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Abstract

This paper proposes a foundation for heterogeneous beliefs in games, in

which disagreement arises not because players observe different information, but

because they learn from common information in different ways. Players may be

misspecified, and may moreover be misspecified about how others learn. The

key assumption is that players nevertheless have some common understand-

ing of how to interpret the data; formally, players have common certainty in

the predictions of a class of learning rules. The common prior assumption is

nested as the special case in which this class is a singleton. The main results

characterize which rationalizable actions and Nash equilibria can be predicted

when agents observe a finite quantity of data, and how much data is needed to

predict different solutions. This number of observations depends on the degree

of strictness of the solution and the “complexity” of inference from data.

1 Introduction

How are beliefs formed? And how do individuals come to form beliefs over the beliefs

of others? Predictions of play in incomplete information games depend crucially on

our answers to these questions. The classic approach gives players a common prior

over states of the world, and assumes that they use Bayesian updating to form a pos-

terior belief given new information.1 But this approach imposes strong restrictions

on the extent to which players can disagree: for example, it implies that beliefs that
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are commonly known are identical (Aumann, 1976), and that repeated communica-

tion of beliefs will eventually lead to agreement (Geanakoplos and Polemarchakis,

1982). These implications are hard to believe when taken literally: they conflict

with considerable empirical evidence that individuals publicly disagree, and also

with our basic, day-to-day, experience that individuals interpret information in dif-

ferent ways.2 Perhaps more importantly, there are conflicts between the predictions

of the common prior theory and certain observed economic behaviors—for example,

the well known result that the common prior assumption precludes speculative trade

(Milgrom and Stokey, 1982).

The main contribution of this paper is to propose a simple framework that

relaxes the common prior assumption in a structured way. The proposed approach

takes a statistical view of belief formation: economic actors observe a sequence of

data (generated via a stochastic process) and extrapolate from that data to predict

payoff-relevant unknowns. For example, investors forecast future stock returns based

on past returns. Theoretically, given infinite data about a stationary environment,

agents can learn a complete theory of the relationship between observables and

outcomes. But when data is “partial” (for example, outcomes are observed for

settings that are similar but not identical to the current environment) and limited

in quantity, there can be many plausible and competing viewpoints on what the

data implies.

The proposed framework thus permits “ambiguity” in how to interpret the data,

formalized as a class of rules for learning from data, which structure the potential

disagreement. I define a learning rule to be any map from data into beliefs over

payoffs. For example, the common prior assumption can be described by a learning

rule that Bayesian updates from a common view of the relationship between data and

payoff-relevant unknowns. In general, I allow for a set of learning rules (potentially

misspecified). The premise of this approach is that even in settings where there is

not a single accepted way to interpret data, there is often domain knowledge about a

class of reasonable approaches. For example, in the forecasting example above, there

may be basic competing theories for how the returns are generated—corresponding

to different parametrized families of return processes; or, players may take different

averages of the historical data, based on different assumptions about which time

periods are most relevant.3

Thus, the standard approach is enriched with two new primitives: a class of

2In financial markets, players publicly disagree in their interpretations of earnings announce-

ments (Kandel and Pearson, 1995), valuations of financial assets (Carlin et al., 2013), forecasts

for inflation (Mankiw et al., 2004), forecasts for stock movements (Yu, 2011), and forecasts for

mortgage loan prepayment speeds (Carlin et al., 2014). players publicly disagree also in matters of

politics (Wiegel, 2009) and climate change (Marlon et al., 2013).
3See for example case-based learning (Gilboa and Schmeidler, 1995; Gilboa et al., 2008).
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learning rules and a data-generating process. Given any data set, the class of learn-

ing rules determines a plausible range of disagreement about payoffs. A final as-

sumption, Common Inference, structures the approach: for every realization of the

data, players have common certainty in the beliefs induced by the class of learning

rules.4 Thus, although players can disagree, and even have common knowledge of

disagreement, the extent of their disagreement is constrained.

Section 5 characterizes the conditions on the class of learning rules that guarantee

common learning (Cripps et al., 2008).5 It is necessary and sufficient that beliefs

induced by different learning rules weakly converge to a limiting belief, and that this

convergence occurs uniformly over the set of learning rules. Loosely, this requires

that the set of learning rules is not too large. The case in which players commonly

learn receives special emphasis in this paper, and I refer to the limiting belief as a

limiting common prior.6

Sections 6 and 7 focus on the restrictions on strategic behavior that are imposed

by a class of learning rules, a data-generating process, and Common Inference.

The key object of study is the probability (with respect to the data generating

process) that a strategic prediction will hold under Common Inference. Specifically, I

consider the probability that the prediction holds uniformly over all types consistent

with Common Inference (call these predictions robust), and also the probability

that the prediction holds for some type consistent with Common Inference (call

these predictions plausible). Informally, the larger the two probabilities are, the

more confidence we should have in the corresponding prediction. In this way, the

probabilities serve as different continuous metrics for the strength of a prediction.

Both measures are indexed to the number of observations, so that the strength of a

prediction varies depending on how many observations players have seen.

The case in which players commonly observe a large quantity of data is con-

sidered in Section 6. The main takeaway is that when there is a limiting common

prior, then strategic predictions that hold strictly given infinite data can also be

made (with high probability) when players observe a large finite quantity of data.

Formally, under the assumption of a limiting common prior (and an additional

technical condition), the probability that an action profile is a plausible equilibrium

converges to 1 (as the number of observations grows large) if and only if it is an

equilibrium under the limiting common prior; the probability that an action profile

is a robust equilibrium converges to 1 if and only if it is a strict equilibrium under

4That is, all players assign probability 1 to this set of beliefs, believe with probability 1 that all

other players assign probability 1 to this set of beliefs, and so forth.
5That is, players’ own beliefs converge to this distribution, they believe with high probability

that all other players’ beliefs converge to this distribution, and so forth.
6One can interpret this limit as the point at which learning has removed all differences in beliefs

that are not due to differences of information. From this point forward, players indeed share a

common perception of the world.
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the limiting common prior. Similar statements hold for rationalizability, although

there are additional subtleties in the appropriate notion of “strictness”: I introduce

a new definition for “weakly” strict-rationalizable actions, which is a necessary con-

dition for rationalizable predictions to be robust with high probability when the

number of observations is large (the standard concept of strict rationalizability is

a sufficient condition).7 Actions are plausibly rationalizable with high probability

when the number of observations is large if and only if they are rationalizable under

the limiting common prior. Thus, the simplifying assumption of a common prior is

largely without loss if we believe that players observe a large amount of data, and

there is a limiting common prior.

But when the number of observations is limited (the more practically relevant

setting), then play can be quite different from the limit game. In Section 7, I

provide a lower bound for the probability that a strategic prediction is robust, when

the number of observations is some arbitrary (and potentially small) n. This bound

depends on two key properties: (a) First, it is increasing in the speed at which

different learning rules jointly learn the true value of the parameter. Thus, the

more “complex” the learning problem, the lower the probability. (b) Second, the

bound is increasing in a cardinal measure of strictness of the solution that I define.

Say that an action profile is a δ-strict NE if each player’s prescribed action is at

least δ better than his next best action8; and say that an action profile is δ-strict

rationalizable if it can be rationalized by a chain of best responses, in which each

action yields at least δ over the next best alternative. This parameter δ turns out

to determine how much estimation error the solution can withstand—the lower the

degree of strictness (the smaller the parameter δ), the slower convergence is.

These bounds show that when players form beliefs from data using different

learning rules, then new channels—in particular, the amount of common knowledge

over how to interpret data, and the “dimensionality” or “complexity” of the learning

problem—emerge as determinants of strategic behavior.

Section 8 explores the case in which the data-generating process is not exoge-

nously determined, but can be influenced by an external actor—for example, the fed-

eral reserve board decides what data to release about various financial and macroe-

conomic indicators. How might a designer be able to manipulate behavior either

by choosing the nature of public information? I present two examples that build

on the proposed framework, and demonstrate that provision of extraneous public

information can deter coordination.

Section 9 examines modeling choices made in the main text and discusses the

7The difference between these two notions of strict rationalizability regards the order of elimi-

nation, and is of independent interest.
8This reverses the more familiar concept of ε-equilibrium, which requires that each player’s

prescribed action is no more than ε worse than the best action.
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extent to which these can be relaxed—specifically, by allowing for an “approximate”

limiting common prior, and allowing for i.i.d. private data.

Section 10 surveys the related literature. This paper primarily builds on a lit-

erature that studies the robustness of equilibrium predictions to the specification

of player beliefs (Rubinstein, 1989; Monderer and Samet, 1989; Carlsson and van

Damme, 1993; Kajii and Morris, 1997; Weinstein and Yildiz, 2007), but considers

questions of robustness motivated by a learning foundation. This learning-based

approach shares features with Dekel et al. (2004) and Esponda (2013), with a key

difference that players in the present paper learn about payoffs only and not actions.

Another precedent is Steiner and Stewart (2008), which characterizes the limiting

equilibria of a sequence of games in which players infer payoffs from related games.

I consider a related setting, where the main question is what happens when players

infer payoffs using heterogeneous rules. Additionally, the focus on large data limits

in Section 6 is especially related to Cripps et al. (2008), which characterizes the

beliefs of Bayesian learners as the quantity of data grows large. The primary object

of study in this paper is strategic behavior instead of beliefs.

Finally, the depiction of agents as “statisticians” or “machine learners” relates to

recent work including , Gilboa and Schmeidler (2003), Gayer et al. (2007), Al-Najjar

(2009), Al-Najjar and Pai (2014), Acemoglu et al. (2015), Spiegler (2016), and Olea

et al. (2017). I examine the strategic implications when multiple agents form beliefs

given common certainty of a diverse model class.

2 Example

Two investors decide whether to invest in a new product. There is an underlying

demand process D : R` Ñ R that is sampled at n different times t1 ă ¨ ¨ ¨ ă tn.

Players commonly observe the sequence

pDpt1q, . . . , Dptnqq

Payoffs are given by

Invest Don’t Invest

Invest y, y y ´ 1, 0

Don’t Invest 0, y ´ 1 0, 0

where y “ DpT q is the unknown demand at some large time T ą tn. In this game,

rationalizability of investment depends on our model of players’ beliefs about y, and

also their beliefs about others’ beliefs; how should we model these?

The standard approach gives players a common prior over the possible values of

y, and assumes that conditional on the value of y, players know the stochastic process
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that generates demand. This has the implication that, since all information is public,

investors share the same beliefs given any number of observations. Moreover, given

sufficiently many observations, players will commonly learn y, so we can replace

analysis of the game above with analysis of a limiting complete information game

(where the value of y is common knowledge). In particular, if the true value of y is

strictly positive, then investment will be rationalizable given enough data.

The analyst in the narrative above is indifferent to the historical pattern of

demand realizations, and also to the structure of the demand process itself. It is

irrelevant, for example, whether the historical data resembles the left or right panel

of the figure below, although intuitively we may expect lower commonality of beliefs

given the latter sequence of observations.

T Tt t

Figure 1: Two example sequences of demand realizations.

Let’s distinguish between these cases by adding structure to the setting in the

following way. Suppose that the true process samples uniformly over times in the

interval r0, T s, where T ă T , and the observed demand at time t is a d-th degree

polynomial plus Gaussian error. That is,

Dptq “ β0 ` β1t` . . .` βdt
d ` ε, ε „ N p0, σ2q

where both the vector of coefficients, and also the order of the polynomial d are

unknown. Players form forecasts for DpT q by fitting a function D̂ to the observed

data and using the estimated function to predict demand at time T . Specifically, for

each d ď d, let D̂d be the best d-th order polynomial fit to the observed data.9 The

key assumption is that players commonly know that the order of the polynomial is

not more than some d, so that they have common certainty in the set of beliefs with

support in
!

D̂dpT q
)d

d“1
.

In such a setting, the actual model order d, the size of the model class (as

determined by d), and the number of common observations n are all crucial.

9Assume that players minimize least-squares error, although this choice is not critical.

6



In fact, if d “ 8, then there is no number of observations given which we can pre-

dict investment based on these assumptions alone. This because for every sequence

Dpt0q, . . . , Dptnq, there is a polynomial of order d1 that perfectly interpolates be-

tween the observed sequence and some DpT q ă 0. In this sense, the model class is

too rich, and common learning fails (see Section 5).

