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Abstract

The debate between rational models of behavior and their systematic deviations, often referred

to as “irrational behavior”, has attracted an enormous amount of research. Here we reconcile the

debate by proposing an evolutionary explanation for irrational behavior. In the context of a simple

binary choice model, we show that irrational behaviors are necessary for evolution in stochastic

environments. Furthermore, there is an optimal degree of irrationality in the population depending

on the degree of environmental randomness. In this process, mutation provides the important link

between rational and irrational behaviors, and hence the variety in evolution. Simulation confirms

the generality of these implications in a wide range of stochastic environments. Our results yield

widespread implications for science, management, and public policy. The simplicity and generality

of our model also suggest that these implications are primitive and cut across species, physiology,

and genetic origins.
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1 Introduction

Rationality is the key assumption behind standard economic models of human behavior. The idea

that individuals maximize their own self-interest subject to resource constraints has led to numerous

breakthroughs, including expected utility theory (von Neumann and Morgenstern, 1944), game

theory (von Neumann and Morgenstern, 1944; Nash, 1950), rational expectations (Lucas Jr, 1972),

the efficient markets hypothesis (Samuelson, 1965; Fama, 1970), and the option pricing theory

(Black and Scholes, 1973; Merton, 1973). The influence of this paradigm goes far beyond academia

— it underlies current macroeconomic and monetary policies, and has also become an integral part

of the rules and regulations that govern financial markets today (Kocherlakota, 2010; Hu, 2012).

On the other hand, psychologists and economists have documented many violations of rational

models in human behavior, often referred to as “cognitive biases”. These systematic deviations

from rational behaviors are hard to reconcile with the standard economic models, and are there-

fore considered irrational behaviors. Representatives of these cognitive biases include probability

matching (Grant, Hake, and Hornseth, 1951; Herrnstein, 1961) (the tendency to choose randomly

between heads and tails when asked to guess the outcomes of a series of independent biased-coin

tosses, where the randomization matches the probability of the biased coin), loss aversion (Tversky

and Kahneman, 1974; Tom, Fox, Trepel, and Poldrack, 2007) (the tendency to take greater risk

when choosing between two potential losses, and less risk when choosing between two potential

gains), uncertainty effect (Gneezy, List, and Wu, 2006) (a risky prospect is valued less than its

worst possible outcome), and confirmation bias (Mahoney, 1977) (the tendency to search for or in-

terpret information in a way that confirms one’s preconceptions). Such anomalous behaviors have

also been observed in many non-human subjects ranging from bacteria to primates (Harder and

Real, 1987; Pasteels, Deneubourg, and Goss, 1987; Kirman, 1993; Smallwood, 1996; Chen, Lak-

shminarayanan, and Santos, 2006; Ben-Jacob, 2008; Santos and Chen, 2009), which suggests that

they may have a common and ancient origin, and an evolutionary role that belies their apparent

shortcomings.

The debate between rational models of behavior and their systematic deviations has attracted

an enormous amount of research in economics, psychology, and evolutionary biology (Becker, 1962;

Stanovich and West, 2000; Rabin and Thaler, 2001; McKenzie, 2003; Burnham, 2013; Gneezy and
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List, 2013). For instance, bounded rationality (Simon, 1955) and prospect theory (Kahneman and

Tversky, 1979; Tversky and Kahneman, 1992) provide alternative perspectives for understanding

human behavior beyond the maximization of expected utility. At the same time, numerous empirical

studies are devoted to understanding the relationship between individual rationality and decision-

making in the real world (Hsu, Bhatt, Adolphs, Tranel, and Camerer, 2005; Camerer and Fehr,

2006; Gneezy and List, 2006; Apicella, Dreber, Campbell, Gray, Hoffman, and Little, 2008; Dreber,

Apicella, Eisenberg, Garcia, Zamore, Lum, and Campbell, 2009; Chen and Chen, 2011; Bednar,

Chen, Liu, and Page, 2012; Fershtman, Gneezy, and List, 2012; Gneezy and Imas, 2014).

Evolutionary principles have been adopted by economists and psychologists to explain these

counterintuitive behaviors (Cooper and Kaplan, 1982; McDermott, Fowler, and Smirnov, 2008;

Kenrick, Griskevicius, Sundie, Li, Li, and Neuberg, 2009; Brennan and Lo, 2011; Brennan and

Lo, 2012), as well as altruism and sociobiology (Alexander, 1974; Becker, 1976; Hirshleifer, 1977;

Almenberg and Dreber, 2013; Zhang, Brennan, and Lo, 2014a), the biological origin of utility

functions and time preference (Campbell, 1986; Rogers, 1994; Waldman, 1994; Robson, 1996a;

Samuelson, 2001; Zhang, Brennan, and Lo, 2014b), and the dynamics of financial markets (Blume

and Easley, 1992; Luo, 1995; Lo, 2004; Kogan, Ross, Wang, and Westerfield, 2006; Hirshleifer and

Teoh, 2009). In particular, irrational behavior—as opposed to utility-maximizing behavior—has

been found useful and persistent in a variety of environments in evolution (Belavkin, 2006; Houston,

McNamara, and Steer, 2007; Waksberg, Smith, and Burd, 2009; Ross and Wilke, 2011; Okasha and

Binmore, 2012). However, it is unclear how these behaviors relate to standard economic theories

of individual rationality, and why they emerge in some instances and not others.

On the other hand, evolutionary biologists have studied the role of stochastic environments

(Ishii, H., Iwasa, and Sasaki, 1989; Kussell and Leibler, 2005; Acar, Mettetal, and van Oudenaarden,

2008; Gaal, Pitchford, and Wood, 2010; Frank, 2011) and mutation in evolution (King, 1972;

Taddei, Radman, Maynard-Smith, Toupance, Gouyon, and Godelle, 1997; Drake, Charlesworth,

Charlesworth, and Crow, 1998). Several quantitative models have been developed to understand

the magnitude of mutation rates (Kimura, 1960; Levins, 1967; Leigh Jr., 1970; Gillespie, 1981; Travis

and Travis, 2002; Desai and Fisher, 2011; Liberman, Van Cleve, and Feldman, 2011). While some

of our results will be familiar to evolutionary biologists, they do not appear to be widely known in
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a economic context. For completeness, we derive them from first principles and provide the link

between mutation and rationality.

In this article, we reconcile the rationality debate by proposing an evolutionary explanation for

irrational behavior. The rational behavior is a function of the particular environment, and different

environments lead to different rational behaviors in evolution. As a result, irrational behaviors

not only persist in evolution, but are also necessary for robust growth of population in stochastic

environments. Furthermore, we show that there is an optimal degree of irrationality in the entire

population depending on the degree of environmental stochasticity. This is a novel implication of

natural selection that has not appeared in prior studies of human or animal rationality.

In contrast to game theory, the model considered in this article does not require any strategic

interactions, and individual decision-making is deliberately mindless, allowing us to determine the

most primitive and fundamental links between stochastic environments and adaptive behavior.

Even in such a simple setting, we find a range of randomized behaviors—including behaviors that

do not always conform to common economic intuition about rationality—can arise and persist via

natural selection. Simon (1981) illustrated this principle vividly with the example of a single ant

traversing a mixed terrain of sand, rocks, and grass. The ant’s path seems highly complex, but the

complexity is due more to the environment than the ant’s navigational algorithm.

Much of the rationality debate among economists and psychologists focuses on whether the ratio-

nal models can help people make better inferences and decisions in the real world (McKenzie, 2003).

Instead, our framework provides an evolutionary explanation of seemingly irrational behaviors and

different degrees of irrationality in the population. The results have widespread implications for

science, management, and public policy. For example, our framework has a different explanation

for the entry of new firms and technologies in an industry, a well-studied phenomenon in industrial

economics (Klepper and Graddy, 1990; Audretsch and Mahmood, 1994; Geroski, 1995; Mata, Por-

tugal, and Guimaraes, 1995; Campbell, 1998). Even if new entrants appear to be suboptimal with

respect to their current context, they facilitate more robust growth of the entire industry in the

face of a stochastically shifting environment. Furthermore, our results yield the optimal amount of

entrants as a function of environmental stability.

