Entitled Women – but Not Men – Make Tougher Strategic Demands as Proposers in the Ultimatum Game

Elif E. Demiral*
Johanna Mollerstrom†

December 2017

Abstract:
In a laboratory experiment subjects are matched in pairs and interact in an Ultimatum Game. In the Entitlement treatment, the right to be the proposer is allocated to the person in the pair who performed better in a previously conducted math task. Compared to behavior in the control treatment, where the roles are randomly allocated, the proposers increase their strategic demands and offer a smaller share of the pie to the responder in the Entitlement treatment. This result is driven entirely by female proposers; when earning their role, they significantly lower their offers, whereas male proposers do not behave differently than when roles are randomly allocated. This is in line with previous research suggesting that women are more sensitive to contextual factors and social cues, meaning that strengthening feelings of entitlement could be a way to decrease gender differences in negotiation behavior.

* Interdisciplinary Center for Economic Science, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA. E-mail: edemiral@gmu.edu. Corresponding author.
† Humboldt University, DIW Berlin, and Research Institute for Industrial Economics (IFN), Mohrenstr. 58, 10115 Berlin, Germany. E-mail: johanna.mollerstrom@gmail.com.

We thank Dan Houser, Cesar Martinelli, Kevin McCabe and the participants in the workshop on Public Choice Experiments at Universite Catholique de Lille for fruitful interactions about this work, and we are grateful to excellent comments on previous versions of the manuscript from Coren Apicella, Katie B. Coffman, Christine Exley and Elizabeth Hoffman. We gratefully acknowledge funding for the experiment from the Interdisciplinary Center for Economic Science at George Mason University.
1. Introduction

To better understand the persistent gender gaps in society, especially in labor market outcomes, researchers are investigating negotiation behavior. Laboratory and field experiments document that women are both less willing to enter negotiations in the first place and that they bargain less aggressively than men when actively negotiating (e.g. Babcock and Laschever, 2003). One possible reason that has been suggested for why this gender gap in negotiations is observed is that women may take less credit for their success (c.f. Deaux and Farris, 1977; Apicella et al., 2017), and feel less entitled to higher pay than men (Major et al., 1984; Barron, 2003; Gelfand and Stayn, 2012.; for a review, see Gelfand and Stayn, 2012). If this is the case, one potentially fruitful way to encourage tougher behavior in negotiations by women would be to strengthen their feelings of entitlement.

However, manipulating feelings of entitlement for women only, without also making men feel more entitled, may be difficult in many real world settings. We investigate a way to get around this, using the experimental literature’s finding that women are more sensitive to contextual factors and social cues than men (Croson and Gneezy, 2009) as a starting point. For example, the fact that subjects cooperate more when a Prisoners’ Dilemma is labeled as a “Community Game” as opposed to a “Stock Market Game” has been shown to exclusively originate from women changing their behavior between the frames (Ellingsen et al., 2013).

In our laboratory experiment, we use a design similar to Hoffman et al. (1994) to investigate the impact of increased feelings of entitlement on behavior in an Ultimatum Game (UG). We use two treatments: In the Entitlement treatment, proposers are chosen based on superior performance in a previously conducted task. In the Random treatment,
the roles of proposer and responder are randomly allocated in the pair. We replicate the result from Hoffman et al. (1994) that proposers, on average, are tougher in their strategic demands in the sense that they offer a smaller share to their matched responder in the Entitlement treatment. We further show that there are significant differences in how men and women react to earned entitlements, documenting that the average reaction to treatment is driven entirely by the female proposers.¹ When women earn the right to be the proposer in the UG, they respond by claiming a significantly larger share for themselves compared to the Random treatment, whereas male proposers do not change their behavior. In our setting, this implies that whereas there is no gender difference in offers in the Random treatment, women actually make tougher strategic demands than men in the Entitlement treatment.

