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Abstract

This paper develops an estimable structural microeconometric model of car choice and usage that
features endogenous equilibrium prices on the used-car market. Households buy and sell cars in the
market and car owners choose how much to drive their car in a finite-horizon model. Moreover, we
explicitly model the choice between scrapping the car or selling it on the used-car market. We estimate
the model using full-population Danish register data on car ownership, driving and demographics for
the period 1996–2009, covering all Danish households and cars. Simulations show that the equilibrium
prices are essential for producing realistic simulations of the car age distribution and scrappage patterns
over the macro cycle. We illustrate the usefulness of the model for policy analysis with a counterfactual
simulation that reduces new car prices but raises fuel taxes. The simulations show how equilibrium
prices imply that the boom in new car sales come at the cost of accelerated scrappage of older cars.
Furthermore, the model gives predictions on tax revenue, fuel use, emissions, the lifetime of vehicles as
well as the composition of types and ages of cars in the future.
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1 Introduction

Government policies that affect durable goods inherently influence equilibria in both the new and
used markets. The presence of a secondary market may even lead to unintended consequences.
This is particularly true in the automobile market. For example, Corporate Average Fuel Economy
Standards in the United States can be expected to raise the price of new vehicles and delay scrap-
page of older and often more polluting vehicles (Jacobsen, 2013). In other countries, this effect is
even more evident. In Denmark, the new vehicle registration tax nearly triples the price of vehicles,
disincentivizing new vehicle purchases and leading to a much older fleet than would be expected
given the high per capita income of the country.

There are important dynamic considerations in consumer decisions that mediate how policies
affect the allocation of new and used durable goods. The stock of vehicles is persistent and vehicles
depreciate in value over time. Moreover, transaction costs lead to inertia in consumer holdings
due factors such as costly search or asymmetric information. These dynamic considerations are
particularly important for the welfare consequences of policies addressed to both the primary and
secondary markets.

This paper develops a tractable life-cycle model of vehicle ownership, vehicle choice, and us-
age. The model can for example be used to examine the effects of a proposed reform that reduces
the exceptionally high Danish vehicle registration tax and replaces it with road user charging,
in which drivers pay a tax based on the number of kilometers driven. We model the dynamic
considerations of the consumer in a framework that includes macroeconomic conditions, aging,
replacement, and scrappage. Using this framework, we study the non-stationary equilibrium in
the secondary market and can replicate the waves of vehicle prices and ownership decisions corre-
sponding to the business cycle that are observed in the data. We estimate our model using detailed
data from the Danish registers on all vehicles in Denmark and their odometer readings matched
to individual and household-level demographics. These data contain longitudinal information on
income, wealth, labour market status, household composition, distance to work, occupation, and
family patterns, as well as information on all vehicle transactions and suggested depreciation rates
at the make-model-vintage level.

This paper contributes to several strands of the literature. The proposed policy affects the
vehicle market, a well-studied market in the economics literature, with significant work on prod-
uct differentiation and consumer choice of new vehicles (Bresnahan, 1981; Berry, Levinsohn and
Pakes, 1995; Goldberg, 1995; Petrin, 2002). These seminal papers allow for general patterns of
substitution across differentiated products, but do not model secondary markets or the dynamics
of the consumer decision process. Economists have demonstrated the importance of secondary
markets for the allocation of new and used durable goods (Rust, 1985b; Anderson and Ginsburgh,
1994; Hendel and Lizzeri, 1999a,b; Stolyarov, 2002; Gavazza, Lizzeri and Roketskiy, 2014), as
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well as the influence of durability on the dynamics of vehicle demand (Adda and Cooper, 2000a;
Stolyarov, 2002; Esteban and Shum, 2007; Chen, Esteban and Shum, 2013). This paper models
secondary markets and the dynamics of consumer decisions in the context of a major proposed
policy reform using impressively detailed household-level data. Schiraldi (2011) models the con-
sumer’s dynamic decision process to estimate transaction costs and the effects of a counterfactual
scrappage subsidy in Italy, but does not model counterfactual equilibrium prices in new and used
vehicle markets.

Since Berkovec (1985) economists have estimated numerical equilibria in new and used ve-
hicle markets. Rust (1985b) estimates a stationary equilibrium in new and used vehicle markets
with an equilibrium price function that matches the distribution of supply with the distribution
of demand. Konishi and Sandfort (2002) prove the existence of a stationary equilibrium in the
presence of transaction and trading costs. Stolyarov (2002) and Gavazza, Lizzeri and Roketskiy
(2014) estimate stationary equilibria with transaction costs that match several key features of the
U.S. automobile market. One key assumption in these papers is a discrete uniform distribution
of vehicles in each age cohort. Adda and Cooper (2000b) demonstrate that the age distribution is
non-stationary: macroeconomic shocks and gasoline price shocks create “echo effects” or “waves”
in the age distribution. We model equilibria in the automobile market that is a function of both
macroeconomic conditions and gasoline prices, allowing us to capture these waves in the age dis-
tribution of vehicles.

By examining the welfare effects of a key policy reform, our paper also contributes to the liter-
ature examining environmental policies in vehicle market. For example, Bento, Goulder, Jacobsen
and von Haefen (2009) use a static model of consumer demand and a Bertrand oligopoly model
for automobile supply to examine the welfare and distribution effects of vehicle taxes in the United
States. Jacobsen (2013) builds on this modeling framework to examine the effects of Corporate Av-
erage Fuel Economy Standards in the United States. These papers model both vehicle choice and
usage decisions to provide useful policy insight, but abstract from the intertemporal dependence
of consumer decisions. Our paper also uses more comprehensive data that allows us to model
the impact of macroeconomic conditions on the vehicle purchase decision. Gillingham (2012) de-
velops a two-period vehicle choice and usage model to examine the effects of gasoline taxes and
policies that change the price of new vehicles. The focus in Gillingham (2012) is on estimating
the rebound effect, i.e., the additional driving in response to a policy that raises fuel economy. A
major contribution of our paper is that it develops a tractable model of dynamic consumer choice
to estimate primitives that allow us to simulate the counterfactual equilibrium and accordingly, the
effects of an important policy reform that is actually being considered.

There are a number of attractive features of our approach for examining the effects of the
proposed reform. First and most importantly, the structural parameters have a clear interpretation
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from the theoretical model, allowing for counterfactual simulations to examine the welfare effects
of the proposed reform. Our data allow us to obtain aggregate demand for vehicle investments, fuel
consumption, and usage by aggregating individual demands resulting from consumer dynamic
optimizing behavior. Furthermore, our empirical setting and data contain several reforms that
provide plausibly exogenous variation to identify our structural parameters.

We find that our model can not only replicate waves in the observed data due to business
cycles, but can rationalize the vehicle choice and usage behavior in Denmark. We conduct a simple
counterfactual experiment of a reform that reduces the new car prices and raises fuel prices. The
simulations show that both the model with and without equilibrium prices predict a shift towards
younger cars. However, in the equilibrium-version, this shift occurs at the cost of accelerated
scrappage of the older cars. This behavior is driven by the equilibrium prices; without equilibrium
prices, the reform increases shifts demand towards newer cars for all households, regardless of
which car they currently own. When prices adjust to equate demand and supply, demand will drop
relatively more for cars ages that are abundant. Thus, the counter-movements of equilibrium prices
imply that the demand-response to the reform will depend on the individual household’s car state
as well as the aggregate car stock. In the simulation we see a large group of old vintages where the
reform depresses prices for those car ages so much that it leads to a spike in scrappage. This is the
type of behavior that is documented empirically by e.g. Jacobsen (2013). The ability to study the
interplay between car taxation, the car stock and the macro cycle is a primary innovation of this
model.

The remainder of the paper is structured as follows. The next section provides background
on the institutional setting and discusses our dataset. Section 3 develops our dynamic model of
consumer purchase, vehicle type, replacement, and usage choices. Section 4 discusses our estima-
tion approach and the data. Section 5 describes how we solve for the non-stationary equilibrium.
Section 6 presents our results and Section 7 concludes.

2 Background and Data

This section provides background on the relevant policy questions that this model was designed to
address, and describes the data we use to estimate the model, and provides a deeper review of the
literature we built upon, highlighting the new contributions in this thesis. a fuller review of four
separate literatures our model builds upon and was inspired by, and summarizes the areas where
we contribute to each of them.
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2.1 Institutional Setting

Denmark provides a very useful empirical setting for examining policies that affect the new vehicle
registration tax and the operating cost per kilometer driven. Vehicle taxation in Denmark currently
is made up three components: a one-time registration tax when the vehicle first enters the Danish
fleet, an annual tax, and fuel taxes. The registration tax is a very large proportional tax with a kink,
where various deductions apply.1 For example, in 2010 the tax was 105 percent of the first DKK
79,000 (about $14,500) and 180 percent of the portion of the price exceeding the kink at DKK
79,000. The kink changes over time but the rates of 105 percent and 180 percent have remained
stable.

There have been numerous changes over time in the registration tax, that provide exogenous
variation to help us identify our structural primitives. There have been three reforms from 1992 to
the present with an increasing focus on creating incentives for households to purchase more fuel
efficient vehicles. Data on the fuel efficiency of new vehicles is available from the first reform in
1997. This reform set the annual tax for all vehicles first registered prior to July 1, 1997 according
to the weight of the vehicle. At the same time, it set the annual tax for all vehicles registered
after July 1, 1997 according to the fuel economy of the vehicle (in kilometers per liter). The
motivation behind this reform was to tax older vehicles for wear and tear on the road and incentivize
households to purchase more fuel-efficient new cars.

In 2000, deductions in the registration tax were introduced for vehicles in the higher end of
the fuel efficiency scale (above 25 km/l). Therefore, only a very limited fraction of the vehicles
sold in that year were actually affected by the reform. In the 2007 reform, these deductions were
expanded so that all vehicles have their registration tax depend on fuel efficiency according to a
piecewise linear schedule. If the vehicle has a fuel efficiency (FE) of more than 16 km/l, it receives
a deduction of 4,000(FE−16), and if it has a fuel economy less than 16 km/l, the tax is increased
by 1,000(16−FE). Not surprisingly we see a very strong response at the extremes: The market
share of the most fuel efficient cars increased from 8.1 percent prior to the reform to 50.4 percent
at the end of the period in 2011 whereas for cars driving 16.6 km/l or less it decreased from 71.3
percent to 19.4 percent.

The Danish Ministry of the Environment pays out a scrappage subsidy for cars that are scrapped
in an environmentally sound way by an authorized scrap yard. The subsidy was put in place on
July 1st, 2000, and amounts to 1,500 DKK.

1 Examples of deductions include a reduction of the taxable value of the vehicle of DKK 3,750 if ABS brakes are installed and
a reduction of DKK 12,000 from the final tax if the vehicle drives 19 to 20 km per litre of gas.
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2.2 Data

The dataset used in this paper draws on many different Danish sources. At the core of the dataset
is information on the fleet of vehicles registered in Denmark is available from Statistics Denmark
in the database bildata. The main source for the database is the Central Register of Motor Vehicles.
The database keeps track of nearly all vehicles in Denmark and in particular all private personal
vehicles.2 For each vehicle we have the motor register’s vehicle identification number (VIN) and
the owner’s CPR number, which uniquely identifies all individuals in Denmark.3 This register
not only contains basic vehicle information, but also allows us to track ownership over individual
vehicles over time.

Socioeconomic data for the owners of vehicles comes from various Danish registers. These
contain the full Danish population in each year with the exception of Danes living abroad. The
CPR number is given to any individual taking residence for longer than 3 months in Denmark (6
months for Nordic or EU citizens) and is used in nearly all dealings with official authorities from
education and taxation to the purchase of medicine and criminal records. Thus, the dataset includes
detailed educational information, place of residence and time of movements, income and wealth
information from the tax report (which for most employees is 3rd party reported). We merge in
information on spouses and children to give an adequate picture of the household.

Another important vehicle register dataset contains information on the vehicle tests performed
by the Danish Ministry of Transportation (MOT). There are three main types of tests, with the goal
of ensuring that vehicles in Denmark are safe to drive. A registration test is performed when the
vehicle is registered. Periodic tests are performed bi-annually from the fourth year since the car
was registered and the rest of its lifespan. Customs tests are performed on imported used vehicles
prior to their registration test when they are registered in Denmark. The most important variable
from the MOT tests is the odometer reading, which allows us to track the usage of individual
vehicles. Using the VIN, these odometer readings are merged with the vehicle register database.
Note that for the first observation of a given VIN at a test, we assume that the odometer was at zero
when the car was originally purchased. There are two possible exceptions to this; if the car was
taken for test drives prior to the purchase, then that will have taken prior to the first registration,
which occurs when the car is purchased from the dealer and registered to the consumer. The second
is if the car was imported, which relates to the following data issue.

One shortcoming of the vehicle data is that we do not observe the model year of the vehicle.
2 Exceptions that are not included in the register include for example company cars and military vehicles. For company cars,

we instead observe a tax variable indicating whether an individual has access to a company car that can be used privately. This is
the case for 3.4% of Danish households.

3 Note that the VIN found on American vehicles differs from our VIN; in the US, the VIN can be used to back out much
information about the car manufacturer etc. We also have access to the first 11 characters of the VIN number but we have found
this variable to be unreliable in our dataset, inconsistent over time and many observations having VINs we cannot justify based on
online databases.

5



Instead, we only observe the date of the first registration in Denmark. This means that if a used car
has been imported, we are incorrectly classifying it as a zero year old car. However, imported used
cars must also pay the Danish registration tax, which means that the net-of-tax new and used car
prices in Denmark are generally lower than in other European countries (see Figure 22). Therefore,
importing of cars is not a major issue in our empirical setting.

Finally, the Danish Automobile Association (DAF) maintains a database of prices of vehicles
by make, model, variant, year and vintage, allowing us to follow the value of used cars as well. The
main limitation of these data is that we do not observe what additional equipment was purchased
with the car. However, DAF does provide an informed guess of the typical price, as well as a high
and low price, bounding the price range for that specific vehicle. DAF also provides the price a
professional car dealer would pay and the price he would demand for a given vehicle, giving a
proposed margin. The prices are highly reliable and are used by professional car dealers in setting
the price of a used vehicle.

We define scrappage in our data as having occured when a car’s ownership spell ends and we
do not observe a new one starting. The car may have been exported out of the country although
exports are generally not a large concern because the high taxes in Denmark mean that used-car
prices are fairly high internationally. We observe quite low scrappage rates in the first two sample
years, 1996 and 1997, so to validate our data in terms of scrappage, we can compare the scrap rates
to data on the number of scrappage subsidies paid out.4 We will discuss this issue in greater detail
later.

2.3 Descriptives

We will now present some key descriptives for our estimation sample. We will focus on the main
variables to be incorporated in the model, namely car characteristics, fuel prices, car ownership by
household age and income and the discrete choices made by households.

The most important piece of descriptive evidence for this paper is the “waves” in the car age
distribution shown in Figure 1. The waves appear as newly purchased cars travel through the age
distribution of cars over time as they age. It is well-known that new car sales is one of the most
volatile components of GDP, clearly showing the business cycle. Along the axis of calendar time
for car age zero, we see the new car sales increasing in the boom in the lage 90s, staying low
during the brief recession in 2001–2003 before then again increasing in the following boom up
towards the financial crisis. Then, as time moves forward these purchases travel through the age
distribution along the diagonal, until they begin to die out as the car age approaches 20 and cars
start to be scrapped.

While Figure 1 shows the car age distribution, this is not necessarily informative about how
4 The data is available on the website www.bilordning.dk (accessed March, 2015).
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Figure 1: Car Age Distribution Over Time: “Waves”

much trading takes place along the waves; it might be that the same owner holds on to a given car
for its entire lifetime or that they are traded. Figure 2 show the number of purchases for a car of
a given age in a given year. Firstly, we see that new car sales dwarf any of the other age groups,
as would be expected. Secondly, we see the macro state clearly in the new car purchases since car
sales are highly pro-cyclical. This fact is a key motivation for our modeling strategy; the macro
shocks drive the new car sales which then travel through the age distribution as “waves”. Thirdly,
we see that the waves can also be seen in the transactions, meaning that we see more trading for
cars that are more abundant. This becomes clearer if we remove the new car sales from Figure 2
(see Appendix Figure 23).

Our Appendix Table 10 provides summary statistics for key variables in the full dataset. In
our empirical analysis, we will be aggregating to only two car types: gasoline and diesel cars.
To construct the choice set, we aggregate the characteristics of the underlying cars by taking un-
weighted averages within each of the two car types. Figure 3 shows the new car price in 2005 DKK
and fuel efficiency in km/liter for the two types over the sample period. The figure shows that the
new car prices have converged; a diesel car cost 15.5% more than a gasoline car in 1996, which
had fallen to 1.6% by 2009. At the same time, the average fuel efficiency has increased relatively
more for diesel cars than for gasoline cars.5

Our dataset allows us to paint a very complete picture of car ownership over the life cycle and
for the full household. We will focus the number of cars owned and how it relates to household

5Appendix Figure 19 shows the real price of gasoline and diesel over time. Prices have been increasing for both types of fuel
but we also note that hte two prices appear to have converged over time. Figures 20 and 21 demonstrate how the composition of the
fuel prices have changed over time, which shows that the changes have mainly been driven by the product prices; fuel taxes were
increased slightly in 1996 and 2000 but were otherwise kept constant (i.e. the fixed part was kept constant and the proportional tax
rate was not changed).
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age and income. First, note that only 12.1% of the households in our sample owns more than 1 car
(Table 6). This is very low compared to the US but makes sense in light of the very high car prices
(see Appendix Figure 22). From 1996 to 2009, the share of no-car households has decreased from
49.1% to 37.2%, and the share of two-car households has also increased (from 6.3% to 14.4%).
Like most well-known models of car choice, our model will be a single-car model, which does
not seem to be as critical given the fairly low share of multi-car households. However, since a
major focus of this paper is to model the equilibrium of the used-car market, we do not wish to
simply drop all these observations. Instead, we choose to treat multi-car households as independent
decision-making units; when a household purchases an extra car, we create two observations for
that year, where one keeps the original car and the other is counted as a household entering from
the no-car state. The two observations will split the household income equally to ensure that the
total amount of resources in the economy remains stable.6

Figure 4 shows the number of cars owned by the household age (defined as the male’s age for
couples). The figure shows that the ownership rate increases rapidly up through the 20s and then
flattens by the late 30s where around 70% of households owning at least one car. As the household
approaches retirement age, the share of no-car households increases somewhat and it appears that
some 2-car households sell of one of their cars.

Next, we consider how car ownership varies with the income of the household. Figure 5 shows
for each income decile, the percent of households owning zero, one, two or more than two cars. As
expected, higher income is associated with a higher probability, and for incomes above the median,

6 If the household once again becomes a one-car household, then the extra observation will count in the final year as having sold
to go to the no-car state and will be deleted from future time periods.
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Figure 5: Number of Cars Owned by Income Decile

the share in the one-car category decreases as households start to be able to afford having more
than one car.

