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Abstract

Structural estimation is a widely used methodology in empirical
economics, and a large class of structural econometric models are
estimated through the generalized method of moments (GMM).
Traditionally, a model to be estimated is chosen by researchers based
on their intuition on the model, and the structural estimation itself
does not directly test it from the data. In other words, not sufficient
amount of attention is paid to devise a principled method to verify
such an intuition. In this paper, we propose a model selection for
GMM by using cross-validation, which is widely used in machine
learning and statistics communities. We prove the consistency of the
cross-validation. The empirical property of the proposed model
selection is compared with existing model selection methods by
Monte Carlo simulations of a linear instrumental variable regression
and oligopoly pricing model. In addition, we propose the way to
apply our method to Mathematical Programming of Equilibrium
Constraint (MPEC) approach. Finally, we perform our method to
online-retail sales data to compare dynamic model to static model.

1 INTRODUCTION

Structural estimation of economic models is one of the most widely used
methodologies in empirical economics nowadays in variety of fields.

∗Contact information: Hajime Shimao, hshimao@purdue.edu.
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Structural estimation enables researchers to interpret latent variable, as
well as it allows researchers to perform a counterfactual simulation.
Arguably, however, one of the largest shortcoming in the structural
estimation procedure lies in the selection of a proper model. That is, the
specification of estimation models is usually chosen by researchers and
rarely empirically tested. The structural estimation itself does not directly
address on it from the data, because the estimation is performed by
assuming the model reflects the true data generating process (Angrist and
Pischke (2010)). On a paper it is a common practice for economists to
verbally argue and defend their model specification in a descriptive way.
However, since the validity of the counterfactual simulation crucially
depends on the goodness of the model, verifying and choosing a proper
model empirically is of particular importance. Especially, we often simplify
a model for the ease of tractability: Such simplifications is preferred to be
subject to some assessment.

When a structural model is estimated in economics, researchers often use
generalized method of moments (GMM) as well as maximum likelihood. As
to selecting a true model, Smith (1992) and Rivers and Vuong (2002) offer
a model selection procedure for GMM based on the difference of empirical
moments. Their core idea is a simple use of the GMM minimand as a
fitness of the model with the observed data: That is, to select the model
of the smallest GMM minimand when it is estimated1. Although such a
procedure is asymptotically consistent in choosing a true or ”better” model,
the performance of model selection with limited sample size is still uncertain.
In some applications, economists have to make an inference from a relatively
small number of observations. Given a limited size of the sample, their
procedures may be subject to ”over-fitting”: excessively complicated models
can fit tighter to the observations in hand with better ”goodness-of-fit”
criterion, and thus is selected as a better model even if the model is not
very true.

To avoid over-fitting problem, some model selection criteria such as
AIC-GMM or BIC-GMM ”penalize” the number of parameters in a model
(Andrews (1999)). However, the complexity of economic models is not
simply measured by the number of parameters. Structural model may
include non-parametric components in specification (e.g., Gautier and
Kitamura (2013)), where we cannot apply a penalization based on number

1The theory provided in Rivers and Vuong (2002) applies to broader range of model
selection criteria. However, it is often implemented as GMM minimand comparison. See
Bonnet and Dubois (2010) or Berto Villas-Boas (2007) for example.
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of parameters. Additionally, estimation procedure sometimes involves
nonparametric approximation only for certain models. For example,
estimation of dynamic demand model in Gowrisankaran and Rysman
(2012) includes a nonparametric approximation of a value function, which
may make their model more flexible than static demand model. To date, it
is not well understood how these factors contribute to the over-fitting issue
nor how to penalize its flexibility.

In this paper, we offer a novel approach to this problem that helps
researchers to identify the best model specification from the data. Our
idea is to apply the cross-validation (CV) method, which is commonly used
in other areas such as machine learning, in evaluating the predictive power
of the model. The main idea behind cross-validation is to split the data
into several portions so that test of a model fit is implemented on a
different data from the one used for estimating parameters. As a result,
the estimated moment suffers a smaller over-fitting than in-sample model
selection.

The largest advantage of sample splitting lies in its wide range of
potential applications. On applying CV, one does not need to take the
number of model parameters explicitly. As a result, it can select the true
model among parametric, non-parametric and even semi-parametric
models. Moreover, CV can be applied not only in selecting models, but
also selecting hyper-parameters of estimation and even estimation method
itself. For example, estimation of dynamic model often includes
approximation of value function on a discrete grid space, where the
coarseness of the grid space has not been paid adequate attention though
it heavily influences the performance of estimation. As to the example of
estimation method, random coefficient demand system can be estimated in
various specifications, such as parametric or non-parametric, through
various methodologies such as nested fixed point algorithm or constrained
optimization approach (MPEC, Su and Judd (2012)) and they may yield
different results especially in limited sample size.

Economists typically evaluate estimation techniques and model
specification by checking how the true parameters are recovered in a
Monte-Carlo simulation. However, the best specification or methodology
may vary across different data or the ”true” data generating process that
researchers do not observe. Thus, it is preferable to make an assessment in
real-world data as well, and CV offers a practical approach to that end.
Taking a wide range of applications into consideration, conducting CV in
selecting models deserves a significant portion of attention.

Although CV is commonly used in data science fields such as machine
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learning and data mining, its applicability to economic models is not
obvious. In machine learning and data mining, the primal concern lies in
how accurate the prediction of a regressor or classifier is. Meanwhile, in
empirical economics, identifying the model reflecting the reality closer and
estimating its model parameters are of primal concern, and machine
learning literature does not provide a sufficient guarantee in identification
of a model. This gap remains to be closed in applying data science
methods in econometrics. Taking this into consideration, we propose an
identifiable CV method for GMM.

We first prove the consistency of cross-validation algorithm: That is,
the algorithm identifies a correctly specified model from misspecified models
with the probability approaching to 1 as the number of data increases. When
a model is estimated through likelihood maximization, Yang (2007) proved
the consistency of the cross-validation in non-parametric regression model
selection. We prove an analogous result for GMM version of CV algorithm.

After giving the consistency, we test the performance of our
cross-validation algorithm with a limited number of samples by
Monte-Carlo simulation. Firstly, we examine a simple instrumental
variable regression. We observe our algorithm selects a correctly specified
mode over a misspecified model with high probability even when data size
is limited. Importantly, our algorithm finds the correctly specified model
even when the alternative model has higher flexibility (i.e., more
parameters) than the true model, suggesting that it is robust to
over-fitting. Furthermore, we compare the performance of our algorithm
with Rivers-Vuong type GMM minimand comparison approach and also
approaches based on GMM-AIC and GMM-BIC criteria that Andrews
(1999) suggested. The result implies that the comparison of GMM
minimand suffers over-fitting, and as a result it often selects a misspecified
model of higher complexities. Though GMM-AIC and GMM-BIC based
approaches attempt to solve the over-fitting problem by penalizing the
flexibility of model, their performance turns out to be extremely sensitive
to the model specification, and as a result, they often fail to find the
correctly specified model.

Secondly, we conduct another experiment in more complex nonlinear
models. We use a collusive pricing model similar to the ones of Bresnahan
(1987) and Hu et al. (2014), where their objective of model selection is to
detect a potential tacit collusion from the sales and price data. We simulate
the price and quantity data from perfectly competitive setting and partially
collusive setting, and test if our algorithm discovers the true conduct or
not. We show that our cross-validation procedure generally perform well to
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identify the true pricing structure from a limited amount of data. We show
how CV outperforms the simple GMM fitting comparison without data split.

In addition, we propose a method to apply cross-validation algorithm
when estimation is based on Mathematical Programming of Equilibrium
Constraint (MPEC) approach. MPEC is proposed by Su and Judd (2012)
and is one of the state-of-the-art estimation methodologies. MPEC
achieves high computational efficiency by avoiding the nested fixed point
algorithm, and its convenience is earning significant attention especially in
the industrial organization research community. Though application of CV
to MPEC is not straightforward, we provide a modified algorithm of CV
applicable to MPEC estimation.

Finally, we perform our algorithm on a cutting-edge structural model
with real-world data. The model we adopt is dynamic demand and dynamic
pricing model of Conlon (2012). The dynamic models are considered to
be the recent frontier of the industrial organization community and used
in many applications (such as Lee (2013)). However, the superiority of
the dynamic models compared with static models on its explainability of
the consumer behavior is not sufficiently supported. Likewise, the dynamic
pricing model is a frontier research topic in the industrial organization (Nair
(2007),Luo (2015)), but its empirical support against static model is only
descriptive. We apply our CV algorithm to the market data of an online
retailer based in the UK to test dynamic models against static models. We
show that the results are mixed across different products, even though they
are sold by the same retailer.

