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Abstract 

A common finding in first-price sealed bid auction is that bidders bid over the risk neutral 

Nash equilibrium prediction. While this behaviour is generally considered to be due to 

risk aversion, a growing number of papers show that an additional explanation could also 

play a role: loss aversion. In this paper, we design a payback scheme in first-price auctions 

where loss aversion can be tested directly. In this payback scheme, before the auction 

starts, the bidders are given a fixed amount of money to bid. Only the winner keeps the 

money and the losers need to pay the money back to the seller. We provide and compare 

the risk aversion and loss aversion equilibrium bidding models and revenue in first-price 

auctions in two cases: with and without the payback scheme. The model predicts that the 

risk neutrality and loss neutrality play the same role in bidding strategy. The scheme can 

increase the seller’s revenue only if the bidders are loss averse. In a series of experiments, 

we compare the revenue and efficiency of these two designs. We find that, in terms of 

revenue, the payback scheme can generate more revenue only if the money given to the 

bidders is smaller than a critical value. However, the payback scheme has no influence 

on efficiency. Moreover, our design also allows us to identify the stability of risk 

preferences and loss aversion attitudes within bidders by comparing measures obtained 

from two institutions: first-price auctions and lotteries. The results suggest that elicited 

preferences are not stable across different institutions.  

 

JEL classification: D44, D47, C9   
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1 Introduction 
 

First-price sealed bid auction, as one of the four primary auction types (the other three are 

English, Dutch, and second-price auction) used to allocate items, is widely adopted in the 

field. The bidding rule is easily understood: The bidders write their bids for the item and 

deliver them to the auctioneer; the auctioneer determines the highest bidder, and the 

highest bidder gets the item for a price equal to his own bid. There are two forms of 

application for first-price auctions. The first is that the bidders are ‘buyers’, and the 

highest bidder wins the auction; the other is the bidders are ‘suppliers’ (i.e. construction 

contracts as in Vickrey, 1961), and the lowest bidder wins. In this paper, we focus on 

analysing the first-price sealed bid auction with independent private value bidders. For 

independent private value (IPV) auctions, each bidder knows the value of the item to 

himself and the distribution from which the bidders’ valuations are independently drawn.     

Vickrey (1961) was the first to apply game theory to build the theoretical model for 

independent private value actions. By assuming risk neutral bidders, he derived the 

unique risk neutral Nash equilibrium (RNNE) bid functions for first-price and second-

price auctions given that the private values are drawn from a uniform distribution. 

Furthermore, he demonstrated that the first-price auction is strategically equivalent to the 

Dutch auction, and pointed out that the second-price auction (Vickrey auction) is 

equivalent to the conventional English auction.  

However, overbidding in first-price auctions with independent private values is consistent 

with experimental findings which suggest that bidders consistently bid above the RNNE 

prediction (CSW, 1982; Kagel & Roth, 1995; Kagel & Levin; 2011). This overbidding 

anomaly was initially explained by the constant relative risk aversion model - CRRA 

(CSW, 1988). The intuition behind this is that the subject prefers a sure gain by submitting 
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a higher bid to a risky but potentially greater gain with a lower bid. However, as 

mentioned by Kagel and Roth (1995, p. 525), ‘risk aversion is one element, but far from 

the only element generating bidding above the RNNE’, many alternative behavioural 

models also give explanations for this anomaly.    

Goeree, Holt and Palfrey (2002) compare bidders’ behaviour with a two-bidder market 

in two first-price private value auction treatments (low and high private values with a 

group of six discrete values in each). The treatments have the same RNNE bid, but differ 

in the curvature of the loss function. Overbidding is observed for both treatments and is 

more common in the high value treatment as conjectured. They find that the quantal 

response equilibrium (QRE) model with risk aversion fits the bidding data well, whereas 

the ‘pure joy of winning’ model is reasonable, but does significantly worse.1          

Dorsey and Razzolini (2003) study the bidding behaviour in two equivalent environments: 

the first-price private value auction, and the lottery choice. In the auction experiment, 

each bidder competes against three simulated bidders who use the RNNE bidding strategy. 

With regards to the first-price auction, there are two treatments - a baseline treatment and 

one in which each individual is provided the probability of winning with a particular bid, 

after which he can either submit or revise the bid. By examining the bidding behaviour, 

they find that showing the subjects the probability of winning the auction causes the bids 

at high private values to become less aggressive and closer to the RNNE bids, thus 

suggesting that the misperception of the probabilities of winning plays some role in 

overbidding.  

Filiz and Ozbay (2007) introduce regret theory, which incorporates the payoffs from the 

forgone alternatives in the expected utility function to explain overbidding. The study 

                                                           
1 Cox, Smith, and Walker (1988) also incorporate ‘Joy of winning’ in their CRRA model. 
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implements a series of one-shot first-price auction experiments in order to analyse the 

impact of anticipated loser and winner regret in first-price auctions using a between-

subject design. Choosing a one-shot game instead of the typical repeated rounds game 

rules out the learning effect. There are three treatments based on what information is 

revealed to all subjects at the end of the auction - that is, the winning bid (loser regret), 

the second highest bid (winner regret), and no information feedback. They find that 

subjects do not seem to anticipate winner regret, as the estimated slope of the bid function 

(0.77) is not significantly different from that in the no feedback treatment (0.79), whereas 

they do identify anticipated loser regret, as the estimated slope of the bid function is 

significantly higher under this condition (0.87).     

So far, the explanations discussed are all based on the expected utility framework. 

Another strand of literature considers the endogenous reference dependence (introduced 

by Koszegi & Rabin, 2006) to analyse standard auctions, such as Lange and Ratan (2010). 

They develop the Koszegi-Rabin framework in first- and second-price auctions and find 

an additional explanation - loss aversion also leads to overbidding in induced private 

value first-price auctions.2 For the standard first-price auction, there is no monetary loss 

for the bidders since the payoff for the losers is zero; they fail to buy the item but also do 

not pay at all. As a result, the ‘loss’ actually occurs when the bidder expects to win but 

loses the auction. Naturally, we consider what might happen if we come up with an 

auction scheme in the first-price auction in which the losers really lose some money. 

Would such a scheme generate even stronger overbidding? If so, we also want to know 

whether it will enhance the seller’s revenue, since maximising such revenue is one major 

goal of an auction design.  

                                                           
2 However, loss aversion cannot be transferred to explain the overbidding in the field first-price private 

value auctions. 
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Therefore, we come up with a new and simple device which permits us to test the above 

conjectures. This device is called ‘payback’, in which each bidder receives an initial 

capital balance before the auction starts and can use the money when submitting his bid. 

However, after the highest bid has been announced, only the winner can keep the initial 

capital balance whereas all the losers need to ‘pay back’ the initial capital balance to the 

seller. Thus, within this scheme, we stimulate the losers facing a ‘loss’ relative to the 

situation in which they receive the initial capital balance.  

Loss aversion would arguably play a role in this scheme. Kahneman and Tversky (1979) 

first formulated the concept of loss aversion which before was widely argued in 

psychology. A central result of loss aversion is that the people are much more sensitive 

to potential losses than potential gains. The phenomenon of loss aversion is well 

established in the experimental literature, and it is widely observed in both risky and 

riskless choice decisions (Rabin, 2000; Fehr & Goette, 2007; Kahneman, Knetsch, & 

Thaler, 1990).  

Much of the research relevant to loss aversion also lies within neuroeconomics (Tom et 

al., 2007; Delgado et al., 2008). Anticipated or actual losses may cause individuals to 

experience negative emotions leading to loss aversion. A joint paper by cognitive 

neuroscientists and economists (Delgado et al., 2008) is closely relevant to this study. 

This novel paper provides insight into the neural circuitry of experimental auctions and 

uses such insight to understand overbidding. They design three treatments: baseline, 

‘loss-frame’ which emphasises loss, and ‘bonus-frame’, which emphasises bonus (or 

gain). Overall, they find a stronger tendency to overbid in the ‘loss-frame’ treatment. Our 

research exploits this stronger tendency to overbid in ‘loss-frame’ auctions to potentially 

increase the seller’s revenue. We also provide the Nash equilibrium bidding strategies 

under two assumptions for bidders: risk aversion and loss aversion. This allows us to 
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obtain a hypothesis that the seller’s revenue should be increased with the payback scheme 

if the subjects are loss averse.    

In this paper, we conduct a series of first-price private value auctions with and without 

the payback scheme using a within-subject design, thus eliminating the subject-specific 

effect. In addition, both a large market (n=6) and a small market (n=3) are chosen to 

compare the corresponding bidding behaviour and the revenue results.  

Our study and Delgado et al. (2008) both use the same measurement for the seller’s 

revenue: the winner’s bid minus the initial capital balance given to him. However, the 

main experiment result is different. In Delgado et al. (2008)’s experiment, both the bids 

and the revenue are greater in the ‘loss-frame’ treatment relative to the ‘baseline’ 

treatment. To the contrary, in our payback scheme treatment, even though the subjects 

indeed bid higher, actually the seller’s revenue is significantly less than in the standard 

first-price auction for the 6-bidder market and not significantly different for the 3-bidder 

market. Therefore, we conclude that using the payback scheme to enhance revenue 

depends vitally on the amount of the initial capital balance relative to the maximum 

possible private value. In Delgado et al. (2008), the ratio is 15%, whereas such a ratio 

increases to 50% in our experiment. At such a high ratio, the induced increase in bids 

cannot offset the cost of the initial capital balance retained by the winner, which leads to 

the payback scheme failing to increase revenue in our experiment.    

The remainder of the paper is laid out as follows. In the next section we introduce the 

theoretical framework and the predictions of the Nash equilibrium bids and expected 

revenues. In Section 3 we present our experimental design in detail. Section 4 and 5 report 

the main results. In Section 6, we compare the risk aversion coefficients across different 

institutions, and then in Section 7 we explore the conditions when the payback scheme 
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works in terms of enhancing revenue. More specifically, we re-estimate the bid function 

using the experimental data provided by Delgado et al. (2008) and compare such results 

with our experiment. Finally, Section 8 concludes this paper.   

 

2 Theoretical models 
 

2.1 Preliminaries 

 

In this section we derive bidders’ equilibrium bidding strategies in a payback scheme 

first-price auction. Consider there are 𝑛 bidders participating in a first-price sealed-bid 

auction. They compete for a single object and submit sealed bids 𝑏1, 𝑏2, … , 𝑏𝑛. The bidder 

who submits the highest bid is awarded the object, and pays his bid. Each bidder 𝑖 =

{1, 2, … , 𝑛} has a private value 𝑣𝑖  which is an independent draw from a uniform 

distribution 𝐹 defined on [0, 1] . The number of bidders 𝑛  and the distribution 𝐹 are 

common knowledge, but the value realization 𝑣𝑖  is private information.   

