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Abstract

While average returns to anomaly long-short portfolios have been extensively stud-

ied, there is little work analyzing the drivers of realized anomaly returns. We establish

novel facts about variation in these returns by decomposing them into cash �ow and

discount rate news. This decomposition o¤ers insights into which theories best ex-

plain anomalies. Common patterns emerge across �ve well-known anomalies. The

main source of anomaly return variation is news about cash �ows. The cash �ow

and discount rate components of each anomaly�s returns are strongly negatively corre-

lated, and this negative correlation is driven by news about long-run cash �ows. News

about anomaly discount rates is slightly negatively correlated with news about market

discount rates, and news about anomaly cash �ows is uncorrelated with news about

market cash �ows. Our evidence is most consistent with theories in which investors

overextrapolate news about �rms� long-run cash �ows and those in which �rm risk

increases following negative news about long-run cash �ows.
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1 Introduction

Researchers in the past 30 years have uncovered robust patterns in stock returns that con-

tradict classic asset pricing theories. A prominent example is that value stocks outperform

growth stocks, even though these stocks are similarly exposed to �uctuations in the overall

stock market. To exploit such anomalies, investors can form long-short portfolios (e.g., long

value and short growth) with high average returns and near-zero market risk. Although

many studies ask why anomaly portfolios have high average returns, most ignore why anom-

aly returns vary at all. Our paper focuses on this understudied aspect and is the �rst to

decompose anomaly return variance into cash �ow and discount rate news. This decompo-

sition enables us to establish several novel facts that o¤er insights into which theories best

explain anomalies.

Empirically, long-short anomaly portfolios exhibit signi�cant return volatility of roughly

10% per year. This magnitude is similar to that of market volatility, yet anomaly returns are

almost completely uncorrelated with market returns. Furthermore, since anomaly portfolios

comprise numerous stocks, they are not exposed to idiosyncratic risks. This lack of market

risk and idiosyncratic risk begs the question of what drives volatility in anomaly returns. To

explain anomaly volatility, a source of risk (or shock) must have a common impact on stocks

with similar characteristics, such as value stocks, and it must have a di¤erential common

impact on stocks with opposing characteristics, such as growth stocks. Historically, these

systematic shocks to anomaly portfolios appear to be priced. Understanding sources of priced

comovement is arguably the central question in asset pricing.

Our decomposition of long-short anomaly portfolio returns into cash �ow and discount

rate news builds on Campbell (1991) and Vuolteenaho (2002). Unexpected returns must

be due to shocks to (news about) expected cash �ows� e.g., current and future dividends�

or shocks to expected future returns� i.e., the price or quantity of risk. We introduce an

e¢ cient empirical technique to decompose long-short anomaly portfolio returns into cash

�ow and discount rate shocks.
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Our evidence is useful for testing risk-based and behavioral asset pricing theories. All

theories have implications for the magnitudes and correlations of anomaly and market cash

�ow and discount rate shocks. For example, some theories predict that discount rate �uc-

tuations drive variation in the returns of anomaly portfolios, whereas other theories predict

that cash �ow variation is more important. At one extreme, consider the model of noise

trader risk proposed by De Long et al. (1990). In this model, �rm dividends (cash �ows)

are constant, implying that all return variation arises from changes in discount rates. At the

other extreme, consider the simplest form of the CAPM in which �rm betas and the market

risk premium are constant. In this setting, expected returns (discount rates) are constant,

implying that all return variation arises from changes in expected cash �ows.

Our empirical work focuses on �ve well-known anomalies� value, size, pro�tability, in-

vestment, and momentum� and yields three sets of �ndings. First, for all �ve anomalies,

cash �ows explain more variation in anomaly returns than do discount rates. Second, for all

�ve anomalies, shocks to cash �ows and discount rates are strongly negatively correlated.

This correlation is driven by shocks to long-run cash �ows, as opposed to shocks to short-run

(one-year) cash �ows. That is, �rms with negative news about long-run cash �ows tend to

experience persistent increases in discount rates. This association contributes signi�cantly

to return variance in anomaly portfolios. Third, for all �ve anomalies, anomaly cash �ow

and discount rate components exhibit weak correlations with market cash �ow and discount

rate components. In fact, when we combine all �ve anomalies into a mean-variance e¢ cient

(MVE) portfolio, this anomaly MVE portfolio exhibits discount rate shocks that are slightly

negatively correlated with market discount rate shocks. This fact is surprising if one in-

terprets discount rates as proxies for risk aversion as it suggests that increased aversion to

market risk is, if anything, associated with decreased aversion to anomaly risks. Further-

more, cash �ow shocks to the market are uncorrelated with cash �ow shocks to the anomaly

MVE portfolio, indicating that the two portfolios are exposed to distinct fundamental risks.

These �ndings cast doubt on three types of theories of anomalies. First, theories in
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which discount rate variation is the primary source of anomaly returns, such as De Long

et al. (1990), are inconsistent with the evidence on the importance of cash �ow variation.

The main reason that anomaly portfolios are volatile is that cash �ow shocks are highly

correlated across �rms with similar characteristics. For example, the long-short investment

portfolio is volatile mainly because the cash �ows of a typical high-investment �rm are

more strongly correlated with the cash �ows of other high-investment �rms than with those

of low-investment �rms. Second, theories that emphasize commonality in discount rates,

such as theories of time-varying risk aversion and those of common investor sentiment, are

inconsistent with the low correlations between discount rate shocks to anomaly returns and

those to market returns. Third, theories in which anomaly cash �ow shocks are strongly

correlated with market cash �ow shocks� i.e., cash �ow beta stories� are inconsistent with

the near-zero empirical correlations.

In contrast, theories of �rm-speci�c biases in information processing and theories of �rm-

speci�c changes in risk are potentially consistent with our three main �ndings. Such theories

include behavioral models in which investors overextrapolate news about �rms�long-run cash

�ows and rational models in which �rm risk increases after negative news about long-run

cash �ows. In these theories, discount rate shocks amplify the e¤ect of cash �ow shocks on

returns, consistent with the robustly negative empirical correlation between these shocks.

These theories are also consistent with low correlations between anomaly return components

and market return components.

We further relate anomaly and market cash �ow and discount rate shocks to proxies for

macroeconomic �uctuations, including changes in aggregate risk aversion, investor sentiment,

and intermediary leverage. Cash �ow shocks to the anomaly MVE portfolio are signi�cantly

negatively correlated with changes in the labor share of income and broker-dealer leverage.

Market cash �ow shocks exhibit these same negative correlations. However, market cash

�ows are also signi�cantly positively correlated with key macroeconomic aggregates, such as

consumption and GDP growth, and negatively correlated with measures of aggregate risk
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aversion. Discount rate shocks to the anomaly MVE portfolio are positively correlated with

the change in the labor share and negatively correlated with broker-dealer leverage. Thus,

when labor�s share of income increases, contemporaneous anomaly returns are low because

of a negative cash �ow shock and a positive discount rate shock. We �nd little evidence that

anomaly cash �ows or discount rates are related to consumption (or GDP) growth, measures

of aggregate risk aversion, or sentiment.

Our approach builds on the present-value decomposition of Campbell and Shiller (1988)

and Campbell (1991) that Vuolteenaho (2002) applies to individual �rms. We directly esti-

mate �rms�discount rate shocks using an unbalanced panel vector autoregression (VAR) in

which we impose the present-value relation to derive cash �ow shocks. Di¤erent from prior

work, we derive and analyze the implications of our �rm-level estimates for priced (anomaly)

factor portfolios to investigate the fundamental drivers of these factors�returns. The panel

VAR, as opposed to a time-series VAR for each anomaly portfolio, fully exploits informa-

tion about the cross-sectional relation between shocks to characteristics and returns. Our

panel-based approach allows us to consider more return predictors, substantially increases

the precision of the return decomposition, and mitigates small-sample issues.1 Motivated by

Chen and Zhao�s (2009) �nding that VAR results are often sensitive to variable selection,

we show that our return decompositions are robust across many di¤erent speci�cations.

Vuolteenaho (2002) �nds that at the �rm-level, returns are mostly driven by cash �ows,

which we con�rm in our sample. He further argues that at the market level, returns are driven

mostly by discount rates. Cohen, Polk, and Vuolteenaho (2003) use a portfolio approach

to analyze the dynamics of the value spread� i.e., the cross-sectional dispersion in book-

to-market ratios. The study concludes that most of the spread comes from di¤erences in

1Further, more subtly, inferring cash �ow and discount rate shocks directly from a VAR estimated using
returns and cash �ows of a rebalanced portfolios anomaly portfolio (a trading strategy) obfuscates the
underlying sources of the anomaly returns. Firms�weights in anomaly portfolios can change dramatically
with the realization of stock returns and �rms� changing characteristics. In the Appendix, we provide
extreme examples in which �rms�expected cash �ows and expected returns are constant and time-varying,
respectively, but where the direct VAR estimation suggests that all return variation in a rebalanced portfolio
comes from cash �ow shocks.
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expected cash �ows. Our study di¤ers in that we decompose portfolio returns (not valuation

ratios), analyze multiple anomalies (not just value), and aggregate �rm-level estimates based

on a �rm-level VAR with many predictors of returns and cash �ows (not just book-to-market

ratios).

Fama and French (1995) document that changes in earnings-to-price ratios for their

HML and SMB portfolios exhibit a factor structure, consistent with our �ndings. However,

we examine cash �ow shocks extracted using a present value equation in which myriad

characteristics predict earnings at various horizons. Unlike Fama and French (1995), we �nd

a strong relation between the factor structure in cash �ow shocks and the factor structure

in returns. They acknowledge their failure to �nd this relation as the �weak link� in their

story and �speculate that this negative result is caused by noise in [their] measure of shocks

to expected earnings.�Using the present value relation also allows us to analyze discount

rates. Our analysis also includes investment, pro�tability, and momentum anomalies.

Lyle and Wang (2015) estimate the discount rate and cash �ow components of �rms�

book-to-market ratios by forecasting one-year returns using return on equity and book-

to-market ratios. They focus on stock return predictability at the �rm level and do not

analyze the sources of anomaly returns. Our work is related to studies that use the log-linear

approximation of Campbell and Shiller (1988) for price-dividend ratios, typically applied to

the market portfolio (see Campbell (1991), Larrain and Yogo (2008), van Binsbergen and

Koijen (2010), and Kelly and Pruitt (2013)). We do not analyze the pricing of market cash

�ow or discount rate shocks unlike the analyses of Campbell and Vuolteenaho (2004) and

Kozak and Santosh (2017).

The paper proceeds as follows. Section 2 provides examples of theories�implications for

anomaly cash �ows and discount rates. Section 3 introduces the empirical model. Section 4

describes the data and speci�cation choices. Section 5 discusses the VAR estimation, while

Sections 6 presents �rm- and portfolio-level results. Section 7 shows robustness tests, and

Section 8 concludes.
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2 Theory

Empirical research identi�es several asset pricing anomalies in which �rm characteristics,

such as �rm pro�tability and investment, predict �rms�stock returns even after controlling

for market beta. Theories of these anomalies propose that the properties of investor beliefs

and �rm cash �ows vary with �rm characteristics. Here we explain how decomposing anomaly

returns into cash �ow and discount rate shocks helps distinguish alternative explanations of

anomalies. We �rst discuss this point in the context of speci�c theories. We then present

our empirical model.

The well-known value premium provides a useful illustration. De Long et al. (1990)

and Barberis, Shleifer and Vishny (1998) are examples of behavioral models that potentially

explain this anomaly, while Zhang (2005) and Lettau and Wachter (2007) are examples of

rational explanations.

To relate the these models�predictions to our study, recall from Campbell (1991) that

we can approximately decompose shocks to log stock returns into shocks to expectations of

future cash �ows and returns:2

ri;t+1 � Et [ri;t+1] � CF shocki;t+1 �DRshocki;t+1 ; (1)

where

CF shocki;t+1 = (Et+1 � Et)
1P
j=1

�j�1�di;t+j; (2)

DRshocki;t+1 = (Et+1 � Et)
1P
j=2

�j�1ri;t+j; (3)

and where �di;t+j (ri;t+j) is the log of dividend growth (log of gross return) of �rm i from

time t + j � 1 to time t + j, and � is a log-linearization constant slightly less than 1.3

2The operator (Et+1 � Et)x is short-hand for Et+1 [x]�Et [x]; the update in the expected value of x from
time t to time t+1. The equation relies on a log-linear approximation of the price-dividend ratio around its
sample average.

3A similar decomposition holds for non-dividend paying �rms, assuming clean-surplus earnings (see,
Ohlson (1995), and Vuolteenaho (2002)). In this case, the relevant cash �ows are the log of gross return on
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In words, return innovations are due updates in beliefs about current and future dividend

growth and/or future expected returns.

We de�ne anomaly returns as the value-weighted returns of the stocks ranked in the

highest quintile of a given priced characteristic minus the value-weighted returns of stocks

ranked in the lowest quintile. We de�ne anomaly cash �ow shocks as the cash �ow shocks

to the top quintile portfolio minus the shocks to the bottom quintile portfolio. We similarly

de�ne anomaly discount rate shocks.

First, consider a multi-�rm generalization of the De Long et al. (1990) model of noise

trader risk. In this model, �rm cash �ows are constant but stock prices �uctuate because

of random demand from noise traders correlated with the book-to-market characteristic. As

the expectations in Equation (2) are rational, there are no cash �ow shocks in this model. By

Equation (1), all shocks to returns are due to discount rate shocks. Of course, the constant

cash �ow assumption is stylized and too extreme. But, if one in the spirit of this model

assumes that value and growth �rms have similar cash �ow exposures, the variance of net

cash �ow shocks to the long-short portfolio would be small relative to the variance of discount

rate shocks. Thus, a �nding that discount rate shocks only explain a small fraction of the

return variance to the long-short portfolio would be inconsistent with this model.