Our model consists of an initial population of individuals, each assigned a purely arbitrary
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behavior with respect to a binary choice problem. Assuming that offspring have behaviors identical

to their parents, only those behaviors linked to reproductive success will survive. The key is

the interaction between individual behavior and the stochastic environment in which reproductive

success is determined. On the other hand, by assuming that a small fraction of offspring have

behaviors different from their parents, irrational behavior emerges as a result of mutation. Mutation

provides diversity of behaviors in the entire population, and therefore, the important link between

rational and irrational behaviors. Over time, only a certain degree of mutation and irrationality in

the population will persist in the limit.

By studying the impact of selection on behavior rather than on genes, we are able to derive

evolutionary implications that cut across species, physiology, and genetic origins. In the same

way that different magnifications of a microscope reveal different details of a specimen, applying

evolutionary principles to behavioral variations leads to different insights that may be more relevant

for economics, psychology, and behavioral ecology. Our focus on behavior as the object of selection

is a different lens through which the effects of evolution may be studied.

In the remainder of this article, we first describe the binary choice model with mutation. Then

we show that mutation and irrational behaviors are essential in evolution. Furthermore, the degree

of irrationality is determined by evolution to match the degree of environmental stochasticity.

We conclude with a brief discussion and provide additional technical details and proofs in the

Supporting Information.

2 Binary Choice Model with Mutation

We begin with the binary choice model (Brennan and Lo, 2011). Consider a population of indi-

viduals that live for one period, produce a random number of offspring asexually, and then die.

During their lives, individuals make only one decision: they choose from two actions a and b,

and this results in one of two corresponding random numbers of offspring xa and xb, described by

some well-behaved probability distribution function Φ(xa, xb). We assume that xa and xb are not

perfectly correlated, and

Assumption 1. xa and xb are bounded non-negative random variables, and P(xa = xb = 0) = 0.
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Assumption 2. (xa, xb) is IID over time and identical for all individuals in a given generation.

Note that Assumption 1 simply rules out the degenerate case that no offspring is produced

at all. Now suppose that each individual chooses a with some probability f ∈ [0, 1] and b with

probability 1−f , denoted by the Bernoulli variable If , hence the offspring of an individual is given

by:

xf = Ifxa + (1− If )xb, I
f =


1 with prob f

0 with prob 1− f.

We shall henceforth refer to f as the individual’s behavior since it completely determines how the

individual chooses between a and b. Assume for the moment that there is no mutation, so that

offspring from a type f individual are still of type f . The following proposition (Brennan and

Lo, 2011) summarizes the population dynamics of the binary choice model without mutation.

Proposition 1. Under Assumptions 1-2, suppose that the total number of type f individuals in

generation T is nfT . As both the number of generations and the number of individuals in each

generation increases without bound, T−1 log nfT converges almost surely to the log-geometric-average

growth rate

µ(f) = E [log (fxa + (1− f)xb)] . (1)

Furthermore, the growth-optimal behavior f∗ is given by:

f∗ =


1 if E [xa/xb] > 1 and E [xb/xa] < 1

solution to (3) if E [xa/xb] ≥ 1 and E [xb/xa] ≥ 1

0 if E [xa/xb] < 1 and E [xb/xa] > 1

(2)

where f∗ is defined implicitly in the second case of (2) by

E
[

xa
f∗xa + (1− f∗)xb

]
= E

[
xb

f∗xa + (1− f∗)xb

]
, (3)

and the expectations in (1)-(3) are with respect to Φ(xa, xb).

The growth-optimal behavior f∗ is a function of the particular environment Φ(xa, xb). The role
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of Φ is critical in our framework, as it represents the entirety of the implications of an individual’s

actions for reproductive success. Embedded in Φ is the biological machinery that is fundamental

to evolution, i.e., genetics. However, this machinery is of less interest to economists than the link

between behavior and reproductive success, which is summarized compactly by Φ. The specification

of Φ also captures the fundamental distinction between traditional models of population genetics

(Levins, 1968; Wilson and Bossert, 1971; Dawkins, 1976) and more recent applications of evolution

to behavior (Hamilton, 1964; Trivers, 1971; Wilson, 1975; Maynard Smith, 1982); the former focuses

on the natural selection of traits (determined by genetics), whereas the latter focuses on the natural

selection of behavior. Although behavior is obviously linked to genetics, the specific genes involved,

their loci, and the mechanisms by which they are transmitted from one generation to the next are

of less relevance to economic analysis than the ultimate implications of behavior for reproduction,

i.e., Φ. In the jargon of econometrics, Φ may be viewed as a “reduced form” representation of an

individual’s biology.

This simple and general model generates a remarkably rich set of behaviors. For example,

the three possible behaviors in (2) reflect the relative reproductive success of the two choices and

is a generalization of the “adaptive coin-flipping” strategies of Cooper and Kaplan (Cooper and

Kaplan, 1982). The behavior f∗ that emerges through the forces of natural selection is quite distinct

from the neoclassical economic framework of expected utility in one important respect: expected

utility theory implies deterministic behavior. Furthermore, intelligence has a natural definition in

our framework—any type of behavior that is positively correlated with reproductive success—and

bounds on the level of intelligence arise organically from physiological and environmental constraints

on this correlation (Brennan and Lo, 2012). By considering different sources of randomness in

reproductive success, risk aversion can be derived in this framework as a consequence of systematic

reproductive risks (Zhang, Brennan, and Lo, 2014b). Proposition 1 may also be interpreted as

a primitive form of group selection, in which natural selection appears to operate at the group

level instead of, or in addition to, the level of individuals, traits, or genes (Zhang, Brennan, and

Lo, 2014a).
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2.1 Mutation: a link between optimal and sub-optimal behavior

Now we add mutation to the binary choice model to provide a link between optimal and sub-optimal

behaviors in evolution. In general, mutation implies that the offspring of type-f individuals are not

necessarily of type-f , but assume a probability distribution over all possible types. We consider a

simple form of mutation, namely that an offspring of type-f mutates equally likely to all types.

To be more specific, consider a discrete type space. Let f takes value in a finite set {f1, f2, · · · , fK+1}

(for example, {0, 1
K ,

2
K , . . . ,

K−1
K , 1}) where K is a positive integer. The world has K + 1 types in

total. In addition to Assumptions 1-2, we further assume that:

Assumption 3. Each type f individual mutates with a small probability ε > 0 to type g 6= f . Once

it mutates, it mutates with equal probability ε
K to any type g ∈ {f1, f2, · · · , fK+1} \ {f}.

Note that Assumption 3 is a simple and special form of mutation. From the behavioral point

of view, it is general enough to capture the most important characteristics of mutation, which is

to provide the link between different behaviors. With this particular structure, we are able to

parametrize the degree of mutation with a single parameter ε.

We would like to emphasize that each individual lives for only one period in our model, and

therefore its mutant offspring may be viewed as “new entrants” in the next generation’s population

because they represent different behaviors than their predecessors. Also, there is no intelligence

or volition ascribed to the behavior f ; we are simply providing a formal representation for it, and

then investigating its evolutionary implications. To that end, individuals choosing between a and b

according to the same f may be viewed as consisting of the same “type”, where types are indexed

by f and range continuously from 0 to 1, including the endpoints. In this manner, we are able to

study the evolutionary dynamics of each type of individual over many generations.

Once mutation is introduced into the population, it is no longer possible to analyze the pop-

ulation dynamics of each type f separately. The entire system is a multi-type branching process

in random environments (Smith and Wilkinson, 1969; Tanny, 1981). Let nt =
(
nf1
t , · · · , n

fK+1

t

)′
be the column vector of number of individuals of all K + 1 types in generation t. The following

proposition describes the population dynamics between two generations.

Proposition 2. Under Assumptions 1-3, as ngt−1 increases without bound for all g ∈ {f1, f2, · · · , fK+1},
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nt can be written as:

nt = At · nt−1 a.s. (4)

where At := M · Ft. Here M is a constant mutation matrix:

M =



1− ε ε
K · · · ε

K

ε
K 1− ε · · · ε

K

...
...