Suppose d ă d ă 8, so that some players may use overspecified regression

models.10 Then, players will indeed commonly learn the true value of x. As in the

common prior case, given sufficiently many observations, analysis of this game can

be reduced to analysis of the limiting complete information game. So long as y ą 0

(so that investment is strictly rationalizable in the limiting complete information

game), then investment will be rationalizable given a large number of observations

(see Section 6). However, the number of observations necessary is increasing in both

d and d. This is because the rate at which players commonly learn is made slower

both by the true underlying complexity of the model (the true order d), and also

by the number of extraneous variables used to fit the data (the size d ´ d) (Hastie

et al., 2009).

Finally suppose that d ă d ă 8, so that all players have underspecified regression

models.11 In this case, players will generally not commonly learn the true value of

y. Prediction of investment as rationalizable may nevertheless make sense: the

key question in this case is whether there exists an N such that for every number

of observations n ě N , each under-specified model of order d ă d predicts that

y ą 0. If so, then even without common learning, we have that investment will be

rationalizable given a sufficiently large number of observations (again see Section 6).

Thus, there are many reasons not to predict investment even if y ą 0 and all

agents use models that will eventually recover y. In particular, the set of such mod-

els can be too large, or the rate at which they recover y can be too slow. These

assessments depend on the underlying model class and data-generating process, as

well as on the number of public observations. For example, in the right panel of the

figure, the number of public datapoints is small relative to the complexity of the un-

derlying model. In the extended framework, the analyst should have low confidence

in predicting that agents commonly perceive investment to be rationalizable.

The following section develops a general framework which includes the setting

above as a special case: players commonly observe data, and have beliefs that are

consistent with a common model class.

10There are plausible regression models that contain at least one extraneous predictor.
11All regression models miss one or more predictors.
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3 Setup and Notation

3.1 Basic Game

Consider a game with a finite set of players I and a finite set of actions Ai for

each player i, where A “
Ś

iAi is the set of action profiles. The state space is a

compact subset of the set of possible payoff matrices Θ Ă R|A|¨|I|, endowed with the

Euclidean distance metric. I will refer to θ alternatively as the state, the payoffs,

or the (complete information) game. Notice that somewhat unusually, the state θ

is the payoff matrix, and not a parameter that the payoff function depends on. To

evoke more familiar notation, I often write uipa, θq for θipaq; that is, the payoffs that

player i receives from action profile a when the payoff matrix is θ. Finally, for every

belief µ P ∆pΘq, the expected payoff matrix is Eµrθs.

3.2 Description of Beliefs

Because the state space pΘ, } ¨ }2q is complete and separable, we construct a full

description of player uncertainty over Θ as follows (Brandenburger and Dekel, 1993).

Suppose for a moment that there are two players, and recursively define

X0 “ Θ

X1 “ X0 ˆ p∆pX0qq

...

Xn “ Xn´1 ˆ p∆pXn´1qq

so that each Xk is the set of possible k-th order beliefs. Let T0 “
ś8
n“0 ∆pXnq.

An element pt1, t2, . . . q P T0 is a hierarchy of beliefs over Θ (describing the player’s

uncertainty over Θ, his uncertainty over his opponents’ uncertainty over Θ, and so

forth), and will be referred to simply as a type.

The above approach can be generalized for I players, taking X0 “ Θ, X1 “

X0 ˆ p∆pX0qq
I´1, and building up in this way. Mertens and Zamir (1985) have

shown that for every player i, there is a subset of types T ˚i (that satisfy the property

of coherency12) and a function κ˚i : T ˚i Ñ ∆
`

Θˆ T ˚´i
˘

such that κiptiq preserves

the beliefs in ti; that is, margXn´1
κiptiq “ tni for every n. Notice that T ˚´i is used

here to denote the set of profiles of opponent types.

The tuple pT ˚i , κ
˚
i qiPI is known as the universal type space. Other tuples pTi, κiqiPI

with Ti Ď T ˚i for every i, and κi : Ti Ñ ∆pΘˆ T´iq, represent alternative (smaller)

type spaces. Since I consider only symmetric type spaces in which there exists a set

12margXn´2
tn “ tn´1, so that pt1, t2, . . . q is a consistent stochastic process.
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T such that Ti “ T for every i, the set T itself will be informally referred to as the

type space, with the understanding that it is meant to suggest pTi, κiqiPI .
13

Remark 1. Types are sometimes modeled as encompassing all uncertainty in the

game. In this paper, I separate strategic uncertainty over opponent actions from

structural uncertainty over payoffs.

3.3 Common p-Belief

Let T ˚ “ T ˚1 ˆ ¨ ¨ ¨ ˆ T ˚I denote the set of all type profiles, with typical element

t “ pt1, . . . , tIq. Then, Ω “ Θˆ T ˚ is the set of all “states of the world.” Following

Monderer and Samet (1989), for every E Ď Ω, let

BppEq :“ tpθ, tq : κiptiqpEq ě p for every iu , (1)

describe the event in which every player believes E Ď Ω with probability at least p.

Common p-belief in the set E is given by the event

CppEq :“
č

kě1

rBpsk pEq.

The special case of common 1-belief is referred to in this paper as common certainty.

I use in particular the concept of common certainty in a set of first-order beliefs,

characterized in Battigalli and Sinischalchi (2003). For any F Ď ∆pΘq, define

EF :“ tpθ, tq : margΘ ti P F for every iu , (2)

to be the event in which every player’s first-order belief is in F . Then, C1pEF q is

the event in which it is common certainty that every player has a first-order belief

in F . The set of types ti given which player i believes that F is common certainty

is the projection of C1pEF q onto T ˚i .14 Since this set is the same for all players, I

will refer to the projection of C1pEF q onto T ˚1 as “the set of types with common

certainty in F .”

3.4 Solution Concepts

Fix a complete information game with payoffs θ. The action profile a is a Nash

equilibrium in this game if for every player i,

uipai, a´i, θq ě uipa
1
i, a´i, θq @ a1i P Ai,

13For more than two players, the statement that Ti “ T @ i should be understood as saying that

each Ti is equivalent to T under an appropriate permutation of player indices.
14Notice that when beliefs are allowed to be wrong (as they are here), individual perception of

common certainty is the relevant object of study. That is, player i can believe that a set of first-

order beliefs is common certainty, even if no other player in fact has a first-order belief in this set.

Conversely, even if every player indeed has a first-order belief in F , player i may believe that no

other player has a first-order belief in this set.
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and it is a strict Nash equilibrium if the inequality above is strict for every a1i ‰ ai.

The family of sets of actions pRjqjPI , where every Rj Ď Aj , is closed under best

reply if for every player j and action aj P Rj , there is some distribution α´j P

∆pR´jq such that

ujpaj , α´j , θq ě ujpa
1
j , α´j , θq @ a1j P Aj .

The family pRjqjPI is closed under strict best reply if the inequality above holds

strictly for every a1j ‰ aj . An action ai is rationalizable for player i if ai P Ri for

a family pRjqjPI that is closed under best reply, and ai is strictly rationalizable if

ai P Ri for some family pRjqjPI that is closed under strict best reply.

Now, fix an incomplete information game with type space pTi, κiqiPI , so that a

strategy for player i is a measurable function σi : Ti Ñ Ai. The strategy profile

pσ1, . . . , σIq is a Bayesian Nash equilibrium if

σiptiq P argmax
aPAi

ż

ΘˆT´i

uipai, σ´ipt´iq, θqdκiptiq for every i P I and ti P Ti,

so that every action ai is a best reply to the strategy σ and the belief κi over player

types.

I will use the following incomplete information notion of rationalizability: For

every player i and type ti, set S0
i rtis “ Ai, and define Ski rtis for k ě 1 such that

ai P Ski rtis if and only if ai P BRi

´

margΘˆA´i π
¯

for some π P ∆pΘ ˆ T´i ˆ

A´iq satisfying (1) margΘˆT´i π “ κiptiq and (2) π
´

a´i P S
k´1
´i rt´is

¯

“ 1, where

Sk´1
´i rt´is “

ś

j‰i S
k´1
j rt´js. We can interpret π to be an extension of belief κiptiq

onto the space ∆pΘ ˆ T´i ˆ A´iq, with support in the set of actions that survive

k´1 rounds of iterated elimination of strictly dominated strategies for types in T´i.

For every i, the actions in

S8i rtis “
8
č

k“0

Ski rtis

are interim correlated rationalizable for player i of type ti, or (henceforth) simply

rationalizable (Dekel et al., 2007).

4 Approach

4.1 Restriction on Beliefs

The proposed approach derives a set of beliefs from two new primitives: a data-

generating process, and a set of rules for how to extrapolate beliefs from realized

data.
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The data-generating process is formally a sequence of random variables Z “

pZtqtě1. Players commonly observe the realizations of the first n random variables

Z1, . . . , Zn, which I refer to as a data set, but may interpret it in different ways.

I use the convention that Zn “ pZ1, . . . , Znq is the random sequence of the first n

realizations, zn is a typical realization of Zn, and Zn is the set of possible realizations

of pZ1, . . . , Znq. Subscripts indicating the number of observations are dropped when

they are not important.

Under the common prior assumption, players learn from data by Bayesian up-

dating a common prior over the states and observations. I generalize this idea to

learning rules, where a learning rule is any map from data sets into first-order beliefs:

µ :
8
ď

n“1

Zn Ñ ∆pΘq.

Given data set zn, every learning rule µ produces a first-order belief µpznq; naturally,

these beliefs need not be the same. Throughout, I restrict consideration to learning

rules that further satisfy the following two regularity conditions:

Assumption 1 (Convergence). µpZnq almost surely converges (in the weak topol-

ogy) to some limiting belief µ8.

Assumption 2 (Richness). Let µ8 be the limiting distribution defined above. There

exists a sequence of positive numbers ξn such that

ξn ¨ pµpZ
nq ´ µ8q Ñd ν

where ν assigns strictly positive measure to every open set (in the weak topology) in

a neighborhood of the zero measure.

Assumption 1 says that beliefs induced by learning rule µ almost surely converge

to a limiting belief as the quantity of observations increases. Assumption 2 requires

that this convergence occurs with positive probability “from any direction”. This is

a weak technical condition, which loosely guarantees that the path of convergence is

not too asymmetric around the limiting beliefs; in particular, players cannot over- or

under-estimate any payoffs with probability 1.15,16 Both assumptions are satisfied by

15A more detailed intuition for Assumption 2 is as follows. Note that for each realization of

data zn, the expression ξn ¨ pµpznq ´ µ8q is a (scaled, signed) measure over Θ, describing the

differences between belief µpznq and the limiting belief µ8. This difference is the zero measure

when the two beliefs are the same. Assumption 2 requires that for n arbitrarily large, there is a

neighborhood around the zero measure in which every open set receives strictly positive probability.

This guarantees that not only does µpznq converge to µ8 a.s., but the path of its convergence cannot

exclude any particular direction of convergence with probability 1.
16Notice that biased estimators are permitted as learning rules—for example, every learning rule

may over-estimate payoffs in θ in expectation. Assumption 2 requires that this overestimation does

not occur with probability 1.
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essentially all learning rules and data-generating processes that come up in practice.

Typically it is assumed that players interpret data using the same learning rule

µ, so that given identical information, players hold identical beliefs. The main

departure in this paper is to allow for a set of learning rules M. For example:

Bayesian Updating with Different Models

Players observe signal realizations from a set Z. Different learning rules cor-

respond to different models for the signal-generating distribution. Let M “ tµiu,

where each learning rule µi is identified with a prior distribution πi over Θ ˆ Z8.

Given data z, the belief induced by learning rule µi is the marginal of the posterior

belief over Θ (updating from πi and z).

Case-Based Learning with Different Similarity Functions

Suppose that X Ď R is a set of attributes relevant to payoffs (e.g. physical covari-

ates of a patient seeking health insurance). Players commonly observe a sequence

of attribute vectors and the associated payoffs:

zn “ px1, θ1q, . . . , pxn, θnq.

Attribute vectors are drawn i.i.d. from a known distribution, and payoffs are deter-

mined according to an unknown mapping f ; that is, each θk “ fpxkq. The attribute

vector x˚ describing the present game is known, but the payoffs are not.

Define M to be a set of learning rules, where each learning rule corresponds

to an approach for weighting past observations. Let gi : X ˆ X Ñ R` be a

similarity function on attributes, so that gipx,x
1q describes the distance between

attributes x and x1. The predicted payoff matrix at x˚ is the weighted average
1
n

řn
k“1 θk

´

e´λgipxk,x
˚q
¯

{

´

ř

k1 e
´λgipxk1 ,x

˚q
¯

. Each µi maps zn into a degenerate

belief on the corresponding weighted average.

Fix an arbitrary setM of learning rules satisfying Assumptions 1 and 2. Even if

players observe a common dataset z, learning rules µ PM may determine different,

plausible, first-order beliefs µpzq. The set of expected payoffs induced by learning

rules from M is given by

Θpzq :“
 

Eµpzqrθs : µ PM
(

.

Throughout, I will consider these the possible payoffs given z. The main restric-

tion imposed on beliefs is the following.
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Assumption 3 (Common Inference). Let z be the realization of data. Then, all

agents have common certainty in the set of payoff matrices Θpzq.

That is, all players assign probability 1 to payoffs in Θpzq, believe with probability 1

that all other players assign probability 1 to Θpzq, and so forth.17 Notice that when

M consists of a single Bayesian learning rule, then Common Inference reduces to

the common prior assumption.

I emphasize that Common Inference is a restriction on final beliefs over Θ, and

does not directly build in any structural assumptions about use of learning rules. For

example, we can construct beliefs consistent with Common Inference by supposing

that each player i uses a different learning rule µi to form his first-order beliefs, and

these learning rules pµiqiPI are common knowledge. Alternatively, players may hold

beliefs that are induced by a convex combination of learning rules in M, and they

may also have uncertainty over which learning rules are used by other players to

form beliefs.

A key feature of Common Inference is that it permits types with common knowl-

edge disagreement: players may know that (all know that...) they hold different

first-order beliefs.18 Such types are not permitted under the common prior assump-

tion, even when we allow for private and different information (Aumann, 1976). In

this way, Common Inference represents a relaxation of the common prior assump-

tion, where the permitted extent of disagreement is governed by a fixed set of belief

updating rules.

The key question of this paper is the following: What are the restrictions on

strategic behavior that are imposed by a set of learning rulesM, a data-generating

process Z, and Common Inference?

4.2 Robust and Plausible Strategic Predictions

Below I propose concepts for the predictions that the analyst can make regarding

equilibria and rationalizable actions, when players commonly observe a (random)

dataset of size n and have beliefs obeying Common Inference.

It will be useful to write T pzq for the set of types satisfying Common Inference

when the realized data is z. Say that a prediction is “robust” if it can be made for

all player types from T pzq, and “plausible” if it can be made for some player types

from T pzq.

17This is a ∆-rationalizable set in the sense of Battigalli and Sinischalchi (2003), where ∆ “

tµpzq : µ PMu.
18For a simple example, suppose it is common knowledge that player 1 forms first-order beliefs

using µ1, and player 2 forms first-order beliefs using a different learning rule µ2.
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Robust Predictions. For every action profile a, define pNE
n
paq to be the probabil-

ity (over possible datasets zn) that play of a constitutes a Bayesian Nash equilibrium

whenever players have types in T pznq;
19 that is,

pNE
n
paq “ Pr ptzn : σ with σiptiq “ ai @ i, ti P T pznq is a BNE.uq (3)

Then, pNE
n
paq is a continuous measure of how likely it is that a is an equilibrium

when players observe n realizations. Informally, the higher pNE
n
paq is, the more

confidence an analyst should have in predicting that a is an equilibrium.

Similarly, define pR
n
pi, aiq to be the probability (over possible datasets zn) that

action ai is rationalizable for player i given any type in T pznq; that is,

pR
n
pi, aiq “ Pr ptzn : ai P S

8
i rtis @ ti P T pznquq . (4)

Again, the higher pR
n
paq is, the the more confidence an analyst should have in pre-

dicting that ai is rationalizable.

Plausible Predictions. Now, in contrast to the approach taken above, consider a

maximally permissive perspective. Define

pNEn paq “Pr ptzn : D belief-closed type space pTi, κiqiPI

s.t. each Ti Ď T pznq, and σ with σiptiq “ ai @i, ti P Ti is a BNE.uq (5)

This is the probability (over possible datasets zn) that constant play of a constitutes

a Bayesian Nash equilibrium for some (belief-closed) type space, where all player

types are from T pznq. Similarly, define

pRn pi, aiq “ Pr ptzn : ai P S
8
i rtis for some ti P T pznquq . (6)

This is the probability (over possible datasets zn) that action ai is rationalizable for

player i for some type in T pznq.

In the special case in which agents have a common prior, these definitions have

the following simple interpretation:

Example 1. (Common Prior.) Suppose that players share a common and cor-

rect prior over Θ ˆ Z8. Write µ for the learning rule that maps any sequence of

realizations zn “ pz1, . . . , znq into the induced posterior belief under the common

prior.

19The implicit type space is pTi, κiqiPI where each Ti “ T pznq. Notice that the definition of

T pznq implies that this type space is belief-closed.
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Each realization zn determines an interim game, where players all have common

certainty in the induced posterior. (Notice that the set of plausible types T pznq is

a singleton for every zn.) The common prior determines a distribution over data

sets zn, and hence a distribution over possible interim games. The probabilities

pNEn paq “ pNE
n
paq are equal, and they are the measure of size-n datasets zn (under

the common prior) with the property that action profile a is an equilibrium in

the corresponding interim game. Similarly, pRn pi, aiq “ pR
n
pi, aiq is the measure

of size-n datasets zn (under the common prior) with the property that action ai
is rationalizable for player i in the corresponding interim game. Note that the

properties that pNEn paq “ pNE
n
paq and pRn pi, aiq “ pR

n
pi, aiq are a consequence of M

being a singleton. In general, these probabilities will not be the same.

4.3 Interpretation of Model

I discuss below different interpretations of the framework described above. One

perspective is that the analyst knows the set of frameworks used by agents to learn

about a particular economic unknown, but there is randomness in the outcome of

the data. He wants to predict which actions agents might take after observing the

realized data.

Under a second interpretation, the data-generating process and rules for learning

from data produce a “natural” measure over interim types. Recall that in the

common prior setting (Example 1), the ex-ante distribution over interim types is

determined by the common prior. When players have different priors, or do not use

Bayesian updating to form beliefs, then this approach is not viable. Nevertheless,

the approach outlined in Section 4.2 produces a way to quantify which interim types

are more likely. The probabilities defined in Section 4.2 then evaluate the strength

of a prediction by the probability that players have types given which the prediction

holds.

There is, additionally, a natural measure-theoretic notion of genericity in this

framework, where a set of interim types are “generic” if this set has probability

1 under the data-generating process. This notion of genericity contrasts with the

topological notion of genericity taken in many recent works (Dekel et al., 2006;

Weinstein and Yildiz, 2007; Ely and Peski, 2011), where typicality means denseness

in a particular topology. One attractive feature of the proposed perspective is that

the probabilities defined in (3-6) provide different continuous measures of typicality.

5 Common Learning

Following Cripps et al. (2008), say that players commonly learn a distribution P if

they have asymptotic common certainty in P . Formally, for every probability p P
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r0, 1q and level of precision ε ą 0, players commonly learn P if every ε-neighborhood

of P (in the weak topology) is eventually common p-belief for all types in T pZnq.

This definition is generalized from the one used in Cripps et al. (2008), where Θ was

a finite set (equipped with the discrete measure) and P was a degenerate measure.

Definition 1 (Common Learning). Players commonly learn the distribution P if

lim
nÑ8

P pT pZnq Ď CpptP uεqq “ 1 @ p P r0, 1s, ε ą 0

where tP uε is the ε-neighborhood of P (in the weak topology).

Clearly, for common learning to occur, each individual learning rule µ PM must

eventually deliver a belief arbitrarily close to P ; that is, limnÑ8 dpµpZ
nq, P q “ 1 for

every µ PM, where d is the Prokhorov metric on ∆pΘq.20 The stronger condition

that

sup
µPM

dpµpZnq, P q Ñ 0 a.s. (7)

requires not only that beliefs induced by learning rules inM weakly converge to P ,

but that this convergence is uniform acrossM. Notice that this is a joint assumption

on the data-generating process and the set of learning rules.

The proposition below says that (7) is the only requirement for common learning:

players commonly learn P if and only if beliefs induced by learning rules in M
uniformly weakly converge to P .

Proposition 1. Players commonly learn the true distribution P if and only if (7)

holds.

When the condition in (7) is satisfied by some P , I refer to P as a limiting

common prior.

Definition 2 (Limiting Common Prior.). Say that P P ∆pΘq is a limiting common

prior if it satisfies the condition in (7).

Common learning is a strong property; for example, it is not satisfied by the

sequences of types considered in in Weinstein and Yildiz (2007), Carlsson and van

Damme (1993), and Kajii and Morris (1997).21 The reason we see it here is because

players have common certainty in the set Θpzq at any z, which translates a restric-

tion on first-order beliefs into a restriction on tail beliefs. As the quantity of data

increases, not only does the set of plausible first-order beliefs shrink (as a direct

consequence of (7)), but the set of plausible beliefs of every order shrinks uniformly

across orders. Formally, the set of types T pZnq almost surely converges to the type

with common certainty of P , where convergence is in the Hausdorff metric induced

by the uniform-weak metric (Chen et al., 2010) on the universal type space.

20Otherwise, the type that has common certainty in the belief induced by µ does not eventually

have common p-belief in small neighborhoods of P .
21The analogue of nÑ8 is to take the size of the perturbation to 0.
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6 Strategic Behavior: Asymptotics

Let us begin by considering the limiting strategic predictions that can be made when

players have commonly observed a large number of realizations. Say that predictions

are “robust to inference” if they eventually hold in all plausible interim games with

probability arbitrarily close to 1.

Definition 3. Say that the equilibrium property of action profile a is robust to

inference if pNE
n
paq Ñ 1 as n Ñ 8. Say that the rationalizability of action ai for

player i is robust to inference if pR
n
pi, aiq Ñ 1 as nÑ8.

Thus, strategic predictions are robust to inference if the analyst believes that

the prediction holds with high probability given sufficient data. Conversely, if the

prediction is not robust to inference, then there exists a constant δ ą 0 such that for

any finite quantity of data, the probability that the prediction fails for some types

consistent with Common Inference is at least δ. In this way, robustness to inference

is a minimal requirement for a prediction to not require assumption that players

have beliefs coordinated by an infinite quantity of data.

We can additionally ask when it is the case that a prediction holds for some

player types consistent with Common Inference, so long as the number of observa-

tions is sufficiently large. I define below the analogous concept of “plausibility under

inference” to capture this.

Definition 4. Say that the equilibrium property of action profile a is plausible under

inference if pNEn paq Ñ 1 as n Ñ 8. Say that the rationalizability of action ai for

player i is plausible under inference if pRn pi, aiq Ñ 1 as nÑ8.

Section 6.1 characterizes robustness and plausibility under inference for the so-

lution concept of Nash equilibrium, and Section 6.1 provides characterizations for

rationalizability. In both cases, I begin by considering general sets of learning rules,

and then turn to the special case of a limiting common prior (Assumption 2).

6.1 Equilibrium

For a given prediction of equilibrium—specifically, that some action profile a is a

Bayesian Nash equilibrium—robustness to inference is completely characterized by

whether the set of plausible payoffs is eventually contained in the following set:

Definition 5. Let ΘNE
a be the set of all payoffs θ with the property that when θ is

common knowledge, then action profile a is a Nash equilibrium.

The interior of ΘNE
a consists of all payoffs given which a is a strict Nash equilibrium,

and its boundary consists of all payoffs given which a is a weak (and not strict) Nash

equilibrium.
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Lemma 1. The equilibrium property of action profile a is robust to inference if and

only if

P
`

ΘpZnq Ď ΘNE
a

˘

Ñ 1 as nÑ8 (8)

Notice that failure of asymptotic learning (beliefs converge to an “incorrect”

distribution over payoffs), and also failure of asymptotic agreement (players disagree

even given infinite data), can both be consistent with robustness to inference. What

is necessary and sufficient is that players are eventually certain that the expected

payoffs are in ΘNE
a , know that they are all certain of this, and so forth.

To better understand the condition in (8), let us consider the special case of a

limiting common prior (Assumption 2).

Proposition 2. Suppose there is a limiting common prior P . Then, the equilibrium

property of action profile a is robust to inference if and only if a is a strict Nash

equilibrium in the incomplete information game with common prior P .

Thus, prediction of a is robust to inference if and only if a is a strict NE in the

limiting common prior game. This result recalls Monderer and Samet (1989), which

showed that strict equilibria in a complete information game are robust to approxi-

mate common certainty of payoffs; here, I consider the related exercise of weakening

common certainty in a belief P to common certainty in a (shrinking) neighborhood

of a belief P . (Note that in contrast to Monderer and Samet (1989), players are

permitted to assign probability 0 to the actual payoffs θ arbitrarily close to the

limit.)

Intuitively, under the assumption of a limiting common prior, it is eventually

approximate common certainty that the true game is nearby to the limiting common

prior game. If action profile a is a strict equilibrium in that limiting game, then

that action profile continues to be an equilibrium given common certainty in the set

of nearby payoffs. Conversely, if a is only a weak equilibrium (or not an equilibrium

at all), then no matter the number of observations, there is positive probability

(bounded below) that a is not an equilibrium. The technical condition introduced

in Assumption 2 is necessary for this latter “only if” direction; for example, if players

were permitted to have beliefs that consistently overweight the payoffs to a, then a

would be robust to inference even if it were a weak equilibrium in the limiting game.

The next results characterize the weaker condition of plausibility under inference.

First define:

Definition 6. For each player i and action profile a, let Bipai, a´iq Ď Θ be the set

of all payoff matrices given which ai is a best response to a´i.

The lemma below says that prediction of a is plausible under inference so long

as some payoff in each Bpai, a´iq is eventually plausible.
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Lemma 2. The equilibrium property of profile a is plausible under inference if and

only if

P pΘpZnq XBipai, a´iq ‰ H @ iq Ñ 1 as nÑ8 (9)

This condition is considerably weaker than the requirement that eventually

ΘpZnq
Ş

ΘNE
a ‰ H. That is, action profile a can be a plausible equilibrium even if

players agree that there it would not be played given complete information of the

true payoffs. This is demonstrated in the simple example below:

Example 2. Consider the 2-player game

l r

u x,´x 0, 0

d 0, 0 1, 1

where x P t´1, 1u. Players share a common prior that each value of x is equally

likely, and observe signals from S “ tsL, sHu, which are generated according to the

following information structure:

sL sH
x “ ´1 p 1´ p

x “ `1 1´ p p

Different learning rules µp correspond to Bayesian updating from different values of

p in the information structure above. Set M “ tµpupPP where P “
“

1
2 ´ ε,

1
2 ` ε

‰

for some ε ą 0.

For any sequence of realizations from tsL, sHu, there is a learning rule inM that

assigns higher posterior belief to x “ ´1, and a learning rule that assigns higher

posterior belief to x “ 1. Thus, it is always consistent with Common Inference

that player 1’s expected value of x is positive, but player 2’s expected value of x

is negative, and these beliefs are common knowledge. So, action profile pu, lq is a

plausible equilibrium for all sequences of signals. But in either possible state of the

world (x “ ´1 and x “ 1), the action profile pu, lq is not a Nash equilibrium in the

complete information game.

Notice however that in Example 2, the different learning rules yield increasingly

divergent beliefs as the quantity of data gets large. Assumption of a limiting common

prior rules this out; in this case, it turns out that the only surviving predictions are

Nash equilibria in the limiting game.

Proposition 3. Suppose there is a limiting common prior P . Then, the equilibrium

property of action profile a is plausible under inference if and only if a is a Nash

equilibrium in the incomplete information game with common prior P .
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Thus, under Assumption 2, the difference between the less permissive notion of

robustness to inference and the more permissive notion of plausibility under inference

grows small.

6.2 Rationalizability

Again, I begin by considering the more stringent condition of robustness to inference.

Following the previous section, define ΘR
ai to be the set of all complete information

games in which some action ai is rationalizable.

Definition 7. For each player i and action ai P Ai, let ΘR
ai be the set of all payoffs

given which action ai is rationalizable for player i.

The earlier results for equilibrium (Lemma 1 and Proposition 2) suggest the fol-

lowing parallel statements for rationalizability: (1) robustness to inference is char-

acterized by whether the set of plausible expected payoffs is eventually contained

in ΘR
ai , and (2) if there is a limiting common prior, then robustness to inference is

characterized by whether ai is strictly rationalizable in the limiting game. Neither

statement turns out to hold.

Let us begin by discussing (1). Notice that although ai is rationalizable at every

payoff in ΘR
ai , the chain of best responses rationalizing action ai can vary across the

set. The simple example below shows that even if ai is rationalizable in each of two

different games, it can fail to be rationalizable when the player has uncertainty over

which of the two payoffs will be realized. This is closely related to the well-known

fact that the set of rationalizable actions is not convex.

Example 3. Consider a two-player game. Player 1 assigns equal probability to the

following two games:

a3 a4

a1 1, 1 ´1, 0

a2 0, 1 1, 0

a3 a4

a1 ´1, 0 1, 1

a2 1, 0 0, 1

In the first game, action a3 is uniquely rationalizable action for player 2, and in the

second, action a4 is uniquely rationalizable. So player 1 believes with probability

1/2 that player 2 will choose a3, and with probability 1/2 that player 2 will choose

a4. Thus player 1’s expected payoffs are given by

a3 a4

a1 0, 1{2 0, 1{2

a2 1{2, 1{2 1{2, 1{2

and a2 is his uniquely rationalizable action. This follows even though a1 is a ratio-

nalizable action in both games.
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Thus, common certainty in ΘR
ai does not imply rationalizability of ai. In fact,

even common certainty in an arbitrarily small open set within ΘR
ai does not guarantee

rationalizability of ai (see an example of this surprising fact in Appendix B.5).22

The key reason is that the set of payoffs can span two sets of payoff functions with

different families of rationalizable actions. Actions that are rationalizable when

players perceive different, arbitrarily close, payoffs, need not be rationalizable given

any common perception of payoffs.

One way to address this is to require eventual common certainty in an open set

of payoffs, across which the chain of best responses rationalizing action ai remains

constant. This condition turns out to be unnecessarily restrictive—an action ai may

be robust to inference even if every chain of best responses rationalizing action ai
fails to survive an arbitrarily small perturbation to payoffs. This is demonstrated

in the example below.

Example 4. Consider the following complete information game

a3 a4

a1 1, 0 1, 0

a2 0, 0 0, 0

and notice that a1 is rationalizable. Moreover, since a1 is strictly dominant at

all nearby payoffs (in Euclidean distance), a1 remains rationalizable given common

certainty of a small enough neighborhood of these payoffs. But consider the following

perturbations:
a3 a4

a1 1,´ε 1, 0

a2 0,´ε 0, 0

a3 a4

a1 1, 0 1,´ε

a2 0, 0 0,´ε

Action a1 remains rationalizable in both games, but a1 is not a best reply to a3 in

the game on the left, and a1 is not a best reply to a4 in the game on the right. Thus,

there is no chain of best responses rationalizing a1 that holds on any (arbitrarily

small) neighborhood of the original payoffs. Relatedly, action a1 turns out not to

be strictly rationalizable in the original game.

Lemma 3 organizes the above observations. It says that rationalizability of an

action is robust to inference if players eventually have common certainty in some set

of payoffs, across which ai can be rationalized using the same best response chain,

and only if players eventually have common certainty in ΘR
ai .

Lemma 3. The rationalizability of action ai for player i is robust to inference if

P pΘpZnq Ď V q Ñ 1 as nÑ8 (10)

22A very nice two-player example in the concurrent work of Chen and Takahashi (2017) shows

this as well.
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for some set V , where ai can be rationalized using the same chain of best-responses

for all payoffs in V , and only if

P
`

ΘpZnq Ď ΘR
ai

˘

Ñ 1 as nÑ8. (11)

Again, to better understand these conditions, let us consider the case in which

there is a limiting common prior (Assumption 2). In this case, the sufficient con-

dition above reduces to strict rationalizability of ai in the limiting game, and the

necessary condition reduces to a property that I now introduce:

Recall that strict rationalizability can be defined as the limit of a process of

iterative elimination of actions that are never a strict best reply. It is well known

that this procedure is sensitive to the manner of elimination. Consider specifically all

the orders of elimination in which only one action is eliminated at a time. Formally,

define W 1
i :“ Ai for every player i. Then, for each k ě 2, recursively remove (at

most) one action in W k
i that is not a strict best reply to any opponent strategy

α´i P ∆
´

W k´1
´i

¯

. Let

W8
i “

č

kě1

W k
i

be the set of player i actions that survive every round of elimination, and define

W8
i to be the intersection of all sets W8

i that can be constructed in this way.

Definition 8. Say that an action ai is weakly strict-rationalizable if ai PW8
i .

Returning to the example above, we see that there are two patterns of one-at-a-

time elimination. One possibility is

a3 a4

a1 1, 0 1, 0

a2 0, 0 0, 0

ÝÑ

a3 a4

a1 1, 0

a2

in which action a2 is eliminated for player 1 and action a4 is eliminated for player

2, so that actions a1 and a3 remain. Another possibility is

a3 a4

a1 1, 0 1, 0

a2 0, 0 0, 0

ÝÑ

a3 a4

a1 1, 0

a2

in which action a2 is eliminated for player 1 and action a3 is eliminated for player

2, so that actions a1 and a4 remain. The action a1 survives both procedures; hence,

it is weakly strict-rationalizable.

Weak-strict rationalizability turns out to be the right condition because it char-

acterizes the interior of URi,ai ; that is, action ai is weakly-strict rationalizable in every

game in the interior of URi,ai (see Lemma 5 in the appendix). From this, and Lemma

3, it follows that:
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Proposition 4. Suppose there is a limiting common prior P . Then, rationalizability

of action ai for player i is robust to inference if ai is strictly rationalizable in the

incomplete information game with common prior P , and only if ai is weakly-strict

rationalizable in the incomplete information game with common prior P .

Observe that refinement is obtained despite the negative results of Weinstein

and Yildiz (2007). One way to understand this is to observe that (with probability

1) any sequence of types tn from T pZnq converges in the uniform-weak topology

(Chen et al., 2010), while the negative result in Weinstein and Yildiz (2007) is relies

on types that converge only in the (coarser) product topology; see Section 10 for

an extended discussion. Loosely speaking, the tail beliefs of types in Weinstein and

Yildiz (2007) are permitted to put high probability on payoff functions that receive

low probability at all lower orders. In the approach considered in this paper, players

have common certainty in a (shrinking) set of payoffs, so higher order beliefs are

required to have similar supports to the lower order beliefs. In fact, the sufficiency

direction of this result follows almost directly from lower hemi-continuity of strict

rationalizability in the uniform-weak topology (Chen et al., 2010), although the

necessity direction requires new arguments.

Another precedent for the sufficient result appears in Morris et al. (2012) and

Takahashi (2017), where the concept of robustly rationalizable is proposed. This

concept turns out to be (nearly) equivalent to robustness to inference.23 Finally,

the concurrent paper Chen and Takahashi (2017) provides a necessary condition

related to weak-strict rationalizability.

Turning now to plausibility of inference, for every distribution ν P ∆pΘˆA´iq,

define

BRipνq :“ argmax
aiPAi

Eνupai, a´i, θq

to be player i’s set of best replies given belief ν.

Lemma 4. Rationalizability of action ai for player i is plausible under inference if

and only if there exists such that

PpD family pRiqiPI s.t. ai P BRipνiq

for some νi P ∆pΘpZnq ˆR´iq @ iq Ñ 1 as nÑ8 (12)

Again, let us restrict to a limiting common prior (Assumption 2).

23The present setting differs from this prior work in that Θ may not be finite, and the notion of

robustness is across all types with approximate common certainty in neighborhoods of the true pa-

rameter. These differences are not crucial for the characterization of asymptotic strategic behavior,

but they do matter for the rate results in the subsequent section.
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Proposition 5. Suppose there is a limiting common prior. Then, rationalizability

of action ai for player i is robust to inference if and only if ai is rationalizable in

the incomplete information game with common prior P .

Thus with large quantities of data, we again see that the difference between the

less permissive notion of robustness to inference and the more permissive notion of

plausibility under inference is small. These concepts diverge substantially in the

next section, where we consider small quantities of data.

7 Strategic Behavior: Finite-Sample

Propositions 2 and 4 tell us that when there is a limiting common prior, and players

observe a large quantity of data, then it is largely without loss to make the simpli-

fying assumption that players share a common prior (as if having observed infinite

data). Specifically, predictions eventually hold for all plausible types only if they

hold “strictly” in the limiting common prior game, and they eventually for some

plausible types only if they hold in the limiting common prior game.

These conclusions no longer hold when the number of common observations

is small. The equilibrium (and rationalizable) sets for interim games given small n

observations need not be the same as the equilibrium (and rationalizable) sets in the

limiting game. I seek below to quantify the probability with which they differ. Here

I again emphasize the utility of pNEa (and the related measures defined in Section 4)

as continuous metrics; for example, we can ask how large pNEa is for a fixed action

profile a and number of observations n. Informally, we should have more confidence

in predictions that hold with high probability for small n, than predictions that only

hold when players commonly observe a large number of realizations.

Throughout this section, I impose the additional assumption that observations

are i.i.d. from a finite set.

Assumption 4. Z1, . . . , Zn „i.i.d. Q and take values in a finite set Z.

Robust Predictions. For every action profile a and distribution P P ∆pΘq, define

δa :“ max
 

δ : EQpθq P ΘNE
a @ Q P tP uε

(

,

where tP uε denotes the δ-neighborhood of distribution P , measured in the Prokhorov

metric. The parameter δa is the radius of the maximal neighborhood of P such that

a is a Nash equilibrium given any common prior in this neighborhood. The larger

the parameter δa is, the larger the set of (common) beliefs on which the equilibrium

a holds.
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The analogous parameter for rationalizability is this: Define δai to be the maxi-

mal value of δ such that there exists a family pRiqiPI where for all Q P tP uε, pRiqiPI
is closed under best response in the complete information game with payoffs EQpθq.
This is the maximal neighborhood of P such that ai is rationalizable (using the

same chain of best responses) given any common prior in this neighborhood.

Proposition 11 uses these parameters to lower bound pNE
n
paq and pR

n
pi, aiq for

all quantities of data n.

Proposition 6. Suppose there is a limiting common prior P . If a is a strict Nash

equilibrium in the game with common prior P , and ai is rationalizable for player i,

then

pNE
n
paq ě 1´

1

δa
E

˜

sup
µPM

dpµpZnq, P q

¸

@ n ě 1 (13)

and

pR
n
pi, aiq ě 1´

1

δai
E

˜

sup
µPM

dpµpZnq, P q

¸

@ n ě 1 (14)

where d is the Prokhorov metric on ∆pΘq.

Thus, if a is a Nash equilibrium in the limiting common prior game, then given

that players have observed n realizations, the probability that it is also a Bayesian

Nash equilibrium is at least the probability in (17) above.

Two observations are in order. First, the bounds in Proposition 11 are increasing

in the strictness of the parameters δa and δai : thus, the “stricter” the prediction,

the fewer observations are necessary for the predictions to hold. They are also

decreasing in

E

˜

sup
µPM

dpµpZnq, P q

¸

,

which is the expected distance from P to the farthest plausible belief. So the quicker

players commonly learn, the fewer the observations are necessary.

Plausible Predictions. Turning now to plausibility given n observations, define for

each action profile a the set of all sequences of data given which a is a plausible

equilibrium:

Za :“ tz : Θpzq XΘpi, aiq ‰ H @ iu

Additionally, write Q̂pznq for the empirical measure over the signal set Z that is

associated with data sequence zn. Notice that the probability pNEn paq is exactly the

probability that the realized data (of size n) is in the set Za. Finally, let

Q˚a “ argmin
Q̂PtQ̂pzq :zPZau

DpQ̂}Qq
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be the empirical measure (associated with a data set in Zna) that is closest in

Kullback-Leibler distance24 to the actual signal-generating distribution Q (see As-

sumption 4).

Similarly, for player i and action ai, define

ZRai :“ tz : D family pRiqiPI s.t. @ i P I,
ai P BRpνiq for some νi P ∆pΘpzq ˆR´iqqu

to be all datasets given which action ai is a plausible rationalizable action for player

i. Let

Q˚ai “ argmin
Q̂PtQ̂pzq :zPZRaiu

DpQ̂}Qq

be the empirical measure (associated with a data set in ZRai) that is closest in

Kullback-Leibler distance to the actual signal-generating distribution Q.

Then, application of Sanov’s theorem directly yields:

Proposition 7. Suppose there is a limiting common prior P . If a is not a strict

Nash equilibrium in the game with common prior P , and ai is not rationalizable for

player i, then for every n P Z`,

pNEn paq ď pn` 1q|Z|2´nDpQ
˚
a }Qq

and

pRn pi, aiq ď pn` 1q|Z|2´nDpQ
˚
ai
}Qq

8 Application: Data Design

So far, we have taken the data-generating process and the set of learning rules to be

exogenously determined. In practice, both public data and the way in which indi-

viduals interpret it are often influenced by external actors—for example, the federal

reserve board decides what data to release about various financial and macroeco-

nomic indicators.

The examples below illustrate how an external agent might influence strategic

behaviors within the proposed framework, either by controlling the data that players

see or the way that players interpret it. These examples focus on an interesting

special case of the proposed approach, in which the signal space can be written

as Z “ X ˆ Y , where X is a set of observable features, and Y is the space of

payoff-relevant outcomes. For example,

24The Kullback-Leibler distance from distribution q to Q is

DpQ̂}Qq “
8
ÿ

´8

Q̂pxq log
Qpxq

Q̂pxq
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• the set X might describe physical characteristics of a laptop (weight, battery

life, resolution), while Y describes quality.

• the set X might describe various macroeconomic indices (interest rates, the

consumer price index), while Θ is inflation next term.

• the set X describes features of a university (student-faculty ratio, ethnic di-

versity, graduation rate), while Θ is the value to attending the university.

Players observe a sequence

px1, y1q, . . . , pxn, ynq,

where each yi is drawn independently and distributed according to an unknown

conditional distribution P py|x “ xiq. The payoff-relevant unknown is the value of θ

at a new out-of-sample feature vector x. In problems like this, a standard approach

to inference is to estimate the unknown outcome by inferring a model φ : X Ñ Y

from the data, and evaluating φ at x. A large literature examines problems like

this, and approaches for inference of φ. The examples below focus on two canonical

cases.

Example 1 sets Y “ t0, 1u, so that the problem is one of classification: players

want to learn which values in X map to y “ 0 and which values map to y “ 1.

I introduce a third party that determines the dimensionality of X , and show that

accurate reporting of extraneous observables (an artificial increase in the dimen-

sionality of X ) can reduce the probability of coordination. Example 2 considers a

related setting in which outcomes are linearly related to a set of covariates. I show

that by reporting extraneous covariates, an external analyst can again reduce the

probability of coordination. These examples illustrate how standard notions of sta-

tistical complexity can be used to model human perception of the “ambiguity” of

data, with implications for their strategic behaviors.

8.1 Example 1: Classification

Two plaintiffs are approached by a lawyer to join their cases into a class action suit.

Their payoffs are
Join Not Join

Join y, y 0, 1
2

Not Join 1
2 , 0

1
2 ,

1
2

so that not joining yields a certain payoff of 1
2 and joining alone yields a certain

payoff of 0. If both players join, then the suit is taken to court and players receive

an unknown payoff of y P t0, 1u (interpret y “ 0 to mean loss and y “ 1 to mean

success). Is joining the suit a rationalizable action?
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For concreteness, let X “ r´c, csp, so that every suit is described by p char-

acteristics, each normalized to lie within the interval r´c, cs. Every observation

px, yq describes the characteristics and outcome of a past class action suit. Observa-

tions are drawn i.i.d. from a distribution Q on X ˆΘ with the properties that: (1)

margX Q is uniform over X ; and (2) there is some p˚ ă p such that the conditional

distribution Qp¨ |xq is a point mass on 1 if xk P r´c˚, c˚s for each k ď p˚, and it is

a point mass on 0 otherwise. Notice that only p˚ of the p characteristics matter for

the outcome of the suit.

An external agency chooses a transformation of the realized data

px1, θ1q, . . . pxn, θnq (15)

that determines what players observe. Specifically the agency chooses the number

of characteristics to report, where the agency is obligated to report each of the first

p˚ characteristics, but can in addition (truthfully) report any of the remaining p´p˚

characteristics. In the following, I will take these features to be symmetric, so that

the agency’s choice is simply an integer p P tp˚, p˚ ` 1, . . . , pu. Thus, instead of

observing (15), players observe

zn “ ppx
1
1:p, θ

1q, . . . , pxn1:p, θ
nqq, (16)

where x1:p is the truncation of vector x to its first p entries.

Players form beliefs about θ from the data in the following way. Take Φ to be

the set of all “rectangular classification rules”, of which φ˚ is a member, defined to

include every function φ : r´c, csp Ñ Θ that can be written as

φpxq “

#

1 if x P rc1, c1s ˆ ¨ ¨ ¨ ˆ rcp, cps

0 otherwise

where c1, c1, . . . , cp, cp P r´c, cs. Given data set z, let Φz be the set of all rectangular

classification rules that exactly fit the observed data. Examples are shown in the

figure below.

The data provided about the current suit is the truncated vector x˚1:p. Define

M be the set of all functions µ with the property that each µpzq has support in the

predictions made by classification rules consistent with the data: tφpx˚q, φ P Φzu.
25

Suppose joining is rationalizable for both players under complete information; that

is, indeed x˚p P rc
˚, c˚s for every p ď p˚. Then:

25The following is a Bayesian interpretation of M. The set of states of the world is Ω “ Y ˆΦˆ

Z8, so that a state consists of a value of y, a function φ, and an infinite sequence of observations

from Z. Let M be the set of all probability distributions over Y ˆ Φ, with the property that

the induced distribution over parameters in r´c, cs2p is absolutely continuous with respect to the

Lebesgue measure.

Conditional on φ, a stochastic process ψφ generates an infinite sequence of i.i.d. draws from Pφ,

28



Proposition 8. For every quantity of data n ě 1, and for both players i P t1, 2u:

(a) the probability pR
n
pi, Joinq is monotonically decreasing in the number of reported

characteristics p˚.

(b) pR
n
pi, Joinq Ñ 0 as the number of characteristics p˚ Ñ8.

Thus, if the agency wants to minimize the probability that joining is rational-

izable given n observations, it should report as many characteristics as possible

(p “ p). Moreover, if we allow the agency to report arbitrarily many characteristics

p, then pRn pi, Joinq can be made arbitrarily small for any fixed number of observa-

tions. The essential feature of this example is that players do not know which or how

many characteristics φ˚ depends on. Thus, the more characteristics are reported,

the greater the number of models that are “consistent” with the data, and as a re-

sult, the greater the ambiguity in how to interpret the data. Since rationalizability

of the action Join requires not only that players assign sufficiently high probability

to success of the class action suit (y “ 1), but also that they believe with sufficiently

high probability that the other player does the same, the dispersion in beliefs in-

troduced by the extraneous variables deters participation in the class action suit.

In practice, uncertainty caused by a lack of understanding or agreement over the

determinants of an outcome seem realistic, and provision of “too much” information

may indeed be a practical tool for preventing outcomes that require high confidence

of similar views.

8.2 Example 2: Regression

Consider the game described in Section 2, but suppose that each investment is

described by p covariates px1, . . . , xpq P Rp. Observations are pairs px1
k, . . . , x

p
k, ykq,

where

θk “ φpxkq ` εk “ β0 ` β1xk ` ¨ ¨ ¨ ` βp˚x
p˚

k ` εk, εk „ N p0, 1q

for k “ 1, . . . , n. That is, returns are a sum of a linear function of the first p˚

covariates and a Gaussian disturbance term.

The central bank reports the first p1 covariates describing each observed invest-

ment, where p1 ě p˚. Following this announcement, players form beliefs about θ

where margX Pφ is uniform over X , and the conditional distribution P p¨ |xq is a point mass on

φpxq. For every µ P M , write Pµ for the prior belief over Ω induced by µ and the signal processes

pψφqφPΦ, with the further restriction that probability 1 is assigned to the set tpθ, φ, zq : θ “ φpx˚qu.

Let pHnq
8
n“1 denote the filtration induced on Ω by datasets zn of size n. Then, every zn and

prior belief µ P M generate a posterior belief Pµpθ |Hnqpzq over Θ. Let ∆z Ď ∆pY q be the set of

all such posteriors. The set of learning rules M consists of all maps µ :
Ť8

n“1 Z
n
Ñ ∆pY q such

that µpzq P ∆z for every z. See Appendix D.2 for the argument of equivalence.
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by finding the best linear fit to the reported data and projecting the return at the

covariates describing the project, which we can denote by x˚ P Rp1 . Formally, let

β̂LS “
´

β̂LS0 , . . . , β̂LSp

¯

be the least-squares solution

β̂LS “ argmin
βPRp

n
ÿ

k“1

|yk ´ β ¨ p1 x
1
k x

2
k . . . xpkq

T |2.

and let φ̂LSpxq “ β̂LS ¨ x be the associated function. The predicted return at x˚ is

φ̂LSpx
˚q. Denote the p1 ´ αq-th confidence interval for the prediction φ̂LSpx˚q by

CIpzq.

The set of learning rules M consists of all maps µ :
Ť8
n“1Zn Ñ ∆pΘq with the

property that for every z, the belief µpzq has support in the interval CIpzq.

Proposition 9. Suppose φpx˚q ą 0. Then, for every fixed quantity of data n ě 1,

and for i P t1, 2u,

pR
n
pi, Investq ě 1´

1

|θ˚|
φpp1q

for a function φ that is monotonically increasing in the number of reported charac-

teristics p1.

Thus, if the bank wants to minimize the probability that ‘Invest’ is rationalizable

given n observations, it should announce as many extraneous covariates as possible

(p “ p). As in the previous example, the intuition is that rationalizability of the

action ‘Invest’ requires common q-belief (for sufficiently high q) that the value of

θ is positive. The greater the number of extraneous covariates reported, the larger

the variance of the least-squares prediction, and the larger the confidence interval

around this prediction. This creates a larger range of “plausible” beliefs, given

which even individuals who are optimistic about θ may nevertheless choose not to

cooperate.

9 Extensions

The following section provides brief comment on various modeling choices made in

the main framework.

9.1 Misspecification

The main results hold under a weakening of Assumption 2, which I define below:

Definition 9 ((Approximate Limiting Common Prior.). For any ε ě 0, say that

the class of learning rules M has a p1´ εq-limiting common prior P if

lim
nÑ8

sup
µPM

dpµpZnq, P q ď ε a.s.
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where d is the Prokhorov metric on ∆pΘq.

According to this definition, the class of learning rules M has a p1´ εq-limiting

common prior P if the set of induced first order beliefs converges almost surely

(in the Hausdorff distance induced by d) to an ε-neighborhood of P . Notice that

Assumption 2 is nested as the ε “ 0 case. Propositions 2 and ?? can be weakened

to show the following result. (In reading this, recall that ifM has a p1´ εq-limiting

common prior P , then it also has a p1´ε1q-limiting common prior P for every ε1 ą ε.)

Proposition 10. (a) Suppose M has a p1´ δaq-limiting common prior P . Then,

the equilibrium property of a is robust to inference if and only if a is a strict

equilibrium in the game with common prior P .

(b) SupposeM has a p1´δRaiq-limiting common prior P . Then, the rationalizability

of action ai is robust to inference if ai is strictly rationalizable in the game

with common prior P .

Thus, the main results hold even if players have heterogeneous and incorrect

beliefs even in the limit, so long as their limit beliefs are constrained within a δNEa˚

neighborhood (respectively, δR
a˚i

-neighborhood) of the degenerate belief on θ˚.

9.2 Private Data

This paper studies players who observe a common dataset, but interpret it in dif-

ferent ways. How do the main results change if players instead observe private

data? Cripps et al. (2008) have shown that if the set of signals Z is unrestricted,

then common learning may not occur even if M consists of a single learning rule.

So Proposition 1 need not hold. Moreover, Carlsson and van Damme (1993) and

Kajii and Morris (1997) (among others) have shown that strict Nash equilibria are

not robust to higher-order uncertainty about private opponent information. Thus,

Propositions 2 and 4 also will not hold without additional restrictions on beliefs.

In the simplest extension, however, we may suppose that players observe dif-

ferent datasets pziqiPI , independently drawn from the same distribution, but have

(incorrect) degenerate beliefs that all opponents have seen the same data that they

have. Then, Propositions 2 and 4 continue to hold, and the bounds in Proposition

11 can be revised as follows (where I is the number of players).

Proposition 11. Suppose there is a limiting common prior P . If a is a strict Nash

equilibrium in the game with common prior P , and ai is rationalizable for player i,

then

pNE
n
paq ě

˜

1´
1

δa
E

˜

sup
µPM

dpµpZnq, P q

¸¸I

@ n ě 1
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and

pR
n
pi, aiq ě

˜

1´
1

δai
E

˜

sup
µPM

dpµpZnq, P q

¸¸I

@ n ě 1

where d is the Prokhorov metric on ∆pΘq.

10 Related Literature

Suppose an analyst does not know the exact beliefs that players hold. Can he

be reasonably certain that the solutions in his model are close to the solutions

given the actual beliefs? Early answers to this question considered the strategic

properties of types whose beliefs were close up to order k for large k (Rubinstein,

1989; Mertens and Zamir, 1985; Brandenburger and Dekel, 1993). Several authors

have demonstrated that this notion of nearby (which corresponds to the product

topology on types) leads to surprising and counterintuitive conclusions, in particular,

even strict equilibria and strictly rationalizable actions are fragile to perturbations

(Rubinstein, 1989; Weinstein and Yildiz, 2007).

Dekel et al. (2006), Chen et al. (2010), and Chen et al. (2017) subsequently

developed and characterized finer metric topologies on types under which the desired

continuity properties hold. In particular, the uniform-weak topology proposed in

Chen et al. (2010) considers two types to be close if they have similar first-order

beliefs, attach similar probabilities to other players having similar first-order beliefs,

and so forth. Under the assumption of a limiting common prior, all types consistent

with Common Inference converge in the uniform-weak topology. Thus, the property

of robustness to inference, considered in Section 6, can be interpreted as requiring

persistence across a subset of perturbations in the uniform-weak topology.

This approach contrasts with Carlsson and van Damme (1993) and Kajii and

Morris (1997), in which—even as perturbations become vanishingly small—players

consider it possible that other players have beliefs about the unknown parameter

that are very different from their own. In particular, failures of robustness due

to standard contagion arguments do not apply in my setting.26 In addition, I do

not require that these beliefs are consistent with a common prior, thus allowing

for common knowledge disagreement. Collectively, these differences lead to rather

different robustness results.

26For example, the construction of beliefs used in Weinstein and Yildiz (2007) to show failure of

robustness (Proposition 2) relies on construction of tail beliefs that place positive probability on an

opponent having a first-order belief that implies a dominant action. A similar device is employed

in Kajii and Morris (1997) to show that robust equilibria need not exist (see the negative example

in Section 3.1). These tail beliefs are not permitted under my approach. When the quantity of

data is taken to be sufficiently large, it is common certainty (with high probability) that all players

have first-order beliefs close to the true distribution.
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Finally, the definition of robustness to inference for rationalizability (nearly)

coincides with the concept of robustly rationalizable proposed in Morris et al. (2012),

and subsequently characterized in the concurrent work of Takahashi (2017) and Chen

and Takahashi (2017). A more detailed discussion of this relationship appears in

Section 6.1 following Proposition 4.

11 Conclusion

This paper proposes and characterizes a learning-based refinement of the universal

type space. A set of “plausible” hierarchies of beliefs are defined from a common

dataset and a set of rules for extrapolating from the data. The proposed approach

is substantially more permissive than the common prior assumption, but restrictive

enough still to make predictions. As the quantity of data converges to infinity,

beliefs and behavior can be approximated by a limit complete information game.

For small quantities of data, the appropriateness of such a reduction depends on the

complexity of the problem of learning payoffs and the strictness of limit solutions.
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A Supplementary Material to Section 5

A.1 Proof of Proposition 1

Preliminaries. Let T ki “ ∆pXk´1q “ ∆pΘ ˆ T k´1
´i q denote the set of k-th order

beliefs for player i.27 Let d0
i be the Euclidean norm on Θ (see Section 2.1), and

recursively for k ě 1, define dki to be the Prokhorov distance28 on ∆
´

Θˆ T k´1
´i

¯

induced by the metric maxtd0
i , d

k´1
i u on Θˆ T k´1

´i . As in the main text, since only

symmetric type spaces are considered, player subscripts are dropped throughout.

Additionally, I use Eδ to mean the δ-neighborhood of E (where the metric should

be clear from context).

Uniform convergence implies common learning (only if): Fix any dataset z. We

can decompose the set of types T pzq into the Cartesian product
ś8
k“1H

k
z , where

H1
z “ ∆z and for each k ą 1, Hk

z is recursively defined

Hk
z “

!

tk P T k :
`

margTk´1 tk
˘

pHk´1
z q “ 1 and margΘ t

k P H1
z

)

. (17)

This is the set of k-th order beliefs of types in T pzq. Define

∆z :“ tµpzq : µ PMu

to be the set of first-order beliefs induced from learning rules in M, and

δ˚ :“ d1p∆z, P q

to be the largest distance between P and any belief in ∆z. I show below that

for every dataset z, the distance between any type t P T pzq and the type tP with

common certainty of P is upper bounded by δ˚.

Claim 1. For every k ě 1 and t P T pzq,

Hk
z Ď

!

tkP

)δ˚

:“
!

t P T : dk pt, tP q ď δ˚
)

.

Proof. Fix any t P T pzq. By construction of T pzq, the first-order belief of type t is

in the set ∆z. So it is immediate that

d1pt, tP q ď dp∆z, P q “ δ˚. (18)

27Working only with types in the universal type space, it is possible to identify each Xk with its

first and last coordinates, since all intermediate information is redundant.
28Recall that the Levy-Prokhorov distance ρ between measures on metric space pX, dq is defined

ρpµ, µ1q “ inf
!

δ ą 0 : µpEq ď µ1
´

Eδ
¯

` δ for each measurable E Ď X
)

for all µ, µ1 P ∆pXq, where Eδ “ tx P X : infx1PE dpx, x
1
q ă δu.
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Now suppose Hk
z Ď

 

tkP
(δ˚

. Consider any measurable set E Ď T k. If tkP P E, then

tk`1
P pEq “ 1 by definition of tP . Also

tk`1
´

Eδ
˚
¯

ě tk`1

ˆ

!

tkP

)δ˚
˙

ě tk`1
´

Hk
z

¯

“ 1,

using (19) in the final equality and the assumption that Hk
z Ď tt

k
P u

δ˚ in the inequal-

ity preceding it. So

tk`1
P pEq ď tk`1

´

Eδ
˚
¯

` δ˚. (19)

If tkP R E, then tk`1
P pEq “ 0 (again by definition of tP ), so (21) follows trivially.

Thus tk`1
P pEq ď tk`1pEδ

˚

q ` δ˚ for every measurable E Ď T k. Using this and (20),

dk`1pt, tP q ď δ˚ (20)

as desired.

Now consider any ε ě 0 and p P r0, 1q and choose δ˚ ď minpε, 1´ pq. I will show

that tP uε is common p-belief for all types in ttP u
δ˚ . Fix an arbitrary t P ttP u

δ˚ .

Trivially,

margΘ t P tP u
δ˚ Ď tP uε

Moreover,

t1ptP uεq ě t1ptP uδ
˚

q ě 1´ δ˚ ě p

where the second inequality follows from d1pt, tP q ď δ˚.29 Thus, every type in ttP u
δ˚

assigns at least probability p to the event that every player has a first-order belief in

tP uε, or ttP u
δ˚ Ď BpptP uεq. Now suppose that ttP u

δ˚ Ď rBpskptP uεq. By a similar

argument,

tk`1prBpskptP uεqq ě tk`1pttP u
δ˚q ě tk`1pttkP u

δ˚q ě 1´ δ˚ ě p,

So also ttP u
δ˚ Ď rBpsk`1ptP uεq. Thus, ttP u

δ˚ Ď rBpskptP uεq for every order k, and

if follows that ttP u
δ˚ Ď CpptP uεq as desired.

Under condition (7), the set

!

z : lim
nÑ8

dp∆zn , P q “ 0
)

has measure 1. Thus, for every ε ą 0 and p P r0, 1s, there is a measure-1 set

of sequences z such that tP uε is common p-belief for all types in T pz1:nq for n

sufficiently large.

29By definition, t1P ptP uq “ 1, and since d1pt, tP q ď δ˚, necessarily t1P ptP uq ď d1ptP u
δ˚
q ` δ˚,

which implies that d1ptP u
δ˚
q ě 1´ δ˚.
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Common learning implies uniform convergence (if): Suppose condition (7) is not

satisfied; then, there exists some ε ą 0 such that

Z˚ :“

#

z | lim
nÑ8

sup
µPM

dpµpz1:nq, P q ď ε

+

has positive measure. Choose any ε ă ε. Then, for all z P Z˚, the set tP uε fails to

eventually common p-belief for all p P r0, 1s and for all types in T pzq. So common

learning fails for some types in T pZnq with positive probability, for n arbitrarily

large.

B Supplementary Material to Section 6

Below, I use σa to denote the strategy profile in which every player i’s strategy is

constant on the action ai. This notation assumes implicitly that players have type

sets pTiqiPI , and formally I mean that σiptiq “ ai for every ti P Ti and player i.

The dependence on the type space is dropped throughout for notational simplicity.

When data zn is realized, assume always that Ti “ T pznq for each player i.

B.1 Proof of Lemma 1

Consider the event in which the set of plausible payoffs satisfies Θpznq Ď ΘNE
a .

Since every player’s first-order belief has support in ΘNE
a , every player i perceives

ai to be a best reply to a´i. Thus, the strategy profile σa is a Bayesian Nash

equilibrium. This establishes that Θpznq Ď ΘNE
a is sufficient for σa to be a BNE, so

the assumption in (8) directly implies that pNE
n
paq Ñ 1.

For the other direction, suppose that for all n sufficiently large, the measure of

datasets
 

zn : Θpznq Ę ΘNE
a

(

is at least some constant δ ą 0 (independent of n). Conditioning on the event that

Θpznq Ę ΘNE
a , there is some plausible payoff matrix θ R ΘNE

a . In this game θ, there

exists some player i and action a1i P Ai satisfying uipai, a´i, θq ă uipa
1
i, a´i, θq. So,

action ai is not a best reply against a´i when player i has common certainty in θ.

But since θ P Θpznq, the type with common certainty in θ is in the set T pznq. Thus,

if Θpznq Ę ΘNE
a , then the strategy profile σa fails to be a BNE for some plausible

type. Since the probability of the event Θpznq Ę ΘNE
a is at least δ, we have that

pNE
n
paq Û 1, concluding the proof.

B.2 Proof of Proposition 2

Suppose a is a strict Nash equilibrium in game with common prior P . Then, the

expected payoff matrix EP pθq is in the interior of ΘNE
a . Moreover, by assumption
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supµPM dpµpZnq, P q Ñ 0 a.s., so also

sup
µPM

}Eµpznqrθs ´ EP rθs}8 Ñ 0 a.s.

Thus, the set Θpznq “ tEµpznqpθq : µ P Mu converges a.s. to tEP pθqu in the

Hausdorff metric induced by }¨}8. This means that Θpznq is almost surely contained

in ΘNE
a and the first part of the corollary directly follows from Proposition 1.

Now suppose that a is not a strict NE in the game with common prior P , so that

EP pθq R IntpΘNE
a q. By assumption, for every n sufficiently large, there is a positive

measure of realizations zn given which EP pθq is not an extremal point in Θpznq.

Combining this with the arguments above, the probability that Θpznq contains some

payoff matrix θ P ΘNE
a is bounded away from 0. Again apply Proposition 1 and we

are done.

B.3 Proof of Lemma 2

Consider the event in which the set of plausible payoffs Θpznq has nonempty inter-

section with each Bipai, a´iq. Let each player i have common certainty in a payoff

matrix θ P Bipai, a´iq. Then ai is a best response to a´i for each player i given his

type. So the probability that ΘpznqXBipai, a´iq for each i is a lower bound on pNE
a

,

so that the condition in (9) directly implies pNE
a

Ñ 1.

Conversely, suppose that ΘpznqXBipai, a´iq “ H for some player i. Then, there

is no plausible payoff matrix θ P Bipai, a´iq, so player i cannot perceive ai to be a

best reply to a´i given his beliefs. Thus if (9) does not hold, then pNE
a

Û 1.

B.4 Proof of Proposition 2

Suppose there is a limiting common prior P . Then, Θpznq Ñ tEP pθqu in the Haus-

dorff metric. Under condition (9), necessarily EP pθq P Bipai, a´iq for every i, im-

plying that a is a Nash equilibrium in the limiting game with common prior P .

Conversely, suppose that a is not a Nash equilibrium in the limiting game with

common prior P . Then, there is some player i for whom EP pθq R Bipai, a´iq. This

further implies that

tEP pθquε Ę Bipai, a´iq for some ε ą 0

where tEP pθquε is the ε-neighborhood of the payoff matrix EP pθq. Since ΘpZnq Ď

EP pθq with probability arbitrarily close to 1 for n sufficiently large, it follows that

condition (9) does not hold.
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B.5 Example

Consider the following four player game. Players 1 and 2 choose between actions in

ta, bu, and player 3 chooses between matrices from tl, ru. The expected payoffs for

players 1-3 are given (in order) by:

a b

a 1, 1, 0 0, 0, 0

b 0, 0, 0 0, 0, 0

a b

a 0, 0, 0 0, 0, 0

b 0, 0, 0 1, 1, 0

(21)

plq prq

A fourth player chooses between tMatch, Mismatchu, where his action is not rel-

evant to the other players’ payoffs. Player 4 receives a payoff of 1 from Match if

players 2 and 3 choose the same action (both choose a or both choose b), and he

receives 0 otherwise. He receives a payoff of 1 from Mismatch if players 2 and 3

choose different actions, and 0 otherwise.

In every game with payoffs sufficiently close30 to those above, Match is ratio-

nalizable for player 4, because one (or both of) actions a and b is simultaneously

rationalizable for player 2 and 3.31 Nevertheless, I will show that Match fails to be

rationalizable for a sequence of types with common certainty in increasingly small

neighborhoods of the payoffs described above. The basic idea is that player 4 can be-

lieve that a is uniquely rationalizable for player 1, while b is uniquely rationalizable

for player 2.

To see this, consider the following two perturbed versions of the payoff matrix

above where ε ą 0:

a b

a 1, 1, 0 0, 0, 0

b 0, 0, 0 ´ε, 0, 0

a b

a 0, 0,´ε 0, 0,´ε

b 0, 0,´ε 1, 1,´ε

(22)

plq prq

and
a b

a 1, 1,´ε 0, 0,´ε

b 0, 0,´ε 0, 0,´ε

a b

a ´ε, 0, 0 0, 0, 0

b 0, 0, 0 1, 1, 0

(23)

plq prq

30Distance is measured in the Euclidean metric.
31If neither l nor r are strictly dominated for Player 1, then all actions are rationalizable for

player 1-3, and if either l or r is strictly dominated for player 1, then one of the following will

be a rationalizable family for player 1-3: tlu ˆ tau ˆ tau, tlu ˆ ta, bu ˆ ta, bu, tru ˆ tbu ˆ tbu, or

tru ˆ ta, bu ˆ ta, bu.
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If player 1 has common certainty in the payoffs in (24), then a is his uniquely

rationalizable action: r is strictly dominated by l for player 4, and in the surviving

game, b is strictly dominated by a for player 1. By a similar argument, if player 2

has common certainty in the payoffs in (25), then b is his uniquely rationalizable

action. These statements hold for ε arbitrarily small. Construct a sequence of types

tε, where each type tε has common certainty that player 1 has common certainty in

(24) and player 2 has common certainty in (25). Player 4 of type tε has only one

rationalizable action, Mismatch. Take εÑ 0 and the desired conclusion obtains.

B.6 Proof of Lemma 3

To show sufficiency of the condition in (10), suppose that for all payoffs in the set V ,

action ai is rationalizable using the same chain of best responses. Then there exists a

family pRjqjPI closed under strict best reply for all games in V , where action ai P Ri.

Clearly these relations are preserved when all players have first-order beliefs with

support in V . Thus, for any sequence of types pt1, . . . , tIq with common certainty

in V , there exists a family of sets Rj Ď Aj where every action aj P Rj is a best

reply to a distribution π P ∆pΘ ˆ T´j ˆ A´jq satisfying margΘˆT´j π “ gptjq and

πpa´j P R´jrt´jsq “ 1, and also ai P Ri. The desired conclusion that action ai is

rationalizable for player i thus follows from the following result from Dekel et al.

(2007):

Proposition 12 (Dekel et al. (2007)). Fix any type profile ptjqjPI . Consider any

family of sets Rj Ď Aj such that every action aj P Rj is a best reply to a distribution

π P ∆pΘˆT´j ˆA´jq that satisfies margΘˆT´j π “ κjptjq and πpa´j P R´jrt´jsq “

1. Then, Rj Ď S8j rtjs for every player j.

The condition in (10) thus guarantees that pR
n
paiq Ñ 1, so rationalizability of action

ai is robust to inference.

To show necessity of the condition in (11), consider the event in which data zn
is realized and Θpznq Ę ΘR

ai . Then, there is a plausible payoff matrix θ R ΘR
ai , and a

plausible belief with common certainty in θ. Clearly action ai is not rationalizable

for player i with this belief, so we are done.

B.7 Proof of Proposition 4

Suppose ai is strictly rationalizable in the game θ. Then, there exists a family

pRjqjPI with the property that each Rj Ď Aj , action ai P Ai, and for every player i,

each action aj P Rj is a strict best response to some distribution over R´j .

Players will eventually have common certainty of the payoffs in ΘR
ai only if the

limiting game θ is in the interior of ΘR
ai . Next I show that θ is in the interior of ΘR

ai

only if ai is weakly strict-rationalizable in the limiting game θ. This follows from
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the stronger result below, which says that weak strict rationalizability characterizes

the interior of ΘR
ai .

Lemma 5. θ P Int
`

ΘR
ai

˘

if and only if ai is weakly strict-rationalizable in the

complete information game with payoffs θ.

Proof. If: Suppose the game θ is not in the interior of ΘR
ai . There must then exist

a sequence θn Ñ θ (in the sup-metric), where for large n, the game θn is also not in

the interior of ΘR
ai . Thus in each late game θn, there is an order of elimination of

strictly dominated strategies that removes ai. Moreover, since action sets are finite,

there is a finite number of possible such orders of elimination. This implies existence

of a subsequence along which the same order of iterated elimination of strategies

removes ai. At the limiting payoffs θ, action ai must fail to survive elimination

of weakly dominated strategies along this order, and is therefore not weakly strict-

rationalizable.

Only if: Suppose ai is not weakly strict-rationalizable. Then, there exists a

sequence of sets
´

W k
j

¯

kě1
for every player j satisfying the recursive description in

Section 6.2, such that ai R W
K
i for some K ă 8. To show that θ is not in the

interior of ΘR
ai , I construct a sequence of payoff functions θn with θn Ñ θ such that

ai is not rationalizable in any late game along this sequence.

For every n ě 1, construct the payoff function un according to the following

procedure. First, for every player j, let θn,0 “ θ. Then, for every l ě 1, define θn,l

such that

ujpaj , a´j , θ
n,lq “

#

ujpaj , a´j , θ
n,l´1q ` ε{n @ aj PW

l
j , a´j P A´j

ujpaj , a´j , θ
n,l´1q @ aj RW

l
j , a´j P A´j

That is, we iteratively increase the payoffs of the surviving strategies at each round

of elimination (according to pW k
j qkě1) by ε{n. Finally, let θn “ θn,K .

I claim that ai is not rationalizable in any complete information game θn, when n

is sufficiently large. Let pSk,nj qkě1 be the sets of player j actions surviving k rounds

of iterated elimination of strictly dominated strategies in game θn. Define N :“ εK
γ ,

where

γ “
1

2
min
i

min
aiPAi

|uipai, a´iq ´ max
a1i‰ai

uipa
1
i, aiq|.

I will show that Sk,nj “W k
j for all k and every player j in the game θn where n ě N .

Claim 2. Fix any game θn where n ě N . If aj is a best reply to any α´j in game

θ, then it is also a strict best reply to α´j in game θn.
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Proof. Define a˚j “ argmaxa1j‰aj upa
1
j , a´j , θ

nq. Then,

ujpaj , a´j , θ
nq´ujpa

˚
j , a´j , θ

nq

“ ujpaj , a´j , θ
nq ´ ujpaj , a´j , θq

` ujpaj , a´j , θq ´ ujpa
˚
j , a´j , θq

` ujpa
˚
j , a´j , θq ´ ujpa

˚
j , a´j , θ

nq

ě ´pεKq{n` 2γ ´ pεKq{n

“ 2γ ´ p2εKq{N ą 0

using in the last line that n ą N .

Proceed by induction. Trivially, S0,n
j “ W 0

j “ Aj for every j and n. Suppose

Sk,nj “ W k
j for every player j, game n ě N , and round k ď L. Now consider any

action aj P S
L,n
j . If aj is a strict best response to some strategy α´j P ∆pSk,n´j q,

then aj P W
k`1
j , and by Claim 2 , also aj P S

k`1,n
j when n ą N . Suppose aj is

weak best response to any α´j P ∆pSk,n´j q. Then, if aj P W
k`1
j , action aj is a strict

best response to a´j under un, so aj P S
k`1,n
j . Otherwise, if aj R W

k`1
j , then there

exists some a1j P W
k`1
j such that unj pa

1
j , α´jq ą unj paj , α´jq, so also aj R S

k`1,n
j .

No other actions survive to either W k`1
j or Sk`1,n

j , so Sk`1,n
j “ W k`1

j for n ě N .

Therefore Sk,nj “ W k
j for every k and n ě N , and in particular SK,nj “ WK

j for

n ě N . Since aj R W
K
j , also aj R S

8,n
j for n sufficiently large, as desired. Finally,

clearly by construction θn Ñ θ. So u R Int
´

UR
a˚i

¯

, as desired.

B.8 Proof of Lemma 4

Consider the event in which there is a family pRiqiPI such that ai P BRipνq for some

belief νi P ∆pΘpznqˆR´iq for each player i. Suppose players have common certainty

that each player i’s first-order belief is margΘ νi. Then, action ai is rationalizable

for player i, so the condition in (12) implies pR
n
pi, aiq Ñ 0 as desired.

Conversely, suppose that ai is rationalizable for player i of type ti P T pznq. By

definition of rationalizability, there exists a family of sets Rj Ď Aj such that every

action aj P Rj is a best reply to a distribution π P ∆pΘˆ T´j ˆA´jq that satisfies

margΘˆT´j π “ κptjq, and πpa´j P R´jrt´jsq “ 1; moreover, since ti P T pznq by

assumption, we have that margT´i π assigns probability 1 to the event that each

tj P T pznq. Now let each νi “ margΘˆA´j ti. Since the types in T pznq have common

certainty in Θpznq, we have that νi P ∆pΘpznqˆR´iq as desired. Thus, the condition

in (12) is necessary for rationalizability of ai to be plausible under inference.
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B.9 Proof of Proposition 5

This follows directly from Lemma 4, noting that expected payoffs are continuous in

first-order beliefs (with respect to the Prokhorov metric) on a compact set.

C Supplementary Material to Section 7

C.1 Proof of Proposition 11

(a) To simplify notation, set δ :“ δNEa . Clearly, the expected payoff matrix EQpθq P

ΘNE
a for every distribution Q P BδpP q. Applying Lemma 1, if µpznq P BδpP q for

every µ PM, then the strategy profile σa (as defined in Appendix B) is a Bayesian

Nash equilibrium. Write Pn for the induced measure over n-length sequences in Zn.

Then,

pNE
n pa˚q ě Pn ptzn : µpznq P BδpP q @ µ PMuq

“ Pn

˜#

zn : sup
µPM

dpµpznq, P q ď δ

+¸

“ 1´ Pn

˜#

zn : sup
µPM

dpµpznq ´ P q ą δ

+¸

ě 1´
1

δ
EPn

˜

sup
µPM

dpµpznq, P q

¸

using Markov’s inequality in the final line.

(b) To simplify notation, set δ :“ δR
a˚i

. Since ai is strictly rationalizable for player

i, δ ě 0. Set V “ BδpP q and apply Lemma 3 to conclude that ai is rationalizable

for any type with common certainty in the set

tEQpθq : Q P BδpP qu.

So if µpznq P BδpP q for every µ PM, then the strategy ai is rationalizable for all

plausible types of player i. This allows us to construct the lower bound

pRn paiq ě Pn ptzn : µpznq P BδpP q @ µ PMuq

ě 1´
1

δ
EPn

˜

sup
µPM

dpµpznq, P q

¸

as in part (a).
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D Supplementary Material to Section 8

D.1 Proof of Proposition 8

The argument is for player 1; the case for player 2 follows identically. For every

dataset zn “ tpxk, yku
n
k“1, define

Θpznq “ tφpx
˚q : φpxkq “ yk @ k “ 1, . . . nu

and let Tzn be the set of hierarchies of belief with common certainty in Θpznq. First,

I will show that ‘Join’ is rationalizable for all types in Tzn if and only if Θpznq “ t1u.

Suppose towards contradiction that Θpznq ‰ t1u so that 0 P Θpznq; then, the set

Tzn includes the type with common certainty in θ “ 0, but Join is not rationalizable

for player 1 of this type.

In the other direction, suppose Θpznq “ t1u. Then, Tzn is a singleton set consist-

ing only of the type with common certainty in θ “ 1. Since Invest is rationalizable

for player 1 of this type, it trivially follows that Invest is rationalizable for every

type in Tzn .

Now, observe that Θpznq “ t1u if and only if every rectangular classification

rule φ that exactly fits the data predicts φpx˚q “ 1. We can reduce this problem

to whether the smallest hyper-rectangle that contains every observed vector xk also

contains x˚. Specifically, the probability pRn pi, Joinq is equal to the probability that

on every dimension k,

D observations pxi, 1q and pxj , 1q such that xik ă x˚k and xjk ą x˚k, (24)

that is, a “successful” observation lies on either side of x˚ in dimension k.

If k P t1, . . . , p˚u, then (26) is satisfied on dimension k only if some xi satisfying

xki P r´c
1,x˚kq, and also some xj satisfying xjk P px

˚
k, c

1s, are sampled. Since by

assumption x˚k P p´c, c
1q, the probability that this occurs is

1´

„ˆ

2c´ c1 ´ x˚k
2c

˙n

`

ˆ

2c´ c1 ` x˚k
2c

˙n

´

ˆ

c´ c1

2c

˙n

:“ q.

If k P tp˚` 1, . . . , pu, then (26) is satisfied on dimension k only if some xi satisfying

xki ă x˚k is sampled, and additionally some xj satisfying xjk ą x˚k is sampled. The

probability that this occurs is

1´

ˆ

c´ x˚k
2c

˙n

´

ˆ

x˚k ` c

2c

˙n

:“ r.

Now, observe that realizations of characteristics are independent across dimensions.

So the probability that (26) is satisfied on every dimension is

pR
n
pi, Joinq “ qp

˚

rp´p
˚

.

Since r ă 1, pR
n
pi, Joinq is strictly and monotonically decreasing in p, as desired.
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D.2 Extended Discussion of Footnote 25.

Write z “ pxk, φpxkqq
n
k“1. I will show that there exists a belief ν P ∆z such that

Join is strictly dominated for player 1 with first-order belief ν if and only if there

exists some φ P Φ such that

φpxkq “ θk for every k “ 1, . . . , n,

and moreover, φpx˚q “ 0.

Suppose there exists some φ P Φ satisfying the conditions above. Consider any

prior belief µ with µpφq ą 1
2 . Then, the posterior belief induced by prior µ and the

data z assigns at least probability 1
2 to φ, and hence at least probability 1

2 to θ “ 0.

Thus, there exists ν P ∆z with νpθ “ 0q ą 1
2 , and Join is strictly dominated for

either player with this first order belief.

In the other direction, suppose towards contradiction that there do not exist any

functions φ P Φ satisfying the conditions above. Then, for any prior belief µ, the

posterior given data z must put probability 1 on functions φ for which φpx˚q “ 1.

Thus, there does not exist a belief ν P ∆z such that Join is strictly dominated for

player 1 with first-order belief ν.

D.3 Proof of Proposition 9

Fix an arbitrary p1 ą p˚ and write β̂ for the OLS estimate of coefficients in the

regression model

y “ β0 ` β1x1 ` ¨ ¨ ¨ ` βp1xp1

and β̃ for the OLS estimate of coefficients in the regression model

y “ β0 ` β1x1 ` ¨ ¨ ¨ ` βp1xp1 ` βp1`1xp1`1.

Claim 3. For any vector u “ pw zq where w P R1ˆp1 and z P R,

Var
´

wβ̂
¯

ě Var
´

uβ̃
¯

.32 (25)

Proof. Write X for the n ˆ p matrix stacking row vectors pxi1, . . . ,x
i
p1q, where i P

t1, . . . , nu, and xp1`1 for the n ˆ 1 column vector of observations xip1`1. Write

U “ pX xp1`1q for the concatenation of these two matrices. Finally, let y be the

nˆ 1 column vector of outcomes. Then,

β̂ “ pX 1Xq´1X 1y and β̃ “ pU 1Uq´1U 1y.

32Iosif Pinelis contributed to this proof.
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Observe that

Varpwβ̂q “ VarpwpX 1Xq´1X 1yq

“ VarpwpX 1Xq´1X 1pXβ ` εqq

“ VarpwpX 1Xq´1X 1εqq

“ σ2pwpX 1Xq´1X 1qpwpX 1Xq´1X 1q1

“ σ2wpX 1Xq´1w1

and similar manipulations yield that

Varpuβ̃q “ σ2upU 1Uq´1u1.

Further define R “ pU 1Uq´1 and

Q “

«

pX 1Xq´1 OK1ˆK2

OK2ˆK1 OK2ˆK2

ff

.

where each Okˆk1 is a zero matrix of size kˆ k1. The, the inequality in (27) holds if

and only if the matrix

∆ :“ R´Q “

«

X 1X X 1Z

Z 1X Z 1Z

ff´1

´

«

pX 1Xq´1 OK1ˆK2

OK2ˆK1 OK2ˆK2

ff

is positive semidefinite. To show this, write
˜

U V

V 1 T

¸

“

˜

X 1X X 1Z

Z 1X Z 1Z

¸´1

.

From properties of block matrix inversion,

V “ ´A´1BT

U “ A´1 `A´1BTB1A´1

T “ pD ´B1A´1Bq´1

where A :“ X 1X, B :“ X 1Z, D “ Z 1Z.

Now consider any row vector pc dq. Algebraic manipulations yield

pc dq ∆

˜

c

d

¸

“ pc dq

˜

U ´A V

V 1 T

¸˜

c

d

¸

“ pB1A´1x´ dq1T pB1A´1x´ dq ě 0

using in the last inequality that T is positive definite (as a diagonal block in a

positive definite matrix). Since this holds for arbitrary pc dq, we have that ∆ is

positive semidefinite as desired.
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