With the payback scheme, each bidder receives an initial capital balance 𝐾 before the 

auction starts, and he could use any proportion of 𝐾 to submit his bid. However, he keeps 

the money 𝐾 only if he is the winner; if he loses the auction, he has to give the money 𝐾 

back to the seller. That is the reason why we name such a scheme ‘payback’.  

We derive the equilibrium bidding strategies by considering the signalling problem of 

bidder 𝑖 , given that all other bidders (𝑗 ≠ 𝑖) use the same increasing, differentiable 

bidding strategy 𝑏(∙) to map their own private values into bids. Bidder 𝑖 is not obliged to 

reveal his true type 𝑣𝑖, so he can select a private value 𝑧𝑖 from the uniform distribution 𝐹 

and submit a bid of 𝑏(𝑧𝑖). Next we use the revelation principle to derive the symmetric 
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Nash equilibrium bidding strategy. More specifically, we verify bidder 𝑖 has no incentive 

to bid as if he had a private value 𝑧𝑖 ≠ 𝑣𝑖. 

2.2 Risk Averse Symmetric Nash Equilibrium model (RASNE) 

 

Vickrey (1961) was the first to derive the Nash equilibrium bidding function in 

independent private-value auctions assuming that bidders are all risk neutral. Holt (1980), 

Maskin and Riley (1980), and Harris and Raviv (1981) extend the Vickrey model to the 

case that bidders are risk averse. More specifically, they assume that the bidders display 

a homogeneous risk averse attitude and the corresponding expected revenue is greater 

than if they were risk neutral.   

Since the assumption of the bidders sharing the same risk attitude is restrictive, Cox, 

Roberson, and Smith (1982) construct an equilibrium bidding model (CRRA) that permits 

bidders to differ in their risk attitudes with a utility function 𝑢𝑖(𝑦) = 𝑦𝑟𝑖  where the 

individual constant relative risk preference parameter 𝑟𝑖 is from a probability distribution 

Φ on [0, 1]. Each bidder knows his own risk parameter 𝑟𝑖  as well as the probability 

distribution Φ. An important feature of the bid function  𝑏𝑖 =
𝑛−1

𝑛−1+𝑟𝑖
𝑣𝑖  is that it only 

applies to bids that do not exceed 𝑏 =
𝑛−1

𝑛
 which is the maximum bid that the least risk 

averse (in other words, risk neutral) bidder would submit.  

Cox, Smith, and Walker (1988) generalise the CRRA model to 𝑟𝑖 ∈ (0,  𝑟𝑚𝑎𝑥], where 

 𝑟𝑚𝑎𝑥 ≥ 1 which stands for the risk parameter for the least risk averse bidder. In this 

model, the least risk averse bidder could be a risk neutral or a risk-loving bidder, which 

depends on the prior belief of  𝑟𝑚𝑎𝑥. We will discuss how changing  𝑟𝑚𝑎𝑥 influences the 

estimated individual risk parameter in another paper. In this paper, we focus our analysis 
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on the Nash equilibrium bidding strategy in a first-price payback scheme auction for 

homogeneous bidders. 

The probability of bidder 𝑖 (bidding as if he had a private value 𝑧𝑖) winning the auction 

is that all the other 𝑛 − 1 bidders’ private values are smaller than 𝑧𝑖, which is 𝐹(𝑧𝑖)
𝑛−1 =

𝑧𝑖
𝑛−1.  Bidder 𝑖’s expected utility is defined as  

𝐸(𝑢𝑖) = 𝑧𝑖
𝑛−1(𝐾 + 𝑣𝑖 − 𝑏(𝑧𝑖))

𝑟
+ (1 − 𝑧𝑖

𝑛−1)(𝐾 − 𝐾) 

𝐸(𝑢𝑖) = 𝑧𝑖
𝑛−1(𝐾 + 𝑣𝑖 − 𝑏(𝑧𝑖))

𝑟
 

  

 (2.1) 

                                                               

 

It must have the property that for any true private value 𝑣𝑖, the expected utility function 

(2.1) is maximised by setting 𝑧𝑖 = 𝑣𝑖. Therefore, 𝑣𝑖  should satisfy the below first order 

condition 

𝜕𝐸(𝑢𝑖)

𝜕𝑧𝑖
|𝑧𝑖=𝑣𝑖

= 0 
 (2.2) 

                                                                                                                      

Which yields the following first order differential equation 

    

𝑏′(𝑣𝑖) =
(𝑛 − 1)(𝐾 + 𝑣𝑖 − 𝑏(𝑣𝑖))

𝑣𝑖𝑟
 

 (2.3) 

                                                                                   

for all 𝑣𝑖  in the interval [0,1], equation (2.3) is solved by the following risk averse 

symmetric Nash equilibrium (RASNE) bidding function:3 

𝑏(𝑣𝑖)
𝑅𝐴𝑆𝑁𝐸 = 𝐾 +

𝑛 − 1

𝑛 + 𝑟 − 1
𝑣𝑖  

 (2.4) 

 

                                                           
3 The full deviation of 𝑏(𝑣𝑖)

𝑅𝐴𝑆𝑁𝐸  is in Appendix B.  
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We substitute equation (2.4) in the second order condition 
𝜕2𝐸(𝑢𝑖)

𝜕𝑧𝑖
2 |𝑧𝑖=𝑣𝑖

= −
(𝑛−1)

𝑟∙𝑣𝑖
< 0 

which satisfies the maximising profit requirement. Therefore, if every bidder is using the 

same bidding function 𝑏(∙), it is optimal for all bidders to reveal their true types.  

When 𝑟 = 1 then equation (2.4) reverts to Vickrey’s benchmark risk neutral Nash 

equilibrium (RNNE) model 

𝑏(𝑣𝑖)
𝑅𝑁𝑁𝐸 = 𝐾 +

𝑛 − 1

𝑛
𝑣𝑖  

 (2.5) 

                             

                                  

                                                                      

2.3 Loss Averse Symmetric Nash Equilibrium model (LASNE) 

 

In this section, instead of assuming subjects display a homogeneous risk averse attitude, 

we presume that they share a homogeneous loss aversion coefficient  𝜆 > 0 . Such a 

coefficient only plays a role when subjects experience a loss. A subject with 𝜆 > 1 is loss 

averse, and the greater the value of 𝜆, the more loss averse the subjects is. A subject 

with  𝜆 = 1 is loss neutral, whereas 𝜆 < 1  indicates the subject is gain-seeking. To 

simplify the model, we also assume the subjects are risk neutral where 𝑟 = 1. Therefore, 

bidder 𝑖 ’s expected utility is defined as 

𝐸(𝑢𝑖) = 𝑧𝑖
𝑛−1(𝐾 + 𝑣𝑖 − 𝑏(𝑧𝑖)) + (1 − 𝑧𝑖

𝑛−1)(𝐾 − 𝜆𝐾)  (2.6) 

 

As in the last section, for any private value 𝑣𝑖 , the expected utility function (2.6) is 

maximised by setting 𝑧𝑖 = 𝑣𝑖. Therefore 𝑣𝑖, should again, satisfy 

𝜕𝐸(𝑢𝑖)

𝜕𝑧𝑖
|𝑧𝑖=𝑣𝑖

= 0  
  

(2.7) 

 

Hence, we obtain the following first order differential equation 
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𝑏′(𝑣𝑖) =
(𝑛 − 1)(𝜆𝐾 + 𝑣𝑖 − 𝑏(𝑣𝑖))

𝑣𝑖
 

 
(2.8) 

 

for all 𝑣𝑖  in the interval [0,1], equation (2.8) is solved by the following loss averse 

symmetric Nash equilibrium (LASNE) bidding function: 

𝑏(𝑣𝑖)
𝐿𝐴𝑆𝑁𝐸 = 𝜆𝐾 +

𝑛 − 1

𝑛
𝑣𝑖  

 (2.9) 

 

When subjects are loss neutral (where  𝜆 = 1 ), then equation (2.9) also reverts to 

Vickrey’s benchmark risk neutral Nash equilibrium (RNNE) model as in Equation (2.5).   

  

2.4 Expected revenue predictions 

 

In equilibrium, the seller’s expected revenue is determined by evaluating the 

corresponding Nash equilibrium bidding strategy at the expected highest value in the 

uniform distribution[0, 1], which is 
𝑛

𝑛+1
. Hence, with regards to the RASNE model    

𝐸𝑅𝑅𝐴𝑆𝑁𝐸 = 𝐾 +
𝑛 − 1

𝑛 + 𝑟 − 1
×

𝑛

𝑛 + 1
− 𝐾 

 

𝐸𝑅𝑅𝐴𝑆𝑁𝐸 =
𝑛(𝑛 − 1)

(𝑛 + 𝑟 − 1)(𝑛 + 1)
 

  
  
 

(2.10) 

 

When 𝑟 = 1 then equation (2.10) becomes   

                             

𝐸𝑅𝑅𝑁𝑁𝐸 =
 𝑛 − 1 

 𝑛 + 1 
 

   
 (2.11) 

 

with respect to the LASNE model, the seller’s expected revenue is equal to 

 

𝐸𝑅𝐿𝐴𝑆𝑁𝐸 = 𝜆𝐾 +
𝑛 − 1

𝑛 
×

𝑛

𝑛 + 1
− 𝐾 

 

𝐸𝑅𝐿𝐴𝑆𝑁𝐸 = (𝜆 − 1)𝐾 +
𝑛 − 1

𝑛 + 1 
 

  
 
 

(2.12) 
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When 𝜆 = 1 then equation (2.12) also becomes equation (2.11), from which we obtain 

that the expected revenue 𝐸𝑅𝑘=0
𝑛=6 = 𝐸𝑅𝑘=0.5

𝑛=6 = 0.71and 𝐸𝑅𝑘=0
𝑛=3 = 𝐸𝑅𝑘=0.5

𝑛=3 = 0.50.                 

In addition, the predictions allow us to formulate the following hypotheses: 

 

Hypothesis 1a (RASNE): 𝑅𝑘=0 = 𝑅𝑘=0.5 

 

Hypothesis 1b (LASNE): 𝑅𝑘=0.5 ≥ 𝑅𝑘=0 (𝑖𝑓 𝜆 ≥ 1) 

 

Hypothesis 2: (RASNE & LASNE): 𝑅𝑛=6 > 𝑅𝑛=3 

 

 

3 Experimental design 
 

We ran the experiments using the software Z-Tree at the University of Adelaide’s 

‘Adelaide Laboratory for Experimental Economics’ (Adlab) in April of 2016. Sixty 

subjects from the undergraduate and postgraduate population of the University were 

recruited by the ORSEE system and participated in 4 sessions. In a given session, each 

subject participated in 4 experiment stages: two lottery experiments and two auction 

experiments. Quiz questions were given to subjects before each experiment stage, and a 

stage only began when all subjects answered the quiz questions correctly. Each session 

lasted about 90 minutes. Subjects received written instructions which were read aloud and 

could ask questions to the experimenter in private. A copy of the experimental 

instructions is given in Appendix A. Including a show-up fee of $10, subjects earned $20 

on average.  

