An Equilibrium Analysis of the Long-Term Care Insurance Market

Ami Ko*
November 15, 2016
(This version: August 20, 2017)

Abstract

This paper uses a model of family interactions to explain why the long-term care insurance market has not been growing. Coverage rates are low and premiums have risen sharply in recent years. I develop and estimate a dynamic non-cooperative model of the family in which parents and children interact over long-term care decisions. Competitive equilibrium analyses of the insurance market show that private information about the availability of informal care limits the size of the market by creating substantial adverse selection. In equilibrium, the market only serves high-risk individuals with limited access to informal care. I also find that children strategically reduce informal care in response to their parents’ insurance coverage. This family moral hazard effect of insurance reduces the insurance demand and increases the formal care risk of the insured, both of which limit the size of the insurance market. I demonstrate that the initial neglect of adverse selection and family moral hazard resulted in substantial underpricing of insurance products. I further show that the decreasing availability of informal care for more recent birth cohorts puts upward pressure on the equilibrium premium. I propose child demographic-based pricing as an alternative risk adjustment that could decrease the average premium, invigorate the market, and generate welfare gains.

*Department of Economics, Georgetown University, 3700 O St NW ICC 557, Washington DC 20009. E-mail: ami.ko@georgetown.edu. I am extremely grateful to my advisors, Hanming Fang, Holger Sieg, and Petra Todd for their guidance and support throughout this project. I also thank seminar participants at Arizona State University, University of Rochester, Boston College, Georgetown University, American Society of Health Economists Biennial Meetings, Canadian Health Economics Study Group Meetings, Center for Retirement Research at Boston College, Econometric Society North American Summer Meetings, Social Security Administration RRC Annual Meetings, and University of Pennsylvania Empirical Micro Workshop for helpful comments and discussions. I gratefully acknowledge financial support from the Korea Foundation for Advanced Studies and the Center for Retirement Research at Boston College (BC Grant 5002099) sponsored by the Social Security Administration.
1 Introduction

Long-term care is one of the largest financial risks faced by elderly Americans. Almost 60 percent of 65-year-olds will spend on average $100,000 on formal long-term care services, including nursing homes, assisted living facilities, and home health aides (Kemper et al., 2005/2006). Long-term care insurance provides financial protection against this formal care risk. Yet only 13 percent of the elderly own long-term care insurance. Along with relatively low coverage rates, the long-term care insurance market has undergone dramatic changes in premiums and in market structure over the last couple of years. The average premium more than doubled, and the number of insurance companies selling policies plunged from over 100 to a dozen.

The primary goal of this paper is to understand how the availability of informal care provided by families can explain the small size of the long-term care insurance market and to explore welfare-improving policies. A secondary goal is to understand the reasons for recent premium increases. There are two main mechanisms by which informal care can account for the limited size of the insurance market. First, despite the fact that most long-term care is provided informally by adult children, long-term care insurance companies do not price on child demographics. This can result in adverse selection where in equilibrium, the market only serves high-risk individuals with limited access to family care. Second, the desire to use bequests as an effective instrument to elicit informal care can reduce the demand for insurance. If children provide care in part to protect bequests from formal care expenses, then long-term care insurance undermines this informal care incentive as it pays for formal care expenses. If parents prefer informal care to formal care, then they will demand less insurance to avoid distorting children’s caregiving incentives.

I first present empirical facts that suggest that there is adverse selection based on the availability of informal care in the long-term care insurance market. I show that conditional on information used by long-term care insurance companies for pricing, individuals’ beliefs about the availability of informal care are negatively correlated with formal care risk and long-term care insurance coverage. Next, I present suggestive evidence that children provide care in part to protect bequests from formal care expenses. I show that parents who have financial protection against formal care expenses from long-term care insurance or Medicaid are less likely to receive care from children.
Motivated by these facts, I develop and estimate a model that is a dynamic non-cooperative game between an elderly parent and an adult child who interact over long-term care decisions. The parent has preferences over informal and formal care and may value leaving bequests to the child. The parent makes savings decisions and can have formal care paid by Medicaid if eligible. The child may provide informal care out of altruism or to protect bequests from formal care expenses. The child’s cost of providing informal care includes forgone labor income and a psychological burden, which may vary by the child’s demographics. Among other things, the parent’s long-term care insurance decision is affected by the likelihood of receiving informal care and the chance of becoming Medicaid eligible. I use individual-level panel survey data from the Health and Retirement Study 1998-2010 to structurally estimate the model by conditional choice probability (CCP) estimation method. Estimation is based on actual premium data over the sample period. Then, I use the estimated model to analyze the counterfactual competitive equilibrium of the long-term care insurance market.

In the first set of counterfactuals, I quantify the effects of informal care on equilibrium coverage rates in the long-term care insurance market and explore welfare-increasing policies. There are two main results. First, private information about the availability of informal care creates substantial adverse selection. In equilibrium, the market only serves high-risk individuals who have limited access to informal care. To reduce market inefficiencies arising from adverse selection, I evaluate counterfactual pricing on child demographics that are predictive of family care. Demographic-based pricing is common in insurance markets, and in fact, long-term care insurance companies started gender-based pricing in 2013 as an attempt to fight persistent financial losses. Counterfactual results show that child demographic-based pricing increases the equilibrium coverage rate by 56 percent, decreases the average premium by 16 percent, and creates welfare gains. These welfare gains are generated by expanding insurance coverage to low-risk individuals who nevertheless value financial protection against formal care risk. Second, there is a family moral hazard effect of long-term care insurance and children reduce informal care in response to their parents’ insurance coverage by 20 percent. This is because insurance protects bequests from formal care expenses and therefore undermines children’s informal care incentives. Because parents prefer informal care to formal care, family moral hazard decreases the demand for insurance. It also puts upward pressure on the equilibrium premium by increasing formal care risk of the insured. I find that family moral hazard reduces the equilibrium coverage rate by 41 percent.
In the second set of counterfactuals, I provide explanations for the recent premium increases in the long-term care insurance market. First, I demonstrate that the average empirical premium before the recent hikes is below the equilibrium premium by 80 percent. This number coincides with major long-term care insurance companies’ requested premium increases of 80-85 percent on their older blocks of sales (Carrns, 2015). I show that the initial risk classification practices of insurance companies underestimated the magnitude of adverse selection and family moral hazard, leading to such underpricing. Second, I demonstrate that the declining availability of informal care for more recent birth cohorts puts upward pressure on the equilibrium premium. As baby boomers replace the former generation and become the major consumers of the long-term care insurance market, the equilibrium premium increases by 10 percent. This is because baby boomers are at higher risk for using formal care as they have fewer children to rely on for family care. Without changes in the pricing practices of insurance companies, one could expect constant premium increases as the ratio of the elderly to working-age population increases.

The findings in this paper have important implications for the viability of insurance markets. For relatively young insurance markets, such as the long-term care insurance market, pricing on observables that are powerful predictors of risk is crucial for the market’s sustainability. This is because initial financial losses from adverse selection could trigger insurance companies to exit the market even when there is an interior equilibrium.¹ In the context of the long-term care insurance market, this paper demonstrates that pricing on the availability of substitutes that have substantial impacts on the insured risk can alleviate adverse selection and generate welfare gains. The value of these findings can be substantial given the aging of the baby boom generation and, consequently, the increasing needs for long-term care. By reducing private information about family care, the long-term care insurance market can increase its viability and continue to provide elderly Americans with insurance against one of their largest financial risks.

This paper contributes to several distinct literatures. First, it is related to the literature on private information in insurance markets. Classical models in the literature assume one-dimensional heterogeneity in risk and analyze adverse selection based on expected risk (Akerlof, 1970; Pauly, 1974; Rothschild and Stiglitz, 1976). There is a growing empirical

¹For example, recent exits of insurance companies from the health insurance exchanges after incurring losses for the first couple of years hint at the importance of getting the pricing right in the first place.
literature that stresses the importance of heterogeneity in risk preferences such as risk aversion (Finkelstein and McGarry, 2006; Cohen and Einav, 2007), cognitive ability (Fang et al., 2008), desire for wealth after death (Einav et al., 2010b), and moral hazard (Einav et al., 2013). My analysis contributes to this strand of the literature by allowing selection on risk as well as selection on wealth. As argued in Brown and Finkelstein (2008), the presence of means-tested Medicaid renders wealth an important factor in determining the willingness to pay for long-term care insurance. By developing a model of insurance choice that incorporates risk heterogeneity as well as wealth heterogeneity, this paper promotes a better understanding of selection in private insurance markets in the presence of public insurance programs.

Second, this paper contributes to the literature on strategic bequest motives and insurance choices. Theoretical studies in the literature argue that when parents can use bequests to elicit favorable actions from their children, they may forgo financial protection against risk to avoid distorting children’s incentives (Bernheim et al., 1985; Pauly, 1990; Zweifel and Struwe, 1996; Courbage and Zweifel, 2011). The empirical evidence favors this argument. Work by Cox (1987), Cox and Rank (1992), and Norton et al. (2013) finds evidence for strategic inter-vivos transfers, and in the context of long-term care, Brown (2006) and Gronock (2016) find evidence that caregiving children are rewarded with more bequests. Despite such empirical evidence, there is no study that structurally quantifies the effect of strategic bequest motives on the insurance choices of the elderly. I fill this gap by developing and structurally estimating a non-cooperative model in which family members interact over insurance decisions with both strategic and altruistic motives.

Third, this paper contributes to the literature that analyzes the small size of the long-term care insurance market. Most studies in this field focus on factors that limit the demand for insurance. Brown and Finkelstein (2008) find that Medicaid imposes a large implicit tax on long-term care insurance for low-wealth individuals, and Lockwood (2016) finds that altruistic bequest motives reduce the demand for long-term care insurance by lowering the cost of precautionary savings. Studies on the supply side of the market find high mark-ups (Brown and Finkelstein, 2007) and they propose substantial amounts of private information (Hendren, 2013) as an explanation for the small size of the market. I provide new explanations by analyzing the effects of family care on equilibrium outcomes in the long-term care insurance market. Recent work by Mommaerts (2015) estimates a cooperative model of the
family with limited commitment and shows that family care reduces the overall demand for
long-term care insurance. In contrast to her work, I estimate a non-cooperative model of the
family with rich family heterogeneity and examine how adverse selection based on informal
care and family moral hazard affect equilibrium outcomes. I show that private information
about the availability of informal care and strategic motives of the family, both of which
are absent in Mommaerts (2015), have important effects on the long-term care insurance
market.\footnote{This paper is also related to the literature on family care arrangements (Kaplan, 2012; Fahle, 2014;
Skira, 2015; Barczyk and Kredler, 2016) and the literature on the effects of health risks on elderly savings
(Hubbard et al., 1995; Palumbo, 1999; De Nardi et al., 2010; Kopecky and Koreshkova, 2014).}

The rest of this paper proceeds as follows. Section 2 presents empirical facts about long-
term care in the U.S. Section 3 presents the model. Section 4 presents the data and the
estimation results. Section 5 presents the main results. Section 6 concludes.

2 Empirical Facts

I start by providing empirical facts about long-term care in the U.S. The main data for this
paper come from the Health and Retirement Study (HRS), which surveys a representative
sample of Americans over the age of 50 every two years since 1992. I use seven interviews
from the HRS 1998-2010. I present evidence that private information about the availability of
informal care is a source of adverse selection in the long-term care insurance market. Next,
I show data patterns that suggest that bequests may be important in shaping children’s
informal care incentives. Finally, I present evidence on underpricing of insurance products
that cannot be explained by existing studies on the supply of long-term care insurance.

2.1 Long-Term Care in the U.S.

I first provide a brief background on the long-term care sector in the U.S. For more institu-
tional details, see Commission on Long-Term Care (2013), Society of Actuaries (2014), and
Fang (2016).

Long-term care risk. Long-term care is formally defined as assistance with basic personal
tasks of everyday life, called Activities of Daily Living (ADLs) or Instrumental Activities of
Daily Living (IADLs). Examples of ADLs include bathing, dressing, using the toilet, and getting in and out of bed. IADLs refer to activities that require more skills than ADLs such as doing housework, managing money, using the telephone, and taking medication. Declines in physical or mental abilities are the main reasons for requiring long-term care. Using individuals aged 60 and over in the HRS 1998-2010, Figure 1 reports, for each age group, the share of individuals who have ADL/IADL limitations or are cognitively impaired. Long-term care needs rise sharply with age and 62 percent of individuals over the age of 85 need assistance with daily tasks. While a substantial share of the elderly have long-term care needs toward the end of their lives, some people never experience difficulties with basic daily tasks until death. Using the HRS 1998-2010, I estimate the Markov transition probabilities of long-term care needs conditional on age and gender.\(^3\) I find that about 26 percent of the elderly will never experience physical or cognitive disabilities, suggesting that individuals face risks about how much long-term care they would need.

Informal care. Unpaid long-term care provided by the family - which I will refer to as informal care in this paper - plays a substantial role in the long-term care sector. This is

\(^3\)I provide details about the estimation in Section 4.2.
because unlike acute medical care, long-term care does not require professional training; it simply refers to assistance with basic personal tasks. Several studies have found evidence that informal care is the backbone of long-term care delivery in the U.S. For example, work by Barczyk and Kredler (2016) shows that informal care accounts for 64 percent of all help hours received by the elderly. Using the HRS 1998-2010, I find that 62 percent of individuals with long-term care needs receive help from children. This implies that children play a central role in delivering long-term care to the elderly.

Formal care. Another way to meet one's long-term care needs is to use formal long-term care services, such as nursing homes, assisted living facilities, and paid home care. These formal care services are labor-intensive and costly; the median annual rate is $80,300 for a semi-private room in a nursing home, $43,200 for assisted living facilities, and $36,500 for paid home care.⁴ Work by Kemper et al. (2005/2006) shows that almost 60 percent of 65-year-olds will incur $100,000 in formal care expenses over their lives. Formal care is therefore one of the largest financial risks faced by elderly Americans.

Long-term care insurance. Private long-term care insurance provides financial protection against these formal care risks. The long-term care insurance market is relatively young and modern insurance products were introduced in the late 1980s.⁵ Typical long-term care insurance policies cover both facility care and paid home care provided by employees of home care agencies; most policies do not cover informal care. Policies are guaranteed renewable and specify a constant and nominal annual premium. Premiums are conditional on age, gender, and underwriting class determined by health conditions. Gender-based pricing is new and started in 2013. The average purchase age is 60 years, but most people do not use insurance until they turn 80 (Broker World, 2009-2015). Despite substantial formal care risks, the private long-term care insurance market is small; I find that the insurance coverage rate is only 13 percent among individuals aged 60 and over in the HRS 1998-2010.

Sources of formal care payments. Formal long-term care expenses totaled over $200 billion in 2011, which is about 1.4 percent of GDP (Commission on Long-Term Care, 2013). There are three main sources of payments. First, long-term care insurance covers about

⁴See Genworth (2015). The cost estimate for paid home care assumes that the help is used for 5 hours per day.

⁵National Care Planning Council, https://www.longtermcarelink.net/.
12 percent. The role of private insurance is small due to the low coverage rates. Second, Medicaid covers over 60 percent. Medicaid is a means-tested public insurance program and pays formal care costs for individuals with limited resources. At $123 billion in 2011, Medicaid spending on long-term care imposes severe fiscal constraints at both state and federal government levels (Commission on Long-Term Care, 2013). Third, out-of-pocket money covers about 22 percent. This suggests that self-insurance in the form of savings is an important way by which elderly individuals prepare for formal care risks.

2.2 Private Information in the Long-Term Care Insurance Market

Despite the fact that informal care plays a critical role in delivering long-term care, long-term care insurance companies do not collect any information about children from their consumers. This is not because of regulation as there are no restrictions on the characteristics that may be used in pricing (Brown and Finkelstein, 2007). I now provide evidence that conditional on information used by insurance companies for pricing, subjective beliefs about the availability of informal care are powerful predictors of formal care risk and long-term care insurance coverage.6

I use the HRS question that asks about the availability of future informal care: “Suppose in the future, you needed help with basic personal care activities like eating or dressing. Will your daughter/son be willing and able to help you over a long period of time?” I use an individual’s answer to this question as a measure of his beliefs about the availability of informal care. The HRS also asks individuals about their self-assessed probability of entering a nursing home: “What is the percent chance (0-100) that you will move to a nursing home in the next five years?” Several studies have used this question to construct a measure of private information about formal care risk (Finkelstein and McGarry, 2006; Hendren, 2013). I examine the predictive power of beliefs about informal care as well as the predictive power of beliefs about nursing home entry by estimating the following probit equations:

\[
Pr(NH_{i,t+6} = 1) = \Phi(\alpha_1 B_{it}^{IC} + \beta_1 B_{it}^{NH} + X_{it} \gamma_1) \quad \text{and} \quad (1)
\]

\[
Pr(LTCI_{it} = 1) = \Phi(\alpha_2 B_{it}^{IC} + \beta_2 B_{it}^{NH} + X_{it} \gamma_2). \quad (2)
\]

6The empirical strategy used in this section follows that in Finkelstein and McGarry (2006).
Table 1: Beliefs about Informal Care, Nursing Home Use, and Insurance Coverage

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsequent NH Use</td>
<td>0.014</td>
<td>0.024</td>
</tr>
<tr>
<td>LTCI</td>
<td>0.139</td>
<td>0.186</td>
</tr>
<tr>
<td>Observations</td>
<td>2553</td>
<td>2552</td>
</tr>
</tbody>
</table>

Notes: Column (1) reports the subsequent nursing home (NH) utilization rate and the long-term care insurance (LTCI) coverage rate of respondents who believe their children will help with long-term care needs. Column (2) reports the nursing home utilization and insurance coverage rates of respondents who do not believe their children will help. Sample is limited to individuals with children who are between ages 70-75 and do not have rejection conditions based on underwriting guidelines in Hendren (2013).

