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Abstract

By matching a large database of individual forecaster data with the universe of sizable nat-

ural disasters across 54 countries, we identify a set of new stylized facts: (i) forecasters are

persistently heterogeneous in how often they issue or revise a forecast; (ii) information rigidity

declines significantly following large, unexpected natural disaster shocks; (iii) the response of

forecast disagreement displays interesting patterns: attentive forecasters tend to move away

from the previous consensus following a disaster while the opposite is true for inattentive fore-

casters. We develop a learning model that captures the two channels through which natural

disaster shocks affect expectation formation: attention effect – the visibly large shocks induce

immediate and synchronized updating of information for inattentive agents, and uncertainty

effect – the occurrence of those shocks generates increased uncertainty among attentive agents.
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1 Introduction

Expectations matter. Yet, how economic agents form expectations remains an open question,

as evidenced by the comprehensive survey in Manski (2017). Indeed, Manski concludes, “To

make progress, I urge measurement and analysis of the revisions to expectations that agents

make following occurrence of unanticipated shocks.” We answer this call by matching a

large database of individual forecaster data with the universe of natural disasters across 54

countries. We find that professional forecasters respond to the large unexpected shocks in

consistently different ways, depending on how often they issue or revise a forecast. As a

result, the overall forecast accuracy and dispersion show interesting dynamics, which has

not been explored in the literature. We build a theory of information updating aimed at

matching the stylized facts of expectations formation of professional forecasters.

Our theory has three key elements. (i) Agents are not interchangeable: attentive a-

gents revise forecasts frequently and inattentive agents make revisions infrequently and non-

systematically. Assumed here is that the fraction of inattentive agents is exogenous and

persistent, consistent with what we see in the data. (ii) Inattentive agents update spo-

radically during the normal times à la Mankiw and Reis (2002). However, following large

and unexpected shocks, the cost of not updating information is high, and accordingly the

majority of inattentive agents will update their information sets and make new forecasts.

(iii) Attentive agents always combine public and private signals in making their forecasts, as

described in the noisy information model à la Sims (2003), Woodford (2003) and Maćkowiak

and Wiederholt (2009).

Our theory tells the following story about expectations formation following large unex-

pected shocks. Visibly large shocks induce an immediate increase in updating of information

for most inattentive agents. This attention effect is particularly pronounced for those with

an outdated information set, resulting in a significant decline in information rigidity. This
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is the first channel through which natural disaster shocks affect expectation formation. For

attentive agents, the occurrence of those shocks generates increased uncertainty among them

and as a result, their new forecasts closely resemble the previous period’s forecasts. This is

the second channel through which natural disaster shocks affect expectation formation.

The ingredients of our theory are motivated by our empirical findings. Our primary

database of macroeconomic forecasts comes from Consensus Economics and covers a dozen

of macro variables across 54 countries. We focus on professional forecaster data primarily

because such forecasters have a comparative advantage in allocating resources to acquire,

absorb, and process information in forming expectations. As such, the degree of information

rigidity found in professional forecasters likely forms a lower bound for other economic agents.

Furthermore, the expectations of professional forecasters directly affect those of households

(Carroll, 2003) and are used as inputs to the decisions of the representative agent (Ilut and

Schneider, 2014).

We find that forecasters are persistently heterogeneous in how often they issue or revise a

forecast, with attentive agents submitting or revising forecasts every month, while inattentive

agents provide or revise forecasts only infrequently. This latter finding is consistent with

the so-called predisposition effects in Branch (2004) that as long as there is no substantial

evidence that would dramatically surprise those inattentive agents, they will not revise their

previous forecasts.

Another key element of our empirical analysis is the selection and identification of large,

unexpected shocks. Our natural disaster data come from the Center for Research on the Epi-

demiology of Disasters and contain over 15,000 natural disasters. We limit our attention to

‘unpredictable’ disasters like tornadoes, earthquakes, and storms rather than slower-moving

disasters such as heat waves or disease outbreaks. We further limit our focus only on sig-

nificant disasters as measured by the number of people affected or killed and the monetary
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damages caused.1

To further address the concerns that the disaster shocks are not fully unexpected or

relatively small in magnitude, we construct a news-based measure of coverage of the disaster

across several thousand English-language newspapers from the Access World News database.

This index allows us to measure the change in attention, or at least newspaper attention, paid

to a country following a disaster. This enables us to flexibly distinguish between disasters

that are relatively unimportant from those that may be much more so. Since we expect

that unexpected disasters should have the highest increases in news coverage, this approach

also helps to filter out more predicted disasters that may have been “baked in” to previous

forecasts.

By carefully matching the forecaster data with these natural disasters, we find that a large

and unexpected shock induces a synchronized response and information updating among

professional forecasters. Following those shocks, the overall dispersion among forecasters

declines and forecast accuracy increases. These results may at first appear counter-intuitive

but are in fact a natural consequence of the dominance of inattentive agents – disasters

induce inattentive forecasters to update their forecasts and, in doing so, actually move the

majority of them closer to the mean forecast and also to the ex-post true value of the variable.

Our paper makes several contributions to the literature. First, we build a theory of expec-

tation updating with heterogeneous agents that extends the existing literature in a number

of ways. Our model is closely related to the theoretical literature on expectations formation

with information frictions. For instance, Mankiw and Reis (2002) propose the sticky infor-

mation model that explains agents’ rational inattention in terms of limited resources and

the cost of updating information sets. Reis (2006) generalizes this basic model to allow for

state-dependent setup in which the length between information update is optimally chosen as

1Without this limitation, nearly every country is hit by a natural disaster in nearly every period of our
sample.
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a function of shocks. Sims (2003), Woodford (2003) and Maćkowiak and Wiederholt (2009)

advocate the noisy information model that emphasizes the limited ability of economic agents

to process new information from noisy signals. Andrade and Le Bihan (2013) develop the

hybrid sticky-noisy information model and Andrade, et al. (2016) extend the model in a

multivariate context. Giacomini, Skreta and Turen (2016) formulate a theory of expectation

updating in which agents can be inattentive but, when updating, they follow Bayes’ rule and

assign homogeneous weights to public information. In contrast to these papers, agents in our

model are persistently heterogeneous in their type – attentive and inattentive. In contrast

to all previous work, we also explicitly model agents’ behavior following large, unexpected

shocks; see, e.g. Ortoleva (2012) and Nimark (2014).2

Our model also generalizes the noisy information model in two dimensions by allowing

for (i) heterogeneous precision of private signals such that interpretation of the same public

signal differs across agents,3 and (ii) time-varying precision of public signals in order to

capture the increased uncertainty among attentive agents due to large shocks. The latter

feature of our model is motivated by the recent literature on the impact of uncertainty shocks

on real economic activities.4

Another novel feature of our paper is to propose a new concept of information rigidity

within the noisy information model and document high-frequency time variations in the

2Ortoleva (2012) models the non-Bayesian reactions to unexpected news. Our model differs from Ortoleva
in that we specify the change of paradigm for inattentive agents whereas for attentive agents, they still face
the same signal extraction problem, albeit with much noisier public signals following large shocks. The large,
unexpected shocks identified in our paper are also different from the so-called “man-bites-dog” signals in
Nimark (2014) where observing those signals would change the probability distribution of the underlying
variable. By contrast, the occurrence of those shocks increases agents’ uncertainty and induces synchronized
information updating, but does not change the underlying data generating process in our framework.

3Lahiri and Sheng (2008) estimate a Bayesian learning model with heterogeneity and find that differential
interpretation of public information explains from almost nothing to 70% of forecast disagreement as forecast
horizon gets shorter from 24- to 1-month ahead. Acemoglu, Chernozhukov and Yildiz (2016) formulate a
theory in which starting with heterogeneous prior beliefs, agents will not converge to a consensus even after
observing the same infinite sequence of signals when there is uncertainty in the public information.

4Important contributions in this literature include Abel (1983), Bernanke (1983), Bloom (2009), Pastor
and Veronesi (2012), Jurado, Ludvigson and Ng (2015), Baker, Bloom and Davis (2016), and Baker, Bloom
and Terry (2017), among others.
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estimated degree of information rigidity after the occurrence of large shocks. Coibion and

Gorodnichenko (2012) interpret the weight on agent’s previous forecast (relative to new

information) as the degree of information rigidity, which is univariate and constant over

time. We generalize their measure in a multivariate context and define information rigidity

as the scaled trace of the matrix of the weights attached to agent’s previous forecast. Our

measure represents the average degree of information rigidity when predicting many variables

and is in line with the empirical evidence in Coibion and Gorodnichenko (2015) that forecast

revisions of other variables have little predictive power for the forecast errors of each variable.

Using this new measure, we find that the estimated degree of information rigidity sig-

nificantly changes after the occurrence of large shocks. This finding adds to the literature

relying on survey expectations to evaluate models with information frictions.5 The findings

from all of these papers firmly establish the presence of information rigidities in expectation-

s formation process. However, most papers treat the degree of inattention as a structural

parameter whereas we find that the visibly large shocks induce immediate and synchronized

updating of information. This result supports state-dependence in the information updating

process as in Gorodnichenko (2008) and Maćkowiak and Wiederholt (2009). Finally, all of

these papers predict that, following large shocks, disagreement among professional forecast-

ers either increases or does not change significantly. However, using forecasts for a variety

of macroeconomic variables across many countries, we document that disagreement indeed

decreases following the occurrence of large shocks. Our model is successful in explaining this

5Within the sticky information framework, Mankiw, Reis and Wolfers (2004) and Branch (2007) use the
aggregate forecasts to calibrate information rigidity, while Carroll (2003) estimates the degree of inattention
by matching consensus forecasts of households and professionals, and Coibion (2010) estimates the inattention
degree in a sticky-information Phillips curve. In contrast, Andrade and Le Bihan (2013) and Andrade, et
al. (2016) provide a direct, micro-data estimate of this inattention parameter. Patton and Timmermann
(2010) estimate a learning model and find that heterogeneity in priors plays the most important role in
explaining disagreement up to two year ahead. Coibion and Gorodnichenko (2012) compare the sticky and
noisy information models by estimating the response of forecast errors and disagreement to structural shocks.
Coibion and Gorodnichenko (2015) propose a new approach to test the full-information rational expectations
hypothesis and quantify the underlying degree of information rigidity.
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seemingly anomaly and matching other key features of the expectations formation process.

