tax response to uncertainty governing carbon flows versus temperature re-

sponse, and governing conditional expectations versus stochastic volatility. Second, I con-

trast stochasticity, epistemological uncertainty, and learning in the welfare context and focus

on the contributions of risk aversion, time preference, distributional assumptions, and their

interactions.

5.1 Uncertainty and the Optimal Carbon Tax

The present section analyzes the optimal carbon tax under uncertainty. I introduce a stochas-

tic dynamic system that permits a closed-form solution. The model borrows heavily from

the long run risk literature in asset pricing. The crucial distinction to that literature is that

I endogenize the (here: climate) risk so that there is an interaction between choice (policy)

and aggregate risk. The one-step-ahead equation for the carbon stock (formerly equation 4)

now becomes

Mt+1 = ΦMt + (
∑Id

i=1 Ei,t + Eexo
t )e1 + xM

t + σM
t µM

t (11)

where xM
t denotes persistent deviations of the conditional (one-step-ahead) expectations.

The vector xM
t = (1,−1, 0)⊤ xM

t captures that atmospheric carbon does not decay but

moves between atmosphere (first reservoir) and the combined upper ocean and biosphere

sink (second reservoir). The independent white noise shock µM
t ∼ N(0, 1) makes σM

t the

conditional (one-step-ahead) variance of carbon flows that depends on the scalar process σM
t

as σM
t = (1,−1, 0)⊤ σM

t . The equations of motion governing conditional expectations and
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variance are

xM
t+1 = γx

MxM
t + δMx

M

√
M1,t

Mpre
− ηM χM

t + δσxM σM
t ωM

t (12)

σM
t+1

2
= γσ

MσM
t

2
+ δMσ

M

(
M1,t

Mpre
− ηM

)

+ σ̄MνM
t (13)

The γ-parameters characterize the persistence of the shocks to the mean (first equation)

and the volatility process (second equation). As I show in section 5.2, epistemological un-

certainty corresponds to a high persistence. The δ-parameters in the second terms on the

right hand side capture the endogeneity of climate risk. The uncertainty of the shocks to the

mean and the stochasticity of the conditional variance increase as we deviate further from

the pre-industrial equilibrium (M1,t = Mpre). The η-parameter introduces some freedom

in calibrating how quickly uncertainty increases away from the pre-industrial equilibrium.

For the stochastic volatility equations, the last term on the right hand side specifies the

exogenous uncertainty (prevailing already at pre-industrial times), where νM
t ∼ N(0, 1) and

σ̄M characterizes the corresponding variance. Finally, the parameter δσxM permits coupling

the stochastic volatility to the conditional expectations process, where ωM
t ∼ N(0, 1) is once

more white noise. In summary, equation (13) captures that future expected carbon flows are

uncertain, and equation (14) captures that the variance of carbon flows is itself uncertain.

In the asset pricing literature, the second type of uncertainty has a crucial impact on asset

prices. It remains to be seen how important the role of such uncertainty volatility is in the

climate context.

Appendix ?? states the analogous Gaussian uncertainty model for the temperature’s

equation of motion, as well as the resulting closed-form solution of the carbon tax. This re-

sult permits a direct comparison of similarities and differences in the carbon tax adjustment

that arise merely from their roles in the impact chain. Yet, such a model cannot capture a

crucial difference between carbon flow dynamics and temperature dynamics. Temperature

Ti,t =
1
ξi
log(τi,t) is a logarithmic transformation of the generalized temperature state. The

uncertainty model for carbon flows in equation (13) implies that the expected carbon dy-

namics coincides with the deterministic carbon dynamics (assuming the initial conditional

expectation xM
0 = 0). Introducing uncertainty into the temperature equation has to hold ex-

pected temperature dynamics approximately equal to its deterministic baseline. Otherwise,

we would discuss the policy impact of changes in expected temperature dynamics rather

than the impact of uncertainty. Moreover, negative realization of generalized temperature

τi,t would imply nonsensical realization of real temperature.13 As a result, generalized tem-

13Note that the long-run risk model in gernal also gives rise to nonsensical negative realizations of the

variance σM
t+1

2
. This fact is well-known, yet it is widely used as an approximate model with closed-form

solution, assuming the actual calibration of the model makes these realization of second order importance.
The issue with temperature is more serious. To keep temperature expectations (log expectations of τi,t) close
to the deterministic evolution the model has to be de-biased. Yet, any realization of τi,t = 0 would cause an
infinitely negative expectation. Hence, the model cannot be de-biased in a meaningful way.
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perature has to be governed by a positively skewed distribution with a suitable lower bound.

For this purpose, I employ the autoregressive gamma model by Gourieroux & Jasiak (2006),

also employed to the long-run risk literature in asset pricing by Le et al. (2010) and ?.14 The

one-step-ahead state in the autoregressive gamma process is governed by a gamma distribu-

tion whose shape parameter is modulated by a realization of a Poisson distribution. I refer

to Appendix 5 for details.

Generalized temperature follows the equation of motion

τt+1 = στt +

(

σforcM1,t +Gt

Mpre

+ h(xτ
t+1 − zt+1)

)

e1 (14)

where xτ
t follows an autoregressive gamma process with one-step-ahead expectations and

variance

E xτ
t+1 = γx

τ x
τ
t + δτ

(
M1,t+Gt

Mpre
− ητ

)

(15)

Var xτ
t+1 = c

[

2γx
τ x

τ
t + δτ

(
M1,t+Gt

Mpre
− ητ

) ]

(16)

and zt is a deterministic process neutralizing the temperature expectations (in degree C) to

those of the deterministic model15

zt+1 = γx
τ zt+ (δτ − ǫ(c))

(
M1,t+Gt

Mpre
− ητ

)

(17)

The model assumes that in the present z0 = xτ
0. Once again, the γ-parameter characterizes

persistence of the stochastic deviation, and the δ-parameter and the η-parameter capture the

responsiveness to the deviation from the pre-industrial equilibrium. Similarly to δ, also the

parameter h scales the importance of the stochastic contributions to temperature dynamics.

In the proof of Proposition 5 in Appendix G.1 shows that I can either set h = 1 or δ = 1

without loss of generality. Henceforth, I will set δ = 1 and only use the parameter h.

Illustrating the model, I first assume ǫ(c) = 0 (no bias-correction). The temperature

contribution proportional to σforc in equation (G.20) continues to capture the expected

baseline impact of radiative forcing in response to a given atmospheric CO2 concentration

M1,t (and the forcing of other GHGs measured by Gt). The new term h(xτ
t+1 − zt+1) in-

corporates uncertainty about the temperature’s response to atmospheric CO2. It has a zero

future expectation in the present and is autoregressive with the persistence parameter γx
τ .

For γx
τ = ητ = 0, the stochastic process directly mimics the deterministic radiative forcing

relation between CO2 and generalized (log-) temperature, but what affects the temperature

14In difference to their applications, the model below makes both autoregression and the shape parameter
of the underlying gamma distribution state-dependent, which makes use of the fact that the underlying
cumulant generating function is linear not only in last period’s state but also in the shape parameter.

15When combining carbon flow uncertainty with temperature uncertainty also zt becomes stochastic, but
only accounts for the stochastic evolution of carbon, not for the persistent shocks to the temperature response
to CO2 concentrations.
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is only the shock’s deviation from the expectation xτ
t+1 − zt+1. The expected evolution of

generalized temperature coincides with that of the deterministic model and, in general, devi-

ations are persistent for γx
τ > 0. This persistence reflects either the persistence of stochastic

feedback processes or the epistemological origin of the uncertainty about the true feedback

process. Equation (17) states the variance of the stochastic process, which is proportional to

the deviation from the pre-industrial equilibrium
(

M1,t

Mpre
− ητ

)

and last period’s realization

discounted by the persistence factor (γx
τ x

τ
t ). In addition, the parameter c scales the variance

of the autoregressive gamma process exogenously.

Proposition 5 Without loss of generality I can set δτ = 1 in the stochastic system of motion

(12-18). The optimal carbon tax changes from the deterministic SCCdet stated in Proposition

2 to

SCCunc = SCCdet
(

1 + θM

)(

1 +
h̄

σforc

(
θτ + ǫ(c)

))

(18)

≈ SCCdet
1 + h̄

σforc

(
1
2

1+βγ

1−βγ
F + ǫ(c)

)

1− θ∗M

with the uncertainty multipliers

θM =
1−

√
1− 4θ∗M

1 +
√

1− 4θ∗M
≈ θ∗M

1− θ∗M
.

θ∗M =
αϕdet

M,1

2

β

Mpre

[

AM�x
M

2
+ AM�σ

M Aσ�x
M

2
+ AM�σ

M

]
(

[(1I−βΦ)−1]
1,1

−[(1I−βΦ)−1]
1,2

)2

[(1I−βΦ)−1]1,1
(19)

×
(

1 + h̄
σforc

(
θτ + ǫ(c)

))

with AM�x
M =

δMx
M β

1− γx
Mβ

, AM�σ
M =

δMσ
M β

1− γσ
Mβ

, Aσ�x
M =

δσxM β

1− γx
Mβ

,

and

θτ =
− log

(
1− F (1 + θ∗τ )

)

F
− 1 ≈ θ∗τ +

1

2
F ≈ 1

2

1 + βγx
τ

1− βγx
τ

F (20)

θ∗τ = βγx
τ

1 + F −
√

(1− F )2 − 4F βγx
τ

1−βγx
τ

1− F +
√

(1− F )2 − 4F βγx
τ

1−βγx
τ

≈ βγx
τF

1− βγx
τ − F

with F = αϕdet
τ,1ch̄ , h̄ =

h

1− βγx
τ

,

and where ϕdet
M,1 and ϕdet

τ,1 denote the shadow values of atmospheric carbon and generalized

temperature under certainty.16

16These are the social cost under certainty of carbon and of a (generalized) temperature increase in utils:
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Equation (19) states that uncertainty adds two multiplicative factors to the optimal carbon

tax. These factors are larger than unity and mutually aggravating. The first factor adds the

relative increase θM , which results from the carbon flow uncertainty. It is a convex function

of the uncertainty contribution θ∗M defined in equation (20). The uncertainty contribution

θ∗M is proportional to the risk aversion α weighted (deterministic) shadow value of atmo-

spheric carbon ϕdet
M . Note that, under risk aversion, both α and ϕdet

M are negative and the

interpretation can neglect these signs as they always come in pairs. First, the risk depen-

dence reveals that it is not merely Arrow-Pratt risk aversion that matters for the social cost

of carbon, but how much more Arrow-Pratt risk averse the decision maker is as compared

to her desire to smooth consumption over time (α measures this difference, see section 4.2.

Second, the relation shows that uncertainty matters more relative to certainty, the worse the

climate change problem is in the first place: the deterministic shadow value of atmospheric

carbon increases not just the absolute contribution, but also the relative contribution of

uncertainty.

At the heart of the uncertainty contribution θ∗M are the three risk channels abbreviated

by AM�x
M , AM�σ

M , and Aσ�x
M , which disentangle the contributions from uncertainty govern-

ing conditional expectations and from stochastic volatility. Each of these channels increases

in the corresponding δ-parameter that scales the endogeneity of climate risk, and with the

γ− parameters scaling the shock persistence. In particular, I emphasize that only the en-

dogenous uncertainty, which responds to carbon concentrations, affects the optimal policy.

The channel AM�x
M derives from the conditional expectations process xM

t . It is larger, the

more an increase in carbon concentration adds to the uncertainty about conditional carbon

flow expectations. This AM�x
M channel contributes quadratically. The AM�σ

M channel enters

twice. First, it contributes directly through the dependence of stochastic volatility on the

carbon concentration. Second, it contributes in combination with Aσ�x
M , if the conditional

expectations depend themselves on stochastic volatility (if δσxM > 0).

Finally, the carbon-flow uncertainty contribution θ∗M increases (quadratically) in the rela-

tive difference between the cost of carbon in the atmosphere (proportional to [(1I−βΦ)−1]1,1)

and the cost of carbon in the lower ocean & biosphere reservoir (proportional to [(1I−βΦ)−1]1,2).

The flow uncertainty merely moves carbon between these reservoirs and does not create or

annihilate carbon. The cost of a stochastic flow from the ocean into the atmosphere is only

harmful to the degree that carbon is more harmful in the atmosphere than in the ocean.

The second uncertainty factor in equation (19) results from the uncertainty of the tem-

perature response to a given evolution of the atmospheric carbon concentration. The two

different contributions θτ and ǫ(c) both scale with the size of h̄
σforc , the numerator measuring

the temperature’s sensitivity to the forecast uncertainty, and the denominator measuring

the temperature’s deterministic response to carbon. The first contribution, θτ , captures the

ϕdet
M =

βϕdet
τ,1σ

forc

Mpre
[(1− βΦ)−1]1,1 and ϕdet

τ = − ξ0
1−βκ

[(1− βσ)−1]1,1.
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direct uncertainty effect resulting from risk and risk aversion. The second contribution, ǫ(c),

results from keeping temperature expectations under uncertainty (approximately) equal to

the deterministic temperature evolution calibrated in section 2.5. This second contribution

increases in the uncertainty level c. Finding the ǫ(c) that de-biases the expectations is part

of the model calibration.

The approximation of the uncertainty contribution θτ in equation (G.18) already con-

veys the main message how the uncertainty in the temperature-carbon feedback affects the

social cost of carbon. It increases and is convex in the discount factor-weighted persistence

parameter βγx
τ , and it is approximately proportional in F = αϕτ,1

c h
1−βγx

τ
. Thus, also the un-

certainty governing the temperature response to a given carbon trajectory increases in the

risk aversion weighted (deterministic) shadow value, here the social cost of an atmospheric

temperature increase. Again, a higher social cost of a temperature increase under certainty

implies that a higher share of the comprehensive social cost of carbon will be contributed

by uncertainty. Moreover, the uncertainty contribution increases in the level of uncertainty

c, the sensitivity to forecast uncertainty h, and the discount factor weighted persistence

paramter βγx
τ . Evaluating the full expression for the uncertainty contribution shows that

the social cost of carbon is not only increasing in F , but convexly increasing in F and its

constituents.

5.2 Welfare, Uncertainty, and Learning

This section analyzes the welfare impact of uncertainty and learning. It also introduces a

characterization of uncertainty that permits a general analysis of the welfare impact of the

various moments of general uncertainty distributions (variance, skewness, kurtosis,...).