. . .
...

ε
K

ε
K · · · 1− ε


,

and Ft is a stochastic fecundity matrix:

Ft =


f1xa,t + (1− f1)xb,t · · · 0

...
. . .

...

0 · · · fK+1xa,t + (1− fK+1)xb,t

 ,

with 0 = f1 < f2 < · · · < fK+1 = 1.

Equation (4) gives the fundamental relationship between individuals in two consecutive gen-

erations. With probability 1, nt can be written as the product of two matrices and nt−1. Ft

represents the reproducibility of different types of individuals, and M represents a re-distribution

of types because of mutation. Then the natural question is: how does nt behave in the limit? We

summarize the asymptotic behavior of population with mutation in the following proposition.

Proposition 3 (Growth rate). Under Assumptions 1-3, there exists a number µε such that:

µε = lim
T→∞

1

T
log c′nT = lim

T→∞

1

T
log ||AtAt−1 · · ·A1||

almost surely, where || · || is any matrix norm, c is any vector of bounded non-negative numbers

(c 6= 0).

In particular, when c is a vector of 1’s, we get the growth rate of total population; when c = ei

(the vector with i-th coordinate equals to 1 and 0 otherwise), we get the growth rate of the i-th type

individuals. A direct corollary is that all types of behaviors grow at the same exponential rate µε.
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This is an important difference of population with mutation compared to non-mutation populations.

To understand this fact, suppose a long time has elapsed, because the positive mutation rate is

fixed, any behavior that is not favored by the current environment still gets a fixed proportion of

the offspring from the behavior that grows the fastest. Therefore the ratio of the individuals of

any two behaviors can be lower bounded by some positive constant, and no single behavior can

grow exponentially faster than any other behaviors. Note that µε is called the maximum Liapunov

characteristic exponent of matrix At in the probability literature, and Corollary 1 in the next

section gives an estimate of µε.

Another difference between the mutation and non-mutation population is the asymptotic ratio

between different types of population. Without mutation, µ(f) is different for different f , and

therefore the ratio nfT /n
f∗

T converges to 0 for any f 6= f∗ (see Proposition 1). However, µε is

the same with mutation for all types f , and the ratio nf1

T /n
f2

T is typically stochastic even in the

long run as T increases without bound. Fortunately, we have ergodic theorems to characterize the

asymptotic behavior of this ratio.

2.2 Asymptotic population dynamics

Under Assumptions 1-3, let Pt = 1′nt be the total population size at time t and

yt :=
nt
Pt

=

(
nf1

T∑
g n

g
T

, · · · ,
n
fK+1

T∑
g n

g
T

)′
(5)

be the normalized population vector in generation t. Because of the dynamics between two consec-

utive generations (4), {yt}∞t=0 is a vector-valued Markov process, with a compact state space:

Y :=

{
y = (y1, · · · , yK+1)′

∣∣∣∣y ≥ 0,

K+1∑
i=1

yi = 1

}
.

The 1-step transition probability for y ∈ Y and B ⊆ Y is:

p1(y, B) := PΦ

(
Ay

||Ay||
∈ B

)
. (6)

Without mutation, because different behaviors grow at different exponential rates, yt converges
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almost surely to a basis vector ei = (0, · · · , 1, · · · , 0) as T → ∞. In the case of positive mutation

rates, similar result exists only for non-random matrices Ft in (4), in which case the long run

proportion vector converges to the eigenvector of Ft (see models in Robson (Robson, 1996a) and

Gaal et al (Gaal, Pitchford, and Wood, 2010) for example). In the case of positive mutation rates

when Ft are random matrices, environmental uncertainty implies that yt is typically stochastic

even in the long run (see simulation results in the Appendix). However, we have the following

ergodic theorem (Tuljapurkar, 1990) to characterize the asymptotic behavior of yt:

Proposition 4 (Stochastic ergodic theorem). Under Assumptions 1-3, let Lt(·) be the distribution

of yt, then Lt(·) converges to a stationary distribution L (·) pointwisely as T increases without

bound:

lim
T→∞

LT = L .

Proposition 4 asserts that the proportion vector yt converges weakly as T →∞. In addition, by

basic properties of Markov chains, the stationary distribution L satisfies the following equation:

L (B) =

∫
Y
p1(y, B)L (dy)

for any B ⊆ Y . An important application of Proposition 4 is that it provides a formula to estimate

the exponential growth rate µε. Note that the total population size

Pt = 1′nt = 1′MFtnt−1 = 1′Ftnt−1 = Pt−11
′Ftyt−1,

so the log-geometric-average growth rate µε can be expressed as:

µε = E
[
log(1′Ftyt−1)

]
(7)

where the expectation is taken over the joint stationary distribution of (Ft,yt−1).

Corollary 1 (Bounds of growth rate). Let f∗ be the optimal behavior without mutation (see Proposi-

tion 1). Under Assumptions 1-3, if the type space is dense enough such that f∗ ∈ {f1, f2, · · · , fK+1},

then:

µ(f∗)− | log(1− ε)| ≤ µε ≤ µ(f∗). (8)
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Corollary 1 asserts that the growth rate µε is slightly less than the optimal growth rate of

population without mutation. Note that this is different from the mutation modeled in Robson

(Robson, 1996a), where population growth could be increased by randomizing between different

types of individuals to create a new “behavior”. We will identify the case where mutation does

speed up growth in non-stationary environments in the next section.

The Appendix gives additional results for population dynamics with mutation. In particular,

we give the asymptotic distribution of total population size Pt, the rate of convergence for the limit

distribution L (·), and the optimal behavior with mutation in the probabilistic sense.

2.3 Extinction probability

When the population is extinct in evolution, the stochastic processes nt and yt become degenerate.

Therefore, all results so far are implicitly conditional on non-extinction sample paths. However,

extinction is important in evolution, and particularly of interest with mutation. In this section, we

investigate the extinction probability of different behaviors f in different environments Φ(xa, xb).

Consider a specific behavior f ∈ {f1, f2, · · · , fK+1} starting with an initial population nf0 > 0,

we define that the type f is extinct if nfT = 0 for some T > 0, and surviving otherwise. There are

two scenarios in terms of extinction when the number of generation T increases without bound:

(i) limT→∞ P
(
nfT > 0

)
= 0: the population is extinct with probability 1;

(ii) limT→∞ P
(
nfT > 0

)
> 0: the population survives with positive probability.

Note that in case (ii), if limT→∞ P
(
nfT > 0

)
< 1, then the extinction probability depends on

the initial population n0. However, when n0 is relatively large, the survival probability is close to

1. To be more specific, we define that the type f is immortal if the extinction probability is strictly

less than 1 as T →∞, and the extinction probability goes to 0 as the initial number of individuals

n0 increases without bound. Mathematically, A type f is immortal if P(nfT = 0) < 1 as T → ∞,

and P(nfT = 0)→ 0 as T →∞ and n0 →∞.

For an immortal population, case (ii) can be essentially treated as almost sure survival with a

large initial population. Proposition 1-4 are implicitly conditional on non-extinction sample paths.

The probability of non-extinction in these results is close to 1 for a large initial population, because

immortality is a common feature for non-degenerate populations, as we will see in:
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Proposition 5 (Immortality with mutation). Suppose that the number of initial population of any

behavior f ∈ {f1, f2, · · · , fK+1} is n0,

(i) Consider the model without mutation. Under Assumptions 1-2, any behavior f with µ(f) < 0

is extinct with probability 1, and any behavior f with µ(f) > 0 is immortal.

(ii) Consider the model with mutation rate ε > 0. Under Assumptions 1-3, all behaviors f ∈

{f1, f2, . . . , fK+1} are immortal if µε in Proposition 3 is positive. In particular, if there exists

a behavior f ∈ {f1, f2, · · · , fK+1} such that µ(f) > | log(1 − ε)| without mutation, then all

behaviors are immortal.

Proposition 5 asserts that positive mutation rates make all behaviors in the population immortal,

and help preserve all behaviors even if some of them are inferior in the current environment. In

other words, mutation provides robustness to evolution by avoiding extinction.