The term $NH_{i,t-7:t+6}$ is an indicator for staying in a nursing home for more than 100 nights in the next six years since the interview. $LTCI_{it}$ is an indicator for current long-term care insurance holdings. B_{it}^{IC} is an indicator for whether the individual thinks children will help. If the individual believes some child will help, I set B_{it}^{IC} to one. If the individual believes no child will help, then I set B_{it}^{IC} to zero. B_{it}^{NH} is the individual’s self-assessed probability of entering a nursing home rescaled to be between zero and one. X_{it} is a vector of individual characteristics used by insurance companies for pricing that includes age, gender, and various health conditions. X_{it} does not include any information about children as such information is not collected by insurance companies.

I restrict the sample to individuals who are healthy enough to buy long-term care insurance at the time of interview, and old enough to have long-term care needs over the next six years since the interview. I use individuals aged 70-75 who have children and do not have conditions that render them ineligible to buy long-term care insurance. Table 1 reports the subsequent nursing home utilization rate and the long-term care insurance coverage rate of the sample broken down by their beliefs about the availability of informal care. About one half of the sample believes children will help. These beliefs appear reasonable because in the

7Short-term nursing home stays following acute hospitalization are covered by Medicare up to 100 days. To distinguish nursing home stays that are covered by private long-term care insurance from those covered by Medicare, I use nursing home stays lasting more than 100 nights.

8I follow Finkelstein and McGarry (2006) and Hendren (2013) to control for pricing covariates.

9I follow Hendren (2013) to identify rejection conditions. I exclude individuals who have ADL/IADL limitations, have experienced a stroke, or have used nursing homes or paid home care in the past.
Table 2: Results from the Asymmetric Information Test

<table>
<thead>
<tr>
<th></th>
<th>(1) Subsequent NH use</th>
<th>(2) LTCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Believe children will help</td>
<td>-0.010** (0.004)</td>
<td>-0.041*** (0.012)</td>
</tr>
<tr>
<td>Subjective prob of future NH use (0-1)</td>
<td>-0.011 (0.012)</td>
<td>0.186*** (0.029)</td>
</tr>
<tr>
<td>Female</td>
<td>0.063 (0.157)</td>
<td>0.350 (0.390)</td>
</tr>
<tr>
<td>Age</td>
<td>0.004** (0.002)</td>
<td>0.004 (0.004)</td>
</tr>
<tr>
<td>Female*Age</td>
<td>-0.001 (0.002)</td>
<td>-0.005 (0.005)</td>
</tr>
<tr>
<td>Psychological condition</td>
<td>0.004 (0.007)</td>
<td>-0.017 (0.024)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.019*** (0.005)</td>
<td>-0.035* (0.019)</td>
</tr>
<tr>
<td>Lung disease</td>
<td>0.010 (0.007)</td>
<td>-0.059** (0.025)</td>
</tr>
<tr>
<td>Arthritis</td>
<td>-0.008* (0.004)</td>
<td>-0.000 (0.013)</td>
</tr>
<tr>
<td>Heart disease</td>
<td>-0.002 (0.005)</td>
<td>-0.014 (0.017)</td>
</tr>
<tr>
<td>Cancer</td>
<td>0.000 (0.006)</td>
<td>-0.017 (0.018)</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>0.005 (0.004)</td>
<td>-0.013 (0.014)</td>
</tr>
<tr>
<td>Cognitive score (0-1)</td>
<td>-0.106*** (0.020)</td>
<td>0.324*** (0.050)</td>
</tr>
</tbody>
</table>

Observations: 5105 5105

Notes: Reported coefficients are marginal effects from probit estimation of Equations (1) and (2). Standard errors are clustered at the household level and are reported in parentheses. Dependent variable in Column (1) is an indicator for staying in a nursing home for more than 100 nights in the next 6 years. Mean is 0.019. Dependent variable in Column (2) is an indicator for long-term care insurance ownership. Mean is 0.163. Sample is limited to individuals with children who are between ages 70-75 and do not have rejection conditions based on underwriting guidelines in Hendren (2013). * p < 0.10, ** p < 0.05, *** p < 0.01.

Data, about 60 percent of respondents with long-term care needs actually receive care from their children. Individuals who believe children will help are less likely to enter a nursing home in the future and to own long-term care insurance.

Table 2 reports the results from probit estimation. Column (1) shows that individual beliefs about the availability of informal care are powerful predictors of subsequent nursing home use. Individuals who believe their children will help are 1 percentage point less likely to enter a nursing home in the future. This is a substantial effect as 2 percent of the sample use nursing homes in the next 6 years.\(^{10}\) What is surprising is that individual beliefs about nursing home entry have no power in predicting subsequent nursing home use - the relationship is indeed negative and statistically insignificant.\(^{11}\) If beliefs about nursing home entry reflect

\(^{10}\)The negative and significant correlation between beliefs about informal care and subsequent nursing home use holds true when I measure nursing home use over a longer time horizon.

\(^{11}\)This result is consistent with Hendren (2013), who finds little predictive power of beliefs about nursing home entry among individuals who are eligible to buy long-term care insurance. The fact that beliefs about the availability of informal care have predictive power, while beliefs about nursing home entry do not, suggests individuals’ imperfect ability to incorporate all relevant information in forming these beliefs.
information about unobserved health conditions, the insignificant relationship suggests that the amounts of private information about health are small. Column (2) indicates that there is a negative and significant relationship between beliefs about the availability of informal care and insurance holdings. Individuals who believe their children will help are 4 percentage points less likely to own long-term care insurance. Given the coverage rate of 16 percent among the sample, this finding serves as evidence that private information about informal care has a substantial effect on insurance choices.

Taken together, Table 2 provides evidence that (1) the dimension of private information that could be the most relevant to insurance companies is private information about the availability of informal care, and (2) individuals with less access to informal care are more likely to select into insurance, creating potential adverse selection.

2.3 Informal Care and Bequests

I now provide descriptive statistics that suggest that bequests may play an important role in shaping the caregiving incentives of children. Given the costly nature of formal care, children may provide care themselves to protect bequests from formal care expenses. If that is the case, the out-of-pocket costs of formal care that parents face may be an important factor in children’s caregiving decisions. For example, if parents face zero out-of-pocket costs of formal care by having full long-term care insurance or being Medicaid eligible, children will not have any strategic incentive to provide informal care. Based on this intuition, I look for data patterns that suggest a positive relationship between informal care provision and the out-of-pocket costs of formal care faced by parents.

Figure 2 reports the long-term care insurance coverage rate (solid line) and the share of Medicaid eligibles (dashed line) by wealth quintile. The long-term care insurance coverage rate increases in wealth while the share of Medicaid eligibles decreases in wealth. Individuals in the middle of the wealth distribution face the largest out-of-pocket costs of formal care as the share covered by either long-term care insurance or Medicaid is the lowest. Indeed, Figure 3 shows that there is an inverted-U pattern of informal care; middle-wealth parents

As argued in Finkelstein and McGarry (2006), if B^{NH} is a sufficient statistic for private information about nursing home use, conditional on B^{NH}, all other individual information (including B^{IC}) should have no power in predicting nursing home use.
Figure 2: Long-Term Care Insurance Coverage and Medicaid Eligibility by Wealth

Notes: Solid line represents the long-term care insurance coverage rate by wealth quintile. Dashed line represents the share of respondents on Medicaid. Dotted line represents the share of respondents who have either long-term care insurance or Medicaid benefits. Sample is limited to single respondents aged 60 and over in the HRS 1998-2010.

Figure 3: Informal Care from Children by Parent Wealth

Notes: Left panel reports the share of respondents receiving care from children, by respondent wealth quintile. Right panel reports the average monthly care hours provided by children. Sample is limited to single respondents aged 60 and over who have long-term care needs in the HRS 1998-2010.
receive the most informal care from children at the extensive and intensive margins. While other factors, such as children’s opportunity costs, may contribute to the inverted-U pattern of informal care, the positive relationship between children’s informal care behaviors and parents’ out-of-pocket costs of formal care serves as suggestive evidence that children may provide informal care to protect bequests from formal care expenses.\footnote{In Appendix A, I show further descriptive evidence that long-term care insurance undermines children’s informal care incentives.}

Several empirical studies also find a significant relationship between bequests and children’s informal care behaviors. Brown (2006) uses inclusion in life insurance policies and wills as proxies for bequests and finds that caregiving children are more likely to receive end-of-life transfers from parents. Groneck (2016) uses the actual bequest data obtained from the HRS exit interviews and finds a positive and significant correlation between children’s informal care behaviors and the amounts of the bequests they receive. Motivated by such evidence, this paper develops and estimates a structural model to quantify how strategic incentives of the family surrounding bequests affect various dimensions of long-term care decisions.

2.4 Recent Changes in the Long-Term Care Insurance Market

The last few years have witnessed drastic changes in the long-term care insurance market, and there have been debates on the market’s viability. The left panel in Figure 4 presents changes in the average premium of a specific long-term care insurance policy that pays formal care expenses up to $100 per day for three years.\footnote{The data are collected by Broker World, and major insurance companies - which account for more than 90 percent of industry sales - participate in the survey. The data period is from 2008 to 2014. The drastic changes in the long-term care insurance market started after 2010. The sample period of 2008-2014 is therefore suitable to capture these changes.} From 2008 to 2014, the average premium of this policy doubled for men and almost tripled for women. The right panel reports the premium trend of this policy separately for Genworth, which is the biggest insurance company with more than one third of the market share. The figure shows that Genworth tripled the premium for men and almost quintupled it for women. Figure 4 also reveals that, despite the well-known fact that women are more likely to use formal care than men (Brown and Finkelstein, 2007), gender-based pricing only started in 2013.

Existing policies were no exceptions to such premium hikes. Long-term care insurance contracts specify a constant nominal premium that is usually not subject to changes over
the life of the contract. However, state regulators approve premium increases on existing policies if insurance companies are successful in demonstrating that they had “underpriced” their products. Most major insurance companies requested premium increases starting in 2012 and were granted substantial ones. For example, Genworth requested premium increases of 80 to 85 percent on policies sold before 2011, and had received approvals from 41 states by the end of 2013 (Carrns, 2014, 2015).

In the midst of insurance companies seeking premium increases, a substantial number of insurance companies left the market altogether. Using financial data submitted by the universe of insurance companies operating in the individual long-term care line of business, I find that out of 128 insurance companies that had in-force policies in 2015, only 16 companies are actively in the market, that is, selling new policies.14 According to an industry report which surveyed insurance companies that had exited the market, the failure to meet profit objectives was the primary reason for the exit decisions (Cohen, 2012).

14The data are collected by the National Association of Insurance Commissioners (NAIC) and compiled by SNL Financial. Insurance companies that no longer sell policies still have to honor their existing policies.
In this paper, using an equilibrium model of the long-term care insurance market, I examine whether premiums before the recent hikes were indeed underpriced. The existing literature actually has evidence opposite to what insurance companies claim about underpricing and financial losses. Brown and Finkelstein (2007) use an actuarial model of formal long-term care utilization probabilities to calculate mark-ups of long-term care insurance policies sold in 2002. They find that the premiums are above actuarially fair levels and that insurance companies pay out only 82 cents in benefits for every dollar they receive in premiums. However, the actuarial model used in their analysis predicts formal care risk unconditional on ownership status of long-term care insurance, which may underpredict formal care risk in the presence of adverse selection or family moral hazard. By estimating a model of insurance selection that incorporates these two factors, I aim to compute more accurate mark-ups of these policies and provide explanations for the recent soaring premiums.

3 Model

To understand family interactions over long-term care and to explore the possible scope for welfare-increasing policies, I develop a dynamic non-cooperative game model played between a single elderly parent and an adult child.\footnote{I assume the parent is single to abstract away from spouse-provided care, and to focus on family care provided by children. Also, in the data, most of family care received by the elderly comes from adult children.} The parent makes long-term care insurance purchase decisions when relatively young and healthy. The child makes labor market participation decisions, and when the parent has long-term care needs, she decides how much time to spend on taking care of the parent. If the child does not provide care, the parent chooses the type of formal care services that she would use. The parent can have formal care costs paid by Medicaid if eligible. The parent makes savings decisions, and she leaves a share of her wealth as bequests to the child.

Key features of the model are the following. First, the model describes a non-cooperative decision-making process of the parent and the child. The non-cooperative approach is motivated by several studies that find that strategic motives may be important in understanding long-term care decisions of the family.\footnote{See Bernheim et al. (1985), Pauly (1990), Zweifel and Struwe (1996), and Courbage and Zweifel (2011) for theoretical studies, and Brown (2006) and Groneck (2016) for empirical evidence.} Moreover, almost 70 percent of the children in the
data are married. As most parents and children in the data belong to separate households, it is unrealistic to assume that they cooperate on various dimensions of decisions such as consumption, labor market participation, and leisure. Second, the model incorporates altruism. The parent is altruistic toward the child in that she may value leaving her wealth to the child. The child is altruistic toward the parent in that she may derive warm-glow utility from providing informal care. Third, the model captures the possibility of multiple children providing care in a reduced-form way. In the data, about one quarter of parents receive care from multiple children, and parents with many children use nursing homes less compared to parents with few children. Based on this fact, I allow the parent’s formal care preferences to depend on the number of children and mitigate the possible bias from describing the informal care behaviors of one child. Fourth, the model incorporates rich child-level heterogeneity to allow for possible insurance selection based on the availability of informal care. The child’s caregiving utility and forgone labor market income depend on various child demographics, which result in heterogeneous informal care incentives. Fifth, Medicaid is incorporated as a means-tested public program that pays formal care costs for impoverished parents. Lastly, the model describes the parent’s savings decisions (1) to incorporate self-insurance as an alternative financial protection against formal care risk, (2) to examine the parent’s bequest motives, and (3) to determine Medicaid eligibility.

3.1 Model Description

The model starts when the single elderly parent (with superscript P) is 60 years old and her adult child (with superscript K) is $60-\Delta$ years old. Model period $a = 60, 62, ..., 100$, represents the parent’s age and increases biennially. The model incorporates three sources of uncertainty: parent health transitions, parent wealth shocks, and parent and child choice-specific preference shocks. The state vector, s_a, represents variables that are commonly observed by the family at the beginning of each period a, after the resolution of uncertainty about parent health and wealth:

$$s_a = (w_a^P, a, ltc_i^P, h_a^P, c_l^{K_{t-2}} = 0, e^{K_{t-2}}; X)$$

where

$$X = (female^P, y^P, female^K, edu^K, married^K, close^K, home^K, I_{N_k \geq 4}).$$

17 This is to match the fact that HRS interviews occur every two years.
w_a^P is the parent’s wealth after the wealth shock, $ltci_a^P$ is an indicator for the parent’s long-term care insurance holdings, h_a^P is the parent’s health status, $I_{cg_{a-2}=0}$ is an indicator for the child not providing informal care in the previous period, and e_{a-2}^K is the child’s employment status in the previous period. The parent’s health status can take four values: the parent can be healthy ($h_a^P = 0$), have light long-term care needs ($h_a^P = 1$), have severe long-term care needs ($h_a^P = 2$), or be dead ($h_a^P = 3$). The health transition probabilities follow a Markov chain and depend on the parent’s gender, age, and current health status.\(^{18}\) X represents a vector of family demographics where $female^P$ is an indicator for the parent being female, y^P is the parent’s permanent income, $female^K$ is an indicator for the child being female, edu^K is an indicator for the child having some college education, $married^K$ is an indicator for the child being married, $close^K$ is an indicator for the child living within 10 miles of the parent, $home^K$ is an indicator for the child being a homeowner, and $I_{N_k \geq 4}$ is an indicator for the parent having four or more children.

In each period a while the parent is alive, the child makes informal care and employment decisions. $cg_a^K \in \{0, 1, 2\}$ is the child’s informal care choice where $cg_a^K = 0$ is no informal care, $cg_a^K = 1$ is light informal care, and $cg_a^K = 2$ is intensive informal care. The intensity of informal care is defined in terms of time devoted to caregiving. $e_a^K \in \{0, 1\}$ is the child’s employment choice where $e_a^K = 0$ is not working, and $e_a^K = 1$ is working full-time. When the parent is healthy, the child’s informal care choice is set to $cg_a^K = 0$.\(^{19}\) Let $d_a^K = (cg_a^K, e_a^K)$ denote the child’s informal care and employment choices in period a.

The parent moves after observing the child’s choices.\(^{20}\) The parent makes long-term care insurance purchase and formal care utilization decisions, followed by a consumption decision. $buy_a^P \in \{0, 1\}$ is the parent’s once-and-for-all long-term care insurance choice where $buy_a^P = 1$ means purchase, and $buy_a^P = 0$ means non-purchase. The parent can buy long-term care insurance only when she is 60 years old and healthy.\(^{21}\) $fc_a^P \in \{0, 1, 2\}$ is the parent’s formal care choice where $fc_a^P = 0$ is no formal care, $fc_a^P = 1$ is paid home care, and $fc_a^P = 2$ is

\(^{18}\) This suggests that the parent’s health transition process is exogenous and does not depend on the receipt of informal or formal care. This is based on previous studies that find that the evolution of long-term care needs is largely unaffected by the use of long-term care (Byrne et al., 2009).

\(^{19}\) In the data, almost no children provide care to parents without any ADL limitations.

\(^{20}\) I make this sequential-move assumption in order to avoid the potential existence of multiple equilibria in a simultaneous-move version of the game.

\(^{21}\) The average purchase age of long-term care insurance policies is around 60 (Broker World, 2009-2015), and insurance companies do not sell policies to individuals who already have long-term care needs (Hendren, 2013).
nursing homes. The parent can use formal care only when she has long-term care needs, and the child does not provide care.\footnote{In the model, informal and formal care are therefore perfect substitutes. This is based on several studies that find strong empirical evidence for the substitutability of informal and formal care (Charles and Sevak, 2005; Coe et al., 2015).} In all other states (the parent is healthy or the child provides care), the parent does not use formal care. Let $d_a^P = (buy_a^P, fc_a^P)$ denote the parent’s insurance and formal care choices in period a. Following her discrete choice d_a^P, the parent chooses consumption $c_a^P \in R_+$. In the period of the parent’s death, the child inherits a share of the parent’s wealth and the model closes. The parent dies for sure at the age of 100.

Preferences when the parent is alive. The child’s per-period utility while the parent is alive is

$$\pi^K(d^K_a, s_a, \epsilon^K_a) = \frac{\theta^K_c \log(c^K_a) + \theta^K_l \log(l^K_a) + \omega^K(cg^K_a, s_a) + \epsilon^K_a(d^K_a)}{\pi^K(d^K_a, s_a)}.$$ \hspace{1cm} (3)

The child’s per-period utility depends on consumption (c^K_a), leisure (l^K_a), informal care (cg^K_a), and choice-specific preference shocks (ϵ^K_a) associated with each possible discrete choice $d^K_a = (cg^K_a, \epsilon^K_a)$. The child’s consumption is equal to her income, which is determined by her work choice and demographics. The child’s leisure is residually determined by her work and informal care choices. ϵ^K_a is privately observed by the child and follows an i.i.d. extreme value type I distribution with scale one. The function ω^K represents the child’s warm-glow utility from providing informal care and captures the child’s possible altruism toward the parent. For $h^K_a \in \{1, 2\}$, ω^K is defined as

$$\omega^K(cg^K_a, s_a) = \begin{cases} 0 & \text{if } cg^K_a = 0, \\ \theta^K_h_{cg^K_a} + \theta^K_{\text{male}} \mathbb{I}_{\text{female}} \kappa = 0 + \theta^K_{\text{far}} \mathbb{I}_{\text{close}} \kappa = 0 + \theta^K_{\text{start}} \mathbb{I}_{cg^K_{a-1} = 0} & \text{if } cg^K_a \in \{1, 2\}. \end{cases}$$ \hspace{1cm} (4)

The child’s utility from providing no informal care is normalized to zero. The child’s utility from providing light or intensive informal care depends on the parent’s health status $h^K_a \in \{1, 2\}$. Moreover, the child’s caregiving utility depends on her gender, whether or not she lives within 10 miles of the parent, and whether or not she provided care to the parent in the previous period.\footnote{In the data, the informal care behaviors of children vary substantially by gender and residential proximity. Also, there is persistence in caregiving behaviors in that children who provide care tend to continue caring for their parents or other relatives over time.} As the child’s informal care choice is set to $cg^K_a = 0$ when the parent...
is healthy, I normalize ω^K to zero for $h_a^P = 0$.\(^{24}\)

The parent’s per-period utility when she is alive is given by

$$\pi^P(d_a^K, d_a^P, c_a^P, s_a, \epsilon_a^P) = \frac{\theta^P c \log(\hat{c}_a^P) + \omega^P(cg_a^K, fc_a^P, s_a) + \epsilon_a^P(d_a^P)}{\pi^P(d_a^K, d_a^P, c_a^P, s_a)}. \quad (5)$$

\hat{c}_a^P is the sum of the parent’s consumption spending and the consumption value from residing in a nursing home (c_{nh}):

$$\hat{c}_a^P = c_a^P + c_{nh}1_{fc_a^P=2}. \quad (6)$$

The parent’s per-period utility depends on this total consumption value, the child’s informal care choice (cg_a^K), the parent’s formal care choice (fc_a^P), and choice-specific preference shocks (ϵ_a^P) associated with each possible discrete choice $d_a^P = (buy_a^P, fc_a^P)$.\(^{25}\) ϵ_a^P is privately observed by the parent and follows an i.i.d. extreme value type I distribution with scale one. The function ω^P represents the parent’s utility from informal and formal care. For $h_a^P = 0$, I normalize ω^P to zero as the parent does not use any long-term care when she is healthy.\(^{26}\)

For $h_a^P \in \{1, 2\}$, ω^P is defined as

$$\omega^P(cg_a^K, fc_a^P, s_a) = \begin{cases}
0 & \text{if } cg_a^K \in \{1, 2\}, \\
\theta^P & \text{if } cg_a^K = 0 \text{ and } fc_a^P = 0, \\
\theta^P + \theta^P_{h_a^P} + \theta^P_{h_a^P, fc_a^P, 1_{N_k \geq 4}} & \text{if } cg_a^K = 0 \text{ and } fc_a^P \in \{1, 2\}.
\end{cases} \quad (7)$$

The parent’s utility from receiving informal care is normalized to zero. If the parent chooses not to use any formal care when the child does not provide care, then she experiences $\theta^P_{h_a^P}$. So $\theta^P_{h_a^P}$ can be interpreted as the parent’s disutility from not receiving any long-term care when her health status is $h_a^P \in \{1, 2\}$. If the parent uses formal care $fc_a^P \in \{1, 2\}$, then she

\(^{24}\)As the parent’s health transition is exogenous, this normalizing value has no impact on the child’s choices.

\(^{25}\)The parent’s per-period utility does not include leisure utility. This is because I assume the parent is retired and spends her total available time on leisure. As I assume additively separable leisure utility, including leisure utility has no impact on the parent’s choices.

\(^{26}\)As previously mentioned, this normalizing value has no impact on the model as the health transition probabilities are exogenous to the choices made within the model.
experiences a utility gain of $\theta_{P_h Pa, P_{f c}, I_{N_k \geq 4}}$. This formal care utility depends on the parent’s health status and whether or not she has four or more children. This is to reflect the possibility that the child within the model may not be the only source of informal care, and to rationalize the data pattern that parents with many children use less formal care. As the parent’s utility from receiving informal care is normalized to zero, levels of $\theta_{P_h Pa, P_{f c}, I_{N_k \geq 4}}$ can be interpreted as how much the parent prefers formal care to informal care.\(^{27}\)

Preferences when the parent is dead. In the case of the parent’s death, she leaves her wealth to the family and derives bequest utility. Following Lockwood (2016), I parameterize the parent’s altruistic bequest utility as

$$\pi_d^P(w_a^P) = (\theta_d^P)^{-1}w_a^P.$$ \hspace{1cm} (8)

Bequests are luxury goods and the parent is less risk-averse over bequests than over consumption. This parametrization is useful in that it has an easy-to-interpret parameter, θ_d^P. As I assume utility from consumption c is $\theta_c^P \log(c)$, for a parent in a two-period model who dies for sure in the second period and decides between consumption and bequests, $\theta_c^P \theta_d^P$ can be interpreted as the threshold consumption below which she does not leave any bequests.\(^{28}\)

I use two empirical facts to determine the child’s share of bequests. First, caregiving children, on average, receive bequest amounts that are twice as much as those received by non-caregiving children (Groneck, 2016). Second, the average number of children in the data is around three. Based on these, I assume that the child in the model inherits one half of the parent’s wealth. The model closes when the parent dies and the child’s terminal value is given as

$$\pi_d^K(w_a^P) = \theta_d^K \Pi_d^K(0.5w_a^P).$$ \hspace{1cm} (9)

The function Π_d^K represents the child’s inheritance value. This is calculated by assuming that the child optimally allocates and consumes the bequests over the next T_0 periods. Details

\(^{27}\)The parent’s formal care choices only identify the differences across formal care utilities, i.e., $\theta_{P_h Pa, P_{f c}, I_{N_k \geq 4}}$. $\theta_{h_a}^P$ is identified from the parent’s long-term care insurance purchase and consumption choices. I discuss identification of these parameters in Section 4.4.

\(^{28}\)The parent’s consumption choices, θ_c^P and θ_d^P, are not separately identified from the parent’s consumption choices. The parent’s discrete choices (insurance purchase and formal care choices) separately identify these two structural parameters. I discuss identification in Section 4.4.
on how I compute Π^K_d are given in Appendix B.

Long-term care insurance and Medicaid. I consider one standardized long-term care insurance policy. The features of this policy are based on typical long-term care insurance products sold during my sample period (Brown and Finkelstein, 2007; Broker World, 2009-2015). The policy is sold to healthy 60-year-olds, covers both paid home care and nursing homes, has a maximal per-period benefit cap b, and provides benefits for life. The policy pays benefits for formal care expenses only when the parent has long-term care needs. If the parent owns the long-term care insurance policy, she pays a constant premium, p, in every period when she is not receiving benefits. Premium payments are waived when the parent is receiving insurance benefits.

After receiving benefits from long-term care insurance, if any, the parent’s out-of-pocket cost of formal care is $x_{f_{c_aP},h^P_a} - \min\{b, x_{f_{c_aP},h^P_a}\}$ where $x_{f_{c_aP},h^P_a}$ is the price for formal care f_{c_aP} in health status h^P_a. The parent can reduce the out-of-pocket cost if she is Medicaid eligible by satisfying the following means test:

$$w^P_a + y^P - \left(x_{f_{c_aP},h^P_a} - \min\{b, x_{f_{c_aP},h^P_a}\}\right) \leq \bar{w}_{f_{c_aP}}. \tag{10}$$

Medicaid requires that the parent’s net resources after paying the out-of-pocket cost of formal care be less than $\bar{w}_{f_{c_aP}}$. This threshold depends on the parent’s formal care choice, as the resource threshold for paid home care is substantially higher than that for nursing home care.29 If the parent is Medicaid eligible, then her out-of-pocket cost of formal care is reduced to $\max\{0, w^P_a + y^P - \bar{w}_{f_{c_aP}}\}$ and Medicaid pays the remaining cost:

$$x_{f_{c_aP},h^P_a} - \min\{b, x_{f_{c_aP},h^P_a}\} - \max\{0, w^P_a + y^P - \bar{w}_{f_{c_aP}}\}.$$

Two important features of Medicaid emerge. First, Medicaid is a secondary payer by law. So if the parent has private long-term care insurance and is also Medicaid eligible, long-term care insurance pays first, then Medicaid. This suggests that from the perspective of insurance companies, the parent’s Medicaid eligibility is irrelevant as Medicaid starts paying only after insurance companies pay out benefits. Second, the parent becomes Medicaid eligible only

29The modal income threshold for paid home care was $545 per month, while it was only $30 per month for nursing homes in 1999 (Brown and Finkelstein, 2008).
after having spent down her net resources to the Medicaid threshold. Medicaid therefore provides very limited financial protection against formal care risks.

Budget constraints. The parent’s wealth after paying the long-term care insurance premium and the out-of-pocket cost of formal care, if any, is

\[
\bar{w}_a^P = \begin{cases}
 w_a^P + y_a^P - \max\{0, w_a^P + y_a^P - \bar{w}_{f_c} \} = \min\{w_a^P + y_a^P, \bar{w}_{f_c} \} & \text{if Medicaid eligible,} \\
 w_a^P + y_a^P - \left(x_{f_c}, h_{f_c} - \min\{b, x_{f_c}, h_{f_c} \} \right) - p & \text{otherwise.}
\end{cases}
\] (11)

To make sure that the parent maintains strictly positive consumption, there is a government transfer up to \(g_{f_c}\), which depends on the parent’s formal care choice. This can be thought of as the Supplemental Security Income (SSI) benefits, which vary by beneficiaries’ nursing home residency. The parent’s wealth after this government transfer is

\[
\hat{w}_a^P(s_a, d_a^P) := \max\{\bar{w}_a^P, g_{f_c} \}.
\] (12)

There is no borrowing and the parent’s consumption is constrained by \(c_a^P \leq \hat{w}_a^P(s_a, d_a^P)\). The parent’s wealth at the beginning of the next period is given by

\[
w_{a+2}^P = \max\left\{ 0, (1 + r) \left(\hat{w}_a^P(s_a, d_a^P) - c_a^P \right) - m_{a+2}^P \right\}
\] (13)

where \(r\) is the real per-period interest rate, and \(m_{a+2}^P\) is the wealth shock realized at the beginning of the next period for which the parent is liable up to \(\hat{w}_a^P(s_a, d_a^P) - c_a^P\). The wealth shock follows an \(i.i.d.\) normal distribution.

The HRS data provide very limited information about children’s assets. In the data, I only observe children’s family income and whether or not they own a house. Owing to such data limitations, I assume the child does not save and consumes all her family income, \(y_a^K\).\(^{30}\)

The child’s family income is a deterministic function of the child’s work choice, work choice in the previous period, and various demographics, including her gender, education, marital

\(^{30}\)The assumption that the child cannot save may underestimate the cost of informal care. This is because adult children usually provide care when they are in their prime saving years (Barczyk and Kredler, 2016). Also, the child’s value from bequests may vary by her wealth. While limited, rich child-level heterogeneity incorporated in the model mitigates these issues. The child’s forgone labor income and caregiving utility depend on various demographics to better capture her cost of informal care. The child’s value from bequests also depends on her education level which may be highly correlated with her wealth.
status, and home ownership status:

\[y^K_a = f(e^K_a, s_a). \]

(14)

The child’s time constraint is

\[T_{cg^K_a} + T_{e^K_a} + t^K_a = T_{total} \]

where \(T_{total} \) is her total available time, \(T_{cg^K_a} \) is the required time for caregiving choice \(cg^K_a \), and \(T_{e^K_a} \) is the required time for work choice \(e^K_a \).

3.2 Equilibrium

Let \(\sigma^i \) denote a set of decision rules for player \(i \in \{K, P\} \). For the child, \(\sigma^K = \{\sigma^K(s_a, e^K_a)\} \) is a mapping from the common state space, \(S \), and the space of the child’s private preference shocks, \(R^{|C^K|} \), to the set of the child’s informal care and employment choices, \(C^K \):

\[\sigma^K : S \times R^{|C^K|} \rightarrow C^K. \]

For the parent, \(\sigma^P = (\sigma^{P,d}, \sigma^{P,c}) \) is composed of decision rules for discrete choices (\(\sigma^{P,d} \)) and consumption (\(\sigma^{P,c} \)). The parent makes discrete choices after observing the child’s choice, so \(\sigma^{P,d} = \{\sigma^{P,d}(s_a, d^K_a, e^P_a)\} \) is a mapping from the common state space, the child’s choice set, and the space of the parent’s private preference shocks, \(R^{|C^P|} \), to the set of the parent’s discrete insurance and formal care choices, \(C^P \):

\[\sigma^{P,d} : S \times C^K \times R^{|C^P|} \rightarrow C^P. \]

The parent chooses consumption after her discrete choices. \(\sigma^{P,c} = \{\sigma^{P,c}(s_a, d^K_a, d^P_a)\} \) is a mapping from the common state space, the child’s choice set, and the parent’s set of discrete choices to the strictly positive real line:\(^{31}\)

\[\sigma^{P,c} : S \times C^K \times C^P \rightarrow R^+. \]

\(^{31}\)As the parent’s preference shocks \((e^P_a) \) are additively separable and serially independent, conditional on the parent’s discrete choices, these shocks are irrelevant to consumption choices.
Let $\tilde{V}^K(s_a, \epsilon^K_a; \sigma)$ denote the child’s value if she behaves optimally today and in the future when the parent behaves according to her decision rules specified in $\sigma = (\sigma^K, \sigma^P)$. In states where the parent is dead, with a slight abuse of notation, define $\tilde{V}^K = \pi^K_d(w^P_a)$. By Bellman’s principle of optimality, the child’s problem in periods where the parent is alive can be recursively written as

$$
\tilde{V}^K(s_a, \epsilon^K_a; \sigma) = \max_{d^K_a \in C^K(s_a)} \left\{ \pi^K(d^K_a, s_a) + \epsilon^K_a(d^K_a) + \beta E \left[\tilde{V}^K(s_{a+2}, \epsilon^K_{a+2}; \sigma) \bigg| s_a, d^K_a; \sigma \right] \right\} \quad (15)
$$

where the expectation is over the parent’s private preference shocks of the current period, the parent’s health and wealth shocks of the next period, and the child’s private preference shocks of the next period. $C^K(s_a)$ denotes the set of the child’s feasible informal care and employment choices in state s_a. Define $V^K(s_a, \sigma)$ as the expected value function, $V^K(s_a, \sigma) = \int \tilde{V}^K(s_a, \epsilon^K_a; \sigma) g(\epsilon^K_a)$ where g is the probability density function of ϵ^K_a. Define the choice-specific value function, $v^K(s_a, d^K_a; \sigma)$, as the per-period payoff of choosing d^K_a minus the preference shock plus the expected value function:

$$
v^K(s_a, d^K_a; \sigma) = \pi^K(d^K_a, s_a) + \beta E \left[V^K(s_{a+2}; \sigma) \bigg| s_a, d^K_a; \sigma \right]. \quad (16)
$$

I similarly define value functions for the parent. Let $\tilde{V}^P(s_a, d^K_a, \epsilon^P_a; \sigma)$ denote the parent’s value if the parent behaves optimally today and in the future when the child behaves according to her decision rules specified in σ. Again, with a slight abuse of notation, define $\tilde{V}^P = \pi^P_d(w^P_a)$ in states where the parent is dead. The parent’s problem when she is alive can be written as

$$
\tilde{V}^P(s_a, d^K_a, \epsilon^P_a; \sigma) = \max_{d^K_a, c^K_a \in C^K(s_a), c^K_a \in (0, \hat{w}^P_a(s_a, d^K_a))} \left\{ \pi^K(d^K_a, d^K_a, c^K_a, s_a) + \epsilon^K_a(d^K_a) \right. \\
+ \left. \beta E \left[\tilde{V}^P(s_{a+2}, d^K_{a+2}, \epsilon^P_{a+2}; \sigma) \bigg| s_a, d^K_a, d^K_a, c^K_a; \sigma \right] \right\} \quad (17)
$$

where the expectation is over the parent’s wealth, health, and preference shocks of the next period, and the child’s private preference shocks of the next period. $C^P(s_a, d^K_a)$ denotes the set of the parent’s feasible insurance and formal care choices in state s_a when the child’s choice is d^K_a. As there is no borrowing, consumption cannot be greater than the wealth after the government transfer, $\hat{w}^P_a(s_a, d^K_a)$. I define the parent’s expected value function as
\[V^P(s_a, d^K; \sigma) = \int \tilde{V}^P(s_a, d^K, \epsilon^P_a; \sigma) g(\epsilon^P_a) \]

I denote the parent’s choice-specific value function as \(v^P(s_a, d^K_a, d^P_a; \sigma)\), and it is defined as the parent’s per-period payoff of choosing discrete choice \(d^P_a\) minus the preference shock plus her expected value function,

\[
u^P(s_a, d^K_a, d^P_a, \sigma) = \pi^P(d^K_a, d^P_a, \sigma^P_c(s_a, d^K_a, d^P_a), s_a) + \beta E \left[V^P(s_{a+2}, d^K_{a+2}; \sigma) \right] s_a, d^K_a, d^P_a, \sigma^P_c(s_a, d^K_a, d^P_a); \sigma \] \tag{18}

where I replaced \(c^P_a\) by \(\sigma^P_c(s_a, d^K_a, d^P_a)\), the implied consumption contained in \(\sigma\).