The paper proceeds as follows. In Section 2, we formally introduce cross-
validation in GMM and discuss its econometric property. In particular, we
prove its asymptotic consistency. In Section 3, we demonstrate a Monte-
Carlo experiment of model selection in IV regression. In Section 4, we
perform a further experiment in an oligopolistic pricing model as a nonlinear
example. Section 5 explains how we can modify the algorithm when it is
applied to MPEC approach. Section 6 presents the setup and results of the
real-world application of the dynamic pricing model using online-retailer
data. Section 7 concludes the paper.
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2 CROSS-VALIDATION APPROACH TO GMM
MODEL SELECTION

2.1 Setup

Let v = {vt} be a random vector of observed data in V ⊂ Rd. Let Mi for
i = 1, 2 be the two candidate models to explain the observed data. Each
model is characterized by a set of moment conditions f (i) : V ×Θ(i) → Rqi
such that

Mi ⇒ E[f (i)(vt, θ
(i)
0 )] = 0 for a unique θ

(i)
0 ∈ Θ(i)

where θ(i) ∈ Θ(i) denotes the parameters of a model i to be estimated. Given
the observation {vt}t=1,,,T , the parameters of each model are estimated via
GMM;

θ
(i)
T = arg min

θ(i)∈Θ(i)

Q
(i)
T (θ(i)) (1)

where

Q
(i)
T (θ(i)) =

{
1

T

T∑
t=1

f (i)(vt, θ
(i))

}′
W

(i)
T

{
1

T

T∑
t=1

f (i)(vt, θ
(i))

}
.

Let plim
T→∞

W i
T = W i, and the population analogue of the moment condi-

tions be

Q
(i)
0 (θ(i)) = E[f (i)(vt, θ

(i))]′W (i)E[f (i)(vt, θ
(i))].

Assume that plim
T→∞

θ
(i)
T = θ

(i)
0 exists. The null hypothesis is thatM1 andM2

are asymptotically equivalent;

H0 : Q
(1)
0 (θ

(1)
0 ) = Q

(2)
0 (θ

(2)
0 ).

Two alternative hypotheses are that M1 is asymptotically better than M2

or the other way around;

H
(a)
1 = Q

(1)
0 (θ

(1)
0 ) < Q

(2)
0 (θ

(2)
0 ),

H
(b)
1 = Q

(1)
0 (θ

(1)
0 ) > Q

(2)
0 (θ

(2)
0 ).
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2.2 Cross-validation

Cross-validation is a model selection procedure in which the data is split into
two subsets called training set and validation set. The set of parameters of
each model is trained in the trained set, and its goodness is evaluated with
the validation set. Let r ≥ 2, k < r be integers. In leave-k-out r-fold cross-
validation ((k, r)-CV), we first split T datapoints into r disjoint subsets. At
each round of CV, We use r− k of them as the training data, and the other
k as the validation data. Multiple number of rounds among possible splits
are performed to reduce variability. Namely, let

NTj,r = {bT (j − 1)/rc+ 1, bT (j − 1)/rc+ 2, . . . , bTj/rc}

be the indics of the j-th split. Let S ⊂ {1, 2, . . . , r} : |S| = r − k and

NS =
⋃
j∈S
NTj,r

be subset of datapoints consisted of folds in S. The moment on this data-
points is denoted as

Q
(i)
S (θ(i)) =

 1

|NS |
∑
t∈NS

f (i)(vt, θ
(i))


′

W
(i)
S

 1

|NS |
∑
t∈NS

f (i)(vt, θ
(i))

 ,

and the model trained to minimize the moment is denoted as

θ
(i)
S = arg min

θ(i)∈Θ(i)

Q
(i)
S (θ(i)).

Once the model is trained, it is validated by the rest of datapoints as:

Q
(i)
S,valid(θ

(i)
S ) =

 1

|N\S |
∑
t∈N\S

f (i)(vt, θ
(i)
S )


′

W
(i)
S

 1

|N\S |
∑
t∈N\S

f (i)(vt, θ
(i)
S )

 ,

where N\S = {1, . . . , T} \NS . In (k, r)-CV, the averaged validation score of
each model

Q
(i)
valid =

1

rCk

∑
S⊂{1,2,...,r}:|S|=r−k

Q
(i)
S,valid(θ

(i)
S )

is compared, and the model of smaller averaged validation score is selected.
The procedure is summarized in Algorithm 1.
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2.3 Consistency of CV in Model Selection

In this section, we derive the consistency of CV in GMM model selection.
Let one of the models is misspecified. Without loss of generality, we assume
the first model is the true model2. The true model satisfies the following
moment condition:

E[f (1)(v(1), θ
(1)
0 )] = 0.

The latter model is assumed to be misspecified: that is, for any θ(2) the
following holds:

E[f (2)(v(2), θ(2))] > 0.

The misspecification is divided into two local and non-local ones Hall (2005).

Assumption 1. The false model is non-locally misspecified if there exists
µ(θ) such that ||µ(θ)|| > 0 and

inf
θ(2)∈Θ(2)

E
[
f (2)(v(2), θ(2))

]
= µ(θ).

Alternatively, we can make a weaker assumption that the sample moment
of the misspecified model converges to zero slower than that of the true
model. This assumption covers cases where the misspecified model is more
general (or too general) than the true model. This is the case, for example,
the utility function in the true model is a linear function of price but the
misspecified model incorporates higher order polynomials.

Assumption 2. The false model is said to be locally misspecified if, for
every ε ∈ (0, 1), there exists cε > 0 such that, when T is sufficiently large,

P [Q
(1)
T < Q

(2)
T ] ≥ 1− ε.

Note that, in either definition of misspecification, the researcher does
not know which model is true, and our interest lies in consistently choosing
the true model over a misspecified model based on the dataset.

In the previous literature, Smith (1992) offers a pairwise comparison
process for consistent model selection. However, it has some practical
disadvantages when applied to empirical research: (i) A pairwise
comparison could be extremely demanding if the space of candidate
models is large, and (ii) it may be subject to over-fitting problem. To

2Of course, algorithm should not exploit this fact.

8



avoid those issues, the most common practice in the field of machine
learning is to apply cross-validation (CV) algorithm. In the literature in
statistics, Yang (2006,2007) have shown that even the simplest CV
procedure can find a true model consistently when the data structure is
regression form, i.e. yi = f(xi) + εi. Likewise to the literature, we define a
consistent model selection as below:

Definition 1. Assume that model 1 is correct while model 2 is wrong in a
sense that it is globally misspecified. A selection rule is said to be consistent
if the probability of selecting model 1 approaches 1 as T −→∞.

To derive the consistency of CV, we define the following assumptions.

Assumption 3. (strict stationarity) v = {vt} is a strictly stationary pro-
cess.

Assumption 4. (regularity condition) Let f (i)(vt, θ) and its population
analogue E[f (i)(vt, θ)] be continuous on θ(i) for each vt. Let Θ(i) be
compact and E[supθ(i)∈Θ(i) f (i)(vt, θ)] be bounded.

Assumption 5. (ergodicity) v = {vt} is an ergodic process.

Assumption 6. (identification condition) Let

E[
∂f (i)(vt, θ

(i)
0 )

∂θ(i)
]

have rank d.

In the following we prove the following theorem.

Theorem 1. Let Assumptions 3–6 hold. Then, (r, k)-CV is consistent.

Proof of Theorem 1

We first states lemmas that are proven in Hall (2005), and by using them
we prove the theorem.

Lemma 1. (Consistency of the estimator in the correct model, Theorem
3.1 in Hall (2005)) Let S ⊂ {1, . . . , r}, |S| = r − k be any split in (k, r)-CV,
and model 1 be correctly specified. Let Assumptions 3–6 hold. Then,

θ
(1)
S →

p θ
(1)
0 (2)

as T/r →∞.
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Lemma 2. (Property of a non-locally misspecified estimator, Theorem 5.2
in Hall (2005)) Let S ⊂ {1, . . . , r}, |S| = r− k be any split in (k, r)-CV. Let
Assumptions 3–6 hold. Then, here exists c > 0 such that

Q
(i)
0 (θ

(i)
S )

p→ c (3)

as T/r →∞.