We now consider the discrete car ownership choices that will be relevant to our model. If
households own no car, they can choose to remain in the no-car state. If they have a car, they can
either keep it, sell it or replace it. Recall that if they choose to buy an additional car, we will treat
them as an additional household coming into the sample. Figure 6 shows for each income decile,
the fraction of households choosing each of these discrete choices. Firstly, we see that over 80% of
households in lowest income decile choose to remain in the no-car state and that this decreases to
less than 10% for the highest income decile. Similarly, the probabilities of keeping and replacing
the existing car increases. The probability of selling the car and going to the no-car state remains
low throughout. Given that household income rises over the the life cycle, it is not possible from
Figure 4 and 5 alone to determine whether the most important drivers are related to household age
(e.g. the presence of children) or income (e.g. leisure activities or work).

We now take the perspective of the cars being purchased. Figure 7 illustrates how long house-
holds hold their purchased car conditional on the car age at the time of purchase. For each own-
ership spell where the car was a years old at the time of purchase, we show the distribution of the
lengths of the ownership spells. As expected, the figure shows that when a household purchases a
young car, they tend to hold it for longer. Interestingly, the holding times go up after age 22; this
is most likely due to the selection effect of vintage or specialty cars not being scrapped.

Finally, we show the scrappage in the data over time. Figure 8 shows scrappage by car age;
we have pooled the sample and computed for each car age, the pct. of all cars at that age that are
scrapped. Note that we truncate car age at 24, which is the maximum age used in the model. The
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figure shows that the mode of car scrappage occurs at car age 22, after which scrappage declines
somewhat. This is most likely due to a selection effect where specialty or vintage cars are kept
very long while normal cars are scrapped earlier. We also note that scrappage is markedly higher
in even years; this coincides with the test years. In other words, the pattern is consistent with an
individual taking his car to the inspection test and deciding to scrap the car if it fails the inspection
and is deemed unfit to drive.

Figure 9 shows the number of cars being scrapped in each year by the car age. When compared
to the waves in Figure 1, we can see the scrappage spike in 2000–2005 as being explained by cars
from the boom in the 1980s being scrapped and that wave dying out in the car age distribution. An
important feature of the data that becomes clear from Figure 9 is that the age distribution changes;
so while Table 7 indicates that the number of cars being scrapped each year is relatively stable over
time, this masks the fact that the age composition of cars being scrapped in the late 200s is quite
different from the ones being scrapped in the early 2000s, with younger cars being scrapped later.

In Appendix B.3, we go into more details about our scrappage data. Most importantly, we find
too low scrap rates for 1996 and 1997 for that data to be believed (Table 7). This means that we are
only seeing a very small number of ownership periods ending prior to this. However, from 1999
the rate appears to be on par with the remainder of the period. We have been unable to discover
the cause of this oddity in the data but we choose to use the data from 1999 and onwards. In
the Appendix we also include Figures showing correlations between VKT and several of our state
variables.
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Figure 9: Scrappage by Year and Car Age

3 The Model

In this section, we present the model. We first explain the state variables and decision variables
as well as the model fundamentals. Then, in Section 3.1, we explain the household’s dynamic
optimization problem, how we handle scrappage in the model and derive the Bellman equation.
Finally, in Section 3.2, we present the utility specification and the optimal driving equation.

We estimate a finite horizon lifecycle model of automobile holdings, driving, and trading de-
cisions that features both vertical and horizontal product differentiation. Let τ denote the “type”
of vehicle. We will assume there are a finite number of possible types, τ ∈ {1, . . . ,τ}. These can
be thought of as a make-model combination or simply a vehicle class (e.g., “luxury,” “compact,”
“economy,” “SUV,” “sport,” and “minivan”). In our estimation, we use two car types according to
the fuel types: gasoline and diesel.

To capture vertical product differentiation, we also distinguish the age of the vehicle, a ∈
{0,1, . . . ,a}, where a = 0 denotes a brand new vehicle, and a = 1 a one year old vehicle, and
a is the oldest vehicle in the market. For simplicity, we let a be a catchall class of all cars that are
of age a or older. Thus, we index the set of cars that consumers in Denmark can choose from by
(τ,a) where τ specifies a particular type of car and a denotes its age.

This formulation is very useful for the tractability of the model, but does abstract from changes
in technology.7 We can note that changes in the real prices of cars are likely to be more attributable

7We decided not to adopt the modeling approach of Schiraldi (2011) of using a device similar to his “mean augmented net
utility” since this is an endogenous stochastic process that is not firmly rooted in first principles in the sense that there is no way we
can see to derive the form of this stochastic process from more primitive assumptions about consumer beliefs about the arrival of
new technologies and models of vehicles to the market over time. It was not clear to us that making a somewhat arbitrary assumption
about beliefs of “endogenous objects” (such as how consumers’ value functions change over time in response to new technological
innovations in the vehicle market) result in more trustworthy forecasts than the simpler assumption of “stationary expectations” —
i.e. the assumption that consumers do not expect any future technological innovations. Note that while we maintain an assumption
of stationary expectations with respect to technology, we do allow non-stationarity due to the effects of macroeconomic shocks on
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to macroeconomic conditions than a particular technology innovation, but this is an area for future
work. There may also be a considerable degree of unobserved heterogeneity in used vehicles of a
given age and type. For example, some have been driven more than others, and some are in better
condition than others. However, Cho and Rust (2010) show that vehicle age and odometer readings
are highly correlated and that once age is included as a predictor of car prices, the incremental
predictive value of including the odometer is small.

We assume there is a secondary market where consumers can buy and sell used vehicles. The
vast majority of trade in the secondary market in Denmark (about 90% according to bilbasen.dk,
the largest used car website in Denmark) is intermediated by auto dealers rather than done as direct
exchanges between individual consumers. Dealers refurbish/repair the used cars they buy and are
legally required to guarantee the quality of the used cars they sell to consumers. We assume that
as frequent traders in the used car market, dealers have a comparative advantage in inspecting
and determining the physical condition of the used cars they buy from consumers. This lessens
the problem of asymmetric information about the condition of a used car traded in Denmark, and
thus we do not deem the Akerlof (1970) “lemons problem” to be a significant barrier to trade of
used cars in Denmark.8 In addition, this tends to reduce the degree of idiosyncratic variation in
the unobserved quality of cars that consumers can buy, which helps to justify our assumption of a
common price P(τ,a, p,m) for used cars of type τ and age a in Denmark.

Of course there will be idiosyncratic variation in the quality of cars that are sold to dealers, but
we assume that by repairing/refurbishing used cars to be resold to other consumers, dealers help
to homogenize the condition of used cars that are sold. We assume that dealers have a compara-
tive advantage in estimating the costs of repairing and reconditioning a used car they buy from a
consumer and this repair cost is borne by the consumer who sells their used car to a dealer. The
idiosyncratic variability in this repair cost is captured by a random component in the transactions
cost that a consumer incurs when they sell their used car to a dealer. This leads to the possibility
that if a consumer has a used car that is in sufficiently poor condition, the amount they would
receive from selling this car to a dealer net of the cost of repairing/refurbishing the vehicle could

the market, and we have chosen to focus on modeling how these factors affect consumer beliefs and trading since it is far more
obvious from our analysis of the data how such shocks affect new car purchases and used car scrappage over time. We will attempt
to investigate how our stationary expectations assumptions regarding technology can be relaxed in future work.

8Despite the wide attention to the “lemons problem” that Akerlof article raised, there is not clear empirical evidence that it is
a serious problem in actual automobile markets. For example Bond (1982) found that pickup trucks that were “purchased used
required no more maintenance than trucks of similar age and lifetime mileage that had not been traded.” leading him to conclude
that “This leads to a rejection that the market for pickup trucks is a market for lemons” (p. 839). However other studies, such
as Engers, Hartmann and Stern (2008) conclude that “Our empirical results strongly suggest that there is a lemons effect because
there is significant unobserved heterogeneity.” However we do not see sufficiently strong evidence for a lemons problem that would
justify the added complexity in trying to explicitly account for it in our model. Certainly the most extreme prediction of asymmetric
information does not hold: namely, the ‘lemons problem’ if it exists, is clearly not severe enough to kill off trading in secondhand
markets for autos. Around the world, we see active secondhand markets for cars, which suggests to us that concerns about problems
of asymmetric information and unobserved vehicle quality are of second order of importance relative to the primary benefit of the
gains to trade that come from having an active secondary market.
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exceed the scrap price, P(τ, p,m). In this case we assume that the car would be scrapped rather
than sold to the dealer. We will describe this scrappage decision in further detail in Section 3.1, but
we will show that it constitutes a static subproblem that a consumer faces whenever they decide to
sell their existing car.

Our model allows for idiosyncratic factors such as the condition of the current car owned, and
other unobserved factors to affect decisions about keeping a vehicle or trading it for another one.
We account for these unobserved factors with random variables that capture the net effect of unob-
served variables that pertain both to the consumer and to different cars they might consider buying,
and other factors that may vary over time. For computational tractability of the model, we assume
these unobserved factors have IID (over time) multivariate Type 3 generalized extreme value dis-
tributions that result in a “nested logit” structure for car choices. The nested logit specification
allows for correlation in the unobserved transactions costs faced by a consumer who chooses to
replace their current car. This enables the model to capture endogenous scrappage decisions, i.e.,
the consumer’s choice of whether to scrap their current car, or sell it in the used car market.

Besides the variables (τ,a) that index the type and age of car the consumer may currently own
as well as all vehicles they can choose from at any given point in time, we introduce the key macro
variables that we believe are relevant both for individual choices and for the equilibrium of the
market as a whole, (p,m) where p is the current price of fuel (we assume that diesel fuel is a
fixed fraction of the price of gasoline, which is reasonably justified from the evidence presented
in section 2) and m is an indicator of the “macro state” of the Danish economy. We model m
as a binary variable where m = 0 indicates that the economy is in a recession period, and m = 1
indicates a non-recession period.

Consumer expectations of the price of a typical car of type and age (τ,a) when the economy is
in state (p,m) are given by the function P(τ,a, p,m). These expectations affect individual agents’
choices of vehicles in an important way as we describe in more detail below. However we do not
assume that agents have perfect expectations of vehicle prices in the sense that their beliefs about
car prices coincide exactly with the actual future prices of new and used cars, that may change over
time due to the effects of unforseen macroeconomic or fuel price shocks. We define a notion of
temporary equilibrium in Section 5 where realized prices of vehicles are computed that clear the
market in the sense of setting expected excess demand to zero. We place no restrictions on the form
of these realized or temporary equilibrium prices and allow them to vary freely over time to clear
the market period by period. While consumers may not be able to exactly predict future prices of
vehicles, they can form very good predictions of future prices using flexibly parameterized price
functions P(τ,a, p,m) that depend on the type of each car τ, the age of the car a, and (p,m) the
current fuel price and macro state. In fact, in our initial work, we find we are able to provide
good approximations to future prices using expectation functions of the form P(τ,a) that do not
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even depend on the variables (p,m) at all. We will discuss the distinction between consumer
expectations of prices and the prices that actually clear the market in more detail in section 5.

Since Denmark has no domestic car production, we make a “small open economy” assumption
that there is an infinitely elastic supply of new cars in Denmark at fixed “world prices”. That is, we
assume that the prices of all new cars are exogenously fixed at values P(τ, p,m)≡ P(τ,0, p,m) that
represent auto producers’ profit maximizing pricing decisions under the assumption that demand
for new cars from Denmark is a negligible component of their overall worldwide sales. Similarly,
we assume there is an infinitely elastic demand for vehicles for their scrap value at an exogenously
fixed price P(τ, p,m) = P(τ,a(τ), p,m), where a(τ) is the oldest age of a vehicle of type τ in our
model.9 We will present our model of the scrappage decision below, but it is helpful to point out
that this model incorporates idiosyncratic shocks to the choice of scrapping and the choice of sell-
ing a used car in the secondary market. Sometimes it is possible that a consumer would choose
to scrap a car (τ,a) even though the scrap price is lower than the prevailing secondary market
price of that vehicle P(τ,a). The idiosyncratic shocks capture unobserved costs associated with
scrapping versus selling, such as repair costs that an owner would have to undertake to put their
car in “sellable condition.” Net of these repair costs the amount a household could receive from
selling their car could be less than what they would receive from scrapping it, so these shocks can
explain situations where households scrap cars for an amount that appears less than the amount
they could receive from selling the car. While the temporary equilibrium prices we compute are
generally monotonically decreasing from the exogenously fixed new car price P(τ) to the exoge-
nously specified scrap price P(τ), due to the presence of idiosyncratic shocks and the effects of
sufficient concentrations of older cars on market prices, it can sometimes be the case that there will
be slight non-monotonicities in the prices we calculate, including a possibility that some used car
prices of sufficiently old vehicles could be slightly below the scrap price.

The scrappage decision is important for helping our model to capture the age distribution the
vehicle stock in Denmark, which has an upper tail that declines with age. If we made an alternative
assumption that no car is scrapped until it reaches the oldest age a(τ), then in the absence of macro
shocks the model would imply a uniform stationary distribution of vehicle ages which is contrary
to what we observe. Further, our model allows for accidents that result in a total loss of the vehicle.
We model this as a probability α(τ,a,x) that a car of type τ and age a owned by a consumer with
characteristics x will experience an accident during the one year period of our model that is so
severe that it is uneconomic to repair the vehicle. When such an accident occurs, the consumer
is assumed to lose the vehicle, and thus the consumer enters the next period t + 1 as a household
that does not own a car. In this way, accidents constitute an “involuntary” component of vehicle
scrappage in our model that will help the model to fit the non-zero fraction of young cars being

9In the estimation, we will set a(τ) = 24 for τ = 1,2 corresponding to gasoline and diesel.
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scrapped as shown in Figure 8.
We assume that households cannot purchase a car of the highest age a = a(τ) in the used car

market. Nevertheless, our model does allow consumers to own cars that are of this age. They
can do this simply by keeping their current car until it reaches age a(τ). Once the car reaches this
age, we assume that it no longer important to keep track of its exact age. Thus to keep the age
variable a bounded, we simply assume that all cars that are age a(τ) and older are in the oldest age
“equivalence class.” We do observe a slight upwards shift in the car age distribution for a = 24
in Figure 1. When a consumer holding one of these cars wishes to get rid of it, the only option is
to scrap it and receive the scrap price P(τ, p,m). The model can easily be extended to allow for
trading in cars of the oldest age.

The prices of cars at all ages below the maximum, a ∈ {1, . . . ,a− 1} are determined endoge-
nously in the secondary market for vehicles in Denmark, i.e., as the prices that equate the supply
and demand for vehicles of each type τ and each age a ∈ {1, . . . ,a} when the macro state is (p,m).
These prices will generally exceed the scrap price P(τ, p,m), and there will generally be supply of
cars of these ages, but we do not make any restrictions on equilibrium prices yet. We return to this
when we discuss the scrappage problem.

Let x denote a vector of household-specific variables, the most important of which include a)
age of household head, b) household income, and c) other observed and unobserved time-invariant
factors. Age and income are treated as time-varying state variables. In the empirical application,
we do not currently include any variables under c) but we include it in the exposition for com-
pleteness. An example of c) would be to allow for unobserved heterogeneity in households in their
preferences for cars. Other types of observable heterogeneity can be allowed such as estimating
separate models for urban and rural households. In future work we plan to explore various spec-
ifications that allow for richer types of unobserved and observed heterogeneity, but our approach
is to start with the simplest specification that already allows for a good deal of heterogeneity via
avenues a) and b) above.

We focus on households that own at most one car, which accounts for 87.9% of Danish house-
holds. We assume decisions are updated on an annual basis. At the start of each year a household
makes a decision about whether to buy a new vehicle and/or sell their existing vehicle, but our
model does not allow a household to purchase more than one vehicle in any period, and if a house-
hold has an existing vehicle, it cannot purchase another one unless it simultaneously sells the
existing one. We assume that if a transaction decision is made, it occurs at the beginning of the
period, i.e. if the customer trades for a new car, they will be able to use the new car immediately
and for the rest of the one year time period. Let d′ = (τ,a) denote the car choice decision, where
d′ = ( /0, /0) denotes the decision not to have any car.

It is important to realize that the last year’s car choice constitutes part of the current state of
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the household at the start of time t when we assume it updates its decision about its automobile
holdings. Thus we let d = (τ,a) denote the household’s car state where we use the state d = ( /0, /0)

to denote a household that does not currently own any car. If a household has no car, at the start of
each (one year) period in the model we assume that the household makes a car purchase decision
d′ = (τ′,a′) where τ′ is the type and a′ is the age of car it chooses to buy. If the household chooses
not to buy any car, this corresponds to the decision d′ = ( /0, /0).

Now consider a household that has an existing car d = (τ,a) 6= ( /0, /0). This household actually
faces two simultaneous discrete decisions: 1) a sell decision and 2) a buy decision. In order to
reflect the sell decision, we add a third component ds to the vector d′ = (τ′,a′,ds) where the sell
decision ds takes three possible values, ds ∈ {−1,0,1}where ds =−1 denotes a decision to sell the
car for scrap, i.e., to receive P(τ, p,m) for it, ds = 0 denotes the decision not to sell the car (i.e. keep
the current car d = (τ,a)), and ds = 1 denotes the decision to sell the car in the secondary market,
i.e. to receive an expected price of P(τ,a, p,m). As we noted above, there are random shocks to
utility (to be described in more detail shortly) that capture a number of factors that are observed by
the household and unobserved by the econometrician, including any deviation between the actual
selling price of the existing vehicle and its expected value P(τ,a, p,m).

The sell decision provides the notational distinction we need to reflect the fact that a household
who owns a car d = (τ,a) may either want to keep that car (ds = 0), scrap that car (ds = −1) or
trade that car (ds = 1) and purchase another car d′ = (τ,a) of the same type and age. Notice that
when a household chooses to keep the current car, ds = 0, then the only possible value for the
(τ′,a′) components of d′ are (τ′,a′) = (τ,a) where d = (τ,a) is the type and age of the currently
owned vehicle. However if the household chooses to scrap or trade the current car, then they are
free to choose any type of replacement vehicle, including a vehicle with the same type and age
(τ,a) as their currently owned vehicle.