5.2.1 Analytic Insights

In the general model, a climate state j is subject to uncertainty and, potentially, to mea-

surement error. The climate state j denotes any of the carbon or temperature layers

M1, ..Mm, τ1, ...τl. The measurement error νt will be relevant for the case of Bayesian learning

and is independently distributed with mean zero and variance σj
ν,t

2
. A second shock ǫjt cap-

tures the actual uncertainty we face about the underlying dynamic system. The equations

of motion for the climate system are

Mt+1 = ΦMt + (
∑Id

i=1 Ei,t + Eexo
t )e1 + ǫMt + νM

t (21)

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 + ǫτt + ντ
t . (22)

The random variable ǫjt can be an autoregressive shock process that captures persistent

uncertainty, including shocks to higher order moments as in stochastic volatility models.
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The random variable ǫjt can also capture epistemological uncertainty and the prior in the

case of a Bayesian learning models. I assume that the random variable ǫjt = ǫjt(κ
j
1,t, κ

j
2,t, ...)

has a distribution that can be characterized uniquely by its cumulant κj
i,t expansion, i ∈ N.

The uncertainty dynamics are pinned down by the cumulants’ equations of motion

κj
i,t+1 = γj

i κ
j
i,t + χj

i,t , (23)

0 ≤ γ ≤ 1, for all i ∈ N, where χj
i,t is an sequence of independent random variables (shocks).

For example, if only the expected value is non-zero and the shocks are and χj
1,t ∼ N(0, σ2),

then the system characterizes a normally distributed AR(1) shock to state j with persistence

γ1.

A Bayesian learning model with normally distributed measurement error νt (likelihood)

and prior ǫt gives rise to the updating equation17

κj
1,t+1 = κj

1,t + χj
1,t with χj

1,t ∼ N
(

0,
σ4
ǫ,t

σ2
ǫ,t+σ2

ν,t

)

. (24)

Writing the updating equation in the form of equation (25) emphasizes the close similarity

between learning and a fully persistent AR(1) shock. In addition to equation (25), the

variance of ǫt does not vanish after observation (κ2,t = Var[ǫt|It] > 0). The variance of

this “normal-normal” Bayesian learning model falls exogenously over time and does not

have to be tracked as an additional state variable (see proof of Proposition 2 for details).

However, the shocks χj
1,t are correlated with the prevailing epistemological uncertainty and

the measurement error, which leads to a different dynamics and welfare loss as compared to

the AR(1) model.

Proposition 2 in Appendix H.1 states the general solution for the welfare loss under

equations (22-24). Here I focus on two corollaries, the first of which discusses the normally

distributed AR and Bayesian learning models.

Corollary 1 Let uncertainty in equations (22-23) affect state j. A normally distributed first

order autoregressive shock process ǫt with one step ahead variance σ2 implies the welfare loss

∆WAR
normal =

∑∞

t=0 β
t+1
(

β

1−γβ

)2

αϕ2
j

σ2
χ

2
= β

1−β

(
β

1−γβ

)2

αϕ2
j
σ2

2
. (25)

A Bayesian learning model with normally distributed prior ǫt ∼ N(µǫ,t, σ
2
ǫ,t) and measurement

17The standard way of writing the Bayesian updating equation for the mean is

µǫ,t+1 =
σ2

ǫ,t

σ2

ǫ,t+σ2

ν,t
µǫ,t+

σ2

ν,t

σ2

ǫ,t+σ2

ν,t
zt with observation z ∼ N(µǫ,t, σ

2
ǫ,t+σ2

ν,t). Defining χj
1,t =

σ2

ν,t

σ2

ǫ,t+σ2

ν,t
(zt−µǫ,t)

and writing κ1,t for the mean µǫ,t delivers equation (25). Note that the observational variable z is defined
in equations (22-23). For example, in the case of uncertain atmospheric carbon content, the observation z

is Mt+1 −Φ1,·Mt − (
∑Id

i=1 Ei,t + Eexo
t ).
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error νt ∼ N(0, σ2
ν,t) implies the welfare loss

∆WBayes =
∑∞

t=0 β
t+1
(

1
1−β

)2

Ω2
t αϕ2

j

σ2
ǫ,t+σ2

ν,t

2
(26)

with Ωt ≡ σ2
ǫ,t

σ2
ν,t+σ2

ǫ,t
+ (1−β)

σ2
ν,t

σ2
ν,t+σ2

ǫ,t
.

If uncertainty affects more than one state, then the welfare loss is additive.

In both models, the welfare loss is proportional to (intrinsic) risk aversion α and the square of

the state’s shadow value, which is the same as under certainty. This shadow value is ϕj = ϕτ

if the model characterizes the uncertainty about atmospheric temperature feedbacks. The

model requires two shocks to model the uncertainty governing the carbon flow between the

atmosphere and the adjacent sinks because carbon only moves from one reservoir to the

other. Here, a shock to the atmospheric carbon is accompanied by a perfectly negatively

correlated shock to the adjacent layer, giving rise to the shadow value is ϕj = ϕM,1−ϕM,2

(see proof of Corollary 1 for details).

The welfare loss is proportional to the variance. In the AR model, this variance is

constant by assumption. Then, the infinite sum over future contributions can be summarized

by the factor (1 − β)−1. This factor yields a similar time sensitivity as observed for the

carbon tax in Proposition 2. However, the welfare loss from the AR uncertainty exhibits an

additional factor (1 − γβ)−2 that makes it even more sensitive to the persistence weighted

time preference: the more persistent the shock, the longer its implications, and the more

relevant is time preference in determining the welfare loss.

The Bayesian learning model has the time varying variance σ2
ǫ,t + σ2

ν,t combining the

prior’s and the likelihood function’s uncertainty. The prior’s variance declines as the decision

maker improves her estimate of the true system dynamics. The most striking difference is

that the Bayesian model gives rise to the additional time sensitivity factor (1 − β)−1 that

corresponds to an AR model with unit persistence. Intuitively, a learning shock updates the

Bayesian future for good. Yet, the “AR” shocks in the Bayesian model are correlated with

the epsistemological uncertainty and fall over time, which gives rise to the additional factor

Ω2. The factor Ω is a weighted mean of unity and 1−β. Initially, when the prior is still vague

(σǫ,t large), the factor is close to unity and the Bayesian decision maker updates her long-run

belief. If she is patient, this long-run update moves her welfare by much. Once the decision

maker has a better picture about the true system dynamics, the term Ω increasingly cancels

the additional time sensitivity. Once, epistemological uncertainty is gone (σǫ,t ≪ σν,t), all

that remains is an iid measurement error, and Ω cancels the additional sensitivity to time

preference.

Kelly & Kolstad (1999) and Karp & Zhang (2006) employ the simple Bayesian learning

model for the assessment of climate change feedbacks and damages. Corollary 1 extends im-

mediately to general Kalman filter models. This extension is empirically relevant to capture
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a more realistic learning and temperature adjustment speed (Jensen & Traeger 2013). The

second corollary based on the general system of equations (22-24) focuses on the welfare re-

sponse to higher order moments. Zooming in on these characteristics, the corollary assumes

that there is no correlation between the prevailing epistemological uncertainty in period t

and the period t shock and ignores measurement error.

Corollary 2 Let equations (22-24) characterize uncertainty. Let νt = 0 for all t and let the

shocks to the cumulants χj
i,t be independent of the prevailing epistemological uncertainty ǫjt .

∆W unce =
∑∞

i=1 ϕ
j
κ,iκ

j
i,0

︸ ︷︷ ︸

Epistemological

+
∑∞

t=0
βt+1

α

[
∑∞

i=1 Gχ
j
i
(αϕj

κ,i)
︸ ︷︷ ︸

Future Shocks

]

(27)

where the shadow cost of the ith cumulant is

ϕj
κ,i =

β

1− βγj
i

(αϕj)
i

i! α
, (28)

and ϕj denotes the shadow value of the state subject to the uncertainty. If more than one

state j are uncertain, then the welfare loss is additive over j.

The first component of the welfare loss is an “epistemological contribution”. It sums the

shadow value weighted cumulants of the prevailing uncertainty distribution in the present

(t = 0). The second contribution derives from the future shocks.

The general vector autoregressive shock model corresponds to the case where all but the

first cumulant (expected value) are zero: E[χj
i,t|It] = 0 for all t and i > 1. The decision maker

knows the exact state of the dynamic system at the beginning of every period. Assuming

that shocks χj
1,t are independently and identically distributed translates the infinite sum into

a factor 1
1−β

and delivers the welfare loss18

∆WAR
general =

β

α(1− β)
Gχ(αϕ

j
κ,1) =

β

α(1− β)

∞∑

l=1

κχ
l

(αϕj
κ,1)

l

l!
, (29)

where the random variable χ has the generic distribution of an individual shock in the

sequence χj
1,t and the cumulants κχ

l (not κj
i,t) characterize the moments of the shock. These

autoregressive shocks are to the mean, and changes in the mean are valued at ϕj
κ,1 =

β

1−βγ
j
1

ϕj,

where γj
1 is the autoregressive coefficient. The variance of the shock to the mean reduces

welfare proportional to αϕj
κ,1

2
=
(

β

1−βγ
j
1

)2
ϕ2
j , as derived in Corollary 1. All estimates of the

climate sensitivity distribution exhibit both skewness and kurtosis. Equation (30) shows that

the skewness κχ
3 of the shock delivers a welfare loss proportional to α2

(
β

1−βγ
j
1

)3
ϕ3
j , making it

18By the assumption that expected one step ahead dynamics in the present coincides with the deterministic
model (equations ??-??) it is µǫ = κ1,0 = 0.
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even more sensitive to (persistence weighted) time preference, and perhaps non-surprisingly

to risk aversion. Kurtosis, a measure of “heaviness in the tails” adds yet another power to

each of these sensitivities.

We cannot predict with certainty today how uncertain we will be about carbon and tem-

perature dynamics a decade or a century from today. Thus, the variance of our uncertainties

is itself a stochastic process. A stochastic volatility model adds shocks to the second cu-

mulant, making the variance of the uncertainty distribution itself a stochastic process. By

Corollary 2, changes of the variance are evaluated at the shadow value ϕj
κ,2 =

β

1−βγ
j
2

αϕ2
j

2
. In

contrast to the shadow value of a change in the mean, a change of the variance is evaluated

proportional to risk aversion, and proportional to the square of the state’s shadow value.

Independently and identically distributed shocks χj
2,t to the variance lead to a welfare loss

of β

α(1−β)
G

χ
j
2
(αϕj

κ,2). The variance of such a shock contributes a welfare loss proportional to
(

β

1−βγ
j
2

)2
α3ϕ4

j , and skewness has an impact proportional to
(

β

1−βγ
j
3

)3
α5ϕ6

j . As observed for

the shocks to the mean, each order of the shock’s cumulant adds a power to the sensitivity

to (persistence weighted) time preference. However, for shocks to the variance, each order of

the shock’s cumulant adds two powers to the sensitivity to risk aversion and to the shadow

value of the uncertain state.

The purely epistemological contribution
∑∞

i=1 ϕ
j
κ,iκ

j
i,0 in equation (28) adds a loss that

prevails even in the absence of future shocks. By assumption, today’s mean vanishes (equa-

tions ??-??). Today’s uncertainty about the variance implies a welfare loss of ϕj
κ,2κ

j
2,0 =

β

1−βγ
j
2

αϕ2
j

2
κj
2,0, and the skewness of today’s belief about the future implies a loss of ϕj

κ,3κ
j
3,0 =

β

1−βγ
j
3

α2ϕ3
j

6
κj
3,0. The sensitivity to time preference constrasts with that of the future shock con-

tributions. Here, the sensitivity to persistence-weighted time preference does not increase

in the moments of the distribution; “fat tails” (kurtosis and higher moments) in today’s

epistemological distribution are not more sensitive to time preference that are the mean

contribution or the contribution of the variance.

In some models, the persistence of epistemological uncertainty can be lower for a fat

tail of the distribution, see Kelly & Tan (2015b) for an application to climate sensitivity.

The perhaps simplest stylized model of epistemological uncertainty without future shocks

assumes an exponential decay of the uncertainty distribution. Because the ith cumulant is

homothetic of degree i, an exponential uncertainty decay that leads to ǫt+1 distributed as

γǫt implies that γj
i,t = (γj)i. Then, the sensitivity to time preference of higher moments is

weighted down by the falling factor (γj i)i. The faster decay of skewness, kurtosis, and higher

moments implies a lower sensitivity to time preference.

In general, the lth cumulant of a shock to the jth cumulant of the uncertainty distribution

causes a welfare loss proportional to lth power of the (persistence weighted) time preference,

to the l · ith power of the temperature’s shadow value, and to the l · i−1th power of risk

aversion. In summary, time sensitivity grows with the order of the shock’s moment, whereas
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sensitivity to risk aversion and the state’s deterministic shadow value grow as the product of

the orders of the shock’s and shocked moment. Finally, it is not risk aversion in the Arrow

Pratt sense that drives the welfare loss. Instead, the intrinsic risk aversion measure −α

characterizes by how much Arrow Pratt risk aversion dominates the agent’s aversion that

results from her mere desire to smooth consumption over time.19

5.2.2 Quantification

I use a combination of 20 estimates of climate sensitivity from Meinshausen et al. (2009)

to calibrate temperature uncertainty for a given carbon trajectory. These estimates derive

from different research groups and use a variety of methodological approaches. Lacking a

direct estimate of the probabilities, I use a study subjecting 18 different carbon cycle models

to different shocks to calibrate uncertainty about the emissions flow uncertainty between

the atmosphere and the ocean-biosphere sink.20 The estimates of the welfare loss assume (a

stochastic version of) the business as usual scenario of the DICE 2013 model. The estimates

of the optimal carbon tax assume option policy.21 I evaluate all carbon cycle uncertainty

scenarios with a risk aversion coefficient of α = −1.5 (see section 4.2 and Appendix F.1).

Absent better information, a normal distribution seems reasonable to characterize the

uncertain dynamics of the carbon flow between the atmosphere and the ocean-biosphere

sinks, and I use Corollary 26 to evaluate its welfare impact. Joos et al.’s (2013) simulations

suggests a high persistence of γ = 0.997 in equation (26) to model future carbon flow as an

AR(1) process. Based on these simulations, Appendix H.4 argues for a variance of the decadal

shock to the carbon exchange between atmosphere and ocean-biosphere of approximately

σχ = 20 Gt per decade. Figure 4, left panel, shows the resulting uncertainty governing

the atmospheric carbon concentration along the business as usual scenario of DICE 2013.