Lemma 3. (Uniform convergence of the moment, Lemma 3.1 in Hall (2005))
Let Assumptions 3–6 hold. Then,

sup
θ(1)∈Θ(1)

|Q(i)
S,valid(θ(1))−Q(1)

0 (θ(1))| p→ 0 (4)

sup
θ(2)∈Θ(2)

|Q(2)
S,valid(θ(2))−Q(2)

0 (θ(2))| p→ 0 (5)

Proof of Theorem 1. We show that,

sup
θ(1)∈Θ(1)

|Q(1)
valid|

p→ 0 (6)

and there exists c > 0 such that

|Q(2)
valid|

p→ c (7)

which imply Theorem 1. First,

|Q(1)
valid −Q

(1)
0 (θ

(1)
0 )| ≤

∑
S∈{1,...,r}:|S|=r−k

|Q(1)
S,valid(θ

(1)
S )−Q(1)

0 (θ
(1)
0 )|

≤
∑

S∈{1,...,r}:|S|=r−k

(
|Q(1)

S,valid(θ
(1)
S )−Q(1)

0 (θ
(1)
S )|+ |Q(1)

0 (θ
(1)
S )−Q(1)

0 (θ
(1)
0 )|

)
Inequality (4) implies the first term converges to zero in probability, and the
second term converges to zero in probability by (2). In other words,

|Q(1)
valid(θ(1))−Q(1)

0 (θ
(1)
0 )| p→ 0 (8)

and by Assumption 3.3 in Hall (2005),

Q
(1)
0 (θ

(1)
0 ) = 0 (9)

and thus inequality (6) is derived. We next show (7). We have,

Q
(2)
valid

≥ Q(2)
0 (θ

(2)
0 )− 1

rCk

∑
S∈{1,...,r}:|S|=r−k

(
|Q(2)

S,valid(θ
(2)
S )−Q(2)

0 (θ
(2)
S )| − |Q(2)

0 (θ
(2)
S )−Q(2)

0 (θ
(2)
0 )|

)
,
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where the first term of the RHS converges to c > 0 in probability by (2).
The second term converge to zero in probability by (5). The third term goes
to zero in probability by our assumption. Therefore (7) holds.

3 MONTE-CARLO EXPERIMENTS IN
LINEAR MODEL

In this section we present a simple simulation of instrumental variables
(IV) regression models to illustrate the consistency of our cross-validation
algorithm of model selection. This example also highlights how
GMM-minimand-based model comparison and cross-validation can exhibit
different results. The setting is similar to the one on Hall and Pelletier
(2007). Suppose the true data generating process is

y = X1β
1 +X2β

2 + Z2α+ ε,

where y is a T × 1 vector and X1 and X2 are T × p1 and T × p2 matrix
respectively. X1 and X2 are generated from instrumental variables as

X1 = Z1δ
1 + ξ1,

X2 = Z2δ
2 + ξ2,

where Z1 and Z2 are T × c1 and T × c2 matrix respectively.
We consider a case where we have two candidate models to compare. The

first model exploits the explanatory variables X1 and instrumental variables
Z1.

M1 :y = X1β + ε1,

E[Z ′1ε
1] = 0,

whereas the second model employs X2 and Z2;

M2 :y = X2β + ε2,

E[Z ′2ε
2] = 0.

Each model has different explanatory variables as well as the set of
instrumental variables so that two models are non-nested. In addition,
there are two important differences between the two candidates. First, the
second model can be ”misspecified” when α 6= 0, because the instrumental
variables Z2 influences y directly and thus IVs are not independent from
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ε2. When α > 0 and does not decrease with the number of observations,
i.e. α = 10, it is globally misspecified, which results in inconsistent
estimates of the parameters.

The second difference is that the number of the variables. In the
following, we assume that p1 ≤ p2, meaning that the second model has a
larger number of explanatory variables. As discussed earlier, this may
cause ”over-fitting” issue to the estimation even if the model is falsely
specified. In such a case, previous literature proposes the ways to penalize
the model by the number of parameters (Andrews (1999)). We compare
the performance of the proposed method with the ones of those existing
methods in the later section.

Though this example may seem to be somewhat arbitrary, similar
problems arise in many situations when econometric models are compared.
Specifically, one model can be flexible (or even ”over flexible”) but
misspecified, while the other is simpler but accurate. Some researchers
may not value the simplicity, but they would prefer a ”correctly specified”
model than misspecified models. For example, think of a case where
economists try to explain wage from education and other variables, where
education is endogenous and has to be proxied by IVs. The misspecified
model includes incorrect IVs that gives bias to the estimate of the
coefficient. Even if one model exhibits a good fit to the data, if the
coefficient of interest is not properly estimated, such a model does not
serve well for labor economists. In those occasions, our algorithm serves to
help researchers to find the most ”correct” model. Our method is general
enough so that any specification can be compared.

3.1 Results

First we consider the case where over-fitting is a concern as the
misspecified model has more parameters therefore could exhibit better fit
to the data. We compare our methodology in this case to the model
selection procedures proposed by Andrews (1999) as well as simple GMM
comparison as in the previous section. Andrews (1999) defines GMM-AIC
and GMM-BIC criterion as

GMM-AIC: TQ
(i)
T (θiT )− 2(|ci| − pi);

GMM-BIC: TQ
(i)
T (θiT )− (|ci| − pi)lnT,

for i = 1, 2. The procedure chooses the model that exhibits smaller value of
the criterion.
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Figure 1 shows the empirical probability of choosing the correctly
specified model by cross-validation. One can see that, even when the
model 2 has larger number of variables, it chooses the model 1 with very
high chance even when the data is limited. When the bias parameter of
the model 2 α is as large as 12., it selects the first model with probability
91.2% even when the data size is only 100 and the second model has 9
variables compared to 3 of the first model.

On the other hand, GMM based model selection performs extremely
poorly when the misspecified model has much more variables than the first
model. When p2 = 9, even with data size 1600 the accuracy is as bad as
59.1%, only slightly above chance level of 50% (when α = 12.). With data
size 200, it chooses the second model only for 15.7%, clearly indicating it is
subject to over-fitting.

Note that in our setting, GMM-AIC and GMM-BIC exhibit exactly
same choice of models as simple GMM based selection. This is due to the
unbalance of two terms in the criterion. In our case, the first term is
typically on order of more than 105, while the second term is no greater
than 102. Many factors influence the magnitude of the first term, such as
the choice of weighting matrix or number of moment conditions. Our result
suggests that while cross validation robustly performs in many situations,
performance of GMM based model selection is sensitive to those settings.

We turn to the case where the two models have the same number of
parameters, while the second model is misspecified. As the number of
parameters is the same across two models, note that GMM, GMM-BIC,
and GMM-AIC simply choose the model with smaller GMM minimand.
Figure 2 compares the performance of cross-validation algorithm and the
GMM minimand based model selection when the second model is globally
misspecified. The y-axis shows the probability that the correctly specified
model is chosen by each algorithm. The result indicates that when
overfitting is not a concern, GMM based model selection performs slightly
better than cross validation, especially when the data is smaller.

4 NONLINEAR EXPERIMENT: COLLUSION
DETECTION

In this section, we demonstrate another Monte-Carlo study to show how
our algorithm works in a structural estimation incorporating nonlinear and
non-nested models. Specifically, we simulate and estimate a variant of a
price collusion model suggested by Bresnahan (1987). The goal of our
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model selection procedure is to detect whether the firms are colluded, or
determining the price competitively using the share and price data. The
underlying idea is that the prices of the products of colluded firms are
determined to maximize the joint profit, while the competitive price should
maximizes the profit of individual firms. Therefore, given the same (true)
parameters in demand and cost function, the pricing pattern varies
according to the collusive structure. A methodology to study whether
collusive behavior exists within a certain industry is by itself an important
research topic because ignoring the possibility of collusive pricing may lead
to a biased inference of cost estimation, which could be a critical problem
for policy implication in applications such as merger analysis.

In the same way as the previous section, we compare the performance
of CV-based algorithm to GMM-minimand-based algorithm based on the
theory of Rivers and Vuong (2002). Note that since the number of
parameters in a model does not vary across collusive structure, AIC or
BIC adjustment does not influence the model selection criteria. We show
that in a realistic sample size, CV performs better than in-sample
comparison in many cases.

The shares and prices are simulated from a standard logit demand system
and static pricing. We simulate data assuming a certain collusive structure.
Then we test if and how often CV algorithm can discover the assumed
collusive structure. The estimation process is similar to Hu et al. (2014).

4.1 Model

Assume each firm produces a single product and denote them as j = 1, ..., J .
The markets are denoted as t = 1, ..., T . The demand is assumed to be a
simple logit demand specification: the utility of a consumer i purchasing a
product j in a market t is expressed as

uijt = Xjtβ + αpjt + ξjt + εijt,

where Xjt is the observed characteristics that influence the demand and ξjt
is the unobserved utility shock . Assuming εijt follows i.i.d type-I extreme
value distribution, the share function is

Djt(pt) =
exp(Xjβ + αpjt + ξjt)∑J

j′=1 exp(Xj′tβ + αpj′t + ξj′t)
Mt,

where pt = {pjt}j=1,...,J is the vectorized prices and Mt is the market size
which is known to the researcher. For simplicity, we do not allow random-
coefficients (Berry et al. (1995)) as typically done in applications.
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Firms’ marginal cost is expressed as

MCjt = Yjtγ + λjt

,where Yjt is the observed characteristics that affect the marginal cost, and
λjt is the i.i.d cost shocks. The profit of each product is

πjt(pt) = (pjt −MCjt)Djt(pt).

We assume that colluded firms jointly maximize their net profit, sum
of πjt over j in a group. Define ∆ as a J × J matrix of price elasticity of
colluded products where the (j, r)th element is

∆jr =

{
−∂Dr

∂pj
if j and r are colluded

0 otherwise.

