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Agricultural Fires and Cognitive Function: Evidence from Crop 

Production Cycles 

 

 

Abstract 

The use of controlled burning to clear agricultural land is a common practice in many 

parts of the world. This practice constitutes an important source of air pollution from 

agriculture. By exploring crop production cycles in China, this paper examines the 

impact of air pollution from agricultural fires on human cognitive health by linking 

household health survey data with fire points from remote sensing. The analysis 

shows a significant negative impact of fire points on cognitive health: respondents 

(aged 55 and above) in counties with high frequencies of fire points have scores 5.1% 

lower in a general cognition test, and recall 11.8% fewer objects in the delayed 

memory test. This impact is detected among respondents living in downwind counties 

but not the upwind counties. The cognitive impact from agricultural fires implies 

additional health costs from climate change that increases wildfire risks. 
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1. Introduction 

In many developing countries, controlled burning continues to be a popular choice 

among farmers to rapidly eliminate agricultural waste from the previous harvest and 

to clear the land for the next planting season. Because agricultural burning usually 

occurs across a large area during the harvest season, it can generate substantial 

greenhouse gas emissions and contribute to severe seasonal air pollution (Zhang, Liu 

and Hao 2016). Pollutants emitted from agricultural burning, such as very small 

particulates and polycyclic aromatic hydrocarbons can lead to severe respiratory 

illnesses and are carcinogenic (Chen et al. 2017). Understanding the impact of air 

pollution from agricultural fires on public health is vital for designing environmental 

and agricultural policy to enhance sustainable agricultural practices and to improve 

public health.1 

There exists a rich literature that documents a negative impact of air pollution on 

health outcomes such as increased risks of heart disease and lung cancer in both 

developed and developing countries (Arceo, Hanna and Oliva 2016; Chay and 

Greenstone 2003; Chen et al. 2013; Ebenstein et al. 2016). However, few studies 

focus on the impact of air pollution on cognitive function, especially in developing 

countries (Ebenstein, Lavy and Roth 2016). This study aims to quantify the effect of 

seasonal air pollution from agricultural fires on the cognitive function of nearby 

residents. The analysis links cognitive measurements from the China Health and 

Nutrition Survey (CHNS) with local agricultural fire points with detailed temporal 

and special resolution from remote sensing. China burns 112 million tons of crop 

straw per year: the burned proportion of straw is about four times more than the world 

average (Cai et al. 2011). 

To address the concern that straw fire points are in general not randomly 

allocated across space, our identification strategy follows a Difference-in-Differences 

                                                
1	 While much of the literature focuses on causes and consequences of air pollution from vehicle 
and industrial emissions (Almond et al. 2009; Chen et al. 2013; Davis 2008), few studies have 
causally measured the health impact of air pollution from agricultural production (Rangel and 
Vogl 2016; Sneeringer 2009).	
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(DID) approach by comparing cognition test scores of survey respondents in counties 

with high versus low frequencies of fire points during the autumn harvest period 

versus other periods.2 The identification rests on the assumption that respondents in 

counties with high and low frequencies of fire points have the same trends of 

cognitive performance in non-harvest periods. This assumption holds in both 

graphical and regression analysis. The analysis also includes individual-respondent 

fixed effects and time fixed effects by taking advantage of the panel health data where 

the same respondents were sampled in different weeks of interview in follow-up 

surveys. 

The results indicate that respondents (aged 55 and above) in counties with high 

frequencies of fire points have scores 0.044 points lower (-5.1%) in a general 

cognition test, and recall 0.474 fewer objects (-11.8%) in the delayed memory test. 

The results are largely driven by age cohorts 65 and above. This negative effect is 

consistent with existing epidemiological literature that aging populations are 

especially vulnerable to hazards in their immediate environment, suggesting that 

improvements to air quality may be an important mechanism for reducing age-related 

cognitive decline (Ailshire and Clarke 2015; Wilker et al 2015). Our analysis also 

reveals heterogeneous impacts of straw burning between rural and urban residents. 

This is consistent with the existing literature on socioeconomic gradient in health 

(Neidell 2004; Smith 1999) that the health burden of environmental problems is borne 

more heavily by rural residents because they earn lower income, have more limited 

options for avoiding the pollution, or have less access to medical care. 

There are additional concerns underlying the causal interpretation. First, the lower 

cognitive test performance could be driven by factors such as fatigue or 

absent-mindedness since farmers are busily engaged in farm work during harvest 

season. We examine this possibility by testing the differences in impacts between 

households with any member working on a farm and households that are not engaged 

                                                
2 The treatment dummy, instead of the treatment intensity, is adopted to reduce measurement error. 
Details are explained in the Empirical Framework. In Table A4, as a robustness test, we provide 
the results from the specification where the treatment intensity is used as the key regressor.	
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in farm work. The results show that the impacts of fire points on cognition are not 

statistically different between these two groups, suggesting that other farm relevant 

activities are not confounding factors. Moreover, our focus on the cohort aged 55 and 

above also helps reduce this possibility because the older adults are less likely to 

participate in farm work. Second, there might be concerns that the adverse effects of 

fire points are caused by central heating because many main agricultural producing 

areas are located in northern China where central heating is provided in winter. 