So far we have considered stationary environments generating IID fecundities across time. In

this case, mutation does not help increase the speed of population growth (Corollary 1). This

brings us to the next topic, where non-stationary environments are considered and mutation can

indeed speed up growth.

3 Results: Optimal Degree of Irrationality

The binary choice model with mutation provides a framework of evolution of behaviors. Given a

particular environment Φ(xa, xb), we define rational behavior as the evolutionarily optimal behavior

f∗ that achieves the maximum log-geometric-average growth rate. We would like to emphasize

that the rational behavior depends on the particular environment, and therefore rational behaviors

might change over time because the environment Φ(xa, xb) could change. In contrast to the rational

behavior f∗, all the other sub-optimal behaviors with slower growth rates are irrational.

Mutation provides the link between rational and irrational behaviors. Positive mutation rates

and irrational behaviors are necessary because environmental shocks could happen unexpectedly. In

this sense, a population with irrational behaviors is favored in order to maintain robust growth under

possible environmental shocks. We further elaborate this idea by considering a simple example with

one-time environmental change.
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Following the binary choice model with mutation, suppose that the fecundity is specified by

the joint distribution Φ1(xa, xb) before generation T 1, and after generation T 1 the environment

suddenly changes and the distribution becomes Φ2(xa, xb). To be more precise, let Φt(xa, xb) be

the joint distribution of (xa, xb) in generation t, and

Φt(xa, xb) =


Φ1(xa, xb) if t = 1, 2, · · · , T 1

Φ2(xa, xb) if t = T 1 + 1, T 1 + 2, · · · .

Denote by µ1(·) and µ2(·) the log-geometric-average growth rate without mutation for Φ1 and Φ2

respectively. Furthermore, denote by f∗1 and f∗2 the optimal behavior under Φ1 and Φ2 respectively.

Suppose that the optimal behavior in a given environment is extinct almost surely in the other.

More specifically,

µ1(f∗1 ) > | log(1− ε)|, µ1(f∗2 ) < 0; µ2(f∗2 ) > | log(1− ε)|, µ2(f∗1 ) < 0

for some fixed mutation rate ε > 0.

Without mutation, f∗2 is extinct with probability 1 as the number of generations before the

shock T 1 increases without bound. After the shock, the long-term optimal behavior and optimal

growth rate are therefore given by max{f |µ1(f)>0} µ
2(f).

On the other hand, with mutation rate ε > 0, as a direct corollary of Proposition 5 and Corollary

1, all behaviors are immortal under both Φ1 and Φ2. The long-term optimal behavior is f∗2 , and

optimal growth rate is at least µ2(f∗2 )− | log(1− ε)|, which is greater than the optimal growth rate

without mutation as long as the mutation rate ε is sufficiently small.

In this simple example, irrational behaviors and positive mutation rates are seemingly inefficient

because they slow down the growth rate of the individually rational behavior. However, as long

as the environment Φ(xa, xb) and rational behavior f∗ change, it is the irrational behaviors that

provide a variety of diversified possibilities in the population, so that new rational behaviors can

emerge and thrive. In other words, certain behaviors that are growth-optimal under Φ2 might

become extinct under Φ1 in the absence of mutation. Mutation ensures a constant flow of new

entrants into the population each generation; hence when the regime shifts to Φ2, these new entrants
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reproduce more quickly than others, and f∗2 emerges as the new dominant behavior. As a result,

the very notion of “optimality” is ill-defined in isolation, and must be interpreted with respect to

a given environment. This is consistent with Simon’s notion of bounded rationality (Simon, 1955).

Note that the individuals are mindless and need not know whether they are behaving optimally or

not—natural selection is sufficient for determining what is optimal for a given environment.

3.1 Regime-switching environments

As a generalization of the example of one-time environmental change, a more realistic world has

multiple environmental changes and possibly cycles. In this case, not only the irrational behaviors

are necessary in terms of providing robustness, but also the degree of irrationality in the population

is determined by how often the environment changes. In other words, the degree of mutation is

selected by the nature, and there is an optimal degree of irrationality in the entire population. We

formalize this idea by considering the following regime-switching environments.

Suppose that the nature switches randomly between two regimes, in which the fecundities are

specified by Φ1(xa, xb) and Φ2(xa, xb) respectively. The lengths of regime 1 and regime 2 are positive

integer random variables T 1 and T 2 specified by some well-behaved probability distribution function

F (T 1, T 2). The nature draws IID samples from F (T 1, T 2) to generate lengths of consecutive regimes

T 1
1 , T

2
1 , T

1
2 , T

2
2 , · · · . Note that the superscript denotes the regime number and the subscript indicates

the number of cycle, where a cycle is defined as the two consecutive changes of regime:

0
Φ1

−→ T 1
1

Φ2

−→ T 2
1

Φ1

−→ T 1
2

Φ2

−→ T 2
2 · · · .

We would like to emphasize that the environment within each regime is still stochastic, this is

an important distinction to the existing literature where the environment is usually assumed to be

approximately constant between changes or within a period (Ishii, H., Iwasa, and Sasaki, 1989; Acar,

Mettetal, and van Oudenaarden, 2008; Kussell and Leibler, 2005; Gaal, Pitchford, and Wood, 2010).

For general Φ1(xa, xb) and Φ2(xa, xb), the exact population dynamics is hardly computable after

a few regime switches. However, a simple example suffices to illustrate the optimal degree of

irrationality in the population.
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3.2 An example of two behaviors

For simplicity, we consider a world with only two behaviors f ∈ {0, 1}. Suppose that the fecundities

in the two regimes are given by Φ1(xa, xb) and Φ2(xa, xb) that satisfy the following condition:

PΦ1(xb = 0) = PΦ2(xa = 0) = 1.

That is, one choice in each regime results in no offspring for sure. Note that in regime 1, xa is still

a random variable; in regime 2, xb is still a random variable. In this world, during regime 1, only

action a generates positive offspring; during regime 2, only action b generates positive offspring.

Therefore, both behaviors die out without mutation after a few regime switches.

A positive mutation rate ε helps preserve the irrational behaviors in the current environment to

prepare for possible environmental shocks, at the cost of slowing down the growth of the rational

behavior. In other words, a positive mutation rate implies that there is always a fixed positive

fraction of new entrants into the population in each generation, even if their behavior may be

suboptimal with respect to the current environment.

Proposition 6. With a positive mutation rate ε > 0, let nε,Totalk be the total number of individuals

in the entire population at the end of k-th cycle. Under Assumptions 1-3 and the regime-switching

model described above where the fecundities Φ1(xa, xb) and Φ2(xa, xb) satisfy

PΦ1(xb = 0) = PΦ2(xa = 0) = 1,

as k increases without bound, k−1 log nε,Totalk converges almost surely to

π(ε) = 2 log
ε

1− ε
+ E[T 1 + T 2] log(1− ε) + E[T 1]EΦ1 [log xa] + E[T 2]EΦ2 [log xb] (9)

for 0 < ε < 1. The growth optimal mutation rate ε∗ that maximizes (9) is

ε∗ =
2

E[T 1 + T 2]
.

As a special case of Proposition 6, we have the following result when the lengths of each regime
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are all IID.

Corollary 2. Under the assumptions of Proposition 6, if in addition the lengths of both regime 1

and regime 2 are drawn IID from a single distribution F (T ), then the growth optimal behavior that

maximizes (9) is

ε∗ =
1

E[T ]
.

By Proposition 6 and Corollary 2, the optimal mutation rate is simply the reciprocal of the

expected length of a regime. In the long run, the more stable the environment is, the less irrational

behaviors are present in the population; the more frequently environmental changes happen, the

more irrational behaviors prevail in the population. The mutation rate and the amount of irrational

behaviors are not exogenous variables given by the nature. They are not only necessary, but

also important quantities that are selected by the nature in evolution to match the degree of

environmental instability. In this sense, natural selection shapes the degree of irrationality in the

population.

This also implies that the optimal amount of new entrants into the population is determined

by the degree of environmental stability. For example, one would expect relatively small amount

of new entrants in areas with relatively stable market conditions, such as the automobile industry;

and relatively high turnover rates in areas with relatively volatile market conditions such as the

hedge fund industry.