By solving the first order conditions, the equilibrium prices are determined
to satisfy

pt = (∆)−1 Dt −MCt,

where Dt and MCt are a vectorized representation of Djt(Pt) and
{MCjt}j=1,..,J respectively.

4.2 Estimation and Model Selection

The parameter estimation under each model follows a standard GMM
procedure with instrumental variables. Let Z be instrumental variables
that influence the price but are not correlated with the unobserved shocks
ξ and λ. Given a model, the parameters are chosen to minimize the GMM
objective defined from the moment condition

E[ξZ] = 0

E[λZ] = 0.

The instrumental variables Z include (i) own characteristics, (ii) square
of own characteristics, (iii) mean of characteristics in a market, and (iv)
square of mean characteristics in a market. The weighting matrix is set to
be W = (Z ′Z)−1.

The candidate models are represented as partitions of firms into price-
colluded groups. For instance, if the number of firms is two (j = 1, 2), the
possible models are either competitive ({{1}, {2}}) or collusive ({{1, 2}}). If
three firms (j=1,2,3), possible models are {{1}, {2}, {3}} (all competitive),
{{1}, {2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, and {{1, 2, 3}} (all colluded).
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4.3 Simulation Results

We consider different number of observed markets, T = {25, 50, 75, 100},
realistic numbers for real world application3. We also vary the true value
of price coefficient to test the performance with different difficulty of model
selection. Along with the data size, the difficulty of model selection depends
on how different the observed data would be across different models. In this
particular example, the key difference between models is generated from
cross price elasticity. When the cross price elasticity is low, competitive
price and colluded price do not differ as much, which makes it harder to
find the true model. In logit-demand, the cross price elasticity is calculated
by multiplying the share of the two products. Thus, lower price coefficient
generally makes model selection easer as it increases the realized share, and
the cross price elasticity as a result. For each setting, we generate 100
synthetic dataset and perform the model selection in each.

Table 1 reports the mean and standard deviation of CV score across true
models and candidate models with the price coefficient equals to −.1 and
−.3. The second column represents the true partition of firms, and the third
to seventh are the results corresponding to each candidate model. The CV
score of the true model is on average smaller than the mis-specified models
in any specification. Also, the standard deviation of the score is smaller
for the true model. Both mean and standard deviation of the true model
decline in the number of observations.

We report the probability that each candidate model is chosen by our
algorithm in table 2. In each setting, the probability to find the true model
increases in the number of markets, which corresponds to our theoretical
finding in section 2. For comparison, Table 3 presents the same for GMM-
minimiand comparison.

Figure 3 compares the performance of our model selection to a simple
in-sample GMM fit comparison under different price coefficient. It shows
that our CV algorithm generally performs better than in-sample comparison
except for cases where the number of observations is limited (T = 25). The
difference is particularly large when the true model is partially colluded
(second column). As seen in Table 3, GMM comparison tends to select
all-competitive model in such a case.

3For instance, Nevo (2001) observes 94 independent markets.
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5 CROSS-VALIDATION APPROACH TO
MPEC Estimation

In this section, we propose a method to apply cross-validation algorithm
when estimation is based on Mathematical Programming of Equilibrium
Constraint (MPEC) approach proposed by Su and Judd (2012). MPEC
approach formulates the estimation as an optimization problem with
constraints: The variables of the optimization consists of structural
parameters as well as endogenous latent economic variables, and the
constraints among the variables represent the equilibrium condition that
the economic model requires.

The application of the cross validation procedure to MPEC estimation
is not straightforward: If parameters estimated from training data is
substituted in a MPEC model with test data directly, the constraints
would be not satisfied in general. In such a case, we cannot directly
compare GMM objective on test data across models since we also have to
consider the violation of constraints as indication of model misfit.

Taking the above discussion into consideration, we propose a modified
cross validation procedure. We differentiate the choice variables for the
optimization problem into two categories: model variables and
observation-specific variables. Model variables are specific to the model,
therefore shared across training and test data. Observation-specific
variables are latent variables defined on each observation. For instance, in
BLP demand estimation example on Dubé et al. (2012), the price elasticity
is a parameter assumed to be constant across observations, thus treated as
a model variable. Meanwhile, the unobserved utility shock (ξjt in their
notation) is defined for each datapoint, thus regarded as observation
specific.

Our modification is simple. In training data, we jointly choose the
model variables and observation-specific variables to optimize the GMM
objective function with equilibrium constraints. In test data, we still solve
a constrained optimization problem, but only with respect to
observation-specific variables while the model variables are set to the
estimates from training data. The algorithm is described in detail below
and summarized in Algorithm 2.

5.1 GMM-MPEC

We first outline the MPEC formulation of parameter estimation. Here we
follow the notation of Su and Judd (2012) except that we allow some
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endogenous variables to be observation-specific. Suppose an econometric
model Mi is expressed with the parameter vector θ, a vector of
endogenous variables σ, and endogenous variables that are
observation-specific η, and the equilibrium constraint h(θ, σ, η) = 0. In
MPEC formulation, each model is characterized by a set of moment
conditions with equilibrium constraints:

Mi ⇒E[f (i)(vt, θ
(i)
0 , σ

(i)
0 , η

(i)
0 )] = 0

s.t.

h(i)(θ
(i)
0 , σ

(i)
0 , η

(i)
0 ) = 0.

Given the observation {vt}t=1,,,T , the parameters of each model are es-
timated via MPEC:

(θ
(i)
T , σ

(i)
T , η

(i)
T ) = arg min

θ(i),σ(i),η(i)
Q

(i)
T (θ(i), σ(i), η(i)) (10)

s.t. (11)

h(i)(θ(i), σ(i), η(i)) = 0. (12)

where

Q
(i)
T (θ(i), σ(i), η(i))

=

{
1

T

T∑
t=1

f (i)(vt, θ
(i), σ(i), η(i))

}′
W

(i)
T

{
1

T

T∑
t=1

f (i)(vt, θ
(i), σ(i), η(i))

}
.

Let θ
(i),GMM−MPEC
T be the parameters that are solution of Eq. (12), and

let θ
(i),GMM
T be the solution of standard GMM (i.e., Eq. (1)). Moreover, let

V
(i),GMM−MPEC
T (θ) = min

σ(i),η(i)
Q

(i)
T (θ, σ(i), η(i)) (13)

s.t. (14)

h(i)(θ, σ(i), η(i)) = 0, (15)

and V
(i),GMM
T (θ) = Q

(i)
T (θ). The equivalence of GMM and GMM-MPEC

implies

θ
(i),GMM−MPEC
T = θ

(i),GMM
T

V
(i),GMM−MPEC
T (θ) = V

(i),GMM
T (θ). (16)
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5.2 Cross-Validation in GMM-MPEC Approach

We split the observations in the same way as section 2. The moment on the
datapoints S is

Q
(i)
S (θ(i), σ(i), η(i))

=

 1

|NS |
∑
t∈NS

f (i)(vt, θ
(i), σ(i), η(i))


′

W
(i)
S

 1

|NS |
∑
t∈NS

f (i)(vt, θ
(i), σ(i), η(i))

 .

We train the model to minimize the moment under equilibrium constraint.
The trained model is denoted as

(θ
(i)
S , σ

(i)
S , η

(i)
S ) = arg min

θ(i),σ(i),η(i)
Q

(i)
S (θ(i))

s.t.

h(i)(θ(i), σ(i), η(i)) = 0.

Once the model is trained, it is validated by the rest of datapoints.
Instead of simply evaluating the GMM objective in the validation data at
the trained model parameters, observation-specific endogenous variables
need to be chosen so that the equilibrium constraints are satisfied. We do
so by minimizing the GMM objective subject to equilibrium constraints
with respect to η only, while model parameters are fixed at trained value.
Formally,

Q
(i)
S,valid =

arg min
η(i)

 1

|N\S |
∑
t∈N\S

f (i)(vt, θ
(i)
S , σ

(i)
S , η(i))


′

W
(i)
S

 1

|N\S |
∑
t∈N\S

f (i)(vt, θ
(i)
S , σ

(i)
S , η(i))


s.t.

h(i)(θ
(i)
S , σ

(i)
S , η(i)) = 0.

The averaged validation score of each model

Q
(i)
valid =

1

rCk

∑
S⊂{1,2,...,r}:|S|=r−k

Q
(i)
S,valid

is compared and the model of smaller averaged validation score is selected.

Remark 1. (consistency of GMM-MPEC) From (16) and Theorem 1, the
consistency of GMM-MPEC with the same assumption on the moment
directly follows.
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6 APPLICATION: DYNAMIC DEMAND AND
DYNAMIC PRICING MODEL ON ONLINE
RETAILER DATA

In this section, we perform our model selection procedure in a structural
model with a real-world dataset. The models we compare are dynamic and
static demand and pricing model that are taken from Conlon (2012). In
particular, we first apply our cross-validation algorithm to test either the
state-of-the-art dynamic demand model (Gowrisankaran and Rysman
(2012)) or the traditional static demand model (Berry et al. (1995)) has
stronger explanatory power in the consumer behavior. To this aim, we use
monthly sales and price data of an online-retail shop. Furthermore, we
consider supply side dynamics of pricing that takes the seasonality and
consumer skimming into consideration such as Nair (2007): We investigate
whether or not such a model explains the observed pricing pattern better
than traditional static profit maximization model that is based on the
consumer model selected in the previous step.