The result of each experiment was not revealed until the end of the session, in order to 

keep the decision for each experiment task independent. The subject was paid according 

to his aggregate payoffs from the 4 experiment stages.   
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3.1 The first lottery experiment stage 

 

The aim of the first lottery experiment is to measure subjects’ loss aversion attitudes. 

Subjects decided whether or not to accept 14 risky lotteries as shown in the first column 

of Table 3.1, one of which would be randomly selected for payment. For each lottery, 

there is a 50% chance of winning and a 50% chance of losing.  

To determine which lottery would be chosen, a number between 1 and 14 was randomly 

drawn for each subject. If the subject chose to ‘Accept’ the corresponding lottery, his final 

payoff was adjusted according to the result of the lottery; if the subject chose to ‘Reject’, 

then he got zero from this experiment task. As explained earlier, in order to keep the 

decision for each experiment task independent, the result of this first lottery experiment 

was not revealed to the subject until the end of the session.  

Table 3.1 The design of the 14 risky lotteries in the first lottery stage 

  Lottery 50%/50% chance Expected Value 

 #1    Lose $0.5 or win $9.5 $4.50  

 #2    Lose $1 or win $9 $4  

 #3    Lose $1.5 or win $8.5 $3.50  

 #4    Lose $2 or win $8 $3  

 #5    Lose $2.5 or win $7.5 $2.50  

 #6    Lose $3 or win $7 $2  

 #7    Lose $3.5 or win $6.5 $1.50  

 #8    Lose $4 or win $6 $1  

 #9    Lose $4.5 or win $5.5 $0.50  

 #10    Lose $5 or win $5 $0  

 #11    Lose $5.5 or win $4.5 -$0.5  

 #12    Lose $6 or win $4 -$1  

 #13    Lose $6.5 or win $3.5 -$1.5  
  #14    Lose $7 or win $3 -$2   
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3.2 The second lottery experiment stage 

 

Following the completion of the first lottery task, a second lottery experiment was 

conducted for eliciting subjects’ certainty equivalents for 11 lotteries. 4  Each lottery, 

initially owned by the subject, has a 50% chance of a high payoff 𝐻 and a 50% chance of 

a low payoff 𝐿 as shown in columns 1-3 of Table 3.2. Certainty equivalents were elicited 

using the Becker-DeGroot-Marschak (BDM) (1963) incentive mechanism, which gives 

the subject an incentive to report his true valuations for the corresponding lotteries. The 

procedure was as follows. The subject was asked to state a minimum selling price 𝑝𝑠 

(between the high and low payoff) for each lottery, with the knowledge that a random 

buying price 𝑝𝑏 (also between the high and low payoff) would be drawn to determine if 

the lottery would be sold to the computer. If 𝑝𝑏 ≥ 𝑝𝑠, the subject received the randomly 

drawn buying price; otherwise, he received the outcome of the lottery.   

As with the first lottery experiment, only one lottery would be chosen for each subject to 

decide his payoff in this BDM lottery task, and the result would not be revealed until the 

end of the session.  

 

 

 

 

 

                                                           
4 We used the same 11 lotteries as in Kocher, Pahlke, and Trautmann (2010). The differences between the 

high and low payoffs for the lotteries are always even numbers: 2, 4, 6, 8, and 10. It makes the arithmetic 

easier for subjects.   
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Table 3.2 The design of the 11 lotteries in the second lottery stage 

  Lottery High payoff Low payoff Expected   

    (50% chance) (50% chance) value   

 #1 12.76 4.76 8.76  

 #2 8.30 2.30 5.30  

 #3 10.70 2.70 6.70  

 #4 6.52 2.52 4.52  

 #5 13.22 5.22 9.22  

 #6 8.06 2.06 5.06  

 #7 6.36 2.36 4.36  

 #8 13.20 3.20 8.20  

 #9 9.76 5.76 7.76  

 #10 12.76 6.76 9.76  
  #11 8.01 2.01 5.01   

Note: Numbers in columns 2-4 show amounts in AUD. The expected value for the 

corresponding lottery was not shown to the subjects. 

 

 

3.3 The auction experiment stages 

 

The auction experiment was designed to test whether the payback scheme enhances the 

seller’s revenue. We used within-subject variation. Therefore, subjects were exposed to 

two treatments: standard first-price auction, and payback scheme first-price auction, 

which we refer to as k0 and k5 treatment hereafter. In both auction stages, subjects were 

in the same group of six bidders for 20 rounds. The k0 treatment is the control treatment 

since it accords with a large number of laboratory studies.  

In this paper, the k5 treatment is the novel treatment. In the k5 treatment, subjects received 

$5 as the initial capital balance they could use to bid before each auction started. Only the 

winner got to keep the $5; all the losers had to pay the $5 back. Due to the order effect 

that exists in the within-subject design, it was necessary to run the treatments in both 

orders: k0k5 order and the reverse, k5k0 order. In the k0k5 order of the treatment, subjects 

participated in the standard private value first-price auction for the first 20 rounds and 
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then for the second 20 rounds, they were switched to the conditions of the payback 

scheme. With respect to the k5k0 order, subjects were exposed to the treatments in 

reversed order.  

To study the effect of the payback scheme on seller’s revenue, we also examined two 

different market sizes: 6-bidder market and a 3-bidder market using a between-subject 

design. For both market sizes, at the beginning of the auction stage, the computer 

randomly allocated subjects to markets of size 𝑛 = 6. Additionally, to form the 3-bidder 

market, in each auction round, the fixed group of six bidders was re-matched into two 3-

bidder markets.5 This matching method, on the one hand, provides independent units of 

observation. On the other hand, it constitutes a comparison with the 6-bidder market. We 

use the notation k0k5_6 to represent the experiment session with the k0k5 order in a 6-

bidder market.     

In each round, subjects’ private values were independently drawn from a uniform 

distribution defined on [$0, $10]. Each subject was required to submit a bid equal to or 

below his private value in the k0 treatment, and equal to or below his private value plus 

$5 in the k5 treatment. The winner was the subject who submitted the highest bid and 

paid a price equal to his bid. In the case of a tie, the winner was randomly chosen among 

the bidders who submitted the highest bid. In each market, at the end of each auction 

round, the winner’s bid (but not identity) was disclosed to all the subjects. Table 3.3 

summarises our auction experiments.     

                                                           
5 Such a design is similar to Schram and Onderstal (2009), except that in their experiment, the subjects did 

not know the 3-bidder market was formed within the fixed group of six bidders.   
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Each subject’s payoff in the two auction stages was decided by the computer, which 

randomly chose two auction rounds for each treatment. The summation of the payoffs 

from the four rounds was the subject’s payoff from the auction experiment. 

Table 3.3 The design of the auction experiments 

  Market size Session Treatment # Subjects # Groups   

 6 
k0k5_6 K01, K52 18 3  

 k5k0_6 K51, K02 18 3  

 
     

  

 3 
k0k5_3 K01, K52 12 2  

  k5k0_3 K51, K02 12 2   

 

 

4 Descriptive analysis for two lottery tasks  
 

4.1 Loss aversion 

 

As in Rabin (2000) and Fehr and Goette (2007), the rejection of a small-stake risky lottery 

with a positive expected value can be interpreted as loss aversion instead of risk aversion. 

So we can use the first lottery task to measure the subject’s loss aversion attitude. In this 

task, the least loss-averse (i.e. the most gain-seeking)6 subject would choose to accept all 

14 lotteries because of the 50% chance of winning some money, even though the expected 

values are negative from lottery #11 to lottery #14. To the contrary, an extremely loss-

averse subject would choose to reject all the 14 lotteries since all the lotteries include a 

50% chance of losing money. Overall, a subject would reject more lotteries if he is more 

loss-averse. Hence, we can use a subject’s switch point from accepting to rejecting a 

specific lottery to measure his loss aversion. Among all the 60 subjects, four subjects have 

                                                           
6 Here, we adopt the terminology ‘gain-seeking’ as per Abdellaoui, Bleichrodt and L’Haridon (2008). 
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more than one switch point (6.67% of all the subjects). For these subjects, we only analyse 

the first switch point as per Prasad and Salmon (2013).7 

Before devising a framework to calculate each subject’s loss aversion coefficient, it is 

necessary to first have a general idea about the distribution of accepted lotteries among 

all the 60 subjects. Figure 4.1 shows the distribution of the number of accepted lotteries 

in the loss aversion measurement stage. The mode of the number of accepted lotteries is 

6 (12 subjects), in which the expected value is $2. 

 

Figure 4.1 Distribution of the number of accepted lotteries   

 

Suppose the lottery chosen to determine the subject’s payoff is (50% chance of 

winning  𝑤, 50% chance of losing 𝑤′ ). We adopt the expected utility framework to 

illustrate the utility a subject gets from the first lottery stage:  

𝑢(𝑤) = {
𝑤, 𝑤 ≥ 0

𝜆𝑤′, 𝑤′ < 0
 

 

                                                           
7 Some papers, like Laury and Holt (2005), only investigate the ‘one switch point’ choice pattern and ignore 

those subjects with more than one switch point.   
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where 𝜆 is the loss aversion coefficient. The first equation represents the utility of a 

subject winning whereas the second equation measures the disutility of losing. A larger 

loss aversion coefficient 𝜆 represents that the subject is more loss-averse, as the feeling 

of losing money is more painful. A subject will accept a lottery if: 

 𝑝𝑟𝑜𝑏(𝑔𝑎𝑖𝑛)𝑢(𝑤) + 𝑝𝑟𝑜𝑏(𝑙𝑜𝑠𝑒)𝑢(𝑤′) > 0  

 

A subject will reject a lottery if: 

𝑝𝑟𝑜𝑏(𝑔𝑎𝑖𝑛)𝑢(𝑤) + 𝑝𝑟𝑜𝑏(𝑙𝑜𝑠𝑒)𝑢(𝑤′) < 0  

 

When a subject is indifferent between accepting and rejecting a lottery, it must be that:  

 

𝑝𝑟𝑜𝑏(𝑔𝑎𝑖𝑛)𝑢(𝑤) + 𝑝𝑟𝑜𝑏(𝑙𝑜𝑠𝑒)𝑢(𝑤′) = 0 

𝑝𝑟𝑜𝑏(𝑔𝑎𝑖𝑛) =  𝑝𝑟𝑜𝑏(𝑙𝑜𝑠𝑒) = 50% 

𝑢(𝑤) + 𝑢(𝑤′) = 0 

𝑤 + 𝜆𝑤′ = 0 

𝜆 = −
𝑤

𝑤′
 

  

The above equation is satisfied when we exactly know the lottery for which the subject is 

indifferent between accepting and rejecting. However, we can only observe a switch point 

for each subject. For instance, if a subject accepts the first 2 lotteries, but rejects the next 

12 lotteries, we know the accurate indifferent lottery must lie between #2 and #3. 