Definition. A strategy profile \(\sigma^* = (\sigma^{K,*}, \sigma^{P,*})\) is a Markov perfect equilibrium (MPE) of the model if for any \((s_a, \epsilon^K_a) \in S \times \mathbb{R}^{|C^K|},\)

\[
\sigma^{K,*}(s_a, \epsilon^K_a) = \arg\max_{d^K_a \in C^K(s_a)} \left\{ \nu^K(s_a, d^K_a; \sigma^*) + \epsilon^K_a(d^K_a) \right\}, \tag{19}
\]

for any \((s_a, d^K_a, \epsilon^P_a) \in S \times C^K \times \mathbb{R}^{|C^P|},\)

\[
\sigma^{P,d,*}(s_a, d^K_a, \epsilon^P_a) = \arg\max_{d^P_a \in P^d(s_a, d^K_a)} \left\{ \nu^P(s_a, d^K_a, d^P_a; \sigma^*) + \epsilon^P_a(d^P_a) \right\}, \tag{20}
\]

and for any \((s_a, d^K_a, d^P_a) \in S \times C^K \times C^P,\)

\[
\sigma^{P,c,*}(s_a, d^K_a, d^P_a) = \arg\max_{c^P_a \in (0, \tilde{\omega}^P_a(s_a, d^K_a, d^P_a)]} \left\{ \pi^P(d^K_a, d^P_a, c^P_a, s_a) + \beta E \left[V^P(s_{a+2}, d^K_{a+2}; \sigma^*) \right] s_a, d^K_a, d^P_a, c^P_a; \sigma^* \right\}. \tag{21}
\]

3.3 Solution Method

As the preference shocks, \(\epsilon^K_a\) and \(\epsilon^P_a\), are unobserved by the econometrician, I define a set of conditional choice probabilities (CCP) corresponding to discrete choice rules \(\sigma^K\) and \(\sigma^{P,d}\) as

\[
P^{K,\sigma}(d^K_a | s_a) = \int \mathbb{I} \{ \sigma^K(s_a, \epsilon^K_a) = d^K_a \} g(\epsilon^K_a) \quad \text{and} \tag{22}
\]

\[
P^{P,\sigma}(d^P_a | s_a, d^K_a) = \int \mathbb{I} \{ \sigma^{P,d}(s_a, d^K_a, \epsilon^P_a) = d^P_a \} g(\epsilon^P_a), \tag{23}
\]

respectively, and define \(P^\sigma := (P^{K,\sigma}, P^{P,\sigma}, \sigma^{P,c})\). Compared to \(\sigma\), \(P^\sigma\) represents the expected or *ex-ante* discrete choices of the child and the parent while they both specify the parent’s
consumption decision rules in the same manner. As the value functions in Equations (19), (20), and (21) only depend on σ through P^σ, rather than solving for a MPE σ^*, I solve for $P^*: = P^\sigma$ instead. I discretize the parent’s wealth into a fine grid and use linear interpolation for wealth points not contained in the grid. As the wealth shocks are assumed to be normally distributed, I use Gauss-Hermite quadrature to numerically integrate over the wealth shocks. I start with the terminal period when the parent is 100 years old and dies for sure. The terminal values for the child and the parent are given as $V^K = \pi^K_d(w^K_P)$ and $V^P = \pi^P_d(w^K_P)$, respectively. I proceed backward in time, and for period $a < 100$, I apply the following steps:

(a) I obtain the parent’s optimal consumption by solving Equation (21).

(b) I obtain the parent’s optimal CCP by solving Equation (20) and integrating out ϵ^P_a. As ϵ^P_a is i.i.d. and follows an extreme value type I distribution with scale one, I obtain a closed-form expression for P^P*:

$$P^P^* (d^K_a | s_a, d^K_a) = \frac{\exp\left(v^K(s_a, d^K_a, d^K_a; P^*)\right)}{\sum_{d^K_a \in C^K(s_a, d^K_a)} \exp\left(v^K(s_a, d^K_a, d^K_a; P^*)\right)}.$$ (24)

(c) I obtain the child’s optimal CCP by solving Equation (19) and integrating out ϵ^K_a. As ϵ^K_a is i.i.d. and follows an extreme value type I distribution with scale one, I obtain a closed-form expression for P^K*:

$$P^K^* (d^K_a | s_a) = \frac{\exp\left(v^K(s_a, d^K_a; P^*)\right)}{\sum_{d^K_a \in C^K(s_a)} \exp\left(v^K(s_a, d^K_a; P^*)\right)}.$$ (25)

3.4 Model Discussion

I close this section by discussing some of the key implications of the model. I start with discussions on strategic interactions of the family. The child’s strategic incentive to provide care results from the assumption that the child inherits the parent’s wealth. As informal care and formal care are assumed to be perfect substitutes, the child has an incentive to provide care to eliminate formal care expenses. This strategic incentive is affected by the parent’s wealth (w^K_P) and the parent’s long-term care insurance ownership status ($ltci^K_P$). For example, if the amounts of bequests are small or if the parent’s formal care expenses
are covered by long-term care insurance or Medicaid, then the child’s strategic caregiving incentive is reduced. This suggests that if the parent prefers informal care to formal care, she will have an incentive to save more and demand less long-term care insurance to elicit more informal care. The model therefore incorporates not only the altruistic but also the strategic bequest motives of the parent. It it worth noting that the effects of strategic bequest motives on insurance demand and savings depend on the parent’s relative preference for informal versus formal care. For example, if the parent prefers formal care, then she will demand more insurance or dis-save to disincentivize the child’s caregiving behaviors.

I now turn to the model’s implications for selection in the long-term care insurance market. I focus on how the willingness to pay for insurance is affected by heterogeneity in formal care risk and heterogeneity in wealth. First, the parent’s willingness to pay for insurance increases in formal care risk. This is straightforward as the precise role of long-term care insurance is to offer financial protection against formal care expenses. What is worth highlighting is that this formal care risk is not a model primitive. The parent’s formal care risk is determined by exogenous health transitions that vary by gender and endogenous informal care choices of the child. As a result, the parent’s formal care risk is endogenously determined as an equilibrium outcome of the game played between the parent and the child. As the model incorporates rich family demographics, the model generates heterogeneous informal care likelihood across families. This implies that the model allows standard adverse selection whereby individuals with a higher formal care risk have a higher willingness to pay for insurance.

Second, the parent’s willingness to pay for insurance increases in wealth in the presence of Medicaid. For low-wealth individuals, long-term care insurance is not an appealing product as Medicaid already covers their formal care expenses. Brown and Finkelstein (2008) measure “the extent to which long-term care insurance is redundant of benefits that Medicaid would otherwise have paid” and define it as Medicaid’s implicit tax on long-term care insurance. As the model incorporates heterogeneity in wealth, the model predicts that high-wealth individuals who face Medicaid’s small implicit tax are more likely to select into insurance. The model’s prediction on the nature of overall selection is therefore ambiguous. As the parent’s willingness to pay for insurance is determined by both heterogeneity in formal care

32The parent’s health transitions also depend on the parent’s age and current health status. However, as only healthy 60-year-olds buy insurance, there is no heterogeneity on these dimensions.
risk and heterogeneity in wealth, it is not a priori obvious whether individuals who have a higher willingness to pay for insurance are at higher risk. I now turn to estimation of the model to empirically investigate the model’s predictions.

4 Data and Estimation

The main data for estimation come from the HRS 1998-2010. I use single parents with children to construct the estimation sample. To incorporate rich family heterogeneity and maintain estimation tractability, I use two-stage conditional choice probability (CCP) estimation (Hotz and Miller, 1993). All monetary values presented henceforth are in 2013 dollars unless otherwise stated.

4.1 Data

Sample selection. From the HRS 1998-2010, I restrict the sample to single respondents aged 60 and over in 1998 who do not miss any interviews as long as they are alive. I further restrict the sample to respondents with at least one adult child who is alive over the sample period. The model describes the informal care decisions of one adult child. Therefore, I have to select one child for respondents with multiple children. I apply the following selection rules. For respondents who ever receive help with daily activities from children, I pick the primary caregiving child based on the intensity of informal care provided over the sample period. For respondents who do not receive any help from any of their children, I randomly select one child. I do not select children based on their demographics, because I am interested in identifying child demographics that are predictive of the informal care likelihood. In the end, my sample consists of 4,183 families and 19,292 family-year observations.

Data on parent wealth, income, and health. I measure the parent’s wealth as the net value of total assets less debts. This measure of wealth includes real estate, housing, vehicles,

33While the model endogenizes the informal care choices of one child, it still incorporates the possibility of multiple children providing care by allowing the parent’s formal care preferences to depend on the number of children.

34I sequentially use the following measures of informal care intensity until ties are broken. First, I use the number of interviews in which the child is reported to help. Second, I use the number of total help hours over the sample period. Third, I use the number of total help days. For the very few observations left with ties, I randomly select one child.
businesses, stocks, bonds, checking and savings accounts, and other assets. The parent’s income is measured as the sum of capital income, employer pension, annuity income, social security retirement income, and other income. As the model assumes the parent’s income is time-invariant, for each parent in the sample, I compute the average income over the sample period.

I use self-reported difficulties with ADLs and cognitive impairment to define health. The survey asks about a total of five ADLs: bathing, dressing, eating, getting in/out of bed and walking across a room. The HRS also provides cognitive scores based on various tests that are designed to measure cognitive ability. I categorize a respondent as cognitively impaired if she is in the bottom 10 percent of the cognitive score distribution. The model assumes that Medicaid and long-term care insurance cover formal care expenses to eligible individuals when they have long-term care needs \((h^P \in \{1, 2\})\). The health-related benefit triggers used by Medicaid and most insurance companies require an individual to have at least two ADL limitations or a severe cognitive impairment (Brown and Finkelstein, 2007). I define the parent’s health statuses such that the model reflects these health-related benefit triggers. Specifically, I classify a respondent as healthy \((h^P_a = 0)\) if she is not cognitively impaired and has zero or one ADL limitation. I classify a respondent as having light long-term care needs \((h^P_a = 1)\) if she is not cognitively impaired but has two or three ADL limitations. I classify a respondent as having severe long-term care needs \((h^P_a = 2)\) if she is cognitively impaired or has four or more ADL limitations.

Data on endogenous choices within the model. The model assumes that insurance selection is once-and-for-all and takes place at the age of 60. To obtain data on insurance choices, I use respondents aged 60-69 who were healthy in 1998. I do not restrict the sample to respondents who are exactly 60 as the number of such observations is too small. While the average purchase age is around 60, purchases happen up to 79. To reflect the possibility that insurance selection may take place later in life, I use the insurance ownership statuses over the sample period to infer insurance purchases as in Lockwood (2016). Specifically, a respondent is treated as an insurance buyer if she reports having a private long-term policy.

\[35\] These tests include word recall, subtraction, backward number counting, object naming, date naming, and president naming.

\[36\] About 99 percent of sales are made to individuals aged 79 and less. About 20 percent of sales are made to people aged 65-79 (Broker World, 2009-2015).
care insurance policy for almost half of the interview waves. Out of 4,183 parents in the estimation sample, 1,053 parents were aged 60-69 and healthy in 1998. Of these individuals, 14.4 percent are classified as insurance buyers.

I use children whose parents have long-term care needs to obtain data on informal care choices. The HRS asks respondents the number of hours children helped in the last month prior to the interview. A child is classified as a light caregiver if her monthly help hours are over zero and below 100. She is classified as an intensive caregiver if the monthly help hours are equal to or greater than 100. For children’s work choices, I use the HRS question that asks respondents about their children’s employment. A child is classified as working if she is reported as working full-time. A child is classified as not working if she is reported as unemployed or working part-time.

I use parents with long-term care needs who do not receive informal care from children to obtain data on formal care choices. A parent is classified as a nursing home user if she reports having spent more than 100 nights in a nursing home in the last two years. A parent is classified as a paid home care user if she reports having used paid home care in the last two years. If a respondent reports having used paid home care and stayed in a nursing home for more than 100 days, she is classified as a nursing home user.

The HRS does not ask respondents about their consumption behaviors. A subsample of the HRS respondents were selected at random and surveyed about their consumption behaviors biennially from 2003 to 2013 in the Consumption and Activities Mail Survey (CAMS). About 25 percent of my sample is found in the CAMS data. I use the CAMS data to impute consumption for the remaining sample. I use information about respondents’ assets, income, age, health, and education as well as their children’s demographics to impute consumption.

Data on child demographics. To examine possible insurance selection based on the availability of informal care, the model incorporates rich child-level heterogeneity such as gender, education, home ownership, residential proximity to the parent, and marital status.

37 In my sample, almost no children provide care to parents without long-term care needs.
38 For respondents who report using both informal and formal care, I apply the following rules. If the respondent is a nursing home user, then I assume the type of long-term care used is nursing homes. Otherwise, I assume the respondent receives informal care.
39 The HRS does not ask about the intensity of paid home care utilization.
40 This is rare as the question about paid home care use is largely skipped for nursing home residents.
Table 3: Summary Statistics on the Parent Sample

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Have 4+ children</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Wealth</td>
<td>203651</td>
<td>88000</td>
</tr>
<tr>
<td>Annual income</td>
<td>21576</td>
<td>17448</td>
</tr>
<tr>
<td>Annual consumption</td>
<td>37812</td>
<td>34473</td>
</tr>
<tr>
<td>Buy LTCI</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>Have LTC needs</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Receive informal care</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Use paid home care</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Use nursing homes</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Table reports mean/median values of the parent sample. Monetary values are in 2013 dollars. Long-term care needs are defined based on ADL limitations and cognitive impairments (see text for details). The insurance purchase rate is among respondents who were healthy and aged 60-69 in 1998. The informal care receipt rate is among respondents who have long-term care needs. The formal care utilization rates are among respondents who have long-term care needs and do not receive informal care.

The child is considered to have some college education if her completed schooling years exceed 13. As the model assumes that the child’s home ownership, residential proximity to the parent, and marital status are time-invariant, I use modal values of these variables over the sample period.

Summary statistics. Table 3 presents the summary statistics for the parent sample. About 80 percent of the parents are female. The mean wealth is $203,651 and the mean annual income is $21,576. The average number of children is around three, and 40 percent have four or more children. Among respondents who were aged 60-69 in 1998, 14 percent purchased long-term care insurance. Almost 40 percent of the parents have long-term care needs; 45 percent of these parents receive care from their children. Among respondents who have long-term care needs and do not receive care from children, 37 percent use paid home care and 26 percent use nursing homes.

Table 4 presents the summary statistics for the child sample. Compared to children who never provide care over the sample period, caregiving children are more likely to be female and live closer to parents. They are less likely to have a college education and work full-
Table 4: Summary Statistics on the Child Sample

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Never caregivers</td>
<td>Caregivers</td>
</tr>
<tr>
<td>Female</td>
<td>0.56</td>
<td>0.49</td>
<td>0.67</td>
</tr>
<tr>
<td>Age</td>
<td>48</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>Have some college education</td>
<td>0.45</td>
<td>0.47</td>
<td>0.42</td>
</tr>
<tr>
<td>Married</td>
<td>0.66</td>
<td>0.68</td>
<td>0.64</td>
</tr>
<tr>
<td>Live within 10 mi of the parent</td>
<td>0.55</td>
<td>0.42</td>
<td>0.74</td>
</tr>
<tr>
<td>Homeowner</td>
<td>0.61</td>
<td>0.62</td>
<td>0.60</td>
</tr>
<tr>
<td>Work full-time</td>
<td>0.66</td>
<td>0.69</td>
<td>0.62</td>
</tr>
<tr>
<td>Ever paid to help</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
</tbody>
</table>

Observations | 4183 | 2438 | 1745 |

Notes: Table reports mean values of the child sample. Column (1) reports summary statistics of all children in the sample. Column (2) reports summary statistics of children who never provide informal care over the sample period. Column (3) reports summary statistics of children who provide some informal care over the sample period.

Only 5 percent of the caregiving children are ever paid to help, suggesting that direct financial compensation for family care is rare.

4.2 Parameters Estimated Outside the Model

I now describe parameters that are estimated outside the model. These parameters are summarized in Table 5. While each period within the model is two years, Table 5 reports annual values for easier interpretation.

Health shocks. The parent’s health transition probabilities follow a Markov process. The next period health is determined by the parent’s gender, age, and current health. From the HRS 1998-2010, I estimate the biennial transition probabilities by maximum likelihood estimation using a logit that is a flexible function of health, age, and gender. Table 6 reports the probabilities of different health statuses for a healthy 60-year-old at different subsequent ages. A 60-year-old man has a 68 percent chance of ever experiencing long-term care needs, while a 60-year-old woman has an 81 percent chance. These estimates are consistent with previous findings in the literature (Kemper et al., 2005/2006).

Wealth shocks. Using 25 percent of the parent sample for whom I observe consumption choices in the CAMS data, I use the wealth accumulation law of the model to compute the
Table 5: Parameters Estimated Outside the Model

<table>
<thead>
<tr>
<th>Parameter description</th>
<th>Notation</th>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health shocks</td>
<td>h^P</td>
<td>HRS</td>
<td>See Table 6</td>
</tr>
<tr>
<td>Wealth shocks</td>
<td>m^P</td>
<td>HRS</td>
<td>$N($10,805, $41,484^2)$</td>
</tr>
<tr>
<td>Choice-specific shocks</td>
<td>ϵ^P, ϵ^K</td>
<td>HRS</td>
<td>EV type 1 with scale 1</td>
</tr>
<tr>
<td>Formal care costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paid home care</td>
<td>$x_{fc,r=1,h^P}$</td>
<td>MetLife (2008)</td>
<td>$15,330$ for $h^P = 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$30,660$ for $h^P = 2$</td>
</tr>
<tr>
<td>Nursing homes</td>
<td>$x_{fc,r=2,h^P}$</td>
<td>MetLife (2008)</td>
<td>$70,080$ for $h^P = 1, 2$</td>
</tr>
<tr>
<td>Long-term care insurance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max benefits</td>
<td>b</td>
<td>BF (2008)</td>
<td>$49,056$</td>
</tr>
<tr>
<td>Public programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicaid thresholds</td>
<td>$\bar{w}_{fc,r=1}$</td>
<td>BF (2008)</td>
<td>$9,156$</td>
</tr>
<tr>
<td></td>
<td>$\bar{w}_{fc,r=2}$</td>
<td>Lockwood (2016)</td>
<td>0</td>
</tr>
<tr>
<td>Gov. transfers (SSI)</td>
<td>$g_{fc,r=1}$</td>
<td>Lockwood (2016)</td>
<td>$9,156$</td>
</tr>
<tr>
<td></td>
<td>$g_{fc,r=2}$</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Child budget and time constraints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total endowed time</td>
<td>T_{total}</td>
<td></td>
<td>5,840 hours</td>
</tr>
<tr>
<td>Caregiving time</td>
<td>$T_{cg,K=1}$</td>
<td></td>
<td>1,095 hours</td>
</tr>
<tr>
<td></td>
<td>$T_{cg,K=2}$</td>
<td></td>
<td>2,190 hours</td>
</tr>
<tr>
<td>Employment time</td>
<td>$T_{e,K=1}$</td>
<td></td>
<td>2,190 hours</td>
</tr>
<tr>
<td>Family income process</td>
<td>$f(e^K; s)$</td>
<td>HRS</td>
<td>See Appendix C</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing home cons. value</td>
<td>c_{nh}</td>
<td></td>
<td>$9,156$</td>
</tr>
<tr>
<td>Parent income</td>
<td>y^P</td>
<td>HRS</td>
<td>$$10,500, $19,000, $37,500$</td>
</tr>
<tr>
<td>Discount factor</td>
<td>β</td>
<td>BF (2008)</td>
<td>$\frac{1}{0.03}$</td>
</tr>
<tr>
<td>Real rate of return</td>
<td>r</td>
<td>BF (2008)</td>
<td>0.03</td>
</tr>
<tr>
<td>Age difference</td>
<td>Δ</td>
<td>HRS</td>
<td>29 years</td>
</tr>
</tbody>
</table>

Notes: Table reports annual values of parameters that are estimated outside the model. Monetary values are in 2013 dollars. BF (2008) refers to Brown and Finkelstein (2008).
Table 6: Health Probabilities for a 60-year-old at Subsequent Ages

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>68</td>
<td>78</td>
</tr>
<tr>
<td>Healthy</td>
<td>0.7305</td>
<td>0.4014</td>
</tr>
<tr>
<td>Light LTC needs</td>
<td>0.0601</td>
<td>0.0632</td>
</tr>
<tr>
<td>Severe LTC needs</td>
<td>0.0462</td>
<td>0.0746</td>
</tr>
<tr>
<td>Dead</td>
<td>0.1631</td>
<td>0.4608</td>
</tr>
<tr>
<td>Ever have LTC needs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Table reports probabilities of different health statuses for a healthy 60-year-old ($h_{60} = 0$) at different subsequent ages. The health transition probabilities take the logistic functional forms and are estimated using maximum likelihood estimation.

Sample distribution of the wealth shock. I then fit it to a normal distribution. The estimated mean is $10,805 and the standard deviation is about four times the mean.

Formal care costs. I calibrate formal care costs based on the average formal care prices in 2008; the average price for a semi-private room in a nursing home was $178, and the hourly rate for paid home care was $20 (MetLife, 2008). The mean age of the parent sample was 85 years in 2008. As long-term care is a late-life risk, formal care prices in 2008 are likely to represent the actual costs that the majority of my sample had to pay. I assume that the parent uses paid home care for 2 hours per day if she has light long-term care needs and 4 hours per day if she has severe long-term care needs. I assume if the parent enters a nursing home, she stays in the facility for the entire period.

Long-term care insurance. In the model, there is one standard long-term care insurance contract that provides benefits for life. During my sample period, a substantial share of policies offered such unlimited benefit period options.\(^{41}\) I assume the standard contract pays 70 percent of nursing home costs at most. This is based on the observation that most long-term care insurance policies have daily or monthly benefit caps that are around 60-80

\(^{41}\)For example, in 2008, 75 percent of policies offered unlimited benefit period options (Broker World, 2009-2015).
percent of nursing home costs (Broker World, 2009-2015). During my sample period, policies with such benefits were sold at an average premium of $3,195 to healthy 60-year-olds.\(^{42}\) In estimating the model, I assume this is the premium that the parent pays if she has long-term care insurance.

Public programs. To receive Medicaid benefits with nursing home costs, the parent’s assets after incurring formal care expenses and receiving any long-term care insurance benefits must be no greater than zero. This is consistent with Medicaid’s stringent restrictions on assets for nursing home residents.\(^{43}\) On the other hand, to receive Medicaid benefits with paid home care, the parent is allowed to have up to $9,156 after incurring net formal care expenses. This is based on Medicaid’s modal income threshold for paid home care, which was $545 per month in 1999 (Brown and Finkelstein, 2008). I assume that the consumption value of nursing home services is also $9,156 per year. The parent not in a nursing home receives government transfers to top up her wealth to $9,156. The parent in a nursing home does not receive such transfers as the nursing home already generates a consumption value of an equal amount.

Child budget and time constraints. The child is endowed with 5,840 hours per year that she can use for work, leisure, or informal care. Light caregiving takes 1,095 hours per year, while intensive caregiving takes 2,190 hours per year. Full-time employment also takes 2,190 hours per year. I estimate the child’s family income process outside the model using the HRS data. The HRS asks respondents to report their children’s family income as one of the stated bracketed values. I use these values to estimate the child’s family income process as a deterministic function of the child’s work choice and demographics. Details are given in Appendix C.

Other values. I consider three values of the parent’s income that correspond to the 20th, 55th, and 80th percentiles of the parent income distribution of my sample. The child is 29 years younger than the parent, which is the average age difference between parents and parents.

\(^{42}\)This is the median premium (in 2013 dollars) of policies sold to healthy 60-year-olds in 2002 that have (1) a $100 maximum daily benefit (in 2002 dollars) that increases at the nominal annual rate of 5 percent, (2) a 0 day deductible, and (3) an unlimited benefit period (Brown and Finkelstein, 2007).

\(^{43}\)Following Lockwood (2016), I do not use small positive values as it does little in changing the results of estimation while complicating the analysis.
children in my sample. I assume that the annual real interest rate and the discount rate are each equal to 0.03 (Brown and Finkelstein, 2008).

4.3 Estimation Strategy

The structural parameters that I estimate within the model are denoted by θ in the model description section (Section 3.1).44 I now describe my strategy to estimate these parameters. To incorporate rich individual heterogeneity and maintain estimation tractability, I use two-stage conditional choice probability estimation (Hotz and Miller, 1993). CCP estimation has a computational advantage as it does not require solving the model to estimate the structural parameters. The first stage involves regressing the observed choices on the observed states to obtain the empirical policy functions. The second stage uses the empirical policy functions from the first stage to estimate value functions that are then used to estimate the structural parameters of the model. I now provide details of the estimation.

Empirical policy function estimation. I start by estimating the equilibrium decision rules, $P^* = (P^{K,*}, P^{P,*}, \sigma^{P,c,*})$, directly from the data. To estimate $P^{K,*}$ and $P^{P,*}$, I use flexible logits. Specifically, to estimate $P^{K,*}$, I regress the child’s employment and caregiving choices (d^K_a) on flexible functions of common state variables (s_a). To estimate $P^{P,*}$, I regress the parent’s insurance purchase or formal care utilization choices (d^P_a) on flexible functions of s_a and the child’s choice in the current period (d^K_a). To estimate the parent’s equilibrium consumption strategy, $\sigma^{P,c,*}$, I regress the log of imputed consumption from the CAMS data on flexible functions of s_a, d^K_a, and d^P_a. I denote the resulting empirical policy functions as $\hat{P} = (\hat{P}^K, \hat{P}^P, \hat{\sigma}^{P,c})$. Appendix Table D.1 compares simulated moments generated with these first-stage policy function estimates to data moments.

Value function estimation. Next, I estimate the equilibrium value functions, $V^{K,*}$ and $V^{P,*}$, using the empirical policy functions, \hat{P}. Following Hotz et al. (1994) and Bajari et al. (2007), I use forward simulation. For each state, I use \hat{P} and the known distributions of shocks to obtain a simulated path of choices until the parent is dead. I repeat the simulation $N_S = 500$ times and average the child’s and the parent’s discounted sum of flow payoffs over the N_S simulated paths. I denote the estimated value functions as \hat{V}^K and \hat{V}^P.

44For the list of these parameters, see Tables 7 and 8.
Pseudo maximum likelihood estimation. Finally, I use the estimated value functions to construct a *pseudo* likelihood function and search for the parameters that maximize this function. Intuitively, the pseudo likelihood function represents the likelihood that the child’s and the parent’s observed choices in a given period are their “current optimal” choices when they optimize in the current period, and starting in the next period, they behave according to \(\hat{P} \), which may not be optimal.

Before I define this pseudo likelihood function, I first define the likelihood function, which can be obtained by fully solving the model. The data available for estimation consist of \(\{s_{ант}, d^K_{ант}, d^P_{ант}; t = 1, \ldots, T_n, n = 1, \ldots, N\} \) where \(T_n \) is the number of interviews in which the \(n \)th parent-child pair is observed.\(^{45}\) The likelihood function is given as

\[
L^*(\theta) = \prod_{n=1}^{N} \prod_{t=1}^{T_n-1} \Pr(s_{ант} | s_{ант-1}) \Pr(d^K_{ант} | s_{ант}; \theta) \Pr(d^P_{ант} | s_{ант}, d^K_{ант}; \theta) \Pr(s_{ант,t+1} | s_{ант}, d^K_{ант}, d^P_{ант})
\]

where \(P^K,^* \) and \(P^P,^* \) are the optimal conditional choice probabilities obtained from solving the model backward at candidate parameter value \(\theta \). As there are no unobserved permanent types and all shocks are serially independent, the initial conditions can be treated as exogenous. The transition of the common state variables is deterministic except for the parent’s wealth and health. While the parent’s health transition is exogenous to the model, the conditional density of the parent’s wealth in the next period depends on endogenous choices of the model. Using the wealth accumulation law in Equation (13), the conditional density of wealth is given as

\[
f(w_{a+2}^P | s_a, d_a^P, c_a^P) = f_m \left((1 + r)(\hat{w}_a^P(s_a, d_a^P) - c_a^P) - w_{a+2}^P \right)^{I(w_{a+2}^P > 0)} \\
\times \left(1 - F_m \left((1 + r)(\hat{w}_a^P(s_a, d_a^P) - c_a^P) \right) \right)^{I(w_{a+2}^P = 0)}
\]

where \(f_m \) and \(F_m \) are the probability and the cumulative density functions of the parent’s wealth shock, respectively. The distribution of the wealth shock is estimated outside the model as shown in Table 5. In place of \(c_a^P \), I use the model’s prediction on optimal consumption, \(\sigma_{P,c,^*} \). Getting rid of the terms that are irrelevant in estimating the structural

\(^{45}\)For pseudo maximum likelihood estimation, I do not use the parent’s imputed consumption based on the CAMS data. I instead use the parent’s wealth transition to incorporate the parent’s consumption choices.
parameters of the model, the likelihood function can be redefined as
\[
L^*(\theta) = \prod_{n=1}^{N} \prod_{t=1}^{T_n-1} P^{K,*}(q^K_{an,t} | s^a_{an,t}; \theta) P^{P,*}(d^P_{an,t} | s^a_{an,t}, d^K_{an,t}; \theta) f\left(w^P_{an,t+1} \middle| s^a_{an,t}, d^P_{an,t}, \sigma^{P,c,*}(s^a_{an,t}, d^K_{an,t}, q^P_{an,t}, \theta) \right).
\]
(27)

The pseudo likelihood function instead uses an approximation of \(P^* = (P^{K,*}, P^{P,*}, \sigma^{P,c,*}) \), thereby avoiding the need to solve the model. I repeat the steps (a)-(c) outlined in the model solution section (Section 3.3), but use \(\hat{V}^K \) and \(\hat{V}^P \) in place of equilibrium value functions. These steps can be summarized by the following:

(a') I obtain the parent’s current optimal consumption by solving
\[
\Psi^{P,c}(s^a_s, d^K_{sa}, q^P_{sa}; \hat{P}, \theta) = \arg\max_{c^P_{sa} \in (0, \hat{w}^P_{sa}(s^a_s, d^K_{sa}))} \left\{ \pi^P(q^K_{sa}, q^P_{sa}, c^P_{sa}, s^a_s; \theta) + \beta E\left[\hat{V}^P(s^a_{sa+2}, d^K_{sa+2}; \hat{P}, \theta) \middle| s^a_s, d^K_{sa}, q^P_{sa}, c^P_{sa}, \hat{P} \right] \right\}.
\]
(28)

(b') I obtain the parent’s current optimal discrete choice probabilities as
\[
\Psi^{P,d}(d^P_{sa} | s^a_s, d^K_{sa}; \hat{P}, \theta) = \frac{\exp\left(\hat{v}^P(s^a_s, d^K_{sa}, d^P_{sa}; \hat{P}, \theta) \right)}{\sum_{d^P_{sa} \in C^P(s^a_s, d^K_{sa})} \exp\left(\hat{v}^P(s^a_s, d^K_{sa}, d^P_{sa}; \hat{P}, \theta) \right)}.
\]
(29)

(c') I obtain the child’s current optimal discrete choice probabilities as
\[
\Psi^K(d^K_{sa} | s^a_s, \hat{P}, \theta) = \frac{\exp\left(\hat{v}^K(s^a_s, d^K_{sa}; \hat{P}, \theta) \right)}{\sum_{d^K_{sa} \in C^K(s^a_s)} \exp\left(\hat{v}^K(s^a_s, d^K_{sa}; \hat{P}, \theta) \right)}.
\]
(30)

For \(i \in \{K, P\}, \hat{v}^i \) is defined as in Equations (16) and (18) but \(\hat{P} \) and \(\hat{V}^i \) are used in place of \(\sigma \) and \(V^i \). The function \(\Psi = (\Psi^K, \Psi^{P,d}, \Psi^{P,c}) \) is called the policy iteration operator or the policy improvement mapping as it updates the policy function estimates (\(\hat{P} \)) by embedding the agents’ optimizing behaviors of the current period (Aguirregabiria and Mira, 2002). The
pseudo likelihood function is given as

\[L(\theta; \hat{P}) = \prod_{n=1}^{N} \prod_{t=1}^{T_n-1} \Psi^K(q^K_{a_{nt}}|s_{a_{nt}}, \hat{P}, \theta) \Psi^{P,d}(q^{P}_{a_{nt}}|s_{a_{nt}}, d^K_{a_{nt}}, \hat{P}, \theta) \times f(w^{P}_{a_{nt}, t+1}|s_{a_{nt}}, d^{P}_{a_{nt}}, \Psi^{P,c}(s_{a_{nt}}, d^K_{a_{nt}}, d^{P}_{a_{nt}}, \hat{P}, \theta)). \]

(31)

The CCP estimator, denoted by \(\hat{\theta} \), maximizes this pseudo likelihood function:

\[\hat{\theta} = \arg\max_{\theta \in \Theta} L(\theta; \hat{P}). \]

(32)

This CCP estimator is consistent if the first-stage estimator of the equilibrium policy functions is consistent (Aguirregabiria and Mira, 2007). My first-stage policy function estimator is consistent as it uses the flexible functions of the state variables. To compute standard errors, I use bootstrapping as in Bajari et al. (2007).

4.4 Identification

Before I present the estimation results, I provide heuristic arguments for identification of the structural parameters. I first discuss identification of the parameters that govern the child’s decisions. The child’s consumption utility (\(\theta^K_c \)) and leisure utility (\(\theta^K_l \)) are identified by variation in income and leisure across work and informal care choices. As children with healthy parents do not provide informal care, their choices help identify consumption utility and leisure utility separately from warm-glow caregiving utility and inheritance utility (\(\theta^K_d \)).

The child’s inheritance utility is identified from her informal care choices. For strong identification of the child’s inheritance utility, the expected inheritance should vary sufficiently by informal care choices. Substantial formal care prices and the assumption that informal care eliminates the need for formal care result in enough variations in expected inheritances across informal care choices.

The child’s informal care choices are governed not only by inheritance utility but also by warm-glow caregiving utility. The child’s warm-glow caregiving utility is separately identified from inheritance utility using the informal care choices of children whose parents have low

\[^{46} \text{By warm-glow caregiving utility, I refer to structural parameters that enter } \omega^K \text{ in Equation (4).} \]
wealth or are Medicaid eligible. This is because these children’s informal care choices are mostly governed by altruism and not strategic motives. Informal care choices of children whose parents have long-term care insurance also provide a source of identification by the same argument. Exclusion restrictions also help separate identification. While warm-glow caregiving utility is unaffected by the parent’s wealth, inheritance utility crucially depends on the parent’s wealth.

I now discuss identification of the parameters that govern the parent’s decisions. The parent’s consumption utility \(\theta^P_{c} \) and altruistic bequest utility \(\theta^P_{d} \) are not separately identified from savings choices. This is because savings is a continuous choice and only the relative ratio of the consumption-bequest trade-off matters. The feature of the data that helps identification is parents’ formal care and insurance purchase choices. Variations in consumption and expected bequests across these discrete choices allow separate identification of \(\theta^P_{c} \) and \(\theta^P_{d} \).

The parent’s formal care choices identify the differences among formal care utilities \(\theta^P_{h_a,f,fc,i,N_k \geq 4} \). The levels of formal care utilities \(\theta^P_{h_a} \) are not identified from formal care choices. As shown in Equation (7), \(\theta^P_{h_a} \) is included in the parent’s utility for all three formal care choices (no formal care, paid home care, and nursing home). I do this because I have already normalized the utility from receiving informal care to zero. Owing to this normalization, the levels of formal care utilities can be interpreted as how much the parent prefers formal care to informal care. As a result, the parent’s choices that affect the likelihood of informal care identify these levels of formal care utilities. In other words, the parent’s choices that are affected by her strategic bequest motives provide a source of identification. Long-term care insurance and savings are such choices. The parent’s insurance ownership status affects the child’s informal care incentives through the family moral hazard effect of insurance. Savings also influence the child’s informal care incentives by changing bequests that are at stake.

The parent’s insurance and savings choices are governed not only by strategic bequest motives but also by altruistic bequest motives \(\theta^P_{d} \). These two different motives are separately identified by the following argument. The parent’s strategic bequest motives affect the parent’s insurance and savings decisions only through the child’s caregiving responses. Such responses are affected by the child’s demographics that determine the cost of informal care. As the parent’s altruistic bequest motives are unrelated to the child’s demographics,
Table 7: Parent Structural Parameter Estimates

<table>
<thead>
<tr>
<th>Description</th>
<th>Notation</th>
<th>Estimate</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption utility</td>
<td>θ^C_P</td>
<td>4.596</td>
<td>0.034</td>
</tr>
<tr>
<td>Bequest utility</td>
<td>θ^P_d</td>
<td>19646</td>
<td>1431</td>
</tr>
<tr>
<td>Formal care utility when $h_a^P = 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No formal care</td>
<td>$\theta^P_{h_a^P=1}$</td>
<td>-3.014</td>
<td>0.388</td>
</tr>
<tr>
<td>Paid home care, 4- children</td>
<td>$\theta^P_{h_a^P=1,fc_{a}^P=1,0}$</td>
<td>1.466</td>
<td>0.085</td>
</tr>
<tr>
<td>Paid home care, 4+ children</td>
<td>$\theta^P_{h_a^P=1,fc_{a}^P=1,1}$</td>
<td>1.380</td>
<td>0.126</td>
</tr>
<tr>
<td>Nursing home, 4- children</td>
<td>$\theta^P_{h_a^P=1,fc_{a}^P=2,0}$</td>
<td>0.575</td>
<td>0.177</td>
</tr>
<tr>
<td>Nursing home, 4+ children</td>
<td>$\theta^P_{h_a^P=1,fc_{a}^P=2,1}$</td>
<td>0.230</td>
<td>0.245</td>
</tr>
<tr>
<td>Formal care utility when $h_a^P = 2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No formal care</td>
<td>$\theta^P_{h_a^P=2}$</td>
<td>-6.283</td>
<td>0.230</td>
</tr>
<tr>
<td>Paid home care, 4- children</td>
<td>$\theta^P_{h_a^P=2,fc_{a}^P=1,0}$</td>
<td>2.990</td>
<td>0.119</td>
</tr>
<tr>
<td>Paid home care, 4+ children</td>
<td>$\theta^P_{h_a^P=2,fc_{a}^P=1,1}$</td>
<td>2.368</td>
<td>0.104</td>
</tr>
<tr>
<td>Nursing home, 4- children</td>
<td>$\theta^P_{h_a^P=2,fc_{a}^P=2,0}$</td>
<td>4.788</td>
<td>0.062</td>
</tr>
<tr>
<td>Nursing home, 4+ children</td>
<td>$\theta^P_{h_a^P=2,fc_{a}^P=2,1}$</td>
<td>3.149</td>
<td>0.078</td>
</tr>
</tbody>
</table>

Notes: Table reports estimates for the parent’s structural parameters. Standard errors are computed using 100 bootstrap samples.

child demographics serve as exclusion restrictions that identify strategic bequest motives from altruistic bequest motives.

Lastly, the parent’s formal care choices are governed not only by formal care utilities but also by consumption and bequest motives. For example, the parent may not use formal care because she would rather spend her wealth on consumption or increase bequests. Parents with long-term care insurance or Medicaid benefits help separate identification. This is because these parents’ formal care choices are largely unaffected by consumption or bequest motives as they can use formal care without drawing down their wealth.

4.5 Estimates and Model Fit

Table 7 reports the estimates of the parent’s structural parameters. Several findings emerge from the estimates. First, the parent prefers informal care to formal care. This is shown by the fact that estimates of $\theta^P_{h_a^P} + \theta^P_{h_a^P,fc_{a}^P,N_k\geq4}$ are always negative. This is consistent with Mommaerts (2015) who also finds that parents have a distaste for formal care relative to informal care. Second, the parent’s relative preferences for different formal care services vary
Table 8: Child Structural Parameter Estimates

<table>
<thead>
<tr>
<th>Description</th>
<th>Notation</th>
<th>Estimate</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption utility</td>
<td>θ^K_c</td>
<td>1.137</td>
<td>0.027</td>
</tr>
<tr>
<td>Leisure utility</td>
<td>θ^K_l</td>
<td>0.688</td>
<td>0.032</td>
</tr>
<tr>
<td>Inheritance utility</td>
<td>θ^K_d</td>
<td>5.077</td>
<td>0.195</td>
</tr>
<tr>
<td>Warm-glow caregiving utility</td>
<td>$\theta^K_{Pa_a=1, cg_a^K=1}$</td>
<td>1.141</td>
<td>0.048</td>
</tr>
<tr>
<td>$h_a^P = 1$, light informal care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$h_a^P = 1$, intensive informal care</td>
<td>$\theta^K_{h_a=1, cg_a^K=1}$</td>
<td>0.711</td>
<td>0.053</td>
</tr>
<tr>
<td>$h_a^P = 2$, light informal care</td>
<td>$\theta^K_{h_a=2, cg_a^K=1}$</td>
<td>-0.208</td>
<td>0.052</td>
</tr>
<tr>
<td>$h_a^P = 2$, intensive informal care</td>
<td>$\theta^K_{h_a=2, cg_a^K=2}$</td>
<td>0.563</td>
<td>0.035</td>
</tr>
<tr>
<td>Male</td>
<td>θ^K_{male}</td>
<td>-1.019</td>
<td>0.043</td>
</tr>
<tr>
<td>Live far</td>
<td>θ^K_{far}</td>
<td>-1.148</td>
<td>0.046</td>
</tr>
<tr>
<td>Initiate caregiving</td>
<td>θ^K_{start}</td>
<td>-0.987</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Notes: Table reports estimates for the child’s structural parameters. Standard errors are computed using 100 bootstrap samples.

by health status. Parents with light long-term care needs ($h_a^P = 1$) prefer paid home care to nursing home care.\(^{47}\) This is consistent with the broad perception that most individuals want to remain in their homes and delay facility care until they absolutely need it. Preferences for nursing home care are substantially higher when the parent has severe long-term care needs ($h_a^P = 2$). Third, preferences for formal care are smaller for parents with many children. This is consistent with the data pattern that parents with four or more children use less formal care. Lastly, the parent has altruistic bequest motives. The magnitude of altruistic bequest motives is smaller than that found in Lockwood (2016).\(^{48}\) While the parent in his model only has altruistic bequest motives, the parent in my model has both altruistic and strategic bequest motives. Because the parent prefers informal care to formal care, strategic bequest motives induce the parent to save more. To the extent that both models try to rationalize the same savings patterns, my estimation of the model finds lower altruistic bequest motives as it attributes some of the savings to strategic bequest motives.

Table 8 reports the estimates of the child’s structural parameters. Several findings emerge from the estimates. First, children providing care to parents with light long-term care needs derive higher caregiving utility than those providing care to parents with severe long-term care needs. The estimates of nursing home preferences are net of consumption value from nursing home care (c_{nh}) as I have explicitly included it in the parent’s consumption utility. See Equation (6).

\(^{47}\)He considers a life-cycle model of a single parent who makes long-term care insurance and savings decisions, abstracting away from strategic interactions with the family.

43
care needs. This implies that taking care of parents with severe daily living limitations is stressful to children. This is consistent with Skira (2015), who also finds higher caregiving utility when the parent has modest rather than severe long-term care needs. Second, the psychological burden of providing care varies substantially by child demographics. Sons find caregiving more burdensome than daughters, and children who do not live within 10 miles of their parents experience higher caregiving costs than children who do. Third, there is a substantial cost in initiating informal care. This may reflect switching or adjustment costs. The model generates persistence in informal care, consistent with Skira (2015). Lastly, the child values bequests. The model therefore generates family moral hazard whereby children reduce informal care in response to their parents’ insurance coverage.

I now discuss the model fit. Figure 5 shows that the model does a good job of matching the empirical long-term care insurance coverage rate by wealth quintile. In particular, the model is able to replicate the monotonically increasing ownership rate in wealth. Figure 6 reports the actual and simulated parent median wealth by age, and the fit is reasonable. Table 9 shows that the model is able to match the paid home care and nursing home utilization rates as well as the light and intensive informal care rates, conditional on the intensity of the parent’s long-term care needs. Figure 7 further breaks down the formal care moments by parent wealth. The model is able to replicate the fact that the paid home care utilization rate increases in wealth, and parents in the bottom wealth quintile have the highest nursing home utilization rate.

Figure 8 reports the actual and simulated formal care utilization rates by whether or not parents have four or more children. In the data, the paid home care utilization rate is almost the same between parents with few children and parents with many children. On the other hand, the nursing home utilization rate for parents with many children is lower by 30 percent compared to that for parents with few children. Figure 8 shows that the model is able to rationalize these patterns.

Figure 9 reports the informal care rate by parent wealth. The model is able to reproduce the inverted-U pattern across wealth, although the pattern is slightly shifted to the right compared to the data pattern. Figures 10 and 11 report informal care and employment moments by child gender and residential proximity to the parent, respectively. The fit of these moments confirm that the model is capable of matching the child’s empirical moments.
Figure 5: Long-Term Care Insurance Coverage by Parent Wealth

Notes: Figure reports data and simulated long-term care insurance coverage rates by parent wealth. Simulated moments are generated using the estimated model.

conditional on various demographics. Table 10 reports the fit of informal care transition probabilities. The model is able to reproduce the persistent caregiving pattern in the data.

Finally, Table 11 compares the simulated lifetime formal care expenses for a healthy 65-year-old to those found in Kemper et al. (2005/2006). Similar to their findings, the model predicts large formal care risks; half of 65-year-olds will not incur any formal care expenses while the other half will spend on average $100,146 on formal care. The model predicts that almost 40 percent of these expenses will be paid by Medicaid, which is also similar to what the other study finds.
Figure 6: Parent Wealth by Age

Notes: Figure reports data and simulated median wealth by parent age. Simulated moments are generated using the estimated model.

Table 9: Long-Term Care Utilization

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Among parents w/ light LTC needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light informal care rate</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>Intensive informal care rate</td>
<td>0.18</td>
<td>0.10</td>
</tr>
<tr>
<td>Paid home care rate</td>
<td>0.50</td>
<td>0.46</td>
</tr>
<tr>
<td>Nursing home rate</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Among parents w/ severe LTC needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light informal care rate</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Intensive informal care rate</td>
<td>0.29</td>
<td>0.23</td>
</tr>
<tr>
<td>Paid home care rate</td>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>Nursing home rate</td>
<td>0.36</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Notes: Table reports data and simulated moments. Simulated moments are generated using the estimated model. Formal care rates are among parents who have specified health statuses and do not receive informal care from children.
Figure 7: Formal Care by Parent Wealth

Notes: Figure reports data and simulated paid home care and nursing home utilization rates among parents who have long-term care needs and do not receive any informal care. Simulated moments are generated using the estimated model.

Figure 8: Formal Care by Number of Children

Notes: Figure reports data and simulated paid home care and nursing home utilization rates among parents who have long-term care needs and do not receive any informal care. Simulated moments are generated using the estimated model.
Figure 9: Informal Care by Parent Wealth

Notes: Figure reports data and simulated informal care rates. Informal care rates are computed among parents with long-term care needs. Simulated moments are generated using the estimated model.

Figure 10: Informal Care and Employment by Child Gender

Notes: Figure reports data and simulated employment and informal care rates of children. Informal care rates are computed among parents with long-term care needs. Simulated moments are generated using the estimated model.
Figure 11: Informal Care and Employment by Child Residential Proximity

Notes: Figure reports data and simulated employment and informal care rates of children. Informal care rates are computed among parents with long-term care needs. Simulated moments are generated using the estimated model.

Table 10: Informal Care Transitions

<table>
<thead>
<tr>
<th>No informal care</th>
<th>Informal care</th>
</tr>
</thead>
<tbody>
<tr>
<td>No informal care</td>
<td>90%</td>
</tr>
<tr>
<td>Informal care</td>
<td>40%</td>
</tr>
</tbody>
</table>

Notes: Table reports data and simulated informal care transitions. Simulated transitions are generated using the estimated model and are given in brackets. Informal care transitions are computed using children whose parents are alive for two consecutive periods.

Table 11: Present-Discounted Value of Lifetime Formal Care Expenses for a 65-year-old

<table>
<thead>
<tr>
<th></th>
<th>Literature</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean expenses</td>
<td>$55,930</td>
<td>$50,073</td>
</tr>
<tr>
<td>Mean expenses cond’l on ever using formal care</td>
<td>$96,431</td>
<td>$100,146</td>
</tr>
<tr>
<td>% of 65-year-olds ever using formal care</td>
<td>58%</td>
<td>50%</td>
</tr>
<tr>
<td>% of expenses paid by Medicaid</td>
<td>37%</td>
<td>36%</td>
</tr>
</tbody>
</table>

Notes: Table reports the model-simulated present-discounted value of lifetime formal care expenses for a healthy 65-year-old and that found in Kemper et al. (2005/2006). The values are on a unisex basis. Monetary values are inflated to 2013 dollars.
5 Equilibrium Analyses

I use the estimated model to conduct equilibrium analyses of the long-term care insurance market. To do this, I augment the model by incorporating competitive insurance companies. I use the augmented framework to examine how private information about informal care and family moral hazard affect the equilibrium outcomes, and to shed light on the recent soaring premiums.

One standardized policy is offered in the competitive long-term care insurance market. Risk-neutral insurance companies compete by setting premiums. The standard policy is sold to healthy 60-year-olds at a constant premium and has benefit features that are described in Section 3.1: (1) it has a maximal per-period benefit cap, (2) it provides benefits for life, and (3) premium payments are waived while policyholders are receiving benefits. The maximal annual benefit is 70 percent of the annual nursing home costs. Formal care costs grow at the annual real growth rate of 2 percent (Genworth, 2015). The annual benefit also increases at the same rate such that the policy always pays 70 percent of the nursing home costs at most. I analyze the equilibrium outcomes of this policy for my sample period. Specifically, I examine the equilibrium outcomes when the policy is sold to healthy 60-year-olds in 2002. In 2002, premiums varied only by age and three or four underwriting classes determined by health conditions at the time of initial purchase. Under this pricing rule, all healthy 60-year-olds pay the same premium.

The equilibrium price of the standard policy, p^*, is determined by the zero profit condition, which requires that insurance companies break even on average. p^* is characterized as the lowest break-even price:

$$p^* = \min\{p : AR(p) = AC(p)\}.$$ (33)

$AR(p)$ is the average revenue curve and is defined as the average of the present-discounted value of the lifetime premium payments of individuals who select into insurance at premium p. $AC(p)$ is the average cost curve and is defined as the average of the present-discounted value of the lifetime claims of individuals who select into insurance at premium p. Henceforth, I will refer to $AR(p)$ as the average revenue curve, and $AC(p)$ as the average cost curve.

I build the simulation sample by selecting healthy 60- and 61-year-olds from the HRS 2002.
Table 12: Summary Statistics on the Simulation Sample

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Wealth</td>
<td>393788</td>
<td>194973</td>
</tr>
<tr>
<td>Have 4+ children</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>College education</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Live within 10 mi of the parent</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Homeowner</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1982</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Table reports the mean and the median values of the simulation sample. Monetary values are in 2013 dollars. Parents in the simulation sample are healthy 60- and 61-year-olds in the HRS 2002.

I match one adult child to each parent using the selection criteria described earlier in Section 4.1. The simulation sample includes both single and married individuals. I do not restrict the sample to single individuals because in 2002, all healthy 60-year-olds paid the same premium regardless of their marital status. Table 12 presents the summary statistics of the simulation sample. It consists of 1,982 parent-child pairs. Three quarters of the parents are married and 57 percent are women. The average wealth is around $400,000 and the median is around $200,000. Of the children, 48 percent are female, one half have a college education, and 48 percent live within 10 miles of their parents. I make 200 duplicates for each parent-child pair.

For each candidate equilibrium premium \(p \), I solve the model backward using the estimated structural parameters. Then, I use the equilibrium policy functions to forward simulate choices of families in the simulation sample. Using parents who select into insurance, I obtain the average cost curve \(AC(p) \) and the average revenue curve \(AR(p) \). I look for the premium where the average cost equals the average revenue. I now present main findings of this paper.

As the model is estimated using single individuals, the estimated model may overpredict informal care from children for married individuals. However, this issue is mitigated by the fact that (1) long-term care needs are late-life risks and (2) the share of singles increases sharply with age.
5.1 Equilibrium Effects of Informal Care

I conduct various counterfactuals to examine how informal care affects the equilibrium outcomes in the long-term care insurance market. First, I show that private information about informal care results in substantial adverse selection. To reduce market inefficiencies created by adverse selection, I consider counterfactual pricing rules that reduce private information about family care, and examine their coverage and welfare effects. Next, I demonstrate that some parents forgo insurance as insurance undermines the effectiveness of bequests in eliciting informal care. Finally, I show how the existence of informal care limits the size of the long-term care insurance market.

5.1.1 Adverse Selection on Informal Care

The left panel of Figure 12 reports the simulated average cost curve in premium. The increasing average cost curve in premium shows that individuals who have a higher willingness to pay for insurance are indeed more expensive to insurance companies.\(^{50}\) This finding serves as direct evidence of adverse selection in the long-term care insurance market.\(^{51}\) As shown in Appendix Figure D.3, while there is a quantitatively meaningful selection on wealth (the demand for insurance sharply increases in wealth), there is no meaningful relationship between wealth and formal care risk. As a result, adverse selection based on formal care risk largely determines the overall nature of selection in the long-term care insurance market. The right panel of Figure 12 reports the coverage rate in premium. Appendix Figure D.1 reports the average cost curve and the average revenue curve together in premium. The equilibrium premium is $5,732 and the equilibrium coverage rate is 6.1 percent.

I now quantify how private information about informal care accounts for the detected adverse selection. As emphasized earlier, heterogeneity in formal care risk is driven by heterogeneity in health transition probabilities (which vary by gender) and heterogeneity in family care. To quantify how heterogeneity in informal care provided by the primary caregiving child contributes to adverse selection, in the left panel of Figure 13, for each

\(^{50}\)The fact that I do not allow for heterogeneity in risk aversion may overpredict the magnitude of adverse selection. Finkelstein and McGarry (2006) find a negative correlation between risk aversion and risk in the long-term care insurance market that mitigates adverse selection based on risk.

\(^{51}\)Several studies use a cost curve increasing in price as the definition of the adverse selection property in insurance markets (Einav et al., 2010a; Einav and Finkelstein, 2011; Handel et al., 2015).
Figure 12: Adverse Selection Property

Notes: Left panel reports $AC(p)$, the average cost curve in premium. $AC(p)$ is defined as the average of the present-discounted value of the lifetime claims of individuals who select into insurance at premium p. Right panel reports the coverage rate in premium. Appendix Figure D.1 reports the average cost curve and the average revenue curve together in premium. The equilibrium premium for the standard policy is $5,732 and the equilibrium coverage rate is 6.1 percent. The standard policy is sold to healthy 60-year-olds and provides benefits for life (see main text for details).

decile of “informal care measure,” I report the fraction of parents who select into insurance at the equilibrium premium. For each family in the simulation sample, I define this informal care measure as the number of total informal care periods divided by the number of total bad health periods when there is no private long-term care insurance (see Appendix Figure D.2 for the density of this informal care measure). The negative slope shows that parents who expect less informal care under no insurance are more likely to select into insurance at the equilibrium premium. Quantitatively, moving from the 10th percentile to the 90th percentile of the informal care distribution is associated with a 4-percentage-point decrease in the demand for insurance. Given the equilibrium coverage rate of 6.1 percent, the finding suggests that there is substantial selection on informal care. To quantify how adverse this selection is, the right panel of Figure 13 reports, for each decile of the informal care measure, the average present-discounted value of lifetime formal care expenses when the parent has long-term care insurance. Qualitatively, the slope is negative as expected. Quantitatively, moving from the 10th percentile to the 90th percentile of the informal care measure is
Figure 13: Informal Care and Insurance Selection

Notes: Left panel reports the fraction of parents who buy long-term care insurance at the equilibrium premium, by each decile of the informal care measure. Right panel reports the average present-discounted value of the lifetime formal care expenses when the parent owns long-term care insurance. The informal care measure is defined as the number of informal care periods divided by the number of bad health periods when there is no private long-term care insurance. Quantiles start at the 40th percentile because there is a big mass at zero (about 55 percent of parents never receive informal care). This is consistent with the data patterns; Table 3 shows that among parents with long-term care needs, 55 percent do not receive any informal care from children.

associated with an $81,000 reduction in lifetime spending on formal care. Together, the results in Figure 13 show that private information about informal care is a substantial source of adverse selection.

The empirical finding that there is substantial adverse selection based on the availability of informal care provides a new explanation for the small size of the long-term care insurance market. Private information about informal care hinders the efficient workings of the insurance market where, in equilibrium, the market only serves high-risk individuals with limited access to informal care. Low-risk individuals who nevertheless value financial protection against formal care expenses forgo insurance owing to adverse selection. This finding suggests that policies that are intended to reduce the amounts of private information about informal care may increase the market size and generate welfare gains. I now examine the equilibrium and welfare effects of such policies.
5.1.2 Equilibrium Effects of Pricing on Child Demographics

To explore practical policies that could reduce adverse selection in the long-term care insurance market, I consider counterfactual pricing rules where prices are conditional on observables that predict formal care risk. In addition to gender-based pricing that was adopted by insurance companies in 2013, I consider pricing on child demographics. The estimation results in Table 8 show that the primary caregiving child’s gender and residential proximity substantially affect her informal care incentives. Furthermore, the estimation results in Table 7 reveal that parents with more children are less likely to use formal care. Based on these findings, I consider a counterfactual risk adjustment where prices are conditional on the primary caregiving child’s gender and residential proximity, and whether or not an individual has at least four children. Depending on the number of values that priced demographics can take, the market results in multiple market segments. For example, under gender-based pricing, there are two market segments: one for women and one for men. Under child demographic-based pricing, there are eight market segments. For each market segment of each pricing rule, I find the break-even premium that satisfies Equation (33).

Table 13 compares the equilibrium outcomes of default pricing (first row), gender-based pricing (second row), child demographic-based pricing (third row), and hybrid pricing on gender and child demographics (fourth row). For each pricing rule, I examine the welfare effects by computing the one-time wealth transfer needed to make a parent under default pricing indifferent to counterfactual pricing.

By price discriminating women from men, gender-based pricing reduces private information about formal care risk (see Table 14 for the equilibrium outcomes of each market segment). The ownership rate increases by 18 percent, and the average cost of the insured drops by 14 percent. Table 14 shows that these effects are generated by more men selecting into insurance as they are no longer pooled with women who have a higher risk of using formal care. Gender-based pricing generates welfare gains for men who face a lower equilibrium premium, but it generates welfare losses for women who face a higher equilibrium premium. Overall, there is an average welfare gain of $375 per individual.

As shown in Table C.1, the child’s gender is also an important factor in labor market income, which determines her opportunity cost of providing care.
Table 13: Equilibrium and Welfare Effects of Counterfactual Pricing

<table>
<thead>
<tr>
<th>Pricing rule</th>
<th>Average premium</th>
<th>Ownership</th>
<th>AC</th>
<th>Medicaid spending</th>
<th>Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>5732</td>
<td>0.061</td>
<td>76381</td>
<td>21669</td>
<td>0</td>
</tr>
<tr>
<td>Gender</td>
<td>5761</td>
<td>0.072</td>
<td>65927</td>
<td>21658</td>
<td>375</td>
</tr>
<tr>
<td>Child demographics</td>
<td>4835</td>
<td>0.095</td>
<td>58890</td>
<td>21311</td>
<td>1002</td>
</tr>
<tr>
<td>Gender & child demographics</td>
<td>4813</td>
<td>0.102</td>
<td>54300</td>
<td>21416</td>
<td>1255</td>
</tr>
</tbody>
</table>

Notes: Table reports equilibrium outcomes of the standard policy under various pricing rules. The standard policy is sold to healthy 60-year-olds and provides benefits for life (see main text for details). First row reports the equilibrium outcomes under default pricing where all healthy 60-year-olds pay the same price. Second row reports the equilibrium outcomes when prices are conditional on the gender of a consumer. Third row reports the equilibrium outcomes when prices are conditional on the primary caregiving child’s gender and residential proximity, and whether or not a consumer has at least four children. Fourth row reports the equilibrium outcomes when prices are conditional on the gender of a consumer, and the three variables used for child demographic-based pricing. Except for the first row where there is one market segment, Average premium represents the average of the equilibrium premiums of multiple market segments. Ownership represents the share of the simulation sample that buys insurance. AC represents the average present-discounted value of the lifetime claims of the insured. Medicaid spending represents the average present-discounted value of lifetime Medicaid expenditures per individual. Welfare represents the average wealth transfer needed to make a parent under default pricing indifferent to counterfactual pricing.

Table 14: Equilibria under Gender-Based Pricing

<table>
<thead>
<tr>
<th>Gender</th>
<th>Premium</th>
<th>Ownership</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>4548</td>
<td>0.13</td>
<td>57525</td>
</tr>
<tr>
<td>Female</td>
<td>6974</td>
<td>0.03</td>
<td>96272</td>
</tr>
</tbody>
</table>

Notes: Table reports equilibrium outcomes of each market segment under gender-based pricing. AC represents the average present-discounted value of the lifetime claims of individuals who buy insurance in each market segment.
Table 15: Equilibria under Child Demographic-Based Pricing

<table>
<thead>
<tr>
<th>(Daughter, Live close, 4+ Children)</th>
<th>Premium</th>
<th>Ownership</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes Yes Yes</td>
<td>2412</td>
<td>0.154</td>
<td>33797</td>
</tr>
<tr>
<td>Yes No Yes</td>
<td>5072</td>
<td>0.067</td>
<td>67397</td>
</tr>
<tr>
<td>No Yes Yes</td>
<td>4897</td>
<td>0.064</td>
<td>65738</td>
</tr>
<tr>
<td>No No Yes</td>
<td>5907</td>
<td>0.067</td>
<td>77972</td>
</tr>
<tr>
<td>Yes Yes No</td>
<td>2539</td>
<td>0.182</td>
<td>36007</td>
</tr>
<tr>
<td>Yes No No</td>
<td>5693</td>
<td>0.066</td>
<td>75891</td>
</tr>
<tr>
<td>No Yes No</td>
<td>5441</td>
<td>0.064</td>
<td>72524</td>
</tr>
<tr>
<td>No No No</td>
<td>6722</td>
<td>0.096</td>
<td>88100</td>
</tr>
</tbody>
</table>

Notes: Table reports equilibrium outcomes of each market segment under counterfactual pricing on child demographics. Priced child demographics are the primary caregiving child’s gender (Daughter) and residential proximity (Live close), and whether or not a consumer has at least 4 children (4+ Children). AC represents the average present-discounted value of the lifetime claims of individuals who buy insurance in each market segment.

Pricing on child demographics substantially reduces private information about formal care risk (see Table 15 for the equilibrium outcomes of each market segment). Compared to default pricing, the equilibrium coverage rate increases by 56 percent, the average premium decreases by 16 percent, and the average cost of the insured decreases by 23 percent. Table 15 shows that these effects are generated by increased coverage rates among parents with family demographics that indicate high availability of informal care. Increases in the coverage rates relieve Medicaid’s burden of paying formal care expenses, and the average lifetime Medicaid spending per individual falls by $358. Pricing on child demographics results in an average welfare gain of $1,002 per individual.

Finally, hybrid pricing on gender and child demographics generates the biggest increase in the coverage rate and produces the largest welfare gain. These findings suggest that complementing current gender-based pricing with child demographic-based pricing can substantially reduce adverse selection, invigorate the market, and create welfare gains to the elderly.

5.1.3 Family Moral Hazard and Strategic Non-Purchase of Insurance

The results so far show that private information about family care limits the size of the long-term care insurance market by creating adverse selection. Estimates of the structural parameters reveal another mechanism by which informal care can account for the small size of the market: children value inheritance and parents prefer informal care to formal care.
Figure 14: Family Moral Hazard by Parent Wealth

Notes: Figure reports for each parent wealth decile, the average reduction in total informal care periods as parents move from the No LTCI Regime to the Mandatory LTCI Regime (wealth is measured at parent age 60). Under the No LTCI regime, (1) children on average provide informal care for 0.67 period over parents’ lifetime (a period is 2 years), and (2) conditional on ever providing informal care, they provide informal care for 1.95 periods. Under the Mandatory LTCI regime, (1) children on average provide informal care for 0.56 period over parents’ lifetime, and (2) conditional on ever providing informal care, they provide informal care for 1.87 periods.

As a result, the strategic non-purchase of long-term care insurance as argued in several theoretical papers may be a potential explanation for the small size of the insurance market.

I first quantify the magnitude of family moral hazard. To do this, I examine how informal care choices change as I move parents from having no insurance (No LTCI Regime) to having insurance (Mandatory LTCI Regime).[^53] For each parent-child pair, I measure the magnitude of family moral hazard by computing the reduction in total informal care periods over the parent’s lifetime. I find that children on average reduce informal care periods by almost 20 percent in response to their parents’ insurance coverage. Figure 14 reports the reduction in total informal care periods by parent wealth. The magnitude of family moral hazard is substantially smaller for low-wealth parents than for high-wealth parents. Children with low-wealth parents have weak strategic incentives to provide care as the bequests they can protect by providing informal care are small. On the other hand, children with high-wealth parents

[^53]: For the rest of the section, the standard policy uses default pricing where all healthy 60-year-olds pay the same premium.
reduce informal care by greater magnitudes as their sizable bequests are now protected by long-term care insurance.

I quantify how this family moral hazard affects the size of the long-term care insurance market. To this end, I conduct a counterfactual exercise with no family moral hazard. I remove family moral hazard by forcing the child whose parent owns long-term care insurance to make the same informal care choices as she would when the parent did not own insurance. In this counterfactual scenario, the parent no longer worries about insurance undermining the effectiveness of bequests in eliciting informal care.

The results of this counterfactual are summarized in Table 16. The first row shows the equilibrium of the benchmark model where children are allowed to show behavioral responses to parents’ insurance coverage. The second row shows the partial equilibrium when there is no family moral hazard but the premium is held constant at the benchmark equilibrium of $5,732. Without family moral hazard, the demand increases by 10 percent. There is a noticeable reduction in the average risk of the insured population. This is because children provide the same amount of informal care despite the fact that their parents are insured. As a result, the insured parents are less likely to use formal care compared to the benchmark model where insurance undermines children’s informal care incentives. Finally, the third row reports the competitive equilibrium without family moral hazard. As the risk of the insured population decreases, the equilibrium premium falls to $5,286 and the coverage rate increases by 41 percent. Figure D.4 in the Appendix graphically summarizes the results.
Table 17: Equilibrium without Informal Care

<table>
<thead>
<tr>
<th></th>
<th>Ownership</th>
<th>Premium</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark equilibrium</td>
<td>0.061</td>
<td>5732</td>
<td>76381</td>
</tr>
<tr>
<td>Partial equilibrium without informal care</td>
<td>0.150</td>
<td>5732</td>
<td>87129</td>
</tr>
<tr>
<td>Equilibrium without informal care</td>
<td>0.095</td>
<td>6741</td>
<td>88071</td>
</tr>
</tbody>
</table>

Notes: Table reports the equilibrium coverage rate, equilibrium premium, and average present-discounted value of the lifetime claims under each of the specified equilibrium scenarios. First row reports the equilibrium outcomes of the benchmark model where children can provide informal care. Second row reports the partial equilibrium outcomes when children cannot provide informal care and the premium is held constant at the benchmark equilibrium premium. Third row reports the new equilibrium outcomes when children cannot provide care.

These findings suggest that family moral hazard reduces parents’ willingness to pay for insurance as they prefer informal care over formal care. Family moral hazard further reduces the equilibrium coverage rate by increasing the formal care risk of insured parents and increasing the equilibrium premium. The overall equilibrium effect of family moral hazard is substantial, which highlights the value of estimating a game model of family long-term care decisions.

5.1.4 Existence of Informal Care and the Long-Term Care Insurance Market

I now examine how the existence of informal care affects the equilibrium of the long-term care insurance market. To do this, I compute the equilibrium of the long-term care insurance market when there is no informal care. In this counterfactual experiment, children’s caregiving choices are always set to no informal care. Table 17 summarizes the results. The first row shows the benchmark equilibrium outcomes. The second row shows the partial equilibrium without informal care when the premium is held constant at the benchmark equilibrium. The results in this row can be interpreted as the effects of informal care on the demand for insurance. Taking away the option of informal care sharply increases the demand by 9 percentage points. However, the formal care risk of the entire population (not just the insured population) increases, because without informal care, formal care becomes the only way to receive long-term care. The third row shows the competitive equilibrium when there is no informal care. The equilibrium premium increases to reflect the increased risk in the absence of informal care. The overall increase in the equilibrium coverage rate is 3.4 percentage points. Figure D.5 in the Appendix graphically reports the results in Table 60.
These results suggest that while the existence of informal care substantially reduces the demand for insurance, its effect on reducing the equilibrium coverage rate is much smaller. This is because informal care reduces the overall formal care risk of the elderly thereby lowering the equilibrium premium. Combined with the results in Table 13, the most salient impact of informal care on limiting the size of the long-term care insurance market does not arise from its existence alone. The failure to account for heterogeneity in informal care creates market inefficiencies that have as powerful an effect on limiting the size of the market.

5.2 Explanations for Soaring Premiums

As a final set of counterfactuals, I use the equilibrium model of the insurance market to shed light on the recent soaring premiums. I show that the failure to account for selection and moral hazard led to substantial underpricing. I also demonstrate that the decreasing availability of informal care for baby boomers results in a higher formal care risk and puts upward pressure on the equilibrium premium.

5.2.1 Underpricing

The average empirical premium of the standard policy considered throughout this section was $3,195 in 2002. The model predicts that the zero-profit premium for this policy is $5,732. This finding suggests that long-term care insurance products were indeed initially underpriced, and were below the break-even level by almost 80 percent. This number coincides with Genworth’s requested premium increases of 80-85 percent on existing policies (Carrns, 2015).

I now provide potential explanations for such substantial underpricing. The initial actuarial model, which was widely used by long-term care insurance companies to price their products...
Figure 15: Underpricing

Notes: Black solid line and black dashed line represent the average cost curve and the average revenue curve, respectively. Red solid line represents the average counterfactual claim of the entire population. This is computed by averaging over the smaller of formal care expenses and insurance benefits regardless of insurance holdings. Red dashed line represents the average counterfactual premium payment of the entire population. This is computed by assuming that everyone pays the premium when they are healthy.

Predicts formal care risks unconditional on ownership status of long-term care insurance.\footnote{\cite{brown2007actuarial} for more details about the widespread use of this actuarial model. For more details about the actuarial model itself, see \cite{robinson1996actuarial,robinson2002actuarial}.} This may be due to the underestimated adverse selection/moral hazard or a lack of sufficient claims data. While individuals typically buy long-term care insurance in their sixties, most of them do not use it until they turn 80.\footnote{Figure 1 shows that long-term care is a late-life risk. Also, the average age at first entry into a nursing home is around 83 years (\cite{brown2007actuarial}).} Such a time lag between the purchase and the use of insurance suggests that it takes almost two decades for insurance companies to learn about the risk of their policyholders. As modern long-term care insurance products were introduced in the late 1980s, it has only been a few years since insurance companies have had access to sufficient claims data.

To examine how the failure to account for adverse selection and moral hazard affects pric-
ing, I compute the premium where the average formal care expenses of the entire population equals the average premium payment. Figure 15 presents this exercise. The black solid line and the black dashed line represent the correct average cost curve and average revenue curve, respectively. The red solid line - denoted as the wrong average cost curve - represents the average counterfactual claim of the entire population. This is computed by averaging over the smaller of formal care expenses and insurance benefits regardless of insurance holdings. This curve lies substantially below the correct average cost curve as there is adverse selection and moral hazard in the market.57 The red dashed line - denoted as the wrong average revenue curve - represents the average counterfactual premium payment of the entire population, which is computed by assuming that everyone pays premiums when they are healthy. The wrong average cost curve and the wrong average revenue curve intersect when the premium is $2,991. This is extremely close to the average premium of $3,195 in 2002. This finding suggests that the actuarial model that does not distinguish between the formal care risk of individuals who select into insurance and the formal care risk of individuals who do not substantially underpredicts the break-even premium.

5.2.2 Demographic Changes

The results shown above suggest that a large fraction of recent premium increases are attributable to initial underpricing. I provide another plausible explanation for the premium increases happening around 2010. I draw from the fact that baby boomers, who were born between 1946 and 1964, became major consumers of the long-term care insurance market around that time. Compared to their former cohort (called the silent generation), baby boomers are at higher risk of using formal care as they have fewer children. Figure 16 shows that the average number of children among 60-year-olds is monotonically decreasing over time. This suggests that demographic changes may put upward pressure on the equilibrium premium.

To quantify this effect, I analyze how the equilibrium premium changes as the baby boom generation replaces the silent generation as major consumers of the insurance market. The simulation sample used throughout this section consists of 60-year-olds from the HRS 2002...
who represent the silent generation. I construct a new simulation sample that represents the baby boom generation by selecting 60-year-olds from the HRS 2010. Figure 17 compares the equilibrium premium for the baby boom generation to that for the silent generation. The average cost curve of baby boomers lies above that of the silent generation, implying overall increases in formal care risk for baby boomers. The equilibrium premium for baby boomers is almost 10 percent higher than the equilibrium premium for the silent generation, and the equilibrium coverage rate falls from 6.1 percent to 4.8 percent.

This finding suggests that insurance companies may be increasing premiums in part because they expect overall increases in formal care risk due to the decreasing availability of informal care. While it is true that insurance companies are still not explicitly pricing on child demographics, that does not imply that they are unaware of the effects of informal care on formal care risk. The results in Figure 17 show that without changes in pricing strategies, such as adopting the new risk adjustments suggested in Table 13, one can expect premium increases in the long-term care insurance market for the foreseeable future.

The absence of child demographic-based pricing should not be interpreted as evidence that this pricing is harmful to insurance companies. For example, gender-based pricing only started in 2013, despite the well-known fact that women are at higher risk compared to men.
Notes: Black solid line and black dashed line represent the average cost curve and the average revenue curve, respectively, when the policy is sold to the silent generation. The equilibrium coverage rate is 6.1 percent. Red solid line and red dashed line represent the average cost curve and the average revenue curve, respectively, when the policy is sold to the baby boom generation. The equilibrium coverage rate is 4.8 percent.

6 Conclusion

This paper provides new empirical explanations for why the long-term care insurance market has not been growing. I develop and structurally estimate a dynamic non-cooperative model of the family in which parents and children interact with altruistic and strategic motives. Counterfactual competitive equilibrium analyses of the market reveal two main mechanisms by which informal care limits the size of the long-term care insurance market. First, the current pricing practices of insurance companies leave consumers with private information about informal care. I show that there is substantial adverse selection based on this dimension of private information. Second, insurance has unintended consequences of discouraging family care by protecting bequests from formal care expenses on behalf of the family. This family moral hazard effect of insurance limits the market size by reducing the value of in-
surance and increasing the formal care risk of the insured. I demonstrate that the initial neglect of adverse selection and family moral hazard resulted in substantial underpricing. I further show that the decreasing availability of informal care for more recent birth cohorts puts upward pressure on the equilibrium premium. I propose child demographic-based pricing as an alternative risk adjustment that could decrease the average premium, invigorate the market, and create welfare gains.

Challenges in the long-term care sector, such as the aging of the baby boom generation, increasing burdens of informal caregivers, and growing Medicaid spending on formal care, have triggered various policy recommendations. They include the government providing family care subsidies and insurance companies paying cash to informal caregivers. Such recommendations are non-market-based which could lead to even bigger efficiency costs, or involve drastic changes in the structure of the insurance products and raise doubts about the practicality. In contrast, my proposal of using family demographics in pricing is market-based and is already in momentum; the fact that insurance companies have started to price on consumer characteristics makes my proposal well-grounded.

References

Commission on Long-Term Care (2013): “Report to the Congress,” U.S. Senate Commission on Long-Term Care.

Hendren, N. (2013): “Private Information and Insurance Rejections,” Econometrica, 81,
1713–1762.

Bowles Symposium on the Old-Age Crisis: Actuarial Opportunities.

Appendix

A Descriptive Evidence on Family Moral Hazard

I provide descriptive evidence that parents’ decision to buy long-term care insurance undermines children’s informal care incentives. Children’s informal care behaviors may be affected not only by parents’ long-term care insurance coverage but also by other important factors such as the opportunity costs of providing care. To better control for the determinants of informal care other than long-term care insurance coverage, I again take advantage of the subjective beliefs about informal care reported in the HRS (B^{IC}).59 Using healthy respondents who do not yet own long-term care insurance in the current interview, I split the sample by their beliefs about informal care in the current interview and long-term care insurance purchase choices in the next interview. For each of the four subsamples, I compute the share of respondents who receive informal care from children in the next interview. The goal is to see if respondents who buy long-term care insurance receive less informal care conditional on beliefs about informal care before the insurance purchase. Figure A.1 shows that, conditional on beliefs about informal care, parents who buy long-term care insurance are less likely to receive care from children. To the extent that beliefs about informal care are reasonable measures of informal care before the insurance purchase, this finding serves as suggestive evidence that long-term care insurance undermines children’s informal care incentives.

B Child Inheritance Value

The child’s value from an inheritance is determined by assuming that the child optimally consumes her share of bequests, $B := 0.5w^P_a$, over the next T_0 periods.60 Given that the child is risk-averse, she will allocate B equally over the next T_0 periods. Let x denote the equally allocated amount. Using $\beta = \frac{1}{1+r}$, I obtain $x = B \frac{1-\beta}{1-\beta r_0}$. As the child’s income is likely to affect the consumption value of bequests, I assume that the child receives a constant income, y, over the next T_0 periods. This constant income depends on whether or not the child has some college education. I use the average child family income conditional on college

59See Section 2.2 for the description of these beliefs.
60I use $T_0 = 5$.

71
education to calibrate y. In each of the next T_0 periods, the child consumes $y + x$. The child’s value from inheritance, Π^K_d, is given as the discounted sum of the consumption utilities over the next T_0 periods:

$$\Pi^K_d = \frac{1 - \beta^{T_0}}{1 - \beta} \log(y + x).$$

(C) Child Family Income Estimation

The HRS reports the annual family income of the respondents’ children as bracketed values: below $10K$, between $10K-35K$, between $35K-70K$, above $35K$, and above $70K$. I put children in the “above $35K$” bracket into the “$35K-70K$” bracket. As each period is two
years in my model, I double the threshold values and define \(\hat{y}_i^K \) by the following:

\[
\hat{y}_i^K = \begin{cases}
1 & \text{if below } $20K, \\
2 & \text{if between } $20K-70K, \\
3 & \text{if between } $70K-140K, \\
4 & \text{and if above } $140K.
\end{cases}
\]

I assume there is an underlying continuous family income, \(\tilde{y}_i^K \), which is defined by the following equation

\[
\log(\tilde{y}_i^K) = x_i^K \gamma + \eta_i
\]

(35)

where

\[
x_i^K \gamma = \gamma_{1,1} + \gamma_{1,2} \text{age}_i^K + \gamma_{1,3} (\text{age}_i^K)^2 + \gamma_{1,4} \text{home}_i^K + \gamma_{1,5} \text{edu}_i^K + \gamma_{1,6} \text{female}_i^K + \gamma_{1,7} \text{female}_i^K \ast \text{married}_i^K + \gamma_{1,8} (1 - \text{female}_i^K) \ast \text{married}_i^K \\
+ \epsilon_i^K \ast \left\{ \gamma_{2,1} + \gamma_{2,2} \text{age}_i^K + \gamma_{2,3} (\text{age}_i^K)^2 + \gamma_{2,4} \text{female}_i^K + \gamma_{2,5} \text{edu}_i^K \\
+ \gamma_{2,6} \text{female}_i^K \ast (\epsilon_i^K - 1) + \gamma_{2,7} (1 - \text{female}_i^K) \ast (\epsilon_i^K - 1) \right\}
\]

and \(\eta_i \) follows an i.i.d. normal distribution with mean zero and variance \(\sigma^2_{\eta} \). The log likelihood function is given by

\[
\log L(\gamma, \sigma_{\eta} | \hat{y}_i^K, x_i^K) = \sum_{i=1}^{N} \log P(\hat{y}_i^K | x_i^K; \gamma, \sigma_{\eta})
\]

(36)
Table C.1: Child Family Income Estimates

<table>
<thead>
<tr>
<th>Estimate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>8.3439</td>
</tr>
<tr>
<td>Age</td>
<td>0.0607</td>
</tr>
<tr>
<td>Age^2</td>
<td>-0.0006</td>
</tr>
<tr>
<td>Home</td>
<td>0.4090</td>
</tr>
<tr>
<td>Female</td>
<td>0.3114</td>
</tr>
<tr>
<td>Female×Married</td>
<td>0.5835</td>
</tr>
<tr>
<td>Male×Married</td>
<td>0.3451</td>
</tr>
<tr>
<td>Work</td>
<td>0.8525</td>
</tr>
<tr>
<td>Work×Age</td>
<td>-0.0112</td>
</tr>
<tr>
<td>Work×Age^2</td>
<td>0.0000</td>
</tr>
<tr>
<td>Work×Female</td>
<td>-0.3655</td>
</tr>
<tr>
<td>Work×College</td>
<td>0.3393</td>
</tr>
<tr>
<td>Work×Female×Work−1</td>
<td>0.2306</td>
</tr>
<tr>
<td>Work×Male×Work−1</td>
<td>0.3667</td>
</tr>
<tr>
<td>σ_η</td>
<td>0.5002</td>
</tr>
</tbody>
</table>

Notes: Table reports estimated coefficients for the two-year child family income process.

where

\[P(\hat{y}_i^K = 1|x_i^K) = \Phi_{\sigma_\eta}(\log(20K) - x_i^K\hat{\gamma}|x_i^K), \]
\[P(\hat{y}_i^K = 2|x_i^K) = \Phi_{\sigma_\eta}(\log(70K) - x_i^K\hat{\gamma}) - \Phi_{\sigma}(\log(20K) - x_i^K\hat{\gamma}), \]
\[P(\hat{y}_i^K = 3|x_i^K) = \Phi_{\sigma_\eta}(\log(140K) - x_i^K\hat{\gamma}) - \Phi_{\sigma}(\log(70K) - x_i^K\hat{\gamma}), \] and
\[P(\hat{y}_i^K = 4|x_i^K) = 1 - \Phi_{\sigma_\eta}(\log(140K) - x_i^K\hat{\gamma}|x_i^K). \]

Φ_\eta is the cumulative distribution function of \eta_i. To estimate Equation (36), I use data on respondents’ children from the HRS 1998-2010. I use children aged between 21 and 60. The results of the estimation are reported in Table C.1. I use these estimates, \hat{\gamma}, to construct the deterministic family income function in Equation (14).
Additional Tables and Figures

Table D.1: Moments Generated with First-Stage Policy Functions

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>First-Stage Policy Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTCI purchase rate</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Among parents w/ light LTC needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light informal care rate</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>Intensive informal care rate</td>
<td>0.18</td>
<td>0.13</td>
</tr>
<tr>
<td>Paid home care rate</td>
<td>0.50</td>
<td>0.51</td>
</tr>
<tr>
<td>Nursing home rate</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Among parents w/ severe LTC needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light informal care rate</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>Intensive informal care rate</td>
<td>0.29</td>
<td>0.26</td>
</tr>
<tr>
<td>Paid home care rate</td>
<td>0.30</td>
<td>0.35</td>
</tr>
<tr>
<td>Nursing home rate</td>
<td>0.36</td>
<td>0.30</td>
</tr>
<tr>
<td>Child employment rate</td>
<td>0.63</td>
<td>0.65</td>
</tr>
<tr>
<td>Parent mean consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 60s</td>
<td>40956</td>
<td>40421</td>
</tr>
<tr>
<td>Age 70s</td>
<td>38065</td>
<td>40031</td>
</tr>
<tr>
<td>Age 80s</td>
<td>36517</td>
<td>37151</td>
</tr>
<tr>
<td>Age 90s</td>
<td>35114</td>
<td>32582</td>
</tr>
</tbody>
</table>

Notes: Table reports empirical moments and simulated moments. Simulated moments are generated using the first-stage empirical policy functions of the CCP estimation. Formal care rates are among parents who have specified health statuses and do not receive informal care from children. Empirical consumption moments are based on the CAMS data.
Figure D.1: Competitive Equilibrium

Notes: Figure reports the simulated average cost curve (AC) and the simulated average revenue curve (AR) for the standard policy under default pricing (all healthy 60-year-olds pay the same premium). The simulation sample consists of healthy 60-year-old parents and their children from the HRS 2002. The equilibrium premium is $5,732 and the equilibrium coverage rate is 6.1 percent.

Figure D.2: Density of Informal Care Measure (IC_0)

Notes: Figure reports the density of IC_0 conditional on $IC_0 > 0$. For each family in the simulation sample, IC_0 is defined as the number of total informal care periods divided by the number of total bad health periods when there is no private long-term care insurance. About 55 percent of families have $IC_0 = 0$. This is consistent with the data patterns; Table 3 shows that among parents with long-term care needs, 55 percent do not receive any informal care from children.
Figure D.3: Wealth and Insurance Selection

Notes: Left panel reports the share of parents who buy long-term care insurance at the equilibrium premium ($5,732), by parent wealth decile (wealth is measured at parent age 60). Right panel reports the average present-discounted value of the lifetime formal care expenses when parents own long-term care insurance.
Figure D.4: Equilibrium without Family Moral Hazard

Notes: Black solid line and black dashed line represent the average cost curve and the average revenue curve, respectively, of the benchmark model where children can react to parents’ insurance coverage. The equilibrium coverage rate is 6.1 percent. Red solid line and red dashed line represent the average cost curve and the average revenue curve, respectively, when there is no family moral hazard. The equilibrium coverage rate is 8.6 percent.
Figure D.5: Equilibrium without Informal Care

Notes: Black solid line and black dashed line represent the average cost curve and the average revenue curve, respectively, of the benchmark model where children can provide informal care. The equilibrium coverage rate is 6.1 percent. Red solid line and red dashed line represent the average cost curve and the average revenue curve, respectively, when there is no informal care. The equilibrium coverage rate is 9.5 percent.