Our work is related to several strands of literature. First, the research on gender differences in negotiation behavior is extensive (c.f. Babcock and Laschever, 2003). The results from research studying gender differences in how proposers make strategic demands in the UG are mixed, with some documenting that women claim less for themselves and others finding that there is no gender difference (Eckel and Grossman, 2001; Solnick, 2001). Other experimental work frames the interactions as a (sometimes hypothetical, sometimes real) wage negotiation, resulting in more clear cut findings, with female subjects found to set lower goals, state lower minimum acceptable wages, and negotiate lower compensation than men (see e.g. Stevens et al., 1993; Kaman and Hartel, 1994; Dittrich et al., 2014 and Exley et al., 2017). Moreover, the context of the negotiation matters: providing information on others’ negotiation decisions (Rigdon, 2012) and framing the

¹ Hoffman et al. (1994) utilize a double blind procedure that does not allow for the collection of data on participants’ gender.
negotiation as an ask rather than a negotiation (Small et al., 2007) both help to close the gender gap in negotiation.

Research using field data also point in the direction of women negotiating less often and less successfully. For example, Babcock et al. (2003) document that recent female MBA graduates negotiate for their starting salaries significantly less often than their fellow male graduates. This contributes to the fact that women earn less than men, even when graduating from the same MBA program. Leibbrant and List (2014) show that women are more likely to signal to employers that they are willing to accept a lower wage than what is advertised and that the context matters: explicitly informing prospective employees about what is negotiable reduces the gender gap in willingness to negotiate.

The second strand of literature we build upon is the one aiming at understanding the effects of entitlements on behavior in not only the UG but also in other games, such as the Dictator Game (DG). Hoffman et al. (1994) was of the first to ask the question of how behavior differs between earned and randomly allocated endowments in the UG and DG. Their findings, that proposers offer less of their endowment to the responder in the UG and to the receiver in the DG when they have earned the right to be the proposer, has been widely replicated and extended (e.g. Cherry, 2001; Cherry et al., 2002; Oxoby and Spraggon, 2008; Banerjee and Chakravarty, 2014; Korenok et al., 2017; see also Hoffman and Spitzer, 1985, which partly foreruns the work in Hoffman et al., 1994). To our knowledge however, the existing literature does not investigate gender differences. Thus we are the first to suggest, and find evidence for, the well-established finding of the effects of entitlements on proposer behavior in the UG may be driven by women.
From here, the paper proceeds as follows. We start by describing the experimental design and implementation in Section 2. In Section 3, we conduct the analysis, document our main findings and discuss potential mechanisms. Section 4 concludes.

2. The Experiment

2.1. Experimental Design

The experiment consisted of three parts. In the first part, all participants completed an arithmetic task. They had five minutes in which to provide the answers to a series of math tasks that consisted of adding up five two-digit numbers (c.f. Niederle and Vesterlund, 2007). Participants were informed that they would receive $0.25 for each correct answer, that they would be paid at the end of the experiment, but that prior to the payout, no information about own performance would be given. Subjects never learned the details about others’ performance.

Ahead of the second part of the experiment, participants were matched in pairs. Our experiment entailed two treatments. In the *Random* treatment, one of the participants in the pair was randomly given the right to be the proposer in the game that followed. In the *Entitlement* treatment, this right was awarded to the person in the pair who performed better in the math task in the first part (ties were broken randomly by the computer). In both treatments, participants were informed whether the proposer (neutrally labeled “Player A” and described as the more advantageous position) and responder (labeled “Player B”) roles were allocated randomly or based on performance.

2 All instructions and questionnaires are available in the Online Appendix.
In order to ensure that the selected proposers and responders, respectively, were comparable in characteristics between the treatments, pairing was done in the following way. Immediately after the first part, subjects were ranked from highest to lowest according to their performance in the math task. The subject ranked first was then matched with the subject ranked second, the subject ranked third was matched with the subject ranked fourth, and so on. The subjects were told that they were matched anonymously to another person in the room; we took care to not claim that the match was random.