Structural estimation of a dynamic model has been an important
frontier in industrial organization, both on demand side and supply side.
On demand side, dynamic model of consumer behavior has been widely
applied by researchers recently (Gowrisankaran and Rysman (2012)). The
underlying idea in the dynamic demand model is that consumers are
forward-looking regarding the changes in the market such as price and
make a dynamic decision by considering the future market state. Such a
model is justified by the fact that important parameters such as price
elasticity could be severely mis-estimated by ignoring the forward-looking
behavior of consumers. Meanwhile, similar mis-estimation would occur if a
researcher applies a dynamic model in the case the consumers are in fact
myopic. From a market level data, it is not directly visible if consumers are
forward-looking or myopic.

Contrary to the demand side, dynamic pricing in supply side has a long
history of theoretical studies dating back to Coase (1972). Nevertheless,
little empirical attention is paid until recent years (Nair (2007)). Under
certain conditions, firms have the incentive to determine current price by
taking its effect on the future profit into consideration. For example, when
consumers are heterogeneous in an evaluation of a product, firms are
motivated to ”skim” high-evaluation consumers in earlier periods by
setting a high price and later lower it. With myopic consumers (as in Luo
(2015)), the pricing decision boils down to a dynamic programming of a
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firm in the case of monopoly or a dynamic game between firms in the case
of oligopoly. If the consumers are also forward-looking, the pricing boils
down to a dynamic game between consumers and firms as studied in Nair
(2007). In this case, the observed price and demand are interpreted as a
result of dynamic equilibrium.

It is not straightforward to infer if the pricing is dynamic or not from the
market level data. A declining tendency on the price does not always indicate
that firms are making pricing decision dynamically: If the consumers are
heterogeneous in either product evaluation or price sensitivity and leave
market after purchase, a myopic optimal price may be decreasing in periods
since the remaining consumers are more price elastic.

Applying dynamic pricing model to data generated from myopic pricing
would cause a significant bias in the estimates of supply-side parameters
such as marginal cost. For instance, a dynamic pricing model may interpret
an observed high price in a certain period as a firm sparing some demand
for the future, while it is a result of high marginal cost in truth. Therefore,
estimation of supply-side model parameters such as marginal cost requires
researchers to know if firms are myopic or forward-looking.

As it is important to correctly specify the dynamic feature of the agent’s
decision making both on demand and supply side, researchers are encouraged
to verify whether the decision making is static or dynamic from the data
rather than appealing to intuition, desirably based on real-world datasets.
Regarding this aspect, we demonstrate our cross-validation algorithm to
compare two by two alternative models; dynamic or myopic consumers, and
dynamic or myopic firms. The models are estimated via GMM-MPEC. We
take a simple dynamic model from Conlon (2012).

We perform estimation and model selection on a dataset of price and
sales of an online-retailer based in UK. The data is taken from the
University of California Irvine (UCI) Machine Learning Repository
(henceforth, UCI). UCI repository consists of more than 300 datasets. The
data used in this study is available here at
https://archive.ics.uci.edu/ml/datasets/Online+Retail free of
charge. We consider the use of such a publicly available dataset increases a
reproducibility of a research process. In machine learning field, researchers
are encouraged to compare the performance of a newly proposed model or
algorithm to old ones with a publicly available dataset, and the UCI
repository is widely used in this aim.
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6.1 Models

We consider models of 2 by 2 design: static or dynamic demand, static or
dynamic pricing. We denote each model as m ∈ {1, 2, 3, 4}, where m = 1, 2
assume static demand, m = 3, 4 assume dynamic demand, m = 1, 3 assume
static pricing, and m = 2, 4 assume dynamic pricing. For simplicity, we
assume that the firm and consumers make their purchase decision
independently across products. It is entirely possible to test if this
assumption is valid or not using our CV algorithm, but we omit it as the
main purpose of this section is an illustration of model selection procedure.
The consumers are heterogeneous in price sensitivity and the constant
term of utility as in random coefficients model. We assume that consumers
make a purchase at most once for each product within the considered
period. This assumption is justified by the transaction level data. Among
all the transactions used in the data, 75.8% of them are made by
consumers who purchased the same product only once in the considered
period. An alternative approach is to model repeated purchase and
inventory behavior explicitly as in Hendel and Nevo (2006), but we do not
take this path for tractability.

6.1.1 Demand Model

In each period, consumers in the market decide whether to purchase a
product or not to maximize their objective function. If the demand is
assumed to be static, the objective function is simply the utility function
defined below. If the demand is dynamic, the objective function is the
infinite-period sum of discounted utility.

Denote products as j = 1, ..., J and period as t = 1, ..., T . Consumer i’s
utility of purchasing a product j at period t is

uijt = αpi pjt + α0
ij + Xjtα

x + ξjt + εijt.

≡ δijt + εijt

where pjt is the price of a product j in period t, Xjt is the observable
characteristics, and ξjt is the i.i.d preference shock, which enters the
moment conditions. εijt is the logit error term that follows type-I extreme
value distribution and i.i.d across periods and products. The utility of not
purchasing is ui0t = εi0t as the non-random component is normalized to be
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zero. The random coefficients follow a normal distribution.

αpi = αp + νpi ρ
p

α0
i = α0 + ν0

i ρ
0

,where (αp, α0) are the population mean of the utility coefficients, νpi and ν0
i

are draws from a standard normal distribution, and (ρp, ρ0) are the standard
deviation of the distribution of the random coefficients.

In the static demand model, the consumers simply compare the utility
of purchase to non-purchase in each period. Thus the purchase probability
is

smijt =
exp(δijt)

exp(δijt) + 1

for m = 1, 2.

In the dynamic demand model, the consumers make purchase decision
by comparing the instant utility to the value of waiting until next period.
Let Ωd

ijt be a state space for a consumer i on product j at period t and
Wij(Ω

c
ijt) be a value function associated to the state. The Bellman equation

is expressed as

Wij(Ω
d
ijt) = max{uijt, ui0t + βE[Wij(Ω

d
ijt+1)|Ωd

ijt]}.

The purchase probability of product j of a consumer i at period t is

smijt(Ω
d
ijt) =

exp(δijt)

exp(δijt) + exp(βE[W (Ωc
ijt+1)|Ωc

ijt])

for m = 3, 4.

Following Conlon (2012), we make an assumption that consumers have
perfect foresight over a transition of state Ωd

ijt. Formally,

E[W (Ωd
ijt+1)|Ωd

ijt] = wijt+1,

where

wit = ln(exp(δijt) + exp(βwit+1))

for all i, j, and t. The second line is a direct consequence of the first line
following the argument of Rust (1987). An alternative and more popular
specification is to assume that consumers form an expectation of the future
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state by certain functional form, typically an AR(1) regression. Compared
to functional assumption perfect foresight reduces the computational
burden significantly as it avoids integration over a distribution for
calculating expectation (See Conlon (2012) for further discussion.) Also,
note that by our CV algorithm we can even investigate which of perfect
foresight and AR(1) assumption makes the model more accurate, which we
believe is an interesting future work.

Finally, for both static and dynamic model let Mijt be the market size
of consumers for a product j at period t. Given the consumers purchase
the same product at most once, the market size transition for any model
m ∈ {1, 2, 3, 4} follows

M
(m)
ijt+1 = Mijt(1− s(m)

ijt ).

6.1.2 Supply Model

We express the marginal cost of product j at period t for the retailer as
MCjt where

MCjt = Yjtγjt + λjt.

Xcost
jt is the observable characteristics of the product, and λjt is the cost

shock i.i.d across time and products.
Denote the states of a product j for the retailer at period t as Ωs

jt. Ωs
t

includes the market size of each consumer segment {Mijt}i and the draw of
unobserved utility shock, {ξijt}i and λjt. Given the demand system
described above, the demand function is written as

D
(m)
jt (pjt,Ω

s
t ) =

R∑
r=1

M
(m)
ijt s

(m)
ijt .

The instant profit function of a product j at period t is therefore

πjt(pjt,Ω
s
jt) = Djt(pjt,Ω

s
jt)(pjt −MCjt),

In static pricing model, m = 1, 3, the retailer simply chooses the price
to maximize the myopic profit:

pmjt = arg max
pjt

πjt(pjt)∀j, t

for m = 1, 3.
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In dynamic pricing model (m = 2, 4), the retailer maximizes the net
profit over time with discounting. The discounting factor β is assumed to
be same with consumers. The retailer determines the price after observing
the realization of the shocks, {ξijt}i and λjt. The value function of a product
j is expressed as

Vj(Ω
s
t ) = E

[
max
pjt

(
πjt + βVj(Ω

s
t+1)

)∣∣∣∣Ωf
t , pjt

]
,

where the expectation is over the unobserved cost shock in the next period,
λjt+1. The optimal price is determined as

pmjt = arg max
pjt

πjt(pjt) + βE[Vj(Ω
s
t+1)|Ωs

t ]

for m = 2, 4.