However, this concern is not necessary because both the autumn harvest season and 

the cognitive impairment start before the central heating season starts. Moreover, the 

central heating is mainly provided in urban areas but our results are mainly driven by 

rural samples, suggesting that urban central heating is unlikely to be a confounding 

factor. 

To further address the concerns of unobserved factors that could be correlated 

with both fire points and health outcomes, we leverage the spatial variation in wind 

direction and examine the heterogeneous cognitive impacts of straw burning on 

residents in upwind and downwind counties. We find negative impacts of fire points 

on respondents living in downwind counties but not in upwind counties. Respondents 

in counties with higher frequencies of upwind fire points within 50 miles have scores 

that are 0.032 points (-3.7%) lower in the general cognition test. We also find that the 

impacts of agricultural fires are smaller when the upwind fire points are farther away. 

This is consistent with the fact that pollutants decay as they travel and thus have a 

smaller impact on downwind residents. Because wind direction is largely random and 

exogenous, the findings reaffirm that our results are not driven by seasonal 

unobserved factors such as weather and economic conditions. 

This study makes three contributions. First, it adds to the rich literature 

demonstrating the negative impact of air pollution on human health, labor 

productivity and labor supply (Chay and Greenstone 2003; Chang et al. 2016; Chen et 

al. 2013; Ebenstein, Lavy and Roth 2016; Zhang et al. 2017). Specifically, it provides 

new evidence on the seasonal impact of short-term air pollution exposure on cognition 

due to straw burning as part of the crop production cycle. It adds to a growing body of 



 6 

literature highlighting the difference between developed and developing countries due 

to possible costs of avoidance behavior and a nonlinear relationship between pollution 

and health (Arceo, Hanna, and Oliva 2016). It is also different from the literature 

within the context of developing countries because this paper focuses on the effects of 

short-term exposure on cognitive health rather than long-term exposure and mortality 

(Chen et al. 2013). Our study also adds to a growing literature that exploits pollution 

variations from wind direction (Barwick et al. 2017; Deryugina et al. 2016; Schlenker 

and Walker 2016), allowing us to disentangle pollution impacts from economic 

impacts. 

Second, this study contributes to the limited but growing literature that highlights 

pollution from agricultural production (Brainerd and Menon 2014; Camacho and 

Mejia 2017; Lai 2017). The work most closely related to this paper is Rangel and 

Vogl (2016), which assesses the impact of smoke from sugarcane harvest fires on 

infant health across Brazilian states. They find that late-pregnancy exposure to 

upwind fires decreases birth weight, gestational length, and in utero survival. The 

current paper complements their study on infant health by highlighting the adverse 

effect of agricultural fires on aging populations that are also vulnerable to hazardous 

environment. This has significant policy implications in emerging counties like China, 

Brazil and Argentina where a large aging population imposes a substantial burden on 

the healthcare system and the economy. This paper also complements the existing 

literature by focusing on agriculture in China, which accounts for 10% of the 

country’s GDP and whose productivity has significant global trade impacts. The 

estimates are relevant to China’s policy efforts to find sustainable agricultural 

practices aimed at improving public health as well as reducing greenhouse gas 

emissions associated with food production. 

Third, this paper informs the literature on the impact of climate change on health 

outcomes by providing a new pathway of impact. Changes in temperature and 

precipitation patterns from global climate change are predicted to increase wildfire 

activities in many parts of the world (Reid et al. 2016). The information on the 
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potential health impact from increased wildfires is very limited.3 Existing studies on 

wildfire and health usually lack adequate statistical power because wildfires tend to be 

episodic and short in duration, and exposed populations from individual events are 

often small. This study takes advantage of the fact that straw burning produces similar 

pollutants to wildfire, and should have similar health impacts. In addition, straw fires 

occur across large areas during the harvest seasons and smoke from straw burning is 

released in areas that are generally populated. The findings from this study suggest 

that increasing wildfire occurrences may be a new pathway by which climate change 

affects health. This result complements existing research that has shown that climate 

change affects human health through various channels such as the spread of vector 

borne diseases, increased mortality due to extreme weather conditions as well as 

reduction in regional crop yields leading to malnutrition (Deschenes and Moretti 2009; 

Deschênes and Greenstone 2011; McMichael, Woodruff and Hales 2006). 

The remainder of this paper is organized as follows. The next two sections 

describe institutional background, the data and some graphical motivation. The 

following section examines the impact of straw burning on cognitive function. This 

section includes model specification, regression results, robustness checks and 

discussion. The final section concludes. 