For epistemological uncertainty, I assign this variance to the Bayesian prior (σǫ,0 = 20Gt per

decade), and set the “measurement error” to σν = 10Gt (corresponding approximately to the

currently “missing” carbon flow). This combination of prior and measurement error implies

a remaining epistemological uncertainty with a standard deviation of 4.4Gt per decade after

50 years and of 2.6Gt per decade after 150 years. The uncertainty results in an approximate

present value welfare loss of 110 billion USD in the AR(1) model, and 30 billion USD in

the Bayesian model. For a comparison of magnitude, the annual NASA budget is about 20

billion USD.

19Observe that shadow values are negative and the product αl·i−1 ϕj l·i always implies a welfare loss for a
positive degree of intrinsic aversion −α > 0.

20Note that the carbon cycle exhibts predicted uncertain feedbacks that can hardly be observed at present
concentration and temperature levels. Thus, I rely on a large set of model output rather than a simplistic
evaluation of historical data. In particular for the carbon cycle, any estimate of uncertainty is itself uncertain
and subject to model bias.

21The welfare loss in the optimal regime is not specified without detailed assumptions about the energy
sector (equation 2) because it depends on the sectors’ responses to the tax.
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Figure 4: The graph on the left shows the evolution of atmospheric carbon for the DICE 2013
business as usual emission scenario. Decadal shocks with a standard deviation of σχ = 20 Gt
per decade change the flow between the atmosphere and the carbon sinks with a persistence of
γM = 0.997 that is calibrated to the carbon cycle comparison study by Joos et al. (2013). The
deterministic DICE evolution (5 year time steps, “Data”), the deterministic ACE evolution (10 year
time steps), and the mean and the median of 1000 uncertain trajectories are hardly distinguishable.
The right graph depicts the willingness to pay for a 1Gt uncertainty reduction. In the Bayesian
learning case, the reduction is in the measurement error, increasing the speed of learning. In the
case of the vector autoregressive shock model (“VAR”), the willingness to pay is based on a physical
reduction of carbon flow stochasticity (e.g., a co-benefit of emission reductions).

Figure 4, right panel, states the willingness to pay for a 1Gt reduction of the decadal

standard deviation as a function of pure time preference. In the case of the VAR model,

the uncertainty reduction lowers the physical stochasticity of the carbon flows (σχ = 10Gt→
9Gt).22 In the case of the Bayesian model, the uncertainty reduction lowers the measurement

error and increases the speed of learning (σν = 10Gt→ 9Gt). The figure compares the welfare

gain from better measurement and faster learning to the costs of a common satellite (∼150

million USD), NASA’s Orbiting Carbon Observatory (∼ 280 million), and the National

Center for Atmospheric Research’s recent supercomputer (∼ 70 million). For the standard

calibration of the time preference these investments are worth the (global) welfare gain. For

an annual rate of time preference around 3% even the global welfare gain might no longer

outweigh their costs in ACE.23 A normatively or long-run risk founded rate of ρ = 0.1%

increases the willingness to pay for a decadal 1Gt stochasticity reduction to approximately

22Reducing the carbon flow’s decadal standard deviation σχ by 1 Gt reduces the welfare loss by the fraction

2
σχ

+ 1
σ2
χ
. This formula solves x =

∆WV AR,normal
σχ

−∆W
V AR,normal
σχ−1

∆W
V AR,normal
σχ

for x. The graph is only visible in the upper

right corner: the payoff of the physical stochastic shock reduction is more valuable than a reduction of
measurement error that accelerates learning.

23This value is most sensitive to the initial prior. Lowering initial uncertainty to σǫ,0 = 10Gt lowers the
welfare loss to approximatley 10 billion USD. To obtain the same 110 billion USD welfare loss as from the
VAR setting, I would have to raise initial uncertainty of the prior to as much as a 40Gt standard deviation.
Note that the NASA’s Orbiting Carbon Observatory is the investment closest to a direct reduction of
measurement error to improve learning. Slowly coming out of its calibration phase, the ultimate precision is
still unclear.
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110 billion USD. In fact, for such a low rate of pure time preference the uncertainty induced

total present value welfare loss increase to 60 trillion USD, or 73% of world output, in the

case of Bayesian learning. In contrast, the welfare loss produced by the AR(1) process under

the low discount rate rises only to 2 trillion USD, showing the higher initial sensitivity of

the Bayesian learning to pure time preference derived in Corollary 26.

I conclude that the absolute welfare costs from uncertainty over the carbon flows are small

to moderate compared to the deterministic contributions discussed in section 3. A higher

carbon shock implies both a higher temperature, leading to more convex damages, but also

a higher satiation of the CO2’s absorption spectrum, leading to a lower marginal impact of

the last unit of emissions. These two effects largely offset each other. Under the standard

discounting calibration, this welfare cost is 2-3 orders of magnitude lower than the welfare

loss from present CO2 concentrations (and the resulting warming that is already in the

pipeline). Given the higher sensitivity to time preference, the welfare loss from uncertainty

hesitantly catches up to a similar order of magnitude for the patient decision maker.24

ACE’s equations of motion are exponential in temperature (linear in τ1 = exp(ξ1T1)).

Thus, even a normal distribution of temperature can translate into a log-normal distribution

in the linear equations of motion. By Corollary 2, the resulting welfare loss is proportional

to the cumulant generating function. The cumulant generating function of the log-normal

distribution is infinite. Hence, I can easily set up a model that delivers an infinite welfare loss

from climate sensitivity uncertainty. This result takes Weitzman’s (2009a) “dismal theorem”

and Millner’s (2013) extension from their stylized frameworks into a full-fledged and well-

calibrated integrated assessment model. Here, even the thin-tailed normal distribution as

opposed to the fat-tailed prior in Weitzman (2009a) can blow up the welfare loss through

its translation into economic damages.25 In a stochastic numeric implementation of DICE,

Kelly & Tan (2015b) show that fat tails on climate sensitivity are accompanied by relatively

quick learning (see also intuition at end of section 5.2). Such quick learning would make

fat tails less relevant (though actual learning seemed rather slow so far). The present result

applies even in the case of thin tails. I interpret these result as a mere call of attention to

the analysis of uncertainty in climate change and for a call of careful guesstimates of what

life and welfare might be like for global warming above 5, 10, or even 15C. Unfortunately,

these scenarios are highly relevant for today’s climate change evaluation and policy and yet

impossible to derive from present data.

The present quantitative illustration of temperature uncertainty will follow the hum-

24The 14 trillion USD loss from the present atmospheric CO2 concentration increases to 160 trillion USD
for ρ = 0.1%, which is at least the same order of magnitude as the 60 trillion USD loss from Bayesian
uncertainty.

25Figure 2 shows that for temperature increases up to 12C, ACE’s base case damage specification delivers
damages lower than DICE. More than that, the “dismal result” holds for any ξ0 > 0, implying that I can
make damages at any given temperature level arbitrarily small and still find an infinite welfare loss from
temperature uncertainty.
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ble (or possibly crazy) attempt to obtain an estimate of the welfare loss from uncertainty

limiting global temperature rise to at most 10C. This range corresponds to the domain of

the probabilistic climate sensitivity estimates, and to damages of up to some 20% of world

output. The resulting welfare loss is a lower bound.

I calibrate the shock uncertainty to produce the climate sensitivity distribution in the

infinitely long run. I split the uncertainty into an epistemological fraction ζ and a shock-

based long-run fraction 1− ζ. At any given point in time the actual forecast uncertainty will

then be lower than the climate sensitivity distribution because epistemological uncertainty

falls over time and the shocks only build up the fraction 1 − ζ in the long-run. Third, I

omit possible contributions from stochastic volatility or shocks to higher order cumulants.

Fourth, I pick α = −1 at the lower end of measured risk aversion.

My “baseline” scenario assumes a persistence γ = 0.9 of both epistemological uncertainty

and shocks to the mean, an equal split of overall climate sensitivity uncertainty between

the epistemological and the shock contributions (ζ = 1
2
), and the standard discount rate

calibration to IMF 2015 data (ρ = 1.75%). These assumption result in an overall welfare

loss from climate sensitivity uncertainty of 16 trillion USD, approximately one year of US

output. Initial epistemological uncertainty and the stochastic shocks contribute almost equal

shares to this loss. As a consequence, attributing a larger or smaller share of the uncertainty

to shocks and future updating hardly changes the welfare loss.

Varying the persistence of shocks and of epistemological uncertainty between a lower

value of γ = 0.7 and the higher value γ = 0.997 calibrated for the carbon flow uncertainty

varies the welfare loss between 11.5 and 20 trillion USD. A reduction of pure time preference

to ρ = 0.1% in the “baseline” scenario increases the loss to over 700 trillion USD or 8.5

years of world output. This factor 40 increase is significantly larger than the response of the

carbon tax to the change in pure time preference. The scenario also confirms the theoretical

finding that the future shock contributions are more sensitive to time preference than mere

epistemological uncertainty: 95% of this welfare loss derives from the future shocks. I

reiterate that the future shock component of the present model reflects the learning shocks

that make the Bayesian model particularly sensitivity to pure time preference. Thus, the

finding fleshes out that the high sensitivity to pure time preference in the epistemological

models does not result from the mere presence of epistemological uncertainty, but from its

anticipated updating and the corresponding long-run welfare impact of the shocks.

Finally, the lower bound of the welfare loss from uncertainty over the climate’s sensitivity

is 2-3 orders of magnitude higher than the best guess of the welfare loss from uncertainty

over the carbon flows. A clear quantitative message from economics to science is to shift

more attention to the feedback processes on the temperature side.
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6 Conclusions

ACE is an integrated assessment model of climate change that matches scientific climate

models just as well as do numeric models used in policy advising. It derives the optimal car-

bon tax and welfare loss in closed form. ACE merges Golosov et al.’s (2014) framework with

a standard carbon cycle, radiative forcing, temperature dynamics, risk attitude, and different

uncertainty frameworks. The resulting model closely resembles (a stochastic version) of the

widely used integrated assessment model DICE. It improves the market calibration by dis-

entangling intertemporal substitution and the low risk-free discount rate from risk aversion

and risk premia.

The deterministic model finds a market-based optimal carbon tax of 57 USD per ton of

carbon (15 USD per ton of CO2), using a standard calibration approach. The closed-form

solution shows that the carbon cycle’s persistence is the main multiplier of the SCC (almost

a factor 4), whereas temperature dynamics cause a reduction of the optimal tax (by 40%).

Analyzing the system’s shadow values, ACE shows that the welfare loss from the present

increase in carbon concentrations is higher than from the present increase in global temper-

ature (independent of future policy). Like Golosov et al.’s (2014) model, ACE implies a flat

marginal benefit curve from mitigation. The finding underpins the advantages of a carbon

tax over a cap and trade mechanism to regulate the climate externality. Another conve-

nient consequence is that we do not have to know the highly complex mitigation technology

frontier for optimal carbon regulation. Finally, optimal mitigation effort is independent of

whether we followed business as usual or optimal policy in the past. If we “sinned” in the

past, the optimal policy will not tell us to repent, but to live with the (perpetually) persisting

consequences in the future.

A wide-spread belief is that the optimal carbon tax is sensitive to the overall consump-

tion discount rate, but not to its individual constituents. In contrast, I prove in the present

well-calibrated setting that mass conservation in the carbon cycle makes the optimal carbon

tax highly sensitive to the rate of pure time preference (≈ 1
ρ
), whereas proportionality of

damages to output make it insensitive to growth related discounting. The sensitivity to

pure time preference weighs particularly strong because recent asset pricing approaches and

overlapping generations based calibration formulas suggest much lower rates of pure time

preference that the 1.75% calibrated here following a standard approach. These more sophis-

ticated approaches support rates as low as the 0.1%, which the Stern (2007) Review used

for normative reasons. Such a pure rate of time preference increases the optimal carbon tax

tenfold, with a sevenfold increase resulting from the carbon cycle interaction.

I employ ACE to advance our understanding of how current climate policy should re-

spond to future climate uncertainty. I show that the “risk premia” are positive for both

carbon flow and temperature uncertainty. Both uncertainty contributions to the optimal

carbon tax are mutually aggravating, implying that joint uncertainty has a stronger impact
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on optimal policy than the sum of each individual channel. Moreover, the uncertainty fac-

tor multiplying the deterministically optimal tax increases convexly with risk aversion, the

deterministic shadow value of atmospheric carbon and atmospheric temperature, the persis-

tence of uncertainty, the discount factor, and “uncertainty” itself. Moreover, policy is mostly

affected by endogenous uncertainty rather than by exogenous shocks.

A preliminary quantification, for which I have to refer to the official working paper ver-

sion to be released soon, shows the following. Uncertainty about conditional expectations

contributes much more than stochastic volatility. This finding reflects that carbon flow

irregularities at the decadal scale are less relevant than long-term uncertainties in carbon ac-

cumulation. Overall, the impact of carbon flow uncertainty on mitigation policy is small, and

much smaller than the impact of temperature uncertainty. Uncertainty about the warming

resulting from a given carbon trajectory results in an approximate increase of the optimal

carbon tax by 20% under the standard calibration. Reducing pure time preference from

1.75% to 1%, as suggested in a recent expert elicitation, increases the SCC increase under

uncertainty from 20% to approximately 360%. In contrast to suggestions that uncertainty

is more relevant for the optimal carbon tax than discounting, I find that the uncertainty

contribution to the optimal carbon tax is even more sensitive to the discount rate than its

impact on the deterministic contribution.

The paper analyses the welfare impact of stochasticity, uncertainty, and learning in a

model that allows for general uncertainty distributions. The moments (cumulants) of either

of the uncertainty distributions reduce welfare proportional to the corresponding powers

of the risk aversion weighted shadow value of a change in warming or carbon flows. The

applicable measure of risk aversion is not the Arrow-Pratt measure, but a measure of in-

tertemporal or intrinsic risk aversion. This measure characterizes how much more averse a

decision maker is to risk than to deterministic consumption fluctuations. The welfare loss’

sensitivity to pure time preference increases for higher moments of the shock’s distribution,

but slightly decreases for higher moments of the present epistemological uncertainty that

captures the decision maker’s lack of knowledge. Bayesian updates to the epistemological

uncertainty act initially like fully persistent shocks as they carry information on a permanent

change of the system dynamics. Therefore, the overall welfare loss from uncertainty under

anticipated learning is highly sensitive to pure time preference.

In the standard calibration, the welfare loss from carbon cycle uncertainty is in the order

of a hundred billion USD. The willingness to pay for a reduction of the measurement error

and for accelerated learning is in the order of half a billion per Gt C of decadal resolution

(the cost of a few satellites and a supercomputer). The Bayesian model’s sensitivity to

pure time preference increases this willingness to pay to 110 billion USD for a rate of pure

time preference of 0.1%, which is more than the value of full uncertainty elimination in

the standard calibration. Uncertainty about the temperature response to a given CO2 path

causes a lower bound welfare loss that is 2 to 3 orders of magnitudes larger, about one year
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of US output in the standard calibration, and over 8 years of world output under a rate of

pure time preference of 0.1%.