Similar to the demand side, we assume that the retailer has a perfect
information on the transition of the error draw.

6.1.3 Equilibrium

This section describe the equilibrium condition for each model. When
consumers and firms are both static (m = 1), the equilibrium price and
demand are the standard one as in many models such as Berry et al.
(1995). When consumers are static but firms are dynamic (m = 2), pricing
can be seen as a single agent dynamic optimization problem with
continuous choice variable pjt. Similarly, when consumers are dynamic but
firms are static (m = 3), consumers solve a single agent dynamic
optimization problem. The consumers problem is an optimal stopping
problem as the choice is the timing of purchase. When both consumers
and the retailer are both dynamic (m = 4), we assume their behavior is at
Markov Perfect Nash Equilibrium (MPNE) where consumers’ and retailer’s
prediction of the value function matches to the realization.

6.2 Data

We obtain our data from UCI machine Learning Repository. The UCI
Machine Learning Repository maintains more than three hundreds
datasets that are intensely used by machine learning community for
empirical investigation and comparison of algorithms. When researchers
propose a new model or algorithm in machine learning field, a common
practice is to test its performance on the dataset in this repository. Such a
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culture gives a thorough idea on the practical performance of existing
models and algorithms. Moreover, it helps a new researcher replicate the
results on the existing papers.

The dataset we utilize in this study is the online retail data created by
Chen et al. (2012), posted on UCI Machine Learning Repository in
November 2015. The data is publicly available at
https://archive.ics.uci.edu/ml/datasets/Online+Retail. The
information about the data source is provided by the authors as follows:
”The online retailer under consideration is a UK-based and registered
non-store business with some 80 members of staff. The company was
established in 1981 mainly selling unique all-occasion gifts. For years in
the past, the merchant relied heavily on direct mailing catalogs, and orders
taken over phone calls. It was only 2 years ago that the company launched
its own web site and shifted completely to the web. Since then the
company has maintained a steady and healthy number of customers. The
company also uses Amazon.co.uk to market and sell its products.”

The data include all the transactions occurred on this retailer from
December 2010 to December 2011. Each transaction information includes
quantity, unit price, consumer ID, and country. We dropped any sales to
outside UK. The majority of the sales is inside UK and non-UK sales has
only limited amount (approximately 20%.) Since our purpose is to
demonstrate application of CV model selection to static and dynamic
models, we aggregate the data into a monthly sales of each product so that
the data format follows typical market level data and we can apply
commonly used economic models. The monthly sales is simply a sum of
the quantity sold in a particular month. The monthly price is calculated as
the average of the price of transaction occurred in each month weighted by
the quantity. We omitted the products that have any zero sales in the
considered months from the data.

On the top of price and sales data, the author hand-coded product
category and subcategory based on the description of products. The
categories include Children, Decoration, or Kitchen. The number of
products as well as basic statistics are summarized in table 4. Figure 4
shows the average of monthly price and quantity sold in each category. It
shows that the dynamics is heterogeneous across categories. For instance,
the price of products in Gift and Decoration show tendency to decline over
periods, while Home and Garden or Candle show more fluctuation.
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6.3 Estimation and Model Selection

We implement model selection for the demand side and supply side
sequentially. First we test if the demand is static or dynamic.
Subsequently, we test if the pricing is static or dynamic, assuming the
demand model chosen in the previous step. The endogenous variables such
as the market size Mijt and the share sijt are estimated in the demand
side, and imported over to the supply side estimation. Importantly, we do
not have to specify the pricing model on estimation of demand side by
virtue of perfect foresight assumption. We treat the data in each category
independently.

We adapt 3-fold cross validation, (k, r) = (1, 3). Because the data has a
panel structure of products and periods, either the product-wise or period-
wise split is possible. We adopt split based on products. That is, we split
the products into three groups, and use two of them to estimate a model
and use the last one for validation.

6.3.1 MPEC formulation

To estimate each model by GMM-MPEC, we formulate the estimation as a
minimization problem of GMM objective with equilibrium constraints
based on the model described above. Under the assumptions we impose,
the equilibrium constraints are convex and mostly either linear or
quadratic. This fact ensures that we are able to find an optimal solution of
the estimation problem.

First we describe the MPEC formulation of demand models. For the
static demand model (m = 1, 2), the set of constraints are

smijt =
exp(δijt)

exp(δijt) + 1

Dm
jt =

∑
i

Mm
ijts

m
ijt

δijt = αpi pjt + α0
ij + Xjtα

x + ξjt

αpi = αp + νpi ρ
p

α0
i = α0 + ν0

i ρ
0

Mm
ijt = Mm

ijt−1(1− smijt),

(17)

for all (i, j, t).
For dynamic demand model, the constraints are similar except the con-

sumers compare the purchase utility to the value of waiting until next pe-
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riod.

smijt =
exp(δijt)

exp(δijt) + exp(βwit+1)

wit = ln(exp(δit) + exp(βwit+1))

Djt =
∑
i

Mm
ijts

m
ijt

δijt = αpi pjt + α0
ij + Xjtα

x + ξjt

αpi = αp + νpi ρ
p

α0
i = α0 + ν0

i ρ
0

Mm
ijt = Mm

ijt−1(1− smijt)

(18)

for all (i, j, t).
The model parameters to estimate are θd = (αp, α0, ρp, ρ0). The data to

input are the realized demand Djt, the observed price pjt, and the random
draws νpi and ν0

i . The predicted share sijt, the market size of each consumer
type Mijt, and the error draw ξjt are the endogenous variables. In the
dynamic demand model, the value function wijt is also observation-specific
endogenous variable to choose for the optimization.

We define the supply side estimation problem by the first order condition
and the Bellman equation. By abusing notation, let Dm

jt (p) as a demand
function with respect to price in model m. The supply side equilibrium
constraints of static pricing model is that the observed prices are chosen to
maximize the instant profit:

Dm
jt =

∑
i

Mm
ijtsijt

MCmjt = Xs
jtγ + λjt

pjt = arg max
p

[Dm
jt (p)(p−MCmjt )]

(19)

for all (i, j, t).
Instead of the third line above, the dynamic pricing model includes
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Bellman equation:

Dm
jt =

∑
i

Mm
ijtsijt

MCjt = Xs
jtγ + λjt

pjt = arg max
p

[Dm
jt (p)(p−MCjt) + βVjt+1(Ωs

jt+1)]

Vjt(Ω
s
jt) = max

p
[Dm

jt (p)(p−MCjt) + βVjt+1(Ωs
jt+1)].

(20)

The model parameters to estimate is θs = γ. MCjt, λjt, and the value
function are observation-specific endogenous variables. Mijt and sijt are
estimated in the demand side as endogenous variables.

In both static and dynamic model, the constraint includes the retailer’s
optimization problem. We convert it to the first order condition when solv-
ing for the estimation. The details are in the Appendix.

The GMM objective is a function defined by moment conditions

E[ξZ] = 0

E[λZ] = 0,

where Z is the instrumental variables. It includes category and subcategory
dummies, period dummy, and the market size of consumer segments {Mit}i.
The market size information is correlated with price because it relates to the
price elasticity. Since we assume that the unobserved shocks are not serially
correlated, the market size at period t is not correlated with the shocks in
the same period. Further detail of the setting for estimation is described in
the Appendix.

6.4 Results

Table 5 presents the cross validation score of each model. The second from
the last column shows the demand model selected by CV. The last column
exhibits the selected pricing model. One can see that the selected model
varies across categories. On demand side, the data on Children Decoration,
and Kitchen are explained better by the static model, while the dynamic
model is preferred on other categories. On supply side, static pricing
explained the data of Crafts, Decoration, and Personal Item better.

The result of model selection is difficult to interpret. One could try to
provide some intuition: For instance, the products that fits static demand
model better may be the ones that consumers cannot make a consumption
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plan. On products where the retailer engages in static pricing, it may be
due to certain circumstance that researchers do not observe, such as a
contract with wholesaler or limitation of inventory. However, prior to
observing the result of cross validation, it is hard to make an reliable and
scientific argument and justification for any model to be realistic.

The difficulty of interpretation in turn suggests that it is impractical
for researchers to assume a certain model beforehand. Selecting a
structural model based on intuition may severely bias the inference. To see
the problem, 6 shows the estimated price coefficient in each category in
different specification. While in some cases two models exhibit fairly
similar result, in some cases such as Candle or Party the result is largely
different. Therefore, we recommend that researchers cross validate their
models whenever possible, unless they have a strong reason to believe in
certain model.