Thus, the choice set of a household that owns a car d = (τ,a) 6= ( /0, /0) is

D(d) = (1){
(τ,a,0),{( /0, /0,ds),ds ∈ {−1,1}},{(τ,a,ds),τ ∈ {1, . . . ,τ},a ∈ {0, . . . ,a−1},ds ∈ {−1,1}

}
corresponding to the options of 1) keeping the current car, or 2) selling or scrapping the current
car and not buying another one to replace it (where (τ′,a′) = ( /0, /0) denotes this choice), or 3)
choosing to buy some other car d′ = (τ′,a′). Notice the decision d′ = (τ′,a′,1) corresponds to the
household’s decision to trade-in their current car d = (τ,a) for another car (τ′,a′), and receive the
secondary market price P(τ,a, p,m) for their existing car as a trade-in value. On the other hand,
the household might also choose to scrap their current car if its physical condition is sufficiently
poor and receive only the scrap value P for it. This decision is denoted by d′ = (τ′,a′,−1) where
ds =−1 corresponds to the decision to scrap the current car d = (τ,a).
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Our model also accounts for accidents that are sufficiently severe to result in a total loss of the
vehicle. Some accidents may be more minor and the damage is repairable, but here we are referring
to accidents that are so severe the car is declared to be a “total loss” (typically by the household’s
insurance company) and the household is unable to repair the damage and is simply given an
insurance settlement for the expected market price (often less some deductible or coinsurance
amount) of the vehicle involved in the accident. When such accidents happen, the household does
not have the option of keeping the existing vehicle so the choice set is the one given in equation
(2) but without the alternative (τ,a,0) which corresponds to choosing to keep the current vehicle
d = (τ,a). We denote this restricted choice set where keeping the currently owned car is not a
feasible option by DR(d).

The choice set for a household that does not have a car d = ( /0, /0) is

D(d) =
{
( /0, /0),{(τ,a),τ = 1, . . . ,τ,a = 0, . . . ,a}

}
(2)

corresponding to the options of 1) continuing to not have any car, or 2) buying some car d′=(τ′,a′).
We use the notation vs(d′,d, p,m,x) to denote the generic indirect utility that a household whose

head is aged s and has observed characteristics x receives from the vehicle choice d′ at the start of
period t if it starts that period with a current car state d, and the fuel price is p and macro state is
m. The reason we use the term “indirect utility” is that for households who choose to own a car
vs(d′,d, p,m,x) reflects the household’s expected utility from the use of that car during the coming
year. We will introduce additional notation and a more detailed model of vehicle driving decisions
in the next section, and show how we derive tractable functional forms for the indirect utility
function from flexibly specified regression models of household driving decisions. For households
who choose not to own a vehicle, vs(d′,d, p,m,x) reflects the indirect utility from use of alternative
non-car modes of transportation, such as bicycles, walking, and public transportation.

3.1 Household Dynamic Vehicle Choice Problem

We now describe the household’s dynamic optimization problem. The household lives for a finite
time (with stochastic mortality of the household head, at which point we treat the household as
dissolved) and makes a sequence of car ownership decisions at annual intervals over the lifetime
of the household. We assume the youngest age of any household head is s = 20 and the oldest
possible age of a household head is s = 85. In addition, the households who own a car have an
additional continuous decision on the number of kilometers to drive their car over the year, and the
details of this decision will be described in the next section.

Just as in much of the relevant literature on vehicle choice, we do not solve a complete life-
cycle optimization problem for the household. That is, we ignore the overall consumption-savings
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problem and do not carry household wealth as a state variable of the decision problem. Instead, we
ignore borrowing constraints and assume that the household has enough cash on hand to buy a car
when it wants to. Further we assume that the indirect utility function vs(d′,d, p,m,x) is a “quasi-
quasi-linear” function of the after tax household income y (a component of the vector of observed
household characteristics x). That is, we assume that y enters vd(d′,d, p,m,x) in an additively
separable fashion but we allow y to enter into a coefficient θ(y,m) representing the “marginal
utility of income” to reflect the effects of shifts in income on car usage, holding and purchase
decisions. Low income households will have high marginal utilities of income, and thus a high
“opportunity cost” for use of income for consumption other than automobiles. This will cause low
income households to buy cheaper new cars, or used cars and perhaps to drive less compared to
higher income households. Also expectations of future income and macro shocks will affect car
purchases, and if a household expects to be in a period where their income will be persistently
low (e.g. during a recession) they will expect their marginal utility of income to be high during
this period and this could cause them to delay a purchase of a new car until better times when the
economy is out of recession and their income is higher.

Though we do not model liquidity constraints explicitly, variations in the marginal utility of
income can also indirectly reflect liquidity effects. A liquidity constrained household is likely to
have a high marginal utility of income, and thus is less likely to purchase a new car. The cost
of trading vehicles is captured by a trading cost function T (d′,d, p,m). This function captures
the cost of buying a new car d′ net of the proceeds received from selling the existing car d, plus
a transactions cost and taxes associated with the purchase of a new car. Moreover, and perhaps
more importantly, it covers non-monetary factors that result in higher holding times such as search
costs, information frictions and psychological attachment to an old car. The trading cost function
is given by

T (d′,d, p,m) = (3)

0 if d′ = (τ,a,0) or d,d′ = ( /0, /0)

P(τ′,a′, p,m)−P(τ,a, p,m)+ cT (τ
′,a′, p,m) if d′ = (τ′,a′,1) and d = (τ,a)

P(τ′,a′, p,m)−P(τ, p,m)+ cT (τ
′,a′, p,m) if d′ = (τ′,a′,−1) and d = (τ,a)

−P(τ,a, p,m) if d′ = ( /0, /0,1) and d = (τ,a)
−P(τ, p,m) if d′ = ( /0, /0,−1) and d = (τ,a)
P(τ′,a′, p,m)+ cT (τ

′,a′, p,m) if d′ = (τ′,a′) 6= ( /0, /0) and d = ( /0, /0)

Thus, there are no trading costs if the household keeps its current car, or does not have a car
and chooses not to buy one. Trading costs are incurred when a household trades in their current
car (τ,a) and buys a new one (τ′,a′). The function cT (τ

′,a′, p,m) represents the transactions cost
that a household incurs when purchasing a car (τ′,a′). We assume that there are no transactions
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costs for selling an existing car (d,a) so that P(τ,a, p,m) represents the net amount a consumer
would receive from an auto dealer if they were to sell their current car, whereas if they were to
buy the same car (τ,a) from the dealer, the total price would be P(τ,a, p,m)+cT (τ,a, p,m). Thus,
cT (τ,a, p,m) can be regarded as a “bid-ask spread” that reflects both the repair and cleaning costs
the dealer incurs to put a used car into “selling condition” as well as a profit margin for the dealer.

We assume that total transactions costs consist of a part that is proportional to the cost of the
car plus an additive, fixed component

cT (τ
′,a′, p,m) = P(τ′,a′, p,m)b1(τ

′,a′, p,m)+b2(τ
′,a′, p,m) (4)

where b1 is the part of transactions costs that is proportional to the price of the car (τ′,a′) the
consumer buys. In our initial estimation we use a simple specification where transaction costs are
independent of the type and age of the vehicle, which amounts to the restriction b1(τ

′,a′, p,m) = b1

and b2(τ
′,a′, p,m) = b2.

We also assume that the new car registration tax is included in the (exogenously determined)
prices of new cars, P(τ,0, p,m). There is no tax on purchases of used cars in Denmark. Thus,
a household that does not currently own any vehicle but decides to buy a car (τ,a) will incur a
buy transactions cost that is incorporated in the gross (bid) price P(τ,a, p,m)+cT (τ,a, p,m), but a
household who wants to sell a car (τ,a) does not incur any transaction costs, but instead receives
the net of transaction cost (ask) price P(τ,a, p,m).

Note that the indirect utility function vs(d′,d, p,m,x) will depend on the trading cost function
T (d′,d, p,m) and the precise way it depends on T will be detailed in the next section. In the re-
mainder of this section we present the Bellman recursion equations that define the household’s
optimal dynamic vehicle holding and trading strategy. As is the traditional practice in dynamic
discrete choice models, we augment the set of state variables to allow for IID extreme value dis-
tributed unobserved state variables ε the enable us to derive convenient multinomial conditional
choice probabilities for the events of whether a household keeps their car, buys a new car, etc.
Thus, in addition to the indirect utility function vs there is an additive error term ε(d′) represent-
ing the impact of idiosyncratic unobserved factors that affect the consumer’s choice, so the total
current period utility becomes vs(d′,d, p,m,x)+ ε(d′). Let ε = {ε(d′)|d′ ∈ D(d)} be the vector of
these unobserved terms for all possible choices d′ in the consumer’s choice set D(d). The choice
set depends on the current car choice d so that only choices relevant to the consumer’s current state
are available.

Let Vs(d, p,m,x,ε) be the value function for a household of age s that owns a car d = (τ,a)
(or no car if d = ( /0, /0)) when the macro state is m, the fuel price is p, and the household has
observed characteristics x and unobserved characteristic (state) (ε). Our specification treats ε as
a vector-valued IID extreme value process with a number of components equal to the number of
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elements in the household’s state-dependent choice set D(d) described in section 3.1 above. Note
that the Type 3 extreme value distribution involves both contemporaneous independence between
different components ε(d) and ε(d′) for d 6= d′ as well as serial independence in the overall vector
stochastic process {εt}. These assumptions are mostly for computational convenience, though it is
far easier to relax the assumption of contemporaneous independence, whereas relaxing the serial
independence assumption is significantly harder and appears to be computationally infeasible given
currently known econometric methods and computer technology.10

In future work we intend to relax the assumption of contemporaneous independence between
the components εt(d) and εt(d′) for d 6= d′ for any fixed time period t. A natural specification is
the generalized extreme value (GEV) distribution for the vector εt that allows for contemporaneous
correlation in the components of εt corresponding to a partition of the choice set of cars into car
classes such as commonly used marketing categories such as “compact,” “luxury,” “sport utility
vehicle” (SUV), and so forth. This partition of the car types τ can reflect unobserved characteristics
of cars that are not easy to capture using traditional observable variables such as car weight or
wheel base, that reflect characteristics of cars that consumers can observe that constitute patterns
of “similarity” in these characteristics. The resulting model is the well known nested logit model
that has been frequently used in discrete choice models of auto choice. In our initial model since
we only allow for two different car types, diesel and gasoline, we feel that the types themselves
capture the relevant unobserved characteristics of these two broad groups of vehicle types. The
nested logit model is more revelant for future specifications where we might add more type of
vehicles in the model, such as different model or brands within the two broad categories “gas” and
“diesel”.

The Bellman equation for Vs is given by

Vs(d, p,m,x,ε) = max
d′∈D(d)

[
vs(d′,d, p,m,x)+ ε(d′)+βEVs(d′,d, p,m,x,ε)

]
(5)

where EVs(d′,d, p,m,x,ε) is the conditional expectation of Vs+1(d̃, p̃, m̃, x̃, ε̃) given the current state
(d, p,m,x,ε) and decision d′, where the tildes over the variables (d, p,m,x,ε) entering Vs+1 indicate
the expectation is taken over the uncertain time t +1 variables of these time-varying state variable.
Since there are no wealth effects in our model, any decision that involves selling the current car
d (such as whether it should be sold on the secondary market or scrapped) does not affect the
expected value of future utility conditional on the current choice d′, and thus EVs depends only
on d′, not d. Further, due to the fact that {εt} is serially independent, EVs depends on ε only via
the current choice d′ and thus EVs does not depend directly on ε given d′, and we can write it as

10Reich (2013) provides a promising new method for structural maximum likelihood estimation of dynamic discrete choice
models with serial correlated unobservables, but so far the method has been only demonstrated for binary choice models and it is
not clear that this method will continue to be tractable for high dimensional choice sets such as in the auto choice problem.
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EVs(d′, p,m,x). This implies that we can write the Bellman equation as

Vs(d, p,m,x,ε) = max
d′∈D(d)

[
vs(d′,d, p,m,x)+ ε(d′)+βEVs(d′, p,m,x)

]
. (6)

Let Vs(d′,d, p,m,x) denote the choice-specific value function

Vs(d′,d, p,m,x) = vs(d′,d, p,m,x)+βEVs(d′, p,m,x). (7)

Then following Rust (1985a) we can rewrite the Bellman equation (5) in terms of the choice-
specific value functions (7) as

Vs(d, p,m,x,ε) = max
d′∈D(d)

[
Vs(d′,d, p,m,x)+ ε(d′)

]
. (8)

Equation (8) simply says that the value function Vs(d,m, p,x,ε) is the maximum over all alter-
natives d′ ∈ D(d) of the choice-specific value functions Vs(d′,d, p,m,x) accounting also for the
effects of the IID extreme value shocks ε(d′) which represent transient, idiosyncratic unobserved
components of utility that affect consumers’ choices.

We now discuss an assumption on the distribution of the shocks ε(d′) that allows us to model
endogenous scrappage decisions in a particularly simple manner. Note that for any alternative d′

that involves trading an existing car for another one, the consumer has two possible options: 1)
scrap the existing car, or 2) sell it in the secondary market. The assumptions we place on the utility
function (quasi-linearity in the utility of driving from consumption of other goods) imply that the
decision of how best to to dispose of the existing vehicle is separable from the decision of which
new car to buy. The consumer will sell the existing car on the secondary market if the net proceeds
from doing this is greater than the net proceeds the consumer would receive from scrapping it.
Recall that for decisions involving trading the existing vehicle, the decision is represented by three
components, d′ = (τ′,a′,ds) where ds = 1 if the consumer sells the car in the secondary market,
and ds =−1 if the consumer chooses to scrap the car.

We assume a nested logit structure for the distribution of the unobservable components of
cost/utility ε(τ′,a′,ds) associated with each of the two possible decisions ds for any decision d′ =
(τ′,a′,ds) involving trading the current vehicle (i.e. where d 6= ( /0, /0) and ds 6= 0). We assume that
the unobservable components (ε(τ′,a′,−1),ε(τ′,a′,1)) corresponding to the choice of whether to
sell or scrap the currently held vehicle have a bivariate marginal distribution given by

F(ε(τ′,a′,−1),ε(τ′,a′,1)) = exp
{
−
[
exp{−ε(τ′,a′,−1)/λ}+ exp{−ε(τ′,a′,1)/λ}

]λ} (9)

where λ ∈ [0,1] is a parameter indexing the degree of correlation in (ε(τ′,a′,−1),ε(τ′,a′,1)).
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These are independent Type 3 extreme value random variables when λ = 1 and they become
increasingly correlated as λ→ 0. It is not hard to show that max(ε(τ′,a′,−1),ε(τ′,a′,1)) has a
Type 3 extreme value distribution with a scale parameter λ = 1 which is the scaling parameter we
assume (as a normalization) for the Type 3 extreme value distributions we assume for all of the
distributions of all of the unobserved components of utility ε(d′) for the “upper level” decisions
d′(τ′,a′) (i.e. all decisions except the decision about whether to scrap or sell the current car).

For each decision d′ that involves trading the existing vehicle d = (τ,a), the consumer will
prefer to sell the vehicle in the secondary market if

P(τ,a, p,m)+ ε(τ′,a′,1)≥ P(τ, p,m)+ ε(τ′,a′,−1). (10)

Note that the unobserved components in the decision of whether to scrap the current vehicle or
sell it in the secondary market depend on (τ′,a′), which is the consumer’s choice of new car. The
third component, which takes the values {−1,1}, corresponds to the decision to scrap or sell the
current car d = (τ,a). We assume that the pairs (ε(d′,−1),ε(d′,1)) and (ε(d,−1),ε(d,1)) are
independently distributed for any pair of upper level choices d′ = (τ′,a′) 6= d = (τ,a). This implies
that conditional on making the “upper level” choice to trade the current car for a car d′ = (τ′,a′)
the consumer decides to sell their current car with probability

Πs
{

ds = 1|d,d′, p,m,x
}
=

exp{P(τ,a, p,m)/λ}
exp{P(τ,a, p,m)/λ}+ exp{P(τ,a, p,m)/λ}

. (11)

Note that the scrappage probability can be calculated independently of the overall solution of the
dynamic programming problem given in equation (6) since the sell/scrap “subproblem” involve
the simple choice of whether the net proceeds of selling the car in the secondary market exceed the
scrap value P(τ, p,m), accounting for unobservable components of the transactions costs associated
with selling the car to a dealer, ε(τ,a,1), and scrapping it, ε(τ,a,−1), respectively.

Letting d′ = (τ′,a′), then we can write

max
[
vs((d′,−1),d, p,m,x)+ ε(d′,−1),vs((d′,1),d, p,m,x)+ ε(d′,1)

]
=

λ log
(
exp{vs((d′,−1),d, p,m,x)/λ}+ exp{vs((d′,1),d, p,m,x)/λ}

)
+ ε(d′). (12)

where ε(d′) is a Type 3 Extreme value random variable with scale parameter λ = 1 that is dis-
tributed independently of ε(d) for d′ 6= d. What we mean by the representation given in equation
(12) is that the left and right hand sides have the same probability distribution, and the right hand
side is equivalent to a “regression equation” that expresses the maximum utility of whether to scrap
or sell the current car in terms of expected value (the log-sum term on the right hand side of (12))
and a single error term ε(d′) that has as Type 3 Extreme value distribution with scale parameter
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λ = 1.
Using equation (12) we can redefine the indirect utility function vs(d′,d, p,m,x) as the expected

maximum over the two decisions ds ∈ {−1,1} for any upper level choice d′ = (τ′,a′) that involves
trading the current car d = (τ,a) for a new one. This allows us to abstract from the “lower level”
scrap versus sell decision ds and treat d′= (τ′,a′) as just the upper level decision of whether to keep
the current car (or continue to have no car if d = ( /0, /0)), or choose one of the available vehicles
d′ = (τ′,a′). For this “upper level choice problem” over d′ = (τ′,a′) we redefine the indirect utility
as

vs(d′,d, p,m,x) =

λ log
(
exp{vs((d′,−1),d, p,m,x)/λ}+ exp{vs((d′,1),d, p,m,x)/λ}

)
+ ε(d′). (13)

Then with this redefinition/reduction, the Bellman equation (6) applies to the “upper level” choices
d′ = (τ′,a′). The probability that a consumer will choose to trade their existing car d = (τ,a) for
another car d′ = (τ′,a′) is then given by the standard multinomial logit model

Π(d′|d, p,m,x) =
exp{Vs(d′,d, p,m,x)}

∑d′′∈D(d) exp{Vs(d′′,d, p,m,x)}
. (14)

where Vs(d′,d, p,m,x) is the choice-specific value function (7) except that the indirect utility func-
tion vs(d′,d, p,m,x) is given by the redefined log-sum value given in equation (13) above. Then
given the choice to trade the current car d = (τ,a) for another car d′ = (τ′,a′), the conditional
probability that the consumer chooses to scrap the current car is given by equation (11) and the
conditional probability that the consumer chooses to sell the current car is just 1 minus this proba-
bility.