In the second part of the experiment, participants played a one-shot UG. The proposers offered a division of a total endowment of $20 between themselves and their matched responder. For the responders we used the strategy method, and they stated a minimum acceptable division of the pie, i.e. how large their share would have to be for them to accept the offer. They were informed that if the minimum acceptable offer was less than or equal to the actual offer made by the matched proposer, the money would be split as proposed and paid out at the end of the experiment. If the minimum acceptable offer exceeded the offer made, both participants in the pair would receive nothing.

The third part of the experiment consisted of a belief elicitation stage. Proposers were asked to predict the minimum acceptable offer that the matched responder had indicated, and similarly the responders were asked to state their beliefs about the offer that their matched proposer had actually given. Participants were also asked to predict the number of correct math tasks done both by themselves and by the other people in the room. For all belief elicitations, participants were informed that they would be rewarded based on the accuracy of their estimates and that a more accurate belief would yield a higher payoff (for details, see the instructions in the Online Appendix).
After the experiment was concluded, participants were informed about their pay-offs. Before the earnings were privately paid out, participants completed a questionnaire collecting demographic information. We also asked questions regarding risk preferences, fairness views, and feelings of deservingness.

2.2 Design deviations from Hoffman et al. (1994)

As our objective is to test if the results presented in Hoffman et al. (1994) are driven by women’s behavior, it is natural that our design closely reflect theirs. However, we consciously made a few deviations from their design. First, in order to be able to study gender differences we did not implement a double blind design, but did collect demographic information and matched it to the participants’ behavior in the experiment.

Second, while Hoffman et al. use a general knowledge quiz in the first part of the experiment we use a math task. The reason is that we know from previous experiments that performance in this task tend to be gender neutral in this particular student population. Third, Hoffman et al. implemented the quiz in part one only in their Entitlement treatment but not in their Random treatment. In order to increase comparability between treatments we chose to implement the math task in both treatments.

Fourth, we used the strategy method for the responders in that we asked them to report minimum acceptable offers as opposed to simply asking them to accept or reject the offer actually extended to them by their matched responder. We did this in order to collect richer information on responder behavior and to be able to elicit more precise beliefs from the proposers about the behavior of their matched respondents. The fact that we use the strategy method for the responders does not, however, impact how the instructions to the
proposers are put before they make their decision on offers, and hence our design remains comparable to that of Hoffman et al. regarding proposer behavior.

The final, and most important, difference between our design and Hoffman et al. is the pairing mechanism described above. We implemented this in order to ensure that the math ability (and characteristics potentially correlated with this), and earnings from part 1, are held as constant as possible between proposers and responders, respectively, in the two treatments. Hoffman et al. on the other hand also rank their participants according to ability, but give the proposer roles to the 50 percent of participants who performed better thereby increasing the likelihood that proposers differ more in performance compared to the responders in the *Entitlement* treatment than in the *Random* treatment.

2.3 Implementation

The instructions were provided immediately ahead of each part, both on participants’ screens and read aloud by the experimenter, thus ensuring common knowledge. Between the first and the second part, participants took part in a quiz to ensure that they had understood the instructions and procedures. Those (very few) participants who had problems answering the quiz were given a repetition of the instructions by the experimenter.

An even number of subjects participated in each of the ten experimental sessions. No communication was allowed among participants and matching was done anonymously. The experiment (programmed with *z-Tree*, Fischbacher, 2007) was conducted at the
Interdisciplinary Center for Economic Science (ICES) Laboratory at George Mason University in February 2016, with 128 undergraduate students participating. The treatments were randomly allocated at the session level (five Random and five Entitlement sessions).

Participants earned an average of $18.40 (including a fixed show-up fee) for their participation in a session that lasted approximately 40 minutes. Although we recruited an equal number of men and women to each session, we had 66 women and 62 men participating; this small deviation from 50/50 is the result of a slight gender difference in show-up rates.