Our paper proceeds as follows. Section 2 describes the dataset used in this paper. We

establish a set of new stylized facts about expectations formation following large unexpected

shocks in section 3. We introduce the information structure faced by agents in section 4.

We propose a theory of expectation updating in section 5. Section 6 presents the simulation

results. Finally, section 7 concludes. The appendix includes proofs and additional tables.

2 Data

2.1 Consensus Forecast Data

Our primary database of macroeconomic forecasts comes from Consensus Economics. We

utilize aggregated data regarding 54 countries back to 1989 for which we can obtain suffi-

cient forecast data alongside information regarding the actual GDP and inflation for a given

country-year.6 Consensus Economics obtains the individual forecasts from professional fore-

casters including banks and financial firms, leading industrial companies, consulting firms,

and think tanks and research groups. These forecasts cover the means and standard devia-

tions of individual forecasts for GDP and inflation in the current calendar year as well as the

next calendar year. Because panelists are asked about calendar years rather than a rolling

period of 12 months, as forecasts are solicited later in the year, they mechanically become

more accurate. That is, forecasts for 2014 GDP will be significantly more accurate when

solicited in December of 2014 than in January of 2014.

In addition to this aggregated forecast data, we utilize individual forecasts from Con-

6Countries include Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China,
Colombia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hong Kong, Hungary,
India, Indonesia, Ireland, Israel, Italy, Japan, Korea, Latvia, Lithuania, Malaysia, Mexico, Netherlands,
New Zealand, Norway, Pakistan, Peru, Philippines, Poland, Portugal, Romania, Russia, Singapore, Slovak
Republic, Slovenia, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey, UK, US, Ukraine,
and Venezuela.
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sensus Economics. This subset of data solely covers the G7 countries: Canada, France,

Germany, Italy, Japan, the United Kingdom, and the United States. The individual fore-

cast data cover 1989 - 2014 and include forecasts for GDP, Personal Consumption, Business

Investment, Corporate Profits, Industrial Production, Producer Prices, Consumer Prices,

Wages, Car Sales, Housing Starts, Unemployment, Current Account Balance, Short- and

Long-Term Interest Rates, and Federal Budget Balances. Not all variables are covered for

all countries, though forecasts for common variables such as GDP, inflation and investment

are well-represented for the entire G7. The forecasts for the majority of these variables are

expressed in terms of growth rates rather than in levels. There are 296 unique panelists, of

which 225 have submitted at least 25 individual monthly forecasts to the survey.

Individual panelists are not required to submit a forecast each month and can choose

the variables and countries to which they would like to respond. Additionally, panelists

can submit an identical forecast from one month to the next. These features of this set

of forecaster data are common across many commonly used sources of forecaster data like

Bloomberg forecasts and the Philadelphia Fed Survey of Professional Forecasters.

2.2 Disaster Data

Our natural disaster data has been obtained from the Center for Research on the Epi-

demiology of Disasters (CRED). This data contains over 15,000 extreme weather events

such as, droughts, earthquakes, epidemics, floods, extreme temperatures, insect infestations,

avalanches, landslides, storms, volcanoes, fires, and hurricanes from 1960 to 2014. For each

disaster, we can observe the event’s category, its date and location, the number of deaths,

the total number of people affected by the event, and the estimated economic cost of the

event. The CRED data includes industrial and transportation accidents which we exclude

in our analysis.
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For each country-month period, we give a value of one if a disaster has occurred and

a zero otherwise. This means that if a country has, for example, three earthquakes in one

month, it only receives a value of one. The reason for this approach is to avoid double

counting recurring but linked events within a month such as an earthquake with multiple

aftershocks.

Because of the large number of diasters covered in the data, we need to apply a filter to

focus only on major events. With this aim, we include a shock only if it fulfills at least one of

the following conditions: 1. More than 0.00001% of a country’s population dead (eg. more

than 30 dead in the United States); 2. More than $10M in damages; 3. More than 50,000

people ‘affected’ (eg. made homeless, injured, substantial financial losses). Our results are

robust to modification of filters for all three characteristics, or by utilizing both relative and

absolute filters. Furthermore, below we discuss a weighting system to place higher weight

on larger and more unexpected disasters.

Finally, we adjust the date of a disaster if it takes place after the Consensus survey date

in a given month. That is, if the June Consensus Forecast has already taken place, we

attribute any further disasters in June to the month of July.

2.3 Newspaper Data

Two natural concerns are that the disaster shocks that we utilize are not fully unexpected or

are relatively small in magnitude. In order to help alleviate both of these potential problems,

we turn to a measure of unexpectedness and impact derived from news article mentions of

the countries in question.

Using a database of newspapers from Access World News, we construct an index that

measures the amount of news about a given country in the days surrounding each event.7

7Access World News contains over 2,500 newspapers. We focus on newspapers from the US, as they make
up the majority of coverage in this database. For US disasters, we look for changes in articles written that
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For each individual disaster, we search the newspaper archive for news articles that mention

the country in question. For each of the 15 days leading up to the disaster and 15 days

following it, we measure this count of articles. We then measure the relative change in the

number of articles written about the country. Figure 1 shows an average of this series where

each event’s coverage has been normalized to 1 in the 15 days prior to the event. A value of

2 following time zero means that there are, on average, twice as many articles written that

contain that country’s name on that day relative to the pre-disaster average.

This process allows us to measure the change in attention, or at least newspaper attention,

paid to a country following a disaster. This will enable us to flexibly distinguish between

disasters that are relatively unimportant from those that may be much more so. Moreover,

it will help us to filter out expected disasters that may have been ‘baked in’ to previous

forecasts, as only unexpected disasters should have the highest increases in news coverage.

That is, if we observe a similar number of articles regarding the country before and after

the event date, we can assume that the event was predicted ahead and/or it was not that

important.

Our primary news-based scaling measure is the percentage increase in newspaper articles

mentioning a given country in the 15 days after the event relative to the 15 days prior to

the event. We use a relatively narrow window in order to minimize concerns about longer-

term trends in coverage about various countries, but our results are robust to using 5-day or

30-day windows. When using the media-weighted shocks, we use the shock with the highest

jump in media citations for that category in that month.

mention the state that the disaster occurs in rather than the country.

9



3 Empirical Results

3.1 State-Dependent Informational Rigidities

We first test for the presence of information rigidities in our sample of macroeconomic fore-

cast data across G7 countries. Our specification takes the form noted in Coibion and Gorod-

nichenko (2015), utilizing data on the average forecasts across all individual forecasters in a

given country-month. That is:

ForecastErrori,t = β1ForecastRevisioni,t + Timet + Countryi + εit, (1)

where ForecastErrori,t = ActualV aluei,t − MeanForecasti,t and ForecastRevisioni,t =

MeanForecasti,t −MeanForecasti,t−1.

In the presence of information rigidities, β1 would be predicted to be positive. That is,

forecasters update periodically over time and thus the mean forecast converges only slowly

to the full-information forecast, driving a relationship between forecast revisions and the

forecast error of any given period relative to the truth.

In Table 1, we restrict our analysis to forecasts of next-year GDP. In the first column of

Table 1, we find that the change in mean forecasts from month to month is strongly and

positively related to the forecast error. We interpret this as strong evidence for the presence

of information rigidities in macroeconomic forecasting and that updating of forecasts is

predictably less than ‘complete’ in any given month. That is, because not all forecasters

update in each period, the movement of the mean forecast goes only part-way to the full-

information forecast that is likely closer to the ex-post true value for the period.

Columns 2-4 mirror this specification but add in interactions of ForecastRevisioni,t with

disasters and disasters that are scaled utilizing two different metrics. We find strong negative

coefficients on the interaction terms, demonstrating that in the month following a natural
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disaster, the correlation between forecast revisions and forecast errors weakens substantially.

Column 2 uses a simple indicator for whether there was a natural disaster in country i in

month t. In the month of a natural disaster, the strength of the relationship between forecast

revisions and forecast errors falls by approximately 50% (-0.286/0.555).

Column 3 scales the disaster by the size of the aforementioned increase in newspaper

coverage surrounding the disaster. Here we see that not only do natural disasters tend to

affect these informational rigidities, but they do so in a way related to the size or news-

worthiness of the disaster. Given the maximum disaster ‘news scaling’ is approximately 6,

these coefficients indicate that a sufficiently large disaster reduces the relationship between

forecast errors and forecast revisions to approximately 0. In contrast, a small disaster may

not impact the relationship to any large degree.

Finally, column 4 uses a scaling based on three factors: the number of deaths caused by

a disaster, the monetary cost of the disaster, and the jump in news coverage. Each series

is normalized to a standard deviation of one and then an average across all three metrics is

taken. Both of the disaster scalings in columns 3 and 4 have an overall mean and standard

deviation of 1. Similarly to our finding with only the news-based scaling, we again find

that, in general, larger disasters drive down the relationship between forecast revisions and

forecast errors. This result is consistent with the idea that professional forecasters may pay

more attention to larger disasters and as a result, their information rigidities significantly

decrease following such disasters.