As usual in nested logit models, it is important to remember that the decisions of which car to
trade for d′ = (τ′,a′) and whether or not to scrap or sell the current car ds are made simultaneously
at each time period t even though the nested logit conditional choice probabilities create a strong
temptation to view them as sequential decisions. The only sequential choices are those made at
different time periods: all of the choices made at any given time period are made simultaneously
at each time t.

Now we can further simplify the Bellman equation by writing it in terms of an “upper level
log-sum”, where the choices are now d′ = (τ′,a′) and we have subsumed the lower level choice
of whether to scrap or sell the current car as described above. Let f (d′) denote the state of the
chosen car d′ next period t + 1. This is simply a reflection that if the consumer either chooses to
keep their current car or trade for another one, that car d′ = (τ′,a′) will be one year older next year
(except at a = ā). Using primes to denote next period values of the time varying state variables,
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(p,m,x,ε), we can use the properties of the independent Type 3 extreme value shocks ε(d′) to write
the expectation of Vs+1 with respect to ε′ as follows:∫

ε′
Vs+1( f (d′), p′,m′,x′,ε′)q(dε

′) =
∫

ε′
max

d′′∈D( f (d′))
[Vs+1(d′′, f (d′), p′,m′,x′)+ ε

′(d′′)]q(dε
′)

= log

(
∑

d′′∈D( f (d′))
exp
{

Vs+1(d′′, f (d′), p′,m′,x′)
})

≡ ϕ( f (d′),m′, p′,x′). (15)

Following Rust (1987) we can write the following recursion equation for the choice-specific value
functions

Vs(d′,d,m, p,x) = vs(d′,d,m, p,x)+ (16)

β∑
m′

∫
p′

∫
x′

ϕ( f (d′),m′, p,x′)g(x′|x,m′, p′,m, p)h(p′,m′|m, p)dx′d p′

where f (d′) is given by

f (d′) =

{
( /0, /0) if d′ = ( /0, /0) or d′ = ( /0, /0,ds), ds ∈ {−1,1}
(τ′,min[a,a′+1]) if d′ = (τ′,a′) or d′ = (τ′,a′,ds) ds ∈ {−1,0,1}.

(17)

As mentioned earlier, the continuation value (i.e., the expected discounted value of future utility,
given by the expression multiplied by β in equation (17) above) depends only on d′ and not on d.
This is what equation (17) formalizes; for households who buy a new or used car, the continuation
value is independent of whether the previous car was sold on the secondary market or scrapped.
The expected utility only depends on the type and age of the replacement car, d′ = (τ′,a′). In
addition to ignoring whether the previously held car was sold or scrapped, the f function ages the
car that the household chose (or continued to hold, if ds = 0) by one year, incrementing its age
from a′ at the start of period t to a′+1 at the start of period t +1.

As we noted previously, to keep the state space bounded we only track the age of vehicles of
type τ up to some maximum age a(τ), and we lump all cars of that type that are older than a(τ)
into an equivalence class of “very old cars”. Note that the Bellman equations do allow consumers
to keep cars that are age a and older. This is what makes it possible for the model to predict “mass
points” in the age distribution of cars in the cell representing very old cars that are age a and older.
This mass point reflects consumers who decide to hold these cars rather than scrap them.

Comparing the two versions of the Bellman equations (8) and (17) we see that

EVs+1(d′, p,m,x) = ∑
m′

∫
p′

∫
x′

ϕ( f (d′),m′, p,x′)g(x′|x,m′, p′,m, p)h(p′,m′|m, p)dx′d p′ (18)
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Note that the expected value function is only a function of the chosen car d′ = (τ′,a′) but not
the current car d = (τ,a) or the decision ds of whether to scrap, or sell the current car, except
in the case where the consumer chooses to keep the current car another year. Furthermore, the
indirect utility functions we consider will have the property of additive-separability in the d′ and
d decision variables. This implies a substantial reduction in the dimensionality and we exploit
this property to dramatically reduce the time required to solve the model by backward induction:
instead of computing and storing the full set of choice-specific value functions Vs(d′,d,m, p,x)
for all ages s and all values of the state variables, it is sufficient to compute and store only the
expected values EVs(d′, p,m,x). This computational reduction can be substantial even at fairly
coarse discretization.

A small adjustment to the recursion equations is necessary to account for accidents that “total”
a car (i.e., completely destroy it, beyond all chance of repair). In such cases, we assume that the car
involved in the accident must be replaced at the start of the next period, but that insurance covers
part of the cost of the car involved in the accident, but with some coinsurance rate ψ. So if the
household chose a car d = (τ,a) at the start of the period, and this car was involved in an accident
that totaled it, the household would receive an payment of (1−ψ)P(τ,a,m, p). Then at the start of
the next period the household would have no car d = ( /0, /0), but could use the insurance payment
towards the purchase of a replacement vehicle of its choice. Let αs(τ,a,x) denote the probability
that a household of age s with characteristics x that owns a car (τ,a) will have an accident that
totals the car sometime during the period. Then the equation for the expected value of future utility
(18) above needs to be modified as follows

EVs+1(d′, p,m,x) = (19)

(1−αs(d′,x))∑
m′

∫
p′

∫
x′

ϕ( f (d′),m′, p,x′)g(x′|x,m′, p′,m, p)h(p′,m′|m, p)dx′d p′

+ αs(d′,x)∑
m′

∫
p′

∫
x′

ϕR( f (d′),m′, p,x′)g(x′|x,m′, p′,m, p)h(p′,m′|m, p)dx′d p′.

where ϕR is the expected maximum utility over a restricted choice set DR(d) that requires the
consumer to scrap their current car choice d that was involved in the accident:

DR(d) = {{( /0, /0,−1),{(τ,a,−1),τ ∈ {1, . . . ,τ},a ∈ {0, . . . ,a−1}} (20)

corresponding to the options of 1) scrapping the current car and not buying another one to replace
it (where (τ′,a′) = ( /0, /0) denotes this choice), or 2) choosing to buy some other car d′ = (τ′,a′),
possibly including another car d′ = d = (τ,a) of the same type and age as the current car that
was involved in the accident. The definition of ϕR is similar to the definition of ϕ in equation
(17) above except that the expectation is taken over the restricted set of alternatives DR(d) and the

27



value functions entering into ϕR reflect a modified version of the trading cost function T (d′,d, p,m)

given in equation (3) that reflects the insurance reimbursement net of coinsurance. Specifically, the
modified trading cost function for a household who owns a car d = (τ,a) that is totalled in an
accident, denoted TR(d′,d, p,m), is given by

TR(d′,d, p,m) = (21){
−P(τ,a,m, p)(1−ψ) if d′ = ( /0, /0)

[P(τ′,a′, p,m)−P(τ,a, p,m)(1−ψ)+ cT (τ
′,a′, p,m)] if d′ = (τ′,a′,−1) and d = (τ,a)

The Danish register data do not allow us to distinguish between “involuntary scrapping” caused
by accidents that result in a total loss (unrepairable loss) to the vehicle, and “voluntary scrapping”
where the customer makes a decision to scrap in connection with a trade, as discussed above.

3.2 Utility Specification

The approach here loosely follows that in Gillingham (2012) and Munk-Nielsen (2015). Let k be
the total planned kilometers traveled by car over the coming year, and let pk(τ,a, p,co) be the cost
per kilometer traveled, defined as pk(τ,a, p,co) ≡ p

e(τ,a) + co, where e denotes the fuel efficiency
of the vehicle in kilometers per liter and co contains additional per-kilometer driving costs such as
operating and maintenance costs but could also contain road tolls. Thus, the total costs of driving
k kilometers is pk(τ,a, p,co)k. Let u(vkt,τ,a, p,m) be the conditional utility a household expects
from owning a vehicle of type τ and driving a planned k kilometers, given by

u(k,τ,a,s, p,m) = θ(y,m)[y− pk(τ,a, p,co)k−T ] (22)

+ γ(y,s,a,m)k+φk2−q(a)+δn1(a = 0)+δτ.

where θ(y,m) the marginal utility of money. We let θ(y,m) be a function of income, y, and the
macro shock, m to capture the idea that households are less inclined to spend their money on cars
during downturns and when income is low. The utility of driving is a 2nd-order polynomial in
k, allowing for heterogeneity in the marginal utility of driving through γ(y,s,a′,m) and a concave
relationship, with a diminishing marginal utility of driving, i.e. φ < 0.11 The coefficient δτ is a
car-type fixed effect, δn is a coefficient on a new car dummy, and q(a′) is a 2nd-order polynomial
in car age, capturing the rising maintenance costs with car age and ensuring scrappage. This helps
to both fit the share of the no-car state as well as fitting the relative shares of the different car types
in the data. Finally, recall T (d′;d; p;m) is the trading cost function defined above.

We assume that driving does not affect the value of a car once we condition on it’s age and type,
11In the estimation, the function is monotone everywhere and predicts only strictly positive driving.
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such that that the driving decision is separable from then car ownership decisions. The next period
value function is therefore independent of k, such that the consumer’s optimal planned driving is a
fully static problem

k∗ = argmax
k

u(k,τ,a, p,m).

The first-order condition for the optimal driving implies that

k∗ =
θ(y,m)pkm(a,τ)− γ(y,s,a,m)

2φ
.

We specify the heterogeneous parameter affecting the utility of driving as

γ(y,s,a,m) = γ0 + γ1a+ γ2a2 + γ3s+ γ4s2 + γ5m+ γ6y+ γ7y2.

Note that the optimal driving equation has no error term since we are considering the planned driv-
ing by the consumer. To take the driving equation to the data, we will think of the driving variable
to be observed with measurement error. Finally, to capture that households are less inclined to
spend their money on cars during downturns and when income is low, we allow dependence on the
macro conditions, m, and for a diminishing marginal utility of household income, y,

θ(y,m) = θ0 +θ1y+θ2y2 +θ3m.

Inserting γ(y,s,a,m) and θ(y,m), in the equation for the optimal k, we obtain the following linear
equation

k∗ =
1

2φ
(θ0 +θ1y+θ2y2 +θ3m)pk(a,τ)− 1

2φ
(γ0 + γ1a+ γ2a2 + γ3s+ γ4s2 + γ5m+ γ6y+ γ7y2)

(23)

= κ0 +κ1a+κ2a2 +κ3s+κ4s2 +κ5m+κ6y+κ7y2 +(κ8 +κ9y+κ10y2 +κ11m)pkm(a,τ),
(24)

where κ j =−0.5γ j/φ for j = 0, ...,7 and (κ8,κ9,κ10,κ11) = 0.5(θ0,θ1,θ2,θ3)/φ. The κ parame-
ters are identified from this equation alone, implying that the structural parameters in θ(·) and γ(·)
are identified up to a normalization by φ. However, in the full model, all parameters are identified.
We return to this in section 4.

3.3 Specification of the Transition Densities

In this section, we specify the stochastic structure of household income, yit , fuel prices, pt , and the
macro state, mt . We introduce the subscript i for households to emphasize that income varies across
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households and over time while the macro state and fuel prices are common to all households. We
introduce the subscript t to more quickly clarify the time dimension of transition. We will also use
this notation in the remainder of the paper.

For the income transition density, gs(yit |yit−1, pt ,mt , pt−1,mt−1), we assume that income fol-
lows a log-normal AR(1) process with an age profile,

logyit ∼ N
(
µy,σ

2
y
)
. (25)

where µy is given by

µy = ρ1 logyit−1 +ρ2sit +ρ3s2
it +ρ4mt +ρ5mt−1 +ρ61{mt=1∧mt−1=0}+ρ71{mt=0∧mt−1=1} (26)

The coefficients ρ6,ρ7 allow for flexibility in the first year of a boom or a bust which will allow us
to accommodate some of the sluggishness in the income processes that we observe in the data.

We next assume that log fuel prices follow a random walk. Anderson, Kellogg, Sallee and
Curtin (2011) provide evidence using the Michigan Survey of Consumers that this is consistent
with consumer expectations about the evolution of fuel prices. More precisely, we assume that

log pt ∼ N
(
log pt−1,σ

2
p
)
. (27)

Finally, we assume that the binary macro state, m ∈ 0,1 follows a Markov process with transi-
tion probabilities Pr(mt = j|mt−1 = l) for j, l ∈ 0,1.12

4 Estimation of the Model

In this section, we outline our strategy for estimating the proposed model using the Danish register
data. We first explain some details before we get to the full likelihood function. After this, we
outline a “two-stage” estimation strategy to simplify the estimation.

The detailed Danish register data enable us to identify the type of car and its age (τ,a) for
every Danish household that owns a car, and the type and age (τ′,a′) of a replacement vehicle
for any household that trades a vehicle. So we construct a panel dataset {di,t ,xi,t ,ki,t} based on a
large random sample from our data which contains all Danish households, i = 1, . . . ,N over time
periods t where di,t is the car holding/trading decision by household i during year t (including
the scrappage decision), ki,t is the vehicle kilometers traveled for households owning a car, and
xi,t are other household level variables we include in our dynamic programming model, the most

12 To extend this further, we could allow the transition probabilities for the macro indicator to be conditional on fuel prices, since
fuel prices might be informative about the Danish macro state. The mechanism is that fuel prices proxy for oil prices which proxy
for world demand.
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important of which are the age of the household head si,t and the household’s income yi,t . We do
not observe scrap prices in the data.13 Instead we assume that they are equal to the used car price
at the maximum age as indicated by the scrappage rates we have from DAF (the Danish Car Dealer
Association). That is, we assume that

P(τ, p,m) = ζ
ā
τP0(τ),

where P0(τ) denotes the new car price we observe in the data (merchant suggested retail price,
MSRP), and ζτ is the depreciation factor.14

Given the one year decision time intervals in our model, we fix a particular time at which
decisions are assumed to take place for purposes of matching the model to the data. Specifically, we
assume decisions are made on January 1 of each year. We also assume that income yi,t represents
total income (after tax) in the present year and the age variable sit is the age of the household head
as of January 1.15 For the decision variable, we assume that a decision pertains to the coming year
and so a household is recorded as trading its vehicle if we observe a sale between January 1st of
the year and December 31st of that year.

We solve the dynamic discrete choice model using backward induction. There is no bequest-
motive in the final period but we solve the model with a maximum age of 85 even though we
truncate our dataset, setting all household aged above 80 to be 80. For the continuous state vari-
ables, we use Chebychev-polynomials to approximate the expected value function, which is a very
smooth object. The integrals in the transitions are solved using Gauss-Hermite quadrature, which
we have found to be superior to simulation-based integration given that they are basically univariate
integrals.

In order to solve the model we need to evaluate it at a set of used-car prices. So far, when we
have talked about the used car price system, P(τ,a, p,m), we have loosely discussed this as the
consumers belief about used-car prices in the single-agent model. However, when we zoom out
and look at the market as a whole, we may start to think about what prices will equilibrate the
market in a given year t. We will therefore distinguish between the household-level beliefs about
prices, P(τ,a, p,m), and the market-level prices, P(τ,a, t). Instead of diving directly into a joint
estimation of both structural parameters and equilibrium prices, our strategy for taking the model
to the data proceeds in two steps; in the first step, we will read in a set of initial used car price
functions based on the suggested depreciation rates, ζτ. Our approach for solving for equilibrium

13 The scrappage subsidy paid out by the Danish Ministry of the Environment equals 1,500 DKK.
14 On average in the data, ζτ is around 0.88. Unfortunately, we do not have variation over time but from correspondence with

DAF, the depreciation rates are rarely updated over time. This is why we view them as unrealistic for the actual average transaction
prices in a given year. However, the rates are only suggestive, so dealers will most likely be varying their margins around these,
which are only available to dealers that are members of DAF and pay for the data.

15 Alternatively, one could use income data for the previous year to make sure that car decisions are made conditional on income
already earned.
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prices is outlined in Section 5. Therefore, we start by solving using the price system

P(τ,a, p,m) = ζ
a
τP(τ,0), ∀p,m,

where the used-car prices do not vary over the business cycle.
Another part of estimation involves estimating an income process for households to create the

transition probability gs(y′|y, p′,m′, p,m) and the process h(p′,m′|m, p) for the macro shock and
the gasoline prices described in section 3.3. We follow Rust (1985a) and estimate the transition
densities separately in a first stage.

We also include data on driving in our estimation. Recall that we observe odometer readings
from biennial vehicle inspections in Denmark, so we need to derive the probability distribution
for vehicle kilometers travelled between successive vehicle inspections. We assume that actual
vehicle kilometers travelled in a year equals the desired or planned kilometers travelled from our
model, which we denote by k∗(xi,t ,ϑ) plus an IID N(0,σ2

k) “optimization error” that captures the
difference between intended or planned kilometers of travel at the start of the year and the actual
kilometers driven at the end of the year. Let ki,t denote the change in the odometer reading on a
car owned by household i at an inspection at date t:

ki,t = oi,t−oi,t−1 (28)

where oi,t and oi,t−1 are the odometer readings on the car at the inspections at dates t and t− 1,
respectively. Then by our assumption above, ki,t is a sum of two normally distributed random
variables and its probability density, conditional on the household characteristics (xi,t ,xi,t−1) that
determine planned driving of the car in each of the intervening years t − 1 and t between the
biennial vehicle inspections, is f (ki,t |xi,t ,xi,t−1,ϑ) given by the convolution formula

f (ki,t |xi,t ,xi,t−1,ϑ) =
∫ +∞

−∞

φ

(
k− k∗(xi,t ,ϑ)

σk

)
φ

(
k− k∗(xi,t−1,ϑ)

σk

)
dk

= φ

(
ki,t− k∗(xi,t ,ϑ)− k∗(xi,t−1,ϑ)√

2σk

)
. (29)

This formula can be adjusted in a straightforward way if the car changes owner between successive
inspection dates: if it is owned by household j at inspection date t − 1 and by household i at
inspection date t, then we use the formula above, but with x j,t−1 substituted in place of xi,t−1.
If we adopt this convention, then we can, for the purposes of this part of the likelihood, let i
denote a particular vehicle that we can potentially follow from household to household through a
succession of inspection dates over the entire period of our sample. The ability to track individual
cars across successive owners is possible due to the fact that Danish Register Data covers the
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entire Danish population. However even for a subsample of the entire population (which creates
the possibility that a particular car might “drop out” of our sample for a period where it is owned
by a household that does not happen to appear in our household sample), we let Ii be the set of
successive inspection dates that we observe a particular vehicle i that it is owned by one or more
households in our sample. Then we let Lk(ϑ) be the part of the log-likelihood that captured this
vehicle kilometer travelled information and it is given by

Lk(ϑ) =
Nk

∑
i=1

∑
t∈Ii

log
(

f (ki,t |xhi,t ,t ,xhhi,t−1,t−1,ϑ)
)
, (30)

where hi,t indexes the household in the sample that owns the car at inspection date t. Notice the
outer sum in Lk is over the Nk cars that are owned by one or more households in our sample,
and it is further restricted to the subsample of cars that we observe at a sequence of successive
inspection dates, reflecting the fact that we cannot predict desired kilometers of travel k∗(xhi,t , t) if
the household hi,t that owns the car at inspection date t is not in our sample.