3.3 Generalization and simulation experiments

The implications from the above two-behavior example with a special fecundity structure can be

generalized to any number of types and any fecundity structures. We use simulation to demonstrate

the generality of the optimal degree of mutation and irrationality. In this section, we consider eight

different pairs of environments and different lengths of regimes. We calculate the optimal degree

of mutation for each of them.

In the following experiments, the lengths of regimes T 1 and T 2 are independent random variables

with expectation E[T 1] and E[T 2] respectively, ranging from 10 to 37. For a given expectation E[T 1],

T 1 is uniformly distributed in the interval
[
0.8× E[T 1], 1.2× E[T 1]

]
, rounding to the nearest integer.

T 2 is distributed in the same way.
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For a given pair of (E[T 1],E[T 2]), 11 types of behavior from {0, 1
10 ,

2
10 , · · · , 1} starting with one

individual each evolve for 700 to 1000 generations. The optimal degree of mutation in each pair of

environment is calculated by taking the average over 200 to 500 simulation paths.

Table 1 gives eight different environmental conditions, for which we plot the optimal degree of

mutation and the optimal log-geometric-average growth rate as a function of E[T 1] and E[T 2] in

Fig. 1. In these figures, the colored plane with colorbar shows the optimal mutation rates; the

transparent surface of which the height is indicated by the z-axis shows the optimal log-geometric-

average growth rate associated with that optimal mutation rate.

Table 1: Probability table for the simulation of optimal mutation rates: environment 1-8

(a) Environment 1

Regime 1 Regime 2
Prob. 1

3
1
3

1
3

1
3

1
3

1
3

xa 3 2 1 0 0 0
xb 0 0 0 3 2 1

(b) Environment 2

Regime 1 Regime 2
Prob. 1

3
1
3

1
3

1
3

1
3

1
3

xa 3 2 1 1 1 1
xb 1 1 1 3 2 1

(c) Environment 3

Regime 1 Regime 2
Prob. 0.8 0.2 0.8 0.2
xa 3 0 0 3
xb 0 3 3 0

(d) Environment 4

Regime 1 Regime 2
Prob. 0.8 0.2 0.8 0.2
xa 3 1 1 3
xb 1 3 3 1

(e) Environment 5

Regime 1 Regime 2
Prob. 0.8 0.2 0.8 0.2
xa 3 0 1 3
xb 0 3 3 1

(f) Environment 6

Regime 1 Regime 2
Prob. 0.8 0.2 1

3
1
3

1
3

xa 3 1 1 1 0
xb 1 3 3 2 1

(g) Environment 7

Regime 1 Regime 2
Prob. 0.8 0.2 0.8 0.2
xa 3 0 3 1
xb 0 3 1 3

(h) Environment 8

Regime 1 Regime 2
Prob. 0.8 0.2 1

3
1
3

1
3

xa 3 1 3 2 1
xb 1 3 1 1 0

Symmetric regimes. Environment 1 assumes that one of the actions in each regime leads to no

offspring. Results are consistent with the example of two behaviors: the optimal degree of mutation

is inversely proportional to E[T 1] + E[T 2]. However, the growth rate is proportional to E[T 1] and

E[T 2]: the longer the length of a regime is, the faster the population grows.

Environment 2 considers the case where both action a and b produce positive number of off-
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(a) environment 1 (b) environment 2 (c) environment 3

(d) environment 4 (e) environment 5 (f) environment 6

(g) environment 7 (h) environment 8

Figure 1: Optimal degree of mutation and optimal log-geometric-average growth rate as a function
of regime lengths E[T 1] and E[T 2]. Eight subfigures show simulation results of eight different
environments in Table 1. The colored plain with the colorbar shows the optimal mutation rates; the
transparent surface of which the height is indicated by the z-axis shows the optimal log-geometric-
average growth rate associated with that optimal mutation rate.
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spring. As expected, the growth rates are much higher than those in environment 1. The optimal

degree of mutation is inversely proportional to the length of a regime, except for two regions where

the length of one regime is much larger than that of the other (the region E[T 1] > 25,E[T 2] < 12,

and the region E[T 1] < 12,E[T 2] > 25). In these two regions, the optimal degree of mutation drops

to nearly 0 because one regime is significantly shorter than the other and therefore it is not worth

sacrificing growth in one regime for the other by mutation, as long as the inferior behavior does

not die out in the shorter regime.

Environment 3 adds dependence of xa and xb in each regime. In this case the optimal behavior

in each regime is the perfect probability matching behavior: f∗1 = 0.8, f∗2 = 0.2. Simulation results

are similar to environment 1.

Environment 4 considers a different kind of dependence of xa and xb in each regime. In this

case the optimal behavior in each regime is deterministic: f∗1 = 1, f∗2 = 0. Simulation results are

similar to environment 1.

Asymmetric regimes. The four experiments considered so far are all symmetric in terms of the

two regimes. In other words, the second regime is simply a copy of the first regime with xa and

xb reversed. As a consequence, all results are expected to be symmetric with respect to the line

E[T 1] = E[T 2]. In this part we consider asymmetric regimes and investigate how this changes the

optimal mutation rates and growth rates.

Environment 5 is a mixture of environment 3 and 4 in the symmetric regime case: regime 1

is from environment 3 and regime 2 is from environment 4. In this case the optimal behavior is

f∗1 = 0.8 in regime 1 and f∗2 = 0 in regime 2. There are several interesting observations. First

of all, both the optimal degree of mutation and the growth rate are no longer symmetric with

respect to E[T 1] and E[T 2]. Secondly, the growth rate increases as E[T 2] increases; decreases as

E[T 1] increases. This is because regime 2 has a larger geometric-mean fitness than regime 1, and

the growth rate increases as the proportion of generations in regime 2 increases. Thirdly, similar

phenomenon to environment 2 of zero-mutation appears when E[T 1] is large and E[T 2] is small.

Environment 6 makes the two regimes more asymmetric. The optimal behavior is f∗1 = 1 in

regime 1 and f∗2 = 0 in regime 2. This time regime 1 has an edge in terms of geometric-mean

fitness. Results are similar to environment 5 except that E[T 1] and E[T 2] are reversed.
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When mutation is not desirable. Mutation is desirable because the environment is unsta-

tionarily stochastic and the two regimes favor different actions. When these conditions change,

mutation is no longer desirable.

Environment 7 reverses action a and b in the second regime of environment 5. The shape of

the transparent surface indicating growth rates is similar to environment 5. However, the optimal

degree of mutation is 0 for any combination of E[T 1] and E[T 2], because the optimal behavior is

f∗1 = 0.8 in regime 1 and f∗2 = 1 in regime 2. They are close to each other, and both of them grow

relatively fast in both regimes.

Environment 8 reverses action a and b in the second regime of environment 6. The shape of the

transparent surface indicating growth rates is similar to environment 6, and the optimal degree of

mutation is 0 for the same reason as in environment 7. The optimal behavior is f∗ = 1 in both

regime 1 and regime 2.

3.4 Optimal degree of irrationality

It is clear that there exists a balance between growth without mutation and robustness with mu-

tation. The simulation results confirm the inverse relation between the optimal degree of mutation

and expected lengths of regimes derived analytically in the simple two-behavior model with special

fecundity structure (Proposition 6 and Corollary 2). The relation is robust across a variety of

environmental conditions.

For symmetric regimes, the optimal degree of mutation is inversely proportional to E[T 1]+E[T 2];

the growth rate is proportional to both E[T 1] and E[T 2]. For asymmetric regimes, the growth rate

increases as the proportion of the regime that has a larger geometric-mean fitness increases. The

relative magnitude of the two regimes matters.

The optimal degree of mutation could be zero if one regime is significantly shorter than the

other, because it is not worth sacrificing growth in one regime for the other as long as the inferior

behavior does not die out in the shorter regime. The optimal degree of mutation could also be zero

if the optimal behaviors in two regimes are similar to each other, and both of them grow relatively

fast in both regimes.