7 CONCLUSION

In this paper, we have proposed a cross-validation approach to model
selection when models are estimated via GMM criterion. Cross-validation
procedure can be readily implemented in any existing economic models
without much extra work for researchers. We have proved its asymptotic
consistency, and Monte-Carlo experiments in both linear and non-linear
model confirm that cross-validation outperforms in-sample comparison
that economists traditionally practice.

We also proposed a way to apply cross-validation when models are
estimated through MPEC. As its real-world application, we adapt our CV
based model selection to test dynamic demand model and dynamic pricing
model in an online-retailer data. We find a quite diverse result across
product categories. Unexpectedly, even on the same retailer it is not
consistent whether a dynamic model is preferred or not. As the implication
of structural estimation largely depends on the assumed model, this result
suggests that economists should cross-validate their structural models
rather than appealing to for reliability of their inference.
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Algorithm 1 (k, r)-Cross Validation on GMM

1: Input: Models {Mi}, data {vt}t=1,...,T .
2: for each model Mi do
3: for each training data {vt}t∈NS

do
4: Estimate model parameters as

θ
(i)
S = arg min

θ(i)∈Θ(i)

Q
(i)
S (θ(i))

5: Calculate the score Q
(i)
S,valid(θ

(i)
S )

6: end for
7: Calculate the average score

Q
(i)
valid =

1

rCk

∑
S⊂{1,2,...,r}:|S|=r−k

Q
(i)
S,valid(θ

(i)
S )

8: end for
9: Find the best model that exhibits the smallest Q

(i)
valid .
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(a) p1 = 3,p2 = 5,α = 3. (b) p1 = 3,p2 = 5,α = 7.

(c) p1 = 3,p2 = 9, α = 3. (d) p1 = 3,p2 = 9, α = 7.

Figure 1: The accuracy of model selection when p1 < p2. The y-axis is the
probability that the correctly specified model (model 1) is chosen by each
procedure. The number of instruments is set to be c1 = c2 = 10. The cross-
validation is 2-folds, i.e. r = 2. The weighting matrix is set to be identity
matrix.
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(a) p1 = p2 = 3,α = 7. (b) p1 = p2 = 3,α = 12.

(c) p1 = p2 = 7, α = 7. (d) p1 = p2 = 7, α = 12.

Figure 2: The accuracy of model selection when p1 = p2. The y-axis is the
probability that the correctly specified model (model 1) is chosen by each
procedure. The number of instruments is set to be c1 = c2 = 10. The cross-
validation is 2-folds, i.e. r = 2. The weighting matrix is set to be identity
matrix.
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Table 1: The validation Score of CV. Average of 100 iterations (standard
deviation in the bracket).

α = −.1

Candidate Model

Number of Market True Model {1, 2, 3} {1, 2}{3} {1}{2, 3} {1, 3}{2} {1}{2}{3}

25

{1, 2, 3} 1.175 23.732 28.822 28.799 30.709
(1.570) (44.224) (89.920) (56.014) (60.764)

{1, 2}{3} 41.026 1.022 27.687 22.208 8.799
(61.458) (1.049) (54.927) (29.543) (13.536)

{1}{2}{3} 25.441 10.115 8.536 8.659 0.912
(26.184) (17.287) (9.610) (8.646) (1.021)

50

{1, 2, 3} 0.233 6.892 6.505 5.708 6.686
(0.181) (10.774) (5.495) (5.073) (7.486)

{1, 2}{3} 9.890 0.314 5.328 6.143 2.466
(11.450) (0.207) (3.391) (5.696) (1.781)

{1}{2}{3} 10.050 2.552 3.764 2.808 0.274
(10.486) (2.366) (10.730) (2.180) (0.215)

75

{1, 2, 3} 0.144 3.436 3.470 3.272 3.580
(0.094) (2.328) (2.232) (1.865) (2.415)

{1, 2}{3} 5.736 0.170 3.284 3.315 1.367
(4.349) (0.114) (2.456) (1.864) (0.867)

{1}{2}{3} 6.651 1.710 1.800 2.046 0.190
(5.723) (1.334) (1.082) (3.060) (0.152)

100

{1, 2, 3} 0.084 2.314 2.475 2.371 2.374
(0.046) (1.195) (1.716) (1.418) (1.424)

{1, 2}{3} 4.050 0.124 2.289 2.384 0.951
(3.121) (0.071) (1.754) (1.785) (0.671)

{1}{2}{3} 4.463 1.314 1.266 1.357 0.124
(2.282) (1.761) (0.791) (1.017) (0.081)

α = −.3

25

{1, 2, 3} 1.139 2.531 2.355 1.906 1.704
(2.269) (3.149) (3.209) (2.087) (1.771)

{1, 2}{3} 8.223 1.174 3.528 4.746 1.646
(13.529) (1.405) (3.663) (8.142) (2.184)

{1}{2}{3} 10.684 3.272 3.175 4.273 1.190
(16.949) (4.735) (3.757) (9.404) (1.373)

50

{1, 2, 3} 0.281 0.651 0.661 0.640 0.643
(0.256) (0.439) (0.442) (0.416) (0.461)

{1, 2}{3} 1.713 0.319 0.970 1.165 0.396
(1.448) (0.229) (0.742) (0.947) (0.278)

{1}{2}{3} 3.628 0.998 1.056 1.041 0.365
(15.427) (1.742) (2.198) (1.949) (0.607)

75

{1, 2, 3} 0.159 0.387 0.387 0.426 0.356
(0.110) (0.233) (0.257) (0.431) (0.214)

{1, 2}{3} 1.096 0.210 0.623 0.574 0.238
(0.684) (0.164) (0.370) (0.384) (0.150)

{1}{2}{3} 1.303 0.504 0.467 0.464 0.169
(1.023) (0.336) (0.288) (0.322) (0.117)

100

{1, 2, 3} 0.103 0.261 0.255 0.277 0.258
(0.060) (0.134) (0.135) (0.165) (0.124)

{1, 2}{3} 0.743 0.134 0.419 0.414 0.157
(0.393) (0.079) (0.244) (0.246) (0.094)

{1}{2}{3} 0.937 0.317 0.335 0.329 0.108
(0.464) (0.170) (0.243) (0.253) (0.068)
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Table 2: The Model Selection Probability with CV.

α = −.1

Candidate Model

Number of Market True Model {1, 2, 3} {1, 2}{3} {1, 3}{2} {1}{2, 3} {1}{2}{3} true

25
{1, 2, 3} 0.99 0.00 0.00 0.01 0.00 0.99
{1, 2}{3} 0.00 0.95 0.00 0.00 0.05 0.95
{1}{2}{3} 0.00 0.01 0.00 0.00 0.99 0.99

50
{1, 2, 3} 1.00 0.00 0.00 0.00 0.00 1.00
{1, 2}{3} 0.00 0.99 0.00 0.00 0.01 0.99
{1}{2}{3} 0.00 0.00 0.00 0.00 1.00 1.00

75
{1, 2, 3} 1.00 0.00 0.00 0.00 0.00 1.00
{1, 2}{3} 0.00 1.00 0.00 0.00 0.00 1.00
{1}{2}{3} 0.00 0.00 0.00 0.00 1.00 1.00

100
{1, 2, 3} 1.00 0.00 0.00 0.00 0.00 1.00
{1, 2}{3} 0.00 1.00 0.00 0.00 0.00 1.00
{1}{2}{3} 0.00 0.00 0.00 0.00 1.00 1.00

α = −.3

25
{1, 2, 3} 0.62 0.04 0.04 0.11 0.19 0.62
{1, 2}{3} 0.00 0.62 0.01 0.03 0.34 0.62
{1}{2}{3} 0.00 0.07 0.05 0.09 0.79 0.79

50
{1, 2, 3} 0.77 0.05 0.04 0.10 0.04 0.77
{1, 2}{3} 0.00 0.64 0.01 0.00 0.35 0.64
{1}{2}{3} 0.00 0.01 0.04 0.04 0.91 0.91

75
{1, 2, 3} 0.78 0.05 0.07 0.06 0.04 0.78
{1, 2}{3} 0.00 0.57 0.02 0.00 0.41 0.57
{1}{2}{3} 0.00 0.05 0.01 0.03 0.91 0.91

100
{1, 2, 3} 0.82 0.04 0.09 0.02 0.03 0.82
{1, 2}{3} 0.00 0.64 0.00 0.00 0.36 0.64
{1}{2}{3} 0.00 0.04 0.02 0.01 0.93 0.93
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Table 3: The Model Selection Probability with GMM.