Therefore, according to this model, the loss aversion coefficient 𝜆 must lie in the interval 

(5.67, 9]. As mentioned by Anderson and Mellor (2009), a common technique for dealing 

with this estimation problem is to use an interval regression model. The below model 

accounts for interval censoring of the dependent variable, in this scenario loss aversion 
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coefficient 𝜆, as well as left and right censoring.8 The subjects who accept between 1 and 

13 lotteries are interval censored observations; those who accept all the 14 lotteries are 

left censored observations;9 as for the subjects who reject all the lotteries, they are right 

censored observations. 

 
𝜆𝑖

∗ = 𝜇 + 𝜀𝑖  (4.1) 
 

                                                                                                              

We do not observe subject 𝑖 ’s loss-averse attitude𝜆𝑖  (𝜆𝑖 > 0) directly. However, we 

instead observe 𝑦𝑖 , which indicates the number of lotteries that subject 𝑖 accepts. The 

notation 𝑦𝑖 implies a range for 𝜆𝑖
∗
, which is delimited by [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]. For this reason, 

instead of 𝜆𝑖, we model the latent variable  𝜆𝑖
∗
as in equation (4.1). In equation (4.1), 𝜀𝑖  is 

a normally distributed error with mean zero and variance 𝜎2.  

A maximum likelihood procedure has been used to estimate this model. After obtaining 

the estimated intercept  𝜇 , subject 𝑖 ’s expected loss aversion coefficient given the 

corresponding number of accepted lotteries is computed in the following way: 

                                                           
8 Interval censoring describes the case when a data point is somewhere on an interval between two values. 

Left (right) censoring represents that when a data point is below (above) a certain value but it is unknown 

by how much.     
9 However, we know that the loss aversion coefficient must be a positive figure. So for those who accept 

all the 14 lotteries are still interval censored observations. 
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The range of [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥] for the corresponding number of accepted lotteries and the 

expected loss aversion coefficient 𝜆∗ are shown in Table 4.1. We also report the related 

percentage of subjects for each number of accepted lotteries. Within all the 60 subjects, 

15% of them accept all ten lotteries with a non-negative expected value, a further 15% of 

subjects accept at least one lottery with a negative expected value, and the remaining 70% 

of subjects reject at least lottery #10 (which has an expected value of zero) or some 

lotteries even with positive expected values. The median subject accepts lotteries #1 to 

#7, which implies that the median value of 𝜆 is 1.68.10 Such a result is qualitatively 

similar to the median value of 𝜆 (2.25) reported by Tversky and Kahneman (1992). Hence, 

we find that loss aversion is a significant pattern for the subjects. 

It is instructive to compare the results with those of a similar experiment. The paper by 

Gächter, Johnson, and Herrmann (2007) measure the individual-level loss aversion using 

six 50-50 lotteries. The winning money is fixed at €6, whereas the loss varies from €2 to 

                                                           
10 We can think of an example to have a intuitively understanding of 𝜆 = 1.68. That is, a subject must gain 

$1.68 to offset the disutility of losing $1. Therefore, as 𝜆 increases, a subject need to gain more money to 

compensate the disutility of losing $1. The subject is more loss averse, so to speak.  
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€7. They find a similar result that the median subject has a loss aversion coefficient 𝜆 =

1.2.  

 

Table 4.1 The loss aversion parameter for the corresponding number of accepted 

lotteries 

 

 # Accepted # Subjects Percentage Cum.  [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥] 𝜆   

  Lotteries   (%) Percentage (%)       

 0 0 0.00 0.00 (19, ∞) n.a.  

 1 2 3.33 3.33 (9, 19] 9.49  

 2 3 5.00 8.33 (5.67, 9] 6.44  

 3 0 0.00 8.33 (4, 5.67] n.a.  

 4 10 16.67 25.00 (3, 4] 3.47  

 5 2 3.33 28.33 (2.33, 3] 2.66  

 6 12 20.00 48.33 (1.86, 2.33] 2.10  

 7 7 11.67 60.00 (1.5, 1.86] 1.68  

 8 3 5.00 65.00 (1.22, 1.5] 1.36  

 9 3 5.00 70.00 (1, 1.22] 1.11  

 10 9 15.00 85.00 (0.82, 1] 0.91  

 11 4 6.67 91.67 (0.67, 0.82] 0.75  

 12 2 3.33 95.00 (0.54, 0.67] 0.61  

 13 0 0.00 95.00 (0.43, 0.54] n.a.  
  14 3 5.00 100.00 (0, 0.43] 0.22   

Note: ‘Cum. Percentage’ represents the cumulative percentage. Where the value for 𝜆 is 

‘n. a.’, no subject accepts the corresponding number of lotteries. 

  

 

4.2 Risk aversion 

 

Becker, DeGroot, and Marschak (1964, BDM) originally devised a method to determine 

a monetary equivalent of a wager. Harrison (1986) subsequently applied this method to 

elicit a subject’s risk aversion attitude. The basic idea of the BDM method is to endow 

the subject with a series of predetermined lotteries and ask him for a selling price for each 

lottery with the acknowledgment that a buying price is generated randomly irrespective 

of the selling price he asks. By this method the subject has an incentive to truthfully reveal 

the certainty equivalent (CE) of a given lottery.   
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Before computing each subject’s risk aversion coefficient, it is useful to statistically 

compare the CE and the expected value for the 11 lotteries. We report the corresponding 

figures as well as the results from Kocher, Pahlke, and Trautmann’s (KPT) (2010) 

experiment in Table 4.2. Four out of 11 lotteries’ average CEs are greater than the 

corresponding expected values. With regards to KPT’s experiment, all the 11 lotteries’ 

CEs are smaller than the corresponding expected values. 

 

Table 4.2 The average certainty equivalent for each lottery in our experiment and KPT’s 

experiment 

  Lottery Expected Average Average   

    Value CE  CE (KPT)   

 #1 8.76 8.80 7.82  

 #2 5.30 4.99 5.00  

 #3 6.70 6.82 6.03  

 #4 4.52 4.29 4.10  

 #5 9.22 9.59 8.54  

 #6 5.06 4.83 4.70  

 #7 4.36 4.05 3.94  

 #8 8.20 9.08 7.83  

 #9 7.76 7.53 7.22  

 #10 9.76 9.66 8.93  
  #11 5.01 4.76 4.68   

Note: ‘Average CE’ is the average certainty equivalent in our experiment; ‘Average CE 

(KPT)’ stands for the average certainty equivalent in KPT (2010). Figures in bold font 

are greater than the corresponding expected values. 

 

 

Next, it is necessary to identify the extent of each subject’s risk aversion coefficient within 

the expected utility framework. We denote the utility function when a subject receives 

money 𝑤: 

𝑢(𝑤) = 𝑤𝑟 , 𝑟 > 0 
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In such a utility function, the notation 𝑟 is the risk preference parameter whereas (1 −

𝑟) is the Arrow-Pratt measure of the relative risk aversion coefficient.11 If a subject states 

a selling price 𝑝𝑠 for a lottery with a 50% chance of getting a high payoff 𝐻 and a 50% 

chance of getting a low payoff 𝐿, then it must be that the utility of the monetary payoff 

𝑝𝑠 is the same as the utility from the risky lottery, such that:      

𝑢(𝑝𝑠) = 𝑝𝑟𝑜𝑏(𝐻)𝑢(𝐻) + 𝑝𝑟𝑜𝑏(𝐿)𝑢(𝐿)                      

𝑝𝑠
𝑟 = 0.5𝐻𝑟 + 0.5𝐿𝑟                                                            

 

As per KPT (2010, p. 13) we also use a nonlinear least squares technique to estimate each 

subject’s risk preference coefficient 𝑟 based on the selling price 𝑝𝑠 that he states, as well 

as the given lottery’s high payoff 𝐻 and the low payoff 𝐿. The model we use is as follows:  

 𝑝𝑠𝑖
= (0.5𝐻𝑟𝑖 + 0.5𝐿𝑟𝑖)

1
𝑟𝑖 + 𝑢𝑖 

 

(4.2) 
 

 

in equation (4.2), the normal distribution error term 𝑢𝑖 has a property of mean zero and 

variance 𝜎2   

 

 

 

 

 

 

  

 

 

 

                                                           
11 Relative risk aversion coefficient is calculated as follows: (𝑤) = −𝑤 ∙

𝑢′′(𝑤)

𝑢′(𝑤)
 . 
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Table 4.3 Risk preference classification and the corresponding number of subjects 

  

Range of risk 

preference 

# Subjects 

(Percentage) Total 

KPT: # 

Subjects 

(Percentage) Total 

Risk preference 

classification 

 (1.95, ∞) 15 (25%) 27 

(45%) 

3 (2%) 27 

(18%) 

highly risk 

loving 

 (1.49, 1.95] 5 (8.33%) 6 (4%) very risk loving 

 (1.15, 1.49] 7 (11.67%) 18 (12%) risk loving 

        

 (0.85, 1.15] 11 (18.33%) 

11 

(18.33

%) 34 (22.67%) 

34 

(22.67

%) risk neutral 

       

 (0.59, 0.85] 6 (10%) 

22 

(36.66

%) 

23 (15.33%) 

89 

(59.33

%) 

slightly risk 

averse 

 (0.32, 0.59] 3 (5%) 17 (11.33%) risk averse 

 (0.03, 0.32] 2 (3.33%) 18 (12%) very risk averse 

 (-0.37, 0.03] 3 (3.33%) 15 (10%) 

highly risk 

averse 

  (-∞, 0.37) 9 (15%) 16 (10.67%) stay in bed 

Note: We obtained KPT’s experiment data from Appendix D. of ScienceDirect website 

http://www.sciencedirect.com/science/article/pii/S0014292115000677.  

 

In Table 4.3, we report the estimated range of the risk preference coefficient 𝑟 and the 

corresponding number of subjects in our experiment as well as in KPT’s experiment.12 

Here, we follow the risk preference classification as per Holt and Laury (2002). In our 

experiment of 60 subjects, 45% of them are risk loving; whereas 11 subjects (18.33%) 

are risk neutral, and the remaining 22 subjects (36.66%) are risk averse.   