The length of regime, or equivalently the frequency of change, is one aspect of the nature
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of environmental change. The intensity of each environmental change is another aspect. In our

framework, the intensity of environmental change is reflected by the difference in optimal behaviors

in the two regimes: |f∗1 − f∗2 |. When the optimal behaviors in the two regimes are similar to each

other, the optimal degree of mutation is relatively low; when the optimal behaviors in the two

regimes are wildly different, the optimal degree of mutation must be high to compensate for the

slow growth of the suboptimal behaviors in each regime.

In general, the evolutionarily optimal degree of irrationality in the population is influenced

by both the frequency and intensity of environmental change. A higher frequency or intensity of

change would imply a higher degree of irrationality. Equivalently, markets and industries with more

volatile environments should attract more entrants over time.

4 Discussion

Evolutionary models of behavior are important for understanding the conflicts between individual

rationality and human behavior. The binary choice model (Brennan and Lo, 2011) provides a

framework for explanations of the deviations from the neoclassic utility-based economic theory.

Building on the binary choice model, we investigate the evolution of irrational behaviors in this

article. Mutation is the key because it provides the link between rational and irrational behaviors

in an evolutionary context. Because the rational behavior is the evolutionarily optimal behavior

given a particular environment, it is subject to change when the environment changes. As a result,

irrational behavior is necessary to provide robustness for population growth. Furthermore, we have

shown that there is an evolutionarily optimal degree of irrationality in the entire population. More

unstable environments imply more irrational behaviors in the population and more new entry over

time.

The evolutionary origins of strategic behavior have also been considered (Robson, 1996b; Skyrms,

2000; Skyrms, 2014), and natural selection can also produce more sophisticated behaviors such as

overconfidence (Johnson and Fowler, 2011), altruism and self-deception (Trivers, 1971; Becker,

1976), and state-dependent strategies like the Hawk-Dove game (Maynard Smith, 1984), which

emerge as a result of more complex environmental conditions. In our framework, if we assume that

one individual’s action is correlated with the reproductive success of another individual, individu-
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als engaging in strategic behavior will reproduce more quickly than those with simpler behaviors

such as probability matching. If the actions of individuals in the current generation can affect

the reproductive success of individuals in future generations, even more complex dynamics are

likely to emerge as in the well-known overlapping generations model (Samuelson, 1958). In a

resource-constrained environment in which one individual’s choice can affect another individual’s

reproductive success, strategic interactions such as reciprocity and cooperation will likely emerge

within and across generations (Trivers, 1971; Nowak and Highfield, 2011).

In contrast, the model considered in this article does not require any strategic interactions, and

individual decision-making is deliberately mindless, allowing us to determine the most primitive

and fundamental links between stochastic environments and adaptive behavior. Even in such a

simple setting, we find a range of behaviors—behaviors that do not always conform to common

economic intuition about rationality—can arise and persist via natural selection. Simon (Simon,

1981) illustrated this principle vividly with the example of a single ant traversing a mixed terrain

of sand, rocks, and grass. The ant’s path seems highly complex, but the complexity is due more to

the environment than the ant’s navigational algorithm.

Much of the rationality debate among economists and psychologists focuses on whether the

rational models can help people make better inferences and decisions in the real world (McKenzie,

2003). Instead, our framework provides an evolutionary explanation of irrational behaviors and

different degrees of irrationality in the population. The results suggest that irrational behaviors

are necessary even if they are seemingly inefficient in the current environment, and the nature of

stochastic environment determines the degree of irrationality, and the amount of new entrants into

the population.

From a policy perspective, our results underscore the importance of addressing different human

behaviors in different environments. For example, the financial market is considered to be efficient

most of the time (Samuelson, 1965; Fama, 1970), and participants with irrational beliefs constitutes

a minimum part in the market. However, in periods of economic turbulence and financial crisis,

irrational behaviors are much more prevalent than usual. Our results also highlight the importance

of entry of new actors into the market even if they appear suboptimal in the current context,

and suggest that the optimal amount of new entrants depends on the degree of environmental
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stability. On the other hand, if not properly managed, volatile environments can lead to increases

in the degree of irrationality, implying higher social costs and lower economic growth. However, our

results also highlight the potential dangers of sustained government intervention, which can become

a source of systematic risk and cause volatile environments in its own right (Acharya, Richardso,

Van Nieuwerburgh, and White, 2011; Lucas, 2011).
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A Appendix

In this Appendix, we provide additional technical details and proofs for the main results of the

paper.

A.1 Birkhoff’s contraction coefficient

The definition and properties of the Birkhoff’s contraction coefficient can be found in Caswell

(2001) p.370-372 or Ipsen and Selee (2011) p.159. Let x and y be positive vectors. The Hilbert

pseudo-metric distance between x and y is defined as:

d(x,y) := log

(
maxi

xi
yi

mini
xi
yi

)
= max

i,j
log

(
xiyj
xjyi

)
.

It measures the distance between two vectors in a way that depends only on their proportional

composition, independent of their absolute size. It satisfies the following conditions:

d(x,y) ≥ 0

d(x,y) = d(y,x)

d(x,y) ≤ d(x, z) + d(z,y)

d(x,y) = 0 iff x = ay

d(x,y) = d(ax, by) for a, b > 0.

The Birkhoff’s contraction coefficient of a non-negative matrix A is defined as:

τ(A) = sup
d(Ax,Ay)

d(x,y)
(A.1)

where the supremum is taken over all vectors x > 0 and y > 0 that are not multiples of each other.

Note that because d is invariant with respect to the absolute magnitude of vectors, the supremum

can be taken over a compact subset equivalently, say ||x||1 = ||y||1 = 1.

If A is a strictly positive matrix, then τ(A) < 1 (see Caswell (2001) p.372 for example). Under

Assumptions 1-3, the matrix At might not be strictly positive. However, there is at least one

positive entry in each row of At, so τ(At) ≤ 1 (see Hajnal (1976) discussion on “row allowable”

matrices). We will prove in Lemma 1 that τ(At) is indeed strictly less than 1.

Lemma 1 (Contraction properties of At). Under Assumptions 1-3, the Birkhoff’s contraction
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coefficient τ of At is strictly less than 1 almost surely:

P (τ(At) < 1) = 1.

Because of Assumption 1, there are only finitely many possible random matrices At if xa and

xb are integers. Therefore, the Birkhoff’s contraction coefficient τ(At) is uniformly less than some

positive constant δ < 1. But Lemma 1 is enough for the analysis henceforth.

A.2 Additional results for population dynamics

Lemma 2 (Decomposition of population vector). Under Assumptions 1-3, starting from n0 = 1

to be a (K + 1)-dimensional column vector of 1’s. Write Pt = 1′nt for total population size at time

t. Then the population vector at time t can be written as:

nt = F̃tF̃t−1 · · · F̃1n0 +
ε

K

(
F̃t · · · F̃2P11 + F̃t · · · F̃3P21 + · · ·+ F̃tPt−11 + Pt1

)
almost surely, where F̃t =

(
1−

(
1 + 1

K

)
ε
)
Ft is the “mutation-adjusted” fecundity matrix.

Lemma 2 provides a decomposition of the population vector nt into a linear combination of

non-mutation vector and t vectors for shorter generational spans, each of which is weighted by ε
K

and stands for evolution starting from a certain time in evolution.

Proposition 7 (Asymptotic population distribution). Under Assumptions 1-3, there exists some

σ such that the total population size Pt = 1′nt at time t satisfies:

logPt − tµε
σ
√
t

=⇒ Normal(0, 1)

in distribution as t→∞.

By Proposition 7, the asymptotic distribution of total population is lognormal, and the mean

and variance of logPt both increase linearly with time.

Proposition 8 (Rate of convergence). Under Assumptions 1-3, the Markov chain {yt}∞t=0 is uni-

formly ergodic if the support of L (·) has nonempty interior1. By uniformly ergodic we mean that

LT converges to the stationary distribution L geometrically fast:

||LT (·)−L (·)||TV ≤MρT , T = 1, 2, 3, · · ·
1The support of L (·) is defined to be the set of all points y ∈ Y for which every open neighborhood of y has

positive measure.
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for some ρ < 1 and M < ∞, where || · ||TV is the total variation distance between two probability

measures.