2. Institutional Background 

2.1 Straw Burning in China 

China has been expanding its food supply dramatically since it started the economic 

reform in its agriculture sector in late 1970s. The grain production in 2016 was nearly 

twice as much as the 1978 level, with an annual average growth rate of 1.9% 

(National Bureau of Statistics, 2016). Meanwhile, agricultural crop production 

generates tremendous amounts of agricultural crop residues. It was estimated that 748 

million tons of crop straws were produced in 2009 (Cai et al. 2011). In particular, rice, 

wheat and corn straws are the top three crop residues in China, which make up 75% 
                                                
3 There are examples that estimate the direct economic losses from forest diebacks due to wild 
fire (Sohngen and Tian 2016). 
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of total domestic straw productions and 17.3% of global crop residues, ranking the 

first in the world (Bi et al. 2010; Chen et al. 2017). 

A large amount of the crop straws has been abandoned or burned without being 

recycled or processed. In particular, China now burns 112 million tons of crop straws 

per year, accounting for 21.6% of the country’s total (Cai et al. 2011). The burned 

proportion of straws is about 4 times more than the world average. Several factors 

contribute to the high burning rate in China. First, less crop residues are collected for 

household use nowadays. Traditionally, Chinese rural families used to collect and 

store crop residues as an essential fuel for cooking and heating, or to feed livestock. 

However, the energy source for cooking and heating has been largely replaced by 

fossil fuels, such as coal and natural gas. Moreover, with rapid urbanization and the 

development of large scale breeding in China, fewer farmers choose to raise livestock 

at home. 

Second, small farming scale increases the unit costs to collect, store and transport 

crop straws, which makes recycling the straws unprofitable. Meanwhile, professional 

services to collect and transport crop straws have not been well developed in China. 

As a result, open burning is usually the most convenient and cost effective way to 

eliminate agricultural straw in order to prepare for the next season’s farming. Burning 

also releases nutrients for the following growing season and helps limit mosquitoes 

and other pests in the fields (Commission for Environmental Cooperation 2014). 

Usually, straw burning is concentrated in two harvest periods. In the first harvest 

season (late May to the end of June) wheat and first season rice straw are burned in 

different areas of China. In the second harvest season (October), corn residue is 

largely burnt in northern China and second season rice straw is mostly burned in the 

south. 

To address the environmental concerns about straw burning, the central 

government announced the goal to recycle 85% of crop straw by 2020 (China 

National Development and Reform Commission 2016). In order to accomplish this 

goal, the government uses a top-down strategy to regulate straw burning activities. 

The Ministry of Agriculture (MOA) and Ministry of Environmental Protection (MEP) 
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have implemented burning bans by launching a series of central government files 

since 1997. In 2004, the MEP started to monitor crop fires via remote sensing data. 

The crop fire occurrences are taken by the central government as an important 

indicator to evaluate the efforts of local government in environmental regulation.  

To meet the requirements of the central government, local governments usually 

offer a combination of punishments for straw burning and rewards for straw recycling. 

For example, before the harvest season, local government will ask farmers to sign on 

commitment letters and to promise not to burn the straws. In some provinces, a farmer 

who sets fire will generally face a fine from 200 RMB to 2000 RMB, or even a 

maximum of 15-day detainment if the burning leads to a severe fire. In term of 

rewards, some provinces provide monetary incentives to reuse the straws, including 

subsidies to farmers for shredding straw and using straw-based fertilizers as well as 

special funds established for pilot recycling projects. So far, the existing policies are 

still at local level and varies across regions. Despite the efforts have been made by 

central and local government, there is still great uncertainty whether the authorities 

will succeed in controlling straw burning due to inadequate regulation of burning 

behaviors and a lack of market demand for crop straws. 

2.2 Straw Burning and Public Health 

Straw burning is a public health concern. This type of burning generally takes place 

over very large areas during specific times of the year, which may lead to very high 

concentrations of pollutants such as polycyclic aromatic hydrocarbons (PAHs), 

dioxins and very small particulate matter (PM2.5 and PM10). Smoke from agricultural 

burning is released at or near ground level in areas that are generally populated, 

producing direct and intense exposure to pollutants for nearby populations. 

The open burning of biomass emits PAHs, which are a group of more than 100 

different chemicals (Jenkins et al. 1996). PAHs are usually formed during the 

incomplete burning of the biomass and contribute to production of particulate matter. 

The common sources of PAHs include cigarette smoke, road asphalt, vehicle engine 

exhaust, agricultural burning and hazardous waste management (Mumtaz and George 



 10 

1995; Finlayson-Pitts and Pitts 1997). PAHs mainly attach to dust particles in the air, 

and particle-bound PAHs have a significant impact on health, especially via 

respiratory system impacts and via cancer incidence (WHO 2010). 

The burning process is also a significant source of dioxins. Dioxins are highly 

toxic and carcinogenic pollutants. They remain in the environment for long periods of 

time before degrading into other chemical forms. Shih et al. (2008) show that the 

concentration of dioxins in the atmosphere is up to 17 times higher during the week of 

the most intense agricultural burning. Zhang, Huang and Yu (2008) find that larger 

amounts of dioxins are emitted in the provinces with more agricultural production. In 

particular, if the straw is treated with pesticides, the amount of dioxins released after 

burning increases sharply. It has been demonstrated, for example, that dioxin 

emissions increase by 150 times when biomass treated with the pesticide 2-4-D is 

burned (Muñoz et al. 2012). 

A primary driver of negative impact of straw burning on cognitive function is the 

concentration of particulate matter. Previous research has identified a significant 

impact of particulate matter on various illnesses including heart disease, stroke, and 

lung cancer (Pope, Bates and Raizenne 1995; Chay and Greenstone 2003; Arceo, 

Hanna, and Oliva 2016). Recently, particulate matter and cognitive performance have 

received growing attention. Epidemiological studies show small particles penetrate 

deep into the lungs affecting blood flow and oxygen circulation (Pope and Dockery 

2006). Small particles may also cause an inflammatory response in the lungs, which 

deteriorates the oxygen quality (Mills et al. 2009). These affect cognitive performance 

because the brain consumes a large fraction of the body’s available oxygen 

(Calderón-Garcidueñas et al. 2008). Supported by these medical research, more 

literature has been able to identify significant negative effects of air pollution on 

cognitive function in a variety of contexts such as high-stakes academic examinations 

and labor productivity (Chang et al. 2016; Ebenstein, Lavy and Roth 2016). 

3. Data and Graphical Analysis 
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3.1 Data 

To conduct the analysis, we combine several datasets including fire points from 

remote sensing, air quality, agricultural production, meteorological data and health 

data. In Table 1, we report the summary statistics for variables used in the analysis. 

The remote sensing fire points come from the MODIS active fire product in the 

Fire Information for Resource Management System at NASA. The MODIS active fire 

product detects fires in 1km pixels that are burning at the time of satellite overpass 

under relatively cloud-free conditions using a contextual algorithm, where thresholds 

are first applied to the observed middle–infrared and thermal infrared brightness 

temperature; false detections are rejected by examining the brightness temperature 

relative to neighboring pixels (Giglio et al. 2003). Each MODIS active fire point 

represents the center of a 1km pixel. These data were collected from 2000 to 2016. 

We aggregate the original hourly data into weekly data. Burning agricultural waste 

creates non-specific sources of pollutants for the atmosphere and takes place over 

very large areas. It is therefore difficult to measure, but this remote sensing data from 

NASA makes this investigation possible. 

Air quality data come from the Ministry of Environmental Protection (MEP) in 

China. The data include several air quality measures such as PM2.5 and PM10. It 

covers 1497 monitor stations in urban China and was collected from January 2015 to 

December 2016 with hourly measures aggregated to a weekly level. The MEP only 

makes available monitoring station level PM2.5 data from 2013, initially for a small set 

of monitoring stations. This prevents us from directly exploring the impact of 

particulate matte concentration on cognitive health since the most recent health survey 

data was for 2006 as we discuss below. We linked the fire points with air quality data 

by calculating the number of fire points within a 50 mile buffer of air quality 

monitoring stations. Agricultural production data come from the Ministry of 

Agriculture. The data include annual production data for each crop at the county level 

from 2000 to 2009. 

The weather variables are from the Integrated Surface Database (ISD), hosted by 

the National Oceanic and Atmospheric Administration (NOAA). The dataset has 407 
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monitoring stations in China that are in operation during the time period of our study. 

To match counties with weather stations, a distance matrix is constructed and weather 

data from the closest station is taken as that of the county. Measurements of wind 

directions are coded as angles in degrees, such that 0 corresponds to due North and 

180 corresponds to due South. Wind direction of the day is calculated by adding up 24 

hourly vectors of wind, with hourly wind speed as the length of each vector. 

Following Rangel and Vogl (2016), upwind direction is defined as the octant (45 

degrees) sector between two counties and downwind direction is defined as the 

opposite octant sector between two counties. We aggregate daily fire points from 

upwind (downwind) counties at the weekly level. 

The individual health data come from the China Health and Nutrition Survey 

(CHNS). CHNS has been frequently used in health related studies (Gørgens et al. 

2012; Zhang 2012; Zhang and Xu 2016). CHNS is chosen for this research not only 

because of its rich health and demographic information but also because it lists the 

date of the interview. This interview date allows us to link health, weather and 

agricultural fire data. The survey is conducted using a multistage, random cluster 

process to draw a sample of about 7,200 households containing more than 30,000 

individuals in 15 provinces that vary substantially in geography, economic 

development, public resources, and health indicators. It has nine waves to date (1989, 

1991, 1993, 1997, 2000, 2004, 2006, 2009 and 2011) and surveys all the age cohorts. 

We only use data from 1997 to 2006 because only these waves have comprehensive 

physical measurements including cognitive function. We further restrict the samples 

to cohorts aged 55 and above because the questions ascertaining cognitive function 

are only designed for the cohort aged 55 and above. 

Cognitive function is measured through a set of questions including immediate 

and delayed recall of a 10-word list, counting backward from 20, serial seven 

subtraction, and orientation. These are popular measurements of cognitive functions 

widely used in epidemiological literature (Power et al. 2011; Suglia et al. 2007). First, 

interviewers slowly read ten words representing objects, such as house, wood and cat, 

and then asked respondents to repeat these objects within two minutes. Second, 
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questions on backward counting, subtraction and orientation were asked. For example, 

orientation was assessed by asking the respondent the current date. Subtraction was 

evaluated by asking questions such as “How much does 100 minus 7 equal?” An 

average score was computed with the range from 0 to 1 (we call this score a general 

test score). Finally, respondents were required to recall again the objects mentioned 

previously within two minutes. Scores for both immediate and delayed recall ranged 

from 0 to 10 with higher scores indicating more accurate recall.  

If the respondents die or migrate, they will be counted in the attrition and the 

samples are not used for analysis. If the respondents did not respond to some parts of 

the cognition test, the answers will be coded as missing and the samples are not in the 

analysis sample either. A potential concern arises if attrition and missing responses 

are correlated with the variable of interest. Sample selectivity could then lead to 

biased estimates. As it turns out, however, there is no evidence that attrition and 

missing answers are correlated with the variables of interest (Table A1). We run 

analogous DID regressions where the dependent variable is whether the answers of 

cognition tests are missing. In no regressions are the coefficients on the two-way 

interaction term significantly different from zero, which suggests that the respondents 

lost due to attrition or missing responses are random with respect to the research 

design. 

 

Variable Description Obs. Mean Std. Dev. 

Explanatory Variables    

Fire Fire dummy(=1 if fire points larger than 
the average; =0 otherwise) 

10619 0.26 0.44 

UpFire Fire dummy(=1 if upwind fire points 
larger than the average; =0 otherwise) 

10330 0.22 0.41 

DownFire Fire dummy(=1 if downwind fire points 
larger than the average; =0 otherwise) 

10330 0.30 0.46 

Harvest Autumn harvest week (=1 if the week 
belongs to harvest season; =0 otherwise) 

10619 0.34 0.47 

Age Age (years) 10612 65.83 7.87 
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Variable Description Obs. Mean Std. Dev. 

Explanatory Variables    

Income Annual household income (10,000 yuan) 10482 1.52 1.70 

Smoke Currently smoke (yes=1; no=0) 10619 0.27 0.47 

Drink Currently drink (yes=1; no=0) 10619 0.29 0.45 

Temperature Temperature (degrees Fahrenheit) 10590 62.88 11.12 

Precipitation Precipitation (inches) 10590 1.00 4.99 

Pressure Air Pressure (bars) 10619 1.36 0.70 

     

Explained Variables    

Cognition Average score of 12 cognitive questions 10619 0.85 0.23 

Memory1 Immediate recall test 9946 4.98 2.29 

Memory2 Delayed recall test 9865 4.01 2.48 

Table 1: Variable Description and Summary Statistics 

Notes: This table reports the summary statistics for the main health outcomes. The variable 
Fire equals one if the number of fire points are larger than the sample average and equals zero 
otherwise. UpFire and DownFire are two analogous variables from counties at upwind and 
downwind directions, respectively. 

 

 

3.2 Graphical Motivation 

To motivate the research design, we provide some descriptive analysis showing the 

relationship between agricultural production, fire points and air quality. In Figure 1, 

panel A presents the weekly counts of fire points from 2000 to 2016. The occurrences 

of fires exhibit a seasonal pattern. Panel B shows the average weekly counts of fire 

points, from which we can see clearly the seasonal pattern: China’s spring festival 

(around week 10), summer harvest season and autumn harvest season. The fire points 

in the two harvest seasons are about 4 times more than the non-harvest and 

non-spring-festival seasons. 

Figure 2 depicts the weekly number of fire points around 50 miles of air monitor 

stations in urban China in 2015 and 2016. The blue line and red line depict the 
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evolution of the average number of fire points in cities with high and low agricultural 

production. “high agri” and “low agri” are defined as areas where crop production is 

higher and lower than the national average (2000-2009). In 2015 fire points jumped 

up in harvest seasons, especially the autumn harvest season. In 2016, because of the 

stronger government regulation forbidding farmers to burn the crop straw, the fire 

points did not jump as high as those in 2015. 

Figure 3 depicts weakly average PM2.5 concentration (in	$%/'()	in 2015 and 

2016. The blue line and red line depict the evolution of average PM2.5 in cities with 

high and low agricultural production nearby. The overall trend shows a quadratic 

pattern with worse air quality in the winter. Consistent with Figure 2, we observe a 

pike of PM2.5 during the autumn harvest season (the left circle in each graph) in 2015 

and we don’t find higher PM2.5 in autumn harvest season in 2016 because of fewer fire 

points. 

    In Figure 4, we zoom into the autumn harvest season in 2015 before central 

heating starts. It is easier to see that the blue line jumps up during autumn harvest 

season and drops back after the harvest season. A difference-in-differences model 

shows stations with a high frequency of fire points have a higher level of PM2.5 

concentration by 10.21	$%/'(
 during the autumn harvest season.4 This is consistent 

with the local press accounts that smoke from millions of acres of burning farmland 

billow toward the cities. This is also consistent with Chen et al. (2017) that biomass 

burning contributes to 12%, 15.8%, and 11% of PM2.5 mass in Beijing, Dongying, and 

Chengdu. This also suggests that, because most Chinese air monitoring stations are 

located in urban areas, the air pollution is worse in rural areas where straw is burned. 

                                                
4 Details are available upon request.	
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Figure 1: Weekly Fire Points from 2000 to 2016 

 
Note: This figure depicts the number of weekly fire points from 2000 to 2016  
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Figure 2: Weekly Fire Points within 50 Miles of Air Quality Monitoring Stations 
(2015-2016) 

 
Note: This figure depicts the weekly number of fire points around 50 miles of air 
monitor stations in urban China in 2015 and 2016. The blue line and red line depict 
the evolution of the average number of fire points in cities with high and low 
agricultural production. “high agri” and “low agri” are defined as areas where crop 
production is higher and lower than the national average (2000-2009). 
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Figure 3: Weekly Average PM2.5 in 2015 and 2016 

 
Note: This figure depicts the average air quality each week in urban China in 2015 
and 2016. The blue line and red line depict the evolution of average air quality in 
cities with high and low agricultural production nearby. “high agri” and “low agri” are 
defined as areas where crop production is higher and lower than the national average 
(2000-2009). 
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Figure 4: Weekly Average PM2.5 in 2015 Autumn Harvest Season 

 
Note: This figure depicts the average weekly air quality in urban China in 2015. The 
blue line and red line depict the evolution of average air quality in cities with high and 
low agricultural production nearby. “high agri” and “low agri” are defined as areas 
where crop production is higher and lower than the national average (2000-2009). 
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4. Empirical Framework and Results 

4.1 Empirical Framework 

In order to estimate the impact of straw burning on cognition, we specify the DID 

model as, 

  '
1 2 3 (1)it i t i t it i t w itCogn Fire Harvest Fire Harvest Xa b b b g µ l t e= + + + ´ + + + + +

where Cognit denotes cognitive test outcomes for individual i in week t. Firei equals 

one if the households live in counties with higher frequencies of fire points than the 

sample average and zero otherwise.5 Harvestt equals one during the one-month 

period after the autumn harvest season starts (weeks 43-47) and zero otherwise.6 Xit is 

a vector of control variables including individual, household and weather 

characteristics. ui is individual fixed effects and λt is time fixed effects common to all 

individuals in week t. τw is year effects unique to each survey wave. The model allows 

for an arbitrary covariance structure within communities over time by computing 

standard errors clustered at the community level (Bertrand, Duflo and Mullainathan 

2004). Cluster bootstrap methods are also implemented at the community level to 

reaffirm the results. 

The coefficient of interest is β3, the impact of straw fires on cognitive function. A 

major identification concern is that fire points are not randomly allocated across space 

and time such that other unobserved factors, such as weather, socioeconomic status 

and changes in economic conditions, may generate a spurious relationship between 

                                                
5 The treatment dummy is chosen here to reduce the measurement error. The health data are from 
1997 to 2006 but the fire points are from late 2000 to 2016. Additional assumption is needed to 
assign treatment and control groups between 1997 and 2000. By using the treatment dummy as the 
key regressor, we assume the categorical division of treatment and control counties remain 
unchanged before and after 2000. This is reasonable because the dummy treatment and control 
groups are mainly driven by agriculture that is determined by natural resource endowment and not 
likely to switch, especially in the short term. By using the treatment intensity, i.e. number of fire 
points, the exact numbers of fire points need to be assigned to each county before 2000 but the fire 
data is not available for that time period. In Table A4, as a robustness test, we also provide the 
results of using the treatment intensity as the key regressor.	
6 The treatment period is chosen as one month after the harvest season starts because straw will 
not be burned at the beginning of the harvest season. As evidence, the fire points and PM2.5 start to 
jump up one month after the harvest season starts in Figure 2 and Figure 4. As a robustness check, 
we allow the treatment window to vary across different provinces by choosing the weeks that have 
higher fire points than their medians as treatment weeks. We find similar results (Table A2).	
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fire points and cognitive function. Our strategy first employs individual fixed effects 

so that the estimates can be purged of the influence of unobserved time-invariant 

characteristics. We also include week fixed effects and survey year fixed effects to 

control for common seasonal and year changes. However, estimation strategies based 

solely on panel variation in fires are not enough to distinguish their effects from the 

effects of other time-variant unobserved health determinants. 