The results from KPT’s experiment are inconsistent with our finding. That is, the majority 

of subjects are risk averse (59.33%) and only 18% of subjects are risk loving while 22.67% 

of subjects are risk neutral.13,14 

                                                           
12 KPT does not report subjects’ risk aversion preferences in both the 2010 and 2015 papers. However, we 

can obtain such results using the data and the code they provide in the 2015 paper.    
13 We have excluded the possibility that the difference is due to the 11 lotteries being presented to the 

subjects in a different manner between our experiment and KPT’s. For both experiments, the 11 lotteries 

are shown to the subjects on 11 separate pages.  
14 However, these results are close to the findings reported by Berg, Dickhaut and McCabe (2003). In their 

design, the basic essence of the BDM method is the same. But instead of a 50-50 lottery, they use a 30-

sided die and a cut-off value  𝑝 to decide the payoff for the subject if his selling price is above the randomly 

generated buying price. Hence, they find that within 48 subjects, about 55% of them are risk loving. 

http://www.sciencedirect.com/science/article/pii/S0014292115000677
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After identifying each subject’s loss aversion coefficient 𝜆 and risk aversion coefficient 

(1 − 𝑟), we wonder whether these two coefficients are related to each other as Thaler et 

al. (1997) suggest. In their experiment, the subjects need to make some investment 

decisions between two funds – bond and stock funds, within four conditions – monthly, 

yearly, five-yearly, and inflated monthly. A major conclusion they get is: “Investors who 

display myopic loss aversion will be more willing to accept risks if they evaluate their 

investments less often.” In this BDM lottery experiment, if we consider a lottery decision 

as an investment, the subject can only know the result of the investment at the very end 

of the experiment. This prohibits them from adopting a ‘narrow framing’ as defined by 

Kahneman and Lovallo (1993) – in other words, considering decision problems one at a 

time. As a result, it is not very surprising that 45% of subjects are risk loving.  

In order to examine whether the two estimation parameters are correlated, we create a 

scatter plot of the (1 − 𝑟) and 𝜆 along with histograms of the two variables as in Figure 

4.2.15 We can see that there is no clear linear correlation between these two variables.16  

In terms of the risk aversion coefficient, most subjects cluster in the range of [-2, 2]. With 

regards to the loss aversion coefficient, the majority of subjects are between 0 and 4.17 

Our result is very different from the result reported by Goldstein, Johnson, and Sharpe 

(2008), in which they find that for the 570 subjects in their experiment, the estimates of 

the risk aversion and loss aversion parameters are correlated.18 Most of their subjects 

displayed a low risk aversion, as well as a low loss aversion attitude. It is acknowledged 

                                                           
15 In figure 4.2, we have eliminated two outliers with an extremely large negative risk aversion coefficient 

(-273.6), which shows that the corresponding subjects are extremely risk loving. In the BDM lottery stage, 

the two subjects both stated a selling price 𝐻 for all the 11 lotteries.  
16 We also cannot observe a linear relationship when we use (∑ 𝑝𝑠 , 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑙𝑜𝑡𝑡𝑒𝑟𝑖𝑒𝑠) as variables to 

plot the chart. 
17 As a robustness check, the nonparametric Spearman test shows that for the 58 (1 − 𝑟, 𝜆) pairs, the two 

variables are independent from each other ( 𝑝-value > 0.1).  
18 The two variables have a very clear linear correlation not only from the chart but also verified by a 

Pearson correlation test. 
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that besides the distinction of the two experimental designs, the inconsistency of the 

results could be due to sample size differences.  

  

Figure 4.2 Graphical illustration of the relationship between loss aversion and risk 

aversion coefficients using a scatter plot and histograms. 

 

 

5 Experimental results for auction stages 

 

5.1 Modelling bid behaviour 

 

In order to identify how the payback scheme works in the first-price auctions, in this 

section we use a panel data regression approach to estimate the aggregate bid functions. 

As mentioned before, we use a within-subject design for the auction experiment, in which 

each subject experiences two first-price auction treatments: standard (k0) and a novel 

payback scheme (k5). Neugebauer and Perote (2008) also use a within-subject design to 

compare the bids of first-price auctions in two treatments: with and without the 

information feedback. In this paper we follow their method to model the bidding 

behaviour. The model is as follows 
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 0 1 2 3kit kit kit kit kit k kitbid Dk pv Dk pv v           (5.1) 

                                                 

In equation (5.1), 𝑏𝑖𝑑𝑘𝑖𝑡 and kitpv denote the bid and the private value of subject 𝑖 of 

group  𝑘  in round  𝑡 , where
1,2,3 6

{1,2,...,6}, , {1,2,...,40}
1,2 3

n
i k t

n

 
   

 
. 𝛽𝑗  are the 

parameters to be estimated, 𝑗 = {0, 1, 2, 3}, 𝜀𝑘𝑖𝑡 is an error term, which is assumed to have 

mean zero and variance𝜎𝜀
2; 𝑣𝑘 is the group-specific term. This model accounts for the 

possible structural changes between the k0 and k5 treatments by using a dummy 

variable  𝐷𝑘𝑘𝑖𝑡 , which takes the value one for the k5 treatment and zero for the k0 

treatment. Since this dummy variable interacts with both the intercept and the slope, we 

can interpret the results from Table 5.1 as the bid functions for each treatment. 

As in Section 1.2, we derive the RNNE and LASNE bidding strategies in the case of first-

price private value auctions with a payback scheme as follows 

1
( )RNNE

i i

n
b v K v

n


   

1
( )LASNE

i i

n
b v K v

n



   

As illustrated in Section 4.1, the subjects are loss averse on average (𝜆 > 1). Therefore, 

if the subjects bid according to the RNNE or LASNE model, we have the following 

hypotheses 

𝐻10: 𝛽1 ≥ 5 

    𝐻20: 𝛽3 = 0    

 

The null hypothesis is that the payback scheme should only influence the intercepts while 

not affecting the slopes. We start by discussing the estimated intercepts. From the 

coefficients of the dummy variable 𝐷𝑘𝑘𝑖𝑡  shown in Table 5.1 below, we can find that 
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𝛽1 < 5 which implies that the subjects would not use all of the $5 given to them to submit 

their bids in the payback auctions. In three of the four sessions, on average, subjects use 

around $4 (80% of $5) to bid. For the k51 treatment in the 3-bidder market, the subjects 

on average only use around $3 (60% of $5) to bid. This result suggests that the RNNE 

and LASNE models both fail to explain the realized bids for the payback first-price 

auctions, as they overestimate the impact of the payback scheme on the intercept. 

Table 5.1 also reveals that 𝛽3 is significantly positive in the last session: k5k0_3. Bids in 

the payback scheme treatment involve a significantly higher fraction (0.153) of private 

value than the standard first-price treatment, which is inconsistent with the RNNE and 

LASNE predictions.  

Result (payback scheme effect): in all four sessions of the payback first-price auctions, 

the subjects use some but not all of the initial capital balance k to submit bids. 

Furthermore, the subjects reveal a higher fraction of their private values in the session 

with a 3-bidder market where subjects are exposed to the payback scheme before 

experiencing the standard auction. 
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Table 5.1 Coefficients of random effect regression: linear bid function 

     Dependent variable: bid   

 Independent n=6  n=3  
  Variable k0k5 k5k0  k0k5 k5k0   

              

 Intercept -0.391 -0.313  -0.079 0.002  

  (0.277) (0.185)  (0.209) (0.001)  
        

 Dk 4.065*  4.067*   4.097*  2.914*  

  (0.306) (0.535)  (0.304) (0.172)  
        

 pv 0.878*  0.948*   0.702*  0.790*  

  (0.030) (0.014)  (0.048) (0.032)  
        

 Dk X pv 0.050 0.016  0.093 0.153*  

  (0.099) (0.062)  (0.059) (0.742)  
        

 R2 overall 0.762 0.840  0.887 0.736  

 # Observations 720 720  480 480  
  # Groups 3 3   2 2   

Note: estimate for equation 5.1, (robust standard error in parentheses); * significant at 

5%. 

   

 

After identifying the treatment effect of the novel payback scheme, it is also instructive 

to analyse the bidding behaviour in the control treatment: standard first-price auctions. If 

the subjects bid according to the RNNE model, we have the following hypotheses 

𝐻30: 𝛽0 = 0 

    𝐻40: 𝛽2 = 0.83 (𝑛 = 6) 

              𝛽2 = 0.67 (𝑛 = 3) 

 

From Table 5.1, we can verify that 𝐻30 is correct. At the same time, subjects’ bids as a 

fraction of private value are substantially greater in the k02 treatment compared with the 

k01 treatment for both the 3-bidder and 6-bidder markets. It may be that subjects get used 

to submitting high bids during the payback scheme and as a result continue to submit high 
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bids once the payback scheme is removed (‘anchoring’).19 Therefore, we observe an order 

effect in bidding behaviour for the k0 treatment.    

Result (order effect in the k0 treatment): for the standard first-price auctions, the subjects 

bid a higher fraction of their private values if they experience the payback scheme first.  

When we take a closer look at 𝛽2 in four sessions, we cannot reject 𝐻40 for the two k01 

sessions. However, we have to reject 𝐻40 in favour of the alternative hypothesis that 𝛽2 

is greater than the corresponding RNNE prediction for the two k02 sessions. Overall, in 

the standard first-price auctions where the subjects have no experience of the payback 

scheme, the bidding behaviour can be explained by the RNNE prediction; for the subjects 

who have experienced the payback scheme in advance, their bids exceed the RNNE 

prediction. 

 

Result (bid vs RNNE prediction in the k0 treatments): 

1 6 6 3 3

2 6 6 3 3

For the k0  treatment: ;

For the k0  treatment: ;

RNNE RNNE

n n n n

RNNE RNNE

n n n n

bid bid bid bid

bid bid bid bid

   

   

 

 
 

 

We also use Figure 5.1 to demonstrate the relationships between the realized bids and the 

corresponding RNNE predictions for two markets in standard auctions while considering 

the order effect. Such plots clearly show an overbidding pattern for the k02 treatment. 

 

                                                           
19 We do not find any evidence that learning (experiment rounds) plays a role in bidding behaviour, which 

may be because in our experiment, each treatment only lasts for 20 rounds.  
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Figure 5.1 The bids and the RNNE predictions in the k0 treatment 

 

 

5.2 Seller’s revenue and the allocation efficiency  

 

Revenue and efficiency are the two main measurements for evaluating an auction format. 

Since in this paper, the major research question is whether or not applying a payback 

scheme can enhance the seller’s revenue, we first analyse the realized revenue by 

checking the two hypotheses in Section 2.4.    

Before using econometric methods to verify the conjectures, we first report the revenue 

statistics in Table 5.2.20 From Table 5.2, we can observe that the k02 treatment brings the 

greatest revenue for both market sizes on average (7.93 and 6.32, respectively). Besides 

                                                           
20 With the payback scheme, since we need to take the $5 given to the winner into consideration, the realized 

revenue=winner’s bid-$5.  
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this, between the two market sizes, the revenue in the 6-bidder market is always greater. 

Such findings are consistent with our results for the estimated bidding functions as 

illustrated in the previous section.   

Table 5.2 The statistics of average revenue and efficiency of the two treatments for both 

market sizes   

                  Revenue   Efficiency 

    Treatment Batch # Observations   Mean S.D.   Mean S.D.  