Table 2 mirrors the earlier approach but demonstrates the correlation between forecast

revisions and lagged forecast revisions, as in Nordhaus (1987). An advantage of Nordhaus’

test is that it is completely independent of the ‘true’ values of the macroeconomic variables

in question. Our findings follow a similar pattern to our earlier results. We find that

forecast revisions in the current month tend to consistently and positively predict those in

the following month. However, this relationship breaks down following a natural disaster in
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the country in question. Moreover, the relationship between forecast revisions and lagged

forecast revisions becomes increasingly weak as the disaster in question becomes larger. This

again suggests that a large and unexpected shock precipitates a state-dependent response

and an increase in information updating.

Tables A1 and A2 follow Tables 1 and 2, but include forecast data across all variables in

the sample (GDP, CPI, long- and short-run interest rates, unemployment, and consumption)

and include forecast variable fixed effects. We find qualitatively similar results across all

forecasted variables as when restricting the analysis to GDP: all variables exhibit significant

information rigidity that declines following large natural disasters.

3.2 Heterogeneous Individual Forecasters

Consensus Economics forecasts are also useful in that underlying forecast data from individ-

ual forecasters are available. So, not only can we observe how the overall mean forecast for a

given country-variable changes over time, but we can also observe how individual forecasters

respond. Differences in the frequency and timing of forecast updates among individual fore-

casters can have significant impacts for the aggregate accuracy and dispersion of aggregate

forecasts. With the individual forecaster data, we investigate the extent to which persistent

heterogeneity among forecasters drives some of these differences.

We split forecasters into two groups. The ‘attentive’ group is made up of forecasters who

report a forecast for a given country-variable in more than 95% of the months that they

are present in the sample. The ‘inattentive’ group is made up of forecasters who report

forecasts less frequently (on average, reporting forecasts for 70% of months in the sample).

This corresponds with approximately the top quintile and bottom four quintiles of forecaster

reporting.8

8We have performed similar exercises measuring attentiveness as the fraction of forecasts which are
different than the previous forecast for a given forecaster and found qualitatively similar results.
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Table 3 demonstrates some of the persistent differences across these two groups. In

columns 1 and 2, ‘Attentive Forecaster’ is simply a binary indicator for being in the top

quintile or bottom four quintiles of this measure of forecaster attentiveness. We measure how

forecasters in these two groups are different from one another in two areas: absolute forecast

error and absolute differences from the mean forecast. In both cases, we find persistent errors

and deviations for the more ‘attentive’ forecasters.

Columns 3 and 4 of Table 3 dispense with the binary indicator of attentiveness and

simply use the average fraction of total forecasts reported for a given forecaster while they

were participating in the Consensus Economics panel. Again, we see that forecasters who

submit more forecasts tend to have lower errors relative to the truth and also lower deviations

from the mean forecast for any given country-variable-month.

One possible concern with our analysis is that forecasters may frequently shift between

being attentive and inattentive. We find this type of switching to be uncommon for individual

forecasters. Figure 2 plots the fraction of forecasts reported against the fraction of forecasts

reported in the previous year across all forecasters. We find a high degree of persistence in

the reporting frequency, with inattentive forecasters likely to remain so over time, and the

reverse is true for attentive forecasters. This may be driven by institutional features of the

forecasters’ firm, where they may be assigned to update forecasts only infrequently and so

do not respond to the Consensus Economics requests until a new forecast is made by the

firm. Figure 3 does the same but for the fraction of forecasts that are changed from month

to month for a given forecaster.

In Tables 1 and 2, we found that information rigidity, as measured through mean forecast

revisions, changed significantly in response to natural disasters. Table 4 utilizes the indi-

vidual forecaster data to identify the channels through which this reduction in information

rigidity takes effect. In columns 1 and 2, we regress the likelihood of a forecaster changing

their forecast in a given month relative to their forecast in the previous month on disas-
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ters and scaled disasters. We include time, variable, country, and forecaster fixed effects

to isolate the within-forecaster and within-variable impacts of these natural disasters. We

find a significant and positive impact, where a disaster increases the probability of chang-

ing an individual forecast by approximately 0.86 percentage points (on average likelihood of

changing of approximately 52%). Column 2 demonstrates that this effect is larger for larger

and more newsworthy disasters, with disasters in the top decile driving an approximate 2.13

percentage point increase in the likelihood of a forecaster revising their previous month’s

forecast.9

Columns 3-6 repeat this exercise for our previously defined groups of attentive and inat-

tentive forecasters. In columns 3 and 5, we find that the likelihood of attentive forecasters

updating their forecast is unaffected by a natural disaster hitting a given country. In columns

4 and 6, we find the opposite is true for inattentive forecasters. This group drives the entirety

of the combined effect we found in columns 1 and 2, with inattentive forecasters being much

more likely to update their forecast following a natural disaster. Column 7 demonstrates

this same phenomenon across quintiles of attentiveness, where we see that the most attentive

forecasters are the least likely to change their forecast following a natural disaster.

Table 5 demonstrates the counter-intuitive result that disasters can actually decrease

the dispersion of professional forecasts due to the effect that disasters have on inattentive

forecasters. Here we see that, following a disaster, attentive forecasters see little change

in the relationship between their own forecast and the mean forecast. However, inattentive

forecasters see a decline in this measure of dispersion, as they tend to update their forecasters

after a natural disaster. This holds true for both the difference between an individual’s

forecast and the overall mean forecast as well as the difference between the individual’s

forecast and their own-attentiveness-group’s forecast. These results suggest that disasters

9These results are all robust to how we treat non-responses. That is, if we ‘fill in’ missing data with the
previous month’s data for a forecaster who missed a month’s forecast or if we just exclude that month for
them. This only affects about 8% of forecaster-months in the data.
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induce inattentive forecasters to update their forecasts and, in doing so, actually moves them

closer to the mean forecast and also to the ex-post true value of the variable.

Finally, Table 6 estimates the impacts of disasters on forecast accuracy relative to the ex-

post true values of the macroeconomic variables. We perform these tests for all forecasters,

attentive forecasters, and inattentive forecasters. Again, we find that there is little impact of

natural disasters on forecast errors for attentive forecasters, while there are strong negative

effects for inattentive forecasters. Even conditioning on a forecaster updating their forecast,

inattentive forecasters tend to report more accurately following a natural disaster than when

changing their forecaster without a disaster.

Overall, these results seem to demonstrate that, for inattentive forecasters, natural disas-

ters act mainly as an attention shock, prompting them to update stale forecasts and converge

towards a newer consensus value. To match the empirical results, we develop a framework

aimed at explaining the expectations formation process following natural disasters. In the

next section, we introduce the information structure faced by agents and derive the state

space representation. In section 5, we explore some of the key properties of both types of

agents, such as their information rigidity, forecast accuracy and dispersion.

4 Information Structure and State Space Representa-

tion

We suppose that economic agents seek to forecast a signal process {πt} that is obfuscated by

noise. We envision the existence of both a public and a private channel for attentive agents.

Our model assumes that the ith attentive agent (1 ≤ i ≤ N) observes the signal through the

public channel contaminated by a common noise {ηt}, whereas the private channel provides

the signal contaminated by a private noise {νt(i)}. Hence the observation process for the ith
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agent is

yt(i) =

 A(i)

B

 πt +

 νt(i)

ηt

 . (2)

for 1 ≤ t ≤ T . The signal process is common to all agents, but the noise processes depend

on i. The matrix A(i) corresponds to the private manifestation of the signal; for many

applications these matrices are given by an identity matrix. Inattentive agents (N + 1 ≤ i ≤

N+M) can be described through a similar framework, albeit there is no private channel and

A(i) is null. Hence, the mathematical results derived below can be applied to the inattentive

case as well, with some adjustments.

We suppose that {πt} is a stationary Markov process; principal interest focuses on the

case that the signal follows a VAR(p) stochastic process of dimension m. Also we suppose

that {ηt} is serially uncorrelated with a stochastic covariance matrix Σt. This assumption is

designed to reflect changing uncertainty surrounding the signal, corresponding to epochs of

heightened volatility following large shocks. In contrast, the private noises {νt(i)} are each

serially uncorrelated with covariance matrix Σ(i); this covariance is deterministic, yielding a

homoscedastic error.

4.1 State Space Representation with Known Parameters

We here give details about the Kalman filter for processing noisy information, in the case that

Σt and the parameters governing {πt} are known. The matrices B and A(i) are also assumed

to be known. Of course in practice the dynamics of these processes would not be known to

the forecasters. Instead, our viewpoint is that the state space model reflects the essential

facets of each agent’s internal process for generating forecasts. Therefore, it is sufficient for

our purposes to treat all the parameters as known, although it will be convenient to generate

viable examples of heteroscedastic noise via a stochastic covariance process, described in
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section 4.2.

Suppose that the signal can be expressed as a component of a Markovian state vector

xt, i.e., there exists a matrix G such that πt = Gxt. The transition equation for this state

vector is

xt = Φxt−1 + εt (3)

for t ≥ 1 and an initial value x0. Here Φ is the transition matrix, which by assumption

has eigenvalues less than one in absolute value. The signal innovations {εt} are assumed to

be uncorrelated with x0, so that εt is uncorrelated with xt−1 for t ≥ 1. The innovations’

common covariance matrix is denoted Σε. Let

δt(i) =

 ν
(i)
t

ηt

 H(i) =

 A(i)

B

 G,

so that combining (2) with πt = Gxt yields the observation equation

yt(i) = H(i)xt + δt(i). (4)

Evidently {δt(i)} is heteroscedastic white noise, with covariance matrix St given by

St = Var[δt(i)] =

 Σ(i) 0

0 Σt

 . (5)

Note that the only data available to the ith agent is {yt(i)}, and so estimates of the signal are

to be constructed on this basis, without reference to the data available to some other agent j.