α = −.1

Candidate Model

Number of Market True Model {1, 2, 3} {1, 2}{3} {1, 3}{2} {1}{2, 3} {1}{2}{3} true

25
{1, 2, 3} 0.99 0.01 0.00 0.00 0.00 0.99
{1, 2}{3} 0.00 0.95 0.00 0.00 0.05 0.95
{1}{2}{3} 0.00 0.02 0.01 0.02 0.95 0.95

50
{1, 2, 3} 1.00 0.00 0.00 0.00 0.00 1.00
{1, 2}{3} 0.00 0.92 0.02 0.00 0.06 0.92
{1}{2}{3} 0.00 0.00 0.00 0.03 0.97 0.97

75
{1, 2, 3} 1.00 0.00 0.00 0.00 0.00 1.00
{1, 2}{3} 0.00 0.97 0.00 0.00 0.03 0.97
{1}{2}{3} 0.00 0.00 0.00 0.00 1.00 1.00

100
{1, 2, 3} 1.00 0.00 0.00 0.00 0.00 1.00
{1, 2}{3} 0.00 0.96 0.00 0.00 0.04 0.96
{1}{2}{3} 0.00 0.01 0.00 0.00 0.99 0.99

α = −.3

25
{1, 2, 3} 0.61 0.10 0.09 0.09 0.11 0.61
{1, 2}{3} 0.00 0.66 0.00 0.02 0.32 0.66
{1}{2}{3} 0.00 0.06 0.05 0.05 0.84 0.84

50
{1, 2, 3} 0.69 0.10 0.13 0.07 0.01 0.69
{1, 2}{3} 0.01 0.54 0.01 0.03 0.41 0.54
{1}{2}{3} 0.00 0.02 0.04 0.05 0.89 0.89

75
{1, 2, 3} 0.77 0.09 0.07 0.06 0.01 0.77
{1, 2}{3} 0.00 0.44 0.00 0.00 0.56 0.44
{1}{2}{3} 0.00 0.03 0.00 0.06 0.91 0.91

100
{1, 2, 3} 0.77 0.05 0.11 0.06 0.01 0.77
{1, 2}{3} 0.00 0.39 0.01 0.01 0.59 0.39
{1}{2}{3} 0.00 0.01 0.00 0.02 0.97 0.97
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Figure 3: The choice probability of true model on CV and GMM model
selection.

Algorithm 2 (k, r)-Cross Validation on GMM-MPEC

1: Input: Models {Mi}, data {vt}t=1,...,T .
2: for each model Mi do
3: for each training data {vt}t∈NS

do
4: Estimate model parameters as

(θ
(i)
S , σ

(i)
S , η

(i)
S ) = arg min

θ(i),σ(i),η(i)
Q

(i)
S (θ(i), σ(i), η(i))

s.t. h(θ(i), σ(i), η(i)) = 0.

5: Calculate the score as

Q
(i)
S,valid(θ

(i)
S ) = min

η(i)
Q\S(θ

(i)
S , σ

(i)
S , η(i))

s.t. h(θ
(i)
S , σ

(i)
S , η(i)) = 0.

6: end for
7: Calculate the average score

Q
(i)
valid =

1

rCk

∑
S⊂{1,2,...,r}:|S|=r−k

Q
(i)
S,valid(θ

(i)
S )

8: end for
9: Find the best model that exhibits the smallest Q

(i)
valid .
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Figure 4: The price and quantity dynamics of online retail data in each
category.

Table 4: Summary of Online-Retail Data

Category Example of Products # Products
Ave. Unit Price Ave. Monthly Sales

(USD) (Thousand)
Candle Candles, Candle Holder, Candle Plate 77 1.944 0.232

Children Baby Bib, Doll, Stationery Set 175 4.122 0.148
Crafts Knitting, Patches, Flannel, Sketchbook 38 2.694 0.214

Decoration Photo frame, Flower, Decorative Signs 153 2.454 0.1954
Gift Gift boxes, Tape, Message cards 65 0.7881 0.207

Home and Garden Lamp,Cushion,Bath Salt 199 4.342 0.196
Kitchen Mug, Tea Set, Lunch box 247 3.352 0.189
Party Balloons,Napkins, Paper cup 75 2.432 0.197

Personal Umbrella, Ring, Shopping bag 109 2.864 0.159
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Table 5: CV score in different categories

Demand Pricing Selected Model

Category Static Dynamic Static Dynamic Demand Pricing

Candle .00683 .00651 .015302 .011402 Dyn Dyn
Children .00913 17.9 .982 .376887 Stat Dyn
Crafts .00847 .00655 .003628 .004258 Dyn Stat
Decoration .00162 .00163 .000454 .000644 Stat Stat
Gift .00328 .00277 .000288 .000119 Dyn Dyn
Home and Garden .00177 .00109 .053322 0.022654 Dyn Dyn
Kitchen .00152 .00158 .002165 .000763 Stat Dyn
Party .00795 .00310 .016513 .002486 Dyn Dyn
Personal Item .00305 .00193 .003356 0.003443 Dyn Stat

Table 6: Estimated price coefficient in different categories

Category Static model Dynamic model

Candle -6.52515 -1.71062
Children -0.01343 -0.01835
Crafts -2.12241 -0.66246
Decoration -1.26782 -0.83267
Gift -3.28775 -3.42115
Home and Garden -0.1841 -0.4384
Kitchen -0.56447 -0.53658
Party -5.37787 -1.18728
Personal Item -0.78579 -0.83831
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Appendix A Detail of the simulation in section 4

The dimension of the product characteristics on utility function Xjt is set
to be 2, where the first characteristic is constant and the second is
randomly generated independently across products and periods. The cost
side characteristics Yjt includes Xjt and one additional characteristic also
drawn independently. The characteristics are drawn from a normal
distribution of mean 0 and standard deviation .1. The unobserved error
terms ξjt and λjt are also drawn from a normal distribution of mean zero
and standard deviation 1, independently across products and markets. The
true values of parameters other than price coefficient α are β = (2., 1.) and
γ = (3., 0., 1.). Those values are chosen to ensure that the marginal cost
does not fall below zero, and the resulting share of outside option is not too
close to zero for the invertibility of ∆. Given the generated characteristics
and the errors, the prices are simulated by solving the profit maximization
problem by sequential least square quadratic programming. The results
are robust to variety of parameter setting and distributional assumption.

Appendix B Detail of estimation procedure in
section 6

B.1 Hyper parameter setting

The discounting factor β is set to be .9 for dynamic models both on demand
and supply side. The draw of consumer types is generated from Halton
sequence. The number of consumer segments is set to be 7. The initial
market size Mij1 is defined by the sum of the sales over the considered period
in the subcategory that j belongs to, divided by the number of consumer
segments.

B.2 Converting supply side constraints to FOC

The equilibrium constraints on supply side includes the retailer’s profit
maximization. In the estimation, we substitute it by first order condition.
Let us define the derivative of the demand function with respect to price,
∂Dm

ijt

∂pjt
, to be another set of endogenous variable of MPEC that represents

the derivative of the demand function from a consumer i of a product j at

period t evaluated at the realized price. Also define
∂Dm

jt

∂pjt
be a derivative of

the overall demand function, again at the observed price. In static pricing
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model, the MPEC constraints are converted to:

∂Dm
ijt

∂pjt
= Mm

ijts
m
ijt(1− smijt)

∂Dm
jt

∂pjt
=
∑
i

∂Dijt(pjt)

∂pjt

Djt(pjt) +
∂Dm

jt

∂pjt
(pjt −MCjt) = 0

MCjt = Xs
jtγ + λjt

∀(j, t).

In dynamic pricing model, FOC include a derivative of the value
function. In addition to the ones above, we define two sets of additional
endogenous variables: the realized value function of product j at period t,
vjt, and the derivative of value function at next period with respect to

current price evaluated at the observed price,
∂Vjt+1

∂pjt
. Then FOC and the

Bellman equations translate to MPEC constraints:

Djt(pjt) +
∂Dm

jt

∂pjt
(pjt −MCjt) + β

∂Vjt
∂pjt

= 0

vjt = Djt(pjt −MCjt) + βvjt+1

∀(j, t).

As we do not parametrically estimate the value function, the difficulty arises
to calculate the derivative of the value function. The state variable at t+ 1
that are influenced by pjt are the market size of consumer segments Mijt+1.

Thus, define the derivative of the value with respect to market size,
∂Vjt+1

∂Mijt+1
,

as another set of endogenous variable. Then,

∂Vjt+1

∂pjt
=
∑
i

∂Vjt
∂Mijt+1

∂Mijt+1

∂pjt
pjt

=
∑
i

∂Vjt
∂Mijt+1

(
−∂Dijt(pjt)

∂pjt

)
.

We still have to approximate
∂vjt

∂Mijt+1
. One methodology is to utilize the

estimated values of vjt. The realized value vjt should be equal to the value
function evaluated at the realized state Ωjt. Therefore, by comparing vjt
and Mijt, we are able to infer how value function changes with respect to
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Mijt. In the estimation, we do so by linear approximation such as

∂Vjt
∂Mijt+1

=
1

2

(
vjt+1 − vjt

Mijt+1 −Mijt
+

vjt − vjt−1

Mijt −Mijt−1

)
.
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