 

n=6 

k0 
1 60  7.39 1.02  98.21% 0.05 

 2 60  7.93 0.96  98.56% 0.04 

 
  

       

 k5 
1 60  7.5 1.43  97.48% 0.06  

 2 60  7.06 1.14  93.59% 0.16  

 
   

       

 

n=3 

k0 
1 40  5.11 0.97  96.92% 0.08  

 2 40  6.32 1.10  95.14% 0.14 

 
  

       

 k5 
1 40  5.4 1.64  88.91% 0.19 

  2 40   5.12 1.20   93.42% 0.12 

Note: With respect to the third column ‘Batch’: ‘1’ and ‘2’ represent the corresponding 

treatment in auction rounds 1-20 and 21-40, respectively.  ‘Mean’ is obtained by taking 

the average of each group across 20 rounds with the specific treatment and batch. ‘S.D.’ 

is the standard deviation of the average. 

 

In this section, we use a random effect panel data regression model similar to that used 

by Schram and Onderstal (2009), which includes variables for both treatment effect and 

order effect. In this paper, the model explaining realized revenue is given by: 

 0 1 2kt kt kt k ktR Dk Order u         (5.2) 

                                                                                      

where dummy variable
0, 0 5

1, 5 0
kt

k k
Order

k k


 


. The other variables are the same as in 

equation (5.1). Therefore, the control treatment is the standard first-price auction with no 

experience about the payback scheme (k01). Table 5.3 shows the results. The estimated 
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coefficient of ktDk is significantly negative in the 6-bidder market (-0.38) whereas it is 

insignificant in the 3-bidder market. 

Revenue Result (payback scheme effect): 6 6 3 3

5 0 5 0;n n n n

k k k kR R R R        

 

At the same time, we can see that the coefficient of ktOrder is significantly positive for 

both market sizes, indicating that the revenue for the standard first-price auction is greater 

when the subjects have experienced the payback scheme. This result is consistent with 

our finding in the previous section that the estimated slope is greater in the k02 treatment 

compared to the k01 treatment. Furthermore, this coefficient is larger in the 3-bidder 

market. Figure 5.2 plots the difference between the realized price and the RNNE predicted 

price for each round in both the 3- and 6-bidder markets in the corresponding k01 and k02 

treatments. We can see that for the k02 treatment, the differences between the realized 

prices and the RNNE predicted prices are invariably above zero, especially for the 3-

bidder market, and such differences are much greater than in the k01 treatment.  

 

  

Figure 5.2 The difference between observed prices and RNNE prices in the k01 and k02 

treatments 

Note: In the 6-bidder market, for each auction round in a given treatment we compute the 

average difference between the realized prices and the RNNE-predicted prices across the 

associated 3 groups. In the 3-bidder market, we follow the same method, except that there 

are only 2 groups in a given treatment.    

-.
5

0
.5

1
1
.5

2

P
ri
c
e

-R
N

N
E

 p
ri

c
e

0 5 10 15 20
Round

n=6 n=3

Treatment k01

-.
5

0
.5

1
1
.5

2

P
ri
c
e

-R
N

N
E

 p
ri

c
e

0 5 10 15 20
Round

n=6 n=3

Treatment k02



35 
 

Revenue Result (order effect): 2 1

2 1 2 1

0 0

0 0 3 0 0 6( ) ( )

k k

k k n k k n

R R

R R R R 



  
 

 

There are two earlier papers which also compare the realized prices with the RNNE 

prediction in first-price auctions of 3-bidder and 6-bidder markets. Cox, Roberson, and 

Smith (1982) find that the RNNE prediction cannot be rejected for the 3-bidder market 

whereas in the 6-bidder market, overbidding behaviour is observed. However, Dyer, 

Kagel, and Levin (DKL) (1989) identify a different result, which is that the winning bids 

exceed the RNNE prediction for both 3- and 6-bidder markets.21 

Besides revenue differences due to the treatment effect and the order effect, Hypothesis 

2: 6 3n nR R   is easily verified as the coefficient of the intercept term is significantly 

greater in the 6-bidder market.   

Revenue Result (6-bidder market vs 3-bidder market): 6 3n nR R   

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
21 DKL (1989) use a within-subject design that each subject submits two contingent bids for 3- and 6-bidder 

markets. 
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Table 5.3 Coefficients of random effect and pooled Ordinary Least Squares (OLS) 

regressions for two market sizes   

     Dependent variable: Revenue 

 Independent n=6  n=3  
  Variable RE model Pooled OLS  RE model   

            

 Intercept 7.41* 7.41*  5.35*  

  (0.138) (0.136)  (0.159)  
       

 Dk -0.37* -0.38*  -0.50  

  (0.075) (0.078)  (0.330)  
       

 Order 0.49*  0.49*   0.77*  

  (0.153) (0.150)  (0.104)  
       

 #Observations 240 240  160  
  BP test p=0.32     p<0.05   

Note: estimate for equation (5.2), (robust standard error in parentheses); * significant at 

5%. For each revenue observation with 3-bidder market of each group k, in each round 

t, we compute the average revenue for two subgroups. The BP test (Breusch and Pagan 

test) for random effect tests 𝑣𝑎𝑟(𝑢𝑘) = 0, is rejected for the 3-bidder market, but not for 

the 6-bidder market.22 

 

As a result, the payback scheme fails to increase the seller’s revenue, which differs from 

the theoretical model prediction. However, we find that the seller’s revenue can be 

increased in the standard first-price auction if the subjects have experienced the payback 

scheme before. Therefore, even if the payback scheme itself does not enhance the revenue, 

including this scheme as a trial session before the standard first-price auctions, will give 

the subjects the inertia to submit a higher bid.   

Having addressed the revenue comparison between treatments, next we look at the second 

measurement - allocation efficiency for the two treatments. To determine the allocation 

efficiency, we compute the following equation which represents the percentage of surplus 

captured by an auction mechanism 

                                                           
22 This suggests that the Pooled OLS model is superior to the random effect model. 
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winner

highest

pv
e

pv
  

 

(5.3) 

                                                                                                 

where winnerpv  stands for the winner’s private value and 
highestpv  is the highest private 

value. We report the corresponding results in the last column of Table 5.2. On average, 

the auction is more efficient in the k0 treatment for both market sizes. This is not 

surprising, because in the payback scheme auction, the bidders can bid up to their private 

values plus $5. It gives the bidder an opportunity to win the auction who uses a larger 

proportion of the $5 when submitting his bid, even though his private value is not the 

highest.   

 

6 Risk preferences in different institutions – first-price auctions and 

BDM lottery 
 

A number of papers (such as Isaac & James, 2000; Neugebauer & Selten, 2006) identified 

an overbidding phenomenon and use risk aversion to explain it. In addition, they find out 

what is the individual’s risk preference parameter 𝑟 in first-price auctions.   

In this section, we will qualitatively compare the risk parameters for each group within 

our two experimental institutions: the first-price auction and the BDM lottery. Here, ‘first-

price auction’ refers to the k0 treatment only. As we have shown in Section 5.1, for the 

k5 treatment, the estimated intercept of the bid function is significantly less than k, which 

goes against the RASNE and the LASNE predictions. Following Isaac and James (2000), 

Engel (2009), and Neugebauer and Selten (2006), we back out the risk parameter 𝑟𝑖 using 

the observations of bids and private values for the specific market size within the RASNE 

model. However, unlike these papers, we do so for each group instead of each subject. 
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This is because in this paper our homogeneous risk preference assumption is different 

from their heterogeneity assumption.23      

We have derived the RASNE bidding strategy in the standard first-price auction as 

follows 

 

 

1
( )

1
i i

n
b v v

n r




 
 

 

(6.1) 

 

Therefore, the bid data is used to estimate the linear bid function below, and we remove 

the ‘zero’ bids from the observations. 

 i i i i ib pv e     (6.2) 

                                   

Where under the RASNE model, the prediction is that 
1

0,
1

i i

n

n r
 


 

 
, from which 

we can obtain the group risk preference parameter 𝑟 as follows: 

 
(1 )( 1)i

i

n
r





 
  

 

(6.3) 

                                                                  

In our data presentation, we restrict our attention to those bidder groups which satisfy the 

equilibrium condition that 𝛼𝑖 is not significantly different from zero. We report the results 

of the estimated group risk preference parameters using equation (6.3) in Table 6.1. As 

can be seen from the table, the estimated intercepts in groups 7 and 9 are significantly 

positive. Therefore, we do not consider the risk parameters in these two groups. Within 

the eight groups for which the risk preference parameters 𝑟 can be estimated, most groups 

                                                           
23 However, we acknowledge that our experiment design does not guarantee this assumption holds since 

the subjects formed in one group are randomly chosen.  
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display different levels of risk aversion in the auction task.24 In Table 6.1, we also report 

the corresponding results from the BDM lottery task. As we have shown in Section 4.2, 

most groups are risk loving in the BDM lottery stage. Overall, our study confirms the 

instability of risk parameters across different institutions as widely observed by a number 

of papers, e.g. Isaac and James (2000), Anderson and Mellor (2009), and Hey, Morone, 

and Schmidt (2009).25  

                                                           
24 We use the same classification as in Section 4.2.  
25 Different from Isaac and James (2000), which also reported the instability of risk preferences between 

the first-price auction task and the BDM selling procedure, Anderson and Mellor (2009) identify the 

instability between monetary rewards experiment and a job-based gambles survey; Hey, Morone and 

Schmidt (2009) report such instability across four incentive-compatible elicitation methods.   
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Table 6.1 Risk preference parameters in the auction and BDM tasks for each group  

    Auction task (k=0)   BDM task 

Group   �̂� �̂� �̂� Classification # Obs.   𝑟_𝑚𝑒𝑎𝑛 Classification 

1  0.126 0.861* 0.807 slightly risk averse 114  1.043 risk neutral 

2  -0.325 0.882* 0.669 slightly risk averse 102  0.701 slightly risk averse 

3  -0.115 0.835* 0.988 risk neutral 113  1.340 risk loving 

4  -0.180 0.888* 0.631 slightly risk averse 107  1.126 risk neutral 

5  0.102 0.907* 0.513 risk averse 114  1.221 risk loving 

6  -0.051 0.951* 0.258 very risk averse 111  1.407 risk loving 

          
7  0.210* 0.646* n.a. n.a. 117  2.519 highly risk loving 

8  -0.321 0.756* 0.646 slightly risk averse 113  1.850 very risk loving 

9  0.388* 0.748* n.a. n.a. 106  1.614 very risk loving 

10   0.211 0.800* 0.500  risk averse 115   3.990 highly risk loving 

Note: *significant at 5%. Each group includes 6 subjects who submit bids for 20 rounds in standard auctions, so there are 6 × 20 = 120 

observations for each group. After censoring the ‘zero’ bids, as shown in the column ‘#Obs.’, the applicable number of observations is less 

than 120 for each group in the standard auction task.
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7 Relevant research    
 

Delgado, Schotter, Ozbay, and Phelps (2008) report a similar experimental design which 

combines neuroeconomic and behavioural economic techniques. Behavioural economic  

techniques analyse subjects’ experimental decisions to test theoretical predictions. The 

neuroeconomic approach extends this field by adding observations from the nervous system. 