For ease of notation below, we suppress the dependence on i. Together, equations (4) and (3)

describe the information structure in state space form (ssf). Then x′t = [π′t, π
′
t−1, . . . , π

′
t−p+1]

with G = [Im, 0, . . .] (and Im is the m-dimensional identity matrix) corresponds to the
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companion form, yielding a VAR(1) for the state vector, writing

Φ =



Φ1 Φ2 . . . Φp

Im 0 . . . 0

...
. . .

...
...

0 . . . Im 0


.

We define the following quantities: the forecast of the state vector is x̂t+1|t = E[xt+1|y1, . . . , yt],

and its mean square error matrix is Pt+1|t = Cov[xt+1−x̂t+1|t]. The residual is the data minus

its forecast, namely et = yt − ŷt|t−1, and its mean square error matrix is denoted Vt. The

Kalman gain is by definition Kt = Cov[xt+1, et] Var[et]
−1, and plays a key role in updating

a signal extraction estimate given new information. Initialization of the recursive Kalman

filter algorithm is given by x̂1|0 = 0 and P1|0 = Var[x1], which are the correct quantities given

a stationary state vector. In the case of a VAR(p) signal process, this initial variance can be

computed directly from the companion form. Then for 1 ≤ t ≤ T , we compute

et = yt −H x̂t|t−1 (6)

Vt = H Pt|t−1H
′ + St (7)

Kt = ΦPt|t−1H
′ V −1t (8)

x̂t+1|t = Φ x̂t|t−1 +Kt et (9)

Pt+1|t = (Φ−KtH) Pt|t−1 Φ′ +G′ΣεG. (10)

As an additional step, because the signal is a linear function of the state vector, we have

π̂t+1|t = G x̂t+1|t (11)

Cov[π̂t+1|t − πt+1] = GPt+1|tG
′. (12)
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Equation (8) gives a recursive formula for the Kalman gain, and its dependence on the

heteroscedastic noise is clearly given through Vt in (7). Moreover, equations (9) and (10)

tell us how to update our one-step ahead prediction and forecast error variance for the state

vector. Again, because the Kalman gain depends upon the heteroscedastic variance Σt, both

the state vector forecast and its uncertainty will be impacted. To understand the Kalman

gain better, observe that

x̂t|t = x̂t|t−1 + Pt|t−1H
′ V −1t et, (13)

which follows by applying Φ−1 to (9); hence Φ−1Kt tells us the factor to multiply the new

information et by in order to update x̂t|t−1 to the revised quantity x̂t|t. Rearranging this

relationship, and utilizing (11) yields

π̂t+1|t+1 =

Im −GΦ−1Kt+1

 A(i)

B


 π̂t+1|t +GΦ−1Kt+1 yt+1. (14)

This can be compared with expressions in Coibion and Gorodnichenko (2012), which focused

upon the homoscedastic case. Formally, the forecasted signal seems to depend on past

forecasts and new information in the same way; however, the Kalman gain is different from

the homoscedastic case.

4.2 Estimation with Unknown Parameters

We describe below how the signal can be optimally estimated from the observed data, given

a noise process that allows for time-varying volatility – this process is designed to mimic the

ways in which agents might incorporate new information into their current forecasts.

In order to effectively describe the forecasting process, it is vital to give a flexible and

broad specification for the signal and noise processes. If the signal is stationary, a flexible

model is given by the VAR(p) class, where p is taken sufficiently large to approximate a
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generic signal. However, Θ must be drawn so as to ensure the stability of the resulting

VAR(p) polynomial.10 A bijective reparametrization of the stable VAR(p) class is provided

in Roy, McElroy and Linton (2017), where a prior distribution can be simply placed upon

unrestricted Euclidean space. The bijection maps arbitrary values in Euclidean space (of

appropriate dimension) to a member of the stable VAR(p) class. A simple prior is obtained

by adopting a diffuse Gaussian distribution. The variance matrix Σε is also described in this

mapping. The private noise has variance matrix Σ(i), which can be parameterized in the

same manner as Σε.

Regarding the dynamics about the variance of public signal, Σt, there is an extant litera-

ture on its specification using stochastic volatility processes.11 We adopt the broad framework

of Cogley and Sargent (2005) and Primiceri (2005), but with some modifications suggested

by Neusser (2016). Specifically, consider the Cholesky decomposition

Σt = Bt ΩtB
′
t,

where Bt is unit lower triangular and Ωt is diagonal. The diagonal entries of Ωt are assumed

to each follow an exponential random walk. The matrix Bt can be written as the matrix

exponential of some Ct, where Ct is lower triangular with zeroes on the diagonal. Each

element of Ct is modeled as following an independent random walk, and Bt = exp{Ct}. In

this way the process {Σt} can be generated.

Our own implementation of this framework utilizes the VAR(p) class with the exponential

random walk model for volatility. Different user parameters dictate the priors, essentially

determining the dispersion for the Gaussian prior for the VAR(p) coefficients, and the dis-

10Note that the Minnesota prior of Doan, Litterman and Sims (1984) does not ensure this, and hence
cannot be utilized.

11Chiu, Leonard and Tsui (1996) modeled Σt as the matrix exponential of a symmetric matrix At (which
can take negative values), whose vech was modeled as a VAR process. Uhlig (1994, 1997) modeled Σt via a
generalized Cholesky decomposition, wherein the diagonal factor followed a positive random walk model. A
Wishart autoregressive process was studied in Gouriéroux, Jasiak and Sufana (2009).
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persion for the random walk increments in the volatility process.

A temporary shock can be generated by adding a diagonal matrix to a single Σt, but

without altering Bt or Ωt, so that the effect is transitory. This can be done by taking the

exponential of a large variance random vector, and inserting the results into a diagonal

matrix. This will be designated as a temporary shock, mimicking the shock arising from

natural disasters.12

5 A Framework for Expectation Formation

Our framework has three key ingredients: (i) heterogeneous forecasters, i.e., attentive versus

inattentive, (ii) stochastic volatility, and (iii) Kalman filter updating. As indicated by our

empirical findings, there are two types of forecasters, attentive and inattentive, who are not

interchangeable. Without loss of generality, let i = 1, . . . N denote the indices of atten-

tive forecasters and i = N + 1, . . . , N + M correspond to inattentive forecasters. The key

assumption here is that the fraction q = N
N+M

is exogenous.

5.1 Modeling Expectation Formation for Attentive Agents

We first develop the case of attentive agents. As noted earlier, the ith attentive agent

(1 ≤ i ≤ N) observes both public and private signals and makes the forecast through a signal

extraction process. Given the data {yt(i)} for 1 ≤ t ≤ T , for each agent i, we obtain π̂At+1|t(i)

and its error covariance GPt+1|t(i)G
′ from (11) and (12), with the superscript A denoting

attentive agents. If we have interest in some linear composite of attentive agents’ results, say∑N
i=1wiπ̂

A
t+1|t(i) for given weights wi, then the corresponding target is

∑N
i=1wiπt+1, which

12In contrast, a permanent shock can be generated by inserting a large variance innovation to the expo-
nential random walk in Ωt, at some particular time t. This generates a large upward jump in the diagonal
entries of Σt, or equivalently in the trace of Σt. Such a device can replicate the impact of sustained shocks
upon the variability of public information noise. The discussion regarding how a permanent shock can affect
expectations formation is beyond the scope of the current paper, and we leave it for future research.
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equals πt+1 when the weights sum to one. The variance of the discrepancy between such a

weighted average and πt+1 is the mean squared error (MSE), given by

MSEA
t+1|t = G

N∑
i,j=1

wiwjQ
(ij)
t+1|tG

′, (15)

where by definition Q
(ij)
t+1|t = Cov[x̂At+1|t(i)− xt+1, x̂

A
t+1|t(j)− xt+1]. For i = j, this covariance

is just Pt+1|t. Otherwise, the following recursion can be used for computation; note that

the Kalman gains Kt(i) and observation matrices H(i) depend upon the ith Kalman filter

calculation.

Proposition 1 The covariance of prediction errors across attentive agents, Q
(ij)
t+1|t, can be

computed recursively by

Q
(ij)
t+1|t = [Φ−Kt(i)H(i)]Q

(ij)
t|t−1[Φ−Kt(j)H(j)]′ +G′ΣεG−Kt(i)

 0 0

0 Σt

 Kt(j)
′, (16)

with the initialization Q
(ij)
1|0 = Var[x1] for all i and j.

Typically we are interested in the case that attentive agents contribute equally to the

composite forecast, in which the MSE is given by (15), where Q
(ij)
t+1|t is computed via equation

(16) and all the weights are wi = 1/N . In this case, the average forecast is defined to be

πAt+1|t = N−1
N∑
i=1

π̂At+1|t(i). (17)

The disagreement across attentive agents is defined as the sample variability of the forecasts

across forecasters, i.e.,

DA
t+1|t = N−1

N∑
i=1

(
π̂At+1|t(i)− πAt+1|t

) (
π̂At+1|t(i)− πAt+1|t

)′
. (18)
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We now discuss the model implications for understanding information rigidity for at-

tentive agents. Extending the formulation of Coibion and Gorodnichenko (2012) for the

homoscedastic public noise, (14) indicates that the old forecast π̂t+1|t is scaled by Im − Rt,

where

Rt = GΦ−1Kt+1

 A(i)

B

 . (19)

Note that Rt is m×m dimensional. When the Kalman gain is small, little modification to

the old forecast is needed. From (7) and (8), clearly Kt is small when St is large – a sudden

jump in Σt (irrespective of Σ(i)) will drive up Vt, and thereby decrease Rt. In other words,

shocks will have the effect that new information is received with high uncertainty, as the

forecaster knows there is little signal content in the noisy data; as a result, the new forecast

will closely resemble the previous period’s forecast. This is the uncertainty channel through

which natural disaster shocks affect expectation formation: the occurrence of those shocks

generates increased uncertainty among economic agents.

Formally, the information rigidity, defined as the sequence

rt = tr [Im −Rt]/m, (20)

is high when the new datum is deemed untrustworthy, i.e., when Σt is high. The factor of m

in the definition of information rigidity normalizes for the dimension m of the signal {πt}.

Clearly, rt offers a scalar normalization of the quantity Im−Rt that multiplies the old forecast.

Note that information rigidity is also a function of the private information variability; the

relative strength of Σ(i) and Σt must play a role, as these quantities are featured in St and

hence Vt. For example, a lower value of Σ(j) for agent j means this forecaster pays close

attention to finer fluctuations in the public data source volatility, and their information

rigidity adapts more readily to nuanced changes in the market. Their rigidity is lower overall,
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and is less susceptible to sudden spikes to public information variability than inattentive

forecasters. Our measure in (20) represents the average degree of information rigidity when

predicting many variables. This definition is in line with the empirical evidence in Coibion

and Gorodnichenko (2015) that forecast revisions of other variables have little predictive

power for the forecast errors of each variable, that is, the absence of statistical evidence for

the importance of off-diagonal elements of the matrix Im −Rt in our context.

We emphasize three features of this definition. First, information rigidity is defined

in a multivariate context. This is important because imperfect information theories of the

business cycle typically require the existence of inattention for consumers, firms, and workers,

not their inattention to a single variable, such as inflation. Second, information rigidity is

allowed to differ across agents to reflect differential interpretation of public information, as

documented in Lahiri and Sheng (2008) and Acemoglu, Chernozhukov and Yildiz (2016).

Third, information rigidity is allowed to change over time in order to capture the increased

uncertainty among attentive agents due to large shocks. This feature is consistent with the

recent studies on uncertainty shocks, e.g. Bloom (2009), Jurado, Ludvigson and Ng (2015),

among others.

5.2 Modeling Expectation Formation for Inattentive Agents

We now develop the case of inattentive agents. The ith inattentive agent, N+1 ≤ i ≤ N+M ,

observes the signal {πt} through an observation matrix B, and obfuscated by a common noise

{ηt}, yielding the observation equation

yt = B πt + ηt.

The matrix B represents any linear combinations of the signal that dictate how the signal

is manifested publicly to the agent. During normal times, inattentive agents only update
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sporadically. Following Reis (2006), we let λ ∈ [0, 1] denote the probability that any given

inattentive agent fails to update their information set, and operates under an older vintage

of information. We refer to λ as the degree of information rigidity for inattentive agents.

When they update, inattentive agents face the signal extraction problem. For those who do

not update, they simply set their forecasts to the ones in the previous period.

Let Gt denote the sigma-field generated by {ys, s ≤ t}, i.e., the information about the

process available up to time t. Then if an agent at time t+1 has just updated his information,

he would utilize the signal extraction forecast E[πt+1|Gt]. However, if that agent had last

updated two periods ago then his forecast would be E[πt+1|Gt−1]. In general, we denote such

a forecast by inattentive agent i by π̂IAt+1|t(i), with the notation indicating that a forecast of

πt+1 is furnished at time t, even though with probability λ the forecast is generated with

older vintages. The average of such forecasts is M−1∑N+M
i=N+1 π̂

IA
t+1|t(i); breaking the sum into

subsets of agents that last updated their forecast at time t− k (with k ≥ 0) – and with Ak

denoting the number of such – we obtain

M−1
N+M∑
i=N+1

π̂IAt+1|t(i) = M−1
∞∑
k=0

Ak E[πt+1|Gt−k].

When M is large, the proportion Ak/M approximates the probability of not updating for k

time periods, followed by finally updating at the next time – this probability is given by the

geometric distribution, and equals (1 − λ)λk. Hence an asymptotic approximation to the

average forecast is

πIAt+1|t = (1− λ)
∞∑
k=0

λk E[πt+1|Gt−k]. (21)

The degree of variability across inattentive agents with respect to the group mean is called

the disagreement, and is computed by averaging squared discrepancies of each π̂IAt+1|t(i) with
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πIAt+1|t. Using the same approximation for large M that was used to derive (21) yields

DIA
t+1|t = (1− λ)

∞∑
k=0

λk
(
E[πt+1|Gt−k]− πIAt+1|t

) (
E[πt+1|Gt−k]− πIAt+1|t

)′
. (22)

In order to assess the accuracy of the group inattentive mean in an ensemble sense, we can

calculate the mean squared error as follows:

MSEIA
t+1|t = E

[(
πIAt+1|t − πt+1

) (
πIAt+1|t − πt+1

)′]
(23)

= (1− λ)2
∑
k,`≥0

λk+` Cov (E[πt+1|Gt−k]− πt+1,E[πt+1|Gt−`]− πt+1) .

Apparently, lower values of λ indicate that more timely forecasts receive higher weight in

(21), and the MSE will decrease. However, other costs (such as maintaining a database, and

the resources required to do analysis) may render attractive the behavior of using a higher

value of λ during normal times. In contrast, following large and unexpected shocks, the

cost of not updating the information vintage is very high, and accordingly the majority of

inattentive agents will update their information and make new forecasts. This is the attention

channel through which natural disaster shocks affect expectation formation: visibly large

shocks induce immediate updating of information for most agents. This attention effect is

particularly pronounced for those with an outdated information set, resulting in a significant

decline in λ.

Finally, it is possible using the state space form to provide a specific formula for the signal

extraction error covariance featured in equation (23), the MSE for inattentive agents. Here

the formula is for a single agent, so we do not insert the i index in the notation. Replacing

the conditioning on the semi-infinite sigma-field Gt by projection on a finite past, the MSE
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is modified to the formula

MSEIA
t+1|t = (1− λ)2

t−1∑
k,`=0

λk+`GRk,`G
′ (24)

with Rk,` = Cov
[
x̂IAt+1|t−k − xt+1, x̂

IA
t+1|t−` − xt+1

]
, and the dependence of Rk,` on t has been

suppressed in the notation. The formula, given below, is only needed for the case of inat-

tentive agents where no private noise is present, so the ssf quantities (such as Kalman gain)

are to be interpreted accordingly by omitting A(i) and νt(i).

Proposition 2 The covariance of prediction errors across forecast horizons, Rk,`, can be

computed if k ≤ ` by

R`,` = Φ` Pt+1|t Φ′`

R`−1,` = Φ`−1 (Φ−Kt+1−`B)Pt+1−`|t−` Φ′` +
`−1∑
j=0

Φj Σε Φ′j

Rk,` = Φk

`−1∏
j=k

(Φ−Kt−j B)Pt+1−`|t−` Φ′` +
`−k∑
i=2

Φk

`−i∏
j=k

(Φ−Kt−j B) Σε Φ′`−i+1 +
k∑
j=0

Φj Σε Φ′j,

where k ≤ `− 2 in the last case, and where the matrix products are computed with the lowest

index matrix first, and multiplying on the right by matrices of higher index.

6 Monte Carlo Simulation

6.1 Summary of Model Implications

We now summarize the model implications for understanding information rigidity, mean

forecast, mean squared error and disagreement among agents. As above we set i = 1, . . . N

to be the indices of attentive agents and i = N + 1, . . . , N + M correspond to inattentive
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agents, with q = N
N+M

. Let τ denote the time index of a shock. Besides the individual

treatment of attentive and inattentive agents, it is of interest to study the composite of

these two groups.

i. Attentive agents all form their expectations through a signal extraction process, as

described in section 4. Their information rigidity is described in equation (20), while

the mean forecast is (17). The MSE is given by (15), where Q
(ij)
t+1|t is defined in equation

(16) and all the weights are wi = 1/N . The disagreement among attentive agents is

provided by (18).

ii. Inattentive agents face a constant probability λ of not updating their information

(e.g., λ = 0.7), as described in section 5.2. We refer to λ as the degree of information

rigidity for inattentive agents. When updating, they face a signal extraction problem.

In periods of not updating, they simply set their forecasts to the previous ones. Their

mean forecast is defined in equation (21) by assuming equal weights. Assuming that

these inattentive agents update their information independently of each other, the

MSE is given by (24), where the forecast error covariance is given in Proposition 2.

Moreover, the disagreement among inattentive agents is provided by (22).

iii. Combining attentive and inattentive agents, the average forecast, πALLt+1|t, is defined as

the average of forecasts from all N + M agents, and this can be approximated (for

large M) by the weighted sum

πALLt+1|t = q N−1
N∑
i=1

π̂At+1|t(i) + (1− q) (1− λ)
∞∑
k=0

λk E[πt+1|Gt−k]. (25)

The exact MSE is difficult to compute, because of correlations between the attentive

and inattentive forecast errors, but we can get a heuristic measure by weighting each

28



contribution towards MSE:

MSEALL
t+1|t = q N−2

N∑
i,j=1

GQ
(ij)
t+1|tG

′ + (1− q) MSEIA
t+1|t. (26)

Finally, the overall disagreement, DALL
t+1|t can be expressed as:

DALL
t+1|t = q N−1

N∑
i=1

(
π̂At+1|t(i)− πAt+1|t

) (
π̂At+1|t(i)− πAt+1|t

)′
+ (1− q) (1− λ)

∞∑
k=0

λk
(
E[πt+1|Gt−k]− πIAt+1|t

) (
E[πt+1|Gt−k]− πIAt+1|t

)′
+ q (1− q)

∥∥∥∥∥N−1
N∑
i=1

π̂At+1|t(i)− (1− λ)
∞∑
k=0

λk E[πt+1|Gt−k]

∥∥∥∥∥
2

, (27)

where ‖ · ‖ denotes the `2 norm of a vector. Clearly, overall disagreement in (27)

comes from heterogeneity within attentive agents (first line), within inattentive agents

(second line) and between two group mean forecasts (third line).