Now consider the component of the log-likelihood for the information we have on households’
ownership and trading decisions. For this component of the likelihood we will assume that we have
a total of N households in our sample that we observe for a succession of years denoted by Ti that
may differ from household to household due to household dissolution and formation that differs
across households over the period of our sample. The log-likelihood for this component depends
on the sequence of household choices which are denoted by {di,t} which includes the decision not
to own a car. However, for those households that do own a car, we observe those who decide not
to keep their current car, leading the household to sell or scrap. In the Danish Register Data we
have unique identifiers for cars which enables us to track when a car is sold by one household and
subsequently purchased by another household. When a car is scrapped, it is not purchased by any
other household and so the car’s identification number disappears from the registry, and event that
is referred to as a deregistration.

However cars can be deregistered for a number of other reasons besides a scrappage. Cars can
be temporarily deregistered if they are traded in to a used car dealership for a short period until
the car is sold to another household. Cars can also be deregistered if they are exported abroad, or
if the owner of the car decides to simply “park” their vehicle and not use it (since it is illegal to
drive a deregistered car in Denmark). For these reasons, not all vehicle deregistrations correspond
to voluntary scrappage decisions. In attempt to isolate the “temporary deregistrations” we track all
cars owned by the households in our sample as far forward in time as possible. For the cars that
we determine to be temporarily deregistered, we do not classify the sales of these vehicles by the
household who last owned them prior to the onset of the interval of temporary deregistration as
“scrappage” events. However for cars that are deregistered “permanently” (i.e., where we cannot
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observe them subsequently becoming registered again over the period of our sample, which ends
in 2009, and we see no subsequent re-registration of the vehicle by 2011), we assume that these
cars have either been scrapped or exported.

Unfortunately the Danish Register Data do not enable us to determine the reason why a par-
ticular vehicle is deregistered, and this is why it is somewhat difficult for us to determine is a
particular car is only temporarily deregistered or permanently deregistered, such as would occur if
the car were scrapped. In our analysis we do not distinguish between scrappage and exports for
the purposes of calculating equilibrium prices in Denmark. In either case the car is removed from
the stock of cars in Denmark and thus cannot contribute to the supply of vehicles any longer. We
also ignore the import of used vehicles into Denmark, since the number of used car imports is neg-
ligible. Thus we treat all permanent deregistrations as equivalent to scrappage, i.e. the permanent
removal of the car from Denmark.

Now consider a car that is sold by a household and we determine determine it to have been per-
manently deregistered after this sale so there we no other intervening owners between the sale date
and the date of deregistration. Whether this car was scrapped or exported, it has been removed
from the stock of vehicles in Denmark and thus can no longer contribute to the supply of vehi-
cles. Unfortunately, we still have another problem in that we cannot observe whether this car was
exported, scrapped “voluntarily” or scrapped “involuntarily.” In our study, we will treat exports
as equivalent to scrappage, whether voluntary or involuntary. However we can econometrically
handle the distinction between voluntary and involuntary scrappage by using a mixture probabil-
ity for the households that sell and deregister their vehilces. We do this by estimating a flexibly
parameterized accident probability α(xi,t) that can depend on the characteristics of the car and the
household, xi,t . Thus, if we observe a household who permanently deregisters their car, this occurs
with probability

Pr{di,t |xi,t ,ϑ}= α(xi,t)+ [1−α(xit)]Πs(P,λ) (31)

where Πs(P,λ) is the scrappage probability given in equation (11) above.
If the household has a car and chooses to keep it, the probability for this observation is

Pr{di,t |xi,t ,ϑ}= [1−α(xit)]Π(di,t |xi,t ,ϑ), (32)

where Π(di,t |xi,t ,ϑ) is a short-hand notation for the conditional choice probability given in equation
(14) above. We multiply the choice probability by 1−α(xi,t) because the household could not
have kept their car if it had been involved in a serious accident that forced the household into
an involuntary scrappage decision. Finally, if the household does not have a car, or purchases a
another car, or chooses not to have a car and we do not observe a permanent deregistration of the
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car following the sale of the existing vehicle, the probability for this observation is

Pr{di,t |xi,t ,ϑ}= Π(di,t |xi,t ,ϑ), (33)

since the accident probability is no longer relevant for these events.
Let ϑ contain all parameters jointly. The component of the log-likelihood for the information

on household vehicle holding and trading decisions is given by

L(ϑ) =
N

∑
i=1

∑
t∈Ti

log{Pr(di,t |xi,t ;ϑ)} , (34)

where the probability entering the likelihood is given by one of the appropriate formulas above,
(31), (32), or (33), depending on whether we observe a household selling a car and permanently
deregistering it or not, and Ti denotes the subset of years where we observe household i. We maxi-
mize the log-likelihood using analytical gradients and a range of common optimization algorithms,
including BHHH and several quasi-Newton algorithms. We have also used the gradient-free opti-
mizer, Nelder-Mead, which has proven helpful whenever the gradient-based methods got “stuck”
in the sense that they could not improve the likelihood along the gradient.

To simplify estimation, we start out with a “two-stage approach”; in the first stage, we esti-
mate the κ parameters in the driving equation (23). Let k∗i,t(κ) denote the predicted driving for
household i at time t. We can now solve the model, inserting this predicted driving from the first
stage wherever we need the driving and keeping the κ-parameters fixed while searching over the
remaining parameters. Formally, we solve the model replacing the flow utility with:

u
[
k∗(κ),τ,a,s, p,m

]
= θ(y,m)[y− pk(τ,a, p,co)k∗(κ)−T ] (35)

+ γ(y,s,a,m)k∗(κ)+φ[k∗(κ)]2−q(a)+δn1(a = 0)+δτ.

Then we use the following 2nd stage likelihood function,

L2step(ϑ) =
N

∑
i=1

∑
t∈Ti

log
{

Pr(di,t |xi,t , ;ϑ,k = k∗(κ))[Pr(di,t,s|xi,t ,k = k∗(κ))]1{di,t,s 6=0}
}
, (36)

where the conditioning on k = k∗(κ) is to indicate that the model should be solved using the flow
utility given in (35). Note that we are still searching over the same parameters as when we use
the full likelihood from equation (34); the γ- and θ-parameters are identified by the discrete choice
alone. In a sense, this two-stage approach is similar to thinking of the predicted driving, k∗i,t(κ)
as a characteristics of the chosen car, d′i,t . The two-stage approach breaks the otherwise very
strict cross-equation restriction that the consumer should care equally much about money spent
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on buying and selling the car and money spent on driving the car. However, we can check if the
estimated γ- and θ-parameters divided by φ correspond in magnitude to the respective κ-parameters
as a test of the cross-equation restrictions.

5 Solving for Equilibrium Prices

In this section, we present our strategy for modeling used car prices. We first describe the consumer
expectations, which we simplify here. We then outline first how we solve for equilibrium prices
in-sample and then out-of-sample (for simulating forward in time). In Section 5.3 we will discuss
an alternative approach using different assumptions.

5.1 Solving for Equilibrium Prices

We follow a literature stretching back to Rust (1985b) that estimates equilibria in both primary and
secondary markets using an equilibrium price function. A key feature of our approach is that we
relax the stationarity assumption. Specifically, we allow for the effects of macroeconomic shocks
and changes in fuel prices, which was shown to play an important role in the U.S. vehicle fleet
in Adda and Cooper (2000b) and our data suggests in the case in Denmark as well. We combine
this with equilibrium price adjustments, which was shown to be important by Gavazza, Lizzeri and
Roketskiy (2014).

To do this, we will allow used car prices to vary freely over time, but assume that consumers
have stationary expectations regarding the prices of cars in the sense that consumers expect that
the used car price system they observe today will be the same tomorrow. While this for example
neglects how equilibrium vehicle prices in the future could depend on future macro conditions,
gasoline prices and the distribution of vehicles in the used car market, we think this is a reasonable
approximation that will, in principle, allow us to precisely equate supply and demand for all car
types and ages in every single year. We will discuss the alternative approach of solving for a price
system as a function of (p,m), where consumer expectations are non-stationary, but do not solve
exactly for equilibrium in a given year.

To explain our strategy for finding equilibrium, we will first go through an approach based
on simulated realized excess demand to fix the intuition. We then outline our preferred approach,
based on what we call the expected excess demand. The first strategy for finding equilibrium prices
P(τ,a, t) proceeds as follows. Just as in previous literature, we search for a vector of prices P(τ,a, t)
that will set excess demand to zero for vehicles for all vehicle types and ages and in each time
period t. These excess demand functions arise as aggregations of the individuals’ actions; since
households are simultaneously the supply and demand side of the used car market, we can find
excess demand for car (τ,a) by taking the sum of individuals purchasing the car and subtracting
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the sum of individuals selling it. We will not work with this “realized excess demand”, however,
because it will be an unwieldy criterion function to work with numerically since it will be locally
flat. The reason for this is that, holding uniform draws fixed, a small change in a given parameter
value might not induce any consumer to change their discrete choice and when it does, the change
will be discontinuous for the same reason. For this reason, we will instead work with the “expected
excess demand”, ED(τ,a,S,P), where S denotes the matrix containing all cars and households and
P is the price system. We define ED as

ED(τ,a,S,P) =
N

∑
i=1

Pr
[
d′ = (τ,a)|di,t ,xi,t ;P

]
−

N

∑
i=1

{
1−Pr

[
d′s = 0|di,t ,xi,t ;P

]}
1(di,t = (τ,a)),

(37)

for a ∈ {1, ..., ā−1} and all τ.

Note that ED(τ,0,S,P) = ED(τ, ā,S,P) = 0 by assumptions discussed earlier.16 The first term in
equation (37) is the expected demand for (τ,a)-cars. The second term is the expected supply of
these cars, given by the sum of probabilities not to keep the car for the households that own a car of
type (τ,a). This is an important distinction between expected demand and supply; all households
contribute to the demand for all cars but they only contribute to the expected supply of a car if they
own that car. Since the choice probabilities are continuous in prices, ED will be continuous.

Our algorithm therefore proceeds on a year-by-year basis. Consider year t in our sample; let Pt

denote a vector of prices. We then calculate ED(τ,a,St ,Pt) for each τ and for a∈ {1, ..., ā−1} and
stack them in the vector ED(St ,Pt). If we have one price for each car category, the price system
P(τ,a, t) is fully non-parametric and we can solve the non-linear system of equations,

ED(St ,Pt) = 0. (38)

If we have fewer prices than there are car classes, then we will not generally be able to solve the
system and we can instead choose the prices that “do best” in the sense of minimizing ‖ED(St ,Pt)‖,
where we might for example use the regular L2 norm. This paper makes no claim as to uniqueness,
but we have successfully solved (38) using real data, so existence is proven constructively for our
situation. The conditions under which equilibrium prices exist are left for future work.

When working with the non-parametric specification in (38), we found that it was essential
to use analytic gradients and an advanced root-finding algorithm. This is because cars (τ,a) and
(τ,a+1) are very close substitutes, so the cross-derivatives are extremely important to account for.
Once that was done, the algorithm converged nicely with excess demands on the order of 10−10.

16 As discussed earlier, Denmark is a small country without domestic car production, so ED(τ,0,S,P) = 0 is the “small open
economy” assumption that Danish demand does not move the world car prices. The assumption that households cannot trade cars
of the oldest age implies that these cars will always be scrapped at the exogenous scrap price, which means that ED(τ, ā,S,P) = 0.
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5.2 Simulating Forward in Time

We simulate forward in time by recursively solving for equilibrium and simulating one step ahead.
Let P∗(St) denote the equilibrium prices that set excess demand to zero in (37) given the car
distribution St . Let Γ(St+1|St ,Pt) denote the density of the next-period state variables. It is a
sequential density in the sense that to draw from it, we first draw the discrete choice from the
conditional choice probability (14). Next, we can take draws of the remaining state variables from
their respective transition densities. Finally, if an accident occurs, the household’s car is destroyed
and their simulated car state becomes the no-car state. Note that the fuel price and the macro state
are synchronized across households; since these are exogenous, we can draw them without regard
to the individuals’ car choices.17

The recursive simulation proceeds as follows in the rth step: Given Sr, find the equilibrium
price vector P∗(Sr). Then simulate next-period states from Γ[·|Sr,P∗(Sr)]. Proceed until the desired
number of simulated periods has been reached.

By simulating this way, we ensure that cars do not appear out of nowhere and do not disappear,
except for scrappage or accidents. Without equilibrium prices adjusting, the number of cars of type
(τ,a) may be higher or lower than (τ,a− 1) in the previous year. Note, however, that we do not
impose this; the equilibrium prices guarantee that it will be the result. The exception is of course
simulating noise in drawing from Γ.

Since we want to simulate data from the model forward in time, we need to think about house-
holds reaching the maximum age. We handle this by letting a new household enter the sample at
the youngest age whenever a household reaches the oldest age and dies. This new household will
be born with the dying household’s car endowment to make sure that cars do not disappear out
of the economy and cause a mismatch of supply and demand over time. This will ensure that the
population and the car stock remains representative.

5.3 Non-Stationary Expectations

The approach outlined in the previous section can be expanded to relax the assumption of station-
ary expectations. However, the problem is that the equilibrium prices, defined as setting excess
demand to zero, will in general be a function of the full age distribution in addition to the other
state variables. To solve a model where households form expectations based on this would ordi-
narily require carrying carrying the entire age distribution of vehicles as part of our vector of state
variables. This may be possible in a dynamic programming model with a very limited number of
types of vehicles, but quickly becomes infeasible due to the curse of dimensionality. An alternative

17 The macro state could in principle be allowed to depend on the car purchases since new car sales are well-known to precede
upswings. However, we cannot allow households to form expectations about this since that would require knowledge about not
only their own actions but the actions of everyone else, which requires knowledge about the full cross section, St .
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and more pragmatic approach is to follow Krusell and Smith (1998) and assume that equilibrium
vehicle prices can be well predicted using a much smaller-dimensional set of “sufficient statistics,”
for example the price of gasoline and the macro state (p,m).18

To implement this approach, we would choose some parameterization, P(τ,a, p,m)=P(τ,a, p,m;ϑP).
For any trial value of the parameters indexing ϑP, we can calculate the excess demand for all our
sample years. From this starting point, we can search for the value of ϑP that yields the smallest
excess demand across years. Consumers would have “correct” expectations about future used-car
prices but in any given year, the market might be out of equilibrium. This would imply that the
model would do worse in terms of matching the waves in the car stock that we observe in Figure
1. For this reason, we choose to maintain the assumption of stationary expectations and leave
non-stationarity for future work.

6 Results

This section presents the results from estimating the model. We start with a discussion of the
practical implementation and the choices and simplifying assumptions we have made. We then
present the results from the first-stage estimation of the driving equation and then the full set of
structural parameters. We present a range of results illustrating the fit of the model and finally show
a simulation of the car stock forward in time. After this, we turn to solving for equilibrium prices
in all the sample years and analyze the in-sample fit under equilibrium prices. We then present
a forward simulation with equilibrium prices and compare the waves in the car stock to those
generated by the non-equilibrium model. Finally, conduct a counter-factual policy experiment,
comparing the predicted response with and without equilibrium prices.

6.1 Implementation

The results presented below are carried out for a 1% random subsample of the households in our
data where nothing else is noted.19 This is done to ease the computational burden of estimating the
model and solving for equilibria where the primary constraint is the number of observations.

For the fuel price process, we assume them to follow a random walk according to equation (27)
and estimate the variance on the innovations, σp, as the standard deviation of the change in real log
fuel prices from 1972–2013 to be σ̂p = 0.0693. We have estimated different versions of the AR(1)

18 Krusell and Smith also include the average value of the individual specific savings as a sufficient statistic. We could similarly
add the average vehicle age to the households’ state variables but we choose the simpler route and see how far we can get in
replicating the fleet dynamics by using only gasoline prices and the macro state.

19 The subsampling is over households, so we select all observations for a given household if it is selected. This is to ensure
that we have a panel. Since we do not exploit the explicit matching between the buyers and sellers in the market, the random
subsampling will not affect our results beyond precision.
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income process and the estimated coefficients are shown in Table 3. While we can reproduce the
life-cycle path in income very clearly, we found the surprising result that the coefficient on the
macro dummy (ρ4) had a negative sign. In Appendix A, we furthermore show estimates from an
AR process for labor income only, which also produces a negative macro dummy (Tables 4). We
believe that the problem is related to the very mild recession in 2001–2003, which actually saw
higher growth rates than in most of the years of the boom in the 1990s (Table 4). To avoid the
problems that these counterintuitive transition rates might introduce, we have chosen to estimate
a model where households expect that their income will never change (i.e. ρ1 = 1, σy = 0 and
ρ j = 0 for j > 1). This will shut down the life-cycle perspectives that there might otherwise be
in the model with regard to for example young households expecting to earn more in the future.20

However, we still utilize the cross-sectional distribution in income, which will generate gains from
trade as richer household buy newer cars and hand them down to households with lower incomes.

To solve and estimate the model, we must make choices on discretization. We choose to have
25 age categories, making the maximum car age ā = 24. This is because by age 24, we have seen
the larger part of the waves in Figure 1 die out due to scrappage. For the household age, we solve
the model with a maximum household age of 85. When a household in the model becomes 85
years old, it dies and there is no bequest motive in the model, so households close to this age may
choose to sell their cars and eat all they have since there is no continuation value to owning a car.
To avoid this behavior, we top code all households aged 80 and above as being of age 80.

Regarding prices, we take the MSRPs and take the unweighted average within each of the two
car types in each year to construct the new car prices. We do the same with all car characteristics
as well as the DAF suggested depreciation rates, ζτ. We fix the scrap price so that it equals the
price of a 24 year old car, i.e. P(τ, p,m) = ζā

τP(τ,0, p,m).
We choose to use the “two stage” estimation procedure outlined in Section 4: we start by esti-

mating the κ-parameters in the driving equation (23) in a first stage. Then we use the κ-parameters
to predict driving and use that in the flow utility as shown in equation (35), and find the structural
parameters by maximizing (36).

6.2 First-Stage Results

To make matters simpler, we estimate the parameters from the driving equation in a first step and
keep those fixed in the estimation of the remaining structural parameters. This greatly limits the
number of parameters to be estimated. We estimate these parameters on the 1% subsample, where
we pool all the driving observations from households who have a car (111,231 households). For
the estimation, we have used individual-level variation in fuel prices, matching the daily fuel prices

20 Recall that the most common ownership length is 5 years (Figure 7). If households had held on to the same car from new until
scrappage, assuming away the life-cycle aspects of income growth would have been a considerably worse assumption.
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Table 1: First-stage Driving Estimates

Main effects
Variable Estimate std.err.

