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Is the standard hyperbolic-discounting model capable of robust qualitative predic-
tions for savings behavior? Despite results suggesting a negative answer, we provide
a positive one. We give conditions under which all Markov equilibria display either
saving at all wealth levels or dissaving at all wealth levels. Moreover, saving ver-
sus dissaving is determined by a simple condition comparing the interest rate to a
threshold made up of impatience parameters only. Our robustness results illustrate
a well-behaved side of the model and imply that qualitative behavior is determinate,
dissipating indeterminacy concerns to the contrary (Krusell and Smith, 2003). We
prove by construction that equilibria always exist and that multiplicity is present in
some cases, highlighting that our robust predictions are not due to uniqueness. Sim-
ilar results may be obtainable in related dynamic games, such as political economy
models of public spending.

1 Introduction

This paper revisits consumption-saving decisions within the basic (quasi) hyperbolic-
discounting model, as in Phelps and Pollak (1968) and Laibson (1997).1 The horizon is
infinite, time is discrete, and there is no uncertainty. Consumers save and borrow at a
constant interest rate, and may face a limit to borrowing. Preferences over future con-
sumption paths are not time consistent (Strotz, 1956). In particular, the entire future is
heavily discounted against the present, while impatience is relatively modest between

∗For useful comments and suggestions, we thank the editor Itzhak Gilboa and four anonymous refer-
ees. We also appreciate conversations with Jinhui Bai, Satyajit Chatterjee, Behzad Diba, Per Krusell, Roger
Lagunoff, John Rust, Tony Smith, Pierre Yared, Andrea Wilson, as well as seminar and conference partici-
pants.

1As is well known, collective decision making models in the political economy literature, featuring
alternating governments without commitment, can formally resemble the hyperbolic consumption-saving
model that we study here, see e.g. Alesina and Tabellini (1990), Amador (2002), Azzimonti (2011). Another
very related class of models are the intergenerational growth models, see e.g. Bernheim and Ray (1987).
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neighboring future periods, inducing a present bias. Behavior is approached as a dy-
namic game across different “selves”. Formally, a sequence of decision makers, one for
each date, play against each other, deciding how much to consume and save given their
current wealth, the state variable. We focus on (symmetric) Markov equilibria of this dy-
namic savings game, a common refinement in the literature. Our goal is to provide robust
predictions for savings behavior across all Markov equilibria.

Early contributions by Phelps and Pollak (1968) and Laibson (1996) focused on lin-
ear equilibria, with constant saving rates, providing definite predictions for savings as
a function of the interest rate and impatience parameters. However, there are two well-
understood shortcomings with this approach. First, in the presence of binding borrow-
ing limits, as in most recent contributions, linear equilibria do not exist. Second, even
when linear equilibria exist, other nonlinear Markov equilibria may exist.2 Unfortunately,
studying Markov equilibria away from the linear case has been shown to be quite de-
manding, in part due to their non-smooth nature (Morris and Postlewaite, 1997; Harris
and Laibson, 2002; Chatterjee and Eyigungor, 2016). Perhaps due to these challenges, lit-
tle is known about the set of Markov equilibria and virtually no predictions have been
offered for saving behavior (the stated object of study) that hold across all equilibria.

While clearly desirable, should we expect robust predictions of this sort to be possi-
ble? In an influential contribution, Krusell and Smith (2003) suggest a negative answer:
they present a construction to argue that the standard hyperbolic-discounting model is
ill behaved in the sense of displaying a continuum of Markov equilibria, each with a
stable interior steady state, i.e. with savings above the steady state and dissavings be-
low the steady state; importantly, the steady state can be placed anywhere. Most dis-
turbingly, given our focus, this sort of indeterminacy implies that the model is incapable
of robust qualitative predictions for savings behavior: for given parameters, at any given
wealth level, the agent could be saving (for one set of equilibria) or dissaving (for another
set of equilibria). The subsequent literature has echoed concern over these pathological-
looking findings and invoked them in motivating new models, such as the continuous-
time “instant gratification” model with return uncertainty introduced by Harris and Laib-
son (2013), the temptation with self-control model due to Gul and Pesendorfer (2004) or
the dual-self model proposed by Fudenberg and Levine (2006).

Despite these apparent problems, we show that the standard hyperbolic-discounting

2Phelps and Pollak (1968, page 196) expressed a concern of this kind in their original paper: “In this
analysis, we have confined ourselves to fixed-points described by a constant saving ratio over time. We
are unsure whether or not there may exist saving sequences with non-constant ratios.” We show in Section
5.2 that for some parameters there are other Markov equilibria, in addition to the linear ones Phelps-Pollak
studied.
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model is, in fact, capable of delivering predictions for savings behavior that hold across all
Markov equilibria. These robustness results have been missed by the existing literature
and help uncover a hitherto unappreciated well-behaved side of the model. We explain
further below how to interpret Krusell and Smith (2003) in light of our findings but, in
brief, our results imply that their constructions are not Markov equilibria in our standard
hyperbolic-discounting model.

Our main result extends a well-known result from the time-consistent consumption-
saving problem. Under exponential discounting a simple and intuitive condition deter-
mines whether the agent saves or dissaves: dissaving occurs if R < 1

δ , savings if R > 1
δ

and wealth is held constant if R = 1
δ (where R is the gross interest rate and δ the discount

factor). This fundamental result is engrained across a wide range of studies of intertem-
poral choice.

No comparable result exists for the standard hyperbolic-discounting model and our
main contribution is to fill this gap. As long as utility is not too close to linear, we show
that all Markov equilibria feature either saving for all wealth levels or dissaving for all
wealth levels. Indeed, we show that, just as with exponential discounting, there exists a
threshold interest rate R∗ that is a function of impatience parameters only such that across
all Markov equilibria agents save if R > R∗, dissave if R < R∗ and hold wealth constant
if R = R∗. By implication, all Markov equilibria have the same qualitative predictions
obtained in the earlier linear equilibrium analysis.

Robust predictions are possible by virtue of two fundamental principles uncovered
by our analysis. For concreteness consider the case with R > R∗. Then our first principle
states that as wealth rises the equilibrium policy function cannot reverse from dissaving
to saving. Intuitively, agents have a natural inclination to save given the high interest rate.
Additionally, any agent immediately below a region with saving has an extra motive to
save, to enter the virtuous saving region, ensuring their successors save. This rules out
reversals from dissaving to saving.

This No Reversal Principle still leaves open the possibility of dissaving in the upper
tail of wealth levels. Our second principle rules this out. Otherwise, rich agents face the
prospect of a very long spell of dissaving and we show that this deteriorates their utility
to the point that they prefer to deviate towards holding wealth constant for one period.
This particular deviation is critical to our analysis, as it has the advantage of being easy to
compute with minimal information on an equilibrium path, without detailed knowledge
of the savings policy function. We develop this insight into a recursive restriction on
the sequence of utility values along an equilibrium outcome path that provides a simple,
yet powerful, necessary condition. We exploit this tool to establish the aforementioned
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deterioration of utility along a dissaving spell to rule out dissaving in the upper tail.
The formal methodology which we develop in establishing these two principles may

be useful in other related contexts. Of particular note is that our approach is non-local, in
the sense that it does not invoke first-order conditions or rely on any smoothness proper-
ties of the equilibrium.

To put our robustness results in context, we also investigate the questions of existence
and multiplicity of equilibria. First, we provide a general constructive proof of existence,
building an equilibrium with dissaving when R < R∗ and saving when R > R∗, ensuring
that our results are not vacuous in the sense of applying to a nonempty set of equilib-
ria. Second, we show that multiple equilibria exist in some cases, highlighting that our
robustness results are not due to uniqueness. We establish multiplicity by constructing
equilibria explicitly.3 Indeed, even for cases where a linear equilibrium exists we build
alternative nonlinear equilibria, settling a question raised by Phelps and Pollak (1968).
An important concern with models displaying multiple equilibria is that they may not
offer meaningful predictions for behavior. Our robustness results obviate this concern by
providing predictions across all Markov equilibria. Despite potential indeterminacy of
equilibria, qualitative saving behavior is determinate.

Our robustness results shed light on the construction in Krusell and Smith (2003) and
its proper interpretation. Their theorem constructs a continuum of saving functions with
the property that wealth converges to a steady-state wealth level; in the consumption-
saving context, this steady state can be placed anywhere.4 Crucially, their constructions
are only local in nature, in two ways: (i) the policy function is described only over an
interval around the proposed steady state; and (ii) saving choices are shown to be op-
timal when confined to this very interval. By implication, they validly prove that these
constructions represent equilibria for a modified game that restricts the agent to make
choices within the endogenous interval that their result constructs around the proposed
steady state.

Although the local nature of their construction is stated formally in their theorem, the
result appear to have acquired a stronger interpretation elsewhere in their paper, as well
as in the subsequent literature.5 Indeed, the restriction to a local interval may appear in-

3We establish that the equilibrium is unique with constant wealth when the interest rate equals R∗.
When R approaches R∗ all our constructions converge to this constant wealth equilibrium.

4The standard consumption-saving model we focus on has a fixed interest rate. For generality, Krusell
and Smith (2003) allow the saving technology to be weakly concave, treating the linear case as a special
important case. The linear case is not only the standard in the hyperbolic-discounting literature but also
popular in the political economy literature, e.g. Alesina and Tabellini (1990), Amador (2002), and Azzimonti
(2011). We focus on the linear case, but discuss concave saving technologies in Section 5.3.

5Krusell and Smith (2003) set up their model and define equilibria without ad hoc upper bounds on
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nocent on the surface, but, as we show, turns out to be critical. Ad hoc upper bounds
on wealth accumulation lack any obvious economic motivation and have no place in
the standard consumption-saving problem. Thus, the natural question which we pose
is whether these local constructions can be extended globally, to all wealth levels, so that
they represent equilibria for the original game. As a corollary to our results, we provide
conditions for a negative answer.

Our main results provide conditions for robust predictions that, as we explained, were
widely considered impossible. The sufficient conditions are relatively weak: for interme-
diate values of the interest rate only, we require a minimum amount of curvature in the
utility function, between linear and logarithmic; this contains the empirical range of in-
terest as well as the theoretical favorite benchmark case with log utility. It is natural to
ask whether our sufficient conditions can be discarded to show that robust predictions
are always possible. We provide a negative answer: for intermediate interest rates and
near linear utility, we construct equilibria that reverse the natural sign of saving; indeed,
equilibria may also be indeterminate. These results show that robust predictions cannot
be taken for granted, highlighting the advantage of guaranteeing them under plausible
conditions.

Finally, we discuss a few simple departures from the standard consumption-saving
model. Our results adapt to a modified game where wealth choices are constrained to a
discrete grid and an ad hoc upper bound—as is common in numerical work. This pro-
vides formal results to guide numerical work and highlights the non-local nature of our
method. Second, we discuss how our results are affected when linear returns on wealth
are replaced by concave saving technologies.

An important precursor to the discrete-time analysis we undertake here is the continuous-
time one presented in Cao and Werning (2016). That paper studies a hyperbolic discount-
ing model set in continuous time that builds on Harris and Laibson (2013). Continuous
time allows for a constructive differential approach and delivers particularly sharp re-
sults. Indeed, some of those results were instrumental in providing appropriate conjec-
tures for the discrete-time model. Despite these synergies, the analysis we undertook
here in discrete time is very different and led us to develop quite different tools. Some
differences in results remain, such as the greater extent of multiplicity that we find in the
discrete time model.

wealth and the Introduction states that “Our main result is indeterminacy of Markov equilibrium sav-
ings rules: there is a continuum of such rules. These rules differ both in their stationary points and in
their implied dynamics. [...] We construct these equilibria explicitly”. Echoes of this interpretation appear
throughout the subsequent literature.
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2 A Savings Game

Preferences in period t are given by

u(ct) + βδ
(

u(ct+1) + δu(ct+2) + δ2u(ct+3) + · · ·
)

,

for u : [0, ∞) → {−∞} ∪ R increasing, concave and continuously differentiable over
c ∈ (0, ∞), with δ < 1 and β ≤ 1. When β = 1 discounting is exponential and preferences
are time consistent. When β < 1 preferences display a bias towards the present and are
time inconsistent.6

Some of our analysis and results adopt an isoelastic utility function

u(c) =
c1−σ

1− σ
,

with σ 6= 1 and σ > 0; u(c) = log(c) when σ = 1. Isoelastic utility is a relatively standard
assumption favored by the literature, which we adopt for convenience and comparability.
The assumption is helpful to characterize equilibria on an unbounded state space. How-
ever, many of our results apply without isoelastic utility and all of our results hold with
the weaker assumption that utility is isoelastic above some consumption level, since we
only use the assumption to invoke homogeneity in the upper tail for wealth.

The budget constraint is
ct + kt+1 = Rkt,

for some gross interest rate R > 1.7 The agent is also subject to a wealth limit

kt ≥ k,

for some k ≥ 0. Although we have not included labor income, this is without loss of
generality since the present value of labor income can be lumped into wealth. Borrowing
constraints against future income then translate into a strictly positive wealth limit, k > 0,
making this an especially relevant case.8 The case k = 0 represents the so-called ’natural

6We focus on the present-bias case, β < 1, which is also the main focus in the behavioral economics
and political economy literatures. However, our methods and results likely extend straightforwardly to the
future-bias case, β > 1, which may be relevant in some applications. For example, while some political
economy settings map into a hyperbolic discounting with β < 1, others may imply β > 1.

7To simplify, in the text we assume R > 1, but discuss how our results carry over with R ≤ 1. See
footnote 17.

8Let labor income be y > 0. Then the constraints are

ct + kt+1 = y + Rkt

and kt+1 ≥ k ≥ − 1
R−1 y; the latter inequality is required to ensure that ct ≥ 0 is feasible. The change in
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borrowing limit’ offering maximal liquidity.
Our results compare the gross interest rate R to a threshold

R∗ ≡ 1 +
1− δ

βδ
.

Note that when β = 1 then R∗ = 1
δ , and when β < 1 then R∗ ∈ (1

δ , 1
βδ ).

Finally, following Phelps and Pollak (1968), we assume that the agent maximization
problem for β = 1 is well defined. When utility is iso-elastic this is equivalent to the
growth condition

δR1−σ < 1.

Note that when R > 1
δ this requires σ > σ for some lower bound σ ∈ (0, 1) that depends

on δ and R. Some of our results impose a separate lower bound σ ∈ (0, 1). All our results
apply for σ ≥ 1, the empirically relevant range.

Markov Equilibria. A (symmetric) Markov equilibrium is a pair of functions g : [k, ∞)→
[k, ∞) and V : [k, ∞)→ R satisfying

V(k) = u(Rk− g(k)) + δV(g(k)) ∀k ≥ k, (1)

u(Rk− g(k)) + βδV(g(k)) ≥ u(Rk− k′) + βδV(k′) ∀k, k′ ≥ k, (2)

and the limiting condition δtV(gt(k))→ 0 where g0 = k and gt+1 = g(gt).9 Condition (2)
ensures that the savings function g maximizes the utility of the current self with respect to
savings k′, taking as given how future consumption is affected by the chosen k′, as sum-
marized in the continuation value V(k′). Condition (1), together with the limit condition,
ensures that V(k) equals the discounted utility from consumption implied by the savings
function, V(k) = ∑∞

t=0 δtu(Rgt(k)− gt+1(k)).

2.1 Prior State of Knowledge

Now that we have laid out the standard hyperbolic-discounting model we briefly review
what was previously known about Markov equilibrium savings functions g. The upshot
is that no comprehensive and robust predictions for behavior have been put forth.

variable k̂t ≡ kt +
1

R−1 y ≥ 0 gives ct + k̂t+1 = Rk̂t and k̂t ≥ k̂. Note that this transformation requires R > 1,
we treat the case with R ≤ 1 separately.

9When k = 0 and u(0) = −∞ we modify the equilibrium definition slightly, replacing V : [k, ∞) → R

with V : [k, ∞)→ {−∞} ∪R, so that V(0) = −∞, but requiring V(k) > −∞ for k > 0. This ensures that all
equilibria have g(k) > 0 for k > 0. This weak regularity requirement excludes pathologies such as g(k) = 0
and V(k) = −∞ for all k ≥ 0.

7



Linear Equilibria. As first shown by Phelps and Pollak (1968), linear equilibria exist in
some cases. These have been extensively employed in the literature. In more detail, with
isoelastic utility, whenever R > R∗ there exists a unique linear equilibrium with positive
savings: g(k) = αk and α > 1. However, it is not known whether there are other nonlinear
equilibria (we provide an answer in Section 5.2), and if they do exist, whether all of them
involve positive savings (our answer: Section 4). When R < R∗ and k = 0 there exists a
unique linear Markov equilibrium with dissavings: g(k) = αk and α < 1. However, it has
not been established whether other equilibria exist (our answer: Section 5.2), or whether
they all involve dissaving (our answer: Section 4). Finally, the linear saving rule is no
longer an equilibrium when k > 0 and R < R∗.

Existence. Establishing the existence of Markov equilibria is important and non-trivial.10

Progress has been made on this front. Given the linear equilibria mentioned above, ex-
istence is trivial when utility is isoelastic and either R ≥ R∗ or k = 0. Bernheim et al.
(2015, Proposition 6) provide a proof of existence for R ∈ (1

δ , R∗) and k > 0.11 In Section
5.1 we provide a new result, showing existence for all R ≤ R∗ and non-isoelastic util-
ity functions. This ensures that our robustness results do not apply to an empty set of
equilibria.

Indeterminacy? Krusell and Smith (2003) argue that for moderately high interest rates
R ∈ (R∗, 1

βδ ) Markov equilibria are indeterminate, with equilibria featuring dissavings
at high wealth levels, instead of savings as in the linear equilibrium. In more detail,
their result is as follows: pick any wealth k∗ ≥ k, then they construct (g, V) (defined
in the neighborhood of k∗) satisfying the two conditions presented above for a Markov
equilibrium (with the maximization over k′ in (2) also limited to this neighborhood). The
savings function so constructed satisfies g(k∗) = k∗, g(k) < k for k > k∗, and g(k) > k
for k < k∗. Thus, starting from any k0 ≥ k (in the neighborhood of k∗) the sequence {kn}
defined by kn+1 = g(kn) = gn+1(k0) converges monotonically to k∗.

However, as noted in parenthesis above, these constructions are only local around
a neighborhood of the proposed steady state k∗. There are, then, two possibilities. In
the first, the constructions may characterize actual equilibria if there exists an extension
of the savings function over the entire range of wealth k ≥ k. This appears to be the
interpretation adopted by Krusell and Smith (2003) and the related literature. The second

10Note that the equilibrium of finite horizon versions of the game may not converge as the horizon is
extended, in which case it does not provide existence nor selection of equilibria.

11Existence results are also available for extensions of the standard model. For example, Harris and
Laibson (2001) prove existence and obtain smoothness properties by adding i.i.d. uncertainty in income.
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possibility, however, is that the local constructs do not survive any attempt at a global
extension and, thus, do not characterize a Markov equilibrium in the standard hyperbolic-
discounting model. Our results provide conditions for this second possibility.

Robust Predictions? One prediction of the standard model that has been amply studied
in the earlier literature concerns the emergence of discontinuities (see e.g. Morris and
Postlewaite, 1997; Harris and Laibson, 2002). Most recently, Chatterjee and Eyigungor
(2016) show that when R = 1

δ Markov equilibria must feature discontinuities in the policy
function. Fortunately, our method is uniquely suited to handle discontinuities and no
special treatment is required. Much research has gone into showing that discontinuities
may not survive extensions of the basic model that incorporate sufficient uncertainty.12

Although not their main focus, Chatterjee and Eyigungor (2016) also show that when
R = 1

δ all Markov equilibria must feature weak dissaving. Despite being special, this re-
sult is worth highlighting in our view because it provides a rare prediction for qualitative
saving behavior across equilibria. The goal of our paper is to provide more extensive ro-
bust predictions of this kind. As we show, the economic logic for dissaving when R ≤ 1

δ is
similar to that for R = 1

δ . These are relatively straightforward cases because, intuitively,
at such low interest rates even a time-consistent consumer, β = 1, prefers to dissave;
present bias, β < 1, only reinforces this conclusion. We will be mostly occupied with
more challenging situations, involving intermediate interest rates such as R ∈ (R∗, 1

βδ )

and R ∈ (1
δ , R∗). Indeed, Krusell and Smith (2003) suggest that robust qualitative predic-

tion are not possible when R ∈ (R∗, 1
βδ ): according to their constructions, at any wealth

level the agent could save or dissave, depending on the equilibrium.

Finite Horizon. Following most of the literature, we focus on Markov equilibria of an
infinite-horizon dynamic saving game. The resulting stationarity allows studying behav-
ior without conditioning on the remaining time horizon. Finite horizon versions have
also been studied and offer some advantages and disadvantages. On the one hand, with
a finite horizon the equilibrium is essentially unique (up to a set for wealth of measure
zero). By taking limits, this has been invoked as a selection device, especially in the ab-
sence of borrowing constraints where linear equilibria exist (Laibson, 1996; Krusell et al.,
2010). On the other hand, when borrowing constraints are present the equilibrium does
not necessarily converge as the horizon is extended, so it cannot always provide a selec-

12Harris and Laibson (2001, 2002) provide results and simulations to show that smooth equilibria arise
for R < 1

δ when uninsured income shocks are introduced. Chatterjee and Eyigungor (2016) also introduce
actuarily fair lotteries over future wealth to convexify the value function V and produce a smooth and
monotone responses for consumption and (expected) savings.
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tion device for the infinite-horizon game. More importantly, the equilibrium is unique for
any finite horizon, but little is known about it: clear predictions have not been formulated
for savings, nor for consumption. Indeed, predictions for behavior appear more elusive
than in the infinite-horizon setting.13 Of course, in cases where the finite-horizon equi-
librium does converge as the horizon is extended, our results provide relevant predictions
for the equilibrium of the finite horizon game when the horizon is long enough.

3 Useful Preliminary Results

This section presents some preliminary results that turn out to be instrumental in proving
our main results. These results are quite simple, yet novel and provide some independent
insight. However, readers only interested in the main results can skip to the next section
without loss of continuity.

Before turning to novel results we echo a well-known monotonicity property that fol-
lows from the supermodularity in (k, k′) of the objective for any value function V.

Lemma 1. For any Markov equilibrium (g, V), the savings function g is nondecreasing.

By implication, a path {kn}∞
n=0 satisfying kn+1 = g(kn) features either savings kn+1 ≥

kn for all n = 0, 1, . . . or dissaving kn+1 ≤ kn for all n = 0, 1, . . .

3.1 Saving, Dissaving and Constant Wealth

The next three lemmas compare saving or dissaving, on the one hand, to holding wealth
constant forever, on the other hand.

Welfare Comparisons. Define the value of holding wealth constant forever as

V̄(k) ≡ u ((R− 1) k)
1− δ

.

The next two lemmas relate current saving behavior to the ranking of V(k) versus V̄(k).

Lemma 2. For any Markov equilibrium (g, V), if either:
(a) R ≥ 1

δ and g(k) < k;

13With a finite horizon T, when R > R∗ it is natural to expect gT(k) < k for some values of k, and
gT(k) > k for other values of k. Intuitively, a finite horizon pushes for dissaving, while the high interest
rate R > R∗ pushes for saving. Except in linear equilibria, these two forces do not play out evenly across
k. Indeed, this may happen even with β = 1. As for R < R∗, numerical explorations with β < 1 suggest
equilibria exist with gT(k) > k for some values of k.
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(b) R ≤ 1
δ and g(k) > k;

then V(k) < V̄(k).

Strict dissaving is undesirable from the perspective of the exponential discounter when
R ≥ 1

δ , while strict saving is undesirable R ≤ 1
δ . To see why, consider case (a). First note

that the monotonicity of g ensures that any initial dissaving g(k0) < k0 will perpetuate
itself, kn+1 = g(kn) ≤ kn for all n = 0, 1, . . . As is well known, when R ≥ 1

δ the optimum
for an exponential discounter features saving, not dissaving; intuitively, holding wealth
constant is not optimal, but still preferable to dissaving, V(k) < V̄(k). Case (b) is similar.
Notably, Lemma 2 does not involve β in any way, since it follows directly from the defini-
tion of V and the monotonicity of g. The logic is purely mechanical and does not invoke
optimality of the current self choice.14

Our next result does invoke optimality for the current self, showing that to entice
positive savings the equilibrium must offer a greater value V(k) than V̄(k).

Lemma 3. For any Markov equilibrium (g, V), if g(k) ≥ k then V(k) ≥ V̄(k); moreover, if
g(k) > k then V(k) > V̄(k).

Unlike Lemma 2, this result does not compare R to 1
δ and now both optimizing be-

havior and β < 1 are critical. The logic goes as follows. If the current self prefers to
save rather than hold wealth constant for a period, then the previous self (who now dis-
counts exponentially according to V) agrees. After all, the current self takes on lower
consumption to get higher continuation utility, but given β < 1 is harsher at evaluating
this tradeoff. This then implies V(k) > V̄(k).

Best Responding to Constant Wealth. Next, consider the best response of the current
self to a hypothetical (non-equilibrium) situation where future selves hold wealth con-
stant forever. Given k, the current self considers the objective over k′ given by

ϕ(k, k′) ≡ u(Rk− k′) + βδV̄(k′). (3)

The function ϕ(k, ·) is strictly concave, with a unique interior maximum k′ = k∗ that varies
continuously with k (by the Theorem of the Maximum). If R > R∗ then ∂

∂k′ ϕ(k, k) > 0, so
k∗ > k; the reverse is true for R < R∗.

Lemma 4. Let ϕ be given by (3). For any fixed k, the function ϕ(k, ·) is strictly concave and has
an interior maximum k∗ > 0. Moreover,

(a) if R > R∗, then k∗ > k and ϕ(k, ·) is strictly increasing for k′ ≤ k∗;

14Indeed, it does not invoke optimizing behavior of future selves, except through the monotonicity of g.
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(b) if R < R∗, then k∗ < k and ϕ(k, ·) is strictly decreasing for k′ ≥ k∗;
(c) the maximum k∗ is a continuous function of k.

By implication, when R > R∗ any amount of strict dissavings k′ < k is dominated
by holding wealth constant k′ = k, while some small amount of positive saving k′ > k
dominates k′ = k; the reverse is true when R < R∗. Based on this lemma, we say that
when R > R∗ (R < R∗) there is a “natural inclination” to save (dissave).

3.2 A Recursive Necessary Conditions

Next, we introduce a tool that plays a crucial part in our method. For any Markov equilib-
rium (g, V) and initial wealth k0 ≥ k consider the path for wealth {kn}∞

n=0 generated by
kn+1 = g(kn) with associated value path {Vn} given by Vn = V(kn) = ∑∞

m=0 δmu(Rkn+m−
kn+m+1). The next lemma provides a simple necessary condition for such paths.

Lemma 5. If {kn, Vn}∞
n=0 is generated by a Markov equilibrium (g, V) then for n = 0, 1, . . .

Vn = u(Rkn − kn+1) + δVn+1,

(1− βδ)u(Rkn − kn+1) + βδ(1− δ)Vn+1 ≥ u((R− 1)kn).

When utility is iso-elastic these conditions become

vn = u(R− xn) + δvn+1x1−σ
n , (4)

(1− βδ)u(R− xn) + βδ(1− δ)vn+1x1−σ
n ≥ u(R− 1), (5)

for n = 0, 1, . . . , where {xn, vn} is the normalized path given by xn = kn+1
kn

and vn = Vn
k1−σ

n
.

The first condition is an accounting identity for values. The second condition rules
out a particular deviation whereby the agent holds wealth constant for one period. When
current wealth is kn the equilibrium has the agent choosing kn+1 with continuation value
Vn+1. The agent may consider deviating to k̃n+1 = kn, in which case the ensuing path sim-
ply postpones the original one, k̃n+1+s = kn+s for s = 0, 1, . . . giving continuation value
Ṽn+1 = Vn. This particular deviation has two distinct advantages. First, the deviation is
easy to compute precisely because it resets the original path and does not fall outside of
its range. Iso-elastic utility further simplifies by exploiting homogeneity.15 Second, since
the deviation holds wealth constant for a period, neither saving nor dissaving, it turns
out to be perfectly suited to determine saving versus dissaving.

15When σ = 1, i.e. log utility, Vn = vn +
1

1−δ log kn and expressions (4) and (5) are adjusted accordingly,
for example, vn = log(R− xn) + δ(vn+1 +

1
1−δ log xn).
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An important virtue of the necessary conditions derived above is that they can be eval-
uated directly on equilibrium paths, without further knowledge of g and V. Although this
limits informational demands, it still falls short, since our goal is to characterize equilibria
by ruling out entire patterns of behavior, instead of particular paths. The solution is to
minimize the information required further by conditioning only on qualitative behavior.
To this end, define correspondences for saving and a correspondence for dissaving

Γs(vn+1) ≡ {vn|∃xn ∈ [1, R] satisfying (4) and (5)},
Γd(vn+1) ≡ {vn|∃xn ∈ [0, 1] satisfying (4) and (5)}.

Lemma 6. If utility is isoelastic, {kn} is a path generated by a Markov equilibrium (g, V) and
{vn} is the normalized value path, then

(a) if g(k0) ≥ k0 then vn ∈ Γs(vn+1) for all n = 0, 1, . . .
(b) if g(k0) ≤ k0 then vn ∈ Γd(vn+1) for all n = 0, 1, . . .

These necessary conditions turn out to be extremely convenient because of their sim-
ple recursive nature, with the single state variable {vn}.

4 Robust Predictions for Saving Behavior

This section contains our main results. We establish conditions for Markov equilibria to
involve either global savings or dissavings, that is, saving at all wealth levels or dissaving
at all wealth levels. Moreover, for given parameters, all Markov equilibria involve global
saving or global dissaving. Finally, whether saving or dissaving arises is determined by
a simple condition comparing the interest rate to impatience parameters, R versus R∗.
This condition can be seen as generalizing the well-known comparison of R versus 1

δ for
the standard time-consistent model. Taken together, our results imply that the standard
hyperbolic-discounting model is capable of meaningful and robust qualitative predictions
for economic behavior.

The conditions that we require for our robustness results are plausible, imposing a
minimum curvature on utility only when the interest rate is in an intermediate range.
However, we show that these conditions cannot be fully dispensed with, by constructing
equilibria with near linear utility that reverse the sign of saving. These constructions are
novel and establish sufficient conditions for indeterminacy of equilibria in the standard
hyperbolic-discounting model.

Before establishing these results we present a crucial intermediate characterization of
independent interest.

13



4.1 No Reversal Principle

Combining Lemmas 1–4 gives our first main result. It states that when R > R∗ behavior
cannot reverse from dissaving to saving from low to high wealth; in other words, poverty
traps are ruled out. Conversely, when R < R∗ behavior cannot reverse from saving to
dissaving as wealth rise; in other words, interior stable steady states are impossible. We
call this the No Reversal Principle.

Theorem 1 (No Reversal Principle). Consider a Markov Equilibrium (g, V). For any k̃ ≥ k
and any k0 ≥ k̃ define the sequence {kn} by kn+1 = g(kn) and let k∞ = limn→∞ kn. Then

(a) if R > R∗ and g(k̃) < k̃ then g(k) < k for all k ∈ [k̃, ∞) and g(k∞) = k∞ < k̃;
(b) if R < R∗ and g(k̃) > k̃ then g(k) > k for all k ∈ [k̃, ∞) and k∞ = ∞.

Although this result is of intrinsic interest, its main purpose is to significantly reduce
the set of Markov equilibria, paving the path towards our results on global savings and
dissaving. Indeed, thanks to the No Reversal Principle all that remains to be done is to
characterize equilibrium behavior in the upper tail of wealth.

Intuitively, when R > R∗ a reversal from dissaving to saving unravels because an
agent with wealth slightly below the region with saving should dissave, but actually
prefers to deviate and save to reach the virtuous saving region. Similarly, when R < R∗

a reversal from saving to dissaving must be separated by a steady state, but an agent at
such a steady state prefers to deviate and strictly dissave, given that R < R∗. In both
cases, the proposed equilibrium unravels because a region with savings is attractive and
we cannot expect agents to behave against their natural inclination (saving if R > R∗,
dissaving if R < R∗) if that inclination leads them to a desirable saving region.

The results for the limit k∞ = limn→∞ kn may appear redundant, but they are not. For
instance, in part (a) we first conclude that g(k) < k for all k ≥ k̃, but this does not rule out
k∞ > k̃ or imply that k∞ is a steady state (g(k∞) = k∞) since g may be discontinuous at
k∞.

4.2 Robust Global Saving: R > R∗

We first consider the more challenging case where the interest rate is relatively high, R >

R∗. We provide conditions that rule out dissavings at any wealth level, for any Markov
equilibrium. Indeed, we go a step further and show that saving must be strict.

Theorem 2 (Global Savings). Consider R > R∗, then all Markov equilibria feature strict saving,
g(k) > k for all k ∈ [k, ∞), if either

14



(a) R ≥ 1
βδ ; or

(b) R ∈ (R∗, 1
βδ ), utility is isoelastic with σ ≥ σ for some σ ∈ [0, 1).

Recall that when R > R∗ and utility is isoelastic a linear equilibrium with positive
savings always exists. Although we later show that other equilibria may exist (see Section
5.2), Theorem 2 ensures that the linear equilibrium with positive saving is qualitatively
representative of all Markov equilibria. In other words, it guarantees that saving is a
robust prediction. Part (a) does not require any assumption on the utility function; the
isoelastic assumption in part (b) can be relaxed, only requiring isoelastic utility above
some large consumption level.

The economic logic behind Theorem 2 is as follows. Case (a) is relatively intuitive,
since when R ≥ 1

βδ the incentive to avoid dissaving is overwhelming. Indeed, even an
agent that discounts exponentially with the product discount factor βδ prefers to save.
Intuitively, hyperbolic-discounting agents are more inclined to save than such heavy βδ

exponential discounters.
This argument fails and things become more subtle when R ∈ (R∗, 1

βδ ), so how is
it that dissaving can be ruled out in this case? After all, if future selves dissave then
the current self may find dissaving optimal and this may discourage savings despite a
relatively high interest rate. This strategic complementarity is precisely behind the local
construction in Krusell and Smith (2003). Their result can be interpreted as showing that
sustaining dissavings in this manner is possible locally, for a modified game that restricts
wealth choices to a sufficiently small interval. In contrast, Theorem 2 shows that, as long
as utility is not too close to being linear, this is impossible for the standard hyperbolic-
discounting model, which places no ad hoc upper bounds on wealth. In this sense, these
local constructions cannot be extended to form part of an equilibrium in the standard
model. Below we provide intuition as to why dissavings cannot be sustained in the upper
tail for wealth.

By the No Reversal Principle, if dissaving happens at any wealth level, then it happens
at all higher wealth levels. This implies that very rich agents face a very prolonged spell
of declining wealth. Theorem 2 shows that when σ ≥ σ the prospect of such a long spell
of dissaving is so dire that some sufficiently rich agent must prefer to deviate and hold
wealth unchanged for a period, postponing the undesirable dissaving path by one period.
This rules out dissaving. We postpone a discussion of the role for the condition σ ≥ σ to
Section 4.5, where we explore what happens for σ < σ.

Importantly, our corollary, that the local construction in Krusell and Smith (2003) can-
not be extended over [k, ∞), is stronger than dismissing the particular extension which
sets g(k) = k∗ for all k ≥ k∗, where k∗ is the proposed steady state (the local construction
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had g(k) = k∗ for k ∈ [k∗, ¯̄k] for some ¯̄k < ∞). This extension can be easily dismissed,
since the best-response to it has k′ ∈ (k∗, k) for sufficiently large k.16 Although it is easy
to rule out this particular extension, one might hope that there are others that survive.
Theorem 2 lays such hopes to rest, ruling out any equilibrium with weak dissaving in the
standard hyperbolic-discounting model.

We next provide a full proof of weak saving for part (a) of Theorem 2 and a sketch of
the main argument of weak saving for part (b). Once weak saving is established we show
that this implies strict saving. The full proof is contained in Appendix C.

Proof of Theorem 2 part (a). We have R ≥ 1
βδ . Consider any Markov equilibrium.

Condition (2) evaluated at k′ = k gives

u(Rk− g(k)) + βδV(g(k)) ≥ u(Rk− k) + βδV(k).

Combining this with condition (1) and rearranging gives

(1− βδ)u(Rk− g(k)) + βδ(1− δ)V(g(k)) ≥ u(Rk− k).

Now, towards a contradiction, assume g(k) < k at some k. By monotonicity (Lemma 1)
this gives g(g(k)) ≤ g(k) and Lemma 2 part (a) then implies V(g(k)) ≤ V̄(g(k)), so

(1− βδ)u(Rk− g(k)) + βδ(1− δ)V̄(g(k)) ≥ u(Rk− k). (6)

This inequality will be shown to lead to a contradiction. To see this, use Lemma 4 part (a)
with discount parameters β̂ = 1 and δ̂ = βδ, so that R̂∗ = 1

βδ to obtain that for all k′ < k

u(Rk− k′) +
βδ

1− βδ
u((R− 1)k′) <

1
1− βδ

u((R− 1)k)

Setting k′ = g(k) and rearranging then contradicts (6). Thus, g(k) ≥ k for all k ≥ k.

Sketch of Proof for Theorem 2 part (b). Towards a contradiction, consider a Markov
equilibrium with g(k̂) < k̂ at some k̂ > k. By the No Reversal Principle (Theorem 1) then
g(k) < k for all k ≥ k̂. We derive a contradiction by showing that some sufficiently rich
agent must wish to deviate.

Lemma 7 in Appendix E shows that there exists σ ∈ (0, 1) such that for each σ ≥ σ: (i)

16To see this consider maximizing ϕ̂(k, k′) ≡ u(Rk− k′) + βδ(u(Rk′ − k∗) + 1
1−δ u((R− 1)k∗). Then the

optimum k′ restricted to k′ ≥ k∗ is strictly greater than k∗ for high k. This follows because ∂
∂k′ ϕ̂(k, k∗) =

−u′(Rk− k∗) + βδRu((R− 1)k∗) so that as k→ ∞ we ensure ∂
∂k′ ϕ̂(k, k∗) > 0 as long as limc→∞ u′(c) = 0.
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Figure 1: Equilibria with dissaving requires vn ≤ hd(vn+1) leading to vn < v̂, a contra-
diction (parameters: σ = 0.5, β = 0.9, δ = 0.97 and R = 1.04).

for all v′ < v̄, v ∈ Γd(v′) implies v < v′; (ii) there exists v̂ > u(0)
1−δ such that Γd(v) = ∅ if

and only if v < v; and (iii) there exists x > 0 such that for all v′ ∈ [v̂, v̄] if (5) holds then
x > x. For v′ ∈ [v̂, v̄] let

hd(v′) ≡ sup Γd(v′). (7)

Then hd is continuous, strictly increasing with hd(v′) < v′ for all v′ < v̄ and hd(v̄) = v̄.
Figure 1 illustrates hd. A key implication is that for any ṽ < v̄ we have hn

d(ṽ) decreasing
in n and eventually strictly below v̂.

To fix ideas and see how this property is useful, we first suppose there is some k̃ ≥ k̂
with the property that we can always find a path that goes through k̃ after N periods, for
any N: there exists k0 ≥ k̂ such that {kn} given by kn = gn(k0) has kN = k̃. An equilibrium
requires v̂ ≤ vn−1 ≤ hd(vn) for all n = 1, 2, . . . Lemma 2 implies vN = ṽ < v̄. Then, since
hd is monotone and hd(v′) < v′ for all v′ ∈ [v̂, v̄), it follows that v̂ ≤ v1 ≤ hN−1

d (vN) =

hN−1
d (ṽ). However, this is not possible since hN−1

d (ṽ) < v̂ for some high enough N.
A long enough sequence going through any k̃ is guaranteed when g is continuous, so

that g is invertible. However, one cannot rule out discontinuities. Fortunately, the same
conclusions hold if we can establish that there exists some ṽ < v̄ such that for any N we
can find a decreasing path {kn} starting at some k0 > k̂ with the property that vN ≤ ṽ.
We establish this weaker property for any equilibrium (g, V), allowing discontinuities, as
follows.

First, Theorem 1 part (a) ensures that for any k0 ≥ k̂ the sequence {kn} generated by
kn+1 = g(kn) eventually goes strictly below k̂. Second, because g(k) < k for all k ≥ k̂,
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there must exist a crossing point k̃ ≥ k̂ with the property that if k ≥ k̃ and g(k) ≤ k̃ then
g(k)

k ≤ x̄ for some x̄ < 1. This implies that if a path crosses k̃ at N, so that kN+1 ≤ k̃ < kN,
then vN ≤ ṽ < v̄. This follows because vN = u(R − xN) + δvN+1x1−σ

N ≤ u(R − xN) +

δv̄x1−σ
N ≤ u(R− x̄) + δv̄x̄1−σ ≡ ṽ; the first inequality due to Lemma 2, the second by the

monotonicity of u(R − x) + δv̄x1−σ over x < 1 when R > 1/δ (Lemma 4 with β = 1).
Finally, since kn+1

kn
≥ x > 0, as mentioned earlier, we can find a large enough k0 > k̃

such that the sequence crosses k̃ in exactly N periods, for any N. This gives the desired
properties and concludes the sketch of the proof.

4.3 Robust Global Dissaving: R < R∗

We now turn to the reverse case and assume the interest rate is low, R < R∗. We pro-
vide conditions that ensure dissaving at all wealth levels, across all Markov equilibria.17

Thanks to the No Reversal Principle (Theorem 1), all that remains is to rule out saving in
the upper tail, for high wealth.

Theorem 3 (Global Dissavings). Consider R ∈ (0, R∗), then all Markov equilibria feature weak
dissaving, g(k) ≤ k for all k ∈ [k, ∞) if either

(a) R ≤ 1
δ ;

(b) R ∈ (1
δ , R∗), utility is isoelastic with σ ≥ σ for some σ ∈ (0, 1).

Below we provide a sketch of the proof for part (b). Part (a) follows immediately given
our lemmas, by noting that g(k) > k generates a contradiction between Lemma 2 (V(k) <
V̄(k)) and Lemma 3 (V(k) > V̄(k)). Intuitively, this case is relatively straightforward,
since even a time-consistent decision maker prefers to dissave when R ≤ 1

δ ; then, as one
would expect, β < 1 only reinforces this conclusion.

However, a different and subtler line of reasoning is required to prove case (b), when
R ∈ (1

δ , R∗). In this intermediate region of interest rates, dissaving emerges from the
time–inconsistency problem. Recall that we must rule out saving in the upper tail of
wealth. Intuitively, because the interest rate is low, saving can only be sustained by the
expectation of reaching a rewarding region with very high utility. We show that such
expectations are unfounded, much like a Ponzi scheme.18

17We have assumed that R > 1 to simplify the exposition. When R ≤ 1 we cannot apply the transfor-
mation that sets y = 0 and k ≥ 0 without loss of generality, as in footnote 8. However, Theorem 3 part (a)
easily follows with R ≤ 1, because Lemmas 2 and 3 carry over. Indeed, Theorem 1 and Lemmas 1–4 all
carry over.

18We can relax the isoelastic assumption in part (b), only requiring isoelastic utility above some large
consumption level.

18



Note that Theorem 3 establishes weak dissaving, but stops short of claiming strict
dissaving. There is good reason for this, as it is known that there may exist equilibria
with interior steady states.19

Sketch of Proof for Theorem 3 part (b). We proceed by contradiction: assume g(k̂) > k̂
for some k̂ ≥ k. By the No Reversal Principle (Theorem 1 Part b) then g(k) > k for all
k ≥ k̂. The sequence {kn} generated by k0 = k̂ and kn+1 = gn+1(k̂) = g(kn) is strictly
increasing and limn→∞ kn = ∞. We derive a contradiction using the necessary conditions
in Lemma 5. Define hs(v′) ≡ sup Γs(v′). Along an equilibrium path where kn+1 ≥ kn we
must have vn ≤ hs(vn+1). For σ ≥ σ for some σ ∈ (0, 1) we show that (i) hs is continuous
and strictly increasing in v′, (ii) hs(v̄) = v̄, and (iii) hs(v′) < v′ for all v′ > v̄ .

Let vFB denote the value for the optimization problem associated with β = 1. We
then have vn ≤ vFB and since hs is increasing vn ≤ hs(vn+1) ≤ hs(vFB). Iterating on these
inequalities using hs one obtains v0 ≤ hn

s (vFB), which must hold for any n = 0, 1, . . . Since
hn

s (vFB) → v̄ as n → ∞ this implies v0 ≤ v̄. However, k1 > k0 implies v0 > v̄ by Lemma
2, a contradiction. This concludes the sketch of the proof.

4.4 A Loose End: R = R∗

In terms of the parameter space, R = R∗ represents a knife-edged (zero measure) sce-
nario. However, in a general equilibrium setting it may represent an important focal
point. Theorems 2 and 3 suggest that (and σ ≥ σ) the unique equilibrium with R = R∗

holds wealth constant, g(k) = k. Formally, however, this does not follow from our results,
which are stated with strict inequalities R > R∗ and R < R∗. Indeed, the case R = R∗

is subtle and requires special treatment. As it turns out, the proofs of Theorems 2 and 3
apply to R = R∗ unchanged if we could invoke the No Reversal Principle. However, the
delicate issue is that the proof of the latter exploited R 6= R∗ to get k∗(k) 6= k from Lemma
4 and generate strict deviations towards regions with savings. Nevertheless, we are able
to modify the arguments and prove the desired result.

Theorem 4. Suppose utility is isoelastic and R = R∗. Then there exists σ ∈ (0, 1) such that for
all σ ≥ σ the unique Markov equilibrium (g, V) holds wealth constant: g(k) = k for all k ≥ k.

19See, for example, (Chatterjee and Eyigungor, 2016, Theorem 5). Cao and Werning (2016) study a
continuous-time version model with similar equilibria. In continuous time, one can show that the Markov
equilibrium is unique near k. One can also show that there is at most one continuous equilibrium and
provide conditions for its existence.
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4.5 Near Linear Utility and Indeterminate Savings

Theorems 2 and 3 parts (a) provide robust predictions for any utility function, while parts
(b) require the utility function to be iso-elastic and sufficiently concave, imposing a lower
bound σ ∈ (0, 1). To gauge the latter, note that the Intertemporal Elasticity of Substitution
equals 1

σ and it is standard to favor modest values for this elasticity, below 1, implying
σ > 1. However, logarithmic utility σ = 1 is an important theoretical benchmark for its
simplicity (see for example, Barro, 1999, Krusell et al., 2002, Azzimonti, 2011 and Halac
and Yared, 2014). Our results apply in all these empirical and theoretical cases of interest
and also holds for some interval of σ below one. Indeed, comparing parts (a) and (b) in
the two theorems suggests that σ ↓ 0 as R ↑ 1

βδ or R ↓ 1
δ .

Can one strengthen our theorems to remove the lower bound on σ altogether, so that
σ = 0? Or is it the case that saving behavior can be reversed for σ near zero? Next we
provide an answer, demonstrating the second possibility by construction.

Dissaving with R ∈ [R∗, 1
βδ ). Our construction is slightly simpler for k = 0 and goes

as follows. Suppose a steady-state solution v′ = v < v̄ and x∗ < 1 exists to conditions (4)
and (5) (this is ruled out by σ ≥ σ, but may be possible otherwise); suppose further that
u′( R

(x∗)2 − 1) ≥ βδRu′(R− x∗). Then we set

g(k) = (x∗)n+1k̂ ∀k ∈ [(x∗)nk̂, (x∗)n−1k̂) (8)

for all n = . . . ,−2,−1, 0, 1, 2, . . . for any k̂ > 0. We can verify this is an equilibrium:
condition (5) with equality ensures indifference across jumps, so that an agent with k =

(x∗)nk̂ is indifferent to k′ = k or k′ = x∗k; condition u′( R
(x∗)2 − 1) ≥ βδRu′(R − x∗) is a

Kuhn-Tucker condition that ensures the corner k′ = x∗k is preferable to any interior choice
k′ ∈ ((x∗)nk̂, (x∗)n−1k̂). (For example, all conditions are met when σ = 0.27, β = 0.8,
δ = 0.97 and R = 1.04.)

Omitting details, a similar non-homogeneous construction is possible for k > 0; we re-
quire a slightly stronger Kuhn-Tucker condition u′( R

(x∗)2 − 1) ≥ βδRu′(R− 1). Naturally,
for high k the construction for k > 0 approaches that for k = 0.

Why does low σ make dissaving possible? Recall that a linear equilibrium with strict
saving always exists. When σ is low, consumers are more responsive to incentives, height-
ening strategic complementarities, opening the door to wider multiplicity. Intuitively,
strong enough strategic complementarities allow for equilibria that overturn the natu-
ral inclination to save with R > R∗. The issue is subtle, however, since this discussion
could also suggest multiple linear equilibria, perhaps with dissaving. Yet, the linear equi-
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librium is always unique and features saving. Nonlinear policies g appear to play up
strategic complementarities.

Saving with R ∈ (1
δ , R∗]. Once again, suppose there exists a steady-state solution to

conditions (4) and (5) with equality but this time with x∗ > 1 (this is ruled out by σ ≥ σ,
but possible in some cases otherwise); suppose further that the Kuhn-Tucker condition
u′(R − 1) ≥ βδRu′(R − x∗) holds at this x∗. Then for any k̂ ∈ (k, x∗k] set g(k) = k̂ for
k ∈ [k, k̂) and

g(k) = (x∗)n+1k̂ ∀k ∈ [(x∗)nk̂, (x∗)n+1k̂), (9)

for all n ∈ {0, 1, 2, . . . }. Once again, this is guaranteed to be an equilibrium thanks to
the indifference condition (5) and the Kuhn-Tucker requirement. (For example, all the
conditions are met for σ = 0.25, β = 0.7, δ = 0.97 and R = 1.04.)

When R ∈ (R∗, 1
βδ ) one can also generate equilibria with savings to the left of an

arbitrary steady state k∗ and dissavings to the right of it. This can be done by combining
our dissaving construction, to the right of a steady state, with the saving construction in
Krusell and Smith (2003), to the left of a steady state. However, when R ∈ (1

δ , R∗) our
Non Reversal Principle rules such a possibility out.

The stepwise nature of both our global constructions and its verification are inspired
by the local constructs in Krusell and Smith (2003). However, there are some important
differences. First and foremost, our constructions are global and do represent equilibria
for the standard hyperbolic-discounting model. Second, our first construction features
dissaving along a step function, with wealth asymptoting towards the steady state. This
is in contrast to their local construction which defined a flat policy function to the right
of the steady state, with wealth reaching the steady state in a single step. Our second
construction, the one with saving, has no parallel in Krusell and Smith (2003) since they
did not consider R ∈ (1

δ , R∗) nor saving in the upper tail for wealth. Indeed, as we
explain in Section 5.3, our construction requires a global analysis and would be impossible
over any bounded interval . Finally, a crucial difference is that we require σ near zero to
build equilibria, while they do not impose any assumptions on the utility function. This
highlights the nonlocal nature of our construction and is precisely why we are able to rule
out such constructions, as well as others, when σ ≥ σ ∈ (0, 1) in Theorems 2 and 3.
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5 Further Results: Existence, Multiplicity, and Extensions

We now present a few additional results for the standard hyperbolic-discounting model.
In particular, we provide existence and multiplicity results. We also discuss a few ex-
tensions of this model, adapting our results to discrete grids, ad hoc upper bounds on
wealth, and concave saving technologies.

5.1 Equilibrium Existence

Our robust characterization of equilibria would be vacuous if it applied to an empty set
of equilibria. Fortunately, we now establish that this is never the case: Markov equilibria
always exist in the standard hyperbolic-discounting model.20

Theorem 5. Assume isoelastic utility, then a Markov equilibrium always exists. When k > 0
and R < R∗ the same conclusion holds without the isoelastic utility assumption.

Proof. Under isoelastic utility, when R ≥ R∗ then g(k) = αk ≥ k is an equilibrium; when
R < R∗ and k = 0 then g(k) = αk < k is an equilibrium. When R < R∗ and k > 0
Appendix G establishes the existence of an equilibrium by construction with dissaving
g(k) ≤ k.

It may be tempting to take existence of equilibria for granted. However, as is well
understood, existence is not obvious for games with a continuum of actions; especially
not for Markov equilibria in pure strategies in dynamic games. Indeed, proving existence
in our model for the nontrivial case (R < R∗ and k > 0) turns out to be quite involved.
Rather than appealing to a fixed point theorem, which we found no obvious way of in-
voking, our argument is constructive. This has the virtue of suggesting its computation
via the constructive algorithm that we spell out.

Bernheim et al. (2015, Proposition 6) provide an existence result for R ∈ (1
δ , R∗) and

isoelastic utility using a constructive proof. Our proof shares some features with theirs,
but is different in a crucial way which allows for R < R∗ and non-isoelastic utility. In a
nutshell our proof proceeds as follows. We are looking for a dissaving equilibrium. Thus,
we momentarily impose k′ ≤ k in the agent maximization, forcing dissaving. We then
seek to sweep from low to high wealth to construct an equilibrium, in a self generating
manner. To start, for a small enough interval near the lower bound on wealth, we set

20With isoelastic utility, the only difficult case involves R < R∗ and k > 0, since linear equilibria exist
in the other cases. In this case, however, we do not require isoelastic utility. We omit existence proofs in
the other cases without isoelastic utility, but we conjecture that a similar constructive proof is possible if we
assume u(c) is isoelastic for high and low c but not for intermediate c.
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g(k) = k and compute the associated value functions V(k) = u(Rk − k) + β δ
1−δ u((R −

1)k) and W(k) = u(Rk− g(k)) + βδV(k) over this small interval. It turns out that W(k) >
W̄(k) = u((R − 1)k) + βδV̄(k) and a few other useful properties hold. We then show
that whenever these properties hold we can extend these functions (g, V, W) to the right
over a small enough interval, while preserving these same properties.21 Iterating on this
algorithm, and restarting it when necessary, then produces a candidate equilibrium over
[k, ∞). We finally verify that this candidate is indeed an equilibrium.

5.2 Multiplicity of Equilibria

In this paper we focus on Markov equilibria. This refinement reduces the set of equilibria,
but does not necessarily lead to uniqueness. Indeed, we now argue that multiple equilib-
ria are present in our model for cases that satisfy the conditions of our theorems. It is, thus,
especially noteworthy that robust qualitative predictions for saving behavior are possible
despite such multiplicity. In contrast, Cao and Werning (2016) studied a continuous-time
model and established uniqueness when R > R∗, highlighting a difference between these
two formulations.

Saving Multiplicity with R ∈ (R∗, 1
βδ ). Recall that when utility is isoelastic there is a

linear equilibrium with saving. Under the conditions of Theorem 2, all equilibria involve
saving. Do our results hold because the equilibrium is unique and equal to the linear one?
A similar question was raised by Phelps and Pollak (1968), but no answer has been given
to date. We provide a negative answer.

Our construction is identical to the one spelled out in (9), except that there we assumed
R < R∗. Here, thanks to R > R∗, we can be sure that there exists a steady-state solution
v′ = v > v̄ and x∗ > 1 to conditions (4) and (5) with the latter set as an equality. Then
if x∗ is not too large so that the Kuhn-Tucker condition u′(R− 1) ≥ βδRu′(R− x∗) holds
(which is impossible if R > 1

βδ ), then (9) is an equilibrium, as before. Since k̂ ∈ (k, x∗k]
is arbitrary this establishes indeterminacy, although all these equilibria feature the same
rate of growth for wealth after one period.

In addition, when σ > σ as in Theorem 4 we can show that x∗ goes to 1 when R ↓ R∗.
Because βδR < 1, this implies that the Kuhn-Tucker condition holds and our construc-
tions are equilibria. These equilibria, however, converge to g(k) = k as R ↓ R∗, which is

21Our algorithm is designed to stop as soon as W(k) reaches W̄(k), since W(k) > W̄(k) is a property
that is required to be preserved. This is the key difference with the proof strategy in Bernheim et al. (2015,
Proposition 6), which goes beyond this point, but then tries to prove there exists an earlier point with
W(k) = W̄(k); this last step in their strategy requires R > 1

δ in a crucial way.
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consonant with our uniqueness result for R = R∗.

Dissaving Multiplicity with R < R∗. Multiplicity is possible but more limited for the
case k > 0. First, although there may be multiple equilibria, there cannot be indetermi-
nacy. Second, near k all equilibrium policy functions coincide. In this sense, for low k
there is uniqueness.

When k = 0 a linear equilibrium exists with dissaving. We build alternative dissaving
equilibria. Assume isoelastic utility.

First, we can again use our previous construction, the dissaving equilibrium in (8).
This time, because R < R∗ we can ensure a steady-state solution with x∗ < 1. With σ > σ

as in Theorem 4 then x∗ goes to 1 when R ↑ R∗ and the Kuhn-Tucker condition is satisfied
and that these constructions are equilibria.

Second, we can provide another construction in some cases. With a strictly positive
lower bound on wealth there may exist equilibria with interior steady states. When this
is the case (normalizing so that k = 1) there is a policy function ĝ over k ∈ [1, ∞) with
ĝ(1) = 1, ĝ(x̂) = x̂ > 1, ĝ(k) < k for all k ∈ (1, x̂). Now for any k̂ > 0 we set

g(k) = x̂nk̂ĝ
(

k
x̂nk̂

)
for k ∈ [x̂nk̂, x̂n+1k̂),

for all n ∈ {. . . ,−2,−1, 0, 1, 2, . . . }. It can be verified that this constitutes an equilibrium.
Since k̂ > 0 was arbitrary this proves indeterminacy. These equilibria are in addition to
the linear one.

5.3 Extensions: Grids, Ad Hoc Bounds and Concave Technologies

We have adopted standard assumptions: individuals face linear returns on their wealth,
with limits to borrowing but no limits to saving. These assumptions, which can be taken
as defining what is meant by a standard consumption-savings problem, are also natu-
ral. In particular, note that, even if aggregate technology is concave or total wealth and
resources are bounded, general-equilibrium models confront consumers with linear bud-
get sets at given interest rates without upper bounds on individual wealth choices (see
Barro, 1999, for such a growth model with hyperbolic consumers). The important point
is that non-linear technology or upper bounds on economy-wide resources do not neces-
sitate imposing these constraints on individuals.22

22In other contexts a nonlinear savings technology at the individual level may be relevant. For example,
suppose a firm is owned by a single owner and cannot borrow. Then capital in the firm is constrained
by the savings of its “entrepreneur”. This problem has received attention in the Development Economics
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Nevertheless, exploring how our results are affected or not by these assumptions
sheds light on economic mechanisms at play and helps compare our results to the lit-
erature. In addition, for practical reasons, computational work is forced to impose an
ad hoc upper bound on wealth. It also typically constrains wealth choices to lie on a dis-
crete grid. Thus, investigating the effects of these constraints can help interpret numerical
findings.

Discrete Grids. We start by showing that our results apply to a modification of the sav-
ing game that forces wealth choices to live on a discrete grid instead of the interval [k, ∞).
Grids are common in numerical work, so this extension is of direct relevance. In addition,
showing that our results apply to grid-restricted game serves to highlight the nonlocal
and non-smooth nature of our method, and draw a stark contrast to approaches based on
first-order Euler equations.

Consider a discrete grid {kn} of wealth levels satisfying k = κ0 < κ1 < · · · and
κn → ∞. A finite grid is covered by combining the present analysis with the next one on
ad hoc upper bounds.

We first note that Lemma 1–3 apply immediately when the agent choice is restricted
to any grid. Secondly, Theorem 1–3 also follow as long as we can invoke the main im-
plication of Lemma 4 parts (a) and (b) adapted to the grid: agents best responding to
constant wealth must prefer a grid point different than their own. Using Lemma 4, this
can be ensured if the grid is sufficiently dense, so that κn+1 < k∗(κn) when R > R∗ and
k∗(κn) < κn−1 when R < R∗, or equivalently

R > R∗ then |κn+1 − κn| < |k∗(κn)− κn| , (10a)

R > R∗ then |κn − κn−1| < |k∗(κn)− κn| . (10b)

When utility is isoelastic, k∗ = α∗k, so both conditions are equivalent to the simple log-
arithmic grid spacing condition | log(κn+1) − log(κn)| < | log α∗|. We summarize this
result in the next theorem.

Theorem 6. Suppose wealth choices are constrained to lie on a discrete grid {κn} satisfying
κn → ∞ and (10). Then Theorems 1–3 apply to this restricted game.

A discrete grid poses obvious difficulties for the existence of pure strategy equilibria,
so Theorem 5 is unlikely to extend unmodified. However, this may not be a major prac-

literature, but constitutes a marked departure from the standard consumption-saving problem. Another
interesting departure is when households face a progressive wealth tax. Then the relevant after-tax “tech-
nology” is strictly concave, even if the the before-tax return is constant.
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tical concern for numerical work. Our results may extend to allow for mixed strategy
equilibria.

Ad Hoc Upper Bound on Wealth. Consider now the imposition of an ad hoc upper
bound k ≤ k̄ that constrains the agent maximization problem. One can verify that The-
orems 1 and Lemmas 1–4 are unaffected. By assumption g(k̄) ≤ k̄, so g(k) ≤ k for all
k ∈ [k, k̄] when R < R∗. Thus, the conclusion in Theorem 3 is strengthened, applying
without any conditions on the utility function and highlighting the No Reversal Principle
as a fundamental result of its own.23

Theorem 2 part (a) with R ≥ 1
βδ also applies without change. In contrast, Theorem 2

part (b) with R ∈ (R∗, 1
βδ ) required wealth to be unbounded above. Indeed, ad hoc upper

bounds clearly creates the potential for dissavings since the Krusell and Smith (2003) local
constructions are valid equilibria when choices are restricted to small enough intervals.
Although we cannot expect the same conclusions, we offer a variant with essentially the
same practical implications. The proof for this result is provided in Appendix C.

Theorem 7. Suppose wealth choices are constrained by an ad hoc upper bound k̄. Then in any
Markov equilibria,

(a) if R < R∗ then g(k) ≤ k for all k ∈ [k, k̄];
(b) if R ≥ 1

βδ then g(k) > k for all k ∈ [k, k̄);
(c) if R ∈ (R∗, 1

βδ ) and utility is isoelastic with σ ≥ σ for some σ ∈ [0, 1), then g(k) > k for
all k ∈ [k, ζ k̄] where ζ < 1 is independent of k̄.

In practice, we are often interested in behavior over some bounded interval of wealth;
suppose we set the ad hoc bound high enough relative to such an interval (as it should,
if the its imposition was purely for numerical reasons); then the model robustly predicts
agents in the interval of interest will strictly save. In this sense, the economic thrust of
Theorem 2 is unchanged.

Concave Returns. Consider a saving game that replaces the linear returns Rk in the
budget constraint with a weakly concave return function f : [k, ∞) → [k, ∞).24 To adapt
our results we assume f is affine above some k̄ > 0.

All our results then carry over without modification as long as the necessary com-
parisons between the marginal return f ′(k) (taking the place of R) and the corresponding

23Thus, the savings equilibrium with R < R∗ with σ near zero constructed in Section 4.5 cannot exist
and so they would never be encountered numerically.

24An upper bound on wealth can be seen as a case with concave returns f that is piecewise linear with
return 0 above k̄.
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threshold in each case (i.e. R∗, 1
δ or 1

δβ ) holds uniformly, for all k. For example, if f ′(k) ≥ 1
βδ

for all k then we must have strict saving regardless of the degree of concavity in f . Thus,
concavity per se has no effect on our results.

What about nonuniform cases where f ′(k) < R∗ for high k but f ′(k) > R∗ for low
k? As it turns out, robust predictions for dissaving remain: one can say that wherever
f ′(k) < R∗ then g(k) ≤ k.25 Likewise, wherever f ′(k) ≥ 1

βδ then g(k) > k. However, when
R ∈ (R∗, 1

βδ ) Theorem 3 part (b) made use of a high marginal return throughout the upper
tail of wealth. Thus, we cannot claim that saving prevails pointwise wherever f ′(k) ∈
(R∗, 1

βδ ). This opens the door for indeterminacy with saving and dissaving. Saying more
formally is challenging, but based on numerical explorations this appears to be the case.
In particular, some of the local constructions in Krusell and Smith (2003) may extend
globally. However, in general, not all local constructions can be extended and the set of
global steady-states remains a strict subset of the set of local steady-states.26,27

6 Conclusions

We have revisited the standard hyperbolic-discounting model. Our main finding is that
under plausible conditions, as long as the utility function is not too close to being linear,
the set of Markov equilibria has the well-behaved property of predicting saving or dis-
saving behavior globally, that is, for all wealth levels. Moreover, the condition for saving
versus dissaving behavior is a simple one that compares the interest rate to discounting
parameters: wealth rises if R > R∗ and falls if R < R∗.

Our results uncovering robust predictions under plausible conditions should not be
taken for granted. First, our findings run counter to interpretations of previous results
suggesting equilibrium indeterminacy. Second, we establish that robust predictions are
not always possible; for some parameters and near linear utility we construct (global)

25This result holds without assuming that f becomes linear at the top if, instead, limk→∞ f ′(k) < 1/δ, as
is common in growth models.

26We thank Tony Smith for showing us numerical results consistent with this pattern for a discrete-time
model that allows for mixed strategies over a grid (based on work in Krusell and Smith, 2008). We obtained
similar patterns numerically within the continuous-time deterministic model from Cao and Werning (2016).
In our exploration, as we parametrize the concavity of the saving technology and take the limit towards
linear technology, the set of global steady-states shrinks to an empty set, while the set of local steady-states
expands.

27Greater concavity may cut two ways: it may increase the fraction of local steady state constructions
that can be validly extended to become global equilibria, but at the same time shrink the interval of local
steady-state wealth levels. Indeed, if the saving technology has a kink (an extreme form of concavity) with
return below R∗ for all k > k∗ and return above 1

βδ > R∗ for all k < k∗, then k∗ is the unique steady-state
and it must be globally stable, with saving below k∗ and dissaving above k∗.
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equilibria that reverse the natural sign of saving. Third, it may seem natural to seek
robust predictions for consumption, in addition to wealth, but this goal appears elusive.
In particular, in the time-consistent β = 1 case consumption falls over time if R < 1

δ and
rises if R > 1

δ .28 Unfortunately, when β < 1 this is no longer guaranteed.29,30 Our results
do indicate, however, that non-monotonicity of consumption is limited in the sense that
the present value of consumption kt = ∑∞

s=0 R−sct+s must be monotone.
Throughout this paper we have purposefully stayed within the confines of the most

standard hyperbolic-discounting model. It is an open question whether our methods can
adapt to extensions, such as the introduction of uncertainty. However, in our view, it is
important to establish basic properties within the standard model, before turning to such
extensions. Indeed, few sharp analytical results are available with uncertainty even for
the time-consistent benchmark with β = 1, which is why the incomplete markets litera-
ture often resorts to numerical simulations. Basic results without uncertainty, however,
provide an important benchmark to guide economic intuition into these less tractable
extensions.

Finally, although we have studied the behavioral problem of a hyperbolic-discounting
consumer, our analysis should be helpful in other time-inconsistent dynamic games, such
as in political economy models of public debt.
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Appendix

A Proofs from Section 3

The following lemmas apply to any Markov equilibrium (g, V).

A.1 Proof of Lemma 2

We first show that if R ≥ 1
δ and g(k) < k, then V(k) < V̄(k). We then show that if R ≤ 1

δ
and g(k) > k then V(k) < V̄(k).

When R ≥ 1
δ , we show that V̄(k) is the value function of the dynamic optimization

problem

max
{kn}

∞

∑
n=0

δnu(Rkn − kn+1)

subject to k0 = k and kn+1 ≤ kn. We show that V̄ is the solution of the Bellman equation
associated to the problem:

W(k) = max
k′≤k
{u(Rk− k′) + δW(k′)}.

Consider the maximization problem

max
k′≤k
{u(Rk− k′) +

δ

1− δ
u
(
(R− 1) k′

)
}

where u((R−1)k′)
1−δ = V̄(k′). The first-order condition for k′ is

−u′(Rk− k′) +
R− 1
1
δ − 1

u′((R− 1) k′) ≥ 0,

with equality if k′ < k. Since R ≥ 1
δ , the inequality holds at k′ = k, and is violated for

any k′ < k. Therefore, k′ = k is the unique solution of this maximization problem and
W(k) = V̄(k). Note that this optimum is unique. Since g(k) < k and g is monotone,
we have gn(k) a decreasing sequence, so this is feasible but not optimal; it follows that
V(k) < V̄(k).
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The proof for R ≤ 1
δ is symmetric.

A.2 Proof of Lemma 3

From the definition of equilibrium,

u(Rk− g(k)) + βδV(g(k)) ≥ u(Rk− k) + βδV(k),

Rearranging,

β (u(Rk− g(k)) + δV(g(k))) + (1− β)u(Rk− g(k))
≥ β (u(Rk− k) + δV(k)) + (1− β)u(Rk− k),

or equivalently,

u(Rk− g(k)) + δV(g(k)) ≥ u(Rk− k) + δV(k) +
1− β

β
(u(Rk− k)− u(Rk− g(k))).

Now if g(k) ≥ k and β ≤ 1, the last term in the right side is positive. Therefore,

u(Rk− g(k)) + δV(g(k)) ≥ u(Rk− k) + δV(k),

The left side equals V(k), so that

V(k) ≥ u(Rk− k) + δV(k).

This implies V(k) ≥ 1
1−δ u(Rk− k) = V̄(k). The inequality is strict if g(k) > k.

A.3 Proof of Lemma 5

The first condition follows directly from (1) at k = kn given that Vn = V(kn), kn = g(kn)
and Vn+1 = V(kn+1). The second condition follows from inequality (2) at k = kn by
setting k′ = kn, given that Vn = V(kn), kn+1 = g(kn) and Vn+1 = V(kn+1), then using (1)
and rearranging.

With isoelastic utility we can divide these expressions by k1−σ
n and rearrange to obtain

(4) and (5).

B Proof of No Reversal Principle: Theorem 1

Part (a): R > R∗ Assume by contradiction that there exists k̂ > k̃ such that g(k̂) ≥ k̂. By
hypothesis we have that

k̆ ≡ inf
{

k ≥ k̃ : g(k) ≥ k
}
≤ k̂ < ∞. (11)

There are two cases to consider, both leading to a contradiction.
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Case 1: First suppose g(k̆) ≥ k̆. This implies that k̃ < k̆ and, hence, that g(k) < k for all
k ∈ (k̃, k̆). Since g is a Markov equilibrium savings function it must satisfy (2) for all k,
implying

u(Rk− g(k)) + βδV(g(k)) ≥ u(Rk− k̆) + βδV(k̆).

By Lemma 3, V(k̆) ≥ V̄(k̆). This implies

u(Rk− k̆) + βδV(k̆) ≥ u(Rk− k̆) + βδV̄(k̆).

Combining the two inequalities gives for all k ≥ k

u(Rk− g(k)) + βδV(g(k)) ≥ u(Rk− k̆) + βδV̄(k̆). (12)

Now consider k ∈ (k̃, k̆), so that g(k) < k < k̆. By monotonicity of g, then g(g(k)) ≤
g(k). If this weak inequality holds with equality then V(g(k)) = V̄(g(k)), otherwise, if
the inequality is strict, by Lemma 2 part (a) we have V(g(k)) < V̄(g(k)). Combining, we
conclude that V(g(k)) ≤ V̄(g(k)) and using (12) then gives that for all k ∈ (k̃, k̆)

u(Rk− g(k)) + βδV̄(g(k)) ≥ u(Rk− k̆) + βδV̄(k̆). (13)

We shall derive a contradiction with this inequality.
Indeed, since g(k) < k, Lemma 4 part (a) shows that

u(Rk− g(k)) + βδV̄(g(k)) < u(Rk− k) + βδV̄(k).

By Lemma 4 part (a), k∗(k̆) > k̆. In addition, because k∗(k) is continuous in k (part c),
there exists k < k̆ sufficiently close to k̆ such that k∗(k) > k̆. Also by Lemma 4 part (a), for
such k,

u(Rk− k) + βδV̄(k) < u(Rk− k̆) + βδV̄(k̆).

Together the last two inequalities contradict inequality (13).
This proves that g(k̆) ≥ k̆ is not possible.

Case 2: Now suppose g(k̆) < k̆. We shall find that this case also leads to a contradiction.
Since g(k̆) < k̆, the definition of k̆ implies that there exists a sequence {ln}with ln > k̆,

limn→∞ ln = k̆ satisfying g(ln) ≥ ln. Since g is a Markov equilibrium savings function it
must satisfy (2) for k = k̆, implying

u(Rk̆− g(k̆)) + βδV(g(k̆)) ≥ u(Rk̆− ln) + βδV(ln).

By Lemma 3, since g(ln) ≥ ln we have V(ln) ≥ V̄(ln) and thus

u(Rk̆− ln) + βδV(ln) ≥ u(Rk̆− ln) + βδV̄(ln).

Combining gives

u(Rk̆− g(k̆)) + βδV(g(k̆)) ≥ u(Rk̆− ln) + βδV̄(ln).
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Also by Lemma 2 (for R > 1
δ ), V(g(k̆)) ≤ V̄(g(k̆)), implying

u(Rk̆− g(k̆)) + βδV̄(g(k̆)) ≥ u(Rk̆− ln) + βδV̄(ln).

Now taking the limit as n→ ∞, this implies

u(Rk̆− g(k̆)) + βδV̄(g(k̆)) ≥ u(Rk̆− k̆) + βδV̄(k̆).

However, since g(k̆) < k̆, this contradicts the conclusion of Lemma 4 part (a) (for k = k̆
and k′ = g(k̆)). This contradiction implies that g(k̆) < k̆ is not possible.

Since either Case 1 or Case 2 must hold and both lead to a contradiction we conclude
that the hypothesis that there exists k̂ such that g(k̂) ≥ k̂ must be false. Therefore, we
have shown that g(k) < k for all k ≥ k̃.

Now starting from k0 ≥ k̃, because k1 = g(k0) < k0, and g is monotone. The resulting
sequence {kn} is decreasing and bounded below by k. Therefore the limit limn→∞ kn =
k∞ ≥ k exists. We show that k∞ must be a steady-state.

Indeed, because kn is decreasing, k∞ ≤ kn. Again, by the monotonicity of g, g(k∞) ≤
g(kn) = kn+1. Taking the limit n → ∞, we obtain g(k∞) ≤ k∞. To show that g(k∞) = k∞,
we just need to rule out g(k∞) < k∞. We show this by contradiction. Assume g(k∞) < k∞.
Because of (2) at k = k∞,

u(Rk∞ − g(k∞)) + βδV(g(k∞)) ≥ u(Rk∞ − kn+1) + βδV(kn+1).

By Lemma 2, V(g(k∞)) ≤ V̄(g(k∞)). Therefore

u(Rk∞ − g(k∞)) + βδV̄(g(k∞)) ≥ u(Rk∞ − kn+1) + βδV(kn+1).

Now as n → ∞, V(kn+1) = ∑∞
m=0 δmu(Rkn+1+m − kn+2+m) → V̄(k∞) and kn+1 → k∞, the

inequality above implies

u(Rk∞ − g(k∞)) + βδV̄(g(k∞)) ≥ u(Rk∞ − k∞) + βδV̄(k∞).

which contradicts the conclusion in part (a) of Lemma 4 (for k = k∞ and k′ = g(k∞) < k∞).
Therefore by contradiction we must have g(k∞) = k∞ as desired.

Lastly, since g(k) < k for all k ≥ k̃. It follows that k∞ < k̃.

Part (b): R < R∗ We proceed again by contradiction and assume that there exists k̂ > k̃
such that g(k̂) ≤ k̂. Therefore,

k̆ = inf{k ≥ k̃ : g(k) ≤ k} ≤ k̂ < ∞. (14)

By definition, g(k) > k for all k ∈ (k̃, k̆). We first show that k̆ is a steady-state, so that
g(k̆) = k̆. If g(k̆) > k̆, then by the definition of k̆, there exists k ∈ (k̆, g(k̆)) such that
g(k) ≤ k. However this implies

g(k) ≤ k < g(k̆),
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which contradicts the monotonicity of g shown in Lemma 1. Therefore g(k̆) ≤ k̆. Also by
the definition of k̆,

k < g(k) ≤ g(k̆) ≤ k̆

for all k ∈ (k̃, k̆). Taking the limit k→ k̆ from the left, we obtain g(k̆) = k̆.
Since g is a Markov equilibrium savings function it must satisfy (2) for k = k̆, implying

u(Rk̆− g(k̆)) + βδV(g(k̆)) ≥ u(Rk̆− k) + βδV(k),

for all k ∈ (k̃, k̆). Since g(k̆) = k̆ which implies V(g(k̆)) = V̄(k̆) and g(k) > k which
implies V(k) > V̄(k) by Lemma 3, we obtain

u(Rk̆− k̆) + βδV̄(k̆) > u(Rk̆− k) + βδV̄(k).

This contradicts the conclusion of Lemma 4 part (b) for k < k̆ and sufficiently close to k̆
such that k∗(k̆) < k < k̆.

We conclude that the hypothesis that there exists k̂ such that g(k̂) ≤ k̂ must be false.
Therefore, we have shown that g(k) > k for all k ≥ k̃.

Now starting from k0 ≥ k̃, the resulting sequence {kn} is strictly increasing. We show
that limn→∞ kn = ∞. Assume the contrary: limn→∞ kn = k∞ < ∞. Because k∞ > k0 ≥ k̃,
and the result established above, g(k∞) > k∞. By Lemma 3, we conclude that V(k∞) >
V̄(k∞). Now

V(kn+1) =
∞

∑
m=0

δmu(Rkn+1+m − kn+2+m)→ V̄(k∞),

because kn → k∞. Since (g, V) is a Markov equilibrium condition (2) must hold for k = kn,
implying

u(Rkn − kn+1) + βδV(kn+1) ≥ u(Rkn − k∞) + βδV(k∞).

Taking the limit n → ∞ on both sides gives V̄(k∞) ≥ V(k∞), a contradiction. Therefore,
we have shown that limn→∞ kn = ∞.

C Proofs for Robust Saving: Theorem 2 and Theorem 7

This appendix groups the proof of Theorem 2 and its related extension Theorem 7.

C.1 Theorem 2

We first prove weak savings, that g(k) ≤ k for all k ≥ k. Having established weak savings,
we prove strict savings.

Weak Savings under part (a): R ≥ 1
βδ . The proof is contained in the main body.
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Weak Savings for part (b): R ∈ (R∗, 1
βδ ). Assume σ > σ ∈ (0, 1) so that Lemma 7

applies. Thus, there exists v̂ > u(0)
1−δ such that Γd(v′) = ∅ if and only if v′ < v̂. Also, there

exists x ∈ (0, 1) such that if v′ ∈ [v̂, v̄) then for all x satisfying (5) we have x ≥ x. Finally,
we have that hd is continuous, increasing, and hd(v′) < v′ over [v̂, v̄).

We now proceed by contradiction: suppose there exists k̆ ≥ k such that g(k̆) < k̆.
Theorem 1 part (a) then implies g(k) < k for all k ≥ k̆. Now pick any l∗ > k̄ and pick any
k̃ ∈ (g(l∗), l∗) and define

x̄ ≡ max
{

k̃
l∗

,
g(l∗)

k̃

}
< 1.

Then it follows that k ≥ k̃ and g(k) ≤ k̃ implies g(k)
k ≤ x̄.

Define
χ(x) ≡ u(R− x) + δv̄x1−σ. (15)

Since R > 1
δ , χ(x) is strictly increasing over x ∈ [0, 1]. Set ṽ ≡ χ(x̄) < χ(1) = v̄.

Now given ṽ, let N be the lowest value such that h(N)
d (ṽ) < v̂. Such a finite N exists by

virtue of the fact that we guaranteed hd is continuous and hd(v′) < v′ for all v′ ∈ [v̂, v̄).
Given N, x and k̃, choose k0 = x−(N+1)k̃ > k̃ and consider the sequence {kn} gener-

ated by the savings function kn+1 = g(kn). Let {xn, vn} denote the resulting normalized
sequence as in Section 3.2. By Lemma 2, vn ≤ v̄ for all n = 0, 1, . . . By the definition of Γd
we must have vn ∈ Γd(vn+1) for all n = 0, 1, . . . This is equivalent to requiring v̂ ≤ vn+1
and vn ≤ hd(vn+1) for all n = 0, 1, . . .

Since g(k) < k for all k ≥ k̆ and g is monotone, the sequence {kn} is strictly decreasing.
By Theorem 1 Part a, limn→∞ kn < k̆. Thus, there exists a crossing point at n∗ such that
kn∗ ≥ k̃ and kn∗+1 ≤ k̃. By our choice of k0 and the fact that xn > x, we guaranteed that
n∗ ≥ N + 1. From the definition of k̃, we have xn∗ ≤ x̄ and hence

vn∗ = u(R− xn∗) + δvn∗+1x1−σ
n∗

≤ u(R− xn∗) + δv̄x1−σ
n∗ = χ(xn∗) ≤ χ(x̄) = ṽ.

An equilibrium requires v̂ ≤ vn∗−m ≤ h(m)
d (vn∗) ≤ h(m)

d (ṽ) for m = 1, . . . , n∗ − 1. How-

ever, v̂ ≤ h(m)
d (ṽ) for m = N ≤ n∗ − 1 is impossible since h(N)

d (ṽ) < v̂.
Therefore, by contradiction, we obtain weak saving in all Markov equilibrium.

Weak Savings Implies Strict Savings. Having established that g(k) ≥ k for all k, we
now show how strict savings follows, so that g(k) > k for all k. Assume towards a
contradiction that g(k̆) = k̆ for some k̆ ≥ k. By the Markov equilibrium condition (2) this
implies

u((R− 1)k̆) + βδV(k̆) ≥ u(Rk̆− k) + βδV(k)

for all k ≥ k. Since V(k̆) = V̄(k̆) this implies

u((R− 1)k̆) + βδV̄(k̆) ≥ u(Rk̆− k) + βδV(k)
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for all k ≥ k. Since we have shown that g(k) ≥ k for all k ≥ k, Lemma 3 implies V(k) ≥
V̄(k). Thus,

u((R− 1)k̆) + βδV̄(k̆) ≥ u(Rk̆− k) + βδV̄(k)

for all k ≥ k. However, this contradicts the conclusion of Lemma 4 part (a) (for k = k̆ and
k′ > k̆). Thus, it follows that g(k) > k for all k ≥ k.

C.2 Theorem 7

The proof for weak dissavings in Theorem 2 relies crucially on the assumption that the
wealth domain is unbounded above (since ṽ,N and therefore K depend on endogenous
equilibrium object such as g, V) and is not directly applicable to the environment with
an ah-hoc upper bound on wealth. Now we offer an alternative proof that shows weak
savings in the model with an ad-hoc upper bound: g(k) ≥ k for all k ≤ ζ k̄ for some ζ < 1
independent of k̄. Having established weak dissavings, we can proceed as in the proof of
Theorem 2 to establish strict savings for k ≤ ζ k̄.

Proof for Weak Savings. Assume σ > σ such that Lemmas 7, 8, and 9 apply. Let γ > 1
and ṽ < v̄ as defined in Lemma 8 which depend only on model primitives σ, β, δ, R and
are independent of k̄. Given ṽ, let N be such that h(N)

d (ṽ) < v̂. N exists and is finite
because hd is continuous and hd(v′) < v′ for all v′ < v̄ as shown in Lemma 7. Let x < 1
be defined as in Lemma 7ii. In addition, N, x depends only on model primitives because
hd, ṽ, v̂, v̄ do. Define ζ as

ζ =
1
γ

xN+1 < 1,

which itself depends only on model primitives.
We show by contradiction that g(k) ≥ k for all k ≤ ζ k̄. Assume the contrary: there

exists k̆ ∈ [k, ζ k̄] such that g(k̆) < k̆. Theorem 1 (Part a) then implies that g(k) < k for
all k ≥ k̆. When k > 0, the equilibrium definition immediately implies g(k) ≥ k. When
k = 0, Lemma 9 shows that there exists k > 0 such that g(k) ≥ k. In either case, we can
find k > 0 such that g(k) ≥ k. Because g(k) < k for all k ≥ k̆, it must be that k < k̆.

Now let k0 = k̄ and consider the sequence {kn} generated by the savings function
kn+1 = g(kn). As shown in Theorem 1 Part a, the limit of this sequence, ks, must be a
steady-state and ks < k̆. By monotonicity of g, ks ≥ k > 0. Let k̃ = γks. By Lemma 8, for
any k such that k ≥ k̃ and g(k) ≤ k̃ then v(k) ≤ ṽ.

Construct the sequences {xn} and {vn} as in Section 3.2. By Lemma 2, vn ≤ v̄ for all
n = 0, 1, . . . By the definition of Γd we must have vn ∈ Γd(vn+1). Lemma 7ii ensures that
xn > x, for all n = 0, 1, . . .

Because k0 = k̄ > k̃ and limn→∞ kn = ks < k̃, there exists a crossing point n∗ such that
kn∗ ≥ k̃ and kn∗+1 ≤ k̃. Now since k0 = k̄ and

k̃ ≥ kn∗+1 = k0

n∗

∏
i=0

xi > k0xn∗+1 = k̄xn∗+1,
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we have
x−n∗−1k̃ > k̄ > x−(N+1)γks = x−(N+1)k̃.

It follows that n∗ ≥ N + 1. From the definition of k̃, we have vn∗ ≤ ṽ. With this property,
we obtain a contradiction as in the previous proof for unbounded domain. Therefore,
g(k) ≥ k for all k ≤ ζ k̄.

D Proof of Robust Dissaving: Theorem 3

Assume that g(k) > k at some k ≥ k. We show that this must lead to a contradiction.

Part (a): R ≤ 1
δ The proof is already included in the main body of the paper.

Part (b): 1
δ < R < R∗ Consider the correspondence Γs defined in Subsection 4.3. For

any equilibrium path with kn+1 ≥ kn we must have vn ∈ Γs(vn+1). Recall that v̄ ≡ u(R−1)
1−δ .

One can show that the function

Fs(v′) ≡ max
x∈[1,R]

(1− βδ)u(R− x) + βδ(1− δ)v′x1−σ.

is strictly increasing in v′ and that Fs(v̄) = u(R− 1). It follows that the set of x ∈ [1, R] for
which (5) holds is non empty if and only if v′ ≥ v̄. Thus, Γs(v′) 6= ∅ if and only if v′ ≥ v̄.
For all v′ ≥ v̄, we already defined

hs(v′) ≡ sup Γs(v′). (16)

Lemma 10 shows that there exists σ < 1 such that for σ > σ, hs(v′) < v′ for all v′ > v̄.
Assume σ > σ, we will use this function hs to obtain a contradiction. Suppose g(k̂) > k̂ at
some k̂ ≥ k. Then by the No Reversal Principle, g(k) > k for all k ≥ k̂.

Consider the sequence of wealth {kn}∞
n=1 generated by kn+1 = g(kn) and k0 = k̂. By

Lemma 1, {kn} is non-decreasing and by Theorem 1 Part b, limn→∞ kn = ∞. We show that
this leads to a contradiction. Let vn = V(kn)

k1−σ
n

. Because the sequence features strict saving

and k1 > k0, by Lemma 3, we know that v0 > v̄. Let vFB denote the (normalized) value of
the optimum for the exponential consumer with commitment, i.e.

vFBk1−σ = max
{ln},l0=k

∞

∑
n=0

δnu(Rln − ln+1)

and vFB < ∞ since δR1−σ < 1. We then have

vn ≤ vFB
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and since hs is an increasing function this gives

vn ≤ hs(vn+1) ≤ hs(vFB).

Continuing in this way one obtains

v0 ≤ hn
s (v

FB),

for any n = 0, 1, . . . Taking the limit as n → ∞ gives hn
s (vFB) → v̄, so we conclude that

v0 ≤ v̄. A contradiction.
Therefore we have shown that g(k) ≤ k for all k ≥ k.

E Supporting Lemmas

E.1 Lemmas Supporting Proofs of Theorem 2 and Theorem 7

Lemma 7. Suppose R ∈ [R∗, 1
βδ ) and let Γd and hd be defined as in Section 4.2. Then there exists

σ < 1 such that for all σ > σ, the following properties hold.
(i) There exists v̂ ∈ (u(0)

1−δ , v̄) such that Γd(v′) = ∅ if and only if v′ < v̂.
(ii) There exists x > 0 such that for all v′ ∈ [v̂, v̄], if (5) holds then x > x.
(iii) hd(v′) is continuous, strictly increasing in v′ and hd(v̄) = v̄ and hd(v′) < v′ for all

v′ < v̄.

Proof. Define σ1 as the unique σ ∈ (0, 1) such that (1− βδ)u(R) + βδu(0) = u(R− 1)
or equivalently

(1− βδ)R1−σ = (R− 1)1−σ, (17)

which exists because R < 1
βδ . When σ > σ1 then the (1− βδ)u(R) + βδu(0) < u(R− 1).

Similarly, define σ2 as the unique σ ∈ (0, 1) such that

(1− βδ)σ(2− σ) = 1− β. (18)

When σ > σ2 then (1− βδ)σ(2− σ) > 1− β.
Now define σ = max{σ1, σ2}. We show that (i), (ii), and (iii) hold.

Proof of Part (i). Define

F(v′, x) ≡ (1− βδ)u(R− x) + βδ(1− δ)v′x1−σ,

F (v′) ≡
{

x ∈ [0, 1] : F(v′, x) ≥ u (R− 1)
}

,

and
f (v′) = max

x∈[0,1]
F(v′, x).
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Then f (v′) is strictly increasing in v′. In addition f (v̄) > F(v̄, 1) = u(R− 1) and lim
v′↓ u(0)

1−δ

f (v′) =

(1− βδ)u(R). Because σ > σ1 we have (1− βδ)u(R) < u(R− 1). Therefore, lim
v′↓ u(0)

1−δ

f (v′) <

u(R− 1). Consequently, there exists a unique v̂ ∈ (u(0)
1−δ , v̄) such that f (v′) = u(R− 1) and

f (v′) < u(R− 1), so that F (v′) = ∅ and Γd(v′) = ∅ for v′ < v̂.

Proof of Part (ii). Because σ > σ1:

1− βδ <

(
R− 1

R

)1−σ

.

Since
(1− βδ)u(R− x) + βδ(1− δ)v′x1−σ ≥ u(R− 1)

and v′ ≤ v̄,we have

(1− βδ)u(R− x) + βδ(1− δ)v̄x1−σ ≥ u(R− 1). (19)

As x → 0, the left hand side converges to

(1− βδ)u(R),

when σ < 1 and to −∞ when σ > 1, both are strictly less than u(R− 1) given σ > σ1.
Therefore, by continuity, there exists x > 0 such that (19) holds with the strict reversed
inequality when x ≤ x. For such x, (19) implies x > x.

Proof of Part (iii). Define

H(v′, x) ≡ u (R− x) + δv′x1−σ.

Using H,we can write the function hd as

hd(v′) = max
x∈F (v′)

H
(
v′, x

)
.

By Berge’s Maximum Theorem, hd is continuous.
It is easy to show that F are strictly concave in x. Therefore F (v′) is an interval, i.e.

F (v′) = [x1(v′), x2(v′)] where 0 ≤ x1(v′) ≤ x2(v′) ≤ 1. Since F(v′1, x) ≤ F(v′2, x) for any
v′1 < v′2, we have F (v′1) ⊂ F (v′2).

In addition H(v′1, x) ≤ H(v′2, x) for any v′1 < v′2, therefore hd(v′1) ≤ hd(v′2). It is also
easy to rule out equality (hd(v′1) = hd(v′2) only if v′1 = 0 however in this case v′2 > v′1 = 0
leading to hd(v′1) = u(R) < hd(v′2), a contradiction). Therefore hd(v′1) < hd(v′2).

Now at v′ = v̄, we have, F (v̄, 1) = u(R− 1). Also

∂F
∂x
≡ −(1− βδ)u′(R− x) + βδ(1− δ)v′(1− σ)x−σ.
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Using that v̄ = u(R−1)
1−δ and u′(R− 1) = (1− σ)u(R− 1)(R− 1) we obtain

∂F
∂x

(v̄, 1) = u′ (R− 1) (βδR− 1) .

Since βδR < 1, ∂F
∂x < 0, we have F (v̄) = [x1, 1] where 0 ≤ x1 < 1. Now

∂H
∂x

= −u′(R− x) + δv′(1− σ)x−σ.

Since v̄ = u(R−1)
1−δ ,

∂H
∂x

(v̄, 1) = u′ (R− 1)
(

δR− 1
1− δ

)
.

Because R > 1
δ , ∂H

∂x (v̄, 1) > 0. Moreover, H is concave in x, therefore H is strictly increas-
ing for x ∈ [x1, 1]. So hd(v̄) = H(v̄, 1) = v̄.

Now we show that hd(v′) < v′ for all v′ < v̄. We rewrite function hd(.) as

hd(v′) = max
x∈[0,1]

u(R− x) + δv′x1−σ (20)

subject to
(1− βδ)u(R− x) + βδ(1− δ)v′x1−σ ≥ u(R− 1). (21)

Let x̂ be the solution to this optimization problem. We show that hd(v′) < v′ separately
in two cases.

Case 1: σ < 1. We will show that for σ sufficiently close to 1, and if x̂ < 1, constraint
(21) holds with equality, i.e.

(1− βδ)u(R− x̂) + βδ(1− δ)v′ x̂1−σ = u(R− 1).

We show that hd(v′) < v′ when v′ 6= v̄ in this case. Indeed, we have

hd(v′) = u(R− x̂) + δv′ x̂1−σ

and
(1− βδ)u(R− x̂) + βδ(1− δ)v′ x̂1−σ = u(R− 1).

Showing that hd(v′) ≤ v′ is equivalent to showing

v′ ≥ u(R− x̂)
1− δx̂1−σ

.

From the second equation,

v′ =
u(R− 1)− (1− βδ)u(R− x̂)

βδ(1− δ)x̂1−σ
.
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Therefore, we need to show

u(R− 1) ≥ u(R− x̂)
(

βδ(1− δ)x̂1−σ

1− δx̂1−σ
+ 1− βδ

)
.

Let

φ(x) ≡ u(R− x)
(

βδ(1− δ)x1−σ

1− δx1−σ
+ 1− βδ

)
(22)

= u(R− x)
(

β(1− δ)

1− δx1−σ
+ 1− β

)
.

In Lemma 7a below, we show that for σ ∈ (σ2, 1), , φ′(x) > 0 for x < 1. Therefore
φ(x̂) < φ(1) = u(R− 1) for all x̂ < 1. This implies hd(v′) ≤ v′. In addition, we obtain an
equality if and only if x̂ = 1 and v′ = u(R−1)

1−δ = v̄. Otherwise hd(v′) < v′.
Now we show that if σ < 1 but σ > σ1 and x2(v′) < 1, constraint (21) binds at x = x̂.

Indeed, we rewrite the constraint as

u(R− x) +
βδ(1− δ)

1− βδ
v′x1−σ ≥ 1

1− βδ
u(R− 1).

Both the left side of this constraint and the objective function in (20) are single-peaked.
Since βδ(1−δ)

1−βδ < δ, the peak of the left side of this constraint lies to the left of the peak of
the objective function.

The constraint is then equivalent to x ∈ [x1(v′), x2(v′)] where the constraint holds
with equality at x1(v′) and if x2(v′) ≤ 1 it also holds with equality at x2(v′), otherwise
x2(v′) = 1. Lemma 7b below shows that for σ ∈ (σ1, 1) , if the peak of the objective
function x∗ ≤ 1 then

u(R− x∗) +
βδ(1− δ)

1− βδ
v′(x∗)1−σ <

1
1− βδ

u(R− 1).

Thus, x∗ > x2(v′). Therefore, the objective function is strictly increasing in x ∈ [x1(v′), x2(v′)],
which then implies that x̂ = x2(v′) < 1. If x∗ > 1, then x2(v′) < x∗ and the same conclu-
sion holds.

We have shown that for σ ∈ (σ, 1) and if x̂ < 1, then hd(v′) < v′. The remaining
possibility is that x2(v′) = x̂ = 1. Because v̂ ≤ v′ < v̄, we show that x2(v′) = x̂ < 1, so
this case does not apply. Indeed, when x = 1, since v′ < v̄

(1− βδ)u(R− 1) + βδ(1− δ)v′ < u(R− 1).

In addition v′ ≥ v̂ implies that there exists x < 1 satisfying

(1− βδ)u(R− x) + βδ(1− δ)v′x1−σ ≥ u(R− 1).

Therefore x2(v′) < 1.
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Case 2: σ > 1. There are three possibilities Case 2i, Case 2ii, and Case 2iii.
Case 2i: x̂ < x2(v′) ≤ 1. Then x̂ is a local maximum of the objective function, (20),

determining hd.The F.O.C. in x̂ implies

v′ =
(R− x̂)−σ

δ(1− σ) (x̂)−σ .

So

hd(v′) = u(R− x̂) + δ
(R− x̂)−σ

δ(1− σ)
x̂.

Therefore
hd(v′) < v′

if and only if

(R− x̂)1−σ + (R− x̂)−σ x̂ >
(R− x̂)−σ

δ

or equivalently, R (x̂)−σ > 1
δ . This is true since R > R∗ > 1

δ and x̂ < 1.
Case 2ii: x̂ = x2(v′) < 1. If δx̂1−σ ≥ 1, given that v′ < 0 and u < 0,

hd(v′) = u(R− x̂) + δv′ x̂1−σ < v′.

Now if δx̂1−σ ≤ 1, Lemma 7a shows that φ is defined in (22) is strictly increasing in x
when δx1−σ ≤ 1. Therefore φ(x̂) < φ(1). As shown for the case σ < 1, this implies
hd(v′) < v′.

Case 2iii: x̂ = x2(v′) = 1. As shown above for σ < 1, this case does not arise when
v′ < v̄. .

Lemma 7a. Suppose R ≥ R∗. Let φ be defined by (22). When either i) σ ∈ (σ2, 1) or ii) σ > 1
and δx1−σ ≤ 1, then φ′(x) > 0 for all x ∈ [0, 1).

Differentiating φ(x), we get

φ′(x) = −u′(R− x)
(

β(1− δ)

1− δx1−σ
+ 1− β

)
+ u(R− x)

β(1− δ)δ(1− σ)x−σ

(1− δx1−σ)
2

= u′(R− x)

(
β(1− δ)δx−σ

(1− δx1−σ)
2 (R− x)− β(1− δ)

1− δx1−σ
− (1− β)

)

= u′(R− x)
x−σ

(1− δx1−σ)
2 ψ(x),
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where

ψ(x) ≡ β(1− δ)δ(R− x)− β(1− δ)xσ
(

1− δx1−σ
)
− (1− β)

(
1− δx1−σ

)2
xσ (23)

= β(1− δ)δR− β(1− δ)xσ − (1− β)
(

1− δx1−σ
)2

xσ

= β(1− δ)δR− (1− βδ)xσ + 2(1− β)δx− (1− β)δ2x2−σ.

Showing φ′(x) > 0 is equivalent to showing ψ(x) > 0, which we do below.
At x = 1,

ψ(1) = (1− δ)βδ

(
R− 1− 1− δ

βδ

)
= (1− δ)βδ(R− R∗) ≥ 0

given that R ≥ R∗.
First consider the case σ < 1. The derivative ψ′(x) is given by

ψ′(x) = − (1− βδ) σxσ−1 + (1− β) 2δ− (1− β)δ2(2− σ)x1−σ. (24)

By the Cauchy-Schwarz inequality,

ψ′(x) ≤ (1− β)2δ−
√
(1− βδ)(1− β)δ2σ(2− σ) < 0,

where the last inequality comes from (18).Therefore ψ(x) > ψ(1) ≥ 0 for all x ∈ [0, 1].
Now consider the case σ > 1. We first show that ψ is concave in x as long as δx1−σ ≤ 1.

Indeed,
ψ′′(x) = −(1− βδ)xσ−2σ(σ− 1) + (1− β)δ2(2− σ)x−σ(σ− 1).

If σ ≥ 2 then ψ′′(x) < 0 since both terms on the right side are negative. If 1 < σ < 2, then

ψ′′(x) = xσ−2(σ− 1)
(
−(1− βδ)σ + (1− β)δ2x2−2σ(2− σ)

)
≤ xσ−2(σ− 1) (−(1− βδ)σ + (1− β)(2− σ)) < 0,

where the first inequality comes from δx1−σ ≤ 1 and the second inequality comes from
σ > 2− σ and 1− βδ > 1− β.

Because ψ(x) is strictly concave in x, in order to show that ψ(x) > 0, we just need to
show that ψ(x) ≥ 0 at the two extremes: when x = 1 or when δx1−σ = 1.

When x = 1, ψ(1) ≥ 0 is shown above. When δx1−σ = 1,

ψ(x) = β(1− δ)δR− (1− βδ)xσ + 2(1− β)δx− (1− β)δ2x2−σ

= β(1− δ)δR− (1− βδ)xσ + 2(1− β)δx− (1− β)δx
= β(1− δ)δR− (1− βδ)δx + 2(1− β)δx− (1− β)δx
= β(1− δ)δ(R− x) > 0.
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Lemma 7b. Suppose R ≥ R∗. and σ < 1. Let

x∗ = arg max
x≥0

u(R− x) + δv′x1−σ.

For all σ > σ1, if x∗ ≤ 1 then

(1− βδ)u(R− x∗) + βδ(1− δ)v′ (x∗)1−σ < u(R− 1). (25)

Indeed,
(R− x∗)−σ = δv′(1− σ) (x∗)−σ

Therefore

v′ =
(R− x∗)−σ

δ(1− σ) (x∗)−σ .

Plugging this into the LHS of (25), we obtain

(1− βδ)u(R− x∗) + βδ(1− δ)v′ (x∗)1−σ

= (1− βδ)u(R− x∗) + βδ(1− δ)
(R− x∗)−σ

δ(1− σ) (x∗)−σ (x∗)1−σ

= (1− βδ)
(R− x∗)1−σ

1− σ
+ β(1− δ)

(R− x∗)−σ

(x∗)−σ

(x∗)1−σ

1− σ
.

When σ < 1, the desired inequality (25) is then equivalent to

(1− βδ) (R− x∗) + β(1− δ)x∗ < (R− x∗)σ (R− 1)1−σ ,

or
(1− βδ)R < (1− β) x∗ + (R− x∗)σ (R− 1)1−σ .

The right hand side is concave, therefore we just need to show that the inequality holds
at x∗ = 1 and x∗ = 0. At x∗ = 1, it is equivalent to

(1− βδ)R < (1− β) + R− 1

or 1
δ < R which is satisfied because R ≥ R∗ > 1

δ .
At x∗ = 0, the inequality is equivalent to

1− βδ <

(
1− 1

R

)1−σ

,

which holds because σ > σ1.

Lemma 8. Assume isoelastic utility with σ > σ defined in Lemma 7 and R > R∗. If ks > 0 is a
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steady state, then there exists k̃ > ks and ṽ < v̄ such that if k ≥ k̃ and g(k) ≤ k̃ then

V(k)
k1−σ

≤ ṽ.

In addition γ = k̃
ks > 1 and ṽ depends only on model primitives: σ, β, δ, R.

Proof. Let k∗(·) be defined in Lemma 4 as the optimal response to constant wealth. Be-
cause R > R∗, we have k∗(ks) > ks and let ˜̃k and k̃ denote ks+k∗(ks)

2 and k∗(ks) respectively.
Then by Lemma 4, we have, for all k ∈ [ ˜̃k, k̃]:

u(Rks − k) + βδV̄(k) ≥ u(Rks − ˜̃k) + βδV̄( ˜̃k)
= u(Rks − ks) + βδV̄(ks) + ∆,

where ∆ = u(Rks − ˜̃k) + βδV̄( ˜̃k) − u(Rks − ks) − βδV̄(ks) > 0. For any k in the same
interval, because an agent with wealth ks prefers ks to k, we have:

u(Rks − ks) + βδV̄(ks) ≥ u(Rks − k) + βδV(k).

Combining this with the previous inequality, we arrive at:

u(Rks − k) + βδV̄(k) ≥ ∆ + u(Rks − k) + βδV(k),

or
V(k)
k1−σ

≤ v̄− ∆
βδk1−σ

≤ v̄− ∆
βδk̃1−σ

.

Now let ṽ be defined by

ṽ = max

{
v̄− ∆

βδk̃1−σ
, χ

( ˜̃k
k̃

)}
,

where χ is defined in (15). It follows immediately that ṽ < v̄. We show that k̃ and ṽ satisfy
the desired property. Indeed, if k ≥ k̃, and g(k) ≤ k̃, there are two possibilities:

i. g(k) ∈ [ ˜̃k, k̃]: in this case, V(k)
k1−σ ≤ v̄− ∆

βδk1−σ ≤ ṽ as shown above.

ii. g(k) ≤ ˜̃k: in this case, g(k)
k ≤

˜̃k
k̃
. Therefore

V(k)
k1−σ

=
u(Rk− g(k)) + βδV(g(k))

k1−σ

≤ u(Rk− g(k)) + βδV̄(g(k))
k1−σ

= χ

(
g(k)

k

)
≤ χ

( ˜̃k
k̃

)
≤ ṽ,

where the first inequality comes from Lemma 2 and g(k) ≤ k and the second inequality
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comes from monotonicity of χ.
Lastly, by homogeneity, k̃

ks and ṽ only depend on model primitives.

Lemma 9. Assume isoelastic utility with σ > σ defined in Lemma 7, R > R∗, and k = 0. Then
in any Markov equilibrium, g(k) ≥ k for some k > 0.

Proof. We show the result by contradiction. Assume the contrary: g(k) < k for all k > 0.
Starting from any wealth level k0 > 0 consider the sequence {kn}∞

n=0 generated by the
savings function g. We have kn+1 = g(kn) < kn for all n ≥ 0. Let

vn =
V(kn)

k1−σ
n

.

By Lemma 2, V(kn) < V̄(kn), which implies vn ≤ v̄.
The sequence {kn} is strictly decreasing. It is also bounded from below by 0, so it

must converge to some k̃ ≥ 0. If k̃ > 0, as shown in Theorem 1 Part a, it must be that
g(k̃) = k̃, which is ruled out by the contradiction assumption that g(k) < k for all k > 0.
Consequently, we have:

lim
n→∞

kn = 0. (26)

Now, we show that

lim
n→∞

kn+1

kn
= 1. (27)

Since kn+1
kn

< 1 for all n ≥ 0, to show (27), we just need to show that for any γ > 0, there

exists nγ such that kn+1
kn
≥ 1− γ for all n > nγ. Indeed, let ṽ = χ(1− γ) < v̄ where χ

is defined in (15). By Lemma 7, there exists nγ such that h(n)d (ṽ) < v̂ for all n ≥ nγ. We
show by contradiction that kn+1

kn
≥ 1− γ for all n > nγ. Assume by contradiction that

kn∗+1
kn∗

< 1− γ for some n∗ > nγ. By Lemma 2, vn∗+1 ≤ v̄, hence

vn∗ = u(R− xn∗) + δvn∗+1x1−σ
n∗

≤ u(R− xn∗) + δv̄x1−σ
n∗ ≤ χ(1− γ) = ṽ.

From the definition of hd, we have:

vn∗ ≤ hd(vn∗+1) ≤ ṽ.

Therefore vn∗−nγ ≤ h(nγ)
d (ṽ) < v̂. Which implies Γd(vn∗−nγ) = ∅, a contradiction, since

vn∗−nγ−1 ∈ Γd(vn∗−nγ). So we obtain (27) by contradiction.
Similarly, we can show that

lim
n→∞

V(kn)

k1−σ
n

= v̄. (28)

Armed with (26), (27), and (28), we can derive the ultimate contradiction. Let ϕ̄(x) ≡
u(R− x) + βδx1−σv̄. Because R > R∗, ϕ̄′(1) = u′(R− 1)

(
1− βδ(R−1)

1−δ

)
> 0. Therefore,
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there exist 0 < ε1 < ε2 such that

ϕ̄(x) > ϕ̄(1) ∀x ∈ [1 + ε1, 1 + ε2] . (29)

Because of (27), there exists N > 0 such that

0 < log(kn)− log(kn+1) < log (1 + ε2)− log (1 + ε1) ∀n ≥ N. (30)

Given (30) and (26), for each n ≥ N, there exists m(n) > n such that

log(1 + ε2) ≥ log(kn)− log(km(n)) ≥ log(1 + ε1),

or equivalently

1 + ε2 ≥
kn

km(n)
≥ 1 + ε1.

From the optimality of km(n)+1 given km(n),

u(Rkm(n) − km(n)+1) + βδV(km(n)+1) ≥ u(Rkm(n) − kn) + βδV(kn).

Dividing both sides by k1−σ
m(n) and rearranging, the last inequality leads to

u

(
R−

km(n)+1

km(n)

)
+ βδ

V(km(n)+1)

k1−σ
m(n)+1

(
km(n)+1

km(n)

)1−σ

≥ u

(
R− kn

km(n)

)
+ βδ

V(kn)

k1−σ
n

(
kn

km(n)

)1−σ

. (31)

We can extract a subsequence np such that
knp

km(np)
converges to some x∗ ∈ [1 + ε1, 1 + ε2].

Applying (31) for n = np and take the limit p→ ∞, using (27) and (28), we arrive at

ϕ̄(1) = u (R− 1) + βδv̄ ≥ u (R− x∗) + βδv̄ (x∗)1−σ = ϕ̄(x∗),

which contradicts (29). We obtain the desired contradiction.

E.2 Lemmas Supporting Proof of Theorem 3

Lemma 10. Suppose R ∈ (1
δ , R∗]. Let hs be defined by (16). Then

(i) hs(v′) is continuous, strictly increasing in v′;
(ii) hs(v̄) = v̄; and
(iii) if σ > σ2 , defined in (18), then hs(v′) < v′ for all v̄ < v′.

Proof. Proof of parts (i) and (ii): The proof of this part is similar to the proof of part (iii) in
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Lemma 7. In particular, let H and F be defined as in that proof and

Fs(v′) =
{

x ∈ [1, R] : F(v′, x) ≥ u (R− 1)
}

.

Given these definitions, we can write the function hs as

hs(v′) = max
x∈Fs(v′)

H
(
v′, x

)
.

By Berge’s Maximum Theorem, hs is continuous.
Since F is strictly concave in x, Fs(v′) is an interval, i.e. Fs(v′) = [x1(v′), x2(v′)] where

1 ≤ x1(v′) ≤ x2(v′) ≤ R. Since F(v′1, x) ≤ F(v′2, x) for any v′1 < v′2, we have Fs(v′1) ⊂
Fs(v′2). In addition H(v′1, x) ≤ H(v′2, x) for any v′1 < v′2, therefore hs(v′1) ≤ hs(v′2). It is
also easy to show that this inequality must be strict.

Now at v′ = v̄, we have, F (v̄, 1) = u(R− 1). Consider the derivative ∂F
∂x (v̄, x)

∂F
∂x

= −(1− βδ)u′(R− x) + βδ(1− δ)v′(1− σ)x−σ.

Since v̄ = u(R−1)
1−δ ,

∂F
∂x

(v̄, 1) = u′ (R− 1) (βδR− 1) .

Because βδR < 1, ∂F
∂x < 0, therefore Fs(v̄) = {1}. So hs(v̄) = H(v̄, 1) = v̄. For v′ < v̄,

Fs(v′) = ∅.
Proof of part (iii): Let

v = hs(v′)

and let x̂ ∈ [1, R] be the solution to the constrained optimization problem that defines hs.
Then

v = u(R− x̂) + δx̂1−σv′

and
(1− βδ)u(R− x̂) + βδ(1− δ)v′ x̂1−σ ≥ u(R− 1).

Therefore
β(1− δ)v ≥ u(R− 1)− (1− β)u(R− x̂). (32)

Since v′ = v−u(R−x̂)
δx̂1−σ , showing hs(v′) < v′ is equivalent to showing

v− u(R− x̂)
δx̂1−σ

> v

or

v >
u(R− x̂)
1− δx̂1−σ

.

48



By (32), this is obtained if

u(R− 1)− (1− β)u(R− x̂)
β(1− δ)

>
u(R− x̂)
1− δx̂1−σ

for all x̂ ∈ (1, R] (because v′ > v̄ and x̂ > 1). After rearranging, we rewrite this inequality
as

u(R− 1) ≥ u(R− x̂)
(

β(1− δ)

1− δx̂1−σ
+ 1− β

)
.

The right hand side is φ(x̂), where φ is defined in (22). By definition φ(1) = u(R− 1). It
is sufficient to show that φ is strictly decreasing over [1, R].

Indeed,

φ′(x) = u′(R− x̂)
x−σ

(1− δx1−σ)2 ψ(x)

where ψ is defined in (23). As shown in Lemma 10a below, ψ(x) < 0 for x > 1 if σ > 1 or
σ ∈ (σ2, 1).

Lemma 10a. Let ψ(x) be defined as in (23), then ψ(x) < 0 for all x ∈ (1, R] if either i) σ > 1 or
ii) σ ∈ (σ2, 1).

Proof. In Case i) or Case ii), we show that ψ is strictly decreasing over [1, R]. Therefore
ψ(x) < ψ(1) = (1− δ)βδ(R− R∗) ≤ 0 from the expression for ψ in (23).

From the expression for ψ′(x) given in (24), ψ′(x) < 0 if and only if

− (1− βδ) σy + (1− β) 2δ− (1− β)δ2(2− σ)
1
y
< 0,

where y = xσ−1. If σ > 1, y ≥ 1. The derivative of the last expression in y is strictly
negative for y ≥ 1,

−(1− βδ)σ + (1− β)δ2(2− σ)
1
y2 < 0,

since
1− βδ > (1− β)δ2

and σ ≥ 2− σ. Now at y = 1, the value of the expression is

− (1− βδ) σ + (1− β) 2δ− (1− β)δ2(2− σ)

= −(1− βδ− δ2(1− β))σ + (1− β)2δ(1− δ)

< −(1− βδ− δ2(1− β)) + (1− β)2δ(1− δ)

= −(1− δ)(1− δ + βδ) < 0.

So ψ′(x) < 0 for all x ≥ 1.
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When σ < 1, then

ψ′(x) = − (1− βδ) σxσ−1 + (1− β) 2δ− (1− β)δ2(2− σ)x1−σ

≤ −2
√
(1− βδ) σ(1− β)δ2(2− σ) + (1− β)2δ,

by the Cauchy–Schwarz inequality. The last expression is strictly negative when (18)
holds with strict inequality.

F Case R = R∗: Proof of Theorem 4

Choose σ < 1 such that for all σ > σ, Lemma 7 and Lemma 10 apply: hd(v′) < v′ for all
v′ < v̄ and hs(v′) < v′ for all v′ > v̄. We prove the uniqueness result in two steps. First,
we extend the conclusions of the No Reversal Principle stated in Theorem 1 to R = R∗

with σ ≥ σ. Then, we use the principle to rule out g(k) > k and g(k) < k at any k.
First, observe that with R = R∗ we have a version of Lemma 4 with k∗(k) = k, so that

ϕ(k, k) > ϕ(k, k′) (33)

for all k′ 6= k.

No Reversal Principle Part (a). We first show that there cannot be reversal from strict
dissavings to weak savings. We proceed as in the proof of Theorem 1 part (a): assume by
contradiction that there exists k̃ < k̂ and g(k̃) < k̃ and g(k̂) ≥ k̂. Define k̆ as in (11). There
are two cases.

Case 1: g(k̆) ≥ k̆. In this case g(k) < k for all k ∈ (k̃, k̆). We first show by contradiction
that limk↑k̆ g(k) = k̆. Otherwise, there exists a sequence ln ↑ k̆ such that limn→∞ g(ln) =

k′ < k. Because of (2), we have

u(Rln − g(ln)) + βδV(g(ln)) ≥ u(Rln − k̆) + βδV(k̆).

By Lemma 2, V(g(ln)) ≤ V̄(g(ln)) and by Lemma 3, V(k̆) ≥ V̄(k̆). Therefore, the last
inequality implies:

u(Rln − g(ln)) + βδV̄(g(ln)) ≥ u(Rln − k̆) + βδV̄(k̆).

Taking the limit n→ ∞, we arrive at

u(Rk̆− k′) + βδV̄(k′) ≥ u(Rk̆− k̆) + βδV̄(k̆),

which contradicts (33). Therefore, by contradiction we have shown that limk↑k̆ g(k) = k̆.
Now, pick k∗ ∈ (g(k̃), k̃) and define x̄ < 1 and ṽ < v̄ as in the proof of Theorem 2:

x̄ ≡ max
{

k∗
k̃

, g(k̃)
k∗

}
< 1 and ṽ = χ(x̄) < v̄. Then for k sufficiently close to k̆ such that
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g(k) > k∗ (guaranteed, since limk↑k̆ g(k) = k̆ > k∗), the sequence {g(n)(k)} crosses k∗ at
some n∗: kn∗+1 ≤ k∗ ≤ kn∗ . This implies that vn∗ ≤ ṽ, just as in the proof of Theorem 2.
Since σ > σ, recall that we have hd(v′) < v′ for all v′ < v̄. Thus, it follows that v1 < ṽ, or
equivalently V(g(k))

(g(k))1−σ < ṽ.

Starting from the equilibrium condition

u(Rk− g(k)) + βδV(g(k)) ≥ u(Rk− k̆) + βδV(k̆)

and using that V(k̆) ≥ V̄(k̆) and ṽ (g(k))1−σ > V(g(k)) we obtain

u(Rk− g(k)) + βδṽ(g(k))1−σ > u(Rk− k̆) + βδv̄(k̆)1−σ.

Taking the limit k ↑ k̆,

u(Rk̆− k̆) + βδṽ(k̆)1−σ > u(Rk̆− k̆) + βδv̄(k̆)1−σ,

implying ṽ > v̄, which contradicts the property that ṽ < v̄.

Case 2: g(k̆) < k̆. The proof of Theorem 1 part (a) for this case applies here as well
without change.

Therefore, combining both cases, we obtain that g(k) < k for all k ≥ k̃ as in the Theo-
rem 1 part (a).

The proof that for any k0 ≥ k̃ we have limn→∞ kn = k∞ is a steady state and k∞ < k̃ is
the same as that for Theorem 1 part (a), it applies here for R = R∗ without change.

No Reversal Principle Part (b). We now show that there cannot be reversal from strict
savings to weak dissavings. We again proceed as in the proof of Theorem 1 part (b):
assume by contradiction that k̃ < k̂ and g(k̃) > k̃ and g(k̂) ≤ k̂. Define k̆ as in (14). Then
k̆ must be a steady-state; the proof of this fact is unchanged from the proof of Theorem 1
part (b).

Consider the sequence k0 = k̃ and kn+1 = g(kn) ≥ kn. Then limn→∞ kn ≤ k̆. Because
g(k) > k for all k ∈ [k̃, k̆), we must have limn→∞ kn = k̆. There are two cases.

Case 1. kn = k̆ for high enough n. Let n∗ be such that kn∗ < kn∗+1 = k̆. This implies
vn∗ ≤ hs(vn∗+1) = hs(v̄) = v̄. This contradicts Lemma 3, which implies vn∗ > v̄.

Case 2: kn < k̆ for all n = 0, 1, . . . We have that {kn} is a strictly increasing sequence.
Recall that because σ ≥ σ we have hs(v′) < v′ for all v′ > v̄ and hs is increasing. Thus,

v0 ≤ h(n)s (vn) ≤ h(n)s (vFB),

for all n, where vFB < ∞ as defined in the proof of Theorem 3. Taking the limit n → ∞,
we obtain v0 ≤ v̄. This then contradicts Lemma 3, which implies v0 > v̄.
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Therefore, combining both cases, we obtain that g(k) > k for all k ≥ k̃ as in the No
Reversal result part (b).

The proof that for any k0 ≥ k̃ we have limn→∞ kn = ∞ is the same as that for Theorem
1 part (b), it applies here for R = R∗ without change.

Uniqueness. Armed with these extensions of the No Reversal Principle, we now prove
our uniqueness result. Assume an equilibrium (g, V) and assume towards a contradiction
that g(k̃) 6= k̃ for some k̃ ≥ k.

If g(k̃) < k̃ at some k̃ > k, then by the No Reversal Principle part (a) we have g(k) < k
for all k ≥ k̃. We can then proceed exactly as in the proof of Theorem 2 to obtain a
contradiction, the proof applies without change to R = R∗.

If g(k̃) > k̃ at some k̃ ≥ k, then by the No Reversal Principle part (b) we have g(k) > k
for all k > k̃. We can then proceed exactly as in the proof of Theorem 3 to obtain a
contradiction, the proof applies without change to R = R∗.

Therefore, by contradiction, we have established that g(k) = k for all k ≥ k.

G Proof of Existence: Theorem 5

We consider the nontrivial case with R < R∗ and k > 0. Our proof adapts the continuous-
time analysis in Cao and Werning (2016) to construct a Markov equilibrium.

Setting the Stage: Self-Preserving Properties. For each k∗ > k, define B(k∗) to be the
set of policy and value functions (g, V, W) defined over [k, k∗) with the following proper-
ties:

P1. g(k) = k and k ≤ g(k) < k for k < k < k∗;
P2. g and V are upper semi-continuous (u.s.c) and W is continuous;
P3. g, V and W satisfy

V(k) = u(Rk− g(k)) + δV(g(k)) ∀k ∈ [k, k∗) (34)

W(k) = u(Rk− g(k)) + βδV(g(k)) ≥ u(Rk− k′) + βδV(k′) ∀k ∈ [k, k∗), k′ ∈ [k, k];
(35)

P4. W satisfies

W(k) > W̄(k) ≡
(

1 +
βδ

1− δ

)
u((R− 1)k) k ∈ (k, k∗). (36)

Proof Sketch and Roadmap. Let us first lay out the main structure of the arguments,
without all the detailed calculations.

We first construct functions satisfying P1-P4 on some small enough interval around
the lower bound, producing (g0, V0, W0) ∈ B(k∗0) for some k∗0 > k.

Second, we provide an algorithm that takes any (g, V, W) ∈ B(k∗) with

lim
k↑k∗

W(k) > W̄(k∗)
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and constructs an extension (g̃, Ṽ, W̃) ∈ B(k̃∗) where k̃∗ > k∗, with (g̃, Ṽ, W̃) coinciding
with (g, V, W) over k ∈ [k, k∗). The extension works by guaranteeing that over a small
enough extension interval k ∈ [k∗, k̃∗) the optimum g̃(k) falls below k∗, and we satisfy
P1–P4. This requires various detailed calculations and bounds, to take a small enough
step.

Next we construct a candidate equilibrium by iterating on this extension. Starting
from (g0, V0, W0) ∈ B(k∗0) we can extend the functions over a sequence of expanding of
intervals. The end result of this iterative process is what we call our extension algorithm
There are two cases to consider. In the first case, the algorithm can be applied indefinitely
and the intervals expand without bound covering all of [k, ∞). This provides a candidate
equilibrium directly.

In the second case, the algorithm must stop after a finite number of iterations, if we
reach a solution with limk↑k∗ W(k∗) = W̄(k∗), or it continues indefinitely but the intervals
converge. Under either possibility we are left with a bounded interval [k, k∗) for some
k∗ < ∞. Crucially, we show that limk↑k∗ W(k) = W̄(k∗). We then restart the algorithm as
if k∗ were the lower bound, instead of k. Let k∗0 = k and k∗1 = k∗.

Once we replay our algorithm starting from k∗1 , it may produce again a bounded in-
terval [k∗1 , k∗2); it it does, we restart the extension algorithm using k∗2 as the lower bound.
Repeating this as many times as necessary, or indefinitely, we can cover all of [k, ∞), i.e.
this procedure cannot get stuck.31 This produces our candidate equilibrium (g, V).

Finally, we verify that our candidate is, indeed, an equilibrium. Fortunately, be-
cause of P1-P4, there is only one condition left to verify: g(k) ∈ arg maxk′≥k{u(Rk −
k′) + βδV(k′)}. Recall that for k ∈ (k, k∗) P3 imposed the weaker condition: g(k) ∈
arg maxk′∈[k,k]{u(Rk− k′) + βδV(k′)}. To show that our construction satisfies the stronger
condition, our proof uses that, given single-crossing, local incentive compatibility implies
global incentive compatibility. By local incentive compatibility we mean here that no
agent k prefers to imitate choices g(k̃) made by neighbors k̃ on both sides of k.

In the interior of the intervals generated by our algorithm, local incentive compati-
bility is guaranteed by g(k) < k (property P1). At points {k∗n} where the algorithm is
restarted local incentive compatibility relies, among other things, crucially on the fact
that our construction ensures that limk↑k∗n W(k) = W̄(k∗n). An agent at k∗n is postulated to
set g(k∗n) = k∗n and obtain W(k∗n) = W̄(k∗n), just as if k∗n acted as a binding lower bound.
The fact that limk↑k∗n W(k) = W̄(k∗n) guarantees that this agent has no incentive to deviate
to a nearby k′ < k∗n; likewise, agents right below k∗n have no incentive to deviate upwards
to k∗n. If instead limk↑k∗n W(k) 6= W̄(k∗n) one of these two local incentives to deviate would
be present, violating an equilibrium condition.

Having verified this that all the equilibrium conditions are met, this completes the
construction of a Markov equilibrium.

31Under isoelastic utility we can exploit homogeneity and simply extend the construction past k∗ by us-
ing blown up replicas of the single solution found over [k, k∗), but our argument does not require isoelastic
utility.
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Construction of Initial Function satisfying P1-P4. First, let us construct (g0, V0, W0) ∈
B(k∗0) for some k∗0 > k. Set g0(k) = k for all k ≥ k and

V0(k) = u(Rk− k) +
δ

1− δ
u((R− 1)k),

W0(k) = u(Rk− k) +
βδ

1− δ
u((R− 1)k).

It is immediate that P1 and P2 are satisfied. By concavity of u, for k such that the first-
order condition for k′ = k

u′(Rk− k) ≥ βδRu′((R− 1)k)

holds P3 is satisfied. Because R < R∗ < 1
βδ , the first order condition is satisfied for

k ∈ [k, k∗0) for k∗0 sufficiently close to k. Also, W0(k) = W̄(k) and

W ′0(k) = Ru′((R− 1)k) > W̄ ′(k) =
(

1 +
βδ

1− δ

)
(R− 1)u′((R− 1)k)

since R < R∗. Therefore, for k∗0 sufficiently close to k then P4 is satisfied. We chose k∗0 such
that the aforementioned conditions are satisfied and (g0, V0, W0) as the restriction of the
corresponding functions defined above to [k, k∗0).

Building the Extension Algorithm. Assume (g, V, W) ∈ B(k̃). Then (35) implies W(k)
is increasing in k. Therefore, limk↑k̃ W(k̃) exists and because of (36), limk↑k̃ W(k) ≥ W̄(k).
We show that if this inequality is strict then we can always extend the system to a larger
interval [k, ˜̃k), i.e., an element in B( ˜̃k) as follows. Let

∆ = inf
{

W(k)− W̄(k) :
k + k∗0

2
≤ k < k̃

}
.

It follows that ∆ > 0 because limk↑k̃ W(k) > W̄(k̃), P4 holds and both W and W̄ are
continuous.

We chose ε < min
{

k̃
2 , k̃− k+k∗0

2

}
sufficiently small such that:

(1− δ(1− β))u((R− 1)k)− u(Rk− k′) + δ(1− β)u((R− 1)k′) > −(1− δ)
∆
4

for all k̃− ε ≤ k′ ≤ k < k̃.
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Now for k, k′ such that k̃− ε ≤ k′ ≤ k < k̃, using (34) and (35), we have

W(k)−
(
u(Rk− k′) + βδV(k′)

)
= W(k)−

(
u(Rk− k′) + βδ(u(Rk′ − g(k′)) + δV(g(k′))

)
= W(k)− δW(k′)−

(
u(Rk− k′)− δ(1− β)u(Rk′ − g(k′)

)
≥ (1− δ)W(k)−

(
u(Rk− k′)− δ(1− β)u(Rk′ − k′)

)
, (37)

where the last inequality is due to W being monotone, k′ ≤ k and g(k′) ≤ k′. Let η(k, k′)
denote the last expression:

η(k, k′) ≡ (1− δ)W(k)−
(
u(Rk− k′)− δ(1− β)u(Rk′ − k′)

)
.

We write the last inequality as

W(k)−
(
u(Rk− k′) + βδV(k′)

)
≥ η(k, k′)
= (1− δ)(W(k)− W̄(k))
+
{
(1− δ(1− β))u((R− 1)k)− u(Rk− k′) + δ(1− β)u((R− 1)k′)

}
> (1− δ)

∆
2
− (1− δ)

∆
4
= (1− δ)

∆
4

. (38)

We define W̃ over [k, ∞) as:

W̃(k) = max
k′∈[k,k̃−ε]

{u(Rk− k′) + βδV(k′)}.

It is easy to see that for k1 < k2,

min
k′∈[k,k̃−ε]

{
u(Rk1 − k′)− u(Rk2 − k′)

}
+ W̃(k2) ≤ W̃(k1) ≤ W̃(k2).

Therefore W̃ is continuous. Because of (38), W(k) = W̃(k) for all k ∈ (k̃ − ε, k̃). So,
limk↑k̃ W(k) = W̃(k̃).

We define the following function Λ1(k̃, ∆) as the solution x to the following equation
(we set Λ1 = ∞ if a solution does not exist):

u(Rx− k̃) = u((R− 1)k̃) + (1− δ)∆.

It follows immediately that Λ1(k̃, ∆) > k̃. We use Λ1 to define ˜̃k1 > k̃ as:

˜̃k1 = Λ1(k̃, ∆).
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Let η̃ denote the same expression for η with W being replaced by W̃. Then for k ∈ [k̃, ˜̃k1]:

η̃(k, k̃) = (1− δ)W̃(k)−
(
u(Rk− k′)− δ(1− β)u(Rk′ − k′)

)
≥ (1− δ)W̃(k̃)−

(
u(Rk− k′)− δ(1− β)u(Rk′ − k′)

)
≥ (1− δ)W̃(k̃)−

(
u(Rk− k̃)− δ(1− β)u(Rk̃− k̃)

)
,

≥ (1− δ)W̃(k̃)−
(

u(R ˜̃k1 − k̃)− δ(1− β)u(Rk̃− k̃)
)

,

where the first inequality comes from the monotonicity of W̃ and the second inequality
comes from k′ ≥ k̃, and the last inequality comes from k ≤ ˜̃k1. From the definition of ∆,
we have W̃(k̃) ≥ W̄(k̃) + ∆. Therefore,

η̃(k, k̃) ≥ (1− δ)∆−
(

u(R ˜̃k1 − k̃)− u((R− 1)k̃)
)
= 0,

by the definition of ˜̃k1.
Similarly, we define the following function Λ2(k̃, ∆) as the solution x to the following

equation (we set Λ2 = ∞ if a solution does not exist):

u(Rx− k̃
2
)− u(Rk̃− k̃

2
) = (1− δ)

∆
4

.

It follows immediately that Λ2(k̃, ∆) > k̃. We use Λ2 to define ˜̃k2 > k̃ as:

˜̃k2 = Λ2(k̃, ∆).

Because u is increasing and concave and ε < k̃
2 , for all k ∈ [k̃, ˜̃k] and k′ ∈ [k̃− ε, k̃]:

u(Rk− k′)− u(Rk̃− k′) < u(R ˜̃k2 −
k̃
2
)− u(Rk̃− k̃

2
) = (1− δ)

∆
4

.

Let
˜̃k = sup

{
k̃ ≤ k ≤ min{k̃1, k̃2} : W̃(k′) > W̄(k′)∀k′ ∈ [k̃, k]

}
,

Because W̃(k̃) = limk↑k̃ W(k) > W̄(k̃) and W̃ is continuous, we have ˜̃k > k̃, and

W̃(k) > W̄(k)∀k ∈ [k̃, ˜̃k). (39)

Notice also that if ˜̃k < min{ ˜̃k1, ˜̃k2} then W̃( ˜̃k) = W̄( ˜̃k).
Now set W(k) = W̃(k) for k ∈ [k̃, ˜̃k) and

G(k) = arg max
k′∈[k,k̃−ε]

u(Rk− k′) + βδV(k′)

and
g(k) = max G(k)
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(because V is u.s.c G is non-empty and compact, and consequently g is uniquely defined)
and

V(k) = u(Rk− g(k)) + δV(g(k)).

Verifying the Extension Satisfies P1-P4. We now show that P1-P4 are satisfied for (g, V, W)
over [k, k̃).

It is immediate that P1 is satisfied. To show P2, we show that g is u.s.c., that is, if
kn → k, and limn→∞ g(kn) = l then l ≤ g(k). To do so, we first show that l ∈ G(k).
Indeed, for each n, and k′ ∈ [k, k̃− ε]:

u(Rkn − g(kn)) + βδV(g(kn)) ≥ u(Rg(kn)− k′) + βδV(k′).

Taking the limit n→ ∞, and using u.s.c of V over [k, k̃), we have

u(Rk− l) + βδV(l) ≥ u(Rl − k′) + βδV(k′).

Therefore, l ∈ G(k), and consequently, from the definition of g, l ≤ g(k) as desired. Thus
g is u.s.c. In addition, W is continuous because W̃ is continuous. Now, using (34) and
(35), we have

V(k) =
1
β

W(k)−
(

1
β
− 1
)

u(Rk− g(k)).

Because W is continuous and g is u.s.c, V is also u.s.c. Thus, P2 is satisfied.
We now show that g, V, W satisfy P3 over [k, ˜̃k). Indeed, for k ∈ [k̃, ˜̃k) and k̃ ≤ k′ ≤ k,

again using (34) and (35) as in (37), we obtain:

W(k)−
(
u(Rk− k′) + βδV(k′)

)
≥ η(k, k′) ≥ η(k, k̃) > 0.

For k′ ∈ [k̃− ε, k̃], using (38), we have:

W(k)−
(
u(Rk− k′) + βδV(k′)

)
≥W(k̃)−

(
u(Rk̃− k′) + βδV(k′)

)
− (u(Rk− k′)− u(Rk̃− k′))

≥ (1− δ)
∆
4
− (1− δ)

∆
4
= 0.

For k′ ∈ [k, k̃− ε], W(k) ≥ (u(Rk− k′) + βδV(k′)) directly from the definition of W.
P4 is also satisfied because W(k) = W̃(k) > W̄(k) for k < ˜̃k and (39). Therefore, we

have constructed a system with the desired properties P1-P4 over [k, ˜̃k).

Constructing the Candidate Equilibrium. Now, starting from the initial system inB(k∗0),
we construct the sequence of extensions for g, V, W over [k, k∗n) with k∗0 < k∗1 < . . . as fol-
lows.
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Given k∗n, and the system g, V, W defined over [k, k∗n) we calculate

∆n = inf
{

W(k)− W̄(k) :
k + k∗0

2
≤ k < k∗n

}
.

If ∆n = 0 then we stop and set k∗ = k∗n. Because of P4, we have

lim
k↑k∗

W(k) = W̄(k∗. ). (40)

If ∆n > 0, then we set k̃ = k∗n and use the Extension Algorithm to extend the system to
[k, ˜̃k) where ˜̃k is defined as in the Extension Algorithm.

If we never stop, i.e. ∆n > 0 for all n > 0, then there are two possibilities: i.
limn→∞ k∗n = +∞ or ii. limn→∞ k∗n = k∗ < +∞. In this latter case, we show by contra-
diction that (40) holds. Otherwise,

∆∗ = inf
{

W(k)− W̄(k) :
k + k∗0

2
≤ k < k∗

}
> 0.

From the definition of ∆∗ and ∆n , it is easy to see that ∆n ≥ ∆∗ for all n ≥ 0. Because
∆n+1 > 0, from the Extension Algorithm, we have:

k∗n+1 = min {Λ1(k∗n, ∆n), Λ2(k∗n, ∆n)} .

For i ∈ {1, 2}, let
di = min

k̃∈[k,k∗]

{
Λi(k̃, ∆∗)− k̃

}
> 0.

Then
k∗n+1 − k∗n ≥ min{d1, d2} > 0

for all n ≥ 0. Therefore limn→∞ k∗n = ∞. A contradiction.
To sum up, there are two cases and we construct a candidate equilibrium in each case

as follows.
Case 1: We have limn→∞ k∗n = ∞ and thus have constructed (g, V, W) satisfying P1-P4

over [k, ∞). We define the candidate equilibrium as (g, V).
Case 2: We reach a finite k∗ < ∞ and limk→k∗ W(k) = W̄(k∗). Now we reset k = k∗

and restart the Extension Algorithm again.32 For each k let Φ(k) denote k∗ generated by
the successive applications of the Extension Algorithm described above. Starting from
k∗0 = k, consider the sequence {k∗n}∞

n=0 generated by Φ (the sequence has finite elements if

32Under isoelastic utility, we can simply use homogeneity to replicate the system. Indeed, let x∗ = k∗
k ,

we define the system over
[
k(x∗)n, k(x∗)n+1) for n = 1, 2, . . . as:

(g(k), V(k), W(k))

=
(
(x∗)ng

(
k(x∗)−n) , (x∗)(1−σ)nV

(
k(x∗)−n) , (x∗)(1−σ)nW

(
k(x∗)−n)) .
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k∗n = ∞ for some n). We show by contradiction that limn→∞ k∗n = ∞. Assume the contrary:

lim
n→∞

k∗n = k∞ < ∞.

Let k̆(k) be defined by (we set k̆(k) = ∞ if it does not exist):

u′(Rk̆− k) = βδRu′((R− 1)k).

It is easy to show that k̆(k) > k, because R < R∗ < 1
βδ , and is continuous in k. Therefore,

there exists l < k∞ such that k̆(l) > k∞. There exits N such that k∗n > l for all n ≥ N.
Therefore k̆(k∗n) > k∞ > k∗n+1 = Φ(k∗n) for all n ≥ N. By the Extension Algorithm, it
means that Wn

0 (k
∗
n+1) = W̄(k∗n+1), where Wn

0 defined over [k∗n, ∞) by:

Wn
0 (k) = u(Rk− k∗n) +

βδ

1− δ
u((R− 1)k∗n).

By the Mean Value Theorem, there exist k̂n, ˆ̂kn+1 ∈ [k∗n, k∗n+1] such that

Ru′(Rk̂n − k∗n) =
d
dk

Wn
0 (k̂n)

=
Wn

0 (k
∗
n+1)−Wn

0 (k
∗
n)

k∗n+1 − k∗n

=
W̄(k∗n+1)− W̄(k∗n)

k∗n+1 − k∗n

=
d
dk

W̄( ˆ̂kn) = (1 +
βδ

1− δ
)(R− 1)u′((R− 1) ˆ̂kn). (41)

Taking the limit n→ ∞ and using the Squeeze Theorem, we have k̂n, ˆ̂kn → k∞. Therefore,
(41) implies

Ru′((R− 1)k∞) = (1 +
βδ

1− δ
)(R− 1)u′((R− 1)k∞)

or R = R∗, which contradicts the assumption that R < R∗.
Therefore, limn→∞ k∗n = ∞ and our extensions cover the whole half interval [k, ∞).
Adapting this proof, we can also show that there exists a finite number (or zero) of

steady-states in each finite interval.

Verifying Candidate is an Equilibrium. We verify that the candidate equilibrium above
is indeed a Markov equilibrium. That is, given k ≥ k, for any k′ ≥ k,

W(k) = u(Rk− g(k)) + βδV(g(k)) ≥ u(Rk− k′) + βδV(k′). (42)

First, we notice that in Case 2, around a steady-state k∗, there exists an interval [k∗ −
ε∗, k∗ + ε∗] such that k∗ prefers g(k∗) = k∗ to any other g(k′) for k′ ∈ [k∗ − ε∗, k∗ + ε∗].
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Indeed, for k′ ∈ [k∗ − ε∗, k∗), and k′ < k′′ < k∗, we have:

W(k′′) ≥ u(Rk′′ − g(k′)) + βδV(g(k′)).

Taking the limit k′′ ↑ k∗ and using the continuity of W, we obtain:

W(k∗) = W̄(k∗) ≥ u(Rk∗ − g(k′)) + βδV(g(k′)).

Now for k′ ∈ (k∗, k∗ + ε∗], our construction implies that g(k′) = k∗ for ε∗ sufficient small.
Therefore, because R < R∗ < 1

βδ , direct calculations imply that:

W(k∗) = W̄(k∗)

≥ u(Rk∗ − k′) + βδu(Rk′ − k∗) +
βδ2

1− δ
u((R− 1)k∗)

= u(Rk∗ − k′) + βδV(k′).

In addition, we show that any k′ ∈ [k∗ − ε∗, k∗) prefers g(k′) to k∗. Because R < R∗, by
Lemma 4 and by choosing ε∗ small

W̄(k′) = u(Rk′ − k′) + βδV̄(k′) ≥ u(Rk′ − k∗) + βδV̄(k∗).

Therefore,

W(k′) > W̄(k′) ≥ u(Rk′ − k∗) + βδV̄(k∗) = u(Rk′ − k∗) + βδV(k∗).

Now we are in a position to show (42).
If k′ > k, we create a chain

k = k0 < k1 < · · · < kN = k′

such that kn prefers g(kn) to g(kn+1):

u(Rkn − g(kn)) + βδV(g(kn)) ≥ u(Rkn − g(kn+1)) + βδV(g(kn+1)).

By single-crossing, k0 prefers g(kn) to g(kn+1) for n = 0, 1, . . . , N− 1. Therefore, k0 prefers
g(k0) to g(kN), that is k prefers g(k) to g(k′). In addition, because g(k′) ≤ k′ and P3 in
the definition of B, k′ prefers g(k′) to k′. So, again by single-crossing k prefers g(k′) to k′.
Thus k prefers g(k) to k′, that is (42) holds.

To create the chain, we consider two cases:
Case A: If there is no steady-state between, or at, k and k′. Then because g is u.s.c.

there exists ε > 0 such that g(l) < l− ε for any l ∈ [k, k′]. We choose N such that k′−k
N < ε

and

kn = k + n
k′ − k

N
.

So g(kn) ≤ g(kn+1) < kn. By P3, kn prefers g(kn) to g(kn+1).
Case B: If there are steady states between k and k′ (as shown above there can only be a
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finite number of them):
k ≤ k∗r < · · · < k∗s ≤ k′.

We initiate the chain with points {k∗m − ε∗m, k∗m, k∗m + ε∗m}s
m=r, where ε∗m defined for each

steady-state k∗m as above. For resulting intervals that do not contain a steady-state, such as
[k∗m + ε∗m, k∗m+1− ε∗m+1], we use the chain construction in Case A to add points in between.

If k′ ≤ k. Again there are two cases. First, if there is no steady-state between k and k′,
then (42) is a direct application of P3. Second, if there are steady-states:

k∗r ≤ k′ < k∗r+1 < · · · < k∗s ≤ k.

From P3 , we have
W(k′′) ≥ u(Rk′′ − k′) + βδV(k′)

for k′ < k′′ < k∗r+1. Taking the limit k′′ ↑ k∗r+1 and using the continuity of W, we obtain that
k∗r+1 prefers k∗r+1 to k′. Therefore by single-crossing, k∗r+2 prefers k∗r+1 to k′. In addition,
k∗r+2 prefers k∗r+2 to k∗r+1. Therefore, k∗r+2 prefers k∗r+2 to k′. Keep iterating, we obtain k
prefers k∗s to k′. Lastly, from P3, k prefers g(k) to k∗s . Thus k prefers g(k) to k′ as desired.
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