6.2 Data Generating Process

We illustrate these assertions through the results of simulations. Our data generating process

(DGP) is described as follows. We set m = 3, and for the signal considered a VAR(2) based

upon empirical fits of industrial production, inflation, and federal funds rate data. This is

merely intended to furnish a reasonable signal DGP. The coefficients are

Φ1 =


0.7745 −0.1472 −0.4292

0.0556 0.3139 0.1116

0.1066 0.0582 1.3309

 Φ2 =


−0.0517 0.0979 0.4708

0.0170 0.1813 −0.0151

−0.0054 0.0384 −0.3872

 ,
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and the innovation covariance was set to I3. Samples of size T = 100 were generated, with

a burn-in period of 500 observations. The observation matrices A(i) and B were set equal

to identity matrices I3. To generate the public noise Σt, the innovations of the exponential

random walk Ωt were Gaussian of standard deviation .01 for all three dimensions. In the case

of a shock, its impact on the public noise is modeled by increasing the standard deviation

to .2 (twenty times as large).

To generate the private noise, an overall dispersion coefficient with value .01 controls

the spread of entries in the covariance matrix, whereas the overall scale is determined via

multiplication by 20Yi, where Yi has a χ2 distribution of one degree of freedom, generated

independently for all attentive agents. This gives some spread and variability to the private

noise; the settings were determined by empirically examining various cases and studying the

resulting behavior of simulations. The number of attentive agents was set to N = 100. For

purposes of understanding the case of combining attentive and inattentive agents, we set

M = 200 so that q = 1/3.

6.3 Simulation Results

Figure 4 presents the degrees of information rigidity for both types of agents. For inattentive

agents, 70% do not update their information sets during the normal times. After observing

a shock occurred at time τ = 50, the majority of inattentive agents update information and

revise their forecasts, which accordingly leads to a decline of information rigidity from 0.7

to 0.2.13 The opposite is true for attentive agents: during the normal times, they place

about 0.33 weight to previous forecasts relative to new information, but observing the shock

significantly increases the average degree of their information rigidity from 0.33 to 0.45 in

13For simplicity, we assume that the probability of not updating information, λ, is the same across three
variables for inattentive agents. Allowing for different levels of λ across variables (e.g. Andrade, et al. 2016)
does not change the results qualitatively for the effect of a large unexpected shock on information processing
of inattentive agents.
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predicting three variables. Because the shock is temporary, information rigidity at time

τ = 51 for both types of agents returns to the pre-shock level.

The dynamics of mean squared error is shown in Figure 5. Generally speaking, inattentive

agents make much larger forecast errors than attentive ones and as a result, the overall

MSE is dominated by the former. However, agents respond differently in terms of their

MSE following the shock. In particular, the MSE declines for inattentive agents, since the

visibly large shock induces immediate and synchronized updating of information and moves

their forecasts much closer to the truth. In contrast, the large unexpected shock generates

increased uncertainty among attentive agents and increases their MSE. Following the shock,

the overall MSE declines due to the dominance of inattentive agents, confirming the empirical

results presented earlier.

Forecast disagreement across agents shows a similar pattern, as illustrated in Figure 6.

There exists substantial disagreement among both types of agents in predicting any of three

variables. For inattentive agents, they disagree mainly because they use different vintages

of dataset; for attentive agents, they disagree since they receive different private signals and

interpret the same public signal differently. Inattentive agents have much higher levels of

disagreement and accordingly play a dominant role in the overall disagreement. Following the

shock, most of inattentive agents have updated their outdated information and moved their

forecasts closer to the average. Attentive agents, on the other hand, disagree more after

observing the shock due to differential interpretation of public information. The overall

disagreement declines following the shock, which appears counter-intuitive but in fact is a

natural consequence of the dominance of inattentive agents.

We need to point out that the effect of a large, unexpected shock on overall mean squared

error and disagreement depends on the magnitude of the shock, the proportion of inattentive

agents and the average deviation of inattentive agents’ mean forecast from the truth. Both

our empirical and simulation results show that inattentive agents tend to dominate and thus,
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overall mean squared error and disagreement decline following large, unexpected shocks.

Our model, however, has implications for different paths of overall mean squared error and

disagreement following large, unexpected events.

7 Conclusion

This paper provides a new view on what drives macroeconomic forecasters to update and

provide forecasts. We find that individual forecasters are persistently heterogeneous in how

often they revise or even issue a forecast over time. Given that many commonly utilized

macroeconomic forecasts are derived from the average forecast from a selected set of fore-

casters, these differences in the frequency of revision have the potential to bias average

forecasts.

We demonstrate that there is a significant degree of information rigidity in forecasts over

time, driven by the fact that many forecasters choose to not update their forecast in succes-

sive time periods. Matching forecasts from a panel of 54 countries to a detailed set of natural

disasters, we show that this information rigidity declines significantly following natural dis-

asters. At an individual level, this effect seems consistent with an ‘attention shock’ affecting

the forecasters, where newsworthy disasters induce formerly ‘inattentive’ forecasters to up-

date their forecasts. Moreover, following such disasters, previously inattentive forecasters

move their stale forecasts closer to the mean forecast, decreasing the dispersion in forecasts.

This may result in a counter-intuitive result, where shocks to countries can increase uncer-

tainty but decrease forecaster dispersion due to the fact that inattentive forecasters may be

induced to update their stale information sets.

We model this phenomenon with a learning model that incorporates these two channels:

attention effect – the visibly large shocks induce immediate and synchronized updating of

information for inattentive agents, and uncertainty effect – the occurrence of those shocks
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generates increased uncertainty among attentive agents. Our theory has three key elements.

(i) There are two persistent types of agents: attentive and inattentive, with attentive agents

revising forecasts frequently and inattentive agents generally revising forecasts infrequently

and non-systematically. (ii) Inattentive agents update sporadically during the normal times.

However, following large and unexpected shocks, the cost of not updating information is

high, and accordingly the majority of inattentive agents will update their information sets

and make new forecasts. (iii) Attentive agents optimally combine public and private signals

in making their forecasts, as described in the noisy information model.

Our model yields a world in which large shocks like natural disasters induce an immedi-

ate increase in updating of information for most inattentive agents. This attention effect is

particularly pronounced for those with an outdated information set, resulting in a significant

decline in the information rigidity. For attentive agents, the occurrence of those shocks gen-

erates increased uncertainty and as a result, their new forecasts closely resemble the previous

period’s forecasts. These findings warn against treating the degree of information rigidity

as a structural parameter and suggest that future research should explore state-dependence

in the information updating process. To this end, our paper moves one step forward by

introducing time-varying uncertainty in expectations formation framework and accordingly

proposing a measure of time-varying information rigidity in a multivariate context.

Finally, our paper suggests that there is room to improve so-called consensus or mean

forecasts. We find that many individual forecasters are persistently more inattentive or

inactive than others. Accounting for this heterogeneity across forecasters can help explain

both the information rigidity observed in many commonly-utilized macroeconomic forecasts

and a reason why forecast dispersion may actually decline, depending on the portion of

inattentive forecasters, following a national ‘shock’ that increases uncertainty about future

economic performance.
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Table 1. Information Rigidities Based on GDP Forecast Error
(1) (2) (3) (4)

VARIABLES Forecast Error Forecast Error Forecast Error Forecast Error

Forecast Revision 0.514*** 0.555*** 0.530*** 0.541***
(0.0286) (0.0307) (0.0294) (0.0301)

Forecast Rev * Disaster -0.286***
(0.0787)

Disaster -0.0339
(0.0341)

Forecast Rev * Disaster (News Scaling) -0.106**
(0.0448)

Disaster (News Scaling) -0.0304
(0.0196)

Forecast Rev * Disaster (Combined Scaling) -0.183***
(0.0649)

Disaster (Combined Scaling) -0.0617**
(0.0282)

Observations 11,408 11,408 11,408 11,408
R2 0.295 0.296 0.296 0.296
Time FE YES YES YES YES
Country FE YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Notes: Regressions performed for GDP forecasts across 54 countries. Forecast Error denotes the difference of the ex-post true GDP growth
value from the mean forecast. Forecast Revision denotes the difference of the mean GDP forecast from the previous month’s mean GDP
forecast. ‘Disaster’ is an indicator variable for a disaster occurring in a particular country-month for over 1,000 natural disasters in the
sample. ‘News Scaling’ refers to the ratio of news articles written about a country in the 5 days following a disaster to those written in the
5 days before a disaster (has a mean of 1 and a max value of 6). ‘Combined Scaling’ for disasters refers to a combined z-score comprised of
the news scaling, the monetary damages caused by the disaster, and the number of deaths caused by the disaster (mean of 1 and maximum
of 4.5).
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Table 2. Information Rigidities Based on GDP Forecast Revision
(1) (2) (3) (4)

VARIABLES Forecast Rev Forecast Rev Forecast Rev Forecast Rev

Lagged Forecast Revision 0.139*** 0.149*** 0.145*** 0.148***
(0.00924) (0.00988) (0.00949) (0.00972)

Lag Forecast Rev * Disaster -0.0736***
(0.0259)

Lagged Disaster 0.00223
(0.0115)

Lag Forecast Rev * Disaster (News Scaling) -0.0428***
(0.0150)

Lagged Disaster (News Scaling) -0.00943
(0.00661)

Lag Forecast Rev * Disaster (Combined Scaling) -0.0604***
(0.0214)

Lagged Disaster (Combined Scaling) -0.00893
(0.00946)

Observations 11,444 11,444 11,444 11,444
R2 0.106 0.107 0.107 0.107
Time FE YES YES YES YES
Country FE YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: Regressions performed for forecasts across 54 countries (including only forecasts of GDP). Forecast Revision denotes the difference
of the mean forecast from the previous month’s mean forecast. ‘Disaster’ is an indicator variable for a disaster occurring in a particular
country-month for over 1,000 natural disasters in the sample. ‘News Scaling’ refers to the ratio of news articles written about a country in
the 5 days following a disaster to those written in the 5 days before a disaster (has a mean of 1 and a max value of 6). ‘Combined Scaling’
for disasters refers to a combined z-score comprised of the news scaling, the monetary damages caused by the disaster, and the number of
deaths caused by the disaster (mean of 1 and maximum of 4.5).
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Table 3. Individual Forecast Dispersion
(1) (2) (3) (4)

VARIABLES Diff. From Mean Fore. Error Diff. From Mean Fore. Error

Attentive Forecaster -0.0724*** -0.395***
(0.00717) (0.0416)

Fraction Forecasts Reported -0.177*** -1.147***
(0.0173) (0.148)

Observations 292,390 176,985 292,390 176,985
R2 0.054 0.128 0.054 0.128
Time FE YES YES YES YES
VAR FE YES YES YES YES
Country FE YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Notes: ‘Forecast Error’ denotes the absolute value of the difference of the individual forecast from the ex-post true GDP growth value.
‘Difference from Mean’ means the absolute value of the difference between the individual forecast and the mean forecast for that country-
variable-month. ‘Attentive Forecaster’ is an indicator variable that notes that a forecaster is in the top quartile of fraction of forecasts
reported. Data covers 280 forecasters and 7 countries for GDP, CPI, consumption, short- and long-run interest rates, unemployment, wages,
and producer prices.
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Table 4. Individual Forecast Changes and Disasters
(1) (2) (3) (4) (5) (6) (7)

VARIABLES Change Change Change - A Change - I Change - A Change - I Change

Scaled Disaster * Attentive Quintile -0.00285***
(0.000701)

Scaled Disaster 0.0120***
(0.00252)

Attentive Quintile 0.0877***
(0.00134)

Disaster 0.00857*** 0.00192 0.00336 0.0114*** 0.000857 0.000183
(0.00223) (0.00310) (0.00413) (0.00259) (0.00541) (0.00373)

Scaled Disaster 0.00576*** 0.00193 0.0101***
(0.00187) (0.00270) (0.00241)

Observations 292,390 292,390 64,255 228,135 64,255 228,135 292,335
R2 0.149 0.149 0.069 0.113 0.069 0.113 0.162
Time FE YES YES YES YES YES YES YES
VAR FE YES YES YES YES YES YES YES
Country FE YES YES YES YES YES YES YES
Forecaster FE YES YES YES YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Notes: ‘Attentive Quintile’ refers to the quintile of attentiveness a forecaster belongs to in terms of fraction of new forecasts that forecaster
has reported during their tenure. ‘Disaster’ is an indicator variable for a disaster occurring in a particular country-month for over 1,000
natural disasters in the sample. ‘Scaled Disaster’ refers to the ratio of news articles written about a country in the 5 days following a disaster
to those written in the 5 days before a disaster (has a mean of 1 and a max value of 6). ‘Change’ is an indicator variable for whether that
forecaster changed their forecast from the previous month for that country-variable. Columns 3 and 5 restrict the sample to forecasters in
the top quintile of attentiveness while columns 4 and 6 restrict to the bottom 4 quintiles of attentiveness. Data covers 280 forecasters and 7
countries for GDP, CPI, consumption, short- and long-run interest rates, unemployment, wages, and producer prices.
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Table 5. Dispersion Following Disasters
(1) (2) (3) (4) (5) (6)

Diff from Overall Mean Diff from Attentive Group Mean
VARIABLES All Forecasters Attentive Fore. Inattentive Fore. All Forecasters Attentive Fore. Inattentive Fore.

Scaled Disaster -0.00669 -0.00180 -0.00876* -0.00426 0.00111 -0.0172**
(0.00408) (0.00679) (0.00503) (0.00504) (0.00635) (0.00744)

Observations 288,997 63,455 225,542 284,749 224,064 60,684
R2 0.022 0.044 0.019 0.019 0.019 0.035
Time FE YES YES YES YES YES YES
VAR FE YES YES YES YES YES YES
Country FE YES YES YES YES YES YES
Forecaster FE YES YES YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Notes: ‘Attentive Forecaster’ refers to a forecaster being in the top quintile of attentiveness in terms of fraction of new forecasts that forecaster
has reported during their tenure. ‘Scaled Disaster’ refers to the ratio of news articles written about a country in the 5 days following a disaster
to those written in the 5 days before a disaster (has a mean of 1 and a max value of 6). ‘Difference from the Overall Mean’ refers to the
difference between the individual forecast and the mean forecast across all forecasters. ‘Difference from Attentive Group Mean’ refers to
the difference between the individual forecast and the mean forecast across all forecasters in their attentiveness group (eg. top quintile of
attentiveness or bottom 4 quintiles of attentiveness). Data covers 280 forecasters and 7 countries for GDP, CPI, consumption, short- and
long-run interest rates, unemployment, wages, and producer prices.
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Table 6. Forecast Accuracy and Disasters
(1) (2) (3) (4) (5) (6)

VARIABLES Fore. Error Fore. Error - A Fore. Error - I Fore. Error Fore. Error - A Fore. Error - I

Changed Forecast -0.0497*** -0.0343** -0.0575***
(0.00565) (0.0167) (0.00601)

Scaled Disaster -0.0252*** -0.00440 -0.0260*** -0.0258*** -0.00458 -0.0265***
(0.00682) (0.0175) (0.00741) (0.00682) (0.0175) (0.00740)

Observations 154,274 25,350 128,923 154,274 25,350 128,923
R2 0.085 0.110 0.088 0.085 0.110 0.089
Time FE YES YES YES YES YES YES
VAR FE YES YES YES YES YES YES
Country FE YES YES YES YES YES YES
Forecaster FE YES YES YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Notes: ‘Forecast Error’ denotes the absolute value of the difference of the individual forecast from the ex-post true GDP growth value.
‘Disaster’ is an indicator variable for a disaster occurring in a particular country-month for over 1,000 natural disasters in the sample.
‘Changed Forecast’ is an indicator variable for whether that forecaster changed their forecast from the previous month for that country-
variable. Columns 2 and 5 restrict the sample to forecasters in the top quintile of attentiveness while columns 3 and 6 restrict to the bottom
4 quintiles of attentiveness. Data covers 280 forecasters and 7 countries for GDP, CPI, consumption, short- and long-run interest rates,
unemployment, wages, and producer prices.
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Figure 1: Changes in Newspaper Articles Regarding Affected Countries

Notes: Data obtained by searching approximately 2,500 English language newspapers on Access World
News. For each natural disaster, daily article counts of the number of articles written that contain
the name of the affected country. This is averaged over all natural disasters studied in the regression
analysis. For graphing purposes, the series for each event is normalized such that the pre-period has a
mean of one.
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Figure 2: Persistence in Forecast Reporting

Notes: The vertical axis represents the share of eligible months that a given forecaster reported a forecast
for in year t−1. The horizontal axis represents the share of eligible months that a given forecaster reported
a forecast for in year t. Mean values of horizontal bins are plotted (each bin represents a one month out
of twelve months increment). Thus, a point on the 45-degree line means that, on average, forecasters
in that group reported forecasts at the same frequency as last year. Plotted points are scaled by the
number of forecasters in each bin.

45



Figure 3: Persistence in Forecast Updating

Notes: The vertical axis represents the share of eligible months where a given forecaster changed their
forecast from the previous month in year t − 1. The horizontal axis represents the share of eligible
months where a given forecaster changed their forecast from the previous month in year t. Mean values
of horizontal bins are plotted (each bin represents a one month out of twelve months increment). Thus,
a point on the 45-degree line means that, on average, forecasters in that group updated their forecasts
at the same frequency as last year. Plotted points are scaled by the number of forecasters in each bin.
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Figure 4: Information Rigidity: Inattentive (left) vs. Attentive Agents (right)
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Notes: The left panel shows the degree of information rigidity for inattentive agents, measured as the
percentage of agents who do not update their information sets. The right panel plots the average degree
of information rigidity for attentive agents in predicting three variables, calculated as the scaled trace of
the matrix of the weights attached to agent’s previous forecast relative to new information.
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Figure 5: Mean Squared Error: Inattentive (left, blue line), Attentive (left, green line) and
Overall (right)

Forecast MSE

Time

20 40 60 80 100

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Forecast MSE

Time

20 40 60 80 100

1.
25

1.
30

1.
35

1.
40

1.
45

1.
50

1.
55

Forecast MSE

Time

20 40 60 80 100

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Forecast MSE

Time

20 40 60 80 100

0.
95

1.
00

1.
05

1.
10

Forecast MSE

Time

20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Forecast MSE

Time

20 40 60 80 100

2.
2

2.
4

2.
6

2.
8

Notes: These plots show the mean squared error (MSE) in predicting three variables. The first (second
or third) row plots the MSE in predicting variable 1 (2 or 3). The MSE is calculated according to (15)
for attentive agents, (24) for inattentive agents, and (26) for all agents.
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Figure 6: Forecast Disagreement: Inattentive (left), Attentive (middle) and Overall (right)
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Notes: These plots show forecast disagreement in predicting three variables. The first (second or third)
row plots the disagreement in predicting variable 1 (2 or 3). Disagreement is calculated according to
(18) for attentive agents, (22) for inattentive agents, and (27) for all agents.
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8 Appendix

Proof of Proposition 1. Equation (9) can be rendered with i superscripts for the ith

agent, yielding

x̂t+1|t(i)− xt+1 = Φ (x̂t|t−1(i)− xt)− εt+1 +Kt(i) et(i)

et(i) = yt(i)−H(i) x̂t|t−1(i) = −H(i) (x̂t|t−1(i)− xt) + δt(i).

Note that δt(i) is orthogonal to ys(j) for all s ≤ t−1 and all j; moreover {δt(i)} is uncorrelated

with {xt}. Hence

Q
(ij)
t+1|t = Cov(x̂t+1|t(i)−xt+1, x̂t|t−1(j)−xt) Φ′−Cov(x̂t+1|t(i)−xt+1, et(j))Kt(j)

′+ Σε, (28)

because εt+1 is orthogonal to x̂t+1|t(i) and Cov(xt+1, εt+1) = Σε. Next,

Cov(x̂t+1|t(i)− xt+1, x̂t|t−1(j)− xt)

= ΦQ
(ij)
t|t−1 +Kt(i) Cov(et(i), x̂t|t−1(j)− xt)

= ΦQ
(ij)
t|t−1 −Kt(i)H(i)Q

(ij)
t|t−1.

Moreover,

Cov(x̂t+1|t(i)− xt+1, et(j))

= Φ Cov(x̂t|t−1(i)− xt, et(j)) +Kt(i) Cov(et(i), et(j))

= −ΦQ
(ij)
t|t−1H(j)′ +Kt(i)

H(i)Q
(ij)
t|t−1H(j)′ +

 0 0

0 Σt


 .
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Substituting into (28) yields

Q
(ij)
t+1|t = [Φ−Kt(i)H(i)]Q

(ij)
t|t−1 Φ′ + Σε

+ [Φ−Kt(i)H(i)]Q
(ij)
t|t−1H(j)′Kt(j)

′ −Kt(i)

 0 0

0 Σt

 Kt(j)
′,

which simplifies to the stated formula. To initialize, we compute the t = 0 case, and observe

that

Q
(ij)
1|0 = Cov(x̂1|0(i)− x1, x̂1|0(j)− x1) = Var[x1]. 2

Proof of Proposition 2. The multi-step ahead forecasting of the state vector is s-

traightforward: x̂t+1|t−k = Φk x̂t+1−k|t−k. Also, iteration of (3) yields xt+1 = Φk xt+1−k +∑k−1
j=0 Φj εt+1−j. Therefore the multi-step ahead forecasting error can be expressed in terms

of one-step ahead forecasting error, via

x̂t+1|t−k − xt+1 = Φk
(
x̂t+1−k|t−k − xt+1−k

)
−

k−1∑
j=0

Φj εt+1−j.

We can also express the one-step ahead forecasting error in terms of prior such errors.

Suppose k ≤ `:

x̂t+1−k|t−k − xt+1−k = Φ
(
x̂t−k|t−k−1 − xt−k

)
+Kt−k et−k − εt−k+1

· · · = Φ`−k (x̂t+1−`|t−` − xt+1−`
)

+
`−k−1∑
j=0

Φj (Kt−k−j et−k−j − εt+1−k−j) .
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This indicates that the multi-step ahead forecasting error is related to past one-step ahead

forecasting errors as follows, when k < `:

x̂t+1|t−k − xt+1 = Φ`
(
x̂t+1−`|t−` − xt+1−`

)
−

`−1∑
j=0

Φj εt+1−j +
`−k−1∑
j=0

Φj+kKt−k−j et−k−j.

The errors et have the following form (using the assumption that no private information is

present):

et−k−j = B
(
xt−k−j − x̂t−k−j|t−k−j−1

)
+ ηt−k−j. (29)

For 0 ≤ j ≤ ` − k − 1, ηt−k−j is uncorrelated with x̂t+1−`|t−` − xt+1−`, and moreover for

0 ≤ j ≤ ` − 1, εt+1−j is uncorrelated with x̂t+1−`|t−` − xt+1−`. Now using (29), we can

re-express the one-step ahead forecasting errors as

x̂t+1−k|t−k − xt+1−k = (Φ−Kt−k B)
(
x̂t−k|t−k−1 − xt−k

)
+Kt−k ηt−k − εt−k+1

· · · =
`−1∏
j=k

(Φ−Kt−j B)
(
x̂t−`+1|t−` − xt−`+1

)
+

`−2∏
j=k

(Φ−Kt−j B) (Kt−`+1 ηt−`+1 − εt−`+2)

· · ·+ (Φ−Kt−k B) (Kt−k−1 ηt−k−1 − εt−k) +Kt−k ηt−k − εt−k+1.
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The convention regarding the product symbols is as discussed in Proposition 2. Hence the

multi-step ahead forecasting errors can be re-expressed as

x̂t+1|t−k − xt+1 = Φk

`−1∏
j=k

(Φ−Kt−j B)
(
x̂t−`+1|t−` − xt−`+1

)
(30)

+ Φk

`−2∏
j=k

(Φ−Kt−j B) (Kt−`+1 ηt−`+1 − εt−`+2)

· · ·+ Φk (Φ−Kt−k B) (Kt−k−1 ηt−k−1 − εt−k) + ΦkKt−k ηt−k −
k∑
j=0

Φj εt+1−j

when k ≤ `− 2; when k = `− 1 the simpler formula is

x̂t+1|t−k − xt+1 = Φk (Φ−Kt−k B)
(
x̂t−k|t−k−1 − xt−k

)
+ ΦkKt−k ηt−k −

k∑
j=0

Φj εt+1−j.

From these expressions, the formulas for Rk,` can now be deduced. The case R`,` is standard,

whereas for R`−1,` indicates we should set k = `− 1, and together with

x̂t+1|t−` − xt+1 = Φ`
(
x̂t+1−`|t−` − xt+1−`

)
−

`−1∑
j=0

Φj εt+1−j (31)

we find R`−1,` has the stated expression. This uses the fact that x̂t+1−`|t−`− xt+1−` is uncor-

related with ηt−`+1, as well as εt+1−j for 0 ≤ j ≤ `− 1. Next, for k ≤ `− 2 we compute Rk,`

using (31) together with (30). 2
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Table A1. Information Rigidities Based on Forecast Error
(1) (2) (3) (4)

VARIABLES Forecast Error Forecast Error Forecast Error Forecast Error

Forecast Revision 0.486*** 0.509*** 0.500*** 0.500***
(0.0162) (0.0177) (0.0168) (0.0173)

Forecast Rev * Disaster -0.139***
(0.0425)

Disaster -0.00725
(0.0169)

Forecast Rev * Disaster (News Scaling) -0.0870***
(0.0272)

Disaster (News Scaling) -0.00853
(0.0106)

Forecast Rev * Disaster (Combined Scaling) -0.0838**
(0.0353)

Disaster (Combined Scaling) -0.0227
(0.0140)

Observations 31,981 31,981 31,981 31,981
R2 0.141 0.141 0.141 0.141
Time FE YES YES YES YES
Country FE YES YES YES YES
VAR FE YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: Regressions performed for forecasts across 54 countries (including forecasts of GDP, CPI, long- and short-run interest rates, unemploy-
ment, and consumption). Forecast Error denotes the difference of the ex-post true value from the mean forecast. Forecast Revision denotes
the difference of the mean forecast from the previous month’s mean forecast. ‘Disaster’ is an indicator variable for a disaster occurring in a
particular country-month for over 1,000 natural disasters in the sample. ‘News Scaling’ refers to the ratio of news articles written about a
country in the 5 days following a disaster to those written in the 5 days before a disaster (has a mean of 1 and a max value of 6). ‘Combined
Scaling’ for disasters refers to a combined z-score comprised of the news scaling, the monetary damages caused by the disaster, and the
number of deaths caused by the disaster (mean of 1 and maximum of 4.5).
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Table A2. Information Rigidities Based on Forecast Revision
(1) (2) (3) (4)

VARIABLES Forecast Rev Forecast Rev Forecast Rev Forecast Rev

Lagged Forecast Revision 0.154*** 0.159*** 0.158*** 0.158***
(0.00549) (0.00599) (0.00571) (0.00586)

Lag Forecast Rev * Disaster -0.0332**
(0.0147)

Lagged Disaster 0.00687
(0.00593)

Lag Forecast Rev * Disaster (News Scaling) -0.0248***
(0.00949)

Lagged Disaster (News Scaling) 0.000560
(0.00373)

Lag Forecast Rev * Disaster (Combined Scaling) -0.0293**
(0.0122)

Lagged Disaster (Combined Scaling) 0.00133
(0.00490)

Observations 31,955 31,955 31,955 31,955
R2 0.058 0.058 0.058 0.058
Time FE YES YES YES YES
Country FE YES YES YES YES
VAR FE YES YES YES YES

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: Regressions performed for forecasts across 54 countries (including forecasts of GDP, CPI, long- and short-run interest rates, unemploy-
ment, and consumption). Forecast Revision denotes the difference of the mean forecast from the previous month’s mean forecast. ‘Disaster’
is an indicator variable for a disaster occurring in a particular country-month for over 1,000 natural disasters in the sample. ‘News Scaling’
refers to the ratio of news articles written about a country in the 5 days following a disaster to those written in the 5 days before a disaster
(has a mean of 1 and a max value of 6). ‘Combined Scaling’ for disasters refers to a combined z-score comprised of the news scaling, the
monetary damages caused by the disaster, and the number of deaths caused by the disaster (mean of 1 and maximum of 4.5).
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