3. Results

3.1. Proposer Behavior

Figure 1 displays the behavior of the participants chosen as the proposers in the Entitlement treatment (panel A) and the Random treatment (panel B). In the point estimates, we replicate the findings from Hoffman et al. (1994) and observe that whereas the proposers on average offer $8.29 out of the $20 pie to the matched responders in the Random treatment, this sinks by 11 percent to $7.36 in the Entitlement treatment (p=0.050 with the Wilcoxon-Mann-Whitney (WMW) test and p=0.155 with Wald test3).

3 All tests are two-sided and all Wald tests use robust standard errors. Unless otherwise noted the Wald tests in this and the next section control for 1) performance in the first part of the experiment, and 2) risk aversion. The reason for 1) is that even though the pairing mechanism in our design gets us very close to random assignment of the proposer role also in the Entitlement treatment, there will most likely still be a residual difference with proposers in the Entitlement treatment having on average higher performance in the math task than the proposers in the Random treatment. We indeed observe such a difference in the point estimates: in the Random treatment, proposers and responders had average scores of 7.52 and 7.32 respectively. In the Entitlement treatment, the corresponding figures were 7.97 and 7.24. Neither the differences between proposers and responders, within the respective treatment, nor the difference between treatment, are statistically significant however. The reason for 2) is that we find, as others have before, that more risk averse proposers offer a larger share to their matched responders, most likely in order to minimize the risk of rejection (regressing proposer’s offer to the responder on a measure of the willingness to take risk, without any additional controls, yields a coefficient of β= -0.183 with p=0.036). This, in combination with the gender difference in risk aversion (a finding documented in among others Croson and
We next turn to our main point of interest, namely if women and men react differently to having earned the right to be the proposer, as opposed to simply having it randomly allocated. Figure 2 breaks down the data by treatment and by the gender of the proposer.

When acting as proposers, women offer, on average, $8.44 in the Random Treatment and $6.57 in the Entitlement Treatment. This difference of $1.87 is twice as big as for the average sample, and it is statistically significant (p=0.012 with WMW test, and p=0.018 with Wald test). Male proposers, on the other hand, behave quite similarly between the two treatments – they offer $8.13 to the responder in the Random Treatment and $7.95 in the Entitlement Treatment (this difference of $0.18 is not statistically different from zero, p=0.521 with WMW test and p=0.827 with Wald test). The difference in difference of $1.69 is marginally statistically significant (p=0.089 with t-test), offering

Gneezy, 2009; Gärtner et al., 2017; and something that we also replicate, with women scoring 6.12 and men 6.85 on a qualitative 1-10 willingness to take risk scale, p=0.033 with WMW test and p=0.073 with t-test), makes also controlling for risk aversion the most prudent option. It should be noted that the results reported here hold also when controlling only for one of these variables or for none of them (reported in the Online Appendix).
further support for female and male proposers’ reaction to the *Entitlement* treatment indeed being different.

Figure 2: Women React to Entitlements, but Men Do Not

<table>
<thead>
<tr>
<th>A (Entitlement Treatment, Women)</th>
<th>B (Random Treatment, Women)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C (Entitlement Treatment, Men)</th>
<th>D (Random Treatment, Men)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This also implies that, in the *Random* treatment, we replicate the finding from Solnick (2001) of there being no gender difference in proposers’ behavior in the Ultimatum Game (female responders offer $0.30 more than males, but this difference is statistically insignificant, p=0.887 with WMW test and p=0.566 with Wald test). In the Entitlement treatment we do, however, find a significant gender difference: here female proposers offer $1.38 less than men (p=0.099 with WMW test and p=0.011 with Wald test).
3.2 Minimum Acceptable Offers – Responder’s Behavior and Proposer’s Beliefs