Proposition 8 asserts that the rate of convergence in Proposition 4 is exponential. Therefore,

one would expect that the convergence of LT (·) to the stationary distribution L (·) is very fast in

evolution.

Proposition 9 (Selection of the optimal behavior (Robson, 1996a)). Suppose the optimal behavior

without mutation is f∗ and µ(f∗) > 0 (see Proposition 1). Under Assumptions 1-3, suppose the

corresponding element of f∗ in the vector yt is y∗. For any all small probability p̄ > 0, positive

constant δ̄ > 0, there exists ε̄ ∈ (0, 1) such that, for all mutation rates ε ∈ (0, ε̄), we have:

PL

(
y∗ ≥ 1− δ̄

)
> 1− p̄

with respect to the limit distribution L .

Proposition 9 asserts an important property of L : f∗ without mutation again dominates the

population in evolution with mutation with arbitrarily high probability, provided that the mutation

rate is small enough. However, explicit calculation of the stationary distribution is difficult. Section

A.3 discusses a simulation experiment to understand the limit stationary distribution L .

A.3 Simulation for the limit distribution of population proportions

Let’s consider an example to show how the limit distribution of population proportions behaves.

Let Φ(xa, xb) be given in Table A.1 and we study a system with 6 behaviors f ∈ {0, 1
5 ,

2
5 , · · · , 1}.

Table A.1: Probability table for the simulation of asymptotic population dynamics

State 1 State 2

Action prob. p = 0.8 prob. 1− p = 0.2

a xa = 3 xa = 0
b xb = 0 xb = 3

Figure 1a 1b and 1c show the proportion of each behavior in the entire population as the

number of generation increases in one simulation. Without mutation, the proportion of different

behaviors converges almost surely. With positive mutation rates, the population proportion vector

is stochastic even in the long run.

Figure 1d and 1e show the limit distribution of population proportions for mutation rates

ε = 0.01 and 0.05. Each subplot shows the histogram of three behaviors in the last generation

T = 500 with 1000 simulation paths: the optimal behavior f∗ = 0.8, and two suboptimal behaviors

f = 0.6, f = 1. We only plot three representative behaviors for simplicity. From the histogram, it

is clear that f∗ = 0.8 (purple bar) corresponds to the optimal behavior. As the mutation rate gets

smaller, the probability that f∗ = 0.8 dominates the entire population gets closer to 1.
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(a) 1 path, ε = 0

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Generation

P
o

p
u

la
ti
o

n
 P

ro
p

o
rt

io
n

 

 

f=0

f=0.2

f=0.4

f=0.6

f=0.8

f=1

(b) 1 path, ε = 0.01
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(c) 1 path, ε = 0.05

(d) limit distribution, ε = 0.01 (e) limit distribution, ε = 0.05
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(f) average path, ε = 0.01
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(g) average path, ε = 0.05

Figure 1: Simulation for the limit distribution of population proportions. (1a): simulation of one
evolution path without mutation. (1b): simulation of one evolution path with mutation ε = 0.01.
(1c): simulation of one evolution path with mutation ε = 0.05. (1d): simulation of limit distribution
of 1000 evolution paths with mutation ε = 0.01; only f = 0.6, 0.8, 1 are shown. (1e): simulation of
limit distribution of 1000 evolution paths with mutation ε = 0.05; only f = 0.6, 0.8, 1 are shown.
1f): sample paths averaged over 1000 simulation with mutation ε = 0.01. 1g): sample paths
averaged over 1000 simulation with mutation ε = 0.05.
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Furthermore, the final stationary distribution does not behave like normal because of the heavy-

tailness observed in simulation. In particular, a Kolmogorov-Smirnov test of normality on the

distribution of f∗ = 0.8 proportion gives p-value = 1.08×10−50, rejecting the normality hypothesis.

Finally, although it is hard to show the evolution of the complete distribution of normalized

population vector (5) in one figure, Figure 1f and 1g show the proportion of each behavior in

the entire population averaged over 1000 simulation paths. It is clear that the expectation of the

distribution converges quickly, and the optimal behavior without mutation again dominates the

population in expectation. This supports our results in Proposition 8 and 9.

A.4 Proofs

Lemma 1. The proof generalizes the discussion in Caswell (2001) p.371-372. Let A = (aij)(K+1)×(K+1)

be any matrix drawn under Assumptions 1-3. If A is strictly positive, then τ(A) < 1. If A is not

strictly positive, because P(xa > 0 or xb > 0) = 1, A must be a strictly positive matrix except for

the 1st column or the (K + 1)-th column (but not both). Suppose without loss of generality that

the 1st column of A is 0 and the rest is strictly positive, and it suffices to prove τ(A) < 1 in this

case.

Now let x(t) = (xi(t+ 1))K+1
i=1 and y(t) = (yi(t+ 1))K+1

i=1 be positive vectors that are not

proportional to each other, and x(t+ 1) = A · x(t) and y(t+ 1) = A · y(t). Then

xi(t+ 1)

yi(t+ 1)
=

∑
j aijxj(t)∑
k aikyk(t)

=
∑
j

(
aijyj(t)∑
k aikyk(t)

)
xj(t)

yj(t)
=
∑
j

pij
xj(t)

yj(t)

where
∑

j pij = 1. A careful examination of pij yields that for any i,

pi1 = 0, and pij > 0 for j = 2, 3, · · · ,K + 1.

Therefore, xi(t+1)
yi(t+1) is a positive weighted average of {xj(t)yj(t)

}K+1
j=2 , and this is true for all i. Because

x(t) and y(t) are not proportional to each other, there are two possibilities:

(1) The ratios in {xj(t)yj(t)
}K+1
j=2 are all the same, but different from x1(t)

y1(t) . In this case exactly one of

the following must be true:

min
j

xj(t)

yj(t)
<
xi(t+ 1)

yi(t+ 1)
≤ max

j

xj(t)

yj(t)
, for all i,

or

min
j

xj(t)

yj(t)
≤ xi(t+ 1)

yi(t+ 1)
< max

j

xj(t)

yj(t)
, for all i.
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(2) The ratios in {xj(t)yj(t)
}K+1
j=2 are not all the same. In this case we have

min
j

xj(t)

yj(t)
<
xi(t+ 1)

yi(t+ 1)
< max

j

xj(t)

yj(t)
, for all i.

In both (1) and (2) we have

d (x(t+ 1),y(t+ 1)) < d (x(t),y(t)) .

That is, each multiplication by A contracts the distance between the two vectors. Because the

supremum in Birkhoff’s contraction coefficient (A.1) can be taken over a compact set, we have

τ(A) < 1 with probability 1.

Lemma 2. The mutation matrix M can be written as

M =

(
1−

(
1 +

1

K

)
ε

)
IK+1 +

ε

K
1K+11

′
K+1,

where IK+1 is the identity matrix of dimension (K+ 1)× (K+ 1). Plugging into (4) in Proposition

2 we get

nt
a.s.
= MFtnt−1 =

(
1−

(
1 +

1

K

)
ε

)
Ftnt−1 +

ε

K
Pt1K+1. (A.2)

Note that the identity

1′Ftnt−1 = 1′MFtnt−1 = Pt

was used in order to obtain (A.2). Proceeding inductively from (A.2), we have the desired result.

Proposition 1. See Brennan and Lo (2011) Proposition 1. Strong Law of Large Numbers implies

almost sure convergence (see also Brennan and Lo (2011) Proof of Corollary 1).

Proposition 2. The proof is a simple generalization of Brennan and Lo (2011). Let If be a Bernoulli

variable defined same as in Brennan and Lo (2011), which equals 1 with probability f and 0

otherwise. Define “not mutation” indicator N and “mutation from g to f” indicator Mg→f :

N =


1 with prob 1− ε

0 with prob ε,

Mg→f =


1 with prob ε

K

0 with prob 1− ε
K .

In generation t, type f individuals come from type f individuals without mutation and type
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g(6= f) individuals with mutation in generation t− 1. Consider them separately. From type f :

nft−1∑
i=1

xf→fi,t =

nft−1∑
i=1

Ni,tI
f
i,t

xa,t +

nft−1∑
i=1

Ni,t(1− Ifi,t)

xb,t

a.s.
= (1− ε)nft−1 (fxa,t + (1− f)xb,t)

as nft−1 increases without bound. From type g(6= f):

∑
g 6=f

ngt−1∑
i=1

xg→fi,t =
∑
g 6=f

ngt−1∑
i=1

Mg→f
i,t Igi,t

xa,t +

ngt−1∑
i=1

Mg→f
i,t (1− Igi,t)

xb,t


a.s.
=

ε

K

∑
g 6=f

ngt−1 (gxa,t + (1− g)xb,t)

as ngt−1 increases without bound. Note that

nft =

nft−1∑
i=1

xf→fi,t +
∑
g 6=f

ngt−1∑
i=1

xg→fi,t

a.s.
= (1− ε)nft−1(fxa,t + (1− f)xb,t) +

ε

K

∑
g 6=f

ngt−1(gxa,t + (1− g)xb,t).

(4) simply rewrites the above equation in matrix form.

Proposition 3. By Lemma 1 and Caswell (2001, p. 386, 14.22), demographic weak ergodicity2

holds. In addition, E log+ ||A1|| < ∞ because xa and xb are bounded, where log+ ||A1|| =

max{0, log ||A1||}. Therefore, assumption 4.2.1 in Tuljapurkar (1990) is satisfied, and Proposi-

tion 3 follows from Tuljapurkar (1990, p. 26, (A)).

Proposition 4. Because the random matrices At are IID, assumption 4.2.1, 4.2.3, and 4.2.6 in

Tuljapurkar (1990) are satisfied, and the conclusion follows directly from Tuljapurkar (1990) p.29

(J).

Proposition 5. Part (i) is standard result for single type branching process in random environments

(see Smith and Wilkinson (1969) Theorem 3.1 for example). Part (ii) follows from Proposition 3

and Corollary 1.

2The definition of demographic weak ergodicity is given in Caswell (2001, p. 383) and Tuljapurkar (1990, p. 17).
Essentially it means that the difference between the probability distributions of normalized population vectors re-
sulting from any two initial populations, exposed to independent sample paths of the stochastic environment, decays
to zero.
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Proposition 6. To clarify notation, let x1
a,j be the number of offspring generated by Φ1 for action

a in the j-th generation; x2
b,j the number of offspring generated by Φ2 for action b in the j-th

generation. Table A.2 calculates the number of individuals of both behaviors along evolution,

starting with 1 individual of each type. From the last line of Table A.2 we have:

nε,Total
k = ε2k−1(1− ε)

∑k
i=1(T 1

i +T 2
i )−2k

∑k
i=1 T

1
i∏

j=1

x1
a,j

∑k
i=1 T

2
i∏

j=1

x2
b,j .

Therefore,

1

k
log nε,Total

k =
2k − 1

k
log ε+

(
1

k

k∑
i=1

(T 1
i + T 2

i )− 2

)
log(1− ε) +

1

k

∑k
i=1 T

1
i∑

j=1

log x1
a,j +

1

k

∑k
i=1 T

2
i∑

j=1

log x2
b,j

a.s.→ 2 log ε+
(
E[T 1 + T 2]− 2

)
log(1− ε) + E[T 1]E[log x1

a] + E[T 2]E[log x2
b ]

= 2 log
ε

1− ε
+ E[T 1 + T 2] log(1− ε) + E[T 1]E[log x1

a] + E[T 2]E[log x2
b ]

where “
a.s.→” denotes almost sure convergence and follows from Strong Law of Large Numbers as k

increases without bound. Since the value of ε that maximizes the population size nε,Total
k is also the

value of ε that maximizes k−1 log nε,Total
k , the above analysis implies that this maximum converges

in probability to the maximum of

π(ε) = 2 log
ε

1− ε
+ E[T 1 + T 2] log(1− ε) + E[T 1]EΦ1 [log xa] + E[T 2]EΦ2 [log xb]

where 0 < ε < 1. Take the first and second derivatives of the above equation:

π′(ε) =
2

ε
− E[T 1 + T 2]− 2

1− ε
,

π′′(ε) = − 2

ε2
− E[T 1 + T 2]− 2

(1− ε)2
.

Note that T 1 and T 2 are positive integers, so E[T 1 + T 2] ≥ 2. Therefore, the second derivative is

always negative for 0 < ε < 1. In addition, π′(0+) > 0, π′(1−) < 0, which implies that π(ε) has a

unique maximum in (0, 1) at π′(ε) = 0. Solve for ε we get the desired result.

Proposition 7. Because the random matrices At are IID, assumption 4.2.1 and 4.2.3 in Tuljapurkar

(1990) are satisfied, and the conclusion follows directly from Tuljapurkar (1990, p. 27,(F)).

Proposition 8. We utilize Meyn and Tweedie (2009, p. 411, Theorem 16.2.5):
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If {yt}∞t=0 is a ψ-irreducible3 and aperiodic T-chain4, and if the state space Y is compact,

then {yt}∞t=0 is uniformly ergodic.

The uniqueness of the stationary distribution L in Proposition 4 implies that {yt}∞t=0 is ape-

riodic, so it suffices to prove that {yt}∞t=0 is a ψ-irreducible T-chain.

Take ψ = L to be the stationary distribution of {yt}∞t=0, then for all y ∈ Y and B ⊆ Y ,

whenever ψ(B) > 0, there exists some n > 0, possibly depending on both y and B, such that the

n-step transition probability pn(y, B) > 0. Then it follows from Meyn and Tweedie (2009, p. 82,

Proposition 4.2.1(ii)) that {yt}∞t=0 is ψ-irreducible.

Furthermore, the 1-step transition probability p1(·, O) is a lower semicontinuous function for

any open set O ⊆ Y . Remember that the support of ψ is assumed to have non-empty interior.

Then it follows from Meyn and Tweedie (2009, p. 124, Theorem 6.0.1(iii)) that {yt}∞t=0 is a T-chain.

Finally, the uniform ergodicity of the Markov chain {yt}∞t=0 follows from Meyn and Tweedie

(2009, p. 411, Theorem 16.2.5).

Proposition 9. This Proposition is essentially due to Robson (1996a, p. 413, Theorem 2(iii)).

Corollary 1. The lower bound is obvious by simply considering the growth of non-mutated type f∗

individuals. To prove the upper bound, first note that

1′Ftyt−1 = 1′

(
f1xa,t+(1−f1)xb,t ··· 0

...
. . .

...
0 ··· fK+1xa,t+(1−fK+1)xb,t

)(
yt−1(1)

...
yt−1(K+1)

)

=
K+1∑
i=1

yt−1(i) (fixa,t + (1− fi)xb,t) = (αt−1xa,t + βt−1xb,t)

where

αt−1 =
K+1∑
i=1

yt−1(i)fi, βt−1 =
K+1∑
i=1

yt−1(i)(1− fi),

and αt−1+βt−1 = 1. Note that Ft and yt−1 are independent in (7), and αt−1 and βt−1 are constants

conditioning on yt−1, so one have:

µε = EL

{
EΦ

[
log(1′Ftyt−1)

] ∣∣∣∣yt−1

}
= EL

{
EΦ [log (αt−1xa,t + βt−1xb,t)]

∣∣∣∣yt−1

}
≤ EL

{
EΦ [log (f∗xa,t + (1− f∗)xb,t)]

∣∣∣∣yt−1

}
= EL

{
µ(f∗)

∣∣∣∣yt−1

}
= µ(f∗)

3The definition of ψ-irreducibility can be found in Meyn and Tweedie (2009, p. 82).
4The definition of T-chains can be found in Meyn and Tweedie (2009, p. 124).
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where the following fact is used for the inequality:

f∗ = arg max
0≤f≤1

EΦ [log (fxa,t + (1− f)xb,t)] .

Corollary 2. The conclusion follows immediately from Proposition 6 by replacing E[T 1 + T 2] by

2 · E[T ].
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