Governments and research institutions are spending large amounts to better understand

carbon flows. An immediate conclusion is that better assessments of the temperature feed-

back response have a significantly higher social payoff. The intuition is the following. Every

additional ton of carbon in the atmosphere traps less energy than the preceding ton. This

“decreasing harmfulness” of CO2 to temperature offsets the convexity of damages from the

implied warming and the decreasing marginal utility (governing intertemporal trade-offs).

Thus, negative and positive shocks in the carbon flow would offset each other if it was not for

(disentangled) risk aversion. Risk aversion implies a moderate willingness to pay for a risk

reduction. In contrast, temperature feedbacks operate directly on temperatures. Because of

the convex damage function, high temperature realizations cause more loss than is gained

back from low realizations. In expectation, the shocks reduce overall welfare, an effect that

is only amplified by risk aversion.

The present paper paves the way for a wide array of analytic and quantitative research.

ACE can be generalized for regional analysis, to examine adaptation, to analyze detailed

damage channels like ocean-acidification or sea level rise, and to evaluate benefits from cli-

mate engineering projects. The present paper specifies the optimal carbon tax for a large

class of energy sectors. Specifying their details permits an easy analysis of the sectoral

emission response to optimal policy under technological uncertainty. Climate change is an

intergenerational problem. The present paper focuses on market-based evaluation, follow-

ing common practice of policy advising in the US. ACE also lends itself to a normatively

motivated analysis. ACE’s major virtue is to combine quantitative analysis with analytic in-

sight. Any analytic approach has its limitations in the non-linearities and interactions it can

handle. The model serves best as a benchmark, guiding and helping to enlighten fine-tuned

quantitative numeric research.
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Appendix

Part I - Additional Results and Illustrations

A Welfare Results in the Deterministic Setting

Embedded in equation (8) is the social cost of a marginal temperature increase (SCT) in

degree Celsius

SCTt(T1,t) = Ytξ0
[
(1− βσ)−1

]

1,1
ξ1 exp(ξ1T1,t).

The cost of a marginal temperature increase in degree Celsius depends on the prevailing

temperature level, unlike the SCC and the transformed temperature state’s shadow value.

This level-dependence reflects the convexity of damages in temperature. Integrating the

shadow value of a temperature increase from pre-industrial to present temperature levels

yields the present value welfare cost of the present-day temperature increase

∆W Temp
USD 2015(T1 ≈ 0.77C) = Ytξ0

[
(1− βσ)−1

]

1,1
(exp(ξ1T1)− 1)

≈ $5 trillion ,

or 6% of world output. This value takes into account atmospheric temperature dynamics

and the persistence of the global warming. It characterizes the actual cost of having warmed

the planet to present temperature levels, which is larger than the annual damage from a

given temperature increase, but smaller than the discounted present value of a perpetual

temperature increase. The cost does not include that we have already warmed the oceans

as well and that the warming is caused by persistent CO2 emissions that will keep radiative

forcing above the pre-industrial level.

The social cost of the present atmospheric CO2 increase is

∆WCO2

USD 2015(M1 ≈ 397ppm) = SCC (M1 −Mpre) ≈ $14 trillion ,

or 17% of world output. This number reflects the damage already in the pipeline from

present atmospheric CO2. It does not include the CO2 increase in the oceans or the non-

CO2 greenhouse gases, and the damage is additional to the above cited social cost of the

temperature increase that already took place. These numbers illustrate that the welfare cost

expected from the present CO2’s future temperature forcing is significantly higher than the

cost of having already heated the planet.

A much discussed geoengineering “solution” to climate change sequesters carbon into the

oceans. Engineers are currently exploring mechanisms to extract CO2 from the exhaustion
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pipes of coal power plants, planning to pump it into the deep ocean.26 The gain from such

a geoengeneering solution is merely the difference between the shadow values of carbon in

the different reservoirs. This difference ϕM,i − ϕM,1 will reappear in the expressions for the

welfare loss from carbon flow uncertainty. Appendix E.2 states the closed-form expression for

the benefits of pumping a ton of CO2 into layer i, instead of emitting it into the atmosphere.

Appendix C.3 discusses and illustrates the relation between the price of carbon in the different

reservoirs. ACE evaluates the welfare gain from pumping a ton of carbon into the upper

ocean layer to 57− 16 = 41 USD, and to almost the full 57 USD when pumping the carbon

into the deep ocean (ACE does not have an explicit damage function for ocean acidification).

B General Capital Depreciation

Equation (3) assumes full capital depreciation. In this appendix, I show how to avoid the

full capital depreciation assumption and match observed capital-output ratios through an

exogenous adjustment of the capital growth rate. The model extension keeps the structural

assumptions that imply a constant investment rate. Under a depreciation rate δk the capital

accumulation equation (3) changes to

Kt+1 = Yt[1−Dt(T1,t)]− Ct + (1− δk)Kt .

Defining the consumption rate xt =
Yt[1−Dt(T1,t)]

Ct
and recognizing that Yt[1−Dt(T1,t)]−Ct =

Kt+1 − (1− δk)Kt by definition implies

Kt+1 = Yt[1−Dt(T1,t)](1− xt)

[

1 +
1− δk

Kt+1

Kt
− (1− δk)

]

.

Defining the capital growth rate gk,t =
Kt+1

Kt
− 1, I obtain the equivalent equation of motion

for capital

Kt+1 = Yt[1−Dt(T1,t)](1− xt)

[
1 + gk,t
δk + gk,t

]

. (B.1)

For full depreciation δk = 1 the squared bracket is unity and equation (B.1) coincides with

equation (3) in the main text. For δk < 1 the squared bracket states an empirical correction

multiplier larger unity. First, this multiplier can be used to match the model’s capital ac-

cumulation to the empirical capital accumulation. Second, this multiplier makes the social

planner (or representative agent) realize the additional capital value deriving from its persis-

tence beyond its end-of-period value for production. Replacing equation (3) with equation

26Ocean pumping is just one of the strategies considered. Note that CO2, thanks to its reaction with
oxygen, only partially fits back into an oil well. Biochar production corresponds to an injection into soil and
the biosphere.
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(B.1) does not change the SCC or the formulas for the welfare loss from climate change and

uncertainty.

Treating the growth and depreciation correction in squared brackets as exogenous remains

an approximation. The extension shows that the model is robust against the immediate

criticism of not being able to represent the correct capital evolution and capital output

ratio, and against the agent’s neglecting of capital value beyond the time step. The crucial

result from and, thus, implicit assumption underlying equations (3) and (B.1) is that the

investment rate is independent of the climate states. It is the price to pay for an analytic

solution. The remainder of this section shows that this price seems small.

Figure 5 tests ACE’s result (and implicit assumption) that the optimal consumption rate

is independent of the climate states. The figure depicts the optimal consumption rate gen-

erated by a recursive DICE implementation with an annual time step and, thus, an annual

capital decay structure of the usual form (Traeger 2012b).27 It also abandons the assump-

tion of logarithmic utility, further stacking the cards against ACE’s assumptions. The first

two graphs in the figure depict the control rules for DICE-2013’s η = 1.45 (inverse of the

intertemporal elasticity of substitution). These two graphs state the optimal consumption

rate for the years 2025 and 2205. The third graph in the figure depicts the optimal consump-

tion rate for the lower value η = 0.66 calibrated by the long-run risk literature (see section

4.2).

The qualitative behavior is the same for all graphs in Figure 5. Overall, the figure shows

that the optimal consumption rate is largely independent of the climate states (if the vertical

axis started at zero the variation of the control rule would be invisible). At current tempera-

ture levels, the optimal consumption rate does not depend on the CO2 concentrations. This

result is in accordance with the theoretical result under ACE’s assumption set. However,

the optimal consumption rate increases slightly for higher temperatures. It increases by less

than a percentage point from no warming to a 3C warming at low CO2 concentrations. The

increase is lower at higher CO2 concentrations.

The graphs confirm that also in DICE, and in a model with regular annual capital decay

structure and not exactly log-utility, the investment rate is not used as a measure of climate

change policy. The rate does not respond to the CO2 concentration, which is a measure of

expected warming. Only once the temperature dependent damages set in, the consumption

rate slightly increases and the investment rate goes down. Instead of reflecting climate policy,

this (minor) climate dependence of the consumption rate reflects a response to the damages

incurred: these damages reduce the cake to be split into investment and consumption, then, a

slightly higher fraction goes to consumption. This response is lower when CO2 concentrations

27The recursive implementation based on the Bellman equation solves for the optimal control rule as a
function of the states. Thus, solving the model once immediately delivers the full control surface depicted
here. This recursive implementation has a slightly simplified climate change model compared to the original
DICE model, but matches the Maggic6.0 model, used also as the DICE benchmark, similarly well.
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Figure 5: The graphs analyze the climate (in-)dependence of the optimal consumption rate x∗

in the wide-spread DICE model, relying on the control rules of the recursive implementation by
Traeger (2012b). The first two graphs assume the DICE-2013 value η = 1.45, the third graph
follows the long-run risk literature with η = 2

3 . The blue dot in each graph indicates the expected
optimal control and prevailing temperature-CO2 combination along the optimal policy path in the
given year.
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are high: then the social planner expects high temperatures and damages also in the future

and is more hesitant to reduce investment.

C Illustrating the “Climate Matrices”

C.1 A Two Layer Carbon Cycle

In the simple and insightful case of two carbon reservoirs the carbon cycle’s transition matrix

is Φ =
(
1−δAtm→Ocean δOcean→Atm

δAtm→Ocean 1−δOcean→Atm

)
, where e.g. δAtm→Ocean characterizes the fraction of carbon

in the atmosphere transitioning into the ocean in a given time step. The conservation of

carbon implies that both columns add to unity: carbon that does not leave a layer (δ·→·)

stays (1− δ·→·). The shadow value becomes

ϕM,1 = βϕτ,1σ
forcMpre

−1(1−Gβ)−1

[

1 +Gβ
δAtm→Ocean

1−Gβ(1− δOcean→Atm)

]−1

.

The shadow value becomes less negative if more carbon flows from the atmosphere into the

ocean (higher δAtm→Ocean). It becomes more negative for a higher persistence of carbon in the

ocean (higher 1−δOcean→Atm). These impacts on the SCC are straight forward: the carbon in

the ocean is the “good carbon” that does not contribute to the greenhouse effect. In round

brackets, I find Proposition ??’s root (1 − βG)−1 that makes the expression so sensitive to

a low rate of pure time preference.

A common approximation of atmospheric carbon dynamics is the equation of motion

of the early DICE 1994 model. Here, carbon in excess of preindustrial levels decays as in

M1,t+1 = Mpre + (1− δdecay)(M1,t −Mpre). The shadow value formula becomes

ϕM,1 = βϕτ,1σ
forcM−1

pre

(
1− βG(1− δdecay)

)−1
, (C.1)

which misses the long-run carbon impact and the SCC’s sensitivity to pure time preference.

C.2 A Two Layer Atmosphere-Ocean Temperature System

The two layer example of atmosphere-ocean temperature dynamics has the transition matrix

σ =
(

1−σ
up
1 −σdown

1 σdown
1

σ
up
2 1−σ

up
2

)

. The corresponding term of the SCC (equation 8) takes the form

[
(1− βGσ)−1

]

11
=

(

1− βG (1− σdown
1 − σup

1 )
︸ ︷︷ ︸

persistence in atmosphere

− β2σdown
1 σup

1

1− βG (1− σup
2 )

︸ ︷︷ ︸

pers. in ocean

)−1

.

Persistence of the warming in the atmosphere or in the oceans increases the shadow cost.

Persistence of warming in the oceans increases the SCC proportional to the terms σdown
1
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routing the warming into the oceans and σup
1 routing the warming back from the oceans into

the atmosphere. The discount factor βG accompanies each of these transition coefficients

as each of them causes a one period delay. Taking the limit of βG → 1 confirms that (an

analogue to) Proposition ?? does not hold for the temperature system

lim
βG→1

ϕτ,1 = −ξ0(1 + ϕk)
[
(1− σ)−1

]

11
= −ξ0(1 + ϕk)

σup
1

6= ∞. (C.2)

As the discount rate approaches zero, the transient temperature dynamics characterized

by σdown
1 and σup

2 becomes irrelevant for evaluation, and only the weight σup
1 reducing the

warming persistence below unity contributes.28

Extending on the “missing time preference sensitivity” in the general case, note that

temperature is an intensive variable: it does not scale proportional to mass or volume (as

is the case for the extensive variable carbon). The columns of the matrix σ do not sum

to unity. As a consequence of the mean structure in equation (6), however, the rows in

the ocean layers’ transition matrix sum to unity. The first row determining next period’s

atmospheric temperature sums to a value smaller than unity: it “misses” the weight that the

mean places on radiative forcing. The “missing weight” is a consequence of the permanent

energy exchange with outer space. Radiative forcing characterizes a flow equilibrium of

incoming and outgoing radiation.

C.3 The Price of Carbon and the Different Reservoirs

The carbon price in the atmosphere is immediately connected to its exchange with the

remaining reservoirs. I can also express the shadow value of carbon in any reservoir as the

following function of the shadow prices in the remaining reservoirs

ϕM,i = βG

∑

j 6=i ϕM,jΦj,i + 1i,1
ϕτ,1σ

up
1

Mpre

1− βGΦi,i

. (C.3)

The carbon price in layer i is the sum of carbon prices in the other layers times the flow co-

efficient capturing the carbon transition into that other layer (generally only positive for the

two adjacent layers). The atmospheric carbon price has as an additional contribution (1i,1
denotes the Kronecker delta): the shadow value of the atmospheric temperature increase.

Finally, the denominator implies that the carbon price increases over the stated sum accord-

ing to the persistence Φi,i of carbon in that given layer. Equation (C.3) resembles the carbon

28I note that the carbon cycle lacks the reduction in persistence deriving from the forcing weight σup
1 .

With this observation, equation (C.2) gives another illustration of the impact of mass conservation in the
case of carbon: “σup

1 → 0 ⇒ ϕτ,1 → ∞”. Note that in the SCC formula σup
1 cancels, as it simultaneously

increases the impact of a carbon change on temperature. This exact cancellation (in the limit βG → 1) is a
consequence of the weights σup

1 on forcing and 1− σup
1 on atmospheric temperature summing to unity. The

result that a warming pulse has a transitional impact and an emission pulse has a permanent impact on the
system is independent of the fact that these weights sum to unity.
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pricing formula for the carbon decay model discussed in equation (C.1) at the end of section

C.1, where the atmospheric carbon persistence is Φi,i = 1 − δdecay. The present equation

adds the pricing contributions from the other carbon absorbing layers as, unfortunately, the

carbon leaving the atmosphere does not decay.

Finally, I illustrate the value of carbon sequestration in equation (E.11) for the case of

the two layer carbon cycle introduced in section C.1

∆W seq = βGϕτ,1σ
up
1 Mpre

−1 [1 +GβδOcean→Atm − βG(1− δAtm→Ocean)]
−1 .

The value of carbon sequestration into the ocean falls in the stated manner in the transition

parameter δOcean→Atm that captures the carbon diffusion from the ocean back into the at-

mosphere and increases with the transition parameter 1− δAtm→Ocean that characterizes the

persistence of carbon in the atmosphere.

Part II - Solving the Deterministic ACE Model

D The Linear-in-State Model

To obtain the equivalent linear-in-state-system, I first replace capital Kt+1 by logarithmic

capital kt ≡ logKt. Second, I replace temperature levels in the atmosphere and the dif-

ferent ocean layers by the transformed exponential temperature states τi,t ≡ exp(ξiTi,t),

i ∈ {1, ..., L}. I collected these transformed temperature states in the vector τt ∈ IRL.

Third, I use the consumption rate xt =
Ct

Yt[1−Dt(Tt)]
, rather than absolute consumption, as the

consumption-investment control. Only the rate will be separable from the system’s states.

Finally, I define at = logA0,t and express utility in terms of the consumption rate

u(Ct(xt)) = logCt(xt) = log xt + log Yt + log[1−Dt(Tt)] = log xt + at

+κkt + (1− κ− ν) logN0,t + ν logEt − ξ0 exp[ξ1Tt] + ξ0.

The Bellman equation in terms of the transformed state variables is

V (kt, τt,Mt,Rt, t) = max
xt,Nt

log xt + at + κkt + (1− κ− ν) logN0,t (D.1)

+ν logEt − ξ0τt + ξ0 + βV (kt+1, τt+1,Mt+1,Rt+1, t+1) ,

50



and is subject to the following linear equations of motion. The equations of motion for the

effective capital stock and the carbon cycle are

kt+1 = at + κkt + (1−κ−ν) logN0,t + ν log g(Et(At,Nt)),

−ξ0τ1,t + ξ0 + log(1−xt) (D.2)

Mt+1 = ΦMt +
(
∑Id

i=1 Ei,t + Eexo
t

)

e1 . (D.3)

I transform the temperature’s equation of motion (6) into a linear system using equation (7)

Ti,t+1 =
1

ξi
log
(

(1−σ1,i−1−σ1,i+1) exp[ξiTi,t]

+σi,i−1 exp[ξiw
−1
i Ti−1,t] + σi,i+1 exp[ξiwi+1Ti+1,t]

)

,

the definitions σii = 1−σi,i−1−σi,i+1, and the requirement ξt+1 = wt+1ξt. Then the equation

is equivalent to

exp(ξiTi,t+1) = σi,i−1 exp[ξiTi,t] + σi,i−1 exp[ξi−1Ti−1,t] + σi,i+1 exp[ξi+1Ti+1,t] .

Using the temperature transformation τi,t = exp(ξiTi,t) I obtain the linear equations of

motion

τi,t+1 = σi,iτi,t + σi,i−1τi−1,t + σi,i+1τi+1,t, i ∈ {1, ..., l},

still using σl,l+1 = 0 for notational convenience. The first of these equations (i = 1) for

atmospheric temperature is linear in

τ0,t = exp[ξ1w
−1
1 T0,t] = exp

[

ξ1
s

η
Ft

]

= exp
[

ξ0
s

log 2
log

M1,t +Gt

Mpre

]

and has to be linear M1,t to obtain a linear-in-state system (given linearity of the carbon

cycle equations). This linearity requires ξ0 = log 2
s

as stated in the proposition. Then, the

individual equations of motion for generalized temperature can be collected into the vector

equation

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 . (D.4)

Finally, the equation of motion for the resource stock is

Rt+1 = Rt −Ed
t , . (D.5)

The underlying constraints are

∑I

i=0 Ni,t = Nt, Ni,t ≥ 0,

Rt ≥ 0 and R0 given.
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The present paper assumes that the optimal labor allocation has an interior solution and

that the scarce resources are stretched over the infinite time horizon along the optimal path,

avoiding boundary value complications.

D.0.1 Extended ACE linear in state model

In the extended ACE model of section 2.2 the decision Πt replaces the consumption rate of

the previous section. It determines the share of capital K−1,t = ΠtKt employed in the capital

sector. Then utility in a given period is

u(Ct) = logCt = log Y gross
t + log[1−Dt(Tt)] = κ log Πt + at

+κkt + (1− κ− ν) logN0,t + ν logEt − ξ0 exp[ξ1Tt] + ξ0.

inducing the Bellman equation

V (kt, τt,Mt,Rt, t) = max
xt,Nt

κ log Πt + at + κkt + (1− κ− ν) logN0,t (D.6)

+ν logEt − ξ0τt + ξ0 + βV (kt+1, τt+1,Mt+1,Rt+1, t+1) .

The only change in the equations of motion affects the effective capital stock

kt+1 = kt + log
(
(1− δ) + A−1,0(1− Πt)

κ̄N1−̄κ−ν̄
−1,t Ē ν̄

t

)
− ξ̄0τ1,t + ξ̄0,

where Ē ν̄
t =

A−1,tE
ν̄
t

A−1,0K1−κ̄ , which is bounded by assumption (detrended).

E Proofs

E.1 Proof of Proposition 1

I start by showing that the affine value function

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ⊤
MMt +ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt (E.1)

solves the above linear-in-state system. The coefficients ϕ are the shadow value of the respec-

tive state variables, and ⊤ denotes the transpose of a vector of shadow values. The coefficient

on the resource stock has to be time-dependent: the shadow value of the exhaustible resource

increases (endogenously) over time following the Hotelling rule. The controls in the equa-

tions of motion (D.2)-(D.5) are additively separated from the states. Therefore, maximizing

the right hand side of the resulting Bellman equation delivers optimal control rules that are

independent of the state variables. These controls are functions of the shadow values.
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In detail, inserting the value function’s trial solution (equation E.1) and the next period

states (equations D.2-D.5) into the (deterministic) Bellmann equation (D.6) delivers

ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt =

max
xt,Nt

log xt + βϕk log(1−xt) + (1 + βϕk)κkt + (1 + βϕk)at

+(1 + βϕk)(1− κ− ν) logN0,t

+(1 + βϕk)ν log g(Et(At,Nt))

−(1 + βϕk)ξ0τ1,t + (1 + βϕk)ξ0

+βϕ⊤
M

(

ΦMt +
(∑Id

i=1 Ei,t + Eexo
t

)
e1

)

+βϕ⊤
τ

(

στt + σforcM1,t +Gt

Mpre

e1

)

+βϕ⊤
R,t+1

(
Rt −Ed

t

)

+βϕt+1

+λt

(
Nt −

∑I

i=0 Ni,t

)

Maximizing the right hand side of the Bellman equation over the consumption rate yields

1

x
− βϕk

1

1− x
= 0 ⇒ x∗ =

1

1 + βϕk

. (E.2)

The labor input into the various sector’s depends on the precise assumptions governing the

energy sector, i.e., the specification of g(Et(At,Nt)). For a well-defined energy system, I

obtain unique solutions as functions of the technology levels in the energy sector and the

shadow values of the endogenous state variables N ∗
t (At, ϕk,ϕM ,ϕR,t+1). Knowing these

solutions is crucial to determine the precise output path and energy transition under a given

policy regime. However, the SCC and, thus, the carbon tax do not depend on these solutions.

Inserting the (general) control rules into the maximized Bellman equation delivers the

value function coefficients. In detail, I collect terms that depend on the state variables on
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the left hand side of the resulting Bellman equation

(
ϕ⊤

M −

−βbM
det

︷ ︸︸ ︷

βϕ⊤
MΦ− βϕτ,1

σforc

Mpre

e⊤
1

)
Mt +

(
ϕ⊤

τ

−βbτ
det

︷ ︸︸ ︷

−βϕ⊤
τ σ+(1 + βϕk)ξ0e

⊤
1

)
τt

(
ϕk − (1 + βϕk)κ

)
kt +

(
ϕ⊤

R,t − βϕ⊤
R,t+1

)
Rt







B

+ϕt = βϕt+1 (E.3)

+ log x∗
t (ϕk) + βϕk log(1−x∗

t (ϕk)) + (1 + βϕk)ξ0 + (1 + βϕk)at

+ (1 + βϕk)(1− κ− ν) logN ∗
0,t(At, ϕk,ϕM ,ϕR,t+1)

+ (1 + βϕk)ν log g
(
Et(At,N

∗
t (At, ϕk,ϕM ,ϕR,t+1))

)

− βϕ⊤
R,t+1E

d
t (At,N

∗
t (At, ϕk,ϕM ,ϕR,t+1))







A

+ βϕM,1

(
∑Id

i=1Ei,t(At,N
∗
t (At, ϕk,ϕM ,ϕR,t+1)) + Eexo

t

)

+ βϕτ,1
σforc

MpreGt

︸ ︷︷ ︸

adet

.

The equality holds for all levels of the state variables if and only if the coefficients in front

of the state variables vanish, and the evolution of ϕt satisfies the state independent part of

the equation. Setting the states’ coefficients to zero yields

ϕk − (1 + βϕk)κ = 0 ⇒ ϕk =
κ

1− βκ
(E.4)

ϕ⊤
M − βϕ⊤

MΦ− βϕτ,1
σforc

Mpre

e⊤
1 = 0 ⇒ ϕ⊤

M =
βϕτ,1σ

forc

Mpre

e⊤
1 (1− βΦ)−1 (E.5)

ϕ⊤
τ + (1 + βϕk)ξ0e

⊤
1 − βϕ⊤

τ σ = 0 ⇒ ϕτ = −ξ0(1 + βϕk)e
⊤
1 (1− βσ)−1 (E.6)

ϕ⊤
R,t − βϕ⊤

R,t+1 = 0 ⇒ ϕR,t = βtϕR,0 . (E.7)

The initial values ϕ⊤
R,0 of the scarce resources depend on the precise evolution of the economy

and, thus, depends on assumptions about the energy sector as well as the chosen climate

policy. Using the shadow value of log capital in equation (E.2) results in the optimal invest-

ment rate x = 1 − βκ. From line (E.8) onwards, the maximized Bellman equation defines

recursively the time-dependent affine part of the value function ϕt. Everything discussed

in this paper is independent of the process ϕt and only assumes convergence of the value

function. For most choices of g(Et(At,Nt)), the process ϕt has to be solved numerically

together with the initial value of shadow price vectors of the scarce resources.

The transformation into the linear-in-state system is unique (up to affine transformations

of the states) and the parameter restrictions in Proposition 1 are necessary to obtain linearity.

The affine value function solves the system if and only if it is a linear in state system, which

completes the proof of Proposition 1.
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E.1.1 Extended ACE linear in state model

The linear trial solution for the value function (equation E.1) delivers

ϕkkt+ϕ⊤
MMt +ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt =

max
xt,Nt

κ log Πt + (κ+ βϕk)kt + at + (1− κ− ν) logN0,t + ν log g(Et(At,Nt))− ξ0τ1,t + ξ0

βϕk

[
log
(
(1− δ) + A−1,0(1− Πt)

κ̄N1−̄κ−ν̄
−1,t Ē ν̄

t

)
− ξ̄0τ1,t + ξ̄0

]

+βϕ⊤
M

(

ΦMt +
(∑Id

i=1 Ei,t + Eexo
t

)
e1

)

+βϕ⊤
τ

(

στt + σforcM1,t +Gt

Mpre

e1

)

+βϕ⊤
R,t+1

(
Rt −Ed

t

)

+βϕt+1

+λt

(
Nt −

∑I

i=0 Ni,t

)
.

Once again, the controls are separated from the states. Denoting maximized controls by ∗

and sorting by state delivers

(
ϕ⊤

M −

−βbM
det

︷ ︸︸ ︷

βϕ⊤
MΦ− βϕτ,1

σforc

Mpre

e⊤
1

)
Mt +

(
ϕ⊤

τ

−βbτ
det

︷ ︸︸ ︷

−βϕ⊤
τ σ+(ξ0 + βϕkξ̄0)e

⊤
1

)
τt

(
ϕk − κ− βϕk

)
kt +

(
ϕ⊤

R,t − βϕ⊤
R,t+1

)
Rt







BAK

+ϕt = βϕt+1 (E.8)

+ logΠ∗
t (At, ϕk,ϕM ,ϕR,t+1) + βϕk log

(

(1− δ)

+ A−1,0(1− Π∗
t (At, ϕk,ϕM ,ϕR,t+1))

κ̄N∗1−̄κ−ν̄
−1,t Ē ν̄

t (N
∗
t (At, ϕk,ϕM ,ϕR,t+1))

)

+ ξ0 + βϕkξ̄0 + at

+ (1− κ− ν) logN ∗
0,t(At, ϕk,ϕM ,ϕR,t+1)

+ ν log g
(
Et(At,N

∗
t (At, ϕk,ϕM ,ϕR,t+1))

)

− βϕ⊤
R,t+1E

d
t (At,N

∗
t (At, ϕk,ϕM ,ϕR,t+1))







AAK

+ βϕM,1

(
∑Id

i=1Ei,t(At,N
∗
t (At, ϕk,ϕM ,ϕR,t+1)) + Eexo

t

)

+ βϕτ,1
σforc

MpreGt

︸ ︷︷ ︸

adet

.

The equality holds for all levels of the state variables if and only if the coefficients in front

of the state variables vanish. The two resulting shadow values differing from the exogenous
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growth model are those for effective capital and temperature

ϕk(1− β) = κ ⇒ ϕk =
κ

1− β
(E.9)

ϕ⊤
τ + (ξ0 + βϕkξ̄0)e

⊤
1 − βϕ⊤

τ σ = 0 ⇒ ϕτ = −(ξ0 + βϕkξ̄0)e
⊤
1 (1− βσ)−1 (E.10)

E.2 Proof of Proposition 2 & Details for Section 3.1

The SCC is the negative of the shadow value of atmospheric carbon expressed in money-

measured consumption units. Inserting equation (E.4) for the shadow value of log-capital

and (E.6) for the shadow value of atmospheric temperature (first entry of the vector) into

equation (E.5) characterizing the shadow value of carbon in the different reservoirs delivers

ϕ⊤
M = −ξ0

(

1 + β
κ

1− βκ

)
[
(1− βσ)−1

]

1,1

βσforc

Mpre

e⊤
1 (1− βΦ)−1 .