Our findings are consistent with those of Hoffman et al. (1994), also in that we do not observe a significant change in rejection rates between the treatments (p=0.447 with t-test for proportions). The minimum acceptable offers stated by the responders were on average $4.77 in the Random treatment and $5.03 in the Entitlement treatment (p=0.722 with WMW test and p=0.720 with Wald test). This is true for both male and female responders: Male responders stated a mean minimum acceptable offer of $4.59 in the Random treatment and $5.64 in the Entitlement treatment, p=0.342 with WMW test and p=0.365 with Wald test). The mean minimum acceptable offer of female responders was $5.00 in the Random and $4.73 in the Entitlement treatment (p=0.653 with WMW test and p=0.793 with Wald test).

When analyzing the data from the belief elicitation, we note that although responders’ behavior does not change between the treatments, proposers believe that it does. The change in proposers’ beliefs is in line with their change in behavior between treatments. In the Random treatment, proposers believe that the minimum acceptable offer of their paired responder was $5.29, and this decreases to $4.79 in the Entitlement treatment (however, this difference is not statistically significant, p=0.310 with WMW test and p=0.328 with Wald test). Just as for the treatment difference in proposers’ behavior, we see that while there are indications that women’s beliefs are affected by the treatment, this is not the case for men. Female proposers believe the minimum acceptable offer of the paired responder to be $5.19 in the Random treatment and $4.29 in the Entitlement treatment,
p=0.334 with WMW test and p=0.098 with Wald test. The corresponding figures for male proposers are $5.40 and $5.16, p=0.445 with WMW test and p=0.976 with Wald test.

3.3 Math Scores and Confidence

Female participants gave an average of 7.92 correct answers in part one of the experiment, whereas male participants gave 7.08 (p=0.120 with WMW test and p=0.083 with t-test). There was no significant difference in performance between treatments (average score was 7.42 in the Random treatment and 7.61 in the Entitlement treatment, p=0.799 with WMW test and p=0.703 with t-test).

In order to investigate confidence, we use the belief measures from the third part of the experiment. We consider two types of confidence (cf. Moore and Healy, 2008), with the first being overestimation, i.e. to what extent does a person believe that she performed better than she actually did in the math task. To measure this we take the difference between the score that the participant believed she achieved (as stated in the incentivized belief elicitation stage) and her actual score. The other type of confidence that we consider is over-placement, i.e. how a participant believes that her own score compares to others’. We measure this as the difference between the score that the participant believed she achieved and her belief about the average score of others participating in the same session.

We are interested in how confidence relate to proposers’ behavior. Starting with our first concept of confidence, overestimation, we note that the point estimates indicate that female proposers slightly underestimate and male proposers slightly overestimate their own score in the Random treatment (women underestimate their score by 0.56 on average and men overestimate their score by 0.13 on average, p=0.243 with WMW test and p=0.402
with Wald test\(^4\)). Being assigned the proposer role in the *Entitlement* treatment boosts especially female proposers’ confidence in this regard and they now over-estimate their own score by 0.93, which is a significant difference from the *Random* treatment (p=0.022 with WMW test and p=0.007 with Wald test). Male proposers’ overestimation of 1.00 is also higher in the *Entitlement* treatment, albeit at most marginally statistically significantly so (p=0.239 with WMW test and p=0.087 with Wald test).

Considering instead our second confidence concept, over-placement, we find that in the *Random* treatment, female proposers on average believe that they scored exactly similar to other participants (average over-placement value of 0.00) whereas male proposers predict that they gave 1.33 more correct answers than the others in the same session (the gender difference is significant, p=0.036 with WMW test and p=0.001 with Wald test). In the *Entitlement* treatment, proposers’ average over-placement rise especially for women. Female proposers now believe to have done 2.5 more tasks correctly that the others in the room (a highly significant change, p=0.003 with WMW test and p=0.002 with Wald test, when comparing with the *Random* treatment). Male proposers’ over-placement increases to 2.47 (p=0.108 with WMW test and p=0.069 with Wald test). In the *Entitlement* treatment there is hence no longer a statistically significant difference between the degree to which men and women over-place themselves (p=0.795 with WMW test and p=0.147 with Wald test).