Barberis, Shleifer, and Vishny (BSV, 1998) propose a model in which investors overex-

trapolate from long sequences of past �rm earnings when forecasting future �rm earnings.

Thus, a �rm that repeatedly experiences low earnings will be underpriced (a value �rm) as

investors are too pessimistic about its future earnings. The �rm will have high expected

returns as future earnings on average are better than investors expect. Growth �rms will

have low expected returns for analogous reasons. In this model, cash �ow and discount rate

shocks are intimately linked. Negative shocks to cash �ows lead to low expected future cash

�ows. However, these irrationally low expectations manifest as positive discount rate shocks

in Equations (2) and (3), as the econometrician estimates expected values under the objec-

equity. The discount rate shock takes the same form as in Equation (3).
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tive probability measure. Thus, this theory predicts a strong negative correlation between

cash �ow and discount rate shocks at the �rm and anomaly levels.

Daniel, Hirshleifer, and Subrahmanyam (2001) argue that investor overcon�dence about

signals of �rms�future earnings can explain several anomalies. In their model, overcon�dent

investors overreact to informative signals about �rm pro�tability. This leads to a negative

correlation between cash �ow and discount rate shocks in our decomposition. Unlike the

extrapolation story of BSV, overcon�dence can lead to a positive correlation between discount

rate and short-run earnings shocks, while long-run earnings shocks are negatively correlated

with discount rate shocks.

Zhang (2005) provides a rational explanation for the value premium by modeling �rms�

production decisions. Persistent idiosyncratic productivity (earnings) shocks render �rms,

by chance, as either value or growth �rms. Value �rms, which have low productivity, have

more capital than optimal because of adjustment costs. These �rms�values are very sensitive

to negative aggregate productivity shocks as they have little ability to smooth such shocks

through disinvesting. Growth �rms, on the other hand, have high productivity and subop-

timally low capital stocks and therefore are not as exposed to negative aggregate shocks.

Value (growth) �rms�high (low) betas with respect to aggregate shocks justify their high

(low) expected returns. Similar to BSV, this model predicts a negative relation between �rm

cash �ow and discount rate shocks. Di¤erent from BSV, the model predicts that the value

anomaly portfolio has cash �ow shocks that are positively related to market cash �ow shocks

on account of the high sensitivity to aggregate technology shocks of such a portfolio.

Lettau and Wachter (2007) propose a duration-based explanation of the value premium.

In their model, growth �rms are, relative to value �rms, more exposed to shocks to market

discount rates and long-run cash �ows, which are not priced, and less exposed to mar-

ket short-run cash �ow shocks, which are priced. This model implies that short-run cash

�ows shock to the long-short value portfolio are strongly positively correlated with short-run

market cash �ows and that discount rate and long-run cash �ow shocks to the long-short
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portfolio are negatively correlated with market discount rates and long-run cash �ow shocks,

respectively.

In sum, models of anomaly returns have direct implications for the magnitudes and

correlations of anomaly and market cash �ow and discount rate shocks. We are unaware of

any prior study that estimates these empirical moments. Fundamental theories of anomalies

apply to individual �rms. Thus, one must analyze �rm-level cash �ow and discount rate

shocks and then aggregate these into anomaly portfolio shocks.4

2.1 The Empirical Model

We assume the following model for �rm-level expected log returns:

Et [ri;t+1] = �0 + �
0
1Xit + �

0
2XAt: (4)

Here, Xit is a vector of observable �rm-speci�c characteristics, such as the log book-to-market

ratio or pro�tability, and XAt is a vector of aggregate observable variables, such as the log

risk-free rate and aggregate book-to-market ratio. De�ne the K � 1 composite vector:

Zit =

26664
rit � �rit
Xit � �Xit

XAt � �XAt

37775 ; (5)

where the bar over the variable means the average value across �rms and time. Assume a

VAR(1) model for the evolution:

Zi;t+1 = AZi;t + "i;t+1; (6)

4Extracting cash �ow and discount rate shocks indirectly from dynamic trading strategies, such as the
Fama-French value and growth portfolios, can lead to mistaken inferences as the trading itself confounds
the underlying �rms� cash �ow and discount rate shocks. In the Appendix, we provide an example of a
value-based trading strategy. The underlying �rms only experience discount rate shocks, but the traded
portfolio is driven solely by cash �ow shocks as a result of rebalancing.
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where "i;t+1 is a vector of conditionally mean-zero, but potentially heteroskedastic, shocks.

The companion matrix A is a K �K matrix. Discount rate shocks can then be written:

DRshocki;t+1 = Et+1
1P
j=2

�j�1ri;t+j � Et
1P
j=2

�j�1ri;t+j

= e01
1P
j=1

�jAjZi;t+1 � e01A
1P
j=1

�jAjZi;t

= e01
1P
j=1

�jAj"i;t+1 = e
0
1�A (IK � �A)

�1 "i;t+1: (7)

Here, e1 is a column vector with same dimension as Zi;t, with a 1 in the �rst element and

zero otherwise. IK is the K �K identity matrix.

We can also extract the cash �ow shock using the VAR by combining Equation (1) and

the above expression for discount rate shocks:

CF shocki;t+1 = ri;t+1 � Et [ri;t+1] +DRshocki;t+1

= e01
�
IK + �A (IK � �A)�1

�
"i;t+1: (8)

Thus, we impose the present-value relation when estimating the joint dynamics of �rm cash

�ows and discount rates.

While the general math here is from Campbell (1991), note that the companion matrix

does not have an i subscript � it is constant across �rms. Thus, the �rm-level model is

a panel VAR(1), as in Vuolteenaho (2002). Also note that the assumption of the same A

matrix across �rms means that identi�cation of the coe¢ cients in A will come from both

the time-series and the cross-section. Predictive regressions are noisy and often plagued

by small-sample problems, for instance the Stambaugh (1999) bias, but the panel approach

alleviates these issues, at the cost of potentially not capturing all heterogeneity in the data.

We will choose the elements in the vectors Xit and XAt, along with extensive robustness

checks, to ensure we capture a broad array of the determinants of expected returns. Finally,

we do not impose any particular structure on the error terms across �rms or over time, noting

that OLS still yields consistent estimates. We will adjust standard errors for dependence
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across �rms and time.

We obtain portfolio-level variance decompositions by aggregating the portfolio constituents�

CF shocki;t and DRshocki;t . Because the �rm-level variance decomposition applies to log returns,

the portfolio cash �ow and discount rate shocks are not simple weighted averages of the

individual �rms�cash �ow and discount rate shocks. Therefore we approximate each �rm�s

gross return using a second-order Taylor expansion around its current expected log return

and then aggregate shocks to �rms�gross returns using portfolio weights.

The �rst step in this process is to express gross returns in terms of the components of

log returns using:

Ri;t+1 � exp (ri;t+1)

= exp (Etri;t+1) exp
�
CF shocki;t+1 �DRshocki;t+1

�
; (9)

where Etri;t+1 is the predicted value and CF shocki;t and DRshocki;t are estimated shocks from

�rm-level VAR regressions in which we impose the present-value relation. A second-order

expansion at time t around a value of zero for both of the shocks yields:

Ri;t+1 � exp (Etri;t+1)
�
1 + CF shocki;t+1 +

1

2

�
CF shocki;t+1

�2 �DRshocki;t+1 +
1

2

�
DRshocki;t+1

�2
+ CF shocki;t+1 DR

shock
i;t+1

�
:

(10)

We �nd that this approximation works very well in practice. Next we de�ne the cash �ow

and discount rate shocks to �rm returns measured in levels as:

CF
level_shock
i;t+1 � exp (Etri;t+1)

�
CF shocki;t+1 +

1

2

�
CF shocki;t+1

�2�
; (11)

DR
level_shock
i;t+1 � exp (Etri;t+1)

�
DRshocki;t+1 �

1

2

�
DRshocki;t+1

�2�
; (12)

CFDRcrossi;t+1 � exp (Etri;t+1)CF
shock
i;t+1 DR

shock
i;t+1 : (13)

For a portfolio with weights !pi;t on �rms, we can approximate the portfolio return measured
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in levels using:

Rp;t+1 �
nP
i=1

!pi;t exp (Etri;t+1) � CF
level_shock
p;t+1 �DRlevel_shockp;t+1 + CFDRcrossp;t+1; (14)

where

CF
level_shock
p;t+1 =

nP
i=1

!pi;tCF
level_shock
i;t+1 ; (15)

DR
level_shock
p;t+1 =

nP
i=1

!pi;tDR
level_shock
i;t+1 ; (16)

CFDRcrossp;t+1 =
nP
i=1

!pi;tCFDR
cross
i;t+1 : (17)

Note that summing over the individual �rms�level cash �ow and discount rate shocks implies

that the conditional covariance structure of the shocks is taken into account when looking at

portfolio-level cash �ow and discount rate shocks. We decompose the variance of portfolio

returns using

var
�
~Rp;t+1

�
� var

�
CF

level_shock
p;t+1

�
+ var

�
DR

level_shock
p;t+1

�
�2cov

�
CF

level_shock
p;t+1 ; DR

level_shock
p;t+1

�
+var

�
CFDRcrossp;t+1

�
; (18)

where ~Rp;t+1 � Rp;t+1�
nP
i=1

!pi;t exp (Etri;t+1). We ignore covariance terms involvingCFDR
cross
p;t+1

as these are very small in practice.

In the Appendix, we show how the VAR speci�cation is related to standard asset pricing

models. In particular, the VAR speci�cation concisely summarizes the dynamics of expected

cash �ows and returns, even when both consist of multiple components �uctuating at di¤erent

frequencies. Fundamentally, shocks to a �rm�s discount rates arise from shocks to the product

of the �rm-speci�c quantity of risk and the aggregate price of risk, as well as shocks to the

risk-free rate. When analyzing cash �ow and discount rate shocks to long-short portfolios,

we obtain the anomaly cash �ow (discount rate) shock as the di¤erence in the cash �ow
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(discount rate) shocks between the long and short portfolios.

3 Data

We use Compustat and CRSP data from 1962 through 2015 to estimate the components in

the present-value equation. Our analysis requires panel data on �rms�returns, book values,

market values, earnings, and other accounting information, as well as time series data on

factor returns, risk-free rates, and price indexes. Because computations of certain variables

in the VAR require three years of historical accounting information, our estimation focuses

on the period from 1964 through 2015.

We obtain all accounting data from Compustat, though we augment our book data with

that from Davis, Fama, and French (2000). We obtain data on stock prices, returns, and

shares outstanding from the Center for Research on Securities Prices (CRSP). We obtain one-

month and one-year risk-free rate data from one-month and one-year yields of US Treasury

Bills, which are available on Kenneth French�s website and the Fama Files in the Monthly

CRSP US Treasury Database, respectively. We obtain in�ation data from the Consumer

Price Index (CPI) series in CRSP.

We impose sample restrictions to ensure the availability of high-quality accounting and

stock price information. We exclude �rms with negative book values as we cannot compute

the logarithms of their book-to-market ratios, which are key elements in the present-value

equation. We include only �rms with nonmissing market equity data at the end of the most

recent calendar year. Firms also must have nonmissing stock return data for at least 225

days in the past year, which is necessary to accurately estimate stock return variance as

discussed below. We exclude �rms in the bottom quintile of the size distribution for the New

York Stock Exchange to minimize concerns about illiquidity and survivorship bias. Lastly,

we exclude �rms in the �nance and utility industries because accounting and regulatory

practices distort these �rms�valuation ratios and cash �ows. We impose these restrictions

ex ante and compute subsequent book-to-market ratios, earnings, and returns as permitted
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by data availability. We use CRSP delisting returns and assume a delisting return is -90%

in the rare cases in which the delisting return is missing.

When computing a �rm�s book-to-market ratio, we adopt the convention of dividing its

book equity by its market equity at the end of the June immediately after the calendar year

of the book equity. With this convention, the timing of market equity coincides with the

beginning of the stock return measurement period, allowing us to use the clean-surplus equa-

tion below. We compute book equity using Compustat data when available, supplementing

it with hand-collected data from the Davis, Fama, and French (2000) study. We adopt the

Fama and French (1992) procedure for computing book equity. Market equity is equal to

shares outstanding times stock price per share. We sum market equity across �rms that have

more than one share class of stock. We de�ne lnBM as the natural log of book-to-market

ratio.

We compute log stock returns in real terms by subtracting the log of in�ation, as measured

by the log change in the CPI, from the log nominal return. Following the convention in asset

pricing, we compute annual returns from the end of June to the following end of June. The

bene�t of this timing convention is that investors have access to December accounting data

prior to the ensuing June-to-June period over which we measure returns.

We construct a measure of log clean-surplus return on equity, lnROECS, as the residual

from the equation:

lnROECSi;t+1 � ri;t+1 + �bmi;t+1 � bmi;t: (19)

This measure corresponds to actual return on equity if clean-surplus accounting and the

log-linearization both hold, as Ohlson (1995) and Vuolteenaho (2002) assume.5 The bene�t

of constructing this metric is two-fold. First, it is a timely, June-to-June, earnings measure

5Violations in clean-surplus accounting occasionally arise from share issuance or merger events.
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that exactly satis�es the equation:

CF shocki;t+1 = (Et+1 � Et)
1P
j=1

�j�1lnROECSi;t+j: (20)

Thus, one can reasonably use lnROECS in the VAR to obtain expected cash �ows and cash

�ow shocks at di¤erent horizons. Second, as Equation (19) shows, adding lnROECS in the

VAR is equivalent to adding another lag of the book-to-market ratio.

The log of return on equity derived from �rms�annual reports is de�ned as log of one plus

net income divided by last year�s inferred book equity, where we substitute income before

extraordinary items if net income is unavailable. We infer last year�s book equity using

current accounting information and the clean surplus relation� i.e., last year�s book equity

is this year�s book equity plus dividends minus net income. We subtract the log in�ation

rate, based on the average CPI during the year, from log return on equity to obtain lnROE.

We winsorize both earnings measures at ln(0.01) when earnings is less than -99%. We follow

the same procedure for log returns and for log �rm characteristics that represent percentages

with minimum bounds of -100%. Alternative winsorizing or truncation procedures have little

impact on our results.

We compute several �rm characteristics that predict short-term stock returns in historical

samples. We compute each �rm�s market equity (ME) or size as shares outstanding times

share price. Following Fama and French (2015), we compute pro�tability (Prof) as annual

revenues minus costs of goods sold, interest expense, and selling, general, and administrative

expenses, all divided by book equity from the same �scal year.6 Following Cooper, Gulen,

and Schill (2008) and Fama and French (2015), we compute investment (Inv) as the annual

percentage growth in total assets. Our data is annual, which is an issue for the medium-

frequency momentum anomaly. In Jegadeesh and Titman (1993), the maximum momentum

pro�ts accrue when the formation and holding periods sum to 15 to 18 months. Therefore,

6Novy-Marx (2013) uses a similar de�nition for pro�tability, except that the denominator is total assets
instead of book equity.
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we construct a six-month momentum variable based on the percentage rank of each �rm�s

January to June return. The subsequent holding period implicit in the VAR is one year, from

July through June. We transform each measure by adding one and taking its log, resulting in

the following variables: lnME, lnProf, lnInv, and lnMom6_pct. We also subtract the log of

gross domestic product from lnME to ensure stationarity. We use an alternative stationary

measure of �rm size (SizeWt), equal to �rmmarket capitalization divided by the total market

capitalization of all �rms in the sample, when applying value weights to �rms�returns in

portfolio formation.

We compute stocks�annual return variances based on daily excess log returns, which are

daily log stock returns minus the daily log return from the one-month risk-free rate as of the

beginning of the month. A stock�s realized variance is the annualized average value of its

squared daily excess log returns during the past year. In this calculation, we do not subtract

each stock�s mean squared excess return to minimize estimation error. We transform realized

variance by adding one and taking its log, resulting in the variable lnRV.

Table 1 presents summary statistics for the variables in our analysis. For ease of interpre-

tation, we show statistics for nominal annual stock returns (AnnRet), nominal risk-free rates

(Rf), and in�ation (In�at) before we apply the log transformation. Similarly, we summarize

stock return volatility (Volat) instead of log variance. We multiply all statistics by 100 to

convert them to percentages, except lnBM and lnME, which retain their original scale.

Panel A displays the number of observations, means, standard deviations, and percentiles

for each variable. The median �rm has a log book-to-market ratio of �0:66, which translates

into a market-to-book ratio of e0:66 = 1:94. Valuation ratios range widely, as shown by the

10th and 90th percentiles of market-to-book ratios of 0.75 and 5.93. The variation in stock

returns is substantial, ranging from -40% to 66% for the 10th and 90th percentiles. Panel B

shows correlations among the accounting characteristics in the VAR, which are all modest.
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4 VAR Estimation

We estimate the �rm-speci�c and common predictors of �rms�(log) returns and cash �ows

using a panel VAR system. Natural predictors of returns include characteristics that serve

as proxies for �rms�risk exposures or stock mispricing. As predictors of earnings, we use

characteristics based on accounting metrics and market prices that forecast �rm cash �ows

in theory and practice.

4.1 Speci�cation

Our primary VAR speci�cation includes eight �rm-speci�c characteristics: �rm returns and

clean-surplus earnings (lnRet and lnROECS), as well as lnBM, lnProf, lnInv, lnME, and ln-

Mom6_pct. The eighth �rm characteristic is log realized variance (lnRV), intended to cap-

ture omitted factor exposures as well as potential di¤erences between expected log returns

and the log of expected returns. We standardize each independent variable by its full-sample

standard deviation to facilitate interpretation of the regression coe¢ cients. The only excep-

tions are lnBM, lnRet, and lnROECS, which are not standardized to enable imposing the

present-value relation in the VAR estimation. All log return and log earnings forecasting

regressions include the log real risk-free rate (lnRf) to capture common time-series variation

in �rm valuations resulting from changes in market-wide discount rates. Finally, we add in-

teractions of the forecasting characteristics (lnBM, lnProf, lnME, lnInv, and lnMom6_pct)

with lnBM. In particular, we for each of these characteristics create a variable that equals 1

if the stock is in the top quintile of the characteristic, -1 if the stock is in the bottom quintile

of the characteristic, and 0 otherwise. This way, we allow the loading on lagged lnBM to

be di¤erent for stocks associated with the long-short portfolios we seek to analyze than for

stocks in the �middle�of the characteristics distribution.

We estimate a �rst-order autoregressive system, allowing for one lag of each characteristic.

A �rst-order VAR allows us to estimate the long-run dynamics of log returns and log earnings

based on the short-run properties of a broad cross section of �rms. We do not need to
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impose restrictions on which �rms survive for multiple years, thereby mitigating statistical

noise and survivorship concerns. As a robustness check, we investigate the second-order

VAR speci�cation and �nd very similar results as the second lags of characteristics add little

explanatory power.

The VAR system also includes forecasting regressions for �rm and aggregate variables.

We regress lnRet, lnROECS, and lnBM on all available characteristics. For each of the other

characteristics, the only predictors are the �rm�s lagged characteristic and the �rm�s lagged

log book-to-market ratio. For example, the only predictors of log investment are lagged

log investment and lagged log book-to-market ratio. This restriction improves estimation

e¢ ciency without signi�cantly reducing the explanatory power of the regressions. We model

the real risk-free rate as a simple �rst-order autoregressive process.

The main concern with our panel VAR speci�cation is that it omits an important common

component in �rms�expected cash �ows and discount rates. We address this issue in Section

7 by considering alternative VAR speci�cations that include the market-wide valuation ratio

and its interactions with �rm-level characteristics. Here we also discuss the implications of

data mining of the characteristics and industry �xed e¤ects in accounting variables. Our

primary speci�cation omits aggregate variables other than the risk-free rate because, as

we show, they do not materially increase the explanatory power of the return and cash

�ow forecasting regressions and result in extremely high standard errors in return variance

decompositions. Of course, it is possible that another not-yet-identi�ed aggregate variable

would materially improve on our forecasting regressions. We conduct all tests using standard

equal-weighted regressions, but our �ndings are robust to applying value weights to each

observation. Overall, our �ndings are robust to alternative speci�cations.

4.2 Baseline Panel VAR Estimation

The �rst two columns of Table 2 report the coe¢ cients in the forecasting regressions for

�rms�log returns and earnings. The third column in Table 2 shows the implied coe¢ cients
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on �rms�log book-to-market ratios based on the clean-surplus relation between log returns,

log earnings, and log valuations (see Equation (19)). We use OLS to estimate each row in

the A matrix of the VAR. Standard errors are clustered by year and �rm, following Petersen

(2009), and appear in parentheses below the coe¢ cients.

The �ndings in the log return regressions are consistent with those of the large literature

on short-horizon forecasts of returns. Firms� log book-to-market ratios and pro�tability

are positive predictors of their log returns at the annual frequency, whereas log investment

is a negative predictor of log returns. Log �rm size and realized variance weakly predict

returns with the expected negative signs, while momentum has a positive sign, though these

coe¢ cients are not statistically signi�cant in this multivariate panel regression. The largest

standardized coe¢ cients are those for �rm-speci�c log book-to-market (0:042 = 0:83�0:051),

pro�tability (0:043), and investment (�0:051). These coe¢ cients represent the change in

expected annual return from a one standard deviation change in each characteristic holding

other predictors constant.

The second column of Table 2 shows the regressions predicting annual log earnings. The

main result is that log book-to-market ratio is by far the strongest predictor of log earnings.

The coe¢ cient on lagged lnBM is �0:109. The two other strong predictors of log earnings

are the logs of �rm-level returns and pro�tability, which both predict with a positive sign.

Other signi�cant predictors of log earnings include past earnings and several of the interaction

terms.

The third column in Table 2 shows the coe¢ cients of each lagged characteristic in a

regression predicting log book-to-market ratios. Log book-to-market ratios are quite persis-

tent as shown by the 0:875 coe¢ cient on lagged log book-to-market. More interestingly, log

investment is a signi�cant positive predictor of log book-to-market, meaning that market-

to-book ratios tend to decrease following high investment. These relations play a role in

the long-run dynamics of expected log earnings and log returns of �rms with high invest-

ment. Analogous reasoning applies to the positive coe¢ cient on lagged log returns, which is
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statistically signi�cant at the 10% level.

Table 3 shows regressions of �rm characteristics on lagged characteristics and lagged

book-to-market ratio. The most persistent characteristic is log �rm size, which has a persis-

tence coe¢ cient of 0:978. We can, however, reject the hypothesis that this coe¢ cient is 1:000,

based on standard errors with �rm and year clustering. The persistence coe¢ cients on the

logs of pro�tability and realized variance are 0:734 and 0:688. The persistence coe¢ cients on

the log of investment and momentum are just 0:157 and 0:048. All else equal, characteristics

with high (low) persistence coe¢ cients will be more important determinants of long-run cash

�ows and discount rates. Lagged log book-to-market is a signi�cant predictor of the logs of

pro�tability, investment, issuance, and realized variance, but the incremental explanatory

power from lagged valuations is modest in all regressions except the investment regression.

Table 3 also shows that the aggregate variable, the lagged real risk-free rate (lnRf), is rea-

sonably persistent with a coe¢ cient of 0:603. This estimate has little impact on expected

long-run returns and cash �ows simply because the risk-free rate is not a signi�cant predictor

of returns or cash �ows, as shown in Table 2.

We now translate the VAR coe¢ cients into estimates of cumulative expected returns and

cash �ows at horizons (N) ranging from 1 to 20 years. We compute the cumulative coe¢ cients

for predicting log returns by summing expected log returns across horizons, discounting by

�, enabling us to express the N -year discount rate component (gDR(N)i;t ) as:

gDR(N)i;t = Et
NP
j=1

�j�1~ri;t+j; (21)

where a tilde above a variable refers to its demeaned value. We plot these for a one-standard

deviation increase in each characteristics in Figure 1. Similarly, Figure 2 plots the cumulative

coe¢ cients for predicting log earnings at horizons from 1 to 20 years. We obtain the N -year

cash �ow component of valuations (gCF (N)i;t ) from the equation:

gCF (N)i;t =
NP
j=1

�j�1Et

h glnROECSi;t+j

i
: (22)
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These cumulative coe¢ cients allow us to represent the discount rate and cash �ow level

components in log book-to-market ratios from years 1 through 20 as a¢ ne functions of the

characteristics in year 0.

Figure 1 shows that book-to-market and size are the most important predictors of long-

run discount rates. The 20-year coe¢ cient on log book-to-market is 26%, while the coe¢ cient

on log size is �18%. The high persistence of both variables implies that their long-run

impacts on valuation are much larger than their short-run impacts. In contrast, some e¤ective

predictors of short-run returns, such as log investment, have little long-run impact mainly

because they are not highly persistent. In addition, investment positively predicts book-to-

market ratios, which limits the extent to which its long-run impact can be negative. The

long-run value and size coe¢ cients imply that investors heavily discount the cash �ows of

value �rms, whereas they pay more for the cash �ows of large �rms. Other notable predictors

of 20-year cumulative log returns include log �rm pro�tability and realized variance, which

have coe¢ cients of 17% and �7%, respectively. The negative e¤ect of realized variance

could arise because of the di¤erence between expected log returns and log expected returns,

or because realized variance negatively forecasts returns as found in Ang et al. (2006).

Figure 2 shows that book-to-market and size are also the most important predictors of

long-run cash �ows. The coe¢ cients on log book-to-market and log size are about �58%

and �14%, respectively, for predicting cumulative log earnings at the 20-year horizon. In

addition, pro�tability has a 20-year cumulative e¤ect of 17%. These �ndings indicate that

CF and DR shocks are largely driven by shocks to the three most persistent predictive

characteristics: lnBM, lnME, and lnProf.

5 Firm-level Analysis

We now examine the decomposition of �rms�log book-to-market ratios and returns implied

by the regression results. We �rst analyze the correlations and covariances between total log

book-to-market (lnBM) and its two components (CF and DR). Table 4 shows that DR and

21



CF variation respectively account for 22.5% and 53.3% of return variation. Interestingly,

covariation between DR and CF tends to amplify return variance, contributing a highly

signi�cant amount (24.3%) of variance. The last column shows that the correlation between

the CF and DR components is signi�cantly negative (�0:351). In economic terms, this

correlation means that low expected cash �ows are associated with high discount rates.

The negative correlation in cash �ow and discount rate shocks could arise for behavioral

or rational reasons. Investor overreaction to positive �rm-speci�c cash �ow shocks could

lower e¤ective �rm discount rates (negative discount rate shocks). Alternatively �rms with

negative cash �ow shocks could become more exposed to systematic risks, increasing their

discount rates (positive discount rate shocks).

6 Portfolio-level Analysis

Now we analyze the implied discount rate (DR) and cash �ow (CF) variation in returns

to important portfolios, including the market portfolio and anomaly portfolios formed by

cross-sectional sorts on value, size, pro�tability, investment, and momentum. We compute

weighted averages of �rm-level DR and CF estimates to obtain portfolio-level DR and CF

estimates. We apply the approximation and aggregation procedure described in Section 2.

6.1 The Market Portfolio

We de�ne the market portfolio as the value-weighted average of individual �rms. We obtain

�rm-level expected log returns and log earnings from the VAR and apply the procedure in

Section 2 to obtain the corresponding market-level discount rates and expected cash �ows.

We compare the estimates from our aggregation approach to those from a standard

aggregate-level VAR in the spirit of Campbell (1991). In the aggregate VAR, we use only

the logs of (market-level) book-to-market ratio (lnBM_mkt) and the real risk-free (lnRf) as

predictors of the logs of market-level earnings and returns. Accordingly, this speci�cation

entails just three regressions in which market-level earnings, returns, and risk-free rates are
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the dependent variables and lagged book-to-market and risk-free rates are the independent

variables.

We validate our panel VAR approach and compare it to the market-level VAR in Figure

3, which shows market cash �ow and discount rate components from both VARs alongside

realized market earnings and returns over the next 10 years. We construct the series of

10-year realized earnings (returns) based on �rms�current market weights and their future

10-year earnings (returns). Thus, we forecast 10-year buy-and-hold returns to the market

portfolio, not the returns to an annually-rebalanced trading strategy. We do not rebalance

the portfolio because the underlying discount rate estimates from the panel VAR are speci�c

to �rms. This distinction is important insofar as �rm entry, exit, issuance, and repurchases

occur.

The dashed red and dotted black lines in the top plot in Figure 3 are the predicted

10-year market earnings from our panel VAR and from the market-level VAR, respectively.

Both predictions track realized 10-year market earnings well, with a somewhat higher R2

of 73% for the panel VAR than 55% for the market VAR. The bottom plot in Figure 3

shows that the predictions of 10-year returns from the two VARs are also similar, except

that the panel VAR predicts lower returns around the 2000 period. Both sets of predictions

exhibit positive relationships with realized 10-year returns. The R2 of the panel VAR is 41%,

whereas the R2 of the market-level VAR is 19%. The plots in Figure 3 suggest that both

VAR methods yield meaningful decompositions of valuations into CF and DR components.

Even though the panel VAR does not directly analyze the market portfolio, aggregating the

panel VAR�s �rm-level predictions results in forecasts of market cash �ows and returns that

slightly outperform forecasts based on the traditional approach.

Next we compare the implications of the two VARs for the sources of market returns. We

compute the shocks to market cash �ows and discount rates from both VARs, as in Equations

(8) and (7) in Section 2, and analyze the covariance matrix of these shocks. When calculating

the aggregated panel VAR shock from time t to time t+1, the updated expectation is based
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on the �rms in the market portfolio at time t. Similarly, the shock from time t+ 1 to t+ 2

is based on the �rms in the market portfolio at time t+ 1.

Table 4 presents variance decompositions of market returns based on the panel VAR and

the time-series VAR. The �rst four columns decompose the variance of predicted market

returns from our approximation into four nearly exhaustive components: the variance of DR,

variance of CF, variance of the cross term (CF*DR), and the covariance between CF and DR.

All quantities are normalized by the variance of return innovations, so the components add

to one. We do not report the covariances between the cross term and the CF and DR terms

because these covariances are negligible. The �fth column reports the correlation between the

DR and CF components of market returns. The last column reports the correlation between

our approximation of market returns and actual market returns. This column shows that

correlation is 0:985, indicating that our approximation is accurate. Standard errors based

on the delta method appear in parentheses.

Table 4 shows that the panel and market-level VARs predict similar amounts of discount

rate variation (17.8% and 28.1%, respectively), but the estimate from the panel VAR is more

precise as measured by its standard error. Both estimates of DR variation are lower than

those reported in prior studies. By restricting the sample of the time-series VAR to 1964

to 1990, we can reproduce the traditional �nding that DR variation explains most of the

variation in market returns.

The estimates from the panel VAR imply that shocks to market cash �ows account for

55.2% of market return variance, whereas the market-level VAR implies that CF shocks

explain just 24.8% of return variance. The two VARs also di¤er in the implied correlations

between the CF and DR components. The panel VAR indicates that the correlation is just

�0:492, whereas the market-level VAR implies a correlation of �0:892.

One possible explanation for the di¤erence in the two VARs is that the panel VAR relies

on two log-linear approximations of market returns, which could introduce errors in the

variance decomposition. However, we �nd that the predicted (log) market return based on
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the panel aggregation and approximations exhibits a correlation of 0:985 with the actual (log)

market return. In addition, the cross term (CF*DR), which is unique to the approximate

panel aggregation, accounts for less than 1% of market return variance.

A more likely reason for the discrepancy is that the panel VAR employs far more predic-

tive variables than the market-level VAR, leading to a more accurate description of expected

cash �ows and discount rates. Another possible reason is that the time-series VAR suf-

fers from two related biases induced by the reliance on aggregate book-to-market ratios

(lnBM_mkt). The time-series properties of lnBM_mkt cause two problems: 1) this highly

persistent regressor causes a substantial Stambaugh (1999) bias given the relatively short

sample; and 2) an apparent structural break in lnBM_mkt occurs around 1990, as noted

by Lettau and van Nieuwerburgh (2008) in the context of the market price-dividend ratio,

implying that this regressor is actually non-stationary. Based on these considerations, we ex-

clude lnBM_mkt from our primary panel VAR speci�cation, though we consider its impact

on our conclusions in robustness speci�cations (Spec2 and Spec3).

6.2 Anomaly Portfolios

We now analyze the returns of long-short anomaly portfolios. Our goal is to bring new facts

to the ongoing debate on the sources of anomalies. We estimate the cash �ow and discount

rate components of historical anomaly returns and analyze the covariance matrix of these

shocks. We then evaluate whether theories of anomalies make reasonable predictions about

the cash �ow and discount rate components of anomaly returns.

The anomaly portfolios represent trading strategies, where the underlying �rms in the

portfolio change every year based on �rms�characteristic rankings in June. However, for

any given year, the portfolio return is driven by the cash �ow and discount rate shocks of

the individual �rms in the portfolio in that year. The �rm-level VAR allows us to relate

anomaly returns to underlying �rm fundamentals. We aggregate the �rm-level estimates

using value weights within each quintile and then analyze portfolios with long positions in
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quintile 5 and short positions in quintile 1 according to �rms�characteristic rankings. The

aggregation procedure is otherwise analogous to that used for the market portfolio.

The plots in Figure 4 show that the estimated expected cash �ow and discount rate com-

ponents of the value portfolio indeed forecast the respective 10-year earnings and returns for

this portfolio. The predictor in the top plot in Figure 4 is the di¤erence between the CF

component of value and growth �rms. Similarly, realized cash �ows in this plot represent

the di¤erence in 10-year earnings of value and growth �rms. The plot shows that predicted

earnings are correlated with future 10-year earnings, primarily in the second half of the sam-

ple. The overall R2 is modest at 24%. The bottom plot in Figure 4 depicts the relationship

between the DR component of the value spread and future 10-year returns. This relationship

is strong in both halves of the sample, and the overall R2 is high at 48%.

Figure 5 presents the analogous R2 statistics for the cash �ow and discount rate compo-

nents of the �ve long-short anomaly portfolios and the market portfolio. The DR component

of the size anomaly portfolio forecasts its 10-year returns quite well (R2 = 61%), whereas

the DR component of the momentum portfolio has modest forecasting power for 10-year mo-

mentum anomaly returns (R2 = 16%). The R2 values in Figure 5 range from 16% to 73%,

implying correlations between the CF and DR components and their realized counterparts

that range between 0:40 and 0:85. We conclude from this analysis that the aggregated cash

�ow and discount rate components plausibly re�ect the long-short portfolios�cash �ow and

discount rate components.

Panel A of Table 5 presents variance decompositions of anomaly returns for the �ve

anomalies and is analogous to Table 4 for the market. Table 5 reveals remarkably consistent

patterns across the �ve anomaly portfolios. Cash �ow variation accounts for 40% to 56%

of variation in anomaly returns, whereas discount rate variation by itself accounts for just

16% to 23% of anomaly return variance. The covariance between CF and DR is consistently

negative, and this covariance term accounts for 32% to 37% of anomaly return variance.

The cross term (CF*DR) accounts for only 2% to 4% of anomaly return variance. The
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standard errors on the main variance components range from 10% to 20%, indicating the

high precision of these �ndings. The last column shows that the correlation between the

approximation of anomaly returns and actual anomaly returns ranges from 0:88 to 0:96,

indicating our approximation is quite accurate.

The relative importance of cash �ows and the negative correlation between CF and DR

are the most prominent e¤ects. Theories of anomalies that rely heavily on independent

variation in DR shocks, such as De Long et al. (1990), are inconsistent with the evidence in

Table 5. In contrast, theories in which CF shocks are tightly linked with DR shocks have the

potential to explain the patterns in Table 5. Rational theories in which �rm risk increases

after negative cash �ow realizations predict negative correlations between CF and DR shocks.

Behavioral theories in which investors overreact to cash �ow news are also consistent with

this evidence.

While the decompositions are quite similar across anomalies, this �nding is not mechan-

ical even though the decompositions are derived from the same VAR. First, the interaction

terms in the VAR allows the loading on lagged book-to-market to vary with the anomaly.

Second, the aggregation into (long-short) portfolios diversi�es away idiosyncratic cash �ow

and discount rate shocks, focusing the analysis on common cash �ow and discount rate varia-

tion within the long-short portfolios. Ex ante, one anomaly could have a substantially larger,

say, cash �ow component or correlation between cash �ow and discount rate shocks relative

to another, depending on the cross-correlation of shocks and characteristics across the assets.

Ex post, we �nd that the decompositions are in fact quite similar across anomalies.

Panel B of Table 5 decomposes return variance of in-sample mean-variance e¢ cient port-

folios. The �rst line shows the decomposition for the ex post mean-variance e¢ cient (MVE)

portfolio composed of only the �ve long-short anomaly portfolios. An arbitrageur would hold

this portfolio if one thinks of anomalies as arising from mispricing. This MVE portfolio has

a discount rate component of 14%, a cash �ow component of 44%, with a correlation of cash

�ow and discount rates of �0:75. Thus, aggregating across anomalies does not materially

27



a¤ect the variance decomposition. Cash �ow shocks are still the most important contributor

to variance, and the correlation between cash �ow and discount rate shocks becomes even

more negative. The next line shows the in-sample MVE portfolio that includes the market

portfolio. This portfolio represents an estimate of the portfolio with a return that covaries

most negatively with the marginal agent�s marginal utility. The cash �ow component of this

MVE portfolio is even stronger at 58%. Discount rate variation accounts for 13% of return

variance, and the correlation between CF and DR shocks is still signi�cantly negative at

�0:58.

Panel A of Table 6 displays correlations between the components of market returns and

those of anomaly returns. The four columns indicate the correlations between market cash

�ow and discount rate shocks and anomaly cash �ow and discount rate shocks. Standard

errors based on the delta method appear in parentheses.

The striking result in the �rst column of Panel A of Table 6 is that none of the �ve

anomaly cash �ow shocks exhibits a signi�cant correlation with market cash �ows. The

correlations between market cash �ows and the cash �ows from the �ve anomalies range

between �0:12 and 0:08 and are statistically indistinguishable from zero. These �ndings

cast doubt on theories of anomalies that rely on cross-sectional di¤erences in �rms�earnings

sensitivities to aggregate cash �ows. The evidence is ostensibly inconsistent with a broad

category of risk-based explanations of anomalies.

The fourth column in Table 6 reveals that discount rate shocks to four of the �ve anomalies

have insigni�cant correlations with discount rate shocks to the market. However, DR shocks

to the pro�tability anomaly are signi�cantly negatively correlated (�0:45) with DR shocks

to the market. One interpretation is that increases in the market-wide cost of capital are

associated with a �ight to quality in which investors become relatively eager to �nance

projects of �rms with high pro�ts.

The second and third columns in Table 6 reveal three notable cross-correlations between

market and anomaly CF and DR shocks. The three correlations that exceed 0:3 in absolute
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value are economically material and statistically signi�cant at the 5% level. The positive cor-

relation of 0:36 between the CF shock to the market and the (negative) DR shock to the size

portfolio suggests that small �rms have lower costs of capital during good economic times.

The correlations between CF shocks to value and investment portfolios and DR shocks to the

market are consistent with the idea that �rms with high investment and high valuations have

higher expected cash �ows when market-wide discount rates fall. Because we are simulta-

neously testing many hypotheses, we are reluctant to overinterpret these cross-correlations.

The low correlation between market and anomaly return components is consistent with the-

ories in which idiosyncratic cash �ow shocks a¤ect �rms�expected returns� e.g., Babenko,

Boguth, and Tserlukevich (2016).

Panel B of Table 6 shows the correlation between the CF and DR shocks to the MVE

portfolio based only on anomaly long-short portfolios with the market CF and DR shocks.

The correlation of CF shocks to this anomaly MVE portfolio with market CF shocks is close

to zero (�0:01), o¤ering no evidence that cash �ow betas with respect to the market are

the source of anomaly risk premiums. The correlations between DR shocks to the market

and anomaly MVE portfolio are actually negative at �0:27, casting doubt on the idea that

arbitrageurs exploiting anomalies are exposed to the same shocks to risk preferences as

investors holding the market. Instead, the evidence suggests distinct forces drive market and

anomaly return components.

Generalizing from the last column in Table 6, the weak correlation between most anom-

alies�DR shocks and market DR shocks is inconsistent with theories of common DR shocks.

In theories such as Campbell and Cochrane (1999), commonality in DR shocks occurs be-

cause risk aversion varies over time. Similarly, theories in which anomalies are driven by

common shocks to investor sentiment, such as Baker and Wurgler (2006), that a¤ect groups

of stocks and the market are at odds with the evidence on the lack of correlation in anomaly

and market DR shocks.

To explore these relations further, Figure 6 plots anomaly MVE and market CF shocks
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in Panel A and the corresponding DR shocks in Panel B. In the �nancial crisis of 2008-2009,

both the market and anomaly MVE exhibited negative CF shocks. Both portfolios also expe-

rienced positive DR shocks, though this e¤ect is more pronounced for the anomaly portfolio.

In contrast, during the dot-com boom of the late 1990s and the ensuing crash, the market

and anomaly MVE DR shocks diverge from each other. In the boom, market DR shocks

were negative, while anomaly MVE DR shocks were positive, with the opposite pattern hold-

ing for the crash. This pattern re�ects the success of low investment, low pro�tability, and

low book-to-market �rms during the dot-com boom, and their poor performance during the

crash.

6.3 Short-run vs. Long-run Cash Flow Shocks

We now decompose cash �ow shocks into short-run (one-year) and long-run cash �ow shocks.

In particular, for each �rm i, de�ne:

CF short�runi;t+1 = lnROECSi;t+1 � Et
�
lnROECSi;t+1

�
;

where the expected cash �ow comes from the VAR. We de�ne long-run cash �ow shocks as:

CF long�runi;t+1 = CFi;t+1 � CF short�runi;t+1 :

We aggregate �rm-level CF shocks into portfolio CF shocks for long-short anomalies and the

market using the same procedure applied to the total cash �ow shock, CFi;t+1.

Table 7 shows that the negative correlation between cash �ow and discount rate shocks

is due to the long-run cash �ow shock, CF long�runi;t+1 . The correlations between the long-run

cash �ow shocks and discount rate shocks of each anomaly are strongly negative. With the

exception of the pro�tability anomaly, all of these correlations are less than �0:5 and are

statistically signi�cant at the 1% level. In contrast, the correlations between the short-run

cash �ow shocks and discount rate shocks are statistically insigni�cant and economically

small for all anomalies. These facts support models in which correlated shocks to long-run
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�rm earnings drive discount rate shocks, such as the model of investor overcon�dence of

Daniel, Hirshleifer, and Subrahmanyam (2001). For the market portfolio, none of correla-

tions is statistically signi�cant. Although we cannot draw robust inferences regarding this

portfolio�s short- and long-run cash �ow correlation structure, we note that the signs and

magnitudes of the correlations are the same as those of the anomaly portfolios� discount

rates exhibit no correlation with short-run cash �ow shocks and a large negative correlation

with long-run cash �ow shocks.

6.4 Correlations with Aggregate Shocks

In Table 8, we report contemporaneous (June to June) correlations of CF and DR shocks

to the market and anomaly portfolios with various aggregate shocks of interest. One group

of aggregate shocks re�ects macroeconomic cash �ow shocks: one- and three-year real per-

capita consumption and GDP growth and one-year log di¤erence in the labor share. The

other group represents plausible measures of shocks to aggregate risk aversion or �bad times�:

one-year change in the default spread (Baa - Aaa corporate bonds); one-year change in

the term spread (10-year constant maturity Treasury minus federal funds rate); change in

one-year sentiment (orthogonalized from macroeconomic data, obtained from Je¤Wurgler�s

website, 1965 to 2010), one-year change in three-month T-bill rate; and the broker-dealer

leverage factor of Adrien, Etula, and Muir (2014).

Consistent with intuition, market CF shocks are positively correlated with macroeco-

nomic cash �ow indicators. Positive shocks to the labor share and thus negative shocks to

the capital share are negatively correlated with market CF shocks. Market CF shocks are

negatively correlated with indicators of �bad times,�such as changes in the default and term

spreads. Market CF shocks are also signi�cantly positively related to broker-dealer leverage

shocks, consistent with broker-dealers increasing leverage in good times. However, market

DR shocks are not signi�cantly correlated with any of the aggregate shocks. Based on point

estimates, market discount rates decrease when three-year consumption and GDP growth
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rates are high and when default spreads are low, which makes economic sense.

We observe two main patterns in anomaly CF and DR shocks. First, the broker-dealer

leverage shock exhibits a consistent relation with all anomalies. When broker-dealers increase

leverage, presumably in good times, anomaly cash �ows are higher and discount rates are

lower. Second, the anomaly portfolio CF and DR shocks are generally uncorrelated with

macroeconomic shocks. The exception is momentum, which has discount rate shocks that

are signi�cantly negatively correlated with consumption and GDP growth, and CF (DR)

shocks that are negatively (positively) correlated with the change in labor share. This labor-

share correlation carries over to the MVE portfolio.

Overall, the anomaly CF and DR shocks exhibit inconsistent correlations with aggregate

shocks, with the notable exception of the broker-dealer shock. However, under the interpre-

tation that the broker-dealer leverage shock measures shocks to arbitrageurs�wealth, these

correlations do not by themselves suggest a fundamental explanation for anomaly CF and

DR comovement.

In our view, the evidence points towards a theory in which investors overextrapolate

long-run cash �ow news. Our evidence suggests that �rms�exposures to this cash �ow news

are correlated with anomaly characteristics. For example, a technology shock could increase

growth �rms�cash �ows and decrease value �rms�cash �ows. Investor overreaction to this

technology shock would reduce growth �rms�discount rates and increase value �rms�discount

rates. Alternatively, a rational theory in which a technology shock decreases growth �rms�

risks and increases value �rms�risks could be consistent with the evidence. We note that

such cash �ow shocks are not market-level shocks or industry shocks, as they exhibit low

correlations with market CF and DR shocks and industry exposures do not appear to be

priced.
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6.5 Over�tting and Misspecifying Expected Returns

Some characteristics could appear to predict returns only because researchers constantly

mining the data for return predictability eventually will �nd characteristics that appear to

predict returns in historical samples. Importantly, using data-mined characteristics in our

VAR framework would bias estimates of return predictability upward. As a result, data

mining increases the volatility of discount rate shocks. In addition, data mining increases

the correlation between implied cash �ow shocks and discount rate shocks because CF shocks

must o¤set the impact of DR shocks in total returns, which we can observe directly. Our main

�ndings indicate that cash �ow shocks are the dominant component of anomaly returns and

that the correlation between discount rate and cash �ow shocks is negative. Without data

mining of VAR characteristics, these two main conclusions would be even more pronounced.

The impact of a speci�cation error in our model of expected returns is analogous to that

of data mining. For example, suppose that we incorrectly identify discount rate shocks,

observing DRshocki;t+1 = trueDRshocki;t+1 + error. The present-value equation implies that our

cash �ow shocks inherit the same speci�cation error because CF shocki;t+1 = ri;t+1 � Et [ri;t+1] +

DRshocki;t+1 = ri;t+1 � Et [ri;t+1] + trueDRshocki;t+1 + error. Thus, any speci�cation error tends

to increase the correlation between CF and DR shocks, rendering our empirical �nding of

strong negative correlation even more surprising.

7 Alternative Speci�cations

Here we consider �ve alternative speci�cations of the �rm-level VAR in which we include

di¤erent predictors of cash �ows and returns. The �rst alternative speci�cation (Spec1) uses

the same predictors as our main speci�cation (Spec0), except that it excludes the interaction

terms between valuation ratios and anomaly characteristics. Because this speci�cation is the

most parsimonious, we use Spec1 as a baseline for all other alternative speci�cations.

The second alternative speci�cation (Spec2) adds only the market-wide book-to-market
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ratio, as measured by the value-weighted average of sample �rms�log book-to-market ratios,

to our main speci�cation (Spec1). The third alternative speci�cation (Spec3) augments

Spec1 by including interaction terms between market-wide valuations and the �ve �rm-

level log characteristics as well as �rm-level log realized variance. Market valuations could

capture common variation in �rms�cash �ows and discount rates and interactions with �rm

characteristics could capture �rms�di¤erential exposures to market-wide variation.

The estimation of the key return and cash �ow forecasting regressions in the VAR indi-

cates that these additional regressors only modestly contribute to explanatory power. The

adjusted R2 in the return regression increases from 4:6% in Spec1 to 5:5% in Spec2, and

the coe¢ cient on the added market-wide valuation variable is only marginally statistically

signi�cant (p-value = 0:053). In the earnings regression, the coe¢ cient on market-wide val-

uation is robust statistically signi�cant at the 1% level, but the adjusted R2 barely increases

from 24:3% in Spec1 to 24:9% in Spec2. The �ndings for the third alternative speci�cation,

Spec3, suggest that the six interaction terms do not contribute incremental explanatory

power beyond Spec2. Speci�cally, the adjusted R2 for the return and earnings regressions

are equal to or less than those for Spec2 and the vast majority of the interaction coe¢ cients

are statistically insigni�cant. Overall, these two sets of regressions do not provide strong

evidence that the most parsimonious speci�cation, Spec1, is misspeci�ed.

We now evaluate the implications of the alternative speci�cations for return variance

decompositions. Table 9 shows the components of market return variance implied by Spec2

and Spec3. The di¤erence between Table 9 and Table 4, which shows the results for Spec0, is

striking. Whereas discount rate variation accounts for just 21% of return variance in Spec1, it

accounts for 107% and 150% of variation in Spec2 and Spec3, respectively. The main reason

is that high market-wide book-to-market ratios apparently forecast higher returns and such

valuations ratios are highly persistent, implying that their long-run impact is potentially

large. However, this predictive relationship is very weak statistically, so the standard errors

on the variance decompositions are enormous in Spec2 and Spec3. In fact, in both cases, the
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hypothesis that DR variation accounts for 0% of variation in returns is within one standard

error. Thus, the striking di¤erences in point estimates across the speci�cations do not

necessarily imply strikingly di¤erent conclusions.

Table 10 shows the components of anomaly return variance implied by Spec2 and Spec3.

Comparing Tables 10 and 5, we see that cash �ow variation accounts for the bulk of anomaly

return variance in all three VAR speci�cations. The �nding that discount rates are negatively

correlated with expected cash �ows also generalizes from Spec1 to Spec2. In Spec3, which

allows for interaction terms between market-wide valuations and �rm-level characteristics,

the standard errors in Spec3 are too large to draw reliable inferences about the CF-DR

correlation.

To assess which VAR speci�cation provides the most meaningful decomposition of market

and anomaly returns, we analyze the long-term forecasting power implied by each speci�ca-

tion. Figure 7 shows the 10-year forecasts of market earnings and returns from Spec2, just

as Figure 4 shows these forecasts for our main panel speci�cation (Spec0). Although adding

market-wide valuations slightly improves the forecasting power in the one-year earnings re-

gression, 10-year predictions based on the Spec2 model are vastly inferior to those based on

the more parsimonious Spec1 model. The adjusted R2 values of 73% for Spec0 compared to

just 0.3% for Spec2 con�rm the visual impression from the �gures. The two speci�cations

exhibit little di¤erence in their ability to predict 10-year market returns (R2 = 41% for Spec0

vs. R2 = 33% for Spec2).

Figure 8 shows the 10-year forecasting power (R2) of �ve speci�cations for market earnings

and returns as well as the earnings and returns of the �ve anomalies. The most notable

di¤erence arises in the forecasting power for market earnings. Both speci�cations that include

market-wide valuations give rise to especially poor forecasts of 10-year market earnings.

Apparent structural breaks in market-wide valuations, such as those proposed by Lettau

and van Nieuwerburgh (2008), could help explain the poor long-term forecasting power of

these two VAR speci�cations. There are few notable di¤erences in the three speci�cations�
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abilities to predict long-term anomaly returns and earnings. This similarity is not surprising

in light of the similar anomaly return decompositions predicted by the three speci�cations.

We conclude that our baseline panel VAR (Spec0) not only gives rise to the most precise

estimates of market and anomaly return components, but it also exhibits the most desirable

long-term forecasting properties.

We also consider two speci�cations designed to capture industry and �rm �xed e¤ects.7

However, as noted by Nickell (1981), adding actual �xed e¤ects into a dynamic panel regres-

sion such as that in our main speci�cation, leads to severely biased coe¢ cients in small T

large N settings such as ours. The biases are similar to the familiar Stambaugh bias that

arises in standard time-series VARs with return forecasting regressions. To avoid this sta-

tistical issue and to mimic reasonable investor learning, we include rolling means of �rm or

industry clean surplus earnings and book-to-market ratios in the VARs. Because we use data

up until time t to compute the mean at time t, including these quasi-�xed e¤ects does not

induce a mechanical small-sample correlation between the shocks and the explanatory vari-

ables, which would arise with actual �xed e¤ects. We apply shrinkage to these rolling means

to increase the precision of our estimates. Tables 9 and 10 show the resulting variance de-

compositions. The case with industry rolling means is Spec4, and the case with �rm-speci�c

rolling means is Spec5. Overall, the inclusion of these variables does not materially alter the

anomaly decomposition results relative to our baseline speci�cation (Spec0).

8 Conclusion

Despite decades of research on forecasting short-term stock returns, there is no widely ac-

cepted explanation for observed cross-sectional patterns in stock returns. We provide new

evidence on the sources of anomaly portfolio returns by aggregating �rm-level cash �ow and

discount rate estimates from a panel VAR system. Our aggregation approach enables re-

7In unreported tests, we explore speci�cations that include additional market-level and anomaly-level
variables, such as aggregate versions of anomaly characteristics and spreads in valuations across anomaly
portfolios.

36



searchers to study the components of portfolio returns, while avoiding the biases inherent in

analyzing the cash �ows and discount rates of rebalanced portfolios.

We contribute three novel �ndings to our understanding of stock return anomalies. First,

cash �ow variation is the primary driver of anomaly returns. Second, discount rate shocks

amplify the impact of cash �ow shocks on anomaly returns as these shocks are strongly

negatively correlated. This correlation is driven by news about long-run cash �ows. Third,

cash �ow and discount rate shocks to anomalies exhibit little relation with shocks to the

market. In fact, discount rate shocks to the market are slightly negatively correlated with

discount rate shocks to the anomaly MVE portfolio, casting doubt on theories in which

time-varying aggregate risk aversion or sentiment plays a prominent role. Based on this

evidence, the most promising theories of anomalies are those that emphasize the importance

of �rm-level long-run cash �ow shocks as drivers of changes in �rm risk or errors in investors�

expectations. In future research, we hope to explain why anomaly cash �ows� unlike industry

cash �ows� are priced by analyzing the economic sources of correlation in �rm cash �ows.
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Appendix A: Cash Flows vs. Discount Rates of Trading Strategies

Here we show that the cash �ows and discount rates of rebalanced portfolios, such as

anomaly portfolios, can di¤er substantially from those of the underlying �rms in the portfo-

lios. We provide examples below in which �rms have constant cash �ows, but all variation

in returns to the rebalanced portfolio comes from cash �ow shocks.

We �rst consider a stylized behavioral model of stock returns and cash �ows. Assume

that all �rms pay constant dividends:

Di;t = �d: (23)

Assume that investors in each period erroneously believe that any given �rm�s dividend

is permanently either dL < �d or dH > �d. We de�ne the �rms associated with low (high)

dividend beliefs to be value (growth) �rms. The pricing of these �rms satis�es:

P value =
dL
R� 1 ; (24)

P growth =
dH
R� 1 ; (25)

where R is the gross risk-free rate. Each period, with probability q, investors switch their

beliefs about each stock�s dividends either from dL to dH or from dH to dL. Investors believe

their beliefs will last forever, whereas in reality they will switch with probability q in each

period.

Now consider a value fund that invests only in stocks that investors currently believe

will pay dividends of dL. Further assume that there are only two �rms in the economy� a

�rm that currently is a growth �rm and a �rm that currently is a value �rm. When beliefs

switch, the growth �rm becomes a value �rm and vice versa. This switch therefore induces

trading in the value fund as the fund has to sell �rms that become growth �rms and buy the

new value �rms.

Such trading has a signi�cant impact on the fund�s dividends. Suppose that the fund
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initially holds one share of the value stock, which implies that its initial wealth isW0 = P
value.

Assume investors do not switch beliefs in the next period. In this case, the fund�s gross return

is:

Rvalue1 =
P value + �d

P value

= 1 +
�d

P value
: (26)

Period 1 cum-dividend wealth is

W cum
1 = P value + �d; (27)

where ex-dividend wealth is P value and dividend is d1 = �d. Assume that beliefs switch in

period 2. Then:

Rvalue2 =
(R� 1)

�
dH
R�1 +

�d
�

dL

=
dH + (R� 1) �d

dL

=
dH
dL
+

�d

P value
: (28)

So fund wealth becomes:

W cum
2 = P value

dH
dL
+ �d:

Ex-dividend wealth is W ex
2 = P value dH

dL
, and the dividend is d2 = �d once again. The dividend

price ratio of the strategy is now:

W ex
2

d2
=
P value

�d

dH
dL
>
P value

�d
: (29)

The higher price-dividend ratio re�ects high expected dividend growth next period.

Importantly, the fund now reinvests its capital gain into the current value stock and is

able to purchase more than one share. Assuming beliefs do not switch in period 3, the fund�s
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wealth increases to:

W cum
3 = P value

dH
dL

�
1 +

�d

P value

�
= P value

dH
dL
+
dH
dL
�d: (30)

Now ex-dividend wealth is W ex
3 = P value dH

dL
and d3 = �d � dH=dL, implying that dividend

growth during this period is high as d3=d2 = dH=dL > d2=d1 = 1. The price-dividend ratio

of the strategy is now:
W ex
3

d3
=

P value dH
dL

�d� dH=dL
=
P value

�d
; (31)

meaning that the price-dividend ratio returns to its original value.

In summary, dividend growth of the dynamic value strategy varies over time, but expected

returns to the strategy are constant and given by:

E(Rvalue) = 1� q + qdH
dL
+

�d

P value

= 1� q + qdH
dL
+

�d

dL
(R� 1): (32)

A symmetric argument applies to the analogous growth strategy, which also has time-varying

dividend growth and constant expected returns. We conclude that return variation in the

dynamic trading strategies arises solely because of cash �ow shocks even though all �rms

in the economy incur only discount rate shocks. Firm-level return variation is driven by

changes in �rms�expected returns, not their dividends� which are constant.

There are no discount rate shocks to the returns of these dynamic strategies when viewed

from the perspective of an investor who invests in the value or growth funds. However, unex-

pected returns to such funds are in fact, under the objective measure of the econometrician,

due to discount rate shocks to the underlying �rms. The �rms�actual expected returns vary,

whereas their dividend growth does not.

This feature of rebalanced portfolios is not limited to the case of time-varying mispricing.
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Consider a rational model in which value �rms have riskier cash �ows than growth �rms. If

time-variation in a �rm�s cash �ow risk causes it to switch between being a value �rm and a

growth �rm, the rational model delivers the same insights as the behavioral model discussed

above.

In this example, we assume �rms�log dividend growth is:

�di;t+1 = �
1

2
�2 + �

�
�si;t"m;t+1 +

q
1� �2si;t"i;t+1

�
; (33)

where "m;t+1 and f"i;t+1gi are uncorrelated standard normally distributed shocks represent-

ing aggregate and �rm-speci�c dividend shocks, respectively. Firm exposure to aggregate

dividend shocks is:

�si;t =

8<: �H

�L

if si;t = 1

if si;t = 0
; (34)

where si;t follows a two-state Markov process where Pr fsi;t+1 = 1jsi;t = 0g = Pr fsi;t+1 = 0jsi;t = 1g =

�. For ease of exposition, set �L = 0 and �H = 1. Initially, half of �rms are in state 1, while

the other half are in state 0. If a regime change occurs, all �rms currently in state 1 switch

to state 0, and vice versa.

The log stochastic discount factor is:

mt+1 = �
1

2
2�2 � �"m;t+1; (35)

where we implicitly assume a zero risk-free rate and where  > 0 represents risk aversion.

These assumptions imply that the conditional mean and volatility of cash �ow growth is

constant. However, �rm risk varies with si;t, which determines the covariance of cash �ows

with the pricing kernel, causing time-varying �rm risk premiums.

Solving for the price-dividend ratio as a function of the state yields:

PD (si;t) = Et

"
e
� 1
2
2�2��"m;t+1� 1

2
�2+�

�
�si;t"m;t+1+

q
1��2si;t"i;t+1

�
(1 + PD (si;t+1))

#
= e

��2�si;t (1 + �PD (si;t+1 6= si;t) + (1� �)PD (si;t+1 = si;t)) : (36)
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Denote the price-dividend ratio in state j as PDj. The price-dividend relation above is a

system with two equations and two unknowns with the solution:

PD1 =
1

e�2 � 1 (37)

PD0 = 1=� +
1

e�2 � 1 (38)

These equations show that price-dividend ratios are higher in state 0 when dividend risk

is low than in state 1 when dividend risk is high, implying that expected returns are higher

in state 0 as expected dividend growth is constant across states. Firms�expected net returns

are:

Et [Ri;t+1jsi;t = 0]� 1 = 0; (39)

Et [Ri;t+1jsi;t = 1]� 1 = 2(e�
2 � 1): (40)

Since PD0 > PD1, we see that Et [Ri;t+1jsi;t = 1] > Et [Ri;t+1jsi;t = 0]. Thus, �rms�price-

dividend ratios �uctuate because of shocks to discount rates, not cash �ows. Although

there are cash �ow shocks in returns arising from the contemporaneous dividend shock

(�
�
�si;t"m;t+1 +

q
1� �2si;t"i;t+1

�
), dividends are unpredictable and therefore do not induce

time-variation in the price-dividend ratio.

Now consider a value mutual fund that in each period buys �rms that are currently in

the low valuation state 1. With probability �, value �rms held by the fund will switch to

the high valuation state 0, meaning that they become growth �rms. The fund sells all �rms

in each period and reinvests the proceeds in �rms that are in the low valuation state 1.

The fund pays out all �rm dividends as they occur. The expected return to this strategy is

constant and equal to Et [Ri;t+1jsi;t = 1] � 1 = 2(e�
2 � 1), even though all �rms�expected

returns vary over time.

We now analyze the growth of the value fund�s dividends in each period. The �rst source

46



of fund dividend growth is growth in the underlying �rms�dividends, which satisfy:

Di;t+1

Di;t

= e�
1
2
�2+�"m;t+1 : (41)

The second source of fund dividend growth is growth in the number of shares of value �rms

held by the fund. If value �rms switch to growth �rms, the fund will reap a capital gain

and be able to buy more shares of the new value �rms in the following period. De�ne the

indicator variable 1si;t 6=si;t�1 as equal to 1 if there was a regime shift from period t � 1 to

period t and 0 otherwise. Accounting for both sources of growth, fund dividend growth is:

DFund
t+1

DFund
t

= 1si;t 6=si;t�1
PD0

PD1

e�
1
2
�2+�"m;t+1 +

�
1� 1si;t 6=si;t�1

�
e�

1
2
�2+�"m;t+1 ; (42)

where the term PD0
PD1

= 1+ e�
2�1
�

represents the capital gain from the prior period. Dividends

are predictably high after high capital gains and low after low capital gains. The predictabil-

ity in dividend growth leads to a time-varying price-dividend ratio for the mutual fund, even

though its expected return is constant. Thus, discount rate shocks to the underlying value

�rms are cash �ow shocks for the mutual fund implementing a value trading strategy.

Appendix B: Relation to Equilibrium Models

The VAR o¤ers a parsimonious, reduced-form model of the cross-section of expected cash

�ows and discount rates at all horizons. Here we demonstrate that the VAR speci�cation

is related to standard asset pricing models. In well-known models such as Campbell and

Cochrane�s (1999) habit formation model and Bansal and Yaron�s (2004) long-run risk model,

the log stochastic discount factor is conditionally normally distributed and satis�es:

mt+1 = �rf;t �
1

2
k�tk2 + �0t�t+1; (43)

where �t is a K � 1 vector of conditional risk prices, �t+1 is a K � 1 vector of standard

normal shocks, and rf;t is the risk-free rate. With conditionally normal log returns, applying
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the Law of One Price yields the following expression for the conditional expected log return

of �rm i:

Et [ri;t+1] = rf;t �
1

2
vi;t + covt (mt+1; ri;t+1)

= rf;t �
1

2
vi;t + �

0
i;t�t; (44)

where vi;t � vart (ri;t+1) is �rm return variance, and �(k)i;t =
covt

�
�
(k)
t �

(k)
t+1;ri;t+1

�
vart

�
�
(k)
t �

(k)
t+1

� and �i;t =h
�
(1)
i;t �

(2)
i;t ... �(K)i;t

i0
represent �rm betas.

We make simplifying assumptions to relate this setup to the VAR speci�cation. De�ne

�rm risk premiums as z(k)i;t � �
(k)
i;t �

(k)
t and zi;t =

h
z
(1)
i;t z

(2)
i;t ... z(K)i;t

i0
. Suppose that risk

premiums, variances, and the risk-free rate evolve according to:

zi;t+1 = �z + Az (zi;t � �z) + �z;t"zi;t+1; (45)

vi;t+1 = �v + Av (vi;t � �v) + �v;t"vi;t+1; (46)

rf;t+1 = �rf + Arf (rf;t � �rf ) + �r;t"
rf
t+1; (47)

for all �rms i. Assume �rm log return on equity is also conditionally normal:

ei;t+1 = �+ xi;t + �e;t"
e
i;t+1; (48)

xi;t+1 = Axxi;t + �x;t"
x
i;t+1; (49)

where xi;t is an L� 1 vector of latent state variables determining expected return on equity.

All shocks can be correlated.

Assuming the clean-surplus model described earlier, �rm book-to-market ratios are given

by:

bmi;t = a0 + a
0
1rf;t + a

0
2zi;t + a

0
3xi;t + a4vi;t: (50)

De�ne the (2K + L+ 1)� 1 vector si;t =
�
r0f;t z

0
i;t vi;t...x

0
i;t

�0
to consist of the stacked state
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variables. We assume there exist (2K + L+ 1) observed characteristics, �i;t, that span si;t:

�i;t = A1 + A2si;t; (51)

where A2 is invertible. With the characteristic spanning assumption, �rms�book-to-market

become a function of the observed characteristics, resulting in a VAR representation of the

present-value relation. In sum, the VAR speci�cation concisely summarizes the dynamics

of expected cash �ows and discount rates, even when both consist of multiple components

�uctuating at di¤erent frequencies. The VAR yields consistent estimates even though there

is heteroskedasticity across �rms and time.

When analyzing long-short portfolios, we obtain the anomaly cash �ow (discount rate)

shock as the di¤erence in the cash �ow (discount rate) shocks between the long and short

portfolios. Taking the value anomaly as an example, suppose the long value portfolio and

short growth portfolio have the same betas with respect to all risk factors except the value

factor (say, �(2)t ). According to Equation (44), discount rate shocks to this long-short portfo-

lio can only arise from three sources: 1) shocks to the spread in the factor exposure between

value and growth �rms (�(2)value;t � �
(2)
growth;t); 2) shocks to the price of risk of the value factor

(�(2)t ); or 3) shocks to the di¤erence in return variance between the two portfolios. The

third possibility arises because we analyze log returns. Similarly, cash �ow shocks to this

long-short portfolio only re�ect these portfolios�di¤erential exposure to cash �ow factors.
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Table 1 - Summary Statistics

Table 1: Panel A shows summary statistics for �rm-level returns, cash �ows, and character-
istics. The �rst column lists the variables as de�ned in the text. The second column reports
the number of �rm-year observations, n. The remaining columns report the mean, standard
deviation and various percentiles of the �rm-year distribution for each variable. Panel B
provides the correlation matrix for the �rm accounting characteristics. The sample spans
the years 1964 through 2015.

Panel A: N Mean SD P1 P10 P50 P90 P99

AnnRet 68; 639 12:66 50:70 �81:06 �39:82 7:69 65:60 175:00
Rf 68; 639 5:35 3:12 0:12 0:31 5:55 8:61 13:96
Volat 63; 561 38:69 16:94 15:34 21:83 35:11 58:75 102:45
SizeWt 68; 639 0:31 1:06 0:00 0:01 0:06 0:55 5:38
lnROECS 65; 275 11:29 32:27 �86:64 �11:90 10:23 36:33 117:96
lnBM 67; 296 �0:72 0:83 �3:04 �1:78 �0:66 0:29 0:98
lnME 68; 590 4:89 1:31 2:90 3:37 4:65 6:73 8:62
lnProf 66; 361 21:27 26:92 �72:50 6:39 23:33 39:14 77:92
lnInv 67; 475 16:10 28:27 �31:35 �4:87 9:91 42:83 132:75

Panel B: 1 2 3 4

lnBM (1) 1:00
lnME (2) �0:28 1:00
lnProf (3) �0:11 0:19 1:00
lnInv (4) �0:19 �0:03 0:02 1:00
lnMom (5) �0:25 0:16 0:06 �0:07
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Table 2 - Return and Earnings Forecasting Regressions

Table 2: The table shows forecasting regressions of �rms�annual real log returns (lnRet), log
annual real clean-surplus earnings (lnROECS), and log book-to-market (lnBM) on one-year-
lagged value of a set of characteristics: lnBM, log pro�tability (lnProf), log asset growth
(lnInv), log market equity (lnME), log 6-month momentum percentile (lnMom6), realized
variance (lnRV), and the log one-year real risk-free rate (lnRf). The �rst �ve characteristics
are also interacted with lnBM in a manner explained in the main text. The sample spans the
years 1964 through 2015. Standard errors clustered by year and �rm appear in parenthesis.
N denotes the number of observations. The marks �+�, �*�, and �**�indicate sign�cance at
the 10, 5, and 1 percent levels, respectively.

lnRet lnROECS lnBM

Lag lnRet 0:011 0:127�� 0:121+

(0:080) (0:025) (0:072)

Lag lnROECS �0:036 �0:040� �0:004
(0:035) (0:017) (0:029)

Lag lnBM 0:051� �0:109�� 0:875��

(0:021) (0:009) (0:023)

Lag lnProf 0:043�� 0:069�� 0:0266
(0:014) (0:009) (0:018)

Lag lnInv �0:051�� 0:003 0:057��

(0:014) (0:005) (0:011)

Lag lnME �0:019 �0:003 0:017+

(0:018) (0:005) (0:010)

Lag lnMom6 0:019 �0:005 �0:026+
(0:018) (0:006) (0:015)

Lag lnRV �0:030 �0:006 0:025
(0:021) (0:007) (0:019)

Lag lnd_bm_bm 0:013 �0:018�� 0:005
(0:012) (0:005) (0:013)

Lag lnd_prof_bm �0:009 0:022�� 0:032��

(0:007) (0:003) (0:007)

Lag lnd_inv_bm 0:004 �0:010�� �0:015��
(0:004) (0:003) (0:005)

Lag lnd_me_bm �0:007 0:014�� 0:022��

(0:007) (0:004) (0:008)

Lag lnd_mom_bm 0:011+ �0:015�� �0:027��
(0:006) (0:003) (0:008)

Lag lnRf 0:002 0:013 0:011
(0:028) (0:008) (0:024)

R2 0:045 0:241 0:698
N 49; 755 49; 755 49; 755
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Table 3 - Characteristic Forecasting Regressions

Table 3: Panel A shows annual forecasting regressions of �rm characteristics on their own
lag as well as the �rm�s lagged book-to-market ratio. The characteristics are log pro�tability
(lnProf), log asset growth (lnInv), log market equity (lnME), log three-year issuance (lnIs-
sue), and realized variance (lnRV), as well as interactions with lnBM as explained in the
main text. Panel B reports the regression coe¢ cients of the aggregate variable, the log one-
year real risk-free rate (lnRf), which is regressed only on its own lag. The sample spans the
years 1964 through 2015. Standard errors clustered by year and �rm appear in parenthesis.
N denotes the number of observations. The marks �+�, �*�, and �**�indicate sign�cance at
the 10, 5, and 1 percent levels, respectively.

Panel A: Own Lag Lag lnBM R2 N

lnProf 0:734�� �0:080�� 46:7% 49; 708
(0:052) (0:018)

lnInv 0:157�� �0:301�� 15:7% 49; 720
(0:026) (0:026)

lnME 0:978�� 0:022 91:1% 49; 749
(0:005) (0:014)

lnMom6 0:048� 0:056� 0:3% 49; 748
(0:019) (0:027)

lnRV 0:688�� �0:056� 48:9% 49; 408
(0:068) (0:035)

Lag lnd_bm_bm 0:566�� �0:307�� 60:7% 49; 755
(0:025) (0:039)

Lag lnd_prof_bm 0:666�� 0:118�� 51:7% 49; 755
(0:020) (0:013)

Lag lnd_inv_bm 0:258�� 0:163�� 11:0% 49; 755
(0:013) (0:018)

Lag lnd_me_bm 0:685�� 0:149�� 54:9% 49; 755
(0:021) (0:017)

Lag lnd_mom_bm 0:022 0:157�� 2:0% 49; 755
(0:027) (0:014)

Panel B: Own Lag R2 N

Lag lnRf 0:603�� 36:3% 51
(0:200)
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Table 4 - Variance Decompositions

Table 4: The table displays the variance decomposition of �rm-level and market-level real
returns into CF and DR components. "Panel VAR" means that the CF and DR shocks are
retrieved from our main panel VAR, while "Time-series VAR", which only is releevant for
the market portfolio, refers to a VAR run directly at the market level, using market returns,
earnings and book-to-market ratios. surplus earnings, returns, and book-to-market ratio.
The sample spans the years 1964 through 2015. Standard errors appear in parentheses. The
marks �+�, �*�, and �**�indicate sign�cance at the 10, 5, and 1 percent levels, respectively.

var (DR) var (CF ) var (Cross) �2cov (DR;CF ) corr (DR;CF ) corr (Pred;Act)

Firm-level returns
Panel VAR
Fraction of var (r) 0:225+ 0:533�� 0:243�� �0:351�

(0:122) (0:115) (0:075) (0:162)

Market returns
Panel VAR
Fraction of var (rm) 0:178 0:552�� 0:008�� 0:308+ �0:492 0:985��

(0:119) (0:191) (0:003) (0:213) (0:452) (0:002)
Time-series VAR
Fraction of var (rm) 0:281 0:248 0:471�� �0:892��

(0:236) (0:187) (0:144) (0:249)
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Table 5 - Anomaly Variance Decompositions

Table 5: Panel A of the table shows decompositions of the variance of log anomaly returns
into cash �ow (CF) and discount rate (DR) components. The anomaly return is the di¤er-
ence between the log return of the top quintile portfolio and the log return of the bottom
quintile portfolio, where the quintile sort is based on the relevant characteristic. Panel B
shows variance decompositions of log returns to alternative mean-variance e¢ cient (MVE)
portfolios: the �rst is the in-sample MVE portfolio based on the quintile long-short anomaly
portfolios only, the second includes also the market portfolio. The sample spans the years
1964 through 2015. Standard errors appear in parentheses. The marks �+�, �*�, and �**�
indicate sign�cance at the 10, 5, and 1 percent levels, respectively.

var (DR) var (CF ) var (Cross) �2cov (DR;CF ) corr (DR;CF ) corr (Pred;Act)

Panel A: Individual long-short anomaly portfolios

Book-to-market:
Fraction of var (rbm) 0:180 0:536�� 0:022� 0:316�� �0:509�� 0:958��

(0:116) (0:169) (0:011) (0:122) (0:195) (0:041)

Pro�tability:
Fraction of var

�
rprof

�
0:232+ 0:529�� 0:042+ 0:326�� �0:466�� 0:884��

(0:137) (0:165) (0:022) (0:128) (0:166) (0:072)

Size:
Fraction of var (rsize) 0:170 0:399� 0:028+ 0:343�� �0:659�� 0:910��

(0:121) (0:174) (0:017) (0:113) (0:154) (0:059)

Momemtum:
Fraction of var (rmom) 0:157 0:436�� 0:024�� 0:361�� �0:690�� 0:955��

(0:106) (0:167) (0:010) (0:114) (0:143) (0:042)

Investment:
Fraction of var (rinv) 0:177+ 0:563�� 0:029� 0:366�� �0:579�� 0:945��

(0:098) (0:167) (0:015) (0:128) (0:163) (0:047)

Panel B: MVE portfolios

MVE portfolio, ex market:
Fraction of var(rex mktmve ) 0:142 0:440�� 0:026�� 0:373�� �0:747�� 0:924��

(0:097) (0:173) (0:010) (0:118) (0:134) (0:056)

MVE portfolio, incl. market:

Fraction of var
�
rallmve

�
0:131 0:580�� 0:025� 0:322� �0:583+ 0:932��

(0:092) (0:182) (0:011) (0:152) (0:323) (0:053)
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Table 6 - Correlations between Anomaly and Market Return Components

Table 6: Panel A of the table shows correlations between market cash �ow and discount
rate shocks and the anomaly cash �ow and discount rate shocks. Panel B shows correlations
between market cash �ow and discount rate shocks and the cash �ow and discount rate
shocks of the mean-variance e¢ cient (MVE) portfolio, where the latter is constructed as the
in-sample MVE portfolio based on the quintile long-short anomaly portfolios only �thus,
the market portfolio is not included in the MVE portfolio construction. The sample spans
the years 1964 through 2015. Standard errors appear in parentheses. The marks �+�, �*�,
and �**�indicate sign�cance at the 10, 5, and 1 percent levels, respectively.

Market CF Market DR
Anomaly CF Anomaly DR Anomaly CF Anomaly DR

Panel A:

Book-to-market �0:12 �0:20 0:38� 0:12
(0:21) (0:16) (0:16) (0:21)

Pro�tability �0:10 0:20 0:06 �0:45��
(0:17) (0:20) (0:21) (0:14)

(-) Investment �0:06 �0:02 0:35� �0:02
(0:21) (0:17) (0:16) (0:17)

(-) Size �0:08 �0:36� �0:08 0:27
(0:19) (0:18) (0:18) (0:22)

Momentum 0:08 0:06 �0:14 �0:12
(0:16) (0:18) (0:15) (0:17)

Panel B:

MVE portfolio, ex. market �0:01 0:06 0:14 �0:27
(0:16) (0:20) (0:15) (0:17)
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Table 7 - Anomaly Variance Decompositions:

Short- and Long-run Cash Flow Shocks

Table 7: The table shows correlations between short-run and long-run cash �ow shocks,
as well as the correlation between short- and long-run cash �ow shocks and discount rate
shocks. The anomaly return is the di¤erence between the log return of the top quintile
portfolio and the log return of the bottom quintile portfolio, where the quintile sort is based
on the relevant characteristic. The sample spans the years 1964 through 2015. Standard
errors appear in parentheses. The marks �+�, �*�, and �**�indicate sign�cance at the 10, 5,
and 1 percent levels, respectively.

Corr (CFshort�run; CFlong�run) Corr (DR;CFshort�run) Corr (DR;CFlong�run)

Book-to-market: �0:43�� 0:11 �0:55��
(0:16) (0:16) (0:18)

Pro�tability: �0:55�� �0:16 �0:28
(0:12) (0:16) (0:20)

Size: �0:15 0:17 �0:77��
(0:15) (0:15) (0:11)

Investment: �0:32� �0:04 �0:57��
(0:15) (0:17) (0:14)

Momentum: �0:49�� �0:03 �0:59��
(0:13) (0:17) (0:18)

Market: 0:09 0:04 �0:58
(0:25) (0:32) (0:46)
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Table 8 - Correlations of CF and DR shocks with aggregate metrics

Table 8: The table shows contemporaneous correlations between the market and anomaly
portfolios�cash �ow and discount rate shocks and various aggregate metrics: 1-year log real
per capita consumption growth, 1-year real per capita GDP growth, the 1-year di¤erence
in the log labor share, 3-year consumption and GDP growth (current and future 2 years),
one year log di¤erence in Baker and Wurgler�s sentiment index, the 1-year di¤erent in the
Baa-Aaa yield spread, the 1-year change in the term spread, the one-year change in the
3-month T-bill rate, and the cumulated one year shock to the Broker-Dealer leverage factor
of Adrien, Etula, and Muir (2014). A bold number implies signi�cant at the 5 percent level,
a number in italics implies signi�cance at the 10 percent level. The sample spans the years
1964 through 2015. Standard errors appear in parentheses. The marks �+�, �*�, and �**�
indicate sign�cance at the 10, 5, and 1 percent levels, respectively.

1yr Cons. 1yr GDP Change 3yr Cons. 3yr GDP Change in Change Baa- Change in Change risk- B -D Lev.

grow th grow th lab or share grow th growth sentim ent Aaa spread Term Spread free rate Factor

CF correlations:

Market: 0:37 0:37 �0:44 0:32 0:31 0:03 �0:47 �0:28 0:12 0:31
Book-to-market: �0:06 �0:05 �0:10 �0:04 �0:04 0:17 �0:02 0:09 0:05 0:22
(-) Investment: �0:22 �0:22 0:02 �0:06 �0:05 0:09 0:01 0:23 0:09 0:20
Pro�tability: 0:15 0:13 0:20 0:17 0:16 �0:16 0:13 �0:01 �0:18 0:02
(-) Size: �0:06 �0:07 0:01 0:15 0:16 0:04 �0:05 0:11 �0:04 0:20
Momentum: 0:19 0:20 -0.24 0:19 0:20 0:00 �0:18 �0:03 �0:07 0:06
MVE ex market: 0:17 0:18 -0.23 0:22 0:23 0:05 �0:15 0:07 �0:14 0.24
MVE all: 0:34 0:35 �0:43 0:35 0:35 0:06 �0:44 �0:08 �0:05 0:40

DR correlations:

Market: 0:02 0:03 0:07 �0:19 �0:18 0:14 0:20 �0:07 0:18 0:09
Book-to-market: 0:09 0:08 0:22 �0:05 �0:05 0:05 0:27 �0:03 0:12 �0:01
(-) Investment: 0:08 0:10 0:12 �0:17 �0:17 0:14 0:21 �0:14 0:12 �0:04
Pro�tability: �0:03 �0:05 �0:09 �0:01 �0:01 0:06 �0:20 �0:11 0:12 �0:32
(-) Size: �0:07 �0:06 0:07 �0:16 �0:16 �0:10 0:15 0:00 0:00 �0:19
Momentum: �0:28 �0:29 0:22 0:04 0:04 �0:31 0:04 0:16 �0:10 �0:15
MVE ex market: -0.26 �0:28 0:34 �0:02 �0:02 �0:27 0:14 0:08 0:02 �0:33
MVE all: �0:16 �0:17 0:34 �0:18 �0:18 �0:03 0:28 �0:04 0:21 �0:20
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Table 9 - Market Variance Decompositions in Alternative Speci�cations

Table 9: The table shows variance decompositions of market log returns into cash �ow (CF)
and discount rate (DR) components, derived from alternative speci�cations of the �rm-level
panel VAR, as explained in the text. Spec1 refers to the simplest VAR speci�cation without
interaction terms. Spec2 refers to the speci�cation that includes the aggregate book-to-
market ratio. Spec3 refers to the speci�cation that in addition includes interaction terms.
Spec4 and Spec5 refer to speci�cations including industry-and �rm-speci�c rolling means,
respectively. The sample spans the years 1964 through 2015. Standard errors appear in
parentheses. The marks �+�, �*�, and �**�indicate sign�cance at the 10, 5, and 1 percent
levels, respectively.

var (DR) var (CF ) var (Cross) �2cov (DR;CF ) corr (DR;CF ) corr (Pred;Act)

Spec1 Fraction of var (rm) 0:207 0:642�� 0:010� 0:194 �0:266 0:987��

(0:139) (0:226) (0:005) (0:278) (0:466) (0:023)

Spec2 Fraction of var (rm) 1:073 0:318 0:008 �0:344 0:294 0:987��

(1:076) (0:231) (0:015) (1:206) (0:817) (0:023)

Spec3 Fraction of var (rm) 1:498 0:551 0:040 �0:876 0:482 0:987��

(2:876) (0:842) (0:173) (3:389) (1:067) (0:023)

Spec4 Fraction of var (rm) 0:177 0:550�� 0:007+ 0:182 �0:292 0:988��

(0:123) (0:195) (0:004) (0:242) (0:476) (0:022)

Spec5 Fraction of var (rm) 0:204 0:559�� 0:007� 0:200 �0:297 0:987��

(0:138) (0:212) (0:003) (0:256) (0:473) (0:022)
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Table 10 - Anomaly Variance Decompositions in Alternative Speci�cations

Table 10: The table shows decompositions of the variance of log long-short anomaly returns
into cash �ow (CF) and discount rate (DR) components. The variance-decompositions are
derived from alternative speci�cations of the �rm-level panel VAR, as explained in the text.
Spec1 refers to the simplest VAR speci�cation without interaction terms. Spec2 refers to
the speci�cation that includes the aggregate book-to-market ratio. Spec3 refers to the spec-
i�cation that in addition includes interaction terms. Spec4 and Spec5 refer to speci�cations
including industry-and �rm-speci�c rolling means, respectively. The sample spans the years
1964 through 2015. Standard errors appear in parentheses. The marks �+�, �*�, and �**�
indicate sign�cance at the 10, 5, and 1 percent levels, respectively.

var (DR) var (CF ) var (Cross) �2cov (DR;CF ) corr (DR;CF ) corr (Pred;Act)

Book-to-market:
Spec1 Fraction of var (rbm) 0:166+ 0:477�� 0:017� 0:354�� �0:628�� 0:967��

(0:100) (0:152) (0:008) (0:121) (0:190) (0:040)
Spec2 Fraction of var (rbm) 0:087 0:705�� 0:030 0:253� �0:512� 0:968��

(0:078) (0:272) (0:033) (0:123) (0:228) (0:036)
Spec3 Fraction of var (rbm) 0:104 1:140 0:095 �0:040 0:057 0:967��

(0:087) (0:818) (0:251) (0:377) (0:517) (0:036)

Spec4 Fraction of var (rbm) 0:152+ 0:413�� 0:015� 0:312�� �0:624�� 0:971��

(0:090) (0:133) (0:007) (0:114) (0:184) (0:034)

Spec5 Fraction of var (rbm) 0:171+ 0:425�� 0:015� 0:350�� �0:649�� 0:967��

(0:107) (0:155) (0:007) (0:121) (0:204) (0:036)

Pro�tability:
Spec1 Fraction of var (rprof ) 0:179+ 0:487�� 0:033�� 0:360�� �0:610�� 0:892��

(0:107) (0:154) (0:013) (0:121) (0:159) (0:068)
Spec2 Fraction of var (rprof ) 0:122 0:663�� 0:044 0:275� �0:480� 0:900��

(0:098) (0:243) (0:038) (0:137) (0:214) (0:066)
Spec3 Fraction of var (rprof ) 0:320 0:735� 0:060 0:010 �0:010 0:914��

(0:223) (0:329) (0:133) (0:323) (0:336) (0:061)

Spec4 Fraction of var (rbm) 0:177+ 0:403�� 0:026�� 0:328�� �0:614�� 0:914��

(0:103) (0:133) (0:011) (0:115) (0:162) (0:060)
Spec5 Fraction of var (rbm) 0:203 0:430�� 0:026�� 0:334�� �0:566�� 0:903��

(0:138) (0:161) (0:010) (0:122) (0:203) (0:066)

Size:
Spec1 Fraction of var (rsize) 0:160 0:386� 0:021 0:362�� �0:727�� 0:937��

(0:111) (0:155) (0:010) (0:115) (0:171) (0:050)
Spec2 Fraction of var (rsize) 0:080 0:617�� 0:031 0:279� �0:625�� 0:937��

(0:083) (0:283) (0:024) (0:128) (0:194) (0:050)
Spec3 Fraction of var (rsize) 0:285 0:967 0:081 �0:112 0:107 0:943��

(0:379) (0:686) (0:160) (0:569) (0:452) (0:047)
Spec4 Fraction of var (rbm) 0:150 0:340�� 0:023� 0:317�� �0:702�� 0:935��

(0:103) (0:138) (0:010) (0:108) (0:172) (0:050)
Spec5 Fraction of var (rbm) 0:141 0:389�� 0:020� 0:327�� �0:699�� 0:903��

(0:106) (0:167) (0:010) (0:107) (0:161) (0:062)

Investment:
Spec1 Fraction of var (rinv) 0:169+ 0:530�� 0:022�� 0:374�� �0:625�� 0:950��

(0:087) (0:161) (0:007) (0:126) (0:166) (0:045)
Spec2 Fraction of var (rinv) 0:086 0:883� 0:054 0:212 �0:386 0:951��

(0:066) (0:389) (0:063) (0:179) (0:351) (0:044)
Spec3 Fraction of var (rinv) 0:087 0:991 0:095 0:142 �0:241 0:953��

(0:051) (0:872) (0:276) (0:328) (0:638) (0:043)

Spec4 Fraction of var (rbm) 0:162+ 0:425�� 0:015�� 0:341�� �0:651�� 0:958��

(0:083) (0:133) (0:005) (0:115) (0:169) (0:041)

Spec5 Fraction of var (rbm) 0:182+ 0:438�� 0:019�� 0:351�� �0:620�� 0:955��

(0:100) (0:174) (0:007) (0:121) (0:176) (0:042)
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Figure 1 - Cumulative Return Forecasting Coe¢ cients
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Figure 1: The plot shows the cumulative coe¢ cients of real log return forecasts based on
each characteristic (y-axis) for forecasting horizons of 1 to 20 years (x-axis), as implied by
the panel VAR. When computing the cumulative coe¢ cient, the coe¢ cient for horizon j is
multiplied by �j, where � = 0:96 as in the text. Thus, the cumulative coe¢ cient for each
horizon represents the discount rate component of log book-to-market ratio for that horizon.
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Figure 2 - Cumulative Earnings Forecasting Coe¢ cients
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Figure 2: The plot shows the cumulative coe¢ cients of real log earnings forecasts based on
each characteristic (y-axis) for forecasting horizons of 1 to 20 years (x-axis), as implied by
the panel VAR. When computing the cumulative coe¢ cient, the coe¢ cient for horizon j is
multiplied by �j, where � = 0:96 as in the text. Thus, the cumulative coe¢ cient for each
horizon represents the cash �ow component of log book-to-market ratio for that horizon.
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Figure 3 - Predicting 10-year Market Earnings and Returns
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Figure 3: The top plot shows realized versus predicted 10-year log clean surplus earnings of
the market portfolio. The solid blue line corresponds to realized earnings, while the dashed
red and dotted black lines represent predicted earnings from the panel VAR and market-
level VAR, respectively. The year on the x-axis is the year of the prediction -e.g., year
2005 corresponds to the 10-year realized earnings in 2006-2015. The bottom plot shows the
corresponding for 10-year log real market returns.
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Figure 4 - Predicting 10-year Value Anomaly Earnings and Returns
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Figure 4: The top plot shows realized versus predicted 10-year log clean-surplus earnings
of the long-short portfolio formed by sorting on book-to-market ratios. The solid blue line
corresponds to realized earnings, while the dashed red line represent predicted earnings from
the panel VAR. The year on the x-axis is the year of the prediction-e.g., year 2005 corresponds
to the 10-year realized earnings in 2006-2015. The bottom plot shows the corresponding for
10-year real log returns to the long-short value portfolio.
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Figure 5 - Predictive Power of Valuation Components
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Figure 5: The �gure shows the R2 statistics from regressions forecasting either 10-year
earnings or returns of portfolios. The blue (left) bars represent the predictive power of
regressions of 10-year log clean-surplus earnings on the cash �ow components of �rms�log
book-to-market ratios (CF_LR) aggregated to the relevant portfolio level. The light red
(right) bars represent the predictive power of regressions of 10-year log real returns on the
discount rate components of �rms�log book-to-market ratios (DR_LR). The portfolios are
the market portfolio (Mkt), as well as top quintile minus bottom quintile portfolios sorted
on book-to-market (B/M), pro�tability (Prof), investment (Inv), size (ME), and issuance
(Issue). See the main text for details regarding the construction of the test portfolios and
the corresponding cash �ow and discount rate components. The sample spans the years 1964
through 2015.

64



Figure 6 - Market CF and DR shocks vs. anomaly MVE CF and DR shocks
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Figure 6: Panel A shows the cash �ow shocks from the market and the anomaly mean-
variance e¢ cient (MVE) portfolio. The latter is constructed using only the long-short anom-
aly portfolios and in-sample MVE weights. Panel B shows the same for discount rate shocks.
The sample is annual, from 1965 through 2015.
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Figure 7 - Predicting 10-year Market Earnings and Returns in Alternative
Speci�cations
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Figure 7: The top plot shows realized versus predicted 10-year log clean surplus earnings
of the market portfolio. The solid blue line corresponds to realized earnings, while the red,
dashed line represent predicted earnings from an alternative speci�cation of the panel VAR
(v2, where the aggregate book-to-market ratio is included in the VAR). The year on the x-
axis is the year of the prediction -e.g., year 2005 corresponds to the 10-year realized earnings
in 2006-2015. The bottom plot shows the corresponding for 10-year log real market returns.
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Figure 8 - Predictive Power of Valuation Components in Alternative
Speci�cations
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Figure 8: The �gure shows the R2 statistics from regressions forecasting either 10-year
earnings (top plot) or returns (bottom plot) of portfolios. The dark blue (left) bars represent
the predictive power of regressions using long-run cash �ow or discount rate components
of the log book-to-market ratios from the main panel VAR speci�cation. The red bars
correspond to speci�cation v1 (simplest VAR, without interaction terms), the light green
bars correspond to speci�cation v2 (adding the aggregate book-to-market ratio to the panel
VAR). The light brown bars correspond to speci�cation v3 (adding both aggregate lnBM and
interaction terms, as explained in the text). Finally, the yellow, rightmost bars correspond
to speci�caiton v4 (adding look-ahead-bias-free industry �xed e¤ects). The portfolios are
the market portfolio (Mkt), as well as top quintile minus bottom quintile portfolios sorted
on book-to-market (B/M), pro�tability (Prof), investment (Inv), size (ME), and 6-month
Momentum (Mom6). See the main text for details regarding the construction of the test
portfolios and the corresponding cash �ow and discount rate components. The sample spans
the years 1964 through 2015.
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