As a consequence of logarithmic utility, this marginal welfare change translates into a con-

sumption change as du = 1
c
dc = 1

xY
dc ⇒ dc = (1 − βκ)Y du. Thus, observing that

(
1 + β κ

1−βκ

)
= 1

1−βκ
, the SCC is

SCC = −(1− βκ)YtϕM,1 = Yt ξ0
[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1
.

The social cost of an atmospheric temperature increase follows similarly from the shadow

value of the generalized temperature state τ1,t

SCτ = −(1− βκ)Ytϕτ,1 = Yt ξ0
[
(1− βσ)−1

]

1,1
.

A marginal increase in generalized temperature relates to a temperature increase in degree

Celsius as dτ1,t = ξ1 exp(ξ1T1,t)dT1,t implying the social cost of a temperature increase in

degree Celsius of

SCT (T1,t) = Yt ξ0
[
(1− βσ)−1

]

1,1
ξ1 exp(ξ1T1,t) .

The welfare loss from present temperature increase integrates this formula from 0 to the

present temperature.

Pumping a ton of CO2 into layer i, instead of emitting it into the atmosphere, results in

the welfare gain

∆W seq = ϕM,i − ϕM,1 =
βGϕτ,1σ

forc

Mpre

([
(1− βΦ)−1

]

1,i
−
[
(1− βΦ)−1

]

1,1

)

. (E.11)

The bracket on the right hand side captures the discounted sum of the differences in the

amount of carbon prevailing in the atmosphere over time when an emission unit is injected
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into layer i instead of the atmosphere. This intuition is more easily observed using the

Neumann series for the expression:

∆W seq =
βGϕτ,1σ

up
1

Mpre

(

βG [Φ1,i −Φ1,1] +
∞∑

n=2

∑

j,l

(βG)n Φ1,j

(
Φn−2

)

j,l
[Φl,i −Φl,1]

)

.

The first term in the brackets captures the difference between carbon flow from the ocean

into the atmosphere Φ1,i and the persistence of carbon in the atmosphere Φ1,1. The second

term captures the fraction of carbon reaching the atmosphere after n periods if the carbon

initially enters ocean layer i as opposed to entering the atmosphere directly (read right to

left). The matrix entry (Φn−2)j,l captures the overall carbon flow and persistence from layer

l to j after n − 2 periods. It approaches the stationary distribution given by its (right)

eigenvectors (in all columns). In the DICE carbon cycle, the value of sequestering carbon

into the intermediate ocean and biosphere corresponding is $41 per ton and the value of

pumping carbon into the deep ocean is $56 per ton.29 Appendix C.3 illustrates equation

(E.11) for a two layer carbon cycle and discusses more generally the relation between carbon

prices in different reservoirs.

E.3 Proof of Proposition 3

Part (i). Mass conservation of carbon implies that the columns of Φ add to unity. In

consequence, the vector with unit entry in all dimensions is a left and, thus, right eigenvector.

The corresponding eigenvalue is one and the determinant of 1− βGΦ has the root 1− βG.

It follows from Cramer’s rule (or as an application of the Cayley-Hamilton theorem) that

the entries of the matrix (1− βGΦ)−1 are proportional to (1− βG)−1.

Part (ii), SCC of extended DICE. Inserting the equations (E.9) for the shadow value of

log-capital and (E.10) for the shadow value of atmospheric temperature (first entry of the

vector) into the earlier equation (E.5) delivers

ϕ⊤
M = −

(
ξ0 + βϕkξ̄0

) [
(1− βσ)−1

]

1,1

βσforc

Mpre

e⊤
1 (1− βΦ)−1

= −
(

ξ0 + ξ̄0
βκ

1− β

)
[
(1− βσ)−1

]

1,1

βσforc

Mpre

e⊤
1 (1− βΦ)−1 .

As a consequence of logarithmic utility, this marginal welfare change translates into a con-

sumption change as du = 1
c
dc and the SCC is

SCC = −CtϕM,1 = Ct

(

ξ0 + ξ̄0
βκ

1− β

)
[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1
.

29Note that the present model does not explicitly model damages from ocean acidification, which would
be an interesting and feasible extension.

57



Alternatively, the shadow value of atmospheric carbon can be transformed into capital units

using the shadow value of capital (rather than log capital), which is ϕK = ϕk

K
(as dk =

d logK = dK
K
). Then

SCC = −Kt

ϕM,1

ϕk

= Kt

(
ξ0
ϕk

+ ξ̄0β

)
[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1

= Kt

(
ξ0
ϕk

+ ξ̄0β

)
[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1

=
Kt

κ

(
(1− β)ξ0 + βκξ̄0

) [
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1
.

SCC of base ACE transforms into capital equivalents accordingly.

Part(iii). To come.
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Part II - Uncertainty

F Appendix to Section 4: General Results

F.1 Equivalence to Epstein-Zin-Weil Utility and Illustration of

Risk Aversion

This section presents a quantitative illustration of the adopted risk aversion and derives the

equivalence to Epstein-Zin-Weil preferencs. I start by showing the equivalence of the Bellman

equation (9) to the wide-spread formulation of recursive utility going back to Epstein & Zin

(1991) and Weil (1990). Keeping isoelastic risk aggregation and using the logarithmic special

case for intertemporal aggregation reflecting GAUVAL’s intertemporal elasticity of unity, the

usual formulation reads

V ∗
t = exp

(

(1− β) log ct + β log
[
Et V

∗
t+1

α∗] 1
α∗

)

. (F.1)

Defining Vt =
log V ∗

t

1−β
and rearranging equation (F.1) delivers

Vt = log ct +
β

1− β
log
[

Et exp
(
(1− β)Vt+1

)α∗
] 1

α∗

.

Defining α = (1−β)α∗ and pulling the risk aversion coefficient α∗ of the Epstein-Zin setting

to the front of the logarithm and into the exponential yields equation (9) stated in the text.

Figure 6 illustrates the quantitative implications of a choice of risk aversion RRA= 1−α

in the model.30 In the basline, an agent consumes a constant level c̄ in perpetuity. In a coin

toss lottery, she loses 5% of her consumption in the upcoming decade (left) or 25% (right) in

case of tails (probability 1/2). The graph presents, as a function of her risk aversion RRA, the

percentage gain over the baseline that the agent requests if heads comes up to be indifferent

between the lottery and the baseline. It is important to realize that these losses and gains

are direct consumption changes. The numeric illustrations in the paper are based on the

range RRA∗ = 1 − α∗ ∈ [6, 9.5] found in the long-run risk literature. The bounds translate

approximately into α = (1 − β)α∗ ∈ {1, 1.5} in the present model’s equation (9) and into

RRA∈ {2, 2.5} in Figure 6.

30I directly illustrate risk aversion for the choice of 1 − α as opposed to Epstein-Zin’s 1 − α∗ = 1 − α
1−β

.
This illustration is independent of time preference. A similar time preference independent illustration of
Epstein-Zin’s 1−α∗ would involve a lottery over infinite consumption streams. The argument why 1−α∗ as
opposed to 1−α would be time preference invariant relies on the idea that the lottery payoffs in the current
period have less significance for a more patient agent.
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Figure 6: The graphs illustrate the relation between the risk aversion RRA= 1 − α and the
relative consumption gains and losses that leave an agent indifferent to her original position. With
probability 1/2, the agent loses 5% of her decadal consumption (left) or 25% (right). The graphs
show how much of a relative consumption gain she requires for being indifferent to here initial
deterministic position under different degrees of risk aversion.

F.2 Proof of Proposition 4

Inserting an affine trial solution of the value function into the Bellman equation (9) and

using the same transformations as in the deterministic case delivers

ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt +ϕ⊤

I It =

max
xt,Nt

log xt + βϕk log(1−xt) + (1 + βϕk)κkt + (1 + βϕk)at

+(1 + βϕk)(1− κ− ν) logN0,t

+(1 + βϕk)ν log g(Et(At,Nt)) + ϕt+1

−(1 + βϕk)ξ0τ1,t + (1 + βϕk)ξ0 +ϕ⊤
R,t+1Rt+1

+
β

α
log
(

Et exp
[

α
(

ϕ⊤
MMt+1 +ϕ⊤

τ τt+1 +ϕ⊤
I It+1

)])

.
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Using assumption (11) on the conditional expectationXt = (Mt, τt, It) with z = (αϕ⊤
M , αϕ⊤

τ , αϕ
⊤
I )

yields

ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt +ϕ⊤

I It =

max
xt,Nt

log xt + βϕk log(1−xt) + (1 + βϕk)κkt + (1 + βϕk)at

+(1 + βϕk)(1− κ− ν) logN0,t

+(1 + βϕk)ν log g(Et(At,Nt))

−(1 + βϕk)ξ0τ1,t + (1 + βϕk)ξ0

+βϕ⊤
R,t+1 (Rt −E1,t) + βϕt+1 + λt

(
Nt −

∑I

i=0 Ni,t

)

+
β

α

(

a(αϕ⊤
M , αϕ⊤

τ , αϕ
⊤
I ) +

N∑

i=1

bi(αϕ
⊤
M , αϕ⊤

τ , αϕ
⊤
I ))Xt,i

)

.

Maximizing the right hand side of the Bellman equation implies the same optimal consump-

tion rate x∗ = 1
1+βϕk

as in the deterministic case, and a set of general control rules for the

energy sector inputs N ∗
t (At, ϕk,ϕM ,ϕR,t+1,ϕI). Inserting the optimal control rules and

collecting the state-dependent terms (ordered by state) on the left hand side of the equality

yields

(
ϕk−(1 + βϕk)κ

)
kt +

∑m

i=1

(

ϕM,i − β

α
bMi (αϕ⊤

M , αϕ⊤
τ , αϕ

⊤
I )
)

Mi,t

+
∑l

i=1

(

ϕτ,i + (1 + βϕk)ξ0δi,1 − β

α
bτi (αϕ

⊤
M , αϕ⊤

τ , αϕ
⊤
I )
)

τi,t

+
(
ϕ⊤

R,t − βϕ⊤
R,t+1

)
Rt + ϕt

+
∑N−l−m

i=1

(
ϕI,i − β

α
bIi (αϕ

⊤
M , αϕ⊤

τ , αϕ
⊤
I )
)
Ii,t

= log x∗
t (ϕk) + βϕk log(1−x∗

t (ϕk)) + (1 + βϕk)at + (1 + βϕk)ξ0

+(1 + βϕk)(1− κ− ν) logN ∗
0,t(At, ϕk,ϕM ,ϕR,t+1,ϕI)

+(1 + βϕk)ν log g
(
Et(At,N

∗
t (At, ϕk,ϕM ,ϕR,t+1,ϕI))

)

−βϕ⊤
R,t+1E

d
t (At,N

∗
t (At, ϕk,ϕM ,ϕR,t+1,ϕI))

+βϕt+1 +
β

α
a(αϕ⊤

M , αϕ⊤
τ , αϕ

⊤
I ) ,

where (bM1 , ..., bMm , bτ1, ..., b
τ
l , b

I
1, ..., b

I
N−l−m) = (b1, ..., bN ) and δi,j denotes the Kronecker-delta

(one if i = j and zero otherwise). The trial solution solves the stochastic optimization prob-

lem if (and only if) all the coefficients in front of the state variables vanish. The coefficient

on log capital results in ϕk =
κ

1−βκ
(see as well equation E.4). The coefficient in front of the

resource vector implies Hotelling’s rule ϕR,t = βtϕR,0 (see as well equation E.7). The time

dependent affine shadow value ϕt can be chosen to set the right hand side of the Bellman
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equation to zero (thereby measuring the state-independent welfare contribution). Thus, the

trial solution solves the dynamic programming problem if and only if the shadow values solve

the equations stated in the proposition (eliminating the coefficients of the remaining states).

G Appendix to Section 5: Results under Uncertainty

G.1 Proof of Proposition 5

The autoregressive gamma process by Gourieroux & Jasiak (2006) is as a Poisson mixture

of gamma distributions. Denoting by Xt the state of an autoregressive gamma process the

one-step-ahead distribution is

Xt+1

c
|(Z,Xt) ∼ gamma(νt + Z), where Z|Xt ∼ Poisson

(
γXt

c

)

.

for c, γ, νt > 0 in all periods. The random variable Z is drawn from a Poisson distribution

and modulates the shape parameter of the standard gamma distribution (with scale c). The

expectation and variance of this process are

E(Xi,t+1|Xt) = νtc+ γXt

Var(Xi,t+1|Xt) = νtc
2 + 2cγXt.

and the cumulant generating function is

GXt+1
(u) = log [E (exp(uXt+1)|Xt)] = −νt log(1− uc) + u

1−uc
γXt .

Applying the model to the temperature-carbon feedback, I chose

νt =
δτ
c

(
M1,t+Gt

Mpre
− ητ

)

,

which results in the expectation and variance cited as equations (16) and (17) in the main

text. To apply Proposition 4, I calculate (one over α times) the cumulant generation function
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of Xt = (Mt, τt, It) with It = (xM
t , σM

t , xτ
t , zt) and z = αϕ⊤

1

α
log
(
E exp(αϕ⊤Xt+1)|Xt

)
= ϕ⊤

MΦMt + ...+ (ϕM,1 − ϕM,2)x
M
t +

α

2
(ϕM1 − ϕM2)

2σM
t

2
(G.1)

+ϕ⊤
τ στt +

σforc

Mpre

ϕτ,1M1,t − hϕτ,1γ
x
τ zt − hϕτ,1(δτ − ǫ(c))M1,t

Mpre
+ ...

+ϕM
x γx

MxM
t +

α

2
ϕM
x

2
δMx
M

2 M1,t

Mpre

+
α

2
ϕM
x

2
δσxM

2
σM
t

2

+ϕM
σ γσ

MσM
t

2
+ ...+ ϕM

σ δMσ
M

M1,t

Mpre

− δτ
αc

M1,t

Mpre
log(1− α[ϕτ

x + hϕτ,1]c) +
ϕτ
x+hϕτ,1

1−α[ϕτ
x+hϕτ,1]c

γx
τ x

τ
t

+ϕzγ
x
τ zt + ϕz(δτ − ǫ(c))M1,t

Mpre
+ ...

I abbreviate by “...” affine terms that are independent of the states. Sorting the r.h.s.

of equation (G.1) by states identifies Proposition 4’s linear terms bMi (αϕ⊤
M , αϕ⊤

τ , αϕ
⊤
I ),

bτi (αϕ
⊤
M , αϕ⊤

τ , αϕ
⊤
I ), and bIi (αϕ

⊤
M , αϕ⊤

τ , αϕ
⊤
I ) where ϕI = (ϕM

x , ϕτ
x , ϕ

M
σ , ϕτ

σ). Then, Propo-

sition 4 implies the following system of equations for the shadow values

ϕ⊤
M = βϕ⊤

MΦ+ β
(

σforc

Mpre
ϕτ,1 +

α
2

δMx
M

2

Mpre
ϕM
x

2
+

δMσ
M

Mpre
ϕM
σ + 1

Mpre
(ϕτ

z − hϕτ,1)(δτ − ǫ(c)) (G.2)

− δτ
Mpre

log(1−αc(ϕτ
x+hϕτ,1)

αc

)

e⊤
1

ϕ⊤
τ = βϕ⊤

τ σ − (1 + βϕk)ξ0e
⊤
1 (G.3)

ϕτ
z = β(ϕτ

z − hϕτ,1)γ
x
τ (G.4)

ϕτ
x = β ϕτ

x+hϕτ,1

1−αc(ϕτ
x+hϕτ,1)

γx
τ (G.5)

ϕM
x = β(ϕM,1 − ϕM,2) + βϕM

x γx
M (G.6)

ϕM
σ = β

α

2

(

(ϕM,1 − ϕM,2)
2 + δσxM

2
ϕM
x

2
)

+ βϕM
σ γσ

M (G.7)

Temperature related shadow values:

The temperature’s shadow value is as before by equation (G.3)

ϕ⊤
τ = −(1 + βϕk)ξ0e

⊤
1 (1I−βσ)−1.

The feedback operates through the carbon’s shadow value and through the persistent shock

shadow value ϕτ
x for which equation (G.5) delivers the quadratic equation

ϕτ
x − αcϕτ

x
2 − αchϕτ,1ϕ

τ
x = βϕτ

xγ
x
τ + βhϕτ,1γ

x
τ

⇔ αc
︸︷︷︸

≡ã

ϕτ
x
2 + (βγx

τ + αchϕτ,1 − 1)
︸ ︷︷ ︸

≡b̃

ϕτ
x + βhϕτ,1γ

x
τ

︸ ︷︷ ︸

≡c̃

= 0
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Instead of using the common abc-formula I use the solution arrived at by Mullers method,

which solves ãx2 + b̃x + c̃ = 0 by the roots x = −2c̃

b̃±
√

b̃2−4ãc̃
. The solution is advantageous

because it yields a valid root for the case ã = 0, which corresponds to the deterministic

case.31 Then

ϕτ
x =

−2c̃

b̃±
√

b̃2 − 4ãc̃
= ϕτ,1

2βhγx
τ

(1− βγx
τ − αchϕτ,1)±

√

(1− βγx
τ − αchϕτ,1)2 − 4αchϕτ,1βγx

τ

=
βγx

τ

1− βγx
τ

2

1− αchϕτ,1

1−βγx
τ
±
√
(

1− αchϕτ,1

1−βγx
τ

)2

− 4αchϕτ,1

1−βγx
τ

βγx
τ

1−βγx
τ

︸ ︷︷ ︸

≡T

hϕτ,1 (G.8)

To identify the economically meaningful root, I take c → 0. The negative root diverges and

identifies the positive root as the correct root (the root with +
√

). The correct deterministic

limit delivers ϕτ
x → ϕτ,1

βhγx
τ

(1−βγx
τ )

for c → 0. The shadow value in the deterministic limit

coincides with the (negative of the) shadow value ϕτ
z that results from equation (G.5) as

ϕτ
z = − βhγx

τ

1− βγx
τ

ϕτ,1.

Carbon-flow uncertainty:

Equation (G.2) delivers the shadow value vector equation

ϕ⊤
M = β

(
σforc

Mpre

ϕτ,1 +
α

2

δMx
M

2

Mpre

ϕM
x

2
+

δMσ
M

Mpre

ϕM
σ +

1

Mpre

(ϕτ
z − hϕτ,1)(δτ − ǫ(c)) (G.9)

− δτ
Mpre

log(1− αc(ϕτ
x + hϕτ,1)

αc

)
[
(1I−βΦ)−1

]

1,·
.

Dividing the second through the first shadow value entry I obtain

ϕM,2 =
[(1I−βΦ)−1]1,2
[(1I−βΦ)−1]1,1
︸ ︷︷ ︸

≡r

ϕM,1 . (G.10)

Equation (G.6) delivers the shadow value

ϕM
x =

β

1− γx
Mβ

(ϕM,1 − ϕM,2) =
β

1− γx
Mβ

(1− r)

︸ ︷︷ ︸

≡A

ϕM,1 , (G.11)

where the second equality uses equation (G.10). Substituting these results into equation

31The common abc-formula yields a fraction 0
0 for ã = 0. Having a well-defined root for the deterministic

special case permits me to connect the uncertain SCC directly to the deterministic SCC.
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(G.7) delivers

ϕM
σ = β

α

2

(ϕM,1 − ϕM,2)
2 + δσxM

2
ϕM
x

2

1− γσ
Mβ

= β
α

2

(1− r)2 + δσxM

2
A2

1− γσ
Mβ

︸ ︷︷ ︸

≡B

ϕM,1
2. (G.12)

Inserting equation (G.11) and (G.12) into the atmospheric shadow value component of equa-

tion (G.9) results in the quadratic equation

ϕM,1 = β

(
α

2

δMx
M

2

Mpre

ϕM
x

2
+

δMσ
M

Mpre

ϕM
σ

)
[
(1I−βΦ)−1

]

1,1

+
β

Mpre

(

σforcϕτ,1 + (ϕτ
z − hϕτ,1)(δτ − ǫ(c))− δτ

log(1− αc(ϕτ
x + hϕτ,1)

αc

)
[
(1I−βΦ)−1

]

1,1

= β

(
α

2

δMx
M

2

Mpre

A2 +
δMσ
M

Mpre

B

)
[
(1I−βΦ)−1

]

1,1

︸ ︷︷ ︸

≡â

ϕM,1
2

+
β

Mpre

(

σforcϕτ,1 + (ϕτ
z − hϕτ,1)(δτ − ǫ(c))− δτ

log(1− αc(ϕτ
x + hϕτ,1)

αc

)
[
(1I−βΦ)−1

]

1,1

︸ ︷︷ ︸

≡ĉ

.

Using once more the quadratic formula deriving from Muller’s method I obtain the solution

ϕM,1 =
2ĉ

1±
√
1− 4âĉ

and once again the positive root is the one that is economically meaningful as it converges

for â = 0 to the correct solution (including the deterministic special case if all uncertainty

is absent). I transform the expression for ϕM,1 and, in the last step, do a first order Taylor

approximation in both numerator and denominator

ϕM,1 =
2ĉ

1 +
√
1− 4âĉ

= ĉ

(

1 +
1−

√
1− 4âĉ

1 +
√
1− 4âĉ

︸ ︷︷ ︸

≡θM

)

≈ ĉ

(

1 +
âĉ

1− âĉ

)

, (G.13)

where the approximation is first order around âĉ = 0 in both numerator and denominator.
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The term â is

â = β

(
α

2

δMx
M

2

Mpre

A2 +
δMσ
M

Mpre

B

)
[
(1I−βΦ)−1

]

1,1

= β
α

2

1

Mpre

[( βδMx
M

1− γx
Mβ

)2

(1− r)2

+
βδMσ

M

1− γσ
Mβ

(

(1− r)2 +
( βδσxM

1− γx
Mβ

)2

(1− r)2
)]
[
(1I−βΦ)−1

]

1,1

=
α

2

β

Mpre

[

AM�x
M

2
+ AM�σ

M Aσ�x
M

2
+ AM�σ

M

]

(1− r)2
[
(1I−βΦ)−1

]

1,1

=
α

2

β

Mpre

[

AM�x
M

2
+ AM�σ

M Aσ�x
M

2
+ AM�σ

M

]
(

[(1I−βΦ)−1]
1,1

−[(1I−βΦ)−1]
1,2

)2

[(1I−βΦ)−1]1,1
(G.14)

with AM�x
M =

δMx
M β

1− γx
Mβ

, AM�σ
M =

δMσ
M β

1− γσ
Mβ

, Aσ�x
M =

δσxM β

1− γx
Mβ

. (G.15)

Temperature-carbon feedback:

Evaluating the term ĉ requires the evaluation of

ϕτ
z − hϕτ,1 = −

(
βγx

τ

1− βγx
τ

+ 1

)

hϕτ,1 = − h

1− βγx
τ

ϕτ,1 = −h̄ϕτ,1,

where I defined h̄ = h
1−βγx

τ
, and, using equation (G.8), the evaluation of

ϕτ
x + hϕτ,1 =

(
βγx

τ

1− βγx
τ

T + 1

)

hϕτ,1 =
1 + βγx

τ (T − 1)

1− βγx
τ

hϕτ,1 =
(

1 + βγx
τ (T − 1)

)

h̄ϕτ,1.

Using the definition F ≡ αc h
1−βγx

τ
ϕτ,1 = αch̄ϕτ,1 I define the expression

θ∗τ ≡ βγx
τ (T − 1) = βγx

τ




2

1− F +
√

(1− F )2 − 4F βγx
τ

1−βγx
τ

− 1





= βγx
τ

1 + F −
√

(1− F )2 − 4F βγx
τ

1−βγx
τ

1− F +
√

(1− F )2 − 4F βγx
τ

1−βγx
τ

≈ βγx
τF

1− βγx
τ − F

(G.16)

Using this definition and denoting the shadow value of atmospheric carbon under certainty,
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see equation (E.5), by ϕdet
M,1 the term ĉ becomes

ĉ =
βσforcϕτ,1

Mpre

[
(1I−βΦ)−1

]

1,1

(

1 +
δτ h̄

σforc

(

− 1− log(1− αc
(
1 + βγx

τ (T − 1)
)
h̄ϕτ,1

αch̄ϕτ,1

+
ǫ(c)

δτ

))

= ϕdet
M,1

(

1 +
δτ h̄

σforc

(− log
(
1− αch̄ϕτ,1(1 + θ∗τ )

)

αch̄ϕτ,1

− 1 +
ǫ(c)

δτ

))

= ϕdet
M,1

(

1 +
δτ h̄

σforc

(− log
(
1− F (1 + θ∗τ )

)

F
− 1 +

ǫ(c)

δτ

))

. (G.17)

The joined first order approximation in θ∗τ and F (first approximation), and a first order

approximation in F using the definition of θ∗τ (second approximation) deliver

θτ ≡ − log
(
1− F (1 + θ∗τ )

)

F
− 1 ≈ θ∗τ +

1

2
F ≈ 1

2

1 + βγx
τ

1− βγx
τ

F. (G.18)

Summarizing the results

Defining θ∗M = âĉ, equation (G.13) delivers

ϕM,1 = ĉ
(
1 + θM

)
with θM =

1−
√

1− 4θ∗M
1 +

√
1− 4θ∗M

≈ θ∗M
1− θ∗M

.

Moreover, equations (G.17) and (G.18) imply

ĉ = ϕdet
M,1

(

1 +
δτ h̄

σforc

(

θτ +
ǫ(c)

δτ

))

with θτ as in equation (G.18). (G.19)

Thus, ϕM,1 = ϕdet
M,1

(
1 + θM

)
(

1 + δτ h̄
σforc

(

θτ +
ǫ(c)
δτ

))

and transformed to consumption units

SCC = SCCdet
(
1 + θM

)
(

1 +
δτ h̄

σforc

(

θτ +
ǫ(c)

δτ

))

Finally, equation (G.16) defines θ∗τ , the expressions h̄ = h
1−βγx

τ
and F = αch̄ϕτ,1 are as defined

in the text above, and equations (G.14), (G.15), and (G.19) give the expression stated for

θ∗M = âĉ in the proposition.

Eliminating δτ
The parameter δτ can be normalized away as follows. Let the superindex old denote quantities

in the general system above, which I will scale by δτ as follows to obtain a rescaled set of

equations of motions:

h = holdδτ , c =
cold

δτ
, xτ

t =
xτ
t
old

δτ
, zt =

zoldt

δτ
and ǫ(c) =

ǫold(c)

δτ
.
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Generalized temperature follows the equation of motion

τt+1 = στt +

(

σforcM1,t +Gt

Mpre

+ h(xτ
t+1 − zt+1)

)

e1 (G.20)

and hxτ
t+1 and hzt+1 remain unaffected by the changes. As a consequence, also τt+1 remains

unaffected. Moreover, changing xτ
t and zt at all times indeed leads to the following updating

equations that no longer depend on δτ (and correspond to δτ = 1)

E xτ
t+1 = E

xτ
t+1

old

δτ
= γx

τ

xτ
t
old

δτ
+
(

M1,t+Gt

Mpre
− ητ

)

= γx
τ x

τ
t +

(
M1,t+Gt

Mpre
− ητ

)

Var xτ
t+1 = Var

xτ
t+1

old

δτ
=

1

δ2τ
Var xτ

t+1
old =

c

δτ

[

2γx
τ

xτ
t

δτ
+
(

M1,t+Gt

Mpre
− ητ

) ]

zt+1 =
zoldt+1

δτ
= γx

τ

zoldt

δτ
+

(

1− ǫold(c)

δτ

)(
M1,t+Gt

Mpre
− ητ

)

= γx
τ zt + (1− ǫ(c))

(
M1,t+Gt

Mpre
− ητ

)

Thus, we can set δτ = 1 without loss of generality.

H Welfare, Uncertainty, and Learning

H.1 Proof of Corollary 2

In the following, the terms A, B, and adet refer to those defined on page 55 in equation

(E.8) in the proof of the deterministic case. In the present model with uncertainty, I denote

the affine shadow value by ϕunc
t . I start out with uncertainty only affecting state j, i.e.,

ǫit = νi
t = 0∀i 6= j. Then, the Bellman equation is

∑∞

i=1 ϕ
j
κ,iκ

j
i,t + ϕunc

t + B = A+ adet + βϕunc
t+1 +

β

α
log
(

Et exp
[

α
(
∑∞

i=1 ϕ
j
κ,i(γ

j
i κ

j
i,t + χj

i,t) + ϕjǫ
j
t(κ

j
1, κ

j
2, ...) + ϕjν

j
t

)])

⇒ ϕunc
t + B = A+ adet + βϕunc

t+1 +
∑∞

i=1

[

ϕj
κ,i(βγ

j
i − 1) + β

(αϕj)
i

i!α

]

κj
i,t

+β

α
log
(

Et exp
[

α
(

ϕjν
j
t +

∑∞

i=1 ϕ
j
κ,iχ

j
i,t

)])

.

Matching the coefficients of the new states κj
i , i ∈ N, eliminates the squared bracket in front

of the cumulants and delivers the shadow values stated in equation (29).

Under certainty, equation (E.8) shows that ϕdet
t + B = A + adet + βϕdet

t+1. Thus, the

difference between the affine shadow value under uncertainty and under certainty in the
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present (t = 0) is

ϕunc
0 − ϕdet

0 = β(ϕunc
1 − ϕdet

1 ) +
β

α
log
(

E0 exp
[

α
(
∑∞

i=1 ϕ
j
κ,iχ

j
i,0

)])

+G
ν
j
0
(αϕj)

=
∑∞

t=0

[
βt+1

α
log
(

Et exp
[

α
(
∑∞

i=1 ϕ
j
κ,iχ

j
i,t

)])

+G
ν
j
t
(αϕj)

]

+ limt→∞ βt(ϕunc
t − ϕdet

t ),

where the limit goes to zero for a well-defined model. The welfare difference between the

uncertain and the deterministic scenario is characterized by the novel cumulant dependent

part of welfare
∑∞

i=1 ϕκ,iκi,t and the affine contribution to welfare ϕunc
0 − ϕdet

0

∆W j = V unc
0 − V det

0 =
∞∑

i=1

ϕj
κ,iκ

j
i,0 + ϕunc

0 − ϕdet
0

=
∑∞

i=1 ϕ
j
κ,iκ

j
i,0 +

∑∞

t=0
βt+1

α
G

ν
j
t
(αϕj)

+
∑∞

t=0
βt+1

α
log
(

Et exp
[

α
(
∑∞

i=1 ϕ
j
κ,iχ

j
i,t

)])

For the general case of shocks to more than one state j, it is easy to see the additivity of

the individual contributions for each j giving rise to the total welfare loss ∆W unc stated in

equation (??) in Proposition 2.

H.2 Proof of Corollary 1

In the case of persistent carbon sink shocks, the adjustments in the equations of motion (22)

and (??) modify or add the following terms to the Bellman equation (9)32

ϕǫǫt + ϕt + ... = ...+βϕt+1 + βϕǫγǫt + β[ϕM1
− ϕM2

]ǫt +
β

α
log
(

Et exp
[
αϕǫχt

])

.

It is easily observed that these changes do not affect the optimal investment rate and labor

distribution. Matching the coefficients of the flow adjustment ǫt to make the Bellman equa-

tion independent of its level delivers equation (??) for the shadow value ϕǫ. The remaining

terms imply ϕt = βϕt+1 +
1
α
log
(

Et exp
[
αβϕǫχt

])

+ constt, where constt is a term that is

independent of the uncertainty. Given ǫ0 = 0, the welfare difference between the determin-

istic and the uncertain scenario is determined by the difference of the affine value function

contributions

∆W V AR= V unc
0 − V det

0 = ϕunc
0 − ϕdet

0 = β(ϕunc
1 − ϕdet

1 ) +
β

α
log
(

E0 exp
[
αϕǫχ0

])

=
∑∞

i=0
βi+1

α
log
(

Ei exp
[
αϕǫχi

])

+ limi→∞ βi(ϕunc
i − ϕdet

i ) .

32Under uncertainty, let Ω denote the underlying Borel sigma algebra and F the filtration generated by
the stochastic process. The equations of motion are conditional on ω ∈ Ω, the controls are adapted to the
filtration, and expectation in period t are conditional on Ft.
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For a well-defined dynamic system limi→∞ βi(ϕunc
t+i − ϕdet

t+i) = 0 and I obtain the general

welfare loss equation for non-stationary shocks

∆W V AR = 1
α

∑∞

t=0 β
t+1 log

[
E exp

[
αϕǫχt

]]
. (H.1)

For a sequence of identically distributed shocks χt, I obtain the welfare cost of uncertainty

stated in (30) by evaluating the implied geometric sum in equation (H.1).

H.3 Proof of Proposition ??

In the case of anticipated learning, the new equation of motion for the atmospheric and the

biosphere-and-upper-ocean carbon reservoirs take the form

M1,t+1 = (ΦMt)1 +
∑Id

i=1 Ei,t + Eexo
t + ǫt + νt, (H.2)

M2,t+1 = (ΦMt)2 − ǫt − νt.

I model the learning process based on atmospheric carbon observation.33 Rearranging equa-

tion (H.2), the decision maker derives information on ǫt from the realizations

ǫ̂t = M1,t+1 − (ΦMt)1 −
∑Id

i=1 Ei,t − Eexo
t − νt .

The equations of motion for the Bayesian prior’s mean and variance are

µǫ,t+1 =
σ2
ǫ,tǫ̂t + σ2

ν,tµǫ,t

σ2
ǫ,t+σ2

ν,t

and σ2
ǫ,t+1 =

σ2
ν,tσ

2
ǫ,t

σ2
ν,t + σ2

ǫ,t

.

This standard Bayesian updating equation characterizes the posterier mean as a weighted

average of the new observation and its prior mean. The weight of the new observation

is inversely proportional to the variance of the measurement error (or proportional to its

precision). The weight on the prior’s mean is inversely proportional to its variance. The

variance of the carbon cycle uncertainty in this Bayesian learning model falls exogenously

over time. The smaller the ratio of stochasticity to overall uncertainty
σ2
ν,t

σ2
ν,t+σ2

ǫ,t
, the faster

the learning.

33In principle, the decision-maker could simultaneously learn from observing the carbon concentration
in the combined biosphere and upper ocean reservoir. However, whereas the CO2 concentration in the
atmosphere is somewhat homogenous, the concentration (partial pressure) in the ocean varies from 250
ppm to 500ppm over regions and seasons, and an annual 1Gt ocean uptake is driven by as little as a
2ppm difference between the concentrations in the atmosphere and the oceans. Thus, measurement errors
in the non-atmospheric carbon reservoir are so much larger that an observation-based learning model can
comfortably ignore these additional measurements.
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These adjustments in the equations of motion imply modifications of the Bellman equa-

tion (9) captured by the terms

ϕµµǫ,t + ϕt + ... = ...+βϕt+1 + βϕµ

σ2
ν,t

σ2
ν,t+1 + σ2

ǫ,t

µǫ,t (H.3)

+
β

α
log
(

Et exp
[

α
(

ϕM1
− ϕM2

+ ϕµ,t

σ2
ǫ,t

σ2
ν,t+1 + σ2

ǫ,t

)

(ǫt + νt)
])

.

Matching the coefficients of the informational state µǫ,t to make the Bellman equation inde-

pendent of its level delivers equation (??) for the shadow value ϕµ. Solving inductively the

remaining state-independent terms in equation (H.3) for the welfare difference between the

uncertain and the deterministic scenario as in the proof of Proposition 1 delivers the welfare

loss

∆WBayes =
∑∞

t=0 β
t+1α

σ2
ǫ,t+σ2

ν,t

2

[

ϕM1
− ϕM2

+ ϕµ,t
σ2
ǫ,t

σ2
ν,t+σ2

ǫ,t

]2

.

=
∑∞

t=0 β
t+1α

σ2
ǫ,t+σ2

ν,t

2
(ϕM1

− ϕM2
)2
[
(1−β)σ2

ǫ,t+(1−β)σ2
ν,t+βσ2

ǫ,t

(1−β)(σ2
ǫ,t+σ2

ν,t)

]2

,

where I inserted the shadow value ϕµ from equation (??). Canceling terms in the numerator

of the expression in squared brackets delivers equation (27) in the main text.

H.4 Quantitative Analysis of Carbon Cycle Uncertainty

The quantification of carbon cycle uncertainy in section ?? is an informed guess based on Joos

et al.’s (2013) model comparison study and the measurement error implied by the missing

sink. Here, I attempt to bound the welfare impact using a somewhat reasonable lower and

upper bound for carbon cycle uncertainty. In the VAR model of section ??, the left panel

of Figure 7 reduces the shock’s standard deviation to 10 Gt per decade. It builds up to a

200Gt standard deviation after about 300 years, which is significantly lower than the 500Gt

standard deviation in Joos et al.’s (2013) model comparison study. The resulting welfare loss

is approximately 28 billion USD. The right panel of Figure 7 increases the shock’s standard

deviation to 50 Gt per decade. It builds up to the suggested 500Gt standard deviation after

125 years, but implies double that value after around 350 years. The resulting welfare loss

is approximately 700 billion USD.

In section ??, I found a willingness to pay for a stochasticity reduction (or reduction in

measurement error) of approximately half a billion USD per Gt decadal standard deviation.

If the initial measurement error σν is already down to 5Gt instead of 10Gt per decade, then

this willingness to pay is also cut into half to approximately 260 million USD. If the initial

measurement error is doubled (σν = 20Gt), then the willingness to pay increases to 750

million USD.
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Figure 7: shows the evolution of atmospheric carbon under the low and the high specifications
of the carbon cycle shock in equation (??), σχ = 10 Gt on the left and σχ = 50 Gt on the right.
The shock’s persistence of γM = 0.997 is calibrated to Joos et al.’s (2013) model comparison study.
The underlying emission scenario is DICE’s business as usual. The deterministic DICE evolution
(5 year time steps, “Data”), the deterministic GAUVAL evolution (10 year time steps), and the
mean and the median of 1000 uncertain trajectories are hardly distinguishable.

H.5 Proof or Proposition ??

In the combined model of persistent epistemological and VAR uncertainty over the temper-

ature increase in section ?? the Bellman equation gains the following terms

∑∞

i=1 ϕκ,iκi,t + ϕt + ... = ...+ βϕt+1 +
β

α
log
(

Et exp
[

α
(
∑∞

i=1 ϕκ,i(γiκi,t + χτ
i,t)

+ϕτ,1ǫ
τ
t (κ1, κ2, ...)

)])

.

⇒ ϕt + ... = ...+ βϕt+1 + β
∑∞

i=1

[

ϕκ,i(βγi − 1) + β (αϕτ,1)i

i!α

]

κi,t

+β

α
log
(

Et exp
[

α
(
∑∞

i=1 ϕκ,iχ
τ
i,t

)])

.

Matching the coefficients of the new states κi, i ∈ N, eliminates the squared bracket in front of

the cumulants and delivers the shadow values stated in equation (29). The difference between

the uncertain and the deterministic value function’s affine components derives analogously

to the proof of Proposition 1 to

ϕunc
0 − ϕdet

0 = β(ϕunc
1 − ϕdet

1 ) +
β

α
log
(

E0 exp
[

α
(
∑∞

i=1 ϕκ,iχ
τ
i,t

)])

=
∑∞

t=0
βt+1

α
log
(

Et exp
[

α
(
∑∞

i=1 ϕκ,iχ
τ
i,t

)])

.
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Figure 8: shows estimates of the probability distribution of a temperature increase in degree
Celsius resulting from a doubling of CO2 concentrations with respect to industrial levels. On the
left, the figure depicts 20 probability distributions of climate sensitivity derived by different groups
and using different methodological approaches (Meinshausen et al. 2009). On the right, the figure
depicts the average distribution assigning equal weight to each approach. The Figure is to be
interpreted as the probability density of a temperature increase conditional on not exceeding 10C.

The welfare difference between the uncertain and the deterministic scenario is now comprised

of a state (cumulant) dependent part
∑∞

i=1 ϕκ,iκi,t and the affine part of the value functions

∆W temp = V unc
0 − V det

0 =
∞∑

i=1

ϕκ,iκi,t + ϕunc
0 − ϕdet

0

=
∑∞

i=1 ϕκ,iκi,t +
∑∞

i=0
βi+1

α
log
(
Et exp

[
α
(∑∞

i=1 ϕκ,iχ
τ
i,t

)])
.

In the case of identically distributed shocks over time, the second sum characterizes a geo-

metric series giving rise to the factor β

1−β
, turning the welfare loss into the form stated in

equation (28) in the main text.

H.6 Quantitative Analysis of Temperature Uncertainty

Figure 8 illustrates the uncertainty governing the temperature increase from a doubling of

the CO2 concentration, the so-called climate sensitivity. On the left, the figure depicts 20

probability distributions of climate sensitivity derived by different groups and using different

methodological approaches (Meinshausen et al. 2009). These probability densities are con-

ditional on the temperature increase not exceeding 10 C. On the right, the figure depicts the

average distribution assigning equal weight to each approach. The distribution is positively

skewed and exhibits more weight in the right tail as compared to a (truncated) normal dis-

tribution. It serves as the starting point for my numeric estimates of the welfare loss from

temperature uncertainty.

This average climate sensitivity distribution on the right of Figure 8 has an expected

value of 3.4 C, differing from the common best guess of 3 C employed so far. Focusing on
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the uncertainty contribution, I shift Meinshausen et al.’s (2009) distribution to the left to

conserve the 3 C warming expectation. I denote the implied distribution of the generalized

temperature state by τ̃∞. By equation (??), the temperature flow uncertainty ǫτ = [1 −
σ]1,1τ̃

∞ − 2σforc generates this long-run temperature uncertainty under the assumption of

a doubling of preindustrial CO2 concentrations. I start by assuming only the VAR model,

which corresponds to autoregressive shocks χ1 to the mean. Such shocks build up over time,

and for a doubling of CO2 concentrations a stationary shock χ1 = (1 − γ)ǫτ generates the

depicted distribution of climate sensitivity. As explained in section ??, the simulation assigns

a fraction ζ of the long-run climate sensitivity uncertainty to this shock-based contribution,

and the fraction 1 − ζ to the initial epistemological uncertainty. More than two decades of

IPCC assessment reports have not tightened the confidence interval on climate sensitivity.

Therefore, I assume a persistence of epistemological (and VAR shock) uncertainty of γ = 0.9

in my “baseline” scenario. In evaluating the welfare loss from temperature uncertainty along

the DICE business as usual scenario, I scale the exogenous shocks χ1,t proportional to the

atmospheric CO2 concentrations along the business as usual path (thick black ‘data’ line in

Figure 4).34

34The scaling of the shock is proportional to the CO2 concentration because the shock affects transformed
temperature, which translates logarithmically into real temperature, accounting for falling radiative forcing
from an additional ton of CO2.
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