Using the finding of neural circuitry, they conjecture that by ‘manipulating the parameters of a 

first-price auction to highlight the potential for loss, it would not only increase bids, but also 

raise more revenue.’  Therefore, they conduct three treatments in a first-price auction format: 

baseline, loss-frame, and bonus-frame.  

We report the differences of the experimental designs between this paper and their article in 

Table 7.1. Delgado et al. (2008) adopt a between-subject design, which means each subject 

only participates in one treatment. Another major difference is that in their experiment, the 

amount of initial capital balance K given to each subject before the auction starts is only 15% 

relative to the maximum private value, compared with 50% in our experiment. 

Table 7.1 First-price auction experimental designs in this paper and in Delgado et al. (2008). 

    Our Experiment   Delgado et al. (2008) 

Treatment Standard Payback 

scheme 

 
Baseline Loss-

frame 

Bonus-

frame         

K 0 5 
 

0 15 15         

Randomisation 

technique 

Within-subject 
 

Between-subject 

        

N (Matching 

method) 

6 (Partner) 
 

2 (Random) 

3 (Partner+Random) 
    

        

Rounds 20 
 

30         

PV AUD[0,10]   [0, 100] Experimental dollars 

Note: In Delgado et al. (2008), $1 USD = 60 experimental dollars.  

https://en.wikipedia.org/wiki/Behavioral_economics


42 
 

The main finding of their experiment is that the seller’s revenue is higher in the ‘loss-frame’ 

treatment compared with the baseline treatment. Such results are very intriguing since in our 

experiment, the seller’s revenue is significantly smaller in the payback scheme auction relative 

to the standard first-price auction for the 6-bidder market, and not significantly different for 

the 3-bidder market, as we illustrated in section 5.2. In order to explore the reason why the 

schemes affect revenue differently, we compare Delgado et al.’s (2008) experiment results with 

our findings by re-estimating the bidding functions through normalized bids and private values 

in the unit interval, and also removing all the ‘zero’ bids.  Here, by pooling all the observations 

in the same market size and treatment together while ignoring the order effect, we report the 

corresponding results in Table 7.2.  

We need to mention that we could only obtain the bid data of 34 out of the 52 subjects who 

participated in the ‘loss-frame’ treatment in Delgado et al. (2008). Using the available data, we 

obtain similar results to those reported by Delgado et al. (2008) – after normalizing, the average 

revenue is 0.456 and the random effect bid function is 𝑏 = 0.111 + 0.74𝑝𝑣. However, analysis 

of the baseline treatment in Delgado et al. (2008), due to the missing data issue could not be 

undertaken. Therefore, we choose to report the baseline treatment regression results as Delgado 

et al. (2008) provided in their paper.  
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Table 7.2 The mean revenue and estimated random effect bid functions from our experiment 

and Delgado et al. (2008)’s experiment 

n   standard FP auction   payback scheme FP auction   

2 

Revenue 0.409   0.454   

       
RNNE bid   b*=0.500pv   b*=0.150+0.500pv   

Estimated Bid   b=0.614pv   b=0.109+0.733pv   
# Obs. 660   1018   
R2 0.805     0.757     

        

3 

Revenue 0.571   0.526   

       
RNNE bid   b*= 0.67pv   b*=0.500+0.67pv   

Estimated Bid   b=0.740pv   b=0.387+0.810pv   
# Obs. 451   480   
R2 0.862     0.631     

        

6 

Revenue 0.766   0.728   

       
RNNE bid   b*= 0.83pv   b*=0.500+0.83pv   

Estimated Bid   b=0.886pv   b=0.430+0.896pv   
# Obs. 661   681   
R2 0.945     0.745     

Note: ‘FP auction’ indicates first-price auction. In Delgado et al. (2008), ‘standard FP auction’ 

refers to the baseline treatment whereas ‘payback scheme FP auction’ refers to the loss-frame 

treatment. The figure of ‘# Obs.’ in each market size for the corresponding treatment is 

obtained by deleting all the ‘zero’ bids from the total number of bids.    

 

 

Table 7.2 clearly shows a common pattern for the estimated bid functions in our experiment 

and Delgado et al. (2008)’s experiment. That is, in the payback scheme first-price auctions, the 

estimated bid intercepts are always significantly below the RNNE predictions. With regards to 

the bid slopes, they are all greater in the payback scheme first-price auctions than the standard 

first-price auctions, but are only significantly greater in Delgado et al. (2008)’s experiment 

with a 2-bidder market. Therefore, by comparing the corresponding estimated bid intercepts 

and slopes, we obtain two possible explanations of the different revenue results within the 

payback scheme first-price auctions. Considering that the estimated intercept would be always 

smaller than 𝐾, a necessary requirement of the payback scheme enhancing the seller’s revenue 
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is that the slope coefficient must be substantially greater compared with that in the standard 

first-price auction. This is quite unlikely in the larger market sizes, because as market size 

increases, the slope coefficient already gets closer and closer to 1, and hence does not have 

much room to keep increasing.    

Compared with market size, determining a proper amount of initial capital balance 𝐾 is likely 

to play a more important role in whether the scheme enhances the seller’s revenue. We can see 

from both the experiment results that, such a scheme no doubt increases bids regardless of the 

amount of 𝐾. However, in our experiment, 𝐾 is set too high (50%) relative to the maximum 

possible private value 𝑣. Hence, even though bids increase due to the payback scheme, they 

increase by less than 𝐾 and hence revenue decreases.         

As a result, by combining the results of Delgado et al. (2008) experiment with our findings, we 

obtain the following two conditions, under which the seller’s revenue may increase in a 

payback scheme first-price auction: 

 Small market size 

 

 Initial capital balance 𝐾 < 0.5 𝑣.  
 

 

8 Concluding remarks  
 

The purpose of this paper is to examine whether a payback scheme in first-price private value 

auctions could enhance seller's revenue due to the existence of loss aversion. We derive a 

simple single-unit first-price private value auction model, which encompasses two cases - 

bidders display a homogeneous risk averse attitude or loss averse attitude. Based on the model, 

the payback scheme should increase the revenue if subjects are loss averse whereas it should 

not make a difference when subjects are risk averse.  
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We design an auction experiment using within-subject variation. Each subject participates in 

two treatments: payback scheme (k5) and standard first-price auction (k0). We also take the 

order effect into consideration and conduct the experiment with k0k5 and k5k0 orders in two 

market sizes (6-bidder and 3-bidder). However, the experimental results do not support the 

hypothesis. More specifically, the revenue within the payback scheme is statistically less than 

in the standard auction in the 6-bidder market and is not significantly different in the 3-bidder 

market. Nonetheless, the revenue in the standard auction is increased when subjects have 

experienced the payback scheme first.  

We suggest that the reason the payback scheme fails to enhance revenue in our experiment is 

that the subjects simply use a certain proportion of the initial capital balance K when submitting 

bids regardless of private value, and are not induced to respond more strongly to a marginal 

increase in private value. This is reflected in the intercept of the bidding function increasing by 

less than K and the slope not changing significantly. Therefore, although the subjects submit 

higher bids, this does not offset the cost of the initial capital balance K retained by the winner. 

Combined with the results reported by Delgado et al. (2008) in which the revenue is increased 

in the ‘loss-frame’ treatment, a natural extension to our experiments in the future is to set a 

smaller K (e.g. $1.5) and to test if the payback scheme works or not.  

With regards to the experimental design, the future study could also implement another 

treatment in which only the winner obtains the money K, whereas all the losers receive nothing. 

Such an auction design is strategically equivalent to the payback scheme, and it would be 

interesting to compare the results to this paper. There is also some scope for future research to 

extend the theoretical framework to incorporate reference-dependent preferences.   
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Appendix A 

 

Welcome to the experiment! 

You will receive a show-up payment of $10 for participating in this experiment which consists 

of four independent parts. For each of these four parts, you will be given written instructions 

which will be read aloud. 

In each part of the experiment, you will get a payoff which will depend both on your decisions 

and on chance. 

To determine your earnings for participating in this experiment, the payoffs you get in these 

four parts will be added to your show-up payment of $10. 

Note that in Part 1, your payoff may be positive or negative. Positive payoffs are added to your 

show-up fee of $10 whereas negative payoffs are subtracted from it. 

You are not allowed to communicate with other participants during the experiment. 

If you have any questions, please raise your hand and someone will answer your questions 

individually. 

If you have no questions, then please proceed to reading the instructions for Part 1. 

  

Part 1: lotteries 

 

In this first part, you are asked to answer fourteen questions. Each of these questions asks 

whether you want to participate or not in a lottery which yields a win (in dollars) with 50% 

chance and a loss (in dollars) with 50% chance. If you would like to participate in the proposed 

lottery, please select “Yes” or if you do not wish to, then select “No”. Each of the fourteen 

questions relates to a different lottery for which you have to decide whether to participate or 

not by answering “Yes” or “No”. 

At the end of the experiment, one of the fourteen questions will be randomly selected to 

determine your payoff for participating in this first part. If you answered “Yes” to the selected 

question, then you will participate in the selected lottery and your payoff for participating in 

this first part will be equal to the outcome of this lottery. If you selected “No” then you will 

not participate in the selected lottery and your payoff for this first part will be $0. 

 

Example: suppose that at the end of the experiment, question 3 is drawn. Assume that question 

3 asked whether you want to participate in a lottery in which you can either win $X with 50% 

chance or lose $Y with 50% chance. 

         If you answered “Yes” to question 3, then your payoff for participating in this first part 

will be the outcome of the proposed lottery. It can either be a gain of $X or a loss of $Y. 
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         If you answered “No” to question 3, then your payoff for participating in this first part 

will be $0. 

 

If you have any questions, please raise your hand and someone will answer your questions 

individually. 

If you have no questions, then please answer the following comprehension questions. Note that 

your answers to these questions do not affect your earnings in any way. The purpose of these 

questions is just to make sure that you understand the game you are about to play. 

 

Part 2: selling a lottery ticket 

 

In this second part, you are the owner of eleven lottery tickets. Each of these lottery tickets 

yields a high payoff with 50% chance or a low payoff with 50% chance, and you are given an 

opportunity to sell the tickets. 

If you want to sell your lottery ticket, then you must state a ‘selling price’ between the low 

payoff and the high payoff (which can be equal to the low or high payoff). A ‘selling price’ is 

the minimum price at which you are willing to sell your lottery ticket. 

The buyer of your lottery ticket is played by the computer which has been programmed to 

make a random ‘buying price’ between the low payoff and the high payoff (inclusive). This 

means that the computer can offer any ‘buying price’ between the low payoff and the high 

payoff (inclusive) with equal chance. Note that the computer’s ‘buying price’ does not 

depend in any way on your ‘selling price’ and that it can have up to two decimals. 

At the end of the experiment, one of the eleven lottery tickets will be randomly selected to 

determine your payoff for participating in this second part. 

 

There are two possible outcomes: 

 First, your ‘selling price’ is greater than the computer’s ‘buying price’. In this case, 

you do not sell your lottery ticket and your payoff, which will be determined at the 

end of the experiment, will be equal to the outcome of the lottery. That is, you will 

either earn the high payoff with 50% chance or the low payoff with 50% chance. 

 Second, your ‘selling price’ is smaller or equal to the computer’s ‘buying price’. In 

this case, you do sell your lottery ticket and your payoff will be equal to the 

computer’s ‘buying price’. 

 

 

Example: suppose that at the end of the experiment, lottery 5 is drawn. Assume that in this 

lottery you can either gain $7 with 50% chance or gain $2 with 50% chance and you state $4 

as the ‘selling price’.  
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If the computer’s ‘buying price’ is $5, then you sell your lottery ticket to the computer and your 

payoff for participating in this second part will be equal to $5. 

 If, on the other hand, it turns out that the computer’s ‘buying price’ is $3, then you keep your 

lottery ticket and your payoff for participating in this second part will be equal to the outcome 

of the lottery, that is, you will either receive a payoff of $7 with 50% chance or of $2 with 50% 

chance.  

 

If you have any questions, please raise your hand and someone will answer your questions 

individually. 

If you have no questions, then please answer the following comprehension questions. Note that 

your answers to these questions do not affect your earnings in any way. The purpose of these 

questions is just to make sure that you understand the game you are about to play. 

 

Part 3: Auction I 

In this third part, you are competing in a market with six buyers and you are one of them. The 

other five buyers are other participants in this lab.   

You are participating in 20 auctions with the same group of buyers.  

At the beginning of each auction, the computer will randomly determine a value for you, 

which may be any cent amount between and including $0.00 and $10.00, with each amount in 

this interval being equally likely to be chosen.     

The values for other bidders are also randomly drawn, with each cent amount between $0.00 

and $10.00 being equally likely.  

Your value will be independent of any other buyer's value and is also independent of your own 

value in other auctions. 

You can submit any bid up to your value (with up to two decimals). If you do not want to 

participate in this auction, then you must submit a bid of $0. 

      If you submit the highest bid then you win the auction. In this case, you pay a price equal 

to your bid and get the following payoff: 

Your payoff = your value - your bid        (if you win) 

      If your bid is not the highest then you lose the auction. In this case, you get the following 

payoff:   

Your payoff = 0                                          (if you lose) 

 

If there is no single highest bid, then one of the equal highest bidders will be randomly 

determined as the winner of the auction.  
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At the end of each auction, you will find out whether you have won or lost the auction, the 

payoff you have, and what is the highest bid.   

At the end of the experiment, two of the 20 auctions will be randomly selected to determine 

your payoff for participating in this third part. 

 

Example: suppose that at the end of the experiment, auctions 6 and 12 are drawn and your 

payoffs for the two auctions are the following: 

        Auction 6: $A 

        Auction 12: $B 

Your earnings from this third part will be equal to: $A+$B.  

       Assume that in auction 6, you have a value of $ 9, and you submit a bid of $ 6.  

      If you are the winner, your payoff for participating in auction 6 is $9-$6 = $3.       

     If you lose the auction, your payoff for participating in auction 6 is $0.   

 

If you have any questions, please raise your hand and someone will answer your questions 

individually. 

If you have no questions, then please answer the following comprehension questions. Note that 

your answers to these questions do not affect your earnings in any way. The purpose of these 

questions is just to make sure that you understand the game you are about to play. 

 

Part 4: Auction II 

In this fourth and last part, you are participating in 20 auctions with the same group of buyers 

as in part 3.  

The basic setting for this part is the same as in part 3, which is: 

At the beginning of each auction, the computer will randomly determine a value for you, 

which may be any cent amount between and including $0.00 and $10.00, with each amount in 

this interval being equally likely to be chosen.     

The values for other bidders are also randomly drawn, with each cent amount between $0.00 

and $10.00 being equally likely.  

Your value will be independent of any other buyer's value and is also independent of your own 

value in other auctions. 

The difference in this part is:  

At the beginning of each auction, you are given $5. 
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Your bid can be any cent amount up to your value plus $5. If you do not want to participate in 

this auction, then you must submit a bid of $0. 

  

        If you submit the highest bid then you win the auction. In this case, you keep the $5 and 

pay a price equal to your bid. Your payoff is defined as follows: 

Your payoff = $5 + your value – your bid         (if you win) 

       If your bid is not the highest then you lose the auction. In this case, you must give the $5 

back. Your payoff is defined as follows: 

Your payoff = $5- $5= 0                                       (if you lose) 

 

If there is no single highest bid, then one of the equal highest bidders will be randomly 

determined as the winner of the auction.  

At the end of each auction, you will find out whether you have won or lost the auction, the 

payoff you have, and what is the highest bid.   

At the end of the experiment, two of the 20 auctions will be randomly selected to determine 

your payoff for participating in this fourth part. 

 

Suppose that at the end of the experiment, auctions 6 and 12 are drawn and your payoffs for 

the two auctions are the following: 

        Auction 6: $A 

        Auction 12: $B 

Your earnings from this fourth part will be equal to: $A+$B.  

Example 1: Assume that in auction 6, you have a value of $ 9, and you submit a bid of $ 6.  

If you are the winner, you keep the $5, so your payoff for auction 6 is $5+$9-$6= $8. 

If you lose the auction, then you must pay the $5 back, so your payoff for auction 6 is $5-$5=$0.   

 

Example 2:  Assume that in auction 6, you have a value of $ 9, and you submit a bid of $ 12.  

If you are the winner, you keep the $5, so your payoff for auction 6 is $5+$9-$12= $2. 

If you lose the auction, then you must pay the $5 back, so your payoff for auction 6 is $5-$5=$0.   

 

If you have any questions, please raise your hand and someone will answer your questions 

individually. 
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If you have no questions, then please answer the following comprehension questions. Note that 

your answers to these questions do not affect your earnings in any way. The purpose of these 

questions is just to make sure that you understand the game you are about to play. 
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Appendix B  

 

The following equation is the first-order differentiation equation of Risk Averse symmetric 

Nash equilibrium (RASNE) bidding strategy.  

 

  𝑏′(𝑣𝑖) =
(𝑛 − 1)(𝐾 + 𝑣𝑖 − 𝑏(𝑣𝑖))

𝑣𝑖𝑟
 

𝑏′(𝑣𝑖) = −
(𝑛 − 1)𝑏(𝑣𝑖)

𝑣𝑖𝑟
+

𝑛 − 1

𝑟
+

(𝑛 − 1)𝐾

𝑣𝑖𝑟
 

 

(B.1) 

 
 

Let  𝑝(𝑣𝑖) =
𝑛−1

𝑣𝑖𝑟
, 𝑞(𝑣𝑖) =

𝑛−1

𝑟
+

(𝑛−1)𝐾

𝑣𝑖𝑟
 and they are known by the bidders. 

 

Therefore we can write equation (B.1) as follows 

 

 𝑏′(𝑣𝑖) + 𝑝(𝑣𝑖)𝑏(𝑣𝑖) = 𝑞(𝑣𝑖) 

 

Multiplying each side by an integrating factor 𝑚(𝑣), which yields  

 

 𝑚(𝑣)𝑏′(𝑣𝑖) + 𝑚(𝑣)𝑝(𝑣𝑖)𝑏(𝑣𝑖) = 𝑚(𝑣)𝑞(𝑣𝑖) 
 

 (B.2) 

 

And also in particular we require 

 

  𝑚(𝑣)𝑏′(𝑣𝑖) + 𝑚(𝑣)𝑝(𝑣𝑖)𝑏(𝑣𝑖) = [𝑚(𝑣)𝑏(𝑣𝑖)]′ 

 

So, equation (B.2) becomes 

 

[𝑚(𝑣)𝑏(𝑣𝑖)]′ = 𝑚(𝑣)𝑞(𝑣𝑖) (B.3) 

 

 

Which implies that 𝑚′(𝑣) = 𝑝(𝑣𝑖)𝑚(𝑣) 
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We know that 𝑚′(𝑣) =
𝑑𝑚

𝑑𝑣
, so 

𝑑𝑚

𝑑𝑣
= 𝑝(𝑣𝑖)𝑚(𝑣) 

𝑑𝑚

𝑚
= 𝑝(𝑣𝑖)𝑑𝑣 

 

Integrating both sides y 

 

ln 𝑚(𝑣) = ∫ 𝑝(𝑡)𝑑𝑡
𝑣

0

 

𝑚(𝑣) = exp [∫ 𝑝(𝑡)𝑑𝑡] = exp [
𝑛 − 1

𝑟
∫

1

𝑡
𝑑𝑡] = exp [

𝑛 − 1

𝑟
∙ ln 𝑣] = (𝑒ln 𝑣)

𝑛−1
𝑟

𝑣

0

𝑣

0

= 𝑣
𝑛−1

𝑟  

 

Integrating both sides for equation (B.3) 

𝑚(𝑣)𝑏(𝑣𝑖) = ∫ 𝑚(𝑡)𝑞(𝑡)𝑑𝑡
𝑣

0

 

𝑏(𝑣𝑖) =
1

𝑚(𝑣)
∫ 𝑚(𝑡)𝑞(𝑡)𝑑𝑡

𝑣

0

 

                                                                    

=
1

𝑣
𝑛−1

𝑟

∫ 𝑡
𝑛−1

𝑟

𝑣

0

(
𝑛 − 1

𝑟
+

(𝑛 − 1)𝐾

𝑡𝑟
) 𝑑𝑡 

=
1

𝑣
𝑛−1

𝑟

[
𝑛 − 1

𝑟
∫ 𝑡

𝑛−1
𝑟

𝑣

0

𝑑𝑡 +
(𝑛 − 1)𝐾

𝑟
∫  𝑡

𝑛−1
𝑟

−1
𝑣

0

𝑑𝑡]  

=
1

𝑣
𝑛−1

𝑟

[
𝑛 − 1

𝑟
∙

𝑣
𝑛−1

𝑟
+1

𝑛 − 1
𝑟 + 1

+
(𝑛 − 1)𝐾

𝑟

𝑣
𝑛−1

𝑟
 

𝑛 − 1
𝑟  

]  

=  
𝑛−1

𝑛−1+𝑟
 𝑣 + 𝐾  

 

 

 