κ0 Const 35.74∗∗∗ 0.9359
κ1 Car age -0.3444∗∗∗ 0.0197
κ2 Car age sq. 0.002467∗∗ 0.0009
κ3 m -19.63∗∗∗ 0.7554
κ4 Inc -0.0004118∗∗∗ 0.0013
κ5 Inc sq. 3.826e-07∗∗∗ 0.0000
κ6 HH age 0.3178∗∗∗ 0.0147
κ7 HH age sq. -0.004956∗∗∗ 0.0001

Price interactions
Variable Estimate std.err.

κ8 PPK -26.46∗∗∗ 1.2110
κ9 PPK*inc 0.0007932∗∗∗ 0.0019
κ10 PPK*inc sq. -5.81e-07∗∗∗ 0.0000
κ11 PPK*m 27.34∗∗∗ 1.0711

Avg. PPK-elasticity -0.6652
R2 0.1030
N 111231

Data for all years 1996–2009 is used.

to the driving period at the daily level. This considerably increases the variation and we found that
only relying on annual fuel prices gave insufficient identifying power to adequately identify the
price parameter and, in particular, the interaction effects. The results are shown in Table 1.

The driving results imply an elasticity of the Price Per Kilometer (PPK) of –0.67. This elasticity
is not out of bounds from what has been found elsewhere but perhaps a bit on the high side,
compared to the findings of Munk-Nielsen (2015). However, if we were to include a more flexible
functional form, accounting for more observable heterogeneity, this elasticity does go down. Since
our model limits us by the state variables, we go with the results in 1. In Table 8, we show
regressions corresponding to the first stage specification in Table 1, but adding the heterogeneity
sequentially and on the full dataset. The results differ somewhat for the full sample, resulting in
higher PPK elasticities. We discuss this more in Appendix B.4 but choose, for consistency, to use
the κ-estimates coming from the same sample that we use for the estimating the full structural
model.

While a simultaneous estimation of the driving parameters and the remaining structural param-
eters is superior to this two-stage approach, it is not completely unrealistic. This approach breaks
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the tight cross-equational restriction imposed in most discrete-continuous models, yielding more
flexibility for fitting the data but at the cost of internal model consistency.

6.3 Structural Estimates

The estimates shown below are based on the 1% subsample and only the cross sections for the
years t = 97,99,01,03,05,06 are used; we have used only a subset of the periods to reduce the
computational burden required for estimation and we found that adding more years did not sub-
stantially change our estimates. We only include the intercept in the utility of driving (γ0) and
fix γ j = 0 for j > 0, since heterogeneity in the realized driving is already accommodated by the
reduced-form driving parameters (the κs).21 Standard errors are estimated based on the inverse of
the Hessian at the estimated parameters.

In estimating the model, we found that the transaction cost parameter deserved extra attention.
In the literature, this has often been estimated to have relatively high values (e.g. Schiraldi, 2011)
but we have found much higher estimates than what we have seen in the literature. Therefore, we
estimate two versions of the main specification; one where we estimate the transaction costs and
another specification where we keep it fixed at an a priori sensible level. For the latter, we choose
a fixed cost of 10,000 DKK and a proportional cost of 20% of the traded car’s value. If anything,
we feel that these are somewhat high. However, we found that by increasing transaction costs and
lowering the utility of money (θ0), the likelihood did in fact increase. Our preferred estimates are
from the model where we estimate fixed transaction costs and fix the proportional transaction costs
to zero becuase it provides a superior fit of the data.

Our preferred estimates are shown in Table 9. Most notably, the fixed transaction cost parame-
ter (b2) is estimated to be 233.33. Since money is measured in 1,000 2005-DKK, this corresponds
to 233,330 DKK or the equivalent of two-thirds of a new car’s price. We fix the proportional trans-
action cost (b1) to zero.22 We find this estimate too high to be reasonable but acknowledge that
given the rest of the model, households are behaving as if transactions costs were so high. We note
that transactions costs proxy for any source of frictions that might exist in the market, including
psychological costs, asymmetrical information costs (lemons premia), etc., so they may of course
be higher than the purely monetary cost of buying a car. Nevertheless, the high transaction cost
parameter can also be seen as a sign of misspecification somewhere in the model. One possible ex-
planation is related to curvature in income; it might be that the utility of money relevant for making
driving decisions is much lower than the utility of money that applies when making car purchase

21 Including the γ-heterogeneity parameters seems futile since a more fruitful long-term goal would be to jointly estimate the
driving parameters and the rest of the structural discrete choice parameters. Then, the κs would not be used and the driving equation
would help give identification power to the γ-heterogeneity terms.

22 We have tried estimating both the fixed and proportional transaction costs, b1,b2, but found that the likelihood function was
maximized for negative proportional transaction costs (b1 < 0). This is theoretically impossible, so we chose to just fix b1 = 0 and
estimate b2.
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decisions.23 We think that extensions of the model in these directions might prove valuable for
getting more reasonable transaction cost estimates.

The remaining parameter estimates are sensible; γ̂0 > 0 so that households tend to prefer the
types of cars that are also associated with high driving (coming from k∗(κ)). We also find that the
utility of money is positive, θ̂0 > 0, and that the interaction with the macro state is negative, θ̂3 < 0;
this indicates that in bad macro times, money becomes more dear to households. This effect can
be thought of as proxying for the changing shadow value of money as risk increases or as credit
becomes tighter.

Next, we turn to the fit of the model for these parameter values. Figure 10 shows the model
fit in terms of the choice probabilities (observed and predicted), here shown for the 2002 cross-
section.24 We note that in particular the age profile in demand tracks the observed transaction
frequencies quite closely. There are, however, deviations; for car ages 3 and 4 and for 14–18,
we under-predict. These are examples where the fixed depreciation rates appear to be unrealistic.
Nevertheless, the model appears to get the overall functional form of the keep probability over the
car age right on average. The figure also shows that we are under-predicting used-car purchases
for car-owning households and over-predicting the purge decision. Similarly, we under-predict
the number of no-car households staying in the no-car state. This might be because a lot of the
heterogeneity in the keep decision appears to be related to life-cycle patterns (cf. Figures 4 and
5). We conjecture that the fit would be improved if the heterogeneity parameters in the driving
utility (γ j, j > 0) were estimated. Alternatively, it might be that the fact that households expect
their incomes to be constant is causing this; when young households believe that it will increase
shortly, it will make sense for them to postpone purchasing a car to a period where the utility of
money is lower because their income is higher.

To explore the fit of the model by state variables, Figure 11 shows the predicted choice proba-
bilities by four of the state variables for the 2002 data. To do this, we must choose one particular
discrete choice, so we choose to focus on the “keep” decision, since it captures much of the dy-
namics in the model. The top left panel shows the fit for income. First, income is divided into
bins according to quantiles of the income distribution. Within each of these bins, the figure shows
the average probability of choosing keep according to the model predictions (evaluated at the state
variables in the 2002 data) and observed in the data. The figure does not condition on car owner-
ship so “keep” may mean to keep a car or to remain in the no-car state (which probably explains

23 Specifically, we have in mind a model where households are liquidity constrained. Then the choice to purchase a new car
might push the household down into a region where the utility of money is much higher. Fuel costs, on the other hand, are not really
paid up front such as it is indicated by the flow utility, but are paid weekly. In a quasi-linear model, this makes no difference, but in
a model with curvature inthe utility of money it can make a big difference. In fact, the macro term shifting up and down the utility
of money is already something we think of as an approximation to the shadow value of money changing as the household’s risk of
becoming unemployed changes.

24 We have chosen to consider model fit for a single year because pooling the years is complicated by the fact that the choice set
changes over time (and in principle, policy parameters might change over time although we have not pursued this).
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Table 2: Structural Estimates — Estimated Transaction Costs
Variable Estimate Std.err.

Model setup

Min. Hh. age 20
Max. Hh. age 85
# of car ages 25
# of car types 2
Clunkers in choiceset 1

β Discount factor 0.95
ρ Inc. AR(1) term 1
σy Inc. s.d. 0
ρp Fuel price AR(1) term 1
σy Fuel price s.d. 0.0699
Pr(0|0) Macro transition 0.75
Pr(1|1) Macro transition 0.8

Accident prob. 0.0004
λ Logit error var. 1
λscrap Scrappage error var. 0.9

Monetary Utility

θ0 Intercept 0.032508∗∗∗ 0.0001248
θ1 Inc. -2.664e-05∗∗∗ 2.038e-07
θ2 Inc. sq. 2.7409e-08∗∗∗ 2.063e-10
θ3 Macro -0.0011238∗∗∗ 2.307e-05

Driving Utility

γ0 Intercept 0.046713∗∗∗ 0.0004668
γ1 Car age 0
γ2 Car age sq. 0
γ3 Hh. age 0
γ4 Hh. age 0
γ5 Macro 0
γ6 Macro 0
γ7 Macro 0
φ Squared VKT 0

Car Utility

q(a) Car age, linear 0.073057∗∗∗ 0.000819
q(a) Car age, squared 5.7638e-05 3.249e-05
δ1 Car type dummy 0.64764∗∗∗ 0.01111
δ2 Car type dummy 0.14377∗∗∗ 0.01184

Transaction costs

Fixed cost 223.33∗∗∗ 0.8837
Proportional cost 0

N 169,733

44



Figure 10: Model Fit: Conditional Choice Probabilities (CCPs)
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some of the heterogeneity over the income distribution). The figure shows that the model predicts
a strong U-shape over the income distribution but that the data has a much flatter distribution. This
indicates that while high-income households in the data do care less about money, the predictions
of the model have an even stronger relationship (working through θ1,θ2). In the top right panel,
the fit over household age is shown. For each age, the average probability of keeping is shown for
the model prediction and the data. Here, the reverse is the case; the data shows a much stronger
U-shape than the model prediction. This is probably because household age affects neither θ(·)
nor γ(·) but only works through the first-stage predicted driving (κ6,κ7). In the lower left panel,
the fit is evaluated by car age. This panel is only based on car-owning households and for each car
age group, the average predicted and observed probability of keeping is matched up. The figure
shows that the model captures the keep probability over car age very well. Finally, in the lower
right graph, we show the fuel price. Since there is only one fuel price per year, this just shows the
average probability. This serves as a reminder that it is hard to compare the model fit in terms of
the fuel price because there is just one fuel price per year. The panel also indicates that we are on
average under-predicting the keep decision.25

25 For the households that choose to own a car, we have the fuel price matched to the realized driving period. However, it is not
given that the household will keep the car for the entirety of the driving period, which may be two or four years. Thus, if we were
to use the cross-sectional variation in fuel prices due to the precise start date of the driving period, we would be conditioning on
past and/or future decisions in addition to the current and the variable would in particular not be available for households choosing
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Figure 11: Model Fit by State Variables: The Keep-decision
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Finally, we present a simulation forward in time from the model to illustrate how the car age
distribution of cars develops for these estimated parameters. To do this, we take the dataset in
2002 as the baseline. Then we iteratively compute choice probabilities and simulate choices and
subsequently simulate the next-period-states, i.e. drawing form the density, Γ(·|St ,Pt) from Section
5.2, using the DAF used-car prices for Pt . We choose to keep car and fuel prices fixed at the 2002
values in the simulation but simulate the macro process, which is synchronized across all agents.
The resulting simulated car age distribution is shown in Figure 12 and the simulated macro process
is shown in Figure 34.

First off, we do not see the clear macro waves in the car age distribution in 12 that we observe
in the actual data (Figure 1). There is a wave at the beginning of the simulation, coming from the
large number of 2–6 year old cars in the initial car stock in 2002. This wave gradually dies out
and does not proceed all the way to the age where scrappage starts to kick in. This is because
the only thing coordinating the agents’ trading behavior is the macro dummy, which shifts up and
down the utility of money. We do see some tiny waves in new car purchases and some ridges of
these cars being held but they die out in a few years. This is because used-car prices are fixed
and do not adjust to match demand and supply of car vintages. Eventually, if the macro state
became degenerate, the car age distribution would just be a standing wave, reflecting the choice

not to own a car.
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Figure 12: Forward Simulation from the Non-equilibrium Model
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probabilities by car age that was indicated in Figure 10. Finally, note that the only thing creating
the small “waves” present in Figure 12 is transactions costs forcing the same people to hold on to
the same cars over time. As we shall see later, with equilibrium prices re-adjusting, we can have
lots of trading along the ridges of the car age distribution.

Appendix D.1 presents results from the model where transaction costs are kept fixed at lower
values. Table 9 show parameter estimates where we have kept transaction costs fixed. Here, the
utility of money, θ0, is estimated to be much higher (0.140 vs. 0.033). With these estimates, the
model under-predicts keep probabilities substantially, leading to too much trading. Simulations
from the model produces a car age distribution that looks very unrealistic (see Figure 32).

6.4 Equilibrium Prices: In-Sample

We now start to solve for equilibrium prices. Holding fixed the structural parameters, we loop over
each of the years from 1996 to 2009 and search for the equilibrium prices that set expected excess
demand equal to zero. These prices are shown in Figure 13. A few things are worth noticing;
firstly, the price schedule is nicely behaved, downward sloping and convex, as expected. Secondly,
we see that the first-year depreciation increases over time. This large first-year depreciation will
tend to lower the demand for new cars, but note that the equilibrium solver is un-affected by
what happens to the demand for new cars since there is zero excess demand there by assumption.
Secondly, we note a dip in prices in 2008, which appears to be proportional across age groups.
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Figure 13: Equilibrium Prices: Gasoline Cars
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From closer inspections, we found that the model fits quite poorly in 2008 and predicts that too
many car-owning households should sell their cars. The explanation may well be the spike in real
fuel prices for both gasoline and diesel in 2008 (cf. Figure 19); if this causes all households to
want to sell their cars, the equilibrium prices will adjust downwards to counteract that and keep the
market in equilibrium. Finally, we note that we do not see major waves traveling down the price
schedule. As we shall see later, however, the waves are quite clear when we look at the annual
depreciation rates rather than the actual prices in levels.

Next, we turn to comparing the predicted market activity to the realized one under the equilib-
rium prices. Figure 14 shows 4 panels; the first panel shows the negative log differences of figure
13, giving the annual depreciation rates implied by the equilibrium prices (i.e. the % the used car
price falls by when it ages one year). In this graph, it is easier to see waves traveling through —
two such “waves” are noticeable as small dents traveling along the diagonal of the xy-plane (i.e.
tracking a particular cohort of cars). The depreciation rates look somewhat jittery for the higher
ages, which is mainly because there are few of those cars.26 The upper right panel shows the car

26 When there are only few of a given car in the dataset, the equilibrium prices may become very high because when the cars
are rare, they will most likely be in short supply, which will push up the price to set excess demand to zero. For the diesel segment
in 1996 and 1997, there are virtually no owners of the 5 highest age groups; this means that the price must be very high for those
groups to remove excess demand. The optimizer got excess demand to the order of 10−5 and then kept increasing the prices for
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Figure 14: Simulations Under Equilibrium Prices: Gasoline Cars
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age distribution over time and here we notice, that the waves in the car age distribution (coming
from past macro shocks traveling through in time) coincide with the waves in the depreciations
(upper left panel).

The two lower panels show the number of transactions occurring from the data and predicted
from the model using the equilibrium prices.27 First off, we note that both the predicted and the
actual number of transactions by age-category clearly mirrors the car age distribution. In particular,
we see more transactions for the abundant car age groups. The predicted and observed transactions
disagree in terms of how the number of transactions generally changes with the car age; in the
prediction, there are clearly more transactions for car age categories around 10–15, while there are
plenty of trades even for fairly young cars in the data. The reason why this can happen is that the
equilibrium prices’ only purpose is to set excess demand to zero; this may happen either at high or
low volumes of trade for a given car age.28

We conclude the analysis of the equilibrium model by presenting a simulation forward in time,
keeping fuel prices and the choice set constant and equal to their 2002 values but simulating house-

higher car ages without ever converging. We consider this a problem related to the 1% subsample.
27 To predict the number of transactions, we use the fact that expected supply and demand match up to the order of 10−5. There

were a small number of car ages in a few years (particularly for the rare diesel cars) where supply and demand were further apart
than 10−3; in those cases, we took the average.

28 In particular, if it is possible to find prices so that no one wants to trade (e.g. infinitely large transactions costs), then that will
constitute an equilibrium. We have not found such behavior to be an issue when working with the equilbrium solver.
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Figure 15: Forward Simulation with Equilibrium Prices
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hold behavior moving forward (similarly to 12). Figure 15 shows the car age distribution in this
simulation. When compared wtih Figure 12, we see the key difference between the equilibrium
and non-equilibrium models; in the non-equilibrium simulation, the car stock converges to an ap-
proximately stationary distribution. For the equilibrium model, there are clear waves in the age
distribution, consistent with the data (Figure 1). The primary difference between the simulated
car stock from the equilibrium model and the real-world data is that the booms in new car sales
induced by the macro state in the simulation appear to only last for the first period of the upswing;
in the real data in Figure 1, new car sales are persistently higher throughout the booms and per-
sistently low throughout the busts. Figure 34 shows the macro state process and the (constant)
fuel prices for this simulation. The macro process is the same as was used for Figure 12. Figure
35 shows additional details about the equilibrium simulation, including new-car purchases, the
equilibrium prices and the scrappage pattern. The most important feature is that scrappages are
highly coordinated in the model. This happens when a large cohort of cars reach the higher ages
and a boom starts. The boom starting induces everyone to want to buy a new car. However, by
definition this means that the supply of the cars held by those households increases. So if there are
disproportionately more of a given old car age, then the price of that car will have to drop a lot.
Once it approaches the scrap price, the households will start to scrap their car instead of selling it
at the market. This helps to bring excess demand to zero and therefore, the equilibrium prices will
try to incentivize the scrappage.
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6.5 Counterfactual Simulations

In this section, we study a concrete counterfactual policy. We simulate the effects of the policy
both with and without equilibrium prices. The policy we are interested in is one that changes the
relative costs of ownership and usage. We therefore propose a reform that lowers the registration
tax and simultaneously increases fuel prices (for example through higher fuel taxes). Such a reform
changes the relative values of different car types and ages, making it less costly (in terms of depre-
ciation) to own a newer car but more costly to use cars in general, and in particular fuel-inefficient
ones.29 With the model, we can analyze the effects on type choice, car fleet age and driving. With
equilibrium prices, we are additionally able to study the immediate and longer term effects of such
a reform on scrappage. To simplify the analysis, we keep fuel prices constant except in 2012,
where we increase them exogenously. Similarly, agents expect fuel prices to remain constant both
before and after the unexpected policy intervention.

We choose to study a reform that lowers the price of new cars by 20% of the baseline price and
raises fuel prices by 50%.30 We take the 2002 data as the base data and then we simulate 10 years
ahead before we implement the counter-factual reform and simulate an additional 10 years under
the new policy scheme. That is, in all graphs the reform is implemented in 2012.