3.4 Fairness Considerations and Feelings of Deservingness

\(^4\) The Wald tests in this and the next section control for score in part 1 in order to not confuse our measures of confidence and fairness with differences in ability, controlling for risk aversion would however not be accurate and hence we refrain from that here. (However, the Online Appendix makes clear that our results are not sensitive to which exact controls are included.)
In the post-experimental questionnaire, we asked all participants unincentivized questions about what the fair distribution of $20 in the pair would be, asking the subjects to take the perspective of a disinterested third party. We find that female proposers believe that a fair allocation to the proposer is $10.38 in the Random treatment and $12.07 in the Entitlement treatment (p=0.003 with WMW test and p=0.002 with Wald test). For male proposers the corresponding figures are $11.47 and $12.21 (p=0.066 with WMW test and p=0.484 with Wald test). Responders’ stated fairness views are similar (see the Online Appendix).

We also asked participants to report feelings of deservingness. Specifically we used a 1 to 10 Likert scale asking proposers if they believe that they deserved to be the proposer (1 was defined as not deserving this role at all and 10 as definitely deserving it). We document that both female and male proposers consider themselves more deserving in the Entitlement treatment than the in Random treatment (7.44 for females and 7.13 for males in the Random treatment, and 8.79 for females and 9.26 for males in the Entitlement treatment). The difference between the treatments is significant for both female and male proposers (p=0.067 and p=0.002 with WMW test, and p=0.063 and p=0.001 with Wald test, for women and men respectively). Responders were asked how deserving they regarded their matched proposer to be. The results are similar to what is observed for the proposers, see the Online Appendix.

3.5 Strategic Thinking
As discussed above, we find that female, but not male, proposers change their beliefs about the responders’ minimum acceptable offers between our two treatments. Here we continue to investigate the relation between proposers’ offers and their beliefs about the responders’ behavior.

A payoff maximizing proposer holding the (on average correct) belief that their matched responder will not accept offers that are “too low” should make an offer based on their beliefs about what constitutes a minimum acceptable offer. To investigate if proposers are strategic in this sense we test for the correlation between offers and beliefs about the matched responder’s minimum acceptable offer. In our *Random* treatment, female proposers’ offers and beliefs are not correlated (Spearman’s rho=−0.008, p=0.976). This, however, changes in the *Entitlement* treatment where female proposers make offers which significantly correlate with their beliefs (Spearman’s rho=0.800, p=0.001). Male proposers, on the other hand, base their offers on their expectations both in the *Random* (Spearman’s rho=0.486, p=0.066) and, to some extent, in the *Entitlement* treatment (Spearman’s rho=0.280, p=0.246). The different patterns are outlined in Figure 3.

This suggests that gender differences in negotiation behavior may be impacted by entitlements. While male proposers appear to behave strategically in the UG regardless of whether they earned the proposer role or not, women seem to do so only in the presence of entitlements.

Figure 3: Correlation Between Proposers’ Offers and their Beliefs About Minimum Acceptable Offers

Figure A (Entitlement Treatment, Women) Figure B (Random Treatment, Women)
4. Concluding Remarks

In a one-shot UG, we find that female proposers, but not male, react to entitlements by making tougher strategic demands and offering a lower share of the endowment to their matched responder. Further only female proposers believe that responders have a lower threshold for accepting an offer in the Entitlement treatment. Women also become significantly more confident regarding their performance, and change their strategic behavior.

Our findings are in line with others documenting that women are more responsive to context and social cues. Moreover, they have implications for labor market behavior in that they indicate that strengthening both women’s and men’s feelings of entitlement (something that could potentially be accomplished for example through more transparent
recruitment processes) can have a greater effect on women’s bargaining, hence helping to close the gender negotiation gap.
References:

