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Abstract

This paper analyzes a semiparametric model of network formation in the presence of
multiple, unobserved, and agent-specific fixed effects. Given agents’ observed attributes, the
conditional distributions of these effects, as well as the disturbance terms associated with
each linking decision are not parametrically specified. I give sufficient conditions for point
identification of the coefficients on the observed covariates. This result relies on the existence
of at least one continuous covariate with unbounded support. I provide partial identifica-
tion results when all covariates have a bounded support. Specifically, I derive bounds for
each component of the vector of parameters when all the covariates have a discrete support.
I propose a semiparametric estimator for the vector of coefficients that is consistent and
asymptotically normal as the number of individuals in the network increases. Monte Carlo
experiments demonstrate that the estimator performs well in finite samples. Finally, in an
empirical study, I analyze the determinants of a friendship network using the Add Health
dataset.
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1 Introduction

People tend to connect with individuals whom they share similar observed attributes. This

observation is known as homophily (McPherson, Smith-Lovin, and Cook 2001). Nonetheless, few

investigate the role of homophily when individuals have preferences for unobserved attributes.

Proper policy evaluation requires distinguishing among the contribution of these two factors

since each has a distinct policy implication. For example, students forming friendships might link

based on their similarities on observed socioeconomic attributes as well as on their preferences

for high levels of unobserved ability. Whereas the socioeconomic attributes can be modified

according to a policy, preferences for ability cannot be used as a policy instrument. In this

paper, I develop a new identification strategy that recovers the preference parameters associated

with the observed attributes in a model of network formation that accounts for valuations on

unobserved agent-specific factors. The identification and estimation strategies that I develop do

not depend on distributional assumptions of the unobserved random components. The existing

studies that account for these two types of homophily rely on assumptions that restrict the

distribution of the unobserved random components to belong to a parametric family. However,

in Monte Carlo simulations, I show that their predictions can be biased if those assumptions

fail.

In this paper, I consider a semiparametric model of network formation with multiple, unob-

served and agent-specific factors. Specifically, a pair of agents (i, j) establish an undirected link

according to the following network formation equation:1

Dn
ij = 1

[
Xn′
ij β0 + µi + µj − εnij ≥ 0

]
, (1)

where 1 [·] is the indicator function, Dn
ij is a binary outcome variable that takes a value equal

to 1 if agents (i, j) form a link and 0 otherwise, Xn
ij is a K-dimensional vector of pair-specific,

observed, and exogenous attributes, β0 is a K-dimensional vector of unknown parameters, µi and

µj are unobserved and agent-specific random variables, and εnij is an unobserved and link-specific

disturbance term.

Intuitively, equation (1) says that an undirected link between two agents is formed if the link

net benefit is nonnegative.2 The factors in the net benefit can be classified into three different

1A link between two agents is undirected if the connection is reciprocal. In other words, two agents are either
connected or they are not. It excludes the case that one agent is related to a second one without the second being
related to the first. I discuss directed networks in Candelaria (2016).

2In section 2, I derive the network formation decision in equation (1) as a stability condition in a random
utility model with transferable utilities.
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categories. The first class, given by the vector of pair-specific and exogenous attributes, captures

the agents’ preferences for establishing a link based on observed characteristics. For instance,

this component is known as homophily in preferences when these factors capture similarity in

observed characteristics. The second class, formed by the agent-specific and unobserved factors,

captures the individual preferences for association based on agent-specific attributes. Finally,

the third class, given by a link-specific disturbance term, captures the exogenous factors that

influence the decision of forming a specific link. The last two factors are known to the agents

but unobserved to the researcher.

The unobserved agent-specific factors in equation (1) allow for heterogeneous net benefits

across each individual’s decisions; this extends the model’s capacity to predict network structures

with heterogeneous individual connections. Moreover, under an unrestricted distribution of the

unobserved and agent-specific factors, these components exhibit unrestricted dependence with

the observed attributes. Therefore, these factors constitute agent-specific fixed effects in the

network formation model. From here after these factors will be referred to as fixed effects.

This paper has two main contributions. The first contribution is to propose a new identifica-

tion strategy to identify the coefficients on the observed covariates in a semiparametric network

formation model with multiple fixed effects. These coefficients are empirically relevant, for ex-

ample in the peer effects literature they characterize the preferences for homophily. Notably,

these coefficients provide information about policy instruments that can be used to achieve an

economic outcome. I provide sufficient conditions that guarantee point identification of the pa-

rameter β0 in equation (1). Using a weaker set of assumptions, I characterize the identified set

as a solution to a system of a finite number of linear inequalities and provide bounds for each

component of the parameter of interest.

The second contribution is to introduce a consistent semiparametric estimator of β0. I give

conditions for asymptotic normality of this estimator. The rate of convergence of the estimator

can be affected by the asymptotic probability of the set on which the unknown parameter is

identified. Specifically, the convergence rate is slower than the parametric rate (square root

of the sample size) if the probability of that set converges to zero. I perform inference in a

setting when only one network that has a large number of agents is observed in the data. The

asymptotic analysis is conducted by allowing the number of agents to grow. This framework is

referred to as “large-market” asymptotics.

While it is not clear whether identification strategies based on parametric assumptions used

in previous work extend to a model with a broader and more complex type of heterogeneity,
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my approach does. In Candelaria (2016), I study the formation of a directed network with

interactive fixed effects. Specifically, agent i establishes a directed link with agent j according

to the following equation:

Dn
ij = 1

[
Xn′
ij β0 + µi + g(µi, µj)− εnij ≥ 0

]
, (2)

where g(·, ·) is a symmetric function of the unobserved fixed effects µi, µj .

Specification (2) considers an asymmetric formation of links and allows for simultaneous

nonlinear correlation between the unobserved factors and the observed attributes. Furthermore,

the agent-specific fixed effect µj may affect the linking decisions of individual i, differently for

different j due to the unobserved complementarities on the fixed effects. Equation (2) nests

the additive and agent-specific fixed effects model as a special case. Specifically, equation (2)

degenerates to equation (1) when g(µi, µj) = µj , and εnij is symmetric. In Candelaria (2016), I

show that a generalization of the identification strategy, introduced in this paper, can be used to

identify the coefficients β0 in equation (2). This demonstrates the adaptability of the techniques

discussed in this paper.

In an empirical application, I study the determinants that drive the formation of a friendship

network. I use the National Longitudinal Study of Adolescent Health (Add Health) to construct

a network of best friends using one high school with 469 students. The vector Xn
ij accounts

for socioeconomic and demographic attributes of individuals i and j, such as gender, education

level, race. The first attribute in Xn
ij is the household income of individuals i and j, which is

recorded as a continuous variable and is necessary for the point identification result. I then

estimate the parameter β0 and find evidence for homophily in observed attributes in a model

that also accounts for unobserved heterogeneity.

Literature Review

In the rest of the section, I discuss how my results compare to the related literature. The

network formation model that I consider in this paper builds on the framework introduced by

Graham (2017). While his paper aims to detect homophily in preferences in a model with

agent heterogeneity, his approach is restricted to models where the disturbance terms have a

parametric distribution — specifically a logistic distribution — and the fixed effects have an

additive structure. In other words, the approach introduced by Graham (2017) will fail to

partial out the fixed effects and therefore point identify β0 if one of these assumptions does not
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hold. This is not the case for the method I develop in this paper. Specifically, the identification

strategy and the estimator I propose are new and can be applied to models where the distribution

of the disturbance terms is not parametrically specified and the heterogeneity does not follow

an additive structure (in the extension work Candelaria 2016). In recent work, Dzemski (2014)

studies a model of link formation with agent heterogeneity. However, his methodology differs

completely to the one proposed in this paper since he analyzes the formation of a directed

network and follows a conditional maximum likelihood approach.

My identification strategy consists of finding a sufficient statistic for the multiple fixed effects

in equation (1), which does not depend on the parametric distribution of the disturbance terms

(Andersen, 1970). The intuition behind this strategy is similar to the technique used by the

maximum score estimator to identify the semiparametric binary choice models in a panel data

framework (Manski 1987). Specifically, the sufficient statistic that I develop is characterized

by within-individual and across-individuals variation in the link decisions to differentiate out

the multiple fixed effects. This statistic differs from others previously used in the nonlinear

panel data literature since the endogeneity entailed by the multiple fixed effects in the network

formation equation is more complex. In section 3.1, I provide a more detailed discussion on the

nature of the sufficient static. Moreover, I show that the sufficient statistic suggested by the

panel data literature fails to identify β0 in equation (1).

The sufficient statistic restricts the analysis to a set of subnetworks that exhibit sufficient link

variation to differentiate out the multiple fixed effects. Depending on the relative tail conditions

between the observed attributes and disturbance terms, the set of subnetworks consistent with

the link variation might have a small probability. In this case, the coefficients of the observed

attributes are said to be identified on a thin set. In section 4, I address the implications of the

thin set identification on the convergence rate of the estimator (Andrews and Schafgans, 1998;

Newey, 1990; Chamberlain, 2010 and Khan and Tamer, 2010). To shed some light into this

point, I next briefly discuss the estimator that I develop.

I propose an M-estimator that minimizes a fourth order U-statistic. The estimator falls

within the class of Maximum Rank estimators, which are commonly used to estimate monotonic

transformation models (Han 1987). The estimator I propose is most closely related to the

Leapfrog estimator in Abrevaya (1999b). The network formation model, given by equation (1),

represents a weakly monotonic transformation model. This type of transformation is not nested

in the models analyzed by Abrevaya (1999b) since his methodology is designed for transformation

functions that are strictly increasing and invertible. This is the first paper to apply an estimator

within this class to a network structure with multiple fixed effects. If β0 is identified in a set with
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probability tending to zero, the convergence rate of the estimator is slower than the parametric

rate (square root of the sample size). Hence, the estimator is said to be non-regular (Newey,

1990 and Chamberlain, 2010). I propose an inference method with an adaptive convergence rate

as in Andrews and Schafgans (1998) and Khan and Tamer (2010). A detailed discussion of this

result is provided in section 4.

The network formation model that I analyze is related to the empirical games literature.

Specifically, the model in equation (1) can be derived as a stability condition in a static game.

Some papers that study the strategic formation of a network as a static game include Sheng

(2012); Goldsmith-Pinkham and Imbens (2013); Boucher and Mourifié (2013); Leung (2015a,b);

Menzel (2015); Miyauchi (2016) and de Paula, Richards-Shubik, and Tamer (2016). These

papers study network formation models that account for network externalities. Network exter-

nalities generate interdependencies in the linking decisions that depend on the structure of the

network. The identification and estimation methods used in these papers are entirely different

to the ones proposed in this paper. Specifically, all of these papers follow a parametric esti-

mation approach. The only exception is de Paula et al. (2016), which focuses exclusively on

the identification analysis. Furthermore, only Goldsmith-Pinkham and Imbens (2013) considers

unobserved agent heterogeneity, but under their specification the agent-specific effects are para-

metrically distributed and independent from the vector of attributes. None of these assumptions

are imposed in the method proposed in this paper.

There is a different approach that augments the network formation decision in equation (1)

with a parametric meeting process that determines how the links are sequentially revised over

time (Christakis, Fowler, Imbens, and Kalyanaraman 2010; Snijders, Koskinen, and Schwein-

berger 2010; Hsieh and Lee 2012; Chandrasekhar and Jackson 2014; Mele 2015 and Badev, 2014).

This approach specifies a parametric distribution over the space of all potential networks and

differs from distribution-free framework that is followed in this paper. Furthermore, some of

these papers rely on computationally intensive Bayesian estimation techniques such as Markov

Chain Monte Carlo (MCMC). The semiparametric estimator that I proposed is computationally

tractable and can be computed in O(n3log(n)) calculations. This paper provides an alternative

to recover the preferences for homophily in the formation of a network.

Finally, the network formation model considered in this paper is also related to the literature

of structural matching models analyzed by Choo and Siow (2006); Fox (2010); Galichon and

Salanié (2012) and Fox (2016). As a shared feature, both frameworks focus on transferable

utility models. However, the network formation model is qualitatively different to the two-sided

matching models since in a network model any pair of individuals can potentially form a link.
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In contrast, in a two-sided matching model, only agents across markets can establish a link.

The rest of the paper is organized as follows. Section 2 formalizes the network formation

model. Section 3 describes the identification strategy and states point identification and partial

identification results. In section 4, I outline the semiparametric estimator and I show consistency

and asymptotic normality. Section 5 reports some Monte Carlo simulations. Section 6 considers

an empirical application analyzing a friendship network. Section 7 concludes by summarizing

and suggesting areas for future research. The appendix B collects all the proofs of the paper.

2 Model

A network is an ordered pair (Nn, Dn) comprising a set Nn = {1, · · · , n} of n nodes or agents

together with an n × n adjacency matrix Dn of edges, which represents the links between the

nodes in Nn. Let Dn
ij denote the (i, j)th entry of the matrix Dn.

I assume the network is undirected and unweighted. A network is undirected if the adjacency

matrix is symmetric, that is, if for any entries (i, j) and (j, i) the adjacency matrix has identical

elements, Dn
ij = Dn

ji. A network is unweighted if any entry (i, j) of the adjacency matrix takes

one of either two values. The values are normalized to be 0 and 1. In other words, Dn
ij ∈ {0, 1},

where Dn
ij = 1 if the agents i and j share a link and Dn

ij = 0 otherwise. Furthermore, I normalize

the value of self-ties to zero, that is, Dn
ii = 0 for all i ∈ Nn.

Example 1 (Undirected and Unweighted Network)

A friendships network of best friends is an important example of an undirected and unweighted

network. Two agents are considered to be best friends, Dn
ij = 1, if and only if both agents list

each other as friends. Also, this framework rules out the case of an agent reporting herself as a

friend.

Given the set of agents in the network, a pair of agents (i, j) with i, j ∈ Nn and i 6= j,

constitute a dyad. Let N (2)
n ≡ {(1, 2), · · · · · · , (n− 1, n)} denote the set of total unique dyads.

N (2)
n has cardinality

N ≡
(
n

2

)
= O(n2).

Each dyad (i, j) ∈ N (2)
n is endowed with a (K+ 1)-dimensional vector of observed attributes

Znij = (Dn
ij , X

n
ij), and an unobserved dyad-specific disturbance term εnij . The first element in the
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vector of observed attributes Znij denotes the link status in that specific dyad, Dn
ij . The second

element in Znij is a vector of observed exogenous attributes at a dyad-level, Xn
ij ∈ RK . Common

examples of observed attributes used to explain the formation of a friendships network among

high school students are age, gender, race, parent’s education level, and household’s income

(I provide a detailed discussion of this empirical motivation in section 6). Conditions on the

support of the vector of exogenous attributes Xn
ij are discussed in section 3. The unobserved

dyad-specific disturbance component εnij captures exogenous random factors that influence the

decision of establishing a connection between agents i and j. These components are unobserved

to the researcher.

Since the network is undirected, the random vector Xn
ij is symmetric, Xn

ij = Xn
ji. If the exoge-

nous characteristics are measured at an agent-level, the dyad-level vector Xn
ij can be constructed

by transforming the agent-specific covariates for agents i and j using a nonlinear function that

is symmetric in each of its components. For instance, let Xn
i represent a vector of exogenous

attributes of agent i. Then Xn
ij could be defined as Xn

ij = g(Xn
i , X

n
j ) = g(Xn

j , X
n
i ). Different

specifications of g can be used to capture similarity (g(Xn
j , X

n
i ) = (Xn

i −Xn
j )2) or complemen-

tarity (g(Xn
j , X

n
i ) = Xn

i ·Xn
j ) in attributes between agents i and j in dyad (i, j). The choice of

g(·, ·) varies according to the empirical application.

Each individual i in the network Nn is endowed with an unobserved and agent-specific ran-

dom factor µi ∈ R. This random component captures the individual preferences for establishing

a link based on agent-specific attributes.

Let Xn ≡
(
Xn

12, · · · , Xn
n−1,n

)
be the profile of exogenous attributes for all dyads in the

network, µ̃ ≡ (µ1, · · · , µn) be the vector of unobserved agent-specific components and εn ≡(
εn12, · · · , εnn−1,n

)
be the profile of dyad-specific disturbance terms.

Agent i’s latent marginal benefit of establishing a link with j is

Vij(X
n, µj , ε

n
ij) = uij(X

n) + µj −
1

2
εnij , (3)

where uij(X
n) denotes the observed marginal utility, and εnij is symmetric. Specifically, the

observed marginal utility is defined as:

uij(X
n) ≡ 1

2
Xn′
ij β0, (4)

where β0 is a K-dimensional vector of unknown parameters that captures the effect of the

observed attributes on the agent’s preferences for establishing a link. This component represents
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the agent’s preferences for homophily, Xn′
ij β0.

Denote the joint net benefit of adding the link {ij} to the network Dn by

Vij(X
n, µj , ε

n
ij) + Vji(X

n, µi, ε
n
ij) ≡ Xn′

ij β0 + µi + µj − εnij . (5)

In addition to preferences for observed attributes, the joint net benefit also accounts for

preferences for association based on agent-specific factors, µi + µj , and for exogenous factors

affecting the decision of establishing a link εnij .

Equation (5) implies that individuals i and j in the dyad (i, j) only have valuations for their

own observed attributes and agent-specific factors. To clarify, in the link formation decision

for dyad (i, j), the individuals do not account for observed or unobserved attributes of other

individual’s in the network, neither for the general structure of the network other than dyad

(i, j). These effects are known as network externalities. Some examples of these effects are

preferences for having friends in common or popularity effects. I leave this extension as future

research.

Next, I introduce the definition of stability.

Definition 1 (Stability)

A network Dn is stable with transfers if for any i, j ∈ Nn:

1. for all Dn
ij = 1, Vij(X

n, µj , ε
n
ij) + Vji(X

n, µi, ε
n
ij) ≥ 0;

2. for all Dn
ij = 0, Vij(X

n, µj , ε
n
ij) + Vji(X

n, µi, ε
n
ij) < 0.

Note, that the definition of stability adapts the pairwise stability in Jackson and Wolinsky

(1996) to allow for transfer utilities. A similar stability concept has been used in Sheng (2012).

The stability condition provides a microeconomic foundation to the network formation rule in

equation (1). Intuitively, this condition states that a link within dyad (i, j) is established if the

net benefit of that connection is nonnegative.

To simplify notation, I will omit the dependence of the network on the sample size n and

denote the vector of attributes as Zij = (Dij , Xij) and the dyad-specific disturbance term as εij

for any (i, j) ∈ N (2)
n .
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3 Identification

In this section, I state the main point identification result for the semiparametric network forma-

tion model with multiple agent-specific factors, specified by equation (1). I then provide partial

identification results under a weaker set of assumptions. In section 3.1, I describe the identifi-

cation strategy. Section 3.2 establishes the main point identification result, which is achieved

by conditioning on a set that ensures enough variation within and across individuals’ links. In

section 3.3, I discuss identification failure when the probability of this set is zero. Moreover,

I show that, unlike my approach, the typical identification strategy implied by the panel data

maximum score estimator fails to identify β0. In section 3.4, I characterize the identified set

when all the covariates have bounded support, as well as provide bounds for each component of

the parameter of interest.

3.1 Identification Strategy

The intuition behind the identification strategy is summarized in figure 1. Consider the subnet-

work formed between agents i, j, k, l ∈ Nn. All the links represented in figure 1 are undirected.

A solid line connecting two agents denotes that a link exists and a dashed line denotes that a

link is absent. To simplify the intuition, in both diagrams below I omit the link status between

the agents in the dyad (k, l). The realized outcome from that decision is non-informative for

describing the intuition of the identification strategy.

Diagram 1 represents the subnetwork formed by dyads (i, k) and (i, l). Given {Xn = x, µ̃ = µ},
suppose that the conditional probabilities of establishing a link between dyads (i, k) and (i, l)

are different. Without loss of generality, assume that:

P [Dil = 1 | Xn = x, µ̃ = µ] < P [Dik = 1 | Xn = x, µ̃ = µ] . (6)

If the dyad-specific unobserved random variables are identically distributed, then the equa-

tion (6) holds if and only if:

x′ilβ0 + µi + µl < x′ikβ0 + µi + µk,

where agent i’s individual-specific fixed effect µi is a common element. Therefore, the within-
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k

i

l

µ i
+
µk

µ
i +
µ
l

E [Dik −Dil|Dik 6= Dil,X
n = x, µ]

µk − µl

Diagram 1: Undirected links in dyads (i, k) and (i, l).

k

i

j

l

µ i
+
µk

µ
i +
µ
l

µ
j +
µ
k µ j

+
µ l

µk − µl

µk − µl

Diagram 2: Undirected links in tetrad (i, j, k, l).

Figure 1: Subnetwork formed by agents i, j, k, l ∈ Nn.

individual difference implies:

0 < (xik − xil)′β0 + (µk − µl).

The previous intuition suggests that for any individuals i, j, l ∈ Nn: the conditional expecta-

tion of the within-individual difference Dik−Dil is characterized by the difference of the observed

exogenous regressors, (xik−xil)′β0, and the difference of the unobserved factors, µk−µl. Agent

i’s individual-specific factor is differenced out by computing the net difference. In diagram 1,

the dotted line labeled as {E [Dik −Dil|Dik 6= Dil,X
n = x, µ]} depicts this intuition. This line

shows that the contribution of the unobserved agent-specific factors on the conditional expecta-

tion of Dik −Dil is characterized exclusively by the composite factor µk − µl, and not agent i’s

individual-specific factor µi.

Specifically, the following equation holds for the conditional median of the net difference

Dik −Dil,

Med(Dik −Dil|Xn = x, Dil 6= Dik) = sign
(
(xik − xil)′β0 + (µk − µl)

)
, (7)
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where sign(·) stands for the sign function, which is defined as sign(x) = 1 if x ≥ 0 and sign(x) =

−1 if x < 0 for any x ∈ R. The proof is in the appendix B.

Equation (7) conveys two main points. First, agent i’s individual-specific fixed effect is

differenced out by conditioning on observing within-individual variation in the realized links.

Second, the conditional median of the net difference Dik−Dil depends on the unobserved random

factor µk−µl due to the presence of multiple agent-specific fixed effects in the network formation

model (1). Therefore, equation (7) does not identify β0. In other words, the typical maximum

score identification strategy fails to point identify β0. I provide a more detailed explanation of

this result in section 3.3.2.

The point-identification argument in the network formation model with multiple fixed effects

is the following. Consider the links formed within the tetrad (i, j, k, l). Given {Xn = x, µ̃ = µ},
suppose that the conditional probability of establishing a link between dyad (j, l) is greater than

the one for dyad (j, k). That is,

P [Djk = 1 | Xn = x, µ̃ = µ] < P [Djl = 1 | Xn = x, µ̃ = µ] .

Analogously to above, the conditional expectation of the net difference between individual

j’s linking decisions Djk − Djl is characterized by the difference of the observed exogenous

regressors (xjk − xjl)′β0 and the difference of the unobserved factors µk − µl. The composite

unobserved factor µk − µl constitutes a common, unobserved fixed effect across the within-

individual variations for agents i and j. Diagram 2 illustrates this point.

The previous intuition suggests that, with enough across-individuals variation, the composite

fixed effect µk − µl can be differenced out by computing the across-individuals difference of

Dik −Dil and Djk −Djl. Specifically, in section 3.2, I show that the following equation for the

conditional median of the pairwise difference holds:

Med {[Dik −Dil]− [Djk −Djl] | Xn = x, Dik 6= Dil, Djk 6= Djl, Dik 6= Djk} =

2× sign
{

[(xik − xil)− (xjk − xjl)]′ β0

}
, (8)

for any Xn = x in a set of sufficient variation that will be defined below.

Equation (8) is fully characterized by the observed variables (Dn,Xn). In sections 3.2 and

3.4, I show that equation (8) can be used to point identify β0 under support conditions on the

exogenous attributes.
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The conditioning event {Dik 6= Dil, Djk 6= Djl, Dik 6= Djk} in equation (8) ensures the suf-

ficient within-individual and across-individuals variation in the linking decisions to identify β0.

The intuition behind the conditioning event is as follows. The components Dik 6= Dil, Djk 6= Djl

capture the within-individual variation, which are used to partial out the individual-specific fixed

effects that are constant within each individual’s decisions. For example, for agent i the indi-

vidual heterogeneity µi is partial out by the within-individual difference Dik −Dil.

Second, the component Dik 6= Djk captures the across-individuals i and j variation.3 This

variation is used to partial out the composite and unobserved factor µk − µl. Therefore,

this condition is crucial to point identify β0. I show in subsection 3.3.1 that if the event

{Dik 6= Dil, Djl 6= Djk, Dik 6= Djk} has probability zero then equation (8) is uninformative to

identify β0.

Some empirical examples of network topologies for which the event {Dik 6= Dil, Djl 6= Djk,

Dik 6= Djk} has probability zero are close to empty networks, dense networks, and homogeneous

networks. A network is homogeneous when the individuals establish similar connections with

probability one. For example, in the network formation model given by equation (1), the equi-

librium network structure will be homogeneous when agents establish their connections based

mainly only on their preferences for individual-specific attributes.

3.2 Formal Point Identification Result

In this section, I formalize the main point identification result. The following set of assumptions

are sufficient to prove point identification of β0.

Assumption A1

The following hold for any n.

1. {εik}(i,k)∈N (2)
n

are independent and identically distributed (i.i.d.) conditional on {Xn = x, µ̃ = µ}.

That is for any (i, k), (j, l) ∈ N (2)
n :

εik ⊥⊥ εjl | Xn = x, µ̃ = µ, and Fεik|x,µ = Fεjl|x,µ.

2. The probability density function fεi1|x,µ is positive everywhere on R1 for all (x, µ).

Here Fεi1|x,µ denotes the conditional distribution of εi1 given {Xn = x, µ̃ = µ}.
3Equivalently, we could have considered Dil 6= Djl. The information content in each of these two events,

jointly with {Dik 6= Dil, Djk 6= Djl}, is identical. Therefore, conditioning on Dik 6= Djk is sufficient.
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A1.1 states that the disturbance terms are i.i.d. across dyads. In other words, for any pair

of dyads (i, k) and (j, l), the distributions of the disturbance terms in the network formation

equations that are indexed by those dyads are conditionally invariant and independent. A1.1 is

analogous to the standard “stationarity” assumption in panel data models because in a network

model with a symmetric adjacency matrix, the dyads are the unit of observation which makes

it irrelevant to focus on individual’s labels.4

Although A1.1 requires the regressors to be strongly exogenous with respect to the dis-

turbances, this specification allows for a flexible dependence structure between the unobserved

agent-specific factors and the observed attributes. Specifically, the conditional distribution of

the unobserved agent-specific factors Fµ̃|x given the observed attributes Xn = x is not assumed

to belong to any parametric family. Consequently, the presence of the unobserved fixed ef-

fects in the network formation model generates a multiple incidental parameter problem with

unobserved dependence across the dyads’ linking decisions.

A1.2 requires the disturbance terms to have a large support given {Xn = x, µ̃ = µ}. Given

any specification {Xn = x, µ̃ = µ}, A1.2 ensures that the event {Dik 6= Dil} happens with pos-

itive positive for any dyads (i, k), (i, l) ∈ N (2)
n . In other words, assumption A1.2 guarantees the

existence of within-individual variation in the outcome linking decisions.

Assumption A1 is commonly used in semiparametric nonlinear panel data models, for exam-

ple in Manski (1987); Han (1987); Abrevaya (1999b) and Arellano and Honoré (2001), as well

as in network formation models, such as in Graham (2017); Leung (2015a) and Menzel (2015).

Let ∆klXi ≡ Xik −Xil for any i, l, k ∈ Nn.

Assumption A2

The following hold for any n, and any i, l, k ∈ Nn, with l 6= k.

1. The support of ∆klXi is not contained in any proper linear subspace of RK .

2. There exists at least one component ∆klX
(s)
i , s ∈ {1, · · · ,K}, with β0,s 6= 0 such that for

almost every ∆klx
(−s)
i = (∆klx

(1)
i , · · · ,∆klx

(s−1)
i ,∆klx

(s+1)
i , · · · ,∆klx

(K)
i ), the distribution

of ∆klX
(s)
i conditional on ∆klX

(−s)
i = ∆klx

(−s)
i has a positive density almost everywhere

with respect to the Lebesgue measure.

Without loss of generality, I set β0,1 = 1 or −1. This is a scale normalization used to identify

4In the nonlinear panel data literature, the disturbance term component is said to have a stationary distribution
if Fεik|x,µ = Fεij |x,µ for any (i, k), (i, j) ∈ N (2)

n . Due to the symmetry of the network, the disturbance term satisfies
εij = εji, which jointly with the stationarity assumption of the distribution of εji implies that Fεik|x,µ = Fεjl|x,µ.
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β0 instead of the scaled parameter β0/ ||β0||. The normalization is without loss of generality,

since the sign of β0,1 is identified from the limits:

lim
x
(1)
ik →∞

P [Dik = 1 | Xn = x] ,

lim
x
(1)
ik →−∞

P [Dik = 1 | Xn = x] .

If the sign(β0,1) = −1, then β0,1 can be normalized to −1.

A2.1 is a full rank condition for the exogenous attributes. A2.2 requires the observed co-

variates to have a large support, which implies that ∆klX
′
ib has everywhere a positive density

for any b ∈ RK with b1 6= 0. The existence of at least one continuous covariate is a necessary

condition for achieving point identification since it guarantees the existence of a subset in the

support of ∆klXi−∆klXj with positive probability over which β0 is identified from any b ∈ RK .

Conditions A2 is frequently used in semiparametric nonlinear panel data models, for example

in Manski (1987); Han (1987) and Abrevaya (1999b), and in the literature of empirical games

with strategic interactions, for example in Tamer (2003) and Kline (2015). In section 3.4, I

give alternative sufficient conditions for point identification when regressors are continuous with

bounded support.

Assumption A3

For any i ∈ Nn,

sup(µi | Xij = x) ⊆ [BL, BU ],

for any x ∈ supp(Xij), and given BL, BU <∞.

A3 states that the agent-specific fixed effects have bounded support. Furthermore, this

assumption allows for the distribution of the fixed effects to be heterogeneous across individuals,

as long as common bounds for their support exist. A3 doesn’t restrict the dependence between

the fixed effects and the exogenous covariates.

Assumptions A2 and A3, guarantees that the within-individual variation in the observed

attributes dominates the magnitude of the variation in the fixed effects. A similar condition has

been used in weakly separable models with endogenous dummy variables, Vytlacil and Yildiz

(2007).

The following theorem states the main point identification result. To simplify notation,
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consider the following definitions. For any distinct i, j, l, k ∈ Nn, let:

Ω(ijlk) ≡ {Dik 6= Dil, Djl 6= Djk, Dik 6= Djk} ,

and

Y
(i)
kl ≡ (Dik −Dil).

Theorem 3.1 1. Let assumptions A1 - A3 hold. Then, for any n, and any i, j, l, k ∈ Nn:

Med
[
Y

(i)
kl − Y

(j)
kl |X

n = x,Ω(ijlk)
]

= 2× sign
{

[(xik − xil)− (xjk − xjl)]′ β0

}
, (7)

where x ∈ XB, and

XB = {x ∈ Xn : for any i, j, k, l ∈ Nn, | ∆klxiβ0 |≥ (BU −BL), and

sign {∆klxiβ0}+ sign {∆klxiβ0} = 0} .

2. Let assumptions A1 - A3 hold. Then β0 is point identified.

Equation (7) is fully characterized in terms of the observed variables (Dn,Xn) and it repre-

sents an identifying condition for β0. This equation conveys two main points. First, the event

Ω(ijlk) constitutes a sufficient statistic for the agent-specific factors in the conditional median

of Y
(i)
kl − Y

(j)
kl . In other words, the conditional median of the pairwise-difference of the links

given Ω(ijlk) is fully characterized by the pairwise-variation in the observed attributes. Second,

the set Ω(ijlk) ensures sufficient within-individual and across-individuals variation to identify

β0 under the support conditions on the exogenous attributes.

Intuitively, equation (7) holds because conditional on {Xn = x,Ω(ijlk)} the random variable

Y
(i)
kl − Y

(j)
kl has a Bernoulli distribution with support {−2, 2}. This statement follows from two

results. First, the random variable{
Y

(m)
kl

∣∣∣Xn = x,Ω(ijlk)
}

for m = i, j,

has a Bernoulli distribution with support {−1, 1} due to the within-individual variation Dmk 6=
Dml for m = i, j implied by the set Ω(ijlk). Second, the across-individuals variation ensures

that the following equivalences hold:

Y
(i)
kl = 1 ⇔ Y

(j)
kl = −1,

Y
(i)
kl = −1 ⇔ Y

(j)
kl = 1. (9)
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For instance, suppose Y
(i)
kl = 1, then it follows that conditional on {Xn = x,Ω(ijlk)}:

Y
(i)
kl = 1⇔ {Dik = 1, Dil = 0} ⇔ {Djk = 0, Djl = 1} ⇔ Y

(j)
kl = −1.

The first equivalence follows from the definition of Y
(i)
kl and the within-individual i variation

Dik 6= Dil. The second equivalence holds because of the across-individuals variation Dik 6= Djk

and the within-individual j variation Djl 6= Djk. The last equivalence is symmetric to the first

equivalence for agent j.

The proof of the second equivalence in (9) follows analogous arguments. Thus, the random

variable
{
Y

(i)
kl − Y

(j)
kl

∣∣∣Xn = x,Ω(ijlk)
}

has a Bernoulli distribution with support {−2, 2}, and

Med
[
Y

(i)
kl − Y

(j)
kl |X

n = x,Ω(ijlk)
]

= 2× sign
{
P
[
Y

(i)
kl − Y

(j)
kl = 2|Xn = x,Ω(ijlk)

]
− P

[
Y

(i)
kl − Y

(j)
kl = −2|Xn = x,Ω(ijlk)

]}
.

(10)

Finally, following the intuition described in section 3.1, given A1 and the set Ω(ijlk) the

pairwise difference of the linking decisions for agents i and j implies:

sign
{
E
[
Y

(i)
kl − Y

(j)
kl |X

n = x,Ω(ijlk)
]}

= sign
{

[(xik − xil)− (xjk − xjl)]′ β0

}
, (11)

for any x ∈ XB.

The proof of part 1 in Theorem 3.1 is concluded by showing that the right-hand side of

equation (10) is equal to twice the left-hand side of equation (11). This result follows from{
Y

(i)
kl − Y

(j)
kl

∣∣∣Xn = x,Ω(ijlk)
}

being a Bernoulli random variable.

The point identification strategy relies on exploiting the within-individuals and across-

individuals variations in the links formed. For any tetrad (i, j, k, l), the set Ω(ijlk) characterizes

all possible subnetwork structures that generate sufficient variation to identify β0. Figure 2

below depicts all the subnetworks contained in Ω(ijlk).
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k

i

j

l

Structure 1:{
Dik = 1, Dil = 0, Djl = 1, Djk = 0

}

k

i

j

l

Structure 2:{
Dik = 0, Dil = 1, Djl = 0, Djk = 1

}

k

i

j

l

Structure 3:{
Dij = 1, Dil = 0, Dkj = 0, Dkl = 1

}

k

i

j

l

Structure 4:{
Dij = 0, Dil = 1, Dkj = 1, Dkl = 0

}

k

i

j

l

Structure 5:{
Dik = 1, Dij = 0, Dlk = 0, Dlj = 1

}

k

i

j

l

Structure 6:{
Dik = 0, Dij = 1, Dlk = 1, Dlj = 0

}
Note: A solid line indicates that a link exists, a dashed line indicates that a link is absent, and a slightly dotted
line indicates that the link is either present or absent.

Figure 2: Subnetwork formed by agents i, j, k, l ∈ Nn.

Consider the subnetwork structure 1 in figure 2, which is given by:

{Dik = 1, Dil = 0, Djl = 1, Djk = 0} . (12)

Under structure 1, the dyads (i, k) and (j, l) form an undirected link, depicted by solid lines.

No link is formed by dyads (i, l) and (j, k), depicted by dashed lines. The decisions Dij and

Dk,l could generate any outcome and the resulting structure will be consistent with Ω(ijkl).

Note that if dyads (i, j) and (k, l) form undirected links, the resulting subnetwork structure is

consistent with structure 3 in figure 2.

A2 is a sufficient condition for point identification of β0. This assumption requires the

existence of at least one covariate with full support. If this assumption fails, then equation (11)

yields a collection of moment inequalities that can be used to partially identify β0. Furthermore,

these moments inequalities characterize the identified set of the network formation model with

multiple fixed effects.

Specifically, let B0 denote the identified set. The identifying set is defined as the collection
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of (b2, · · · , bK) ∈ RK−1 such that b = (1, b2, · · · , bK) satisfies the moment conditions in (11).

That is

B0 =
{
b ∈ Rk : E

[
Y

(i)
kl − Y

(j)
kl |X

n = x,Ω(ijlk)
]
R 0⇔ [∆klxi − ∆klxj ]

′ b R 0 ,

∀ i, j, k, l ∈ Nn and

∀x = (x12, · · · , xik, · · · , xil, · · · , xjk, · · · , xjl, · · · , xn−1,n) ∈ supp(Xn) ∩ XB} , (13)

The identifying set B0 will be used in section 3.4 to derive bounds for each elements in the

vector of unknowns β0 when assumption A2 fails.

3.3 Identification Failure

In this section, I discuss two cases of identification failure. First, I show that if the class

Ωn ≡{Ω(ijlk) : i, j, k, l ∈ Nn} ,

has probability zero, then the median of the pairwise difference of the links does not have

identification power to recover β0. Intuitively, if Ωn has probability zero the underlying network

does not exhibit sufficient within-individual and across-individuals variation to partial out the

fixed effects.

Second, I show that the identification strategy implies by the panel data maximum score

estimator (Manski 1987) does not identify β0 in the network formation model with multiple fixed

effects. In particular, computing the within-individual difference conditioning on the “switchers”

fails to capture the contribution of the fixed effects along the longitudinal dimension.

3.3.1 Thin Set Identification

Intuitively, the set Ω(ijkl) ensures sufficient variation to partial out the agent-specific fixed

effects. If the class Ωn has probability zero, then Y
(i)
kl − Y

(j)
kl will not have enough information

to identify β0. I formalize this result in the following theorem.

Theorem 3.2

Let assumptions A1 - A3. If the class Ωn has probability zero, then the median of the random

variable
{
Y

(i)
kl − Y

(j)
kl

∣∣∣Xn = x
}

does not have identification power for any x ∈ supp(Xn). That
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is, the set of parameters that are observationally equivalent to β0 in terms of

Med
{
Y

(i)
kl − Y

(j)
kl

∣∣∣Xn = x
}

is RK .

The class Ωn has probability zero if for any tetrad (i, j, k, l) the resulting subnetwork structure

violates at least one condition in Ω(ijlk) ≡ {Dik 6= Dil, Djl 6= Djk, Dik 6= Djk}. In appendix

B.2, I characterize all the subnetwork structures that are not consistent with Ω(ijkl), and under

which the class Ωn does not have identification power.

Specifically, some examples of network structures for which the class Ωn has probability zero

include (i) dense networks where everybody is connected to everyone with probability one; (ii)

empty networks where no links are formed with probability one; and (iii) homogeneous networks

where individuals form similar connections with probability one. I formalize this intuition in

the following proposition.

Proposition 3.1

Given the network formation model in (1), the class Ωn has probability zero if for any n, and

any i, j ∈ Nn:

1. (dense network) the conditional distribution of X
′
ijβ0 given µ̃ = µ and εij = e has a

probability density that is everywhere positive on the interval [µi + µj − e, ∞) .

2. (empty network) the conditional distribution of X
′
ijβ0 given µ̃ = µ and εij = e has a

probability density that is everywhere positive on the interval (−∞, µi + µj − e ] .

3. (homogeneous network) the conditional distribution of µi + µj given X
′
ij = x and εij = e

has a probability density that is everywhere positive on the interval [ e− x′β0, ∞) .

The realized network under condition (1) in proposition 3.1 is dense since every link is created

with probability 1. That is, for any dyad (i, j) ∈ N (2)
n : P [Dij = 1 | Xn = x, µ̃ = µ] = 1. Under

condition (2), the realized network is empty since no link is created with probability one. That

is, for any dyad (i, j) ∈ N (2)
n : P [Dij = 1 | Xn = x, µ̃ = µ] = 0. Finally, under condition (3) the

individuals create similar connections driven by their preferences for agent-specific attributes.

The resulting network structure is homogeneous. The class Ωn has probability zero under the

conditions (1), (2), and (3) in proposition 3.1 because the equilibrium network does not exhibit

sufficient link variation either within or across individuals.
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In tables 5 and 6 of section 5, I report Monte Carlo simulations which provide evidence

on the probability of Ωn been arbitrarily close to zero when the realized network structure is

either dense or empty. Table 7 shows that Ωn has probability arbitrarily close to zero when the

realized network is homogeneous. Finally, the numerical evidence in tables 5 and 6 indicate that

if the network structure is sparse, the probability of Ωn is positive. A sparse network exhibits

sufficient link variation.

The large support conditions in assumptions A1 and A2 guarantee that Ωn has a probability

greater than zero. Nonetheless, this probability could be arbitrarily small, which will compli-

cate the inference procedure. In section 4, I discuss inference on β0 under two scenarios: (i)

the probability of Ωn converges to zero as the network size grows, and (ii) the probability of

Ωn converges to a positive constant as the network size grows. Specifically, I show that the

convergence rate of the estimator for β0 can be slower than the square root of the sample size if

the probability of Ωn converges to zero.

3.3.2 Nonlinear Panel Data Identification Strategy: Maximum Score

In this section, I show that the incidental parameter problem in the network formation model

in (1) is more complex than in a nonlinear panel data model with both cross-sectional and time

fixed effects. Specifically, in a network formation model, the fixed effects across the longitudinal

dimension may be arbitrarily correlated with the vector of observed attributes. Consequently,

these fixed effects are not strongly exogenous as the time fixed effects are in nonlinear panel

data models. To this end, I show that following a Maximum Score type identification strategy

(Manski 1975, 1987) to identify the vector of parameters does not identify β0 in this model.

The following proposition adapts Lemma 2 in Manski (1987) to the network formation model

specified by equation (1). The result states that the median of Dik−Dil conditional on Xn = x

and the “switchers” Dik 6= Dil does not identify β0.

Proposition 3.2 1. Let assumption A1 hold; then, for any n, and any i, l, k ∈ Nn

Med(Dik −Dil|Xn = x,Dil +Dik = 1) = sign
[
(xik − xil)′β0 + (µk − µl)

]
. (6)

2. Let Assumptions A1 - A2 hold. Then, the set of parameters consistent with equation (6)

is RK . That is, equation (6) does not have identification power.

In contrast to a nonlinear panel data model with a single individual fixed effect, conditioning
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on the within-individual variation Dil 6= Dik does not fully absorb the contribution of the

multiple agent-specific fixed effects. The within-individual difference fails to partial out the

fixed effects along the longitudinal dimension. This property is exhibited in the equation (6) by

the presence of the composite factors µk − µl. In summary, the incidental parameter problem

in a network formation model is more complex than in a nonlinear panel data model with both

agent-specific and time fixed effects.

Remark 1

Proposition 3.2 formalizes the conjecture made by Charbonneau (2014) regarding the impossibil-

ity to generalize Maximum Score to the presence of multiple fixed effects. Proposition 3.2 states

that the conditional median of Dik − Dil given {Xn = x, Dik 6= Dil}, which is a (known) spe-

cific feature of the distribution of observables, does not have identification power to recover β0.

Nonetheless, this does not mean that β0 is unidentified. Specifically, Theorem 3.1 proves that

β0 is point identified using a different (known) specific feature of the distribution of observables

after conditioning on Ωn.

3.4 Alternative Identifying Assumptions

The point identification result in section 3.2 relies on ∆klX
(1)
i having a large support conditional

on ∆klX
(−1)
i = ∆klx

(−1)
i , for any i, k, l ∈ Nn (Assumption A2.2). In this section, I study the

identification of the semiparametric network formation model in equation (1) when Assumption

A2.2 is violated. Specifically, I consider two scenarios: (i) all the covariates have bounded

support, and the conditional distribution of ∆klX
(1)
i given ∆klX

(−1)
i = ∆klx

(−1)
i is continuous

for any ∆klx
(−1)
i ; (ii) all the covariates have a discrete and finite support. The following results

are especially relevant for empirical applications with datasets in which is hard to justify the

existence of a covariate with large support.

3.4.1 Bounded Support and one Continuous Covariate

The main result of this section shows that β0 can be point identified when the conditional

distribution of ∆klX
(1)
i given ∆klX

(−1)
i = ∆klx

(−1)
i is continuous, and all the covariates have a

bounded support. In other words, I show that the existence of a covariate with large support is

not a necessary condition to point identify β0.

The next assumption weakens assumption A2.
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Assumption A2′

The following hold for any n, and any i, l, k ∈ Nn, with l 6= k.

1. The random vector ∆klXi has a bounded support on RK , and ∆klX
(1)
i is an absolutely

continuous random variable.

2. For some η > 0, there exist an interval Sη = [−η, η] and a set Aη ∈ RK−1 such that

(a) Aη is not contained in any proper linear subspace of RK−1.

(b) P
(

∆klX
(−1)
i ∈ Aη

)
> 0.

(c) For almost every ∆klx
(−1)
i ∈ Aη, the distribution of ∆klX

′
iβ0 conditional on ∆klx

(−1)
i =

∆klx
(−1)
i has a probability density that is everywhere positive on Sη.

A2′.1 restricts the covariates to have a bounded support and therefore assumption A2 no

longer holds. Part (c) in A2′.2 assumes that the linear index ∆klX
′
iβ0 has a continuous distribu-

tion in the interval Sη, which contains ∆klX
′
iβ0 = 0. This theorem, is a slightly modified version

of the result obtained by Manski (1988) and Horowitz (2012) for semiparametric binary-response

models.

Proposition 3.3

Let assumptions A1, A2′ and A3 hold; then β0 is point identified.

To understand the intuition behind proposition 3.3, consider the identified set B0 defined in

equation (13). To simplify the exposition, I restate the identified set below.

B0 =
{
b ∈ Rk : E

[
Y

(i)
kl − Y

(j)
kl |X

n = x,Ω(ijlk)
]
R 0⇔ [∆klxi − ∆klxj ]

′ b R 0 ,

∀ i, j, k, l ∈ Nn and

∀x = (x12, · · · , xik, · · · , xil, · · · , xjk, · · · , xjl, · · · , xn−1,n) ∈ supp(Xn) ∩ XB} ,

Assumption A2′ implies that the linear index ∆klX
′
iβ0 has a positive density on the interval

Sη conditional on ∆klX
(1)
i = ∆klx

(1)
i , for any ∆klx

(1)
i ∈ Aη and i, k, l ∈ Nn. Let Wkl,ij ≡

(∆klXi − ∆klXj), for any i, j, l, k ∈ Nn, which has a continuous density with respect to the

Lebesgue measure since ∆klX
(1)
i is a continuous random variable with bounded support.
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Define the sets:

S1(b) ≡
{
w : w′β0 < 0 ≤ w′b

}
S2(b) ≡

{
w : w′b < 0 ≤ w′β0

}
.

A necessary and sufficient condition for identification is

P [S1(b) ∪ S2(b)] > 0. (14)

If P [S1(b)] > 0, then there exists a subset in supp(W ′kl,ijβ0) with nonzero probability in

which

E
[
Y

(i)
kl − Y

(j)
kl |X

n = x,Ω(ijlk)
]
< 0,

with parameter value β0, and

E
[
Y

(i)
kl − Y

(j)
kl |X

n = x,Ω(ijlk)
]
≥ 0

for the parameter value b. The argument is symmetric for P [S2(b)] > 0.

Let b = (1, b(−1)), β0 = (1, β
(−1)
0 ), and w = (w(1), w(−1)) ∈ supp (Wkl,ij), with b(−1), β

(−1)
0 , w(−1) ∈

RK−1. Then the sets S1(b), S2(b) can be written as:

S1(b) ≡
{
w : −w(−1)′(b(−1) − β(−1)

0 ) ≤ w′β0 < 0
}
,

S2(b) ≡
{
w : 0 ≤ w′β0 < −w(−1)′(b(−1) − β(−1)

0 )
}

Conditions (a) and (b) in A2′.2 ensure that P
[
w(−1)′(b(−1) − β(−1)

0 ) 6= 0
]
> 0 for any b(−1) 6=

β
(−1)
0 , and w(−1) ∈ Aη. Then, condition (c) in A2′.2 implies that at least one of the sets

S1(b), S2(b) has a nonzero probability since W ′kl,ijβ0 has a conditional probability density given

w
(−1)
kl,ij = ∆klx

(−1)
i that is everywhere positive on 2×Sη. In other words, A2′ guarantees that the

sufficient condition for identification in (14) is satisfied. Therefore, β0 is point identified.

3.4.2 Finite and Discrete Support

In this section, I show that the parameter of interest in the the network formation model can be

partially identified when all the covariates have a bounded and discrete support. This result is
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known from the literature of binary choice models such as Manski (1975) and Komarova (2013).

I follow the recursive procedure introduced by Komarova (2013) for binary choice models to

obtain bounds on each component β0,k of the parameter of interest β0, for k = 2, · · · ,K. The

bounds obtained are used to approximate the identified set by the smallest multidimensional

rectangular superset that covers the identified set B0.

The following assumption replaces A2.

Assumption A2′′

For any n, and any i, k, l ∈ Nn, with k 6= l.

1. The support of Xik is not contained in any proper linear subspace of RK .

2. The profile vector of observed attributes Xn ≡ (X12, · · · , Xn−1,n) has a discrete support

given by

supp(Xn) =
{
x1, · · · ,xD

}
,

for a finite D.

Under A1, A2′′ and A3, the identified set is the following:

B0 =

{
b ∈ Rk : E

[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(ijlk)
]
R 0⇔

[
∆klx

(d)
i −∆klx

(d)
j

]′
b R 0,

for any distinct i, j, k, l ∈ Nn, and xd ∈ supp(Xn) ∩ XB
}
, (15)

where

xd ≡
(
x

(d)
12 , · · · , x

(d)
ik · · · , x

(d)
il , · · · , x

(d)
jk , · · · , x

(d)
jl , · · · , x

(d)
n−1,n

)
,

∆klx
(d)
i ≡ x

(d)
ik − x

(d)
il .

The identified set is characterized by a system of linear inequalities, which is used to compute

the bounds for the components {β0,k}Kk=2 of β0. The system of inequalities in (15) contains both

strict and non-strict inequalities.

To simplify notation, let i1,2 denote the dyad (i1, i2) for any unique dyad in N (2)
n . Fur-

thermore, let Pn,4 denote the set of total tetrads with distinct elements (i1, i2, i3, i4) from
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{1, 2, · · · , n}. Index the elements in Pn,4 by the letter i.

zi,d ≡ sign
{
E
[
Y

(1)
3,4 − Y

(2)
3,4 |X

n = xd,Ω(I1)
]} [

∆3,4x
(d)
1 −∆3,4x

(d)
2

]
,

with ∆3,4x
(d)
s = x

(d)
is,3
− x(d)

is,4
, s = 1, 2. For any i = (i1, i2, i3, i4) ∈ Pn,4 and xd ∈ supp(Xn) ∩ XB,

denote the K-dimensional vector of pairwise differences of the observed attributes that preserves

the sign of the corresponding inequality in (15).

Let z
(k)
i,d denote the kth element of the signed vector of pairwise differences of observed

attributes zi,d, for any k = 1, · · · ,K.

Rewrite the conditions characterizing the identified set in (15) as the following system of

linear inequalities with K − 1 unknowns given by b2, · · · , bK

z
(1)
1,1 + z

(2)
1,1b2 + z

(3)
1,1b3 + · · ·+ z

(K)
1,1 bK ≥ 0,

z
(1)
2,1 + z

(2)
2,1b2 + z

(3)
2,1b3 + · · ·+ z

(K)
2,1 bK ≥ 0,

... (S1)

z
(1)
M,1 + z

(2)
M,1b2 + z

(3)
M,1b3 + · · ·+ z

(K)
M,1bK ≥ 0,

...

z
(1)
M,D + z

(2)
M,Db2 + z

(3)
M,Db3 + · · ·+ z

(K)
M,DbK ≥ 0,

where M ≡ |Pn,4|, and |Pn,4| denotes the cardinality of Pn,4. For simplicity, the system in (S1)

is written as system non-strict linear inequalities; although, the initial system in (15) contains

both.

The solutions to the system (S1) establish bounds for each component of the parameter β0

by following the recursive procedure introduced by Komarova (2013). Her procedure recursively

simplifies the system (S1) by excluding one unknown variable at each iteration. The recursive

elimination continues until it reaches a simplified system with only one unknown variable. The

upper and lower bounds for the remaining unknown are then computed from the simplified

system. Her algorithm is repeated, using different elimination sequences, until the bounds for

all the elements {β0,k}Kk=2 are computed.

Denote by bk (and b̄k) the lower (upper) bound for the unknown parameter β0,k for k =

2, · · · ,K. Komarova (2013) shows that the identified set can be approximated by the smallest

multidimensional rectangle superset that covers B0. This superset, denoted by R(B0), is defined
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as the Cartesian product of the intervals
{

[bk, b̄k]
}K
k=2

that bound the elements {β0,k}Kk=2. That

is,

R(B0) ≡
K∏
k=2

[bk, b̄k].

I illustrate her recursive procedure in the next example.

Example 2 (Bounds)

In this example, I characterize the identified set and the smallest multidimensional rectangle

superset that covers the identified set. I discuss the computation of the bounds for a general

network formation model in appendix C.

For any n, consider the following network formation model: 5

Dik = 1
[
X

(1)
ik +X

(2)
ik β0,2 +X

(3)
ik β0,3 + µi + µk − εik ≥ 0

]
for any (i, k) ∈ N (2)

n , (16)

where β0 = (1, β0,2, β0,3)′ = (1, 1.5,−1.5)′. For any (i, k) ∈ N (2)
n , the supports of the observed

attributes are supp (X
(1)
ik ) = {−2,−1, 0, 1, 2, 3, 4}, supp (X

(2)
ik ) = {−1, 0, 1}, and supp (X

(3)
ik ) =

{0, 1, 2}. Hence, the support of Xik contains 63 points.

To characterize the identified set is necessary to determine the set of vectors b ∈ RK that are

observationally equivalent to β0 under the moment inequalities in (15).

Under the true DGP, the sign of each inequality in (S1) is determined according to the rule:

If

(1, 1.5,−1.5)
[
(x

(d)
ik − x

(d)
il )− (x

(d)
jk − x

(d)
jl )
]
≥ 0⇒ E

[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(i)
]
≥ 0.

If

(1, 1.5,−1.5)
[
(x

(d)
ik − x

(d)
il )− (x

(d)
jk − x

(d)
jl )
]
< 0⇒ E

[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(i)
]
< 0,

for any i = (i, j, k, l) ∈ Pn,4 and xd ∈ supp(Xn) ∩ XB.

5This example uses the same data generating process (DGP) design for the network formation model as the

Monte Carlo simulations in section 5 up to the discretization of the supports of X
(1)
ik and X

(3)
ik . Assumption A2

requires X
(1)
ik to have a large support conditional on the remaining exogenous covariates. The discretized support

of X
(1)
ik accounts for 95% of its original probability mass. The discretized support of X

(3)
ik takes both end points

of the original support, and the only integer value in between the end points.



28 L. E. CANDELARIA

The identified set B0 is defined as the set of vectors b = (1, b2, b3) ∈ R3 that satisfy

E
[
Y

(i)
kl − Y

(j)
kl |X

n = x1,Ω(i)
]
R 0⇔

[
(x

(1)
ik − x

(1)
il )− (x

(1)
jk − x

(1)
jl )
]′
b R 0,

E
[
Y

(i)
kl − Y

(j)
kl |X

n = x2,Ω(i)
]
R 0⇔

[
(x

(2)
ik − x

(2)
il )− (x

(2)
jk − x

(2)
jl )
]′
b R 0, (E1)

...

E
[
Y

(i)
kl − Y

(j)
kl |X

n = xD,Ω(i)
]
R 0⇔

[
(x

(D)
ik − x

(D)
il )− (x

(D)
jk − x

(D)
jl )

]′
b R 0,

for any i = (i, j, k, l) ∈ Pn,4.

The bounds for the components β0,2 and β0,3 are computed from the solutions to the following

system of linear inequalities implied by (E1). Let,

zki,d = signE
[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(i)
] [

(x
(d)
ik − x

(d)
il )− (x

(d)
jk − x

(d)
jl )
]
,

for d = 1, · · · , D. System (E1) can be written as:

z
(1)
1,1 + z

(2)
1,1b2 + z

(3)
1,1b3 ≥ 0,

z
(1)
2,1 + z

(2)
2,1b2 + z

(3)
2,1b3 ≥ 0, (E2)

...

z
(1)
M,D + z

(2)
M,Db2 + z

(3)
M,Db3 ≥ 0.

To illustrate the recursive procedure, suppose the goal is to find the bounds for the component

β0,3. Consider, the ijth inequality in system (E2)

z
(1)
i,j + z

(2)
i,j b2 + z

(3)
i,j b3 ≥ 0.

Solving for b2, the ijth linear inequality is equivalent to:

if z
(2)
i,j ≥ 0 ⇒ −

z
(1)
i,j

z
(2)
i,j

−
z

(3)
i,j

z
(2)
i,j

b3 ≤ b2,

if z
(2)
i,j ≤ 0 ⇒ −

z
(1)
i,j

z
(2)
i,j

−
z

(3)
i,j

z
(2)
i

b3 ≥ b2.

The process is repeated on the M ×D linear inequalities in (E2). Suppose that the system

(S1) has N1 inequalities with z
(2)
· ≥ 0, N2 inequalities with z

(2)
· ≤ 0, and N3 inequalities with
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z
(2)
· = 0; then the system (S1) is equivalent to

Li(b3) ≤ b2, i = 1, · · · , N1, (E3)

Uj(b3) ≥ b2, j = 1, · · · , N2,

Zr(b3) ≥ 0, r = 1, · · · , N3,

where Li(·), Uj(·), Zr(·) are linear functions of b3 and do not depend on b2.

The system (E3) yields the simplified system:

Uj(b3) ≥ Li(b3), i = 1, · · · , N1, j = 1, · · · , N2,

Zr(b3) ≥ 0, r = 1, · · · , N3,

which can be written as

ul + vlb3 ≥ 0, l = 1, · · · , L, (E4)

wr ≥ 0, r = 1, · · · , N3,

where L ≡ N1 × N2. System (E4) was obtained after simplifying (E1) using the recursive

procedure introduced by Komarova (2013). The system (E4) has b3 as the only unknown variable.

The lower and upper bounds for β0,3 are derived from the simplified system (E4) as follows:

b3 = max
l=1,··· ,L

{
−ul
vl

: vl > 0

}
,

b̄3 = min
l=1,··· ,L

{
−ul
vl

: vl < 0

}
.

The process to obtain the bounds for β0,2 is symmetric. Then, the smallest multidimensional

rectangle superset R(B0) that covers the identified set is

R(B0) = [b2, b̄2]× [b3, b̄3].

In figure 3, I depict the bounds for the components in β0, the identified set, and the smallest

multidimensional rectangle superset that covers B0.

The bounds obtained by the recursive procedure introduced by Komarova (2013) are unique

and independent from the order used to simplify the system (15). That is, the bounds ob-

tained are uniform over the order of elimination process. Notably, the identified set is char-
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Figure 3: Bounds and Rectangular Superset

acterized using only the information contained in the conditional median of Y
(i)
kl − Y

(j)
kl given

{Xn = x,Ω(ijkl)}. Sharpness of the identified set and the bounds
{

[bk, b̄k]
}K
k=2

is still an open

question in the literature, and I leave this question as future research.

4 Estimation

In this section, I propose a semiparametric pairwise difference estimator for β0 under the point

identification assumptions of section 3. A semiparametric approach is attractive because it

does not confine the distribution of the disturbance term to any specific parametric family.

Furthermore, it allows for a flexible statistical dependence structure between the agent-specific

factors and the exogenous attributes.

The pairwise difference estimator is an M-estimator that minimizes a 4th order U-process.

The estimator generalizes the Leapfrog estimator introduced by Abrevaya (1999b) to a network

structure with multiple and unobserved heterogeneity. In particular, Abrevaya (1999b) intro-

duced the Leapfrog estimator as an estimation method for strictly monotonic transformation
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models, for both panel data and cross-sectional frameworks. Invertibility of the transformation

function is a necessary condition for the models considered in that paper. The network forma-

tion model in equation (1) constitutes a weakly monotonic transformation function that is not

invertible. Hence, the network model studied in this paper is not nested in the class of models

considered by Abrevaya (1999b).6

I show that the estimator for β0 is consistent and has an asymptotic normal distribution.

If the probability of the class Ωn converges to a positive constant, as the size of the network

increases, the estimator has a parametric convergence rate (square root of the sample size). If

the probability of the class Ωn converges to zero, the convergence rate of the estimator is slower

than the parametric rate. The slower rate of convergence is a consequence of identifying β0 in a

set with arbitrarily small probability, also referred to as a thin set. In this case, β0 is said to be

irregularly identified (Newey 1990; Andrews and Schafgans 1998 and Khan and Tamer 2010).

4.1 Pairwise difference Estimator

I propose an estimator for β0 based on the identification condition described in (7). Consider

following limiting objective function

Q(b) ≡ 2E
[
S(XB)× sign

{
[(Xik −Xil)− (Xjk −Xjl)]

′ b
}
×
(
Y

(i)
kl − Y

(j)
kl

)
| Ω(ijlk)

]
, (17)

where, S(XB) is an indicator function that is equal to 1 if x ∈ XB, and 0 otherwise.

The next proposition states that this limiting objective function is uniquely maximized at

the true parameter value, b = β0.

Proposition 4.1

Let assumptions A1, A2 and A3 hold. Then, the limiting objective function Q(b) is uniquely

maximized at b = β0. That is,

Q(β0) > Q(b), for all b ∈ RK with b 6= β0.

6Abrevaya denotes the Leapfrog estimator as pairwise difference estimator in the cross-sectional framework.
Although Abrevaya’s estimator also minimizes a 4th order U-statistics, the semiparametric estimator introduced
in this paper is qualitatively different from his estimator because is developed to estimate models of link formation
among dyads. The two estimators have different asymptotic behaviors, which becomes visible from their distinct
convergence rates.
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Consider a sample of size n

{zij}(i,j)∈N (2)
n
≡ {Dij ,xij}(i,j)∈N (2)

n
.

Recall that i1,2 indexes the unique dyad (1, 2) in N (2)
n . The sample analog of the limiting

objective function is a 4th order U-statistic defined as

Qn(b) ≡
(
n

4

)−1 ∑
Cn,4

h(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b), (18)

where
∑

Cn,4
denotes summation over the

(
n
4

)
combinations of tetrads with distinct elements

(i1,3, i1,4, i2,3, i2,4) from {1, 2, · · · , n}. The function h, known as the kernel of the U-statistic, is

defined as

h(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b) ≡
2

4!

∑
P4

{
S(xi1,3 , xi1,4 , xi2,3 , xi2,4 , BU , BL)× sign

{
[∆3,4x1 −∆3,4x2]′ b

}
×
(
y

(1)
3,4 − y

(2)
3.4

)
× 1

{∣∣∣(y(1)
3,4 − y

(2)
3.4

)∣∣∣ = 2
}}

,

where

S(xi1,3 , xi1,4 , xi2,3 , xi2,4 , BU , BL) =

1
[
∆3,4x

′
1b > (BU −BL)

]
1
[
∆3,4x

′
2b < (BL −BU )

]
+

1
[
∆3,4x

′
1b < (BL −BU )

]
1
[
∆3,4x

′
2b > (BU −BL)

]
,

and
∑

P4
denotes summation over the 4! permutations {i1,3, i1,4, i2,3, i2,4} of {1, 2, 3, 4} . The

kernel function is symmetric with respect to its argument (see Remark 2 below).

The semiparametric pairwise difference estimator is

β̂n = arg max
b∈B̃⊂RK

Qn(b), (19)

where the first dimension of the vector of unknown parameters is normalized equal to one in

the parameter space, as a consequence of scale normalization used to point identify β0 instead

of the scaled parameter β0/ ||β0||. This normalization is discussed in section 3.2.

Remark 2
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Given that underlying network is undirected, it can be shown that 18 out of the 4! total per-

mutations have an identical contribution to the kernel function. For example, the permutations

(i1,3, i1,4, i2,3, i2,4) and (i3,1, i3,2, i4,1, i4,2) have identical contribution to the kernel since

(
xi1,3 − xi1,4

)
−
(
xi2,3 − xi2,4

)
=
(
xi3,1 − xi3,2

)
−
(
xi4,1 − xi4,2

)
,

y
(1)
3,4 − y

(2)
3,4 =

(
Di1,3 −Di1,4

)
−
(
Di2,3 −Di2,4

)
=
(
Di3,1 −Di3,2

)
−
(
Di4,1 −Di4,2

)
= y

(3)
1,2 − y

(4)
1,2.

Hence,

sign
{[(

xi1,3 − xi1,4
)
−
(
xi2,3 − xi2,4

)]′
b
}
×
(
y

(1)
3,4 − y

(2)
3,4

)
= sign

{[(
xi3,1 − xi3,2

)
−
(
xi4,1 − xi4,2

)]′
b
}
×
(
y

(3)
1,2 − y

(4)
1,2

)
.

The proof for the remaining cases is analogous. Therefore, the kernel function simplifies to

h(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b) ≡

2

6

6∑
s=1

{
S(xs1,3 , xs1,4 , xs2,3 , xs2,4 , BU , BL)× sign

{[(
xs1,3 − xs1,4

)
−
(
xs2,3 − xs2,4

)]′
b
}

×
(
y

(1)
3,4 − y

(2)
3,4

)
× 1

{∣∣∣(y(1)
3,4 − y

(2)
3,4

)∣∣∣ = 2
}}

,

where (s1,3, s1,4, s2,3, s2,4) denotes the permutation of the index (i1,3, i1,4, i2,3, i2,4). The 6 unique

permutation are

{(i1,3, i1,4, i2,3, i2,4), (i1,4, i1,3, i2,4, i2,3), (i1,2, i1,4, i3,2, i3,4),

(i1,4, i1,2, i3,4, i3,2), (i1,2, i1,3, i4,2, i4,3), (i1,3, i1,2, i4,3, i4,2)} .

4.2 Consistency

In this section, I provide sufficient conditions for the pairwise difference estimator, defined in

equation (19), to be consistent. Assumptions B1 and B2 adapt those in Abrevaya (1999b) to a

network formation model. Assumption B3 imposes a lower bound on how fast the probability

of the class Ωn can go to zero as the sample size increase.

Assumption B1

The researcher observes a random sample of n agents, the link status and dyad-level observed
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attributes for all the unique dyads in the sample

{(Dij ,xij)}(i,j)∈N (2)
n
, for n ∈ N.

Assumption B2

The parameter space B̃ is compact and β0 is an interior point of B̃.

Assumption B3

Let pn ≡ P (Ωn) , where

1. pn → p0 ≥ 0, as n→∞.

2.
√
Npn →∞, as n→∞.

Assumption B1 states that the researcher observes only one realization of the network with

a large number of individuals. The asymptotic analysis is conducted by assuming the number

of individuals in the sample increases. This framework is known as “large-market” asymptotics,

and is suitable for applications in which only one large network is observed. In recent years, the

“large-market” asymptotics paradigm has received an increasingly amount of attention in the

network formation literature. Some notable papers that follow this approach are Boucher and

Mourifié (2013); Chandrasekhar and Jackson (2014); Graham (2017); Leung (2015a,b); Menzel

(2015) and de Paula et al. (2016). In the empirical application, I study the friendships network

formed within one high school by a large number of students.

Assumption B2 is a regularity condition that is frequently used in the literature of semi-

parametric methods. Compactness of the parameter space is used to prove consistency of the

pairwise difference estimator. Assumption B2 also requires β0 to be an interior point of the

parameter space. This condition is used to derive the asymptotic distribution of the estimator.

The methodology relies on finding a quadratic approximation for a smooth function of the kernel

of the U-statistic. Condition B2 has also been used by Han (1987); Sherman (1993, 1994) and

Abrevaya (1999b). For further references see Powell (1994).

Assumption B3 states that the probability of the identifying class Ωn converges to a non-

negative constant, which could be zero. Under this assumption, the subnetwork structures that

satisfy the conditions in Ω(i, j, k, l), see figure 2, become more unlike as the number of individuals

in the network increases. The probability of Ωn will convergence to zero if there is not enough

within-individual and across individuals variation in the links. Some examples of networks for

which the probability of Ωn converges to zero are networks that, with probability approaching

one, become dense, empty, homogeneous, or if the subnetwork created by any sampled tetrad
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consists of a single edge, two edges that are adjacent to each other, or three edges. In Appendix

B, I depict all the subnetworks that do not meet the conditions in Ω(ijkl).

Assumption B3.2 states that the probability of the class Ωn cannot converge to zero at a

faster rate than square root of the sample size N = O(n2). The unique dyads formed by the n

individuals constitute the relevant sample in the network formation model. Therefore, the actual

sample size needed to estimate β0 is pn
√
N . A similar property to B3.2 is used in Graham (2017).

Theorem 4.1

Let assumptions A1–A3, B1–B3 hold. Then,

β̂n − β0
a.s.→ 0

as n→∞.

Theorem 4.1 shows that the pairwise difference estimator converges to the true parameter

value almost surely as the size of the network increases.

4.2.1 Asymptotic Normality

The main result of this section is that the pairwise difference estimator is asymptotically normal.

The proof of this result follows similar arguments as in Sherman (1993, 1994). The following

assumption provides sufficient conditions to derive the asymptotic distribution. First, I introduce

additional notation to simplify the exposition.

For b ∈ B̃, and each z ∈ S with sampling distribution P on S, let

τ(z, b) ≡ h(z,P,P,P, b) + h(P, z,P,P, b) + h(P,P, z,P, b) + h(P,P, z,P, b),

where h(z,P,P,P, b) denotes the conditional expectation of h(·, ·, ·, ·, b) under P4, given its first

argument. P4 denotes the product measure P×P×P×P for the sampling distribution P on

S, and given P4 <∞.

Although h(zi1,3 , zi1,4 , zi2,3 , zi1,4 , ·) is a discontinuous function for each (zi1,3 , zi1,4 , zi2,3 , zi1,4) ∈
S4, the function τ(z, ·) can be many times differentiable if the distribution of [∆3,4x1 −∆3,4x2]′ b,

is sufficiently smooth.

Let ||·|| denote the Frobenius matrix norm, ||(aij)|| = (
∑

i,j a
2
i,j)

1/2, ∇m denote the mth
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partial derivative operator with respect to b, and let

|∇m|g(b) ≡
∑

i1,··· ,im

∣∣∣∣ ∂m

∂bi1 · · · ∂bim
g(b)

∣∣∣∣ ,
for any differentiable function of b.

Assumption B4

Let M denote a neighborhood of β0.

1. For each z ∈ S, all mixed second partial derivatives of τ(z, ·) exist on M .

2. There is an integrable function M(z), such that for all z in S and b in M

||∇2τ(z, b)−∇2τ(z, β0)|| ≤M(z)|b− β0|.

3. E|∇1τ(·, β0)|2 <∞.

4. E|∇2|τ(·, β0) <∞.

5. The matrix E [∇2τ(·, β0) | Ωn] is negative definite.

Theorem 4.2

Let β̂n be a value that maximizes Qn(β) over the parameter space B. If assumptions A1–A3,

and B1–B4 hold, then:

pn
√
N(β̂n − β0)

d→ N (0, V −1∆V −1), as n→∞ (20)

where

4V = E [∇2τ(·, β0) | Ωn] ,

∆ = E [∇1τ(·, β0)] [∇1τ(·, β0)]′ .

If the probability of the class Ωn converges to a positive constant, pn → p0 > 0 as n → ∞,

then the pairwise difference estimator has a parametric convergence rate
√
N .

If the probability of the class Ωn converges to zero, then the converge rate is slower than the

parametric rate. This result is a consequence of identifying β0 in a thin set. The next theorem

shows that the information bound is zero for the network formation model if the probability of

the Ω0 converges to zero.
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Theorem 4.3

In the network formation model characterized by equation (1), under assumptions A1–A3, B1–

B4, and if pn → 0 as n→∞, then the information bound for β0 is 0.

Given the varying rates, inference can be conducted using the approach proposed by An-

drews and Schafgans (1998) and Khan and Tamer (2010). Let Σ̂n denote the estimator of the

asymptotic variance:

Σ̂n = V̂ −1
n ∆̂nV̂

−1
n /p̂2

n,

where V̂n and ∆̂n denote consistent estimators for V and ∆, and

p̂n ≡
(
n

4

)−1 ∑
Cn,4

1
[
h(zi1,3 , zi1,4 , zi2,3 , zi1,4 , β̂n) 6= 0

]
, (21)

which is a consistent estimator for p0.

Theorem 4.4

Let β̂n be a value that maximizes Qn(β) over the parameter space B. If assumptions A1–A3,

and B1–B4 hold, then:

Σ̂−1/2
n

√
N(β̂n − β0)

d→ N (0, I), as n→∞ (22)

I conduct inference by estimating the asymptotic covariance matrix and referring to the stan-

dard normal critical value. Section 7 in Sherman (1993) shows how to consistently estimate V

and ∆ using numerical derivatives. Alternatively, Subbotin (2007) shows that the nonparamet-

ric bootstrap is valid for inference for maximum rank estimators. In the empirical application, I

use the alternative bootstrap method introduced in Honoré and Hu (2015). Their approach re-

duced the computing time by estimating only one-dimensional parameters instead of one K×K
dimensional parameter.

4.3 Asymptotic Properties under Partial Identification

In this section, I show that if β0 is partially identified, then the identified set can be consistently

approximated from the system of linear inequalities in (15). Specifically, by replacing the con-

ditional expectations in (15) with a consistent estimates, the resulting system can be used to

approximate the identified set. The next theorem provides the main result in this section.
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First, denote by H(·, ·) the Hausdorff metric. Specifically, for two non-empty sets A and B

let

H(A,B) ≡ max

{
sup
a∈A

inf
b∈B
||a− b|| , sup

b∈B
inf
a∈A
||a− b||

}
.

Furthermore, let

Ên
[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(ijlk)
]

denote a consistent estimator of

E
[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(ijlk)
]

as the sample size grows, and for any distinct i, j, k, l ∈ Nn and xd ∈ supp Xn ∩ XB.

Theorem 4.5

Let assumptions A1, A2′′, A3, B1 and B3 hold. Then, if

rn

(
Ên
[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(ijlk)
]
− E

[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(ijlk)
])

= Op(1),

for any distinct i, j, k, l ∈ Nn and xd ∈ supp Xn ∩XB, where {rn}n∈N is a nonnegative sequence

such that rn → ∞ as n → ∞. Let {εn}n∈N be a nonnegative sequence such that εn → 0 and

εnrn →∞.

Let B̂ denote a solution to the following system of inequalities:

Ên
[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(ijlk)
]
R −εn ⇔

[(
x

(d)
ik − x

(d)
il

)
−
(
x

(d)
jk − x

(d)
jl

)]′
b R 0. (23)

for any distinct i, j, k, l ∈ Nn and xd ∈ supp Xn ∩ XB. Then:

1. H(B̂,B0)
p→ 0,

2. H(R(B̂), R(B0))
p→ 0,

as n→∞.

The previous theorem states that the estimated identified set, and interval bounds, consis-

tently approximate the true identified set, and true interval bounds, for each component of β0,

respectively.
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5 Monte Carlo Simulations

5.1 Computation

The objective function Qn(b) is a 4th order U-statistic, which requires O(n4) operations. The

estimator β̂n can be equivalently computed from the following objective function Q̃n(b), which

can be computed in O(n3log(n)) operations by implementing sorting algorithms that uses binary

search trees, as described in Abrevaya (1999a).

Q̃n(b) ≡ 1

n(n− 1)(n− 2)

∑
P3

S(zi1,3 , zi1,4 , b)Rank(i3,4)

[
(xi1,3 − xi1,4)′b

]
y

(1)
3,4,

where
∑

P3
denotes summation over the n(n − 1)(n − 2) permutations of triads with distinct

elements (i1, i3, i4) from {1, 2, · · · , n}

The function Rank(i3,4)

[
(xi1,3 − xi1,4)′b

]
denotes the rank of agent i1’s within-individual vari-

ation of the linear index
[
(xi1,3 − xi1,4)′b

]
, among the remaining (n− 3) within-individual vari-

ations for agents i2 other than i1 within dyads (i2, i3) and (i2, i4). That is

Rank(i3,4)

[
(xi1,3 − xi1,4)′b

]
≡

∑
i2∈Nn\{i1,i3,i4}

1
{

(xi1,3 − xi1,4)′b ≥ (xi2,3 − xi2,4)′b
}
.

5.2 Finite Sample Performance

In this section, I study the finite sample properties of the pairwise difference semiparametric

estimator introduced in section 4. I compare the performance of this estimator with the Tetrad

Logit (TL) estimator introduced in Graham (2014). I consider two setups with different distri-

butional assumptions on the link-specific disturbance term. In the first setup, the link-specific

disturbance term has a logistic distribution. Under this setup, the TL estimator is correctly

specified for the network formation model. In the second setup, the link-specific disturbance

term has a standard normal distribution. Under this setup, the network formation model studied

in Graham (2014) is not correctly specified.

I simulate the data from the network formation model in (1) with the following true DGP

value for the unknown parameter

β0 = [1, 1.5,−1.5]′.
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I assume the vector of dyad-specific attributes Xij is

Xij =
[
X

(1)
ij , X

(2)
ij , X

(3)
ij

]
, with X

(l)
ij = zilzjl for l = 1, 2, 3.

The agent-specific observed attributes zi1, zi2, zi3 are draw as follows:

zi1 ∼N (0, 3),

zi2 ∼Unif {−1, 1} with P (zi2 = −1) = P (zi2 = 0) = P (zi2 = 1) = 1/3,

zi3 ∼Unif(−2, 2).

I assume the latent agent-specific fixed effects are αi = λ
3 (zi1 + zi2 + zi3) + (1− λ)W , where

W ∼ N (0, 1) and λ ∈ {0.25, 0.5, 0.75}. The parameter λ measures the degree of correlation

between the agent-specific observed covariates and unobserved fixed effects. The bounded fixed

effects are specified as:

µi =


BL if αi < BL

αi if BL ≤ αi ≤ BU
BU if BU < αi

,

with BL = BU = 1.

The dyad-specific disturbance term is draw from two distribution. Specifically, I consider

ε
(1)
ij ∼ Logistic(0, 1), and ε

(2)
ij ∼ N (0, 2).

The next tables report the estimates of β0 obtained from 500 Monte Carlo simulations with

correlation parameter λ = 0.5 and sample sizes n = 100, 250, and 500. I report the Monte Carlo

simulations for λ equal to 0.25 and 0.75 in appendix E. The results are qualitatively similar.

Tables 1 and 2 report the finite sample properties of the pairwise difference and the TL esti-

mators under the first and second setup, respectively. I report the scaled-normalized estimates

β0/β0,1 for both estimators, which is consistent with assumption A2 and the definition of the

parameter space in (19). I focus on the median, mean, bias in percentage points, and the root

mean square error (RMSE) for each estimator. Tables 1 and 2 also report the probability of the

class Ωn and the average degree of the network.

Table 1 shows that under the logistic design and in a small network with 100 individuals, the
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estimation bias for the coefficient associated with the discrete covariate β0,2 is approximately

the same for both estimators, 5.9% for the pairwise difference estimator and 4.1% for the TL

estimator. The performance of the pairwise difference estimator is as good as to the one of the

TL for the coefficient associated with the continuous covariate regarding bias and RMSE.

In the larger network with 250 individuals. The performance of both estimators improves.

Specifically, the estimation bias for β0,2 of the pairwise difference estimator decreases signifi-

cantly to 1.02%. The bias for β0,3 remains small. The performance of the pairwise difference

estimator regarding the RMSE also improves. I also report the estimates of the pairwise dif-

ference estimator for a larger network with size n = 500.7 These results confirm the good

asymptotic performance. Specifically, the bias and RMSE of the pairwise difference estimator

become negligible as the network size increases. In additional tests, I have estimated the network

formation model with sample sizes of 1000 and 2000, and the results are qualitatively similar.

Notably, the pairwise difference estimator performs as well as TL when the model is link-specific

disturbance terms are correctly specified as logistic.

Table 2 shows that under the standard normal design, the TL estimator for the continuous

covariate can present a bias of 15% in a small network of size n = 100. This bias decreases

to 13% in a larger network of size n = 250, yet it fails to disappear. These results suggest

that the performance of the TL is undermined when the distribution of the dyad-disturbance

term is misspecified. The pairwise difference estimate for the coefficient associated with discrete

covariate presents a bias of 5.7% in a small network of size n = 100. However, this bias

decreases to 5% and 4.7% as the network increases to n = 250 and n = 500. The pairwise

difference estimator for β0,3 presents a bias of 13% for a network with n = 100, which decreases

to 7.2% and 5.2% as the network size increases. The pairwise difference estimator also has a

good performs regarding RMSE.

The numerical evidence in tables 1 and 2 suggest that the pairwise difference estimator has a

good performance in finite samples, independently of the distribution of the dyad-specific unob-

served components. Furthermore, its properties improve considerably as network size increases.

Finally, the TL can suffer a nonzero bias when the dyad-specific disturbance terms is different

from logistic.

7I do not report the estimates of the TL estimator for a network with sample size n = 500 due to its com-
putational complexity. Initial tests suggest that computing the TL estimator, in Matlab, for a network with 500
nodes requires a computing cluster with more than 100 gigabytes of memory. This challenge could be overcome
by using other computing languages such as C++ or Python.
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Table 1: Monte Carlo Simulations: Logistic(0,1)

Pairwise Difference Tetrad Logit P (Ωn) E(Degree)

Median Mean Bias(%) RMSE Median Mean Bias(%) RMSE

N = 100 5.924% 47.134

β0,2/β0,1 = 1.5 1.495 1.589 5.968 1.519 1.504 1.562 4.172 0.369
β0,3/β0,1 = −1.5 -1.494 -1.493 0.463 0.184 -1.731 -1.773 18.261 0.390

N = 250 8.848% 118.799

β0,2/β0,1 = 1.5 1.499 1.484 1.024 0.164 1.493 1.528 1.887 0.270
β0,3/β0,1 = −1.5 -1.486 -1.487 0.854 0.066 -1.680 -1.697 13.135 0.284

N = 500 8.243% 236.443

β0,2/β0,1 = 1.5 1.513 1.508 0.587 0.034
β0,3/β0,1 = −1.5 -1.504 -1.501 0.076 0.030

Note: Number of Monte Carlo simulations M=500, correlation parameter λ = 0.5

Table 2: Monte Carlo Simulations: Normal(0,2)

Pairwise Difference Tetrad Logit P (Ωn) E(Degree)

Median Mean Bias(%) RMSE Median Mean Bias(%) RMSE

N = 100 7.914% 47.125

β0,2/β0,1 = 1.5 1.630 1.585 5.715 0.727 1.651 1.665 7.454 0.437
β0,3/β0,1 = −1.5 -1.734 -1.702 13.613 1.836 -1.735 -1.763 15.712 0.438

N = 250 7.346% 117.700

β0,2/β0,1 = 1.5 1.567 1.551 5.061 0.886 1.524 1.512 4.133 0.325
β0,3/β0,1 = −1.5 -1.677 -1.632 7.245 1.074 -1.691 -1.674 13.128 0.325

N = 500 7.148% 236.301

β0,2/β0,1 = 1.5 1.529 1.542 4.761 0.881
β0,3/β0,1 = −1.5 -1.572 -1.553 5.281 0.801

Note: Number of Monte Carlo simulations M=500, correlation parameter λ = 0.5
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6 Empirical Application

In this section, I use the methods developed in this paper to estimate the network formation

model in equation (1) on a friendships network among high school students. The objective is to

estimate the preference parameters associated with socio-demographic and educational factors.

From an empirical perspective, these parameters represent the individuals’ preferences towards

homophily on observed attributes. I use the self-reported friendship links from the Add Health

dataset (Harris, Halpern, Whitsel, Hussey, Tabor, Entzel, and Udry (2009)) to construct an

undirected network of friends. I then the preference parameters using the pairwise difference

estimator introduced in section 4.

6.1 Add Health dataset

The Add Health dataset is a national representative survey of adolescents in grades 7-12 in the

United States during the 1994 to 1995 school year. This dataset has been designed to study

the impact of the social environment; for example, friends, neighborhood, and school, on the

adolescents’ behavior. This survey is a longitudinal study collected in four waves of in-home

interviews.8 I use data from the Wave 1 in-home survey, which contains information on the total

90,118 participants and the friendships nominations.

These friendship data have been used to study the impact of social interactions on many

different outcomes of interest, as in Bramoullé, Djebbari, and Fortin (2009); Calvó-Armengol,

Patacchini, and Zenou (2009) and Christakis and Fowler (2008). This dataset has also been

used to estimate network formation models on friendship relationships as in Christakis et al.

(2010); Mele (2015), and Miyauchi (2016).

From the 132 schools in the sample, all the students enrolled in 16 high schools, known as

saturated schools, were selected for in-home interviews. In these interviews, the students were

asked to name up to five male and five female students.9 The saturated high schools include two

large schools with more than 700 enrolled students each and 14 small schools with less than 180

enrolled students each. I select one of the large saturated high schools for the empirical study.

A friendship link is formed if for any pair of students both agents named each other as friends,

regardless of the order in which they do it. I use socio-demographic and educational factors to

8The Add Health website describes the data in detail, www.cpc.unc.edu/projects/addhealth.
9In all the remaining schools, the students have been asked to name only one male and one female friend.

https://www.cpc.unc.edu/projects/addhealth
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model the formation of the friendships network. Specifically, I consider the household’s income,

the age, current academic grade, gender, race, overall GPA of the respondent, and the parent’s

level of education. Table 3 reports descriptive statistics for the exogenous covariates.

Household Income denotes the total income before taxes that the respondent’s family per-

ceived in the year 1994. This variable is recorded numerically, as opposed to being censored-

coded. The minimum value for the household income in the sample is $4,000, and the maximum

value $200,000. Female is a gender dummy variable that indicates if the respondent is a female.

Grade denotes the current academic grade of the student. In this sample, this variable includes

from 9 to 12 grade. Hispanic, White, Black, Asian, Indian, and Other Races are dummy variables

that indicate the respondent’s ethnicity. The high school considered is predominantly white with

approximately 94% of the students being white. The variable Overall GPA is constructed as a

sample average of the student’s grades in English, History, Mathematics, and Science courses.

Mother’s Education and Father’s Education are coded as 0 = never went to school, 1 = 8 grade

or less, 2 = above 8 grade but not a high school graduate, 3 = professional training instead of

high school, 4= high school graduate, 5 = GED, 6 = professional training after high school, 7

= attended college but did not graduate, 8 = college graduate, 9 = professional training after

college.

I transform the covariates Household Income, Age, Grade, Overall GPA, Mother’s education,

and Father’s education by subtracting their mean. Household Income is used as the covariate

with large support, which after the transformation has a minimum value of -$47,000 and a

maximum value of $148,000 in the sample. Although the support of Household Income is not

unbounded, it is sufficient to contain the support of the remaining covariates as discussed in the

point identification result with one continuous regressor with bounded support, section 3.4.

After dropping missing observations for age and household’s income, the total number of

observations in the sample is n = 469. In total 319 students named at least one friend. The

probability of the class Ωn in the sample is 2.24%. The probability of Ωn in the remaining large

high school is 2.59%. Although the probability of Ωn is larger in the other high school, that

high school was not selected because it suffers from a more severe missing observation problem.

6.2 Empirical Results

I estimate the network formation model in equation (1) using the pairwise difference estimator. I

compare these results with the point estimates obtained from computing Graham (2017) Tetrad
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Logit estimator and a naive logistic regression. The naive logistic regression ignores the presence

of the fixed effects µi and µj in equation (1), and assumes εij has a logistic distribution. I

construct the dyad-level observed attributes as in the Monte Carlo designs. I use the socio-

demographic and educational covariates described in Table 3.

There is a total of 319 students that named at least one friend in the sample, these students

form 50,761 total unique dyads. The probability of the identifying class Ωn in the sample is

2.24%. The average number of friends named by each student is 3.62. The total sample used

by the logistic regression to estimate the preference parameters is equal to the total number of

unique dyads. In contrast, the actual sample size used by the pairwise difference estimator is

composed by 2.24% of all the tetrads.

The naive logistic regression suggests a negative homophily effect on the formation of friend-

ship links of the covariates: age, female gender, white race, and overall GPA. In addition, it

captures a positive homophily effect of the mother’s and father’s education level on the forma-

tion of friendships. This estimator drops the indicators for Asian and Indian races because the

small number of observations in these covariates generates a close to perfect collinearity problem

in the logistic regression at a dyad-level.

Notably, the pairwise difference estimator and Graham’s Tetrad Logit predict opposite signs

for the parameters associated with the covariates: female gender, white race, overall GPA, and

Mother’s education. This insight suggests that the estimates obtained with the naive logistic

regression are biased due to the omission of the fixed effects. Specifically, the logistic regression

underestimates the preferences for homophily on the covariates: female gender, white gender,

and overall GPA. Furthermore, it overestimates the preferences for homophily on the mother’s

education.

Both estimators, the pairwise difference and the Tetrad Logit indicate positive preferences

for homophily on the covariates: current academic grade, Hispanic race, White race, and overall

GPA. Similarly, both estimators imply preferences for heterogeneity in Asian race and Mother’s

education. Distinctively, the pairwise difference estimator also predicts strong preferences for

homophily on Female gender and Father’s Education. These results imply the presence of strong

homophily effects among Female, Hispanic, and White students, as well as among students within

the same academic grade and with high level of academic performance. Finally, the empirical

results suggest that the level of Father’s Education is more important for the formation of a

friendships network among High School students than the level of the Mother’s education.



46 L. E. CANDELARIA

Table 3: Descriptive Statistics

Variable Count Mean Std. Dev. Min Max

Household Income 24109 51.405 29.68 4 200
Age 7367 15.707 1.183 14 19
Female 676 0.441 0.497 0 1
Grade 4810 10.255 1.085 9 12
Hispanic 12 0.025 0.150 0 1
White 442 0.942 0.233 0 1
Black 3 0.006 0.079 0 1
Asian 7 0.014 0.121 0 1
Indian 14 0.029 0.170 0 1
Other races 17 0.036 0.187 0 1
Overall GPA 1100 2.346 0.956 0 4
Mother’s Education 1989 4.240 2.419 0 9
Father’s Education 1945 4.147 2.794 0 9

Sample size = 469.

Table 4: Estimation Results

Logistic Pairwise Difference Graham (2015)

Age −1.245∗∗∗ −0.826 −1.088
Female −1.875∗∗∗ 0.635∗∗ 0.032
Grade 0.764∗∗∗ 1.264∗∗ 0.553∗

Hispanic 0.772 1.322∗∗∗ 1.100∗∗∗

White −3.758∗∗∗ 1.661∗∗ 1.544∗∗∗

Black 0.382 0.085
Asian −1.172∗∗ −1.491∗∗

Indian −0.597 −0.318 −0.742
Other races −0.461 −0.553 −1.061
Overall GPA −0.102∗∗∗ 2.436∗∗ 2.350∗∗

Mother’s Education 0.276∗∗∗ −0.352∗ −0.615∗

Father’s Education 0.240∗∗∗ 1.549∗∗∗ 0.748

P (Ωn) = 2.24%
Average Degree = 3.62.
Number of Students = 319.
Number of dyads = 50,721.

*,**,*** represents the significant at 10%, 5%, and 1% level.

Observations with any missing data are dropped.
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7 Conclusion

In this paper, I have studied a network formation model with multiple additive fixed effects.

I propose a new identification strategy that point identifies the vector of coefficients on the

observed covariates, which accounts for observed homophily. This result relies on the existence

of at least one continuous covariate with large support. Under a weaker set of assumptions, I

show that point identification can still be obtained if at least one continuous covariate exists. If

all the covariates have bounded and discrete support, I derive bounds for each component of the

vector of coefficients. Under the assumptions that guarantee point identification, I introduce a

semiparametric estimator and show in Monte Carlo simulations that it performs well in finite

samples.

As an extension to the network formation model in equation (1), I study the formation of

a directed network with interactive fixed effects in the accompanying paper Candelaria (2016).

Specifically, a directed link is formed according to the equation

Dn
ij = 1

[
Xn′
ij β0 + µi + g(µi, µj)− εnij ≥ 0

]
, (24)

where g(·, ·) is a symmetric function of the unobserved fixed effects µi, µj .

Under the specification in (24), individuals create connections based on both homophily

on observed and unobserved characteristics. Furthermore, the agent-specific fixed effect µj may

affect the linking decisions of individual i, differently for different agents j due to the unobserved

complementarities on the fixed effects. Disentangling the effect of homophily on observed from

unobserved attributes is empirically relevant from a policy perspective.

The network formation model studied in this paper excludes network externalities. Network

externalities generate interdependencies in the linking decisions that depend on the structure of

the network. Recent papers that have studied network formation model with network external-

ities do not account for unobserved heterogeneity. This is an important extension that I leave

for future research.
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A Proofs

B Proofs

B.1 Point Identification

The following two lemmas formalize the intuition behind the identification strategy and they

are used to prove Theorem 3.1.

Lemma 1 formalizes the intuition of Diagram 2 in Figure 1. That is, a pairwise differ-

ence between the net difference of the decisions linking individuals i and j cancels out the

agent-specific fixed effects. Lemma 2 specifies a median condition for the random variable

Y
(i)
kl − Y

(j)
kl

∣∣∣Xn,Ω(ijlk).

Lemma 1

Let assumption A1-A3 hold. Then for any n, and any different i, j, k, l ∈ Nn the following

condition holds:

sign {[∆klxi −∆klxj ]β0} = sign {E [(Dik −Dil)− (Djk −Djl)|Xn = x,Ω(ijlk)]}

where x ∈ XB,

XB = {x ∈ Xn : for any i, j, k, l ∈ Nn, | ∆klxiβ0 |≥ 2B, and

sign {∆klxiβ0}+ sign {∆klxiβ0} = 0}
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and for B defined in A2.

Preliminaries:

Let

wik(β0) = xikβ0 + µi + µk

for any (i, k) ∈ N (2)
n .

Let E [Z|x, µ,Ω] , denote the conditional expectation of any random variable Z given {Xn = x, µ̃ = µ,Ω(ijlk)},
i.e.

E [Z|Xn = x, µ̃ = µ,Ω(ijlk)] .

Note that

E [(Dik −Dil)− (Djk −Djl)|x, µ,Ω]

= 2 [P [(Dik −Dil)− (Djk −Djl) = 2|x, µ,Ω]

− P [(Dik −Dil)− (Djk −Djl) = −2|x, µ,Ω]]

= 2 [P [Dik = 1, Dil = 0, Djl = 1, Djk = 0|x, µ,Ω]

− P [Dik = 0, Dil = 1, Djl = 0, Djk = 1|x, µ,Ω]]

=
2

P [Ω|x, µ]
[P [Dik = 1, Dil = 0, Djl = 1, Djk = 0|x, µ]

− P [Dik = 0, Dil = 1, Djl = 0, Djk = 1|x, µ]]

Then,

E [(Dik −Dil)− (Djk −Djl)|x, µ,Ω] ≥ 0

if and only if

P [Dik = 1, Djl = 1, Dil = 0, Djk = 0|x, µ]

≥

P [Dil = 1, Djk = 1, Dik = 0, Djl = 0|x, µ]
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Where

P [Dik = 1, Djl = 1, Dil = 0, Djk = 0|x, µ] =∫ wik(β0)

−∞

∫ wjl(β0)

−∞

∫ ∞
wil(β0)

∫ ∞
wjk(β0)

fε|x,µ(s1)fε|x,µ(s2)fε|x,µ(s3)fε|x,µ(s4)ds1ds2ds3ds4

and

P [Dil = 1, Djk = 1, Dik = 0, Djl = 0|x, µ] =∫ wil(β0)

−∞

∫ wjk(β0)

−∞

∫ ∞
wik(β0)

∫ ∞
wjl(β0)

fε|x,µ(s1)fε|x,µ(s2)fε|x,µ(s3)fε|x,µ(s4)ds1ds2ds3ds4

For any x ∈ XB, with

XB = {x ∈ Xn : for any i, j, k, l ∈ Nn, | ∆klxiβ0 |≥ 2B, and

sign {∆klxiβ0}+ sign {∆klxiβ0} = 0}

then:

| ∆klxiβ0 | ≥ 2B

| ∆klxjβ0 | ≥ 2B, (25)

and

sign {∆klxiβ0}+ sign {∆klxiβ0} = 0. (26)

Two mutually exclusive cases are possible,

{∆klxiβ0 > 0,∆klxjβ0 < 0}

or

{∆klxiβ0 < 0,∆klxjβ0 > 0} .

Assume the first case to be true, that is ∆klxiβ0 > 0,∆klxjβ0 < 0. Given that x ∈ XB, then
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the conditions in (25) imply:

∆klxiβ0 ≥ 2B

−∆klxjβ0 ≥ 2B.

Then by A3, it follows that:

∆klxiβ0 ≥ 2B ≥ (µl − µk), (27)

∆klxjβ0 ≤ −2B ≤ (µl − µk). (28)

Equation (27) can be equivalently written as:

xikβ0 + µi + µk ≥ xilβ0 + µi + µl

wik(β0) ≥ wil(β0)

Equation (28) can be equivalently written as:

xjkβ0 + µj + µk ≤ xjlβ0 + µj + µl

wjk(β0) ≤ wjl(β0)

Assume the second case to be true, that is ∆klxiβ0 < 0,∆klxjβ0 > 0. Given that x ∈ XB,

then the conditions in (25) imply:

−∆klxiβ0 ≥ 2B

∆klxjβ0 ≥ 2B.

Then by A3, it follows that:

∆klxiβ0 ≤ −2B ≤ (µl − µk), (29)

∆klxjβ0 ≥ 2B ≥ (µl − µk). (30)
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Equations (29) and (30) can be equivalently written as:

wik(β0) ≤ wil(β0)

wjk(β0) ≥ wjl(β0).

Proof of Lemma 1:

Part I:

Fix Xn = x and µ̃ = µ with x ∈ XB, and suppose:

sign {[∆klxi −∆klxj ]β0} = 1,

that is:

∆klxi −∆klxj > 0

⇔

∆klxi + (µk − µl)−∆klxj − (µk − µl) > 0

⇔

∆klxi + (µk − µl) > 0 and ∆klxj + (µk − µl) < 0

⇔

wik(β0) > wil(β0) and wjk(β0) < wjl(β0)

The first and second equivalences follow from the definition of XB; and the third one from

the definition of wjk(β0).

Then, by A1, these conditions imply:∫ wik(β0)

−∞
fε|x,µ(s1)ds1 >

∫ wil(β0)

−∞
fε|x,µ(s1)ds1∫ wjl(β0)

−∞
fε|x,µ(s2)ds2 >

∫ wjk(β0)

−∞
fε|x,µ(s2)ds2,
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which are sufficient conditions for

P [Dik = 1, Djl = 1, Dil = 0, Djk = 0|x, µ]

>

P [Dil = 1, Djk = 1, Dik = 0, Djl = 0|x, µ] ,

and therefore for

E [(Dik −Dil)− (Djk −Djl)|x, µ,Ω(ijlk)] > 0,

for any Xn = x and µ̃ = µ with x ∈ XB.

Part II: Fix Xn = x and µ̃ = µ with x ∈ XB, and suppose:

E [(Dik −Dil)− (Djk −Djl)|x, µ,Ω(ijlk)] > 0.

Given that x ∈ XB, then either

{∆klxiβ0 > 0,∆klxjβ0 < 0}

or

{∆klxiβ0 < 0,∆klxjβ0 > 0}

is true. However, note that if

{∆klxiβ0 > 0,∆klxjβ0 < 0}

is true, then:

wik(β0) ≥ wil(β0)

wjk(β0) ≤ wjl(β0).

Alternatively, if

{∆klxiβ0 < 0,∆klxjβ0 > 0} ,

is true, then:

wik(β0) ≤ wil(β0)

wjk(β0) ≥ wjl(β0).
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By hypothesis,

E [(Dik −Dil)− (Djk −Djl)|x, µ,Ω(ijlk)] > 0

then is the case that {∆klxiβ0 > 0,∆klxjβ0 < 0} is true, which implies:

[∆klxi −∆klxj ]β0 > 0,

and alternatively

sign {[∆klxi −∆klxj ]β0} = 1.

Similar arguments can be used to show that

sign {[∆klxi −∆klxj ]β0} = −1

if and only if

sign {E [(Dik −Dil)− (Djk −Djl)|x, µ,Ω(ijlk)]} = −1,

For any Xn = x and µ̃ = µ with x ∈ XB �

Lemma 2

For any n, and any i, j, k, l ∈ Nn,

Med
[
Y

(i)
kl − Y

(j)
kl |X

n = x,Ω(ijlk)
]

= 2× sign
{
P
[
Y

(i)
kl − Y

(j)
kl = 2|Xn = x,Ω(ijlk)

]
− P

[
Y

(i)
kl − Y

(j)
kl = −2|Xn = x,Ω(ijlk)

]}
.

(31)

Proof. Note that Y
(i)
kl − Y

(j)
kl | [X

n = x,Ω(ijlk)] is a Bernoulli random variable with support

{−2, 2}. Let

p ≡P
[
Y

(i)
kl − Y

(j)
kl = 2|Xn = x,Ω(ijlk)

]
q ≡P

[
Y

(i)
kl − Y

(j)
kl = −2|Xn = x,Ω(ijlk)

]
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with p+ q = 1. Then,

Med
(
Y

(i)
kl − Y

(j)
kl |X

n = x,Ω(ijlk)
)

=

2 if p ≥ q

−2 otherwise

the results follows from this observation. �

Proof of Theorem 3.1

Part I

Note,

E [(Dik −Dil)− (Djk −Djl)|Xn = x,Ω(ijlk)] =

2P
[
Y

(i)
kl − Y

(j)
kl = 2|Xn = x,Ω(ijlk)

]
− 2P

[
Y

(i)
kl − Y

(j)
kl = −2|Xn = x,Ω(ijlk)

]
2
{
P
[
Y

(i)
kl − Y

(j)
kl = 2|Xn = x,Ω(ijlk)

]
− P

[
Y

(i)
kl − Y

(j)
kl = −2|Xn = x,Ω(ijlk)

]}
Therefore:

sign {E [(Dik −Dil)− (Djk −Djl)|Xn = x,Ω(ijlk)]} =

sign
{
P
[
Y

(i)
kl − Y

(j)
kl = 2|Xn = x,Ω(ijlk)

]
− P

[
Y

(i)
kl − Y

(j)
kl = −2|Xn = x,Ω(ijlk)

]}

Therefore,

Med
[
Y

(i)
kl − Y

(j)
kl |X

n = x,Ω(ijlk)
]

= 2× sign {[∆klxi −∆klxj ]β0}

for any x ∈ XB.

Part II

Fix any i, j, k, l ∈ Nn, by assumption A2, (Xsk −Xsl), for s = i, j, has everywhere positive

density. Let ∆2X ≡ [(Xik −Xil)− (Xjk −Xjl)] has a continuous density with respect to the



60 L. E. CANDELARIA

Lebesgue measure on RK given by

f∆2X(x) =

∫
RK

f(w)f(x+ w)dw

where f is the density function of the distribution of (Xsk −Xsl), for s = i, j

For any b ∈ RK such that b1 6= 0 and b 6= β0, we can find a set of values of ∆2X = x with

positive measure such that sign (xb) 6= (xβ0). In other words, let

X(b) ≡
[
x ∈ RK : sign (xb) 6= (xβ0)

]
,

then assumption A2 guarantees that ∫
Xb
f∆2X(x)dx > 0

Therefore β0 is identified up to scale. �

B.2 Identification Failure: Thin Set

Proof of Theorem 3.2

Proof. Suppose P (Ω(ijlk)) = 0, then the following event has measure zero:

{Dik 6= Dil, Djk 6= Djl, Dik 6= Djk : (i, j, k, l) ∈ Pn,4} , (32)

where Pn,4 stands for the collection of all permutation of 4 elements {i, j, k, l} from {1, 2, · · · , n}.
Equivalently, the set Ω(i, j, k, l) has measure zero if for any tetrad, (i, j, k, l), at least one of the

conditions in (32) holds as an equality with probability one.

If the event Ω(i, j, k, l) has measure zero, then the subnetwork formed by any tetrad (i, j, k, l),

could be classified into one of the following five structures:

1. Zero links are formed, characterized by the following decisions:

Dik = 0, Dil = 0, Djk = 0, Djl = 0 ⇒ Y
(i)
kl − Y

(j)
kl = 0
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2. One link is formed, characterized by the following decisions:

Dik = 1, Dil = 0, Djk = 0, Djl = 0 ⇒ Y
(i)
kl − Y

(j)
kl = 1

Dik = 0, Dil = 1, Djk = 0, Djl = 0 ⇒ Y
(i)
kl − Y

(j)
kl = −1

Dik = 0, Dil = 0, Djk = 1, Djl = 0 ⇒ Y
(i)
kl − Y

(j)
kl = −1

Dik = 0, Dil = 0, Djk = 0, Djl = 1 ⇒ Y
(i)
kl − Y

(j)
kl = 1

3. Two links are formed, characterized by the following decisions:

Dik = 1, Dil = 1, Djk = 0, Djl = 0 ⇒ Y
(i)
kl − Y

(j)
kl = 0

Dik = 0, Dil = 0, Djk = 1, Djl = 1 ⇒ Y
(i)
kl − Y

(j)
kl = 0

Dik = 1, Dil = 0, Djk = 1, Djl = 0 ⇒ Y
(i)
kl − Y

(j)
kl = 0

Dik = 0, Dil = 1, Djk = 0, Djl = 1 ⇒ Y
(i)
kl − Y

(j)
kl = 0

4. Three links are formed, characterized by the following decisions:

Dik = 1, Dil = 1, Djk = 1, Djl = 0 ⇒ Y
(i)
kl − Y

(j)
kl = −1

Dik = 1, Dil = 1, Djk = 0, Djl = 1 ⇒ Y
(i)
kl − Y

(j)
kl = 1

Dik = 1, Dil = 0, Djk = 1, Djl = 1 ⇒ Y
(i)
kl − Y

(j)
kl = 1

Dik = 0, Dil = 1, Djk = 1, Djl = 1 ⇒ Y
(i)
kl − Y

(j)
kl = −1

5. Four links are formed, characterized by the following decisions:

Dik = 1, Dil = 1, Djk = 1, Djl = 1 ⇒ Y
(i)
kl − Y

(j)
kl = 0

Let

p1(β0, x, µ) =P
[
Y

(i)
kl − Y

(j)
kl = −1|Xn = x,Ω(ijlk)c

]
,

p2(β0, x, µ) =P
[
Y

(i)
kl − Y

(j)
kl = 0|Xn = x,Ω(ijlk)c

]
,

p3(β0, x, µ) =P
[
Y

(i)
kl − Y

(j)
kl = 1|Xn = x,Ω(ijlk)c

]
,
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where

p1(β0, x, µ) =P [Dik = 0, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 0, Dil = 0, Djk = 1, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 1, Djk = 1, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 0, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,

p2(β0, x, µ) =P [Dik = 1, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 0, Dil = 0, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 0, Djk = 1, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 0, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

+ P [Dik = 0, Dil = 0, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,

p3(β0, x, µ) =P [Dik = 1, Dil = 0, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 0, Dil = 0, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 0, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] .

None of the previous network structures satisfies all the conditions in the event (32). As a

consequence, the support of
{
Y

(i)
kl − Y

(j)
kl | x,Ω(ijlk)c

}
is {−1, 0, 1}, where Ω(ijlk)c stands for

the complement of Ω(ijlk). Therefore, the pairwise difference is no longer a Bernoulli random

variable with support {−2, 2}, as is the case when Ω(ijlk) has positive measure.

Since the support of
{
Y

(i)
kl − Y

(j)
kl | x,Ω(ijlk)c

}
is not equal to {−2, 2}, Lemma 2 no longer

holds. Specifically,

Med [∆Yij |Xn = x,Ω(ijlk)c]

= 1 {0.5− (p1(β0, x, µ) + p2(β0, x, µ)) ≥ 0} − 1 {p1(β0, x, µ)− 0.5 ≥ 0}

6= 2× sign {P [∆Yij = 2|Xn = x,Ω(ijlk)]− P [∆Yij = −2|Xn = x,Ω(ijlk)]} ,

where ∆Yij = Y
(i)
kl − Y

(j)
kl .



63 SEMIPARAMETRIC NETWORK MODEL WITH MULTIPLE FIXED EFFECTS

Since Lemma 2 fails, equation (7) is misspecified and does not have identification power.

Therefore, the conclusion in Theorem 3.1 is wrong.

Now, I show that the Med [∆Yij |Xn = x,Ω(ijlk)c] does not have power to identify β0. Given

assumption A2, for any i, j, k, l with k 6= l, the random variables

X
(1)
ik −X

(1)
il & X

(1)
jk −X

(1)
jl

have large support conditional on ∆x̃i, ∆x̃j , respectively, almost everywhere with respect to the

Lebesgue measure. Thus, the following cases arise:

• Case 1: X
(1)
ik and X

(1)
jk have large support conditional on ∆x̃i, ∆x̃j , respectively.

• Case 2: X
(1)
ik and X

(1)
jl have large support conditional on ∆x̃i, ∆x̃j , respectively.

• Case 3: X
(1)
il and X

(1)
jk have large support conditional on ∆x̃i, ∆x̃j , respectively.

• Case 4: X
(1)
il and X

(1)
jl have large support conditional on ∆x̃i, ∆x̃j , respectively.

• Case 5: X
(1)
ik and X

(1)
il have large support conditional on ∆x̃i and X

(1)
js has large support

conditional on ∆x̃j , for either s = k, l.

• Case 6: X
(1)
jk and X

(1)
jl have large support conditional on ∆x̃j and X

(1)
is has large support

conditional on ∆x̃i, for either s = k, l.

• Case 7: X
(1)
is and X

(1)
js have large support conditional on ∆x̃i, ∆x̃j , respectively, for both

s = k, l.

I. Suppose under the true model, characterized by β0,

Med [∆Yij |Xn = x,Ω(ijlk)c] = 1⇔ {0.5− (p1(β0, x, µ) + p2(β0, x, µ)) ≥ 0} .

Case 1: Consider β̃ 6= β0 and

µi + µk = supX
(1)
ik ⇒ Dik = 1

µj + µk = inf X
(1)
jk ⇒ Djk = 0

µi + µl = inf X ′ilθ, for any θ ∈ RK

µj + µl = inf X ′jlθ, for any θ ∈ RK
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Therefore,

p1(β̃, x, µ) =0

p2(β̃, x, µ) =P [Dik = 1, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

p3(β̃, x, µ) =P [Dik = 1, Dil = 0, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

and

p2(β̃, x, µ) = P [Dik = 1, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c] ≤

P [Dik = 1, Dil = 0, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c] ≤ p3(β̃, x, µ)

Thus p3(β̃, x, µ) ≥ 0.5 and Med [∆Yij |Xn = x,Ω(ijlk)c] = 1.

Case 2: Consider β̃ 6= β0 and

µi + µk = supX
(1)
ik ⇒ Dik = 1,

µj + µk = inf X ′jlθ, for any θ ∈ RK ,

µi + µl = inf X ′ilθ, for any θ ∈ RK ,

µj + µl = supX
(1)
jk ⇒ Djl = 1.

Therefore,

p1(β̃, x, µ) =0,

p2(β̃, x, µ) =P [Dik = 1, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,

p3(β̃, x, µ) =P [Dik = 1, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 0, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,

and

p2(β̃, x, µ) ≤ p3(β̃, x, µ)

Thus p3(β̃, x, µ) ≥ 0.5 and Med [∆Yij |Xn = x,Ω(ijlk)c] = 1.
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Case 3: Consider β̃ 6= β0 and

µi + µk = supX ′ikθ, for any θ ∈ RK ,

µj + µk = inf X
(1)
jk ⇒ Djk = 0,

µi + µl = inf X
(1)
il ⇒ Dik = 0,

µj + µl = supX ′jlθ, for any θ ∈ RK .

Therefore,

p1(β̃, x, µ) =0,

p2(β̃, x, µ) =P [Dik = 0, Dil = 0, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c] ,

p3(β̃, x, µ) =P [Dik = 1, Dil = 0, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 0, Dil = 0, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c] ,

and

p2(β̃, x, µ) ≤ p3(β̃, x, µ).

Thus p3(β̃, x, µ) ≥ 0.5 and Med [∆Yij |Xn = x,Ω(ijlk)c] = 1.

Case 4: Consider β̃ 6= β0 and

µi + µk = supX ′ikθ, for any θ ∈ RK ,

µj + µk = supX ′jkθ, for any θ ∈ RK ,

µi + µl = inf X
(1)
il ⇒ Dil = 0,

µj + µl = supX
(1)
jl ⇒ Djl = 1.

Therefore,

p1(β̃, x, µ) =0,

p2(β̃, x, µ) =P [Dik = 0, Dil = 0, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,

p3(β̃, x, µ) =P [Dik = 0, Dil = 0, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 0, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,
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and

p2(β̃, x, µ) ≤ p3(β̃, x, µ).

Thus p3(β̃, x, µ) ≥ 0.5 and Med [∆Yij |Xn = x,Ω(ijlk)c] = 1.

Case 5: Consider β̃ 6= β0 and

µi + µk = supX
(1)
ik ⇒ Dik = 1,

µi + µl = inf X
(1)
il ⇒ Dil = 0.

Therefore,

p1(β̃, x, µ) =0,

p2(β̃, x, µ) =P [Dik = 1, Dil = 0, Djk = 1, Djl = 0|Xn = x,Ω(ijlk)c] ,

p3(β̃, x, µ) =P [Dik = 1, Dil = 0, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 0, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,

Since X
(1)
js has large support for either s = k, l. Depending on the case, choose:

If s = k : µj + µk = inf X
(1)
jk ⇒ Djk = 0,

If s = l : µj + µl = supX
(1)
jl ⇒ Djk = 1.

Therefore,

p2(β̃, x, µ) ≤ p3(β̃, x, µ).

Thus p3(β̃, x, µ) ≥ 0.5 and Med [∆Yij |Xn = x,Ω(ijlk)c] = 1.

Case 6: This case is analogous to case 5.

Case 7: This is the easiest case, one example is:

µi + µk = supX
(1)
ik ⇒ Dik = 1,

µj + µk = inf X
(1)
jk ⇒ Djk = 0,

µi + µl = inf X
(1)
il ⇒ Dil = 0,

µj + µl = inf X
(1)
jl ⇒ Djl = 0.
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II. Suppose under the true model, characterized by β0,

Med [∆Yij |Xn = x,Ω(ijlk)c] = 0⇔{0.5− (p1(β0, x, µ) + p2(β0, x, µ)) ≤ 0}

∩ {p1(β0, x, µ)− 0.5 ≤ 0} .

Case 1: Consider β̃ 6= β0 and

µi + µk = inf X
(1)
ik ⇒ Dik = 0

µj + µk = inf X
(1)
jk ⇒ Djk = 0

µi + µl = supX ′ilθ, for any θ ∈ RK

µj + µl = supX ′jlθ, for any θ ∈ RK

Therefore,

p1(β̃, x, µ) =P [Dik = 0, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c] ,

p2(β̃, x, µ) =P [Dik = 0, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

+ P [Dik = 0, Dil = 0, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c] ,

p3(β̃, x, µ) =P [Dik = 0, Dil = 0, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c] .

Note,

p1(β̃, x, µ) = P [Dik = 0, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

≤ P [Dik = 0, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

≤ p2(β̃, x, µ)

and

p3(β̃, x, µ) = P [Dik = 0, Dil = 0, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

≤ P [Dik = 0, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

≤ p2(β̃, x, µ)
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Therefore:

p1(β̃, x, µ) ≤ p2(β̃, x, µ)

p3(β̃, x, µ) ≤ p1(β̃, x, µ) + p2(β̃, x, µ)

Which implies, that

p1(β̃, x, µ) ≤ 0.5

p1(β̃, x, µ) + p2(β̃, x, µ) ≥ 0.5

Therefore, Med [∆Yij |Xn = x,Ω(ijlk)c] = 0.

Case 2: Consider β̃ 6= β0 and

µi + µk = inf X
(1)
ik ⇒ Dik = 0,

µj + µk = inf X ′jlθ, for any θ ∈ RK ,

µi + µl = supX ′ilθ, for any θ ∈ RK ,

µj + µl = supX
(1)
jl ⇒ Djl = 1.

Therefore,

p1(β̃, x, µ) =P [Dik = 0, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,

p2(β̃, x, µ) =P [Dik = 0, Dil = 0, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c]

+ P [Dik = 0, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c] ,

p3(β̃, x, µ) =P [Dik = 0, Dil = 0, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c] .

Note,

p1(β̃, x, µ) = P [Dik = 0, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c]

≤ P [Dik = 0, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

≤ p2(β̃, x, µ)
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and

p3(β̃, x, µ) = P [Dik = 0, Dil = 0, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

≤ P [Dik = 0, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

≤ p2(β̃, x, µ)

Therefore:

p1(β̃, x, µ) ≤ p2(β̃, x, µ)

p3(β̃, x, µ) ≤ p1(β̃, x, µ) + p2(β̃, x, µ)

and Med [∆Yij |Xn = x,Ω(ijlk)c] = 0.

Case 3: Consider β̃ 6= β0 and

µi + µk = supX ′ikθ, for any θ ∈ RK ,

µj + µk = inf X
(1)
jk ⇒ Djk = 0,

µi + µl = supX
(1)
il ⇒ Dil = 1,

µj + µl = inf X ′jlθ, for any θ ∈ RK .

Therefore,

p1(β̃, x, µ) =P [Dik = 0, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c] ,

p2(β̃, x, µ) =P [Dik = 1, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 0, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c] ,

p3(β̃, x, µ) =P [Dik = 1, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c] .

Note,

p1(β̃, x, µ) = P [Dik = 0, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

≤ P [Dik = 1, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

≤ p2(β̃, x, µ)



70 L. E. CANDELARIA

and

p3(β̃, x, µ) = P [Dik = 1, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

≤ P [Dik = 1, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

≤ p2(β̃, x, µ)

Therefore:

p1(β̃, x, µ) ≤ p2(β̃, x, µ)

p3(β̃, x, µ) ≤ p1(β̃, x, µ) + p2(β̃, x, µ)

Which implies, that

p1(β̃, x, µ) ≤ 0.5

p1(β̃, x, µ) + p2(β̃, x, µ) ≥ 0.5

Therefore, Med [∆Yij |Xn = x,Ω(ijlk)c] = 0.

Case 4: Consider β̃ 6= β0 and

µi + µk = supX ′ikθ, for any θ ∈ RK ,

µj + µk = supX ′jkθ, for any θ ∈ RK ,

µi + µl = supX
(1)
il ⇒ Dil = 1,

µj + µl = supX
(1)
jl ⇒ Djl = 1.

Therefore,

p1(β̃, x, µ) =P [Dik = 0, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,

p2(β̃, x, µ) =P [Dik = 0, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,

p3(β̃, x, µ) =P [Dik = 1, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c] .
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Note,

p1(β̃, x, µ) = P [Dik = 0, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c]

≤ P [Dik = 1, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c]

≤ p2(β̃, x, µ)

and

p3(β̃, x, µ) = P [Dik = 1, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

≤ P [Dik = 1, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c]

≤ p2(β̃, x, µ)

Therefore:

p1(β̃, x, µ) ≤ p2(β̃, x, µ)

p3(β̃, x, µ) ≤ p1(β̃, x, µ) + p2(β̃, x, µ)

Which implies, that

p1(β̃, x, µ) ≤ 0.5

p1(β̃, x, µ) + p2(β̃, x, µ) ≥ 0.5

Therefore, Med [∆Yij |Xn = x,Ω(ijlk)c] = 0.

Case 5: Consider β̃ 6= β0 and

µi + µk = supX
(1)
ik ⇒ Dik = 1,

µi + µl = supX
(1)
il ⇒ Dil = 1.

Therefore,

p1(β̃, x, µ) =P [Dik = 1, Dil = 1, Djk = 1, Djl = 0|Xn = x,Ω(ijlk)c] ,

p2(β̃, x, µ) =P [Dik = 1, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

+ P [Dik = 1, Dil = 1, Djk = 1, Djl = 1|Xn = x,Ω(ijlk)c] ,

p3(β̃, x, µ) =P [Dik = 1, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c] .
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X
(1)
js has large support for either s = k, l. For both cases, set:

µj + µk = inf X
(1)
jk ⇒ Djk = 0,

µj + µl = inf X
(1)
jl ⇒ Djk = 1.

Note,

p1(β̃, x, µ) = P [Dik = 1, Dil = 1, Djk = 1, Djl = 0|Xn = x,Ω(ijlk)c]

≤ P [Dik = 1, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

≤ p2(β̃, x, µ)

and

p3(β̃, x, µ) = P [Dik = 1, Dil = 1, Djk = 0, Djl = 1|Xn = x,Ω(ijlk)c]

≤ P [Dik = 1, Dil = 1, Djk = 0, Djl = 0|Xn = x,Ω(ijlk)c]

≤ p2(β̃, x, µ)

Therefore:

p1(β̃, x, µ) ≤ p2(β̃, x, µ)

p3(β̃, x, µ) ≤ p1(β̃, x, µ) + p2(β̃, x, µ)

Which implies, that

p1(β̃, x, µ) ≤ 0.5

p1(β̃, x, µ) + p2(β̃, x, µ) ≥ 0.5

Therefore, Med [∆Yij |Xn = x,Ω(ijlk)c] = 0.

Case 6: This case is the opposite to case 5.
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Case 7: This is the easiest case, one example is:

µi + µk = supX
(1)
ik ⇒ Dik = 1,

µj + µk = supX
(1)
jk ⇒ Djk = 1,

µi + µl = supX
(1)
il ⇒ Dil = 1,

µj + µl = supX
(1)
jl ⇒ Djl = 1.

III. Suppose under the true model, characterized by β0

Med [∆Yij |Xn = x,Ω(ijlk)c] = −1⇔{0.5− (p1(β0, x, µ) + p2(β0, x, µ)) ≤ 0}

∩ {p1(β0, x, µ)− 0.5 ≥ 0} .

This part is analogous to case I.

Given any tetrad (i, j, k, l), we have shown that any β̃ ∈ RK , with β̃1 = 1 and β̃ 6= β0, is

observationally equivalent to β0 in terms of Med [∆Yij |Xn = x,Ω(ijlk)c] if the event Ω(ijlk) has

measure zero. Therefore, the median of the random variable {∆Yij |Xn = x,Ω(ijlk)c} does not

have identification power. �

Proof of Proposition 3.1

Proof. Note that,

0 = P [Ωn]⇔ P [{Dik 6= Dil, Djl 6= Djk, Dik 6= Djk} : i, j, k, l ∈ Nn] = 0. (33)

Hence, it is sufficient to show that one of conditions in (33) fails almost everywhere. Specifically,

in the proofs of Parts 1 and 2, I show that if the across-individuals variation does not hold, then

the class Ωn has probability zero. That is,

P [{Dik = Djk} : i, j, k ∈ Nn] = 1

⇒

P [{Dik 6= Dil, Djl 6= Djk, Dik 6= Djk} : i, j, k, l ∈ Nn] = 0,
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where

P [{Dik = Djk} : i, j, k ∈ Nn]

= P [Dik = Djk = 1 : i, j, k ∈ Nn] + P [Dik = Djk = 0 : i, j, k ∈ Nn] .

The proof of Part 1 shows that

P [Dik = Djk = 1 : i, j, k ∈ Nn] = 1,

P [Dik = Djk = 0 : i, j, k ∈ Nn] = 0.

Alternatively, the Part 2 shows that

P [Dik = Djk = 1 : i, j, k ∈ Nn] = 0,

P [Dik = Djk = 0 : i, j, k ∈ Nn] = 1.

Consider the following convolution argument; fix i, l ∈ Nn and µ̃ = µ, then

P [Dij = 1] =

∫
P [Dij = 1 | µ̃ = µ] dFµ̃(µ).

Let ∫
1
{
x′β0 + µi + µj − e ≥ 0

}
λ(dx) =1− F

X
′
ijβ0|µ,e

(e− µi − µj),

where F
X
′
ijβ0|µ,e

(w) is the conditional density of X
′
ijβ0 given µ̃ = µ and εij = e.

Then,

P [Dij = 1 | µ̃ = µ] =

∫ ∫
1
{
x′β0 + µi + µj − e ≥ 0

}
λ(dx)dGε|µ(e)

=1−
∫
F
X
′
ijβ0|µ,e

(e− µi − µj)dGε|µ(e). (34)

Part 1.
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Rewrite equation (34) as

P [Dij = 1 | µ̃ = µ] =1−
∫ ∫ e−µi−µj

−∞
f
X
′
ijβ0|µ,e

(x)dx dGε|µ(e).

Under the support condition in 3.1.1,∫ e−µi−µj

−∞
f
X
′
ijβ0|µ,e

(x)dx = 0.

Hence,

P [Dij = 1 | µ̃ = µ] = 1⇒ P [Dij = 1] = 1

for any (i, j) ∈ N (2)
n . Therefore,

1 = P [Dik = Djk = 1 : i, j, k ∈ Nn] = P [{Dik = Djk} : i, j, k ∈ Nn]⇒ P [Ωn] = 0.

Part 2.

Under the support condition in 3.1.2,∫ e−µi−µj

−∞
f
X
′
ijβ0|µ,e

(x)dx = 1.

Hence,

P [Dij = 1 | µ̃ = µ] = 0⇒ P [Dij = 1] = 0

for any (i, j) ∈ N (2)
n . Therefore,

1 = P [Dik = Djk = 0 : i, j, k ∈ Nn] = P [{Dik = Djk} : i, j, k ∈ Nn]⇒ P [Ωn] = 0.

Part 3.

Consider the following convolution argument; fix i, l ∈ Nn and µ̃ = µ, then

P [Dij = 1] =

∫
P
[
Dij = 1 | X ′ij = x

]
dF

X
′
ij

(x).



76 L. E. CANDELARIA

Let ∫
1
{
x′β0 + µi + µj − e ≥ 0

}
ν(dµ) =1− Fµ̃i+µ̃j |x,e(e− x

′β0),

where Fµ̃i+µ̃j |x,e(w) is the conditional density of µ̃i + µ̃j given X
′
ij = x and εij = e.

Then,

P
[
Dij = 1 | X ′ij = x

]
=

∫ ∫
1
{
x′β0 + µi + µj − e ≥ 0

}
ν(dµ)dGε|x(e)

=1−
∫
Fµ̃i+µ̃j |x,e(e− x

′β0) dGε|x(e). (35)

Rewrite equation (35) as

P
[
Dij = 1 | X ′ij = x

]
=1−

∫ ∫ e−x′β0

−∞
fµ̃i+µ̃j |x,e(µ)dµ dGε|µ(e).

Under the support condition in 3.1.1,∫ e−x′β0

−∞
fµ̃i+µ̃j |x,e(µ)dµ = 0.

Hence,

P
[
Dij = 1 | X ′ij = x

]
= 1⇒ P [Dij = 1] = 1

for any (i, j) ∈ N (2)
n . Therefore,

1 = P [Dik = Djk = 1 : i, j, k ∈ Nn] = P [{Dik = Djk} : i, j, k ∈ Nn]⇒ P [Ωn] = 0.

�

B.3 Identification Failure: Maximum Score

The following lemma is used to prove proposition 3.2. The next lemma adapts Lemma 1 in

Manski (1987) to the multiple fixed effects case.

Lemma 3
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Let assumption A1 hold. For any n, and any i, l, k ∈ Nn.

sign
[
(xik − xil)′β0 + (µk − µl)

]
= sign (E [Dik −Dil | Xn = x]) (36)

Proof. Fix i, k, l ∈ Nn and Xn = x, µ̃ = µ,

P [Dik = 1 | x, µ] =Fεi|x,µ
[
x′ikβ0 + µi + µk

]
P [Dil = 1 | x, µ] =Fεi|x,µ

[
x′ilβ0 + µi + µl

]
Note,

x′ilβ0 + µi + µl ≤ x′ikβ0 + µi + µk ⇔ x′ilβ0 + µl ≤ x′ikβ0 + µk

then it follows that for all x, µ,

x′ilβ0 + µl ≤ x′ikβ0 + µk ⇔ P [Dil = 1 | x, µ] ≤ P [Dik = 1 | x, µ]

⇔ E [Dil | x, µ] ≤ E [Dik | x, µ]

⇔ 0 ≤ E [Dik −Dil | x, µ]

Equivalently for

x′ikβ0 + µk < x′ilβ0 + µl ⇔ E [Dik −Dil | x, µ] < 0

In summary,

(xik − xil)′ β + [µk − µl] ≥ 0 ⇔ E [Dik −Dil | x, µ] ≥ 0

(xik − xil)′ β + [µk − µl] < 0 ⇔ E [Dik −Dil | x, µ] < 0

thus,

sign
{

(xik − xil)′ β + [µk − µl]
}

= sign {E [Dik −Dil | x, µ]}

= sign {E [Dik −Dil | x]}

�
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Proof of Proposition 3.2

Proof. Part 1.

Fix i, k, l ∈ Nn, Xn = x and µ̃ = µ. Note that, Dik − Dil|x,Dil + Dik = 1 is a Bernoulli

random variable with support given by {−1, 1} and probability distribution.

P [Dik −Dil = 1|x,Dil +Dik = 1] =
P [Dik = 1, Dil = 0|x]

P [Dil 6= Dik|x]

P [Dik −Dil = −1|x,Dil +Dik = 1] =
P [Dik = 0, Dil = 1|x]

P [Dil 6= Dik|x]

Then,

Med (Dik −Dil|x,Dil +Dik = 1) = sign {P [Dik = 1, Dil = 0|x]

− P [Dik = 0, Dil = 1|x]}

= sign {E [Dik −Dil|Xn = x]}

By Lemma 3, the result follows.

Part 2.

Denote by Pβ0 the distribution of the observables Z = (D,X) under the true β0 ∈ B.

Denote by G(Pβ0) a (known) specific feature of the distribution of the observables given the

true model. In particular, let G(Pβ0) = Med(Dik −Dil|Xn = x,Dil +Dik = 1). Then, equation

(6) states that

G(Pβ0) = sign
[
(xik − xil)′β0 + (µk − µl)

]
Assumption 1 allows for a flexible representation of the conditional distribution of µ̃ given Xn =

x. That is the conditional distribution Fµ̃|Xn=x is unrestricted. In order to prove proposition

3.2, we will assume that µ̃ is a known function of the exogenous attributed. Note that if β0

cannot be identified under this restriction of µ̃, it will also fail to be identified either under a

more flexible representation of µ̃.
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Consider K ∈ RK and c ∈ R+, with K 6= 0 and c 6= 0. For any i, k, l ∈ Nn, define:

µi − µk =X ′ik (β0 −K)

β̃ =β0 + cK

with β̃ ∈ B. Hence,

G(Pβ0) = sign
[
(xik − xil)′β0 + (µk − µl)

]
= sign

[
(xik − xil)′β0 − [(µi − µk)− (µi − µl)]

]
= sign

[
(xik − xil)′β0 − (xik − xil)′ β0 + (xik − xil)′K

]
= sign

[
(xik − xil)′K

]
and

G(Pβ̃) = sign
[
(xik − xil)′β̃ + (µk − µl)

]
= sign

[
(xik − xil)′ {β0 + cK} − [(µi − µk)− (µi − µl)]

]
= sign

[
(xik − xil)′β0 + (xik − xil)′cK − (xik − xil)′ β0 + (xik − xil)′K

]
= sign

[
(c+ 1) (xik − xil)′K

]
Given that c > 0, then c + 1 > 0. This implies that G(Pβ0) = G(Pβ̃). In other words, we

have shown that given β0 we can find a β̃ ∈ B with β̃ 6= β0 such that they are observationally

equivalent. �

Proof of Proposition 3.3

The proof of this proposition is the main text.
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B.4 Inference

Proof of Proposition 4.1

Proof. Fix any b ∈ B̃ such that b 6= β. For any, x ∈ XB, Assumption A3 guarantees the existence

of a set of values of (xik, xil, xjk, xjl) with positive probability for which

h(xik, xil, xjk, xjl, β0) 6= h(xik, xil, xjk, xjl, b).

Denote this set by

H(b)

≡
[
(x13, x14, x23, x24) ∈ RK × · · · × RK : h(xik, xil, xjk, xjl, b) 6= h(xik, xil, xjk, xjl, β0)

]
,

for any b ∈ B̃ with b 6= β0. Then,

Q(β0)−Q(b)

= E [S(XB) {∆klDi −∆klDj} {h(xik, xil, xjk, xjl, β0)− h(xik, xil, xjk, xjl, b)} | Ω]

= EXB [{∆klDi −∆klDj} × {h(xik, xil, xjk, xjl, β0)− h(xik, xil, xjk, xjl, b)} | Ω]

= EXB∩H(b)
[{h(xik, xil, xjk, xjl, β0)− h(xik, xil, xjk, xjl, b)}E [∆klDi −∆klDj | x,Ω]]

+ EXB∩Hc(b) [{h(xik, xil, xjk, xjl, β0)− h(xik, xil, xjk, xjl, b)}E [∆klDi −∆klDj | x,Ω]] .

Then,

Q(β0)−Q(b)

= EXB∩H(b)
[{h(xik, xil, xjk, xjl, β0)− h(xik, xil, xjk, xjl, b)}E [{∆klDi −∆klDj} | x,Ω]]

= 2EXB∩H(b)
[h(xik, xil, xjk, xjl, β0)E [{∆klDi −∆klDj} | x,Ω]] ,

the last equality follows from the fact that in the set H(b)

h(xik, xil, xjk, xjl, β0)− h(xik, xil, xjk, xjl, b) = 2 [h(xik, xil, xjk, xjl, β0)] ,
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because of the relationship

h(xik, xil, xjk, xjl, β0) = 1⇔ h(xik, xil, xjk, xjl, b) = −1

h(xik, xil, xjk, xjl, β0) = −1⇔ h(xik, xil, xjk, xjl, b) = 1.

We have shown that:

h(xik, xil, xjk, xjl, β0) = sign {E [(Dik −Dil)− (Djk −Djl) | x,Ω]}

in XB. Hence,

h(xik, xil, xjk, xjl, β0)E [(Dik −Dil)− (Djk −Djl) | x,Ω]

=| E [(Dik −Dil)− (Djk −Djl) | x,Ω] |> 0.

for any x ∈
{
XB ∩H(b)

}
. Ass 3 guarantees that

{
XB ∩H(b)

}
has positive measure. There-

fore,

Q(β0)−Q(b) = 2EXB∩H(b)
[| E [(Dik −Dil)− (Djk −Djl) | x,Ω] |] > 0

Since b ∈ B̃ was chosen arbitrarily, it follows that β0 uniquely maximizes Q(b).

�

Proof of Theorem 4.1

Proof. Theorem 2.1. in Newey and McFadden (1994) implies that the following conditions are

sufficient to prove strong consistency.

1. B̃ is compact.

2. Q(b) is continuous.

3. Q(b) is uniquely maximized at β0.

4. p−1
n Qn(b) converges almost surely to Q(b), i.e. supb∈B̃

∣∣∣∣p−1
n Qn(b)−Q(b)

∣∣∣∣ a.s.→ 0.
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Consider the scaled sample analog of the objective function p−1
n Q(b):

p−1
n Qn(b) ≡ p−1

n

(
n

4

)−1 ∑
Cn,4

h(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b),

For each (zi1,3 , zi1,4 , zi2,3 , zi2,4) ∈ S4 = S × S × S × S, the kernel function of the U-statistic

is given by

h(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b) ≡
1

4!

∑
P4

{
2× sign

{[(
xi1,3 − xi1,4

)
−
(
xi2,3 − xi2,4

)]′
b
}
×
(
y

(i1)
i3,4
− y(i2)

i3,4

)
× 1

{∣∣∣(y(i1)
i3,4
− y(i2)

i3,4

)∣∣∣ = 2
}}

,

Let

Q̃n(b) ≡ p−1
n Qn(b),

h̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b) ≡ p−1
n h(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b),

for any (zi1,3 , zi1,4 , zi2,3 , zi2,4) ∈ S4.

Let

g̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b) ≡ h̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b)− E
[
h̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b)

]
.

Then

Q̃n(b)−Q(b) =

(
n

4

)−1 ∑
Cn,4

{
h̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b)− E

[
h̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b)

]}
=

(
n

4

)−1 ∑
Cn,4

g̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b)

=U4
n g̃(·, b),

where
{
U4
ng(·, b); b ∈ B̃

}
is a zero-mean U-process of order 4.

• Condition 1: Follows from assumption B2.

• Condition 2: Assumption A2 implies that
(
xi1,3 − xi1,4

)′
b is continuously distributed for
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each b ∈ B̃, for any (i1, i3, i4) from {1, 2, · · · , n}. Therefore,

sign
{[(

xi1,3 − xi1,4
)
−
(
xi2,3 − xi2,4

)]′
b
}

and h̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b) are continuous b ∈ B̃ for almost all

(zi1,3 , zi1,4 , zi2,3 , zi2,4) ∈ S4

.

Since, h̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , ·) is uniformly bounded in all of its arguments, then by the

dominated convergence theorem E
[
h(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b)

]
is continuous. Hence, Q(b) is

continuous.

• Condition 3: This condition follows from Proposition 4.1.

• Condition 4: The class of functions
{
g̃(·, b) : b ∈ B̃

}
is Euclidean for the constant envelope

1. The process
{
U4
n g̃(·, b) : b ∈ B̃

}
is a zero-mean U-process of order 4, then by Corollary

4 in Sherman (1994):

sup
B̃

∣∣∣∣U4
n g̃(·, b)

∣∣∣∣ =Op(1/
√
N)

⇒ sup
B̃

∣∣∣∣U4
ng(·, b)

∣∣∣∣ =Op(1/pn
√
N)

⇔ sup
B̃

∣∣∣∣∣∣Q̃n(b)−Q(b)
∣∣∣∣∣∣ = Op

(
1

pn
√
N

)
.

Assumption B3 guarantees that pn
√
N → 0. Therefore,

sup
B̃

∣∣∣∣∣∣Q̃n(b)−Q(b)
∣∣∣∣∣∣ = op(1).

Conditions 1-4 imply β̂n
a.s.→ β0 as n→∞. �

Proof of Theorem 4.2

Proof. This proof is divided in two parts.
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Part 1: This part shows that the estimator β̂ is pn
√
N -consistent for β0. That is∣∣∣∣∣∣β̂ − β0

∣∣∣∣∣∣ = Op(1/pn
√
N). (37)

This result follows from Theorem 1 in Sherman (1993), and the following quadratic approxima-

tion to Q̃(b):

Q̃n(b)− Q̃n(β0) =

1

2
(b− β0)′V (b− β0) +

1

pn
√
N

(b− β0)′Wn

+op

(
||(b− β0)||2 /pn

)
+ op

(
1

pnN

)
(38)

uniformly in op(1) neighborhoods of β0, where Wn converges in distribution to aN (0,∆) random

vector.

Part 2: The asymptotic distribution of (β̂ − β0) is established from Part 1, equation (38)

and Theorem 2 in Sherman (1993).

Proof of Part 1: This proof consists of three steps.

Let

f(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b) = h̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b)− h̃(zi1,3 , zi1,4 , zi2,3 , zi2,4 , β0),

for each (zi1,3 , zi1,4 , zi2,3 , zi2,4 , b) in S4 and each b ∈ B̃.

Assume P4 < ∞, where P4 denotes the product measure P × P × P × P for the sampling

distribution P on S. Given Qn(b), the Hoeffding decomposition of U-statistics guarantees that

there exist functions f1, · · · , f4 such that for each i, fi is P-degenerate on Si, i = 2, 3, 4 and

Q̃n(b)− Q̃n(β0) = Q(b)−Q(β0) + Pnf1(·, b) +

4∑
i=2

U infi(·, b), (39)

where Q(b) = P4h̃(·, ·, ·, ·, b). For each z ∈ S, f1(·, b) is defined as:

f1(z, b) =f(z,P,P,P, b) + f(P, z,P,P, b) + f(P,P, z,P, b) + f(P,P,P, z)

− 4(Q(b)−Q(β0)),

where f(z,P,P,P, b) denotes the conditional expectation of f̃(·, b) under P4, given its first



85 SEMIPARAMETRIC NETWORK MODEL WITH MULTIPLE FIXED EFFECTS

argument. The remaining terms have analogous interpretations. The expressions for f2, f3, f4

can be found in Serfling (2009, pp. 177-178).

Recall,

τ(z, b) ≡ h(z,P,P,P, b) + h(P, z,P,P, b) + h(P,P, z,P, b) + h(P,P,P, z),

for each z ∈ S, and each b ∈ B̃.

Step 1:

Given assumption B4, consider a Taylor expansion of τ(·, b) around β0

τ(z, b) =τ(z, β0) + (b− β0)′∇1τ(z, β0) +
1

2
(b− β0)′∇2τ(z, b∗)(b− β0), (40)

for any z ∈ S and b ∈M and b∗ between b and β0.

Assumption B4.2 implies

∣∣∣∣(b− β0)′ [∇2τ(z, b)−∇2τ(z, β0)] (b− β0)
∣∣∣∣ ≤M(z) ||(b− β0)||3 as b→ β0 (41)

From inequality (41) and the integrability of M , the expected value of equation (40) implies:

E [(τ(·, b)− τ(·, β0))] = (b− β0)′E∇1τ(·, β0) +
1

2
(b− β0)′E∇2τ(·, b∗)(b− β0)

4pn(Q(b)−Q(β0)) = (b− β0)′E∇1τ(·, β0) +
1

2
(b− β0)′E∇2τ(·, β0)(b− β0)

+ o
(
||(b− β0)||2

)

Q(b)−Q(β0) =
1

4
(b− β0)′p−1

n E∇1τ(·, β0) +
1

2
(b− β0)′V (b− β0)

+ o
(
||(b− β0)||2 /pn

)
where 4V = E [∇2τ(·, β0) | Ωn] is a negative definite matrix.

Since Q(b)−Q(β0) is maximized at β0, then it necessarily holds E∇1τ(·, β0) = 0.

Q(b)−Q(β0) =
1

2
(b− β0)′V (b− β0) + o

(
||(b− β0)||2 /pn

)
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Step 2: To show that,

Pnf1(·, b) =
1

pn
√
N

(b− β0)′Wn + op

(
||(b− β0)||2 /pn

)
(42)

uniformly over op(1) neighborhoods of β0, where Wn converges in distribution to a N (0,∆)

random vector.

Note

f1(z, b) =p−1
n (τ(z, b)− τ(z, β0))− 4(Q(b)−Q(β0))

f1(z, b) =(b− β0)′p−1
n ∇1τ(z, β0) +

1

2
(b− β0)′p−1

n ∇2τ(z, β0)(b− β0)

+ p−1
n M(Z) ||(b− β0)||3

− 4

{
1

2
(b− β0)′V (b− β0) + o

(
||(b− β0)||2 /pn

)}
Hence,

Pnf1(·, b) = (b− β0)′p−1
n Pn∇1τ(·, β0) +

1

2
(b− β0)′

{
p−1
n Pn∇2τ(·, β0)− 4V

}
(b− β0)

+ o
(
||(b− β0)||2 /pn

)
+ Rn(pn, (b− β0)),

where

|Rn(pn, (b− β0))| ≤ ||(b− β0)||3 p−1
n PnM(·).

Let,

Wn =
√
NPn∇1τ(·, β0),

Dn =p−1
n Pn∇2τ(·, β0)− 4V.

Then:

Pnf1(·, b) =
1

pn
√
N

(b− β0)′Wn +
1

2
(b− β0)′Dn(b− β0) + o

(
||(b− β0)||2 /pn

)
+ Rn(pn, (b− β0))

Assumption B4.3 implies P|∇1τ(·, β0)|2 <∞, given P∇1τ(·, β0) = 0, then Wn converges in

distribution to a N (0,∆).
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Assumption B4.4 and a weak law of large numbers, imply that Dn
p→ 0 as N tends to infinity.

Since the function M is integrable, then:

Rn(pn, (b− β0)) = op

(
||(b− β0)||2 /pn

)

Hence, it has been proved that

Pnf1(·, b) =
1

pn
√
N

(b− β0)′Wn + op

(
||(b− β0)||2 /pn

)
as N tends to infinity.

Step 3: In order to prove equation (38) we need to show that

U2
nf2(·, b) + U3

nf3(·, b) + U4
nf4(·, b) = op(1/pnN) (43)

uniformly over op(1) neighborhoods of β0.

For each i = 2, 3, 4, the class
{
fi(·, b) : b ∈ B̃

}
is Euclidean for the constant envelope 1.

Equation (43) is proved by using Corollary 8 in Sherman (1994), if the following conditions

hold:

Pi ||fi(·, b)|| → 0 as b→ β0, (44)

for i = 2, 3, 4.

I will show the result for i = 4. The rest are analogous.

By assumption A2, the distribution of
(
Xi1,3 −Xi1,4

)′
b is absolutely continuous with respect

to Lebesgue measure on R. Thus,

P 4
{[(

Xi1,3 −Xi1,4

)′
β0 −

(
Xi2,3 −Xi2,4

)′
β0

]}
= 0

Henceforth, f(zi1,3 , · · · , zi2,4 , ·) is continuous at β0 for P 4 almost all (zi1,3 , · · · , zi2,4). The function

f is uniformly bounded in each of its arguments, by the dominated convergence theorem the

function f4(zi1,3 , zi1,4 , zi2,3 , zi2,4 , ·) is continuous at β0 for P 4 almost all (zi1,3 , zi1,4 , zi2,3 , zi2,4), since

f4 is an additive function on the expected value of f . Finally, the function f4 is also uniformly

bounded in all of its arguments, then by the dominated convergence theorem it holds:

P4 ||f4(·, b)|| → 0 as b→ β0
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Similar steps can be used to prove (44) for i = 2, 3. Then by Corollary 8 in Sherman (1994),

follows:

U2
nf2(·, b) + U3

nf3(·, b) + U4
nf4(·, b) = op(1/pnN) (45)

As in Theorem 1 of Sherman (1993), we can show that

√
pn

∣∣∣∣∣∣β̂ − β0

∣∣∣∣∣∣ ≤ Op( 1√
pnN

)
Then, equation (37) has been established.

Proof of Part 2:

This result follows from similar arguments as the proof of Theorem 2 in Sherman (1994).

Let

t∗n = − V −1Wn + β0

tn = pn
√
N(β̂ − β0) + β0

Then, by definition of t∗n

Q̃n(t∗n/pn
√
N)− Q̃n(β0) ≤ Q̃n(tn/pn

√
N)− Q̃n(β0)

By applying (38) twice in the last expression, multiplying by p2
nN , collecting terms, and using

that V is negative definite.

0 ≤ −1

2
(tn − t∗n)′V (tn − t∗n) ≤ op (1)

Hence, it has been established tn = t∗n + op(1). Equivalently,

pn
√
N(β̂ − β0) = −V −1Wn + op(1)

�
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Proof of Theorem 4.3

Proof. Theorem 2 in Chamberlain (2010) states that the information bound is zero for any

β0 ∈ B̃ unless Fε is logistic.

Suppose, Fε is logistic, then the information bounds is:

I(β0) =
p0

36
E [−∇bb ln fε(β0)|Ωn] ∆−1E [−∇bb ln fε(β0)|Ωn] ,

where ∆ = E [∇b ln fε(β0)∇b ln fε(β0)′]. Hence, if pn → p0 = 0 the information bound of β0 is

zero. �

Proof of Theorem 4.5

Proof. This proof is divided in two parts. In part 1, I show

• P
(
B̂ 6= B

)
→ 0, as n→∞.

• P
(
R(B̂) 6= R(B)

)
→ 0, as n→∞.

I use this results in part 2 to show:

• snH(B̂,B)
p→ 0, for any nonnegative sequence sn and as n→∞.

• snH(R(B̂), R(B))
p→ 0, as n→∞, for any nonnegative sequence sn and as n→∞.

To simplify notation, denote by

Ên ≡ Ên
[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(ijlk)
]

E ≡ E
[
Y

(i)
kl − Y

(j)
kl |X

n = xd,Ω(ijlk)
]

Part 1: Note,

P
(
B̂ 6= B

)
≤

∑
xd∈suppXn

P
(

sign
(
Ên + εn

)
6= sign (E)

)
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There are two cases three consider:

Case 1: E > 0.

P
(

sign
(
Ên + εn

)
6= sign (E)

)
=P

((
Ên + εn < 0

)
∩ (E > 0)

)
=P

(
Ên − E + E + εn < 0

)
=P

(
E + εn < E− Ên

)
≤P

(
0 < E− Ên

)
→ 0

as n→ 0, since Ên
p→ E.

Case 2: E < 0.

Since E < 0 and given that εn → 0 as n→∞. Then, there exists a δ > 0 such that

−E− εn ≥ δ > 0

as n→∞.

P
(

sign
(
Ên + εn

)
6= sign (E)

)
=P

((
Ên + εn ≥ 0

)
∩ (E < 0)

)
=P

(
Ên − E ≥ −E− εn

)
≤P

(
Ên − E ≥ δ > 0

)
→ 0

as n→∞.

Case 3: E = 0.

P
(

sign
(
Ên + εn

)
6= sign (E)

)
=P

((
Ên + εn < 0

)
∩ (E = 0)

)
=P

(
Ên − E > εn

)
=P

(
ε−1
n r−1

n rn(Ên − E) > 1
)
→ 0

since ε−1
n r−1

n = op(1) and rn(Ên − E) = Op(1).
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Finally,

P
(
R(B̂) 6= R(B)

)
≤ P

(
B̂ 6= B

)
→ 0

as n→ 0. This concludes the proof of Part 1.

Part 2:

For any δ > 0, if

H(B̂,B) ≥ δ ⇒ H(B̂,B) 6= 0⇒ B̂ 6= B

Thus

P
(
H(B̂,B) ≥ δ

)
≤ P

(
B̂ 6= B

)
→ 0

as n→∞. The same argument is used to prove H(R(B̂), R(B))
p→ 0 as n→∞. �

C Sharp Bounds

In this section, I illustrate the recursive procedure introduced in Komarova (2013) to derive

sharp bounds for each element in β0 of the network formation model given by equation (1).

Suppose that the goal is to find the sharp bounds for the Kth component of β0, i.e., βK . The

recursive procedure then starts by excluding one unknown variable at each iteration from the

following system.

z
(1)
1,1 + z

(2)
1,1b2 + z

(3)
1,1b3 + · · ·+ z

(K)
1,1 bK ≥ 0,

z
(1)
2,1 + z

(2)
2,1b2 + z

(3)
2,1b3 + · · ·+ z

(K)
2,1 bK ≥ 0,

... (A1)

z
(1)
M,1 + z

(2)
M,1b2 + z

(3)
M,1b3 + · · ·+ z

(K)
M,1bK ≥ 0,

...

z
(1)
M,D + z

(2)
M,Db2 + z

(3)
M,Db3 + · · ·+ z

(K)
M,DbK ≥ 0,
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Consider excluding the unknown β2. The ijth inequality in system (A1)

z
(1)
i,j + z

(2)
i,j b2 + z

(3)
i,j b3 + · · ·+ z

(K)
i,j bK ≥ 0.

If z
(2)
i,j ≥ 0, then the ijth inequality is equivalent to

−
z

(1)
i,j

z
(2)
i,j

−
z

(3)
i,j

z
(2)
i,j

b3 − · · · −
z

(K)
i,j

z
(2)
i,j

bK ≤ b2

Alternatively, if z2
i,j < 0 then the ijth inequality is equivalent to

−
z

(1)
i,j

z
(2)
i,j

−
z

(3)
i,j

z
(2)
i

b3 − · · · −
z

(K)
i,j

z
(2)
i

bK ≥ b2

Suppose the system (A1) has N1 inequalities with z2
· > 0, N2 inequalities with z2

· < 0 and

N3 inequalities with z2
· = 0. Then, the system (A1) is equivalent to

Li(b3, · · · , bK) < b2, i = 1, · · · , N1,

Uj(b3, · · · , bK) > b2, j = 1, · · · , N2,

Zr(b3, · · · , bK) > 0, r = 1, · · · , N3,

where Li(·), Uj(·), Zr(·) are linear functions of b3, · · · , bK and do not depend on b2.

The previous system implies the following simplified system with K − 2 unknown variables

and (N1 ∗N2) +N3 inequalities

Uj(b3, · · · , bK) > Li(b3, · · · , bK), i = 1, · · · , N1, j = 1, · · · , N2, (A2)

Zr(b3, · · · , bK) > 0, r = 1, · · · , N3.

By excluding an additional unknown variable from system (A2), other than bK , a simplified

system with K − 3 unknown variables is obtained. The order of elimination is arbitrary. The

process is repeated on the simplified systems until a system that has bK as the only unknown
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variable is reached. The last simplified system has the following form:

ul + vlbK > 0, l = 1, · · · , L, (AK−1)

wm > 0, m = 1, · · · ,M,

with ul, vl, wm ∈ R for l = 1, · · · , L; m = 1, · · · ,M , and vl 6= 0, l = 1, · · · , L.

Then, the lower and upper bounds for βK are derived from the simplified system (AK−1) as

follows:

bK = max
l=1,··· ,L

{
−ul
vl

: vl > 0

}
,

b̄K = min
l=1,··· ,L

{
−ul
vl

: vl < 0

}
.

As previously mentioned, the sharp bounds for the rest of the components in the parameter

of interest, βj , j 6= k are computed by repeating the same recursive procedure.

The identification set can be approximated by the smallest multidimensional rectangle su-

perset that covers the identification set. The multidimensional rectangle superset is defined

as the Cartesian product of the sets specified by the sharp bounds of each component of the

parameter of interest. That is,

R(B0) ≡
K∏
k=2

[bk, b̄k].

D Thin Set
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Table 5: Thin Set Simulations: Stochastic Dominance and Sparsity

Empty Sparse Dense

E [Degree] P [Ωn] E [Degree] P [Ωn] E [Degree] P [Ωn]
(%) (%) (%)

λ = 0.25

Log 20.30 4.32 49.53 16.71 97.15 0.06
LnN 9.34 1.01 36.98 13.73 95.88 0.11
N 19.47 3.84 49.52 18.11 98.56 0.00
Gam 19.54 3.87 49.36 19.63 87.12 1.56
T 28.59 8.30 49.45 18.25 90.54 1.03

λ = 0.5

Log 23.56 5.71 49.44 16.95 95.48 0.21
LnN 10.58 1.28 36.62 13.72 92.34 0.47
N 22.44 5.03 49.39 18.58 98.13 0.01
Gam 23.11 5.41 49.32 21.04 76.73 4.72
T 33.90 11.29 49.30 18.84 84.53 2.71

λ = 0.75

Log 27.81 7.88 49.30 17.14 91.75 0.86
LnN 12.38 1.74 36.06 13.64 80.39 3.52
N 26.38 6.92 49.21 18.82 96.75 0.07
Gam 27.08 7.34 49.20 22.42 54.40 11.08
T 40.51 15.00 49.26 19.29 72.11 7.27

Notes: N=100, M=250.
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Table 6: Thin Set Simulations: Stochastic Dominance and Sparsity

Empty Sparse Dense

E [Degree] P [Ω(ijkl)] E [Degree] P [Ω(ijkl)] E [Degree] P [Ω(ijkl)]
(%) (%) (%)

λ = 0.25

Logistic 51.17 4.31 124.53 16.74 244.45 0.05
Lognormal 23.21 0.99 93.02 13.69 241.07 0.10
Normal 49.12 3.89 124.43 18.12 247.97 0.00
Gamma 49.19 3.90 124.47 19.74 219.29 1.54
T-student 72.69 8.48 124.33 18.29 227.69 1.03

λ = 0.5

Logistic 59.68 5.82 124.33 16.91 240.29 0.20
Lognormal 26.93 1.32 92.53 13.85 232.05 0.48
Normal 56.84 5.14 124.31 18.54 246.72 0.01
Gamma 57.77 5.33 123.90 20.93 192.65 4.74
T-student 85.04 11.24 124.22 18.89 212.86 2.67

λ = 0.75

Logistic 70.192 7.976 124.03 17.15 230.96 0.84
Lognormal 31.93 1.840 91.239 13.68 203.22 3.38
Normal 66.914 7.036 123.85 18.84 243.42 0.07
Gamma 67.846 7.274 123.57 22.49 137.28 11.02
T-student 101.83 14.92 123.91 19.46 181.38 7.27

Notes: N=250, M=250.



96 L. E. CANDELARIA

Table 7: Thin Set Simulations: Homogeneous Network

µ = 10 ∗ Bernoulli(p) + (−5) ∗ (1− Bernoulli(p))

N=100 E [Degree] P [Ω(ijkl)] (%) Jaccard SI (Mean) Cosine SI (Mean)
(%) (Mean) (Mean)

p = 0.2

Log 37.66 0.38 0.55 0.70
LnN 20.52 0.83 0.35 0.53
N 36.66 0.31 0.60 0.73
Gam 31.14 0.42 0.56 0.70
T 27.30 0.34 0.57 0.70

p = 0.8

Log 92.56 0.12 0.87 0.93
LnN 83.46 1.16 0.74 0.85
N 95.10 0.01 0.91 0.95
Gam 94.42 0.05 0.90 0.94
T 93.26 0.10 0.88 0.93

Notes: Number of Monte Carlo Simulations, M=250.
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E Monte Carlo Simulations

Table 8: Monte Carlo Simulations: Logistic(0,1)

Pairwise Difference Tetrad Logit P (Ωn) E(Degree)

Median Mean Bias(%) RMSE Median Mean Bias(%) RMSE

N = 100 5.924% 47.1344

β2/β1 = 1.5 1.508 1.675 11.687 1.540 1.472 1.528 1.864 0.468
β3/β1 = −1.5 -1.476 -1.488 0.747 0.231 -1.685 -1.724 14.938 0.4686

N = 250 6.661% 120.103

β2/β1 = 1.5 1.499 1.491 0.551 0.134 1.490 1.513 0.915 0.224
β3/β1 = −1.5 -1.485 -1.496 0.269 0.077 -1.662 -1.675 11.668 0.224

N = 500 5.890% 233.264

β2 = 1.5 1.502 1.502 0.182 0.037
β3 = −1.5 -1.497 -1.489 0.674 0.118

Note: Number of Monte Carlo simulations M=500, correlation parameter λ = 0.25

Table 9: Monte Carlo Simulations: Logistic(0,1)

Pairwise Difference Tetrad Logit P (Ωn) E(Degree)

Median Mean Bias(%) RMSE Median Mean Bias(%) RMSE

N = 100 10.710 % 48.102

β2/β1 = 1.5 1.517 1.688 12.578 1.726 1.499 1.563 4.246 0.393
β3/β1 = −1.5 -1.515 -1.510 0.697 0.131 -1.727 -1.775 18.335 0.393

N = 250 10.826% 116.820

β2/β1 = 1.5 1.504 1.622 8.147 1.611 1.504 1.525 1.681 0.274
β3/β1 = −1.5 -1.495 -1.501 0.065 0.061 -1.694 -1.698 13.217 0.274

N = 500 10.694% 240.765

β2 = 1.5 1.507 1.507 0.510 0.030
β3 = −1.5 -1.499 -1.500 0.030 0.026

Note: Number of Monte Carlo simulations M=500, correlation parameter λ = 0.75
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Table 10: Monte Carlo Simulations: Normal(0,2)

Pairwise Difference Tetrad Logit P (Ωn) E(Degree)

Median Mean Bias(%) RMSE Median Mean Bias(%) RMSE

N = 100 4.577% 45.958

β2/β1 = 1.5 1.506 1.702 13.516 2.248 1.471 1.523 1.567 0.359
β3/β1 = −1.5 -1.484 -1.493 0.455 0.237 -1.888 -1.931 28.796 0.359

N = 250 4.607% 116.432

β2/β1 = 1.5 1.518 1.514 0.979 0.062 1.499 1.494 0.376 0.216
β3/β1 = −1.5 -1.512 -1.508 0.556 0.064 -1.901 -1.903 26.883 0.216

N = 500 4.607% 233.855

β2/β1 = 1.5 1.502 1.503 0.199 0.032
β3/β1 = −1.5 -1.499 -1.502 0.139 0.032

Note: Number of Monte Carlo simulations M=500, correlation parameter λ = 0.25

Table 11: Monte Carlo Simulations: Normal(0,2)

Pairwise Difference Tetrad Logit P (Ωn) E(Degree)

Median Mean Bias(%) RMSE Median Mean Bias(%) RMSE

N = 100 10.269% 47.445

β2/β1 = 1.5 1.492 1.714 14.298 2.362 1.537 1.595 6.383 0.427
β3/β1 = −1.5 -1.483 -1.494 0.363 0.115 -1.976 -2.001 33.430 0.427

N = 250 10.275% 120.105

β2/β1 = 1.5 1.561 1.495 0.326 1.844 1.489 1.493 0.448 0.222
β3/β1 = −1.5 -1.503 -1.502 0.169 0.041 -1.916 -1.917 27.825 0.222

N = 500 10.270% 239.686

β2/β1 = 1.5 1.504 1.503 0.230 0.020
β3/β1 = −1.5 -1.499 -1.498 0.101 0.021

Note: Number of Monte Carlo simulations M=500, correlation parameter λ = 0.75
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