First, we analyze the counterfactual using the non-equilibrium model. Figure 16 shows the
outcomes of the simulation. The upper left panel shows the price schedule over time; the new car
price is constant up until 2012 where it drops by 20%. The scrap price is unchanged and we use
the DAF suggested deprecation rates with no change. The upper right panel shows the car age
distribution in the simulation. The first 10 years of the simulation look like 12, with the initial
wave quickly dying out and the car age distribution converging to a “standing wave” in the period
up to the policy shock. After the reform, we see a shift to newer cars; in particular, there appears
to be many more 1–5 year old cars in the fleet. The lower right panel shows purchases of used cars
in the simulated data. We see that the transactions do not track the age distribution, as expected.
Similarly, the scrappage shown in the lower left panel displays no signs of waves or coordination.
Figure 36 shows the simulated paths of the macro state and the exogenous fuel price process to aid
the interpretation of Figure 16.

Now, we turn to simulating the counterfactual policy using the equilibrium model. We do this
using the approach explained in Section 5.2. We use the same macro sequence for the equilibrium
as the non-equilibrium simulations and can be seen in figure 36 (and fuel prices are constant except
for the exogenous increase of 50% in period 2012).

29 Figure 28 showed that older cars were driven more intensively. The household pays a constant utility cost of
θ(y,m)pk(τ,a, p,co) per km and receives the constant utility bonus of γ0 (since γ j = 0 for j > 0 and φ = 0). Comparing these
two indicates whether driving is a net benefit or inconvenience to the consumer.

30 These values were chosen so that the reform mainly changes the optimal car age and type without drastically changing the
number of households in the no-car state.
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Figure 16: Counterfactual Simulation: Non-equilibrium Prices
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Figure 17 shows the equilibrium simulation. These simulations differ markedly from the non-
equilibrium counterparts. The car age distribution displays clear waves traveling through the distri-
bution that look very much like the waves we see in the real data. The equilibrium price schedule is
shown over time in the upper left panel. The prices display “ripples” traveling diagonally through
the graph, coinciding with the peaks in the car age distribution: one ripple starts for 1-year old cars
in 2002 and one for 7-year old cars in 2002. Both of these originate right at the end of a boom in
new car sales, indicating that the cars were scrapped and replaced with new cars (or there was a
chain of trades).

Note how the prices used of used cars adjust in equilibrium when exogenously changing the
new car prices. In the non-equilibrium model this happened by construction since depreciation
rates were kept fixed at the constant DAF depreciation rates. However, in the equilibrium model
prices of used cars ar allowed to vary freely and adjust endogenously to prevent any excess demand
of used cars. When prices of new cars decrease exogenously, so does the prices used cars - but as
an equilibrium outcome of the model.

In the lower left panel, there is a spike in the scrappage in the reform year for the wave of
15–18 year old cars. The intuition is the following; the reform makes cars cheaper to buy but more
expensive to own so it no longer makes sense to hold on to very old cars. This shift in incentives
is the same for the non-equilibrium model but the response is remarkably different due to the
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Figure 17: Counterfactual Simulation: Equilibrium Prices
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equilibrium prices; all households have a higher probability of buying a new car but therefore also
a higher probability of supplying their currently held used car. This means that if there are waves
— i.e., a higher stock of cars of particular ages — then there will be a disproportionate increase
in the supply of cars of those ages. The equilibrium prices will therefore have to drop further
for those age groups to set excess demand to zero. This brings prices closer to the scrap value,
which results in the large, synchronized spike in scrappage in that year. Since scrapped cars do not
contribute to excess demand, the prices of the oldest car categories can drop very far down without
increasing excess demand. If households did not have stationary expectations about future used car
prices, this effect might be dampened somewhat. Currently, when they see the equilibrium prices
dropping close to the scrap price, they never expect them to become better again and thus, they
might as well scrap their cars sooner rather than later. Figure 18 shows a rotated view of the car
age distribution in Figure 17, which makes it easier to see the new car sales replacing the old wave
of cars being scrapped.

7 Conclusion

This paper develops a novel dynamic model of vehicle choice and utilization that includes endoge-
nous scrappage decisions and macroeconomic shocks. We estimate this model on detailed Danish
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Figure 18: Counterfactual Simulation of the Car Stock under Equilibrium Prices
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data, and find that we can replicate the observed “waves” in the Danish vehicle fleet caused by
macroeconomic recessions and upturns. Moreover, the model can replicate the observed patterns
in scrappage and transactions over the business cycle. Our simulations clearly illustrate the impor-
tance of accounting for equilibrium price adjustments for creating realistic simulations of the car
age distribution into the future. We find the resulting equilibrium price functions to generally be
nicely behaved, downwards sloping and convex in age.

We illustrate the usefulness of the model by implementing a counterfactual reform that changes
the balance between fixed and variable costs of cars. In the simulation, the reform induces a shift
towards new car purchases but comes at the cost of accelerated scrappage of older cars. This
scrappage pattern cannot be replicated by the corresponding model without equilibrium prices; it
is generated by the combination of the equilibrium prices and the waves in the car fleet that comes
from past macro shocks.

The model is uniquely well-suited for analyzing the long-run effects of car tax policies on
the age of the vehicle fleet. Moreover, the model gives predictions on household driving and type
choice decisions, which allows for a full analysis of the policy implications for tax revenue, driving,
emissions, car fleet age and scrappage. Most models in the literature tend to emphasize the short
or medium run effects of tax policies.

A lot of important tasks remain for future research; most importantly, we find that transactions
costs need to be very high to rationalize the data. We conjecture that a more realistic modeling of
the marginal utility of money may remedy this. Secondly, while the theoretical model admits more
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realism, we simplify the model in our estimation by assuming that consumers have “stationary”
expectations about future equilibrium prices. We propose a simple way of relaxing this assumption
by allowing consumers to base their expectations on the macro state and fuel prices, but this is
certainly an area with interesting prospects for future research.

A Appendix: Income Transitions

Table 3 shows the results from the estimation of the equation

logyit = ρ0 +ρ1 logyit−1 +ρ2sit +ρ3s2
it +ρ4mit + errorit . (39)

We find that controlling for the age profile of income, the AR coefficient is ρ̂1 = 0.853 (Table 3. We
note, however, that the effect of the macro state, mt , is significant but only implies minor changes
in average income “growth” of about –0.4% p.a. The negative sign is very puzzling. We have in
and we note that this is presumably driven by the large dummy of 5.3% in 2002 (recesseion) and
perhaps also the low dummies in 1999 and 2000.

One explanation for the unexpected sign of the macro dummy is that unemployment insurance
is almost universal in Denmark. Since our income measure also captures transfers, the income does
not drop to zero for unemployed households. To get around this, we have tried running the AR
regression using only wage-based income. We also expand the horizon. The results are shown in 4
and 5. We still find the puzzling negative sign on the macro dummy for the wage process as well,
but we note that again, real wage growth was not that low during the 2001–2003 mild recession
and actually higher than during the boom in the 1990s (which started in 1994). Our problems
with finding a clear relationship between incomes at the micro level and the macro state defined
based on real GDP growth indicates that the link between the macro cycle in the traditional binary
understanding and the micro level is perhaps not that clear cut.
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Table 3: AR regressions for income
(1) (2) (3) (4)

L.log real inc 0.878∗∗∗ 0.878∗∗∗ 0.798∗∗∗ 0.799∗∗∗

(6766.21) (6765.94) (4888.10) (4898.15)
1m=1 0.000105 -0.00416∗∗∗

(0.47) (-18.94)
agem 0.0116∗∗∗ 0.0115∗∗∗

(554.51) (549.73)
agemsq -0.000145∗∗∗ -0.000144∗∗∗

(-366.77) (-363.00)
Year dummiesa

1998 0.0172∗∗∗

1999 0.00635∗∗∗

2000 -0.00754∗∗∗

2001 0.0160∗∗∗

2002 0.0530∗∗∗

2003 0.0136∗∗∗

2004 0.0237∗∗∗

2005 0.0332∗∗∗

2006 0.0445∗∗∗

2007 0.0534∗∗∗

2008 0.0296∗∗∗

2009 0.0107∗∗∗

cons 1.564∗∗∗ 1.564∗∗∗ 2.452∗∗∗ 2.469∗∗∗

(948.47) (944.36) (1214.31) (1233.30)
N 17,053,312 17,053,312 17,053,312 17,053,312
a: We omit standard errors for year dummeis for easier overview.

Selection: Includes only couples and years strictly between 1997 and 2007.

Note: The income measure also includes transfers.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4: AR regressions for log real wages

(1) (2) (3)

lagged log wage 0.875∗∗∗ 0.875∗∗∗ 0.847∗∗∗

(0.00) (0.00) (0.00)
mt = 1 0.008∗∗∗ -0.001∗∗∗

(0.00) (0.00)
Age (male) 0.044∗∗∗

(0.00)
Age squared -0.001∗∗∗

(0.00)
Constant 1.603∗∗∗ 1.593∗∗∗ 1.205∗∗∗

(0.00) (0.00) (0.00)

N 14,988,295 14,988,295 14,988,295
r2 0.650 0.650 0.663
Selection: Only couples with male aged 18 to 65 and all years [1992;2009].

The explained variable only measures wage income.

B Appendix: Background and Data

In this appendix, we go into details about our dataset and institutional background that have been
omitted from the main text in Section 2.

B.1 Institutional Background

Figure 19 shows the fuel prices for gasoline and diesel cars respectively over the sample period.
Both have increased and diesel prices have converged towards gasoline prices. The fuel price
composition over time in the sample period is shown for gasoline in Figure 20 and for diesel in
Figure 21. The figures show that the main variation in fuel prices in our sample period 1996–2009
comes from the product price.

To shed light on the Danish car taxation in a European perspective, Figure 22 shows the price
of the same car, a Toyota Avensis, in different European countries. First off, the figure shows that
the Danish price including taxes is the highest, approximately 50% larger than the second-highest
(Portugal). Secondly, the price net of tax is the lowest in Denmark, consistent with the intuition
that car dealers reduce their markups in the higher tax environment.

B.2 Additional Descriptives

Figure 23 shows the number of transactions by car age and over time. When compared to the car
age distribution in Figure 1, we clearly see that the “waves” appear in both graphs. This indicates
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Table 5: AR regressions for log real wage

(1) (2) (3)

Lagged log wage 0.842∗∗∗ 0.847∗∗∗ 0.845∗∗∗

(0.00) (0.00) (0.00)
mt = 1 -0.003∗∗∗ -0.001∗∗∗

(0.00) (0.00)
Age (male) 0.044∗∗∗ 0.045∗∗∗

(0.00) (0.00)
Age squared -0.001∗∗∗ -0.001∗∗∗

(0.00) (0.00)
Year dummiesa

1994 0.019∗∗∗

1995 0.033∗∗∗

1996 0.035∗∗∗

1997 0.053∗∗∗

1998 0.061∗∗∗

1999 0.059∗∗∗

2000 0.049∗∗∗

2001 0.064∗∗∗

2002 0.049∗∗∗

2003 0.035∗∗∗

2004 0.068∗∗∗

2005 0.074∗∗∗

2006 0.092∗∗∗

2007 0.101∗∗∗

2008 0.086∗∗∗

2009 0.048∗∗∗

Constant 2.053∗∗∗ 1.205∗∗∗ 1.178∗∗∗

(0.03) (0.00) (0.00)

Age dummies Yes No No

N 14,988,295 14,988,295 14,988,295
r2 0.667 0.663 0.664
a: We omit standard errors for year dummies for easier overview.

Selection: Only couples with male aged 18 to 65 and all years [1992;2009].
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Figure 19: Real Fuel Prices Over Time
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Figure 20: Composition of the Gasoline Price (Octane 95)
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Figure 22: MRSP For a Toyota Avensis: Differences in Europe
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Figure 23: Purchases by Car Age Over Time (new cars omitted)

that transactions tend to follow the age distribution.
Table 6 shows the shares of households owning zero, one, two or more than two cars for each

year in our sample.
Figure 24 shows that the cars in Denmark are typically handed down through a long chain of

owners with a mode of 5 owners for a 15 year old car. The figure takes all cars in 2009 that are
15 years old (i.e. first registered in Denmark in 1994) and where we observe the first owners of
the car. The first owners is observed for about two thirds of the cars. The reason for restricting to
15 year old cars in 2009 is to avoid mixing car ages together, which will produce a mixed picture
due to scrappage and missing data. The figure indicates that the most common is for a car to have
switched owners once every third year.

B.3 Scrappage

We do not observe scrappage per se in our dataset. Instead, we define scrappage as occuring when
a car ownership ends and we never see a new one starting for that car. This measure is not perfect
because an individual may choose to de-register his car and leave it in his garage for a while. This
may be particularly important for specialty cars and vintage cars but since these are outside the
scope of our paper, we are not too concerned with behavior of that sort.

We first consider the scrappage together with transactions; this highlights that when an individ-
ual decides to sell a car in the model, he may either sell it on the used-car market or at the scrap
price. Figure 25 shows for each car age the number of transactions in the data and the number of
scrappages. Firstly, the figure shows that the number of transactions increases up to a car age of 3,
after which it is relatively constant up until car ages of 14, whereafter it falls linearly until age 23.
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Table 6: Number of Cars Owned per Household Over Time

0 cars 1 car 2 cars > 2 cars N

1996 .4910 .4418 .06294 .004279 1,985,421
1997 .4469 .4644 .08211 .006531 2,001,998
1998 .4198 .4757 .09608 .008402 1,995,553
1999 .4139 .4803 .09792 .007862 1,973,977
2000 .4113 .4832 .09827 .007278 1,947,799
2001 .4053 .4849 .1025 .007278 1,950,103
2002 .3975 .4868 .1082 .007586 1,965,165
2003 .3930 .4856 .1134 .008026 1,975,094
2004 .3914 .4823 .1178 .008448 1,980,979
2005 .3820 .4812 .1273 .009586 1,988,611
2006 .3744 .4793 .1357 .01060 1,989,600
2007 .3675 .4775 .1433 .01168 2,003,445
2008 .3668 .4770 .1448 .01143 2,016,840
2009 .3721 .4723 .1441 .01153 2,022,166

Total .4023 .4765 .1126 .008622 27,796,751
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turned 15 years old in 2009. Only vehicles whose first owner is observed are used (61,919/92,021 of the
vehicles). Truncated at 15 owners.
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Figure 24: Number of owners for 15 year old cars in 2009
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Figure 25: Number of Scrappages and Number of Transactions by Car Age

The number is slightly higher for 24, but that is because we have truncated the car age distribution.
The scrappage frequency increases up to age 16 after which it falls (because there are not that many
cars left to scrap). Recall that the annual scrappage in percent of the car stock increases over age
categories in Figure 8. We see the same spikes in scrappage in even years that correspond with the
inspection years.

Table 7 shows the number of scrappages in our data for all the sample years. We note that
we have exceptionally few scrappage observations in 1996 and 1997 while 1998 appears to be
half-way to the average that persists thereafter. To validate the number of scrappages, we also
show the number of scrappage subsidies paid out for environmentally friendly scrappage of older
cars. The data comes from the website bilordning.dk, which is maintained by Sekretariatet
for Miljøordning for Biler, a government office under the Ministry of the Environment overseeing
vehicle scrappage and the scrappage subsidy. The subsidy was introduced in July 2000 and has
been fixed at 1,500 DKK throughout our sample period (it was changed in 2014). Given the in-
troduction half-way through the year, the 30,439 subsidies corresponds closely with the increasing
trend from 60,000 up to just under 100,000 subsidies paid out annually. The number is lower than
the number of scrappages by our definition of scrappage, which is to be expected for a number of
reasons; firstly, some cars are de-registered for a few years and then re-register again later. This
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Table 7: Car Scrappage by Year: Sample Data and Scrappage Subsidies

Year Scrappage in Data Subsidies

1996 3884 0
1997 4798 0
1998 47509 0
1999 136015 0
2000 120257 30439
2001 102258 68583
2002 105398 79836
2003 102452 86141
2004 110467 92700
2005 113246 98295
2006 127199 94268
2007 146709 91712
2008 141416 95747
2009 128017 93543

may explain the higher number of scrappages later in our sample and perhaps particularly some
of the younger scrapped cars, we see in Figure 9 for the latest years. Our dataset was drawn from
the license plate registers in September 2011, so we do not observe cars that have since then been
re-registered. Secondly, some cars are exported, which we do not observe. However, given the
higher used car prices in Denmark, we expect this to be a minor issue. Thirdly, some cars are kept
as collectibles (e.g. vintage or specialty cars). These cars are outside the focus of this paper so we
do not worry about not being able to fit those cars.

Figure 26 shows the subsidies paid out by the age of the car being scrapped. The data does not
match up with the other data sources of bilordning.dk, indicating that they may have missing
observations of car age. Where it is observed, we see that while the earliest subsidies were paid
out to very old cars, the car age distribution after this looks somewhat stable. The biggest group
is the 16–20 year old cars, but the number of 21–25 year old cars has grown from 3930 to 19526
from 2002 to 2009. Whether expected lifetime of cars has gone up or this was a transitory thing is
hard to say from these descriptives alone.

Figure 27 shows the number of ownership spells ending each year in our data, going back to
1992. The number increases from around 100,000 in 1992 up to over 400,000 in 1999, after which
it appears to stabilize at this level. We note that there are fewer periods ending in the years prior to
1998, but not enough so to explain why we have so few scrappage incidents prior to 1998.
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Figure 28: Vehicle Kilometers Traveled by Car Age

B.4 Driving

Driving in our data comes from the safety inspections administered by the Ministry of Transporta-
tion. They occur when the car is aged 4 first and then every 2nd year thereafter. In practice, the
test date varies by about 3 months around this. At these inspections, the odometer is measured and
we find the vehicle kilometers traveled (VKT) as the first differences in the odometer readings.

Figure 28 shows the average VKT conditional on the car age. We have split the data into 20
quantiles depending on the age of the car (for the observations where a car is present). Within
each of these groups, we show the average VKT. Note that for the typical car, the VKT will be the
same when the car is between zero and four years old. However, some cars may have an inspection
before the planned one at four years, which explains why the average still changes before four
years. The graph shows that households with older cars tend to drive less. The VKT increases up
towards an age of four but recall that for the typical car, we only observe the average driving for
the full period from zero to four years of age.

Figure 29 shows the VKT by the household income. We have split the observations into 20
quantiles based on income (for the households where we observe VKT). Within each of these
quantiles, we show the average VKT. Note that in the data used for estimation, we have split
household income in two if the household owns two cars, and in three for three cars, etc. In Figure
29, we show the relationship with the un-split income — the figure looks similar when we have
split the income except for a small hump mid way through. Figure 29 shows that high

Table 8 shows regressions of vehicle kilometers traveled (VKT) on different sets of controls
for the full sample. We find that the average elasticity of the price per kilometer (PPK, defined
as the fuel price devided by the fuel efficiency in km/l) is at the lowest –179% unless we control
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Figure 29: Vehicle Kilometers Traveled by Real Income

for a diesel dummy, in which case it drops to –41.9%. This big difference is intuitively clear; the
difference in both fuel price and fuel efficiency is substantial between the gasoline and the fuel
price segment. Without a dummy, we are attributing all differences in driving to the price variable
and not allowing a levle shift. On the other hand, from the point of view of the model, there should
not be a level shift between the two segments unless it is due to endogenous selection based on
the PPK variable in the sense that households needing to drive a lot choose a car that will allow
them to do so cheaply.31 Nevertheless, we find these high price elasticities of driving puzzling,
in particular in light of the findings of Munk-Nielsen (2015) and Gillingham and Munk-Nielsen
(2015), who find much lower elasticities. We conjecture that adding more controls in line with
those studies will lower the elasticity.

C Appendix: Flexible Price Function Specification

This appendix describes a flexible specification for the price function for cars. We could estimate
this price function as a first step along with the estimation of the structural parameters of the model
using the Danish Register data, rather than using the price depreciation rates given to us from the
Danish Automobile Dealers Association. Those depreciation rates may or may not be reasonable

31 The selection could also go the other way so that households needing to drive a lot would choose a car that would make the
long drive as comfortable as possible and therefore go for a more luxurious car. Comfort and luxury tend to be correlated positively
with vehicle weight and negatively with fuel efficiency.
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Table 8: Regressions of vehicle kilometers traveled (VKT) on controls
(1) (2) (3) (4) (5) (6) (7)

Price per km (PPK) -107.3718∗∗∗ -96.2963∗∗∗ -99.9269∗∗∗ -104.3433∗∗∗ -86.6610∗∗∗ -107.5702∗∗∗ -9.4086∗∗∗

(0.11) (0.19) (0.12) (0.11) (0.19) (0.24) (0.31)
PPK X income -2.3936∗∗∗ -2.1379∗∗∗ -2.1749∗∗∗ -2.1158∗∗∗

(0.03) (0.03) (0.03) (0.03)
PPK X income squared 0.0005∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗

(0.00) (0.00) (0.00) (0.00)
PPK X dBoom=1 33.5003∗∗∗ -5.8843∗∗∗

(0.23) (0.24)
Constant 117.8539∗∗∗ 109.1657∗∗∗ 116.1846∗∗∗ 104.0167∗∗∗ 97.7115∗∗∗ 111.3234∗∗∗ 47.4324∗∗∗

(0.07) (0.12) (0.07) (0.13) (0.16) (0.19) (0.23)
Income (100,000) 1.8640∗∗∗ 1.5193∗∗∗ 1.5401∗∗∗ 1.4798∗∗∗

(0.02) (0.02) (0.02) (0.02)
Income squared -0.0004∗∗∗ -0.0003∗∗∗ -0.0003∗∗∗ -0.0002∗∗∗

(0.00) (0.00) (0.00) (0.00)
Car age -0.2141∗∗∗ -0.2593∗∗∗ -0.2864∗∗∗ -0.2889∗∗∗

(0.00) (0.00) (0.00) (0.00)
Car age squared -0.0201∗∗∗ -0.0184∗∗∗ -0.0178∗∗∗ -0.0213∗∗∗

(0.00) (0.00) (0.00) (0.00)
Age (head) 0.9297∗∗∗ 0.8270∗∗∗ 0.8259∗∗∗ 0.8155∗∗∗

(0.01) (0.01) (0.01) (0.01)
Age squared -0.0138∗∗∗ -0.0128∗∗∗ -0.0128∗∗∗ -0.0127∗∗∗

(0.00) (0.00) (0.00) (0.00)
mt = 1 -21.4665∗∗∗ 4.1525∗∗∗

(0.15) (0.15)
Diesel dummy 17.3834∗∗∗

(0.03)

N 15,018,013 15,018,013 15,018,013 15,018,013 15,018,013 15,018,013 15,018,013
R2 .0555 .0575 .0658 .0732 .0851 .0864 .102

Avg. PPK-elasticitya -1.9860 -1.9859 -1.8483 -1.9300 -1.7859 -1.8131 -.4188
Selection: VKT in ]0;1,000[ and year in [1996;2009] and household age in [18;65]
a: The avg. elasticity of driving wrt. the price per kilometer.

Income is measured in 100,000 real 2005 DKK.
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values to start the estimation with. The main drawback of using them is that they do not shift with
changes in fuel prices or macro conditions. Below we describe a flexible price function that can
allow fuel prices and macro shocks to enter and affect depreciation rates, and we have the ability
to estimate the parameters using unconstrained optimization algorithms, yet the estimated price
functions are constrained (via minimal functional form assumptions described below) to always be
downward sloping.

We do assume that new car prices and scrap prices are determined exogenously. The exogenous
new car price assumption is a consequence of the “small open economy” model for Denmark,
where all cars are imported and we assume demand for new cars from Denmark is an insignificant
share of worldwide demand for new cars. However it may be useful to allow new car prices to
vary with macro shocks (which we initially assume to pertain to Denmark only, but which could
be correlated with a worldwide macro shock, e.g. the 2008 Great Recession) and the specification
below allows for this possibility.

Similarly we assume there is an infinitely elastic demand for vehicles as scrap, and this sets an
exogenously determined scrappage price for cars, and this could also depend on fuel prices and
macro shocks.

Recall the key state variables in the model: (a,m, p,τ) where τ is the type of car, a is age of car,
m is the macro shock, and p is the fuel price. We conjectured that the equilibrium in the Danish car
market could be found for prices of the form P(a,m, p,τ), i.e. we assumed that the price function
is not a function of the age distribution of the vehicle stock but only of the current macro shock and
fuel price. If a = 0 is a brand new car, then P(τ) = P(0,m, p,τ) is the “boundary condition” for the
price of a new car under the small open economy assumption, where P(τ) is the average suggested
retail price of a new car of type τ. If we had enough time series data to detect any variation in new
car prices with fuel prices or macro shocks, it may be possible to fit a function P(m, p,τ) where
new car prices shift with fuel prices and macro shocks (e.g. gas guzzlers sell at a discount when
fuel prices are high, whereas high fuel efficiency cars sell at a premium when fuel prices are high,
and luxury cars are discounted and economy cars sell at relatively higher prices during a recession,
whereas luxury car prices are relatively higher and economy car prices are relatively lower during
a recession, etc). But for now our data only allow us to identify P(τ) which does not depend on
(m, p).

We may be able to estimate scrap prices P(τ) from the model, but for now we will fix this
price at approximately 3,000 Danish Kroner, independent of τ or of (m, p). It may be that export
of old Mercedes, BMW to developing countries, or “collector value” implies a higher value than
this floor scrap value for certain types of cars, but for now we go with this basic assumption of a
constant scrap price for all types of vehicles, regardless of fuel prices or macro conditions.

To understand the basic flexible secondary price specification, first ignore the effect of (m, p) so
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that the prices are just a function of a, P(a) (and for simplicity we suppress the car type indicator τ

as well. If a = 0 is a new car and a = 20 is the oldest car allowed, we have the boundary conditions
that P(0) = P and P(20) = P. In the illustration below we set P = 180000 and P = 3000.

Let θ be an unconstrained 19×1 parameter vector. We will now write a specification for P(a)
that depends on these 19 unconstrained parameters θ in a way that guarantees that P(a) is always
decreasing in a and satisfies the boundary conditions P(0) = P and P(20) = P. The specification
that does this, P(a,θ) is given below

P(a,θ) = P+(P−P)
a

∏
i=1

ρ(θi), a = 1, . . . ,19 (40)

where we define ρ(θ0)≡ 1 and

ρ(θi) =
exp{θi}

1+ exp{θi}
(41)

for i = 1, . . . ,19. Note that the θi can take any value in the interval (−∞,∞) and for any vector θ ∈
R19 the implied price function P(a,θ) will be decreasing in a. Further we can impose restrictions
to reduce the dimensionality of the vector θ. For example we could restrict θ to take the form

θ = (θ1,θ1, . . . ,θ1) (42)

so that θ ∈ R19 depends only on a single unknown parameter θ1 ∈ R1. Or we could partition θ to
depend on just two parameters (θ1,θ2) as follows

θ = (θ1,θ1, . . . ,θ1,θ2, . . . ,θ2) (43)

so the first J1 components of θ take the value θ1 and the remaining 19− J1 components of θ take
the value θ2, and so forth. This gives us quite a bit of flexibility in how flexible we want to allow
the price function P(a,θ) to be as a function of a. Even when the price function is restricted
to depend on only a single parameter θ1, the implied price function P(a,θ1) can assume many
different shapes as θ1 ranges over the interval (−∞,∞) as illustrated in figure C below.

Now, taking this basic flexible specification for the price of cars as a function of age, we can
allow these functions to shift with macro shocks and fuel prices in a flexible way also by a small
modification of the basic functional form in equation (40) above. In addition to the 19×1 vector
θ, let α be a K× 1 vector that can flexibly parameterize the dependence of the price function on
(m, p). Let f (m, p,α) be some function of (m, p,α) such as linear-in-parameters f (m, p,α) =
α1 +α2m+α3 p.

P(a,m, p,θ,α) = P+(P−P)
a

∏
i=1

ρ(m, p,θi,α), a = 1, . . . ,19 (44)
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where we define ρ(θ0)≡ 1 and

ρ(m, p,θi,) =
exp{θi + f (m, p,α)}

1+ exp{θi + f (m, p,α)}
(45)

for i = 1, . . . ,19. Note by construction we have P(0,m, p,τ) = P(m, p,τ).

C.1 Derivatives of the price function with respect to (θ,α)

Let θ j be one of the independent subparameters (or components) of the 19×1 vector θ=(θ1, . . . ,θ19).
In the case of parameter restrictions, such as the most restrictive specification θ= (θ1, . . . ,θ1), then
the θ vector would depend on only one independent subparameter θ1, whereas if θ depends on two
free parametes (independent components) θ1 and θ2 then θ = (θ1, . . . ,θ1,θ2, . . . ,θ2). Suppose we
have a specification where the the overall 19×1 θ vector depends on J free parameters (θ1, . . . ,θJ),
with the most flexible case being J = 19. Partition the set of indices {1,2, . . . ,19} into J subinter-
vals {1,2, . . . ,19}= (I1, I2, . . . , IJ) where I1 = {1, . . . , I1}, and I2 = {I1+1, . . . , I2}, and so on until
IJ = {IJ−1 +1, . . . ,19}. Then we have

∂

∂θ j
P(a,m, p,τ) = [P(a,m, p,τ)−P]

[
a

∑
i=1

[1−ρ(m, p,θi,α)]I{i ∈ I j}

]
(46)
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∂

∂α
P(a,m, p,τ) = [P(a,m, p,τ)−P]

[
a

∑
i=1

[1−ρ(m, p,θi,α)]
∂

∂α
f (p,m,α)

]
. (47)

Of course we also have ∂

∂θ j
P(0,m, p,τ) = 0 and ∂

∂α
P(0,m, p,τ) = 0 since P(0,m, p,τ) = P(m, p,τ)

by construction, and the latter does not depend on (θ,α).

C.2 Non-monotonic specification

We have found that it is difficult to estimate all parameters of the least restrictive monotonic spec-
ification above (i.e. where we have separate depreciation rates for all 19 age groups from age 1 to
age 19 with a separate θa parameter for each value of a). The reason is that when there is rapid
initial depreciation (i.e. large negative “early values” for θa, a = 1,2,3, . . .), there is less room for
manuevering for the values of the later depreciation parameters θa, a = 15,16, . . . ,19. If the car’s
secondhand price is already close to scrap by age 12, then the depreciation rate parameters for
a = 13,14, . . . ,19 hardly matter, and this shows up as parameters that have gradients close to zero
and this tends to make the likelihood hessian matrix poorly conditioned (i.e. close to singular). We
are able to estimate the first few depreciation parameters, such as restricted version of the a specifi-
cation above where we estimate only (θ1,θ2,θ3) where θ1 governs depreciation for ages 1, . . . , I1,
θ2 governs deprecciation over ages I1 + 1, . . . , I2, and θ3 governs depreciation for the remaining
ages a = I2 +1, . . . ,19.

But it might be useful to try a less restrictive specification of secondary market prices where
we drop the monotonicity restriction. In this specification we do restrict prices to lie in the interval
[P(τ,m, p),P(τ,m, p)] but we do not require the price function to be monotonically decreasing. It
will have unrestricted choices of depreciation parameters θa, a= 1, . . . ,19 but these parameters will
be more “orthogonal” than in the case where we impose a monotonicity restriction as above, since
a choice for θa does not restrict in any way the choices of possible prices in other age categories a′

for a′ 6= a.
This specification is rather simple: θa is just the parameter of a logit function that specifies the

fraction of the distance between P(τ,m, p) and P(τ,m, p) the secondary market price P(τ,a,m, p)
lies:

ρa(θa) =
exp{θa}

1+ exp{θa}
, (48)

and

P(τ,a,m, p,θ) =
19

∑
i=1

I{i = a}
[
P(τ,m, p)ρa(θa)+P(τ,m, p)(1−ρa(θa)

]
. (49)

This specification will ensure that P(τ,m, p) ≤ P(τ,a,m, p,θ) ≤ P(τ,m, p) for any choice of θ =

(θ1, . . . ,θ19) ∈ R19 but it does not enforce any monotonicity in P(τ,a,m, p,θ) as a function of a.
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Figure 30: Model Fit: Conditional Choice Probabilities
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The gradient of P(τ,a,m, p,θ) with respect to θa is easy to compute using the fact that ∂

∂θa
ρa(θa)=

ρa(θa)(1−ρa(θa)).

D Appendix 5: Additional Results

This appendix contians additional results that have been omitted from the main results sections.

D.1 Estimates with Fixed Transaction Costs

Table 9 show estimation results where we have kept transaction costs fixed at 10,000 DKK plus
20% of the traded car’s values. Comparing the parameter estimates to the preferred specification
in the main text, where transaction costs are estimated, we in particular note the utility of money
(θ0), which is considerably higher here.

Figure 30 shows the fit in terms of conditional choice probabilities. Compared to the preferred
specification where the transaction cost is estimated, we see a considerable under-prediction of the
keep decision. Moreover, the model produces much more probability mass for all car ages over 4
with the highest mis-match at car age 10. Turning to Figure 31, we see that the keep probability
predicted by the model changes much more with the car age than does the observed probability; at
car age 4, the observed and predicted keep probabilities are about equal but while the data ends up
at a probability of about 60% at the oldest car age, the predicted probability tends to zero.

Figure 32 shows a simulation forward in time, keeping the choice set and price schedule fixed at
the 2002 data values but drawing state variables from the conditional transition densities according
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Table 9: Structural Estimates — Fixed Transaction Costs

Variable Estimate Std.err.

Model setup

Min. Hh. age 20
Max. Hh. age 85
# of car ages 25
# of car types 2
Clunkers in choiceset 1

β Discount factor 0.95
ρ Inc. AR(1) term 1
σy Inc. s.d. 0
ρp Fuel price AR(1) term 1
σy Fuel price s.d. 0.0699
Pr(0|0) Macro transition 0.75
Pr(1|1) Macro transition 0.8

Accident prob. 0.0004
λ Logit error var. 1
λscrap Scrappage error var. 0.9

Monetary Utility

θ0 Intercept 0.13984∗∗∗ 2.921e-06
θ1 Inc. -8.0175e-05∗∗∗ 2.597e-07
θ2 Inc. sq. 5.996e-08∗∗∗ 2.915e-10
θ3 Macro -0.00055181∗∗∗ 3.881e-05

Driving Utility

γ0 Intercept 0.26509∗∗∗ 0.0005566
γ1 Car age 0
γ2 Car age sq. 0
γ3 Hh. age 0
γ4 Hh. age squared 0
γ5 Macro 0
γ6 Macro 0
γ7 Macro 0
φ Squared VKT 0

Car Utility

q(a) Car age, linear 0.34035∗∗∗ 0.0008795
q(a) Car age, squared -0.0013817∗∗∗ 3.947e-05
δ1 Car type dummy 1.6588∗∗∗ 0.01175
δ2 Car type dummy 0.00087379 0.01281

Transaction costs

Fixed cost 10
Proportional cost 0.2

N 169,73374



Figure 31: Model Fit by State Variables
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to the model. The simulated car age distribution has no clear waves but rather shows synchronized,
parallel shifts up in transactions in particular years. This pattern can be explained by the macro
dummy shifting down the utility of money, making it more likely for all households to buy a
new car, causing the upwards shift in the age distribution. However, the under-predicted keep
probability means that households need not hold on to their cars in the following year.

D.2 Equilibrium Prices

In this section, we show additional results concerning the equilibrium price simulations. To re-
iterate, the parameter estimates here are based on a first-stage estimation of the driving parameters
(κs) that are fixed in the second stage, where the structural parameters are estimated, including
the fixed transaction cost. Finally, we solve for equilibrium prices in each year by setting ex-
pected excess demand equal to zero, clearing the market in each year. Figure 33 shows simulations
complementing figure 13 but showing all car age categories; in particular, the first- and final-year
depreciations were omitted in Figure 13 because they make it hard to see what else happens in the
figure. The large final-year depreciation may be to avoid too high scrapping earlier on.

D.3 Counterfactual Simulations

Figures 34 and 35 accompany Figures Figures 12 and 15 in Section 6.5. Figure 34 shows the macro
state over the simulation and the fuel prices (which are held constant) and

In this section, we present results that are supplementary to the ones shown in section 6.5.
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Figure 32: Forward Simulation
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Figure 33: Simulations Under Equilibrium Prices: All Car Ages
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Figure 34: Forward Simulation with Equilibrium Prices
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Figure 35: Forward Simulation with Equilibrium Prices
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Figure 36: Counterfactual Simulations: Macro and Fuel Price Processes
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Figure 36 accompanies Figures 16 and 17 in showing the realized paths of the macro and fuel
prices processes. Firstly, note that the fuel price is constant throughout the period except in the
year 2012 where we counterfactually increase it by 50%.

To compare against the counterfactual simulation results in Figures 16 and 17, we show the
corresponding graph for the actual data in Figure 37. Note that the prices shown there are computed
using the DAF suggested depreciation rates. The most important features to note are regarding
purchases and scrappage; purchases clearly follow the car age distribution. In other words, we
see more purchases (and thus sales) of cars age categories that are more abundant. Moreover, the
scrappage distribution is distinctly different from the non-equilibrium model; in particular,
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Figure 37: Age Distribution, Scrappage and Purchases in the Data
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