We use the DID approach to compare the cognitive function of respondents in 

counties with high versus low frequency of fire points (i.e., treatment and control 

groups) during and out of the autumn harvest season.7 The validity of the DID model 

requires that the time trends of cognitive health between the treatment and control 

groups are the same before autumn harvest periods. If the time trends are the same 

before the harvest seasons, then it is likely that they would have been the same in the 

harvest periods if the counties with more fire points had as many fire points as the 

group of counties with low frequencies of fire points. This parallel trend assumption is 

tested by both graphical and regression analysis. 

Panel A in Figure 5 reports the average scores of the cognition test in each week 

of interview. The blue line and red line depict the evolution of the scores in counties 

with high and low frequencies of fire points. The cognition scores have some 

fluctuations between counties with high and low frequencies of fire points before the 

autumn harvest period. However, during the late autumn harvest season the scores in 

the counties with more straw burning drop faster than those with fewer straw fires. 

This timing is commensurate with Figure 4 when PM2.5 increases. Panel B reports the 

average scores of the memory tests and have a similar pattern (though noisier) as 

panel A. These graphs serve as initial evidence that straw burning causally affects 

cognition through air pollution

                                                
7 If PM2.5 data were available during the survey period, we could directly examine the impact of 
PM2.5 on cognitive health by leveraging fire points as the instrumental variable. But PM2.5 data 
based on monitoring stations by the MEP is only available from 2013, preventing us from taking 
such an approach.	
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Figure 5: Average Scores of Cognition and Memory Tests by Week (1997-2006) 
Note: Panel A (Panel B) reports the average scores of the cognition test (memory test) in each week of interview. The blue line and red line 
depict the evolution of the scores in counties with high and low frequencies of fire points. “high freq” and “low freq” are defined as areas where 
fire frequency is higher and lower than the sample average (2000-2016). 
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    Formally, we test whether the pre-harvest trends of cognitive function are 

different for respondents in counties with high and low frequencies of fire points by 

estimating a slightly modified version of Equation (1). We use only the observations 

before the harvest season and modify Equation (1) by excluding the Harvest dummy 

variable and including separate week dummies (weeks 33-42). In this model, we 

cannot statistically reject the hypothesis that the pre-harvest week dummies are the 

same for counties with high and low frequencies of fire points at conventional levels 

of statistical significance (Table A3). The regression results confirm the parallel trend 

assumption and provide initial evidence that straw fire causally affects the cognitive 

function. 

4.2 Main Results 

Table 2 reports the impact of fire points on several cognitive measures. The first two 

columns report results from the general cognition test. Model (1) has no control 

variables and Model (2) includes control variables. The results are robust to inclusion 

of control variables. We find that respondents (aged 55 and above) in counties with 

higher frequencies of fire points have scores that are 0.044 points (-5.1%) lower in the 

general cognition test. The next four columns report results of the immediate and 

delayed memory tests.8 In the immediate memory test, the impact of straw fire is not 

significant (but close to 10% significance). In the delayed recall memory test, we find 

that respondents recall 0.474 fewer objects (-11.8%) in counties with higher frequency 

of fire points. These results suggest that those affected populations have temporally 

lower cognitive ability and their memory decreases faster than those not affected. 

 We investigate differential impacts of agricultural fires. First, we divide the 

samples into the cohorts that are older and younger than 65. In Table 3, we find that 

previous results are largely driven by the cohort aged 65 and above. Respondents 

(aged 65 and above) in counties with higher frequencies of fire points have scores that 

                                                
8	 Fewer observations are available for the immediate and delayed recall models because of 
missing responses. 
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are 0.055 units (-6.4%) lower in the general cognition test and recall 0.431 fewer 

objects (-10.7%) in the delayed recall memory test. These findings are consistent with 

existing epidemiological literature that aging populations are especially vulnerable to 

hazards in their immediate environment. The findings here highlight the negative 

impact of short-term exposure, which complements the existing medical findings that 

long-term exposure to ambient air pollution is associated with cognitive impairment 

and age-associated brain atrophy (Ailshire and Clarke 2015; Wilker et al. 2015). 

 Second, we divide the respondents into rural and urban samples. The results 

indicate that the negative impacts of straw burning are mainly driven by rural samples 

(Table 4). This is consistent with the fact that rural residents, compared with urban 

residents, live closer to the straw fire points and thus suffer severer impacts. This is 

also consistent with existing literature on the socioeconomic gradient in health 

(Neidell 2004; Smith 1999), which postulates that the health burden of environmental 

problems is more heavily borne by rural residents because they have lower income, 

more limited options for avoiding the pollution, or less access to medical care. 
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 (1) (2) (3) (4) (5) (6) 
VARIABLES Cognition Immediate Recall Delayed Recall 
       
Fire × Harvest -0.045** -0.044** -0.310 -0.281 -0.528*** -0.474** 
 (0.010) (0.024) (0.105) (0.147) (0.007) (0.021) 
       
Observations 10,619 10,448 9,946 9,803 9,865 9,724 
Control variables No Yes No Yes Yes Yes 
Year and Week FE Yes Yes Yes Yes Yes Yes 
Individual FE Yes Yes Yes Yes Yes Yes 

Table 2: The Impact of Straw Fire on Cognitive Function 

Notes: This table shows the impact of straw fire on cognitive function (a general cognitive 
test, immediate recall and delayed recall) in a difference-in-differences model, accounting for 
individual fixed effects and time fixed effects. The model only includes respondents aged 55 
and above. The control variables include socioeconomic characteristics and weather variables. 
The first, third and fifth models are without control variables and the second, fourth and sixth 
models include all the control variables. Robust p-values are reported in parentheses ***. 
p<0.01, ** p<0.05, * p<0.1. 
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 (1) (2) (3) (4) (5) (6) 
VARIABLES Cognition Immediate Recall Delayed Recall 
       
(A) Age 65 and above      
Fire × Harvest -0.060** -0.055** -0.276 -0.252 -0.501** -0.431* 
 (0.025) (0.035) (0.239) (0.292) (0.022) (0.063) 
       
Observations 5,332 5,219 5,008 4,910 4,958 4,864 
       
(B) Age 55 to 65       
Fire × Harvest -0.029* -0.031* -0.240 -0.186 -0.389 -0.329 
 (0.080) (0.082) (0.332) (0.463) (0.210) (0.303) 
       
Observations 5,287 5,229 4,938 4,893 4,907 4,860 
Control variables No Yes No Yes No Yes 
Week FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Individual FE Yes Yes Yes Yes Yes Yes 
Table 3: The Impact of Straw Fire on Cognitive Functions by Age Cohort  

Notes: This table shows the impact of straw fire on cognitive function by age cohort (above 
and below 65) in a difference-in-difference model, accounting for individual fixed effects and 
time fixed effects. The control variables include socioeconomic characteristics such as age 
and household income. Model (1), (3) and (5) are without control variables and fixed effects 
and Model (2), (4) and (6) include all the control variables and fixed effects. Robust p-values 
are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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 (1) (2) (3) (4) (5) (6) 
VARIABLES Cognition Immediate Recall Delayed Recall 
       
(A) Rural      
Fire × Harvest -0.043** -0.035* -0.331 -0.217 -0.537** -0.390* 
 (0.030) (0.084) (0.129) (0.317) (0.019) (0.096) 
       
Observations 6,643 6,557 6,179 6,111 6,137 6,069 
       
(B) Urban       
Fire × Harvest -0.060* -0.052* -0.151 0.057 -0.744 -0.600 
 (0.055) (0.080) (0.787) (0.908) (0.271) (0.392) 
       
Observations 3,976 3,891 3,767 3,692 3,728 3,655 
Control variables No Yes No Yes No Yes 
Year and Week FE Yes Yes Yes Yes Yes Yes 
Individual FE Yes Yes Yes Yes Yes Yes 
Table 4: The Impact of Straw Fire on Cognitive Functions in Rural and Urban Areas 

Notes: This table shows the impact of straw fire on cognitive function by urban and rural 
household in a difference-in-difference model, accounting for individual fixed effects and 
time fixed effects. The control variables include socioeconomic characteristics and weather 
variables. The first, third and fifth models are without control variables and the second, fourth 
and sixth models include all the control variables. Robust p-values are reported in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1. 

4.3 Robustness Checks 

There are additional concerns for the causal interpretation of our findings. First, 

because farmers are usually busily engaged in farm work during harvest season, the 

results could be driven by factors such as fatigue or absent-mindedness. For example, 

households that participate in farm harvest activities may be too busy to answer the 

questionnaire patiently such that they receive lower scores in the cognition tests. If it 

is busy farm work that causes lower scores in cognition tests, we should observe this 

at the beginning of the harvest season, instead of starting in late-harvest periods. We 

examine this possibility by testing the impact difference between households with any 

member working on a farm and households that are not engaged in farm work. If the 

results are driven by farm relevant activities, we should expect different impacts 
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between farm and non-farm households. In Table 5, we find that the impacts of fire 

points on cognition are not different between these two groups, suggesting other farm 

relevant activities are not confounding factors. Additionally, our focus on the cohort 

aged 55 and above also helps reduce this possibility because the older adults are less 

likely to participate in farm work. 

 The second concern is with respect to winter heating. Because many main 

agricultural producing areas are located in northern China where central heating is 

provided in winter, the results may be driven by air pollution caused by central 

heating. However, this is not likely because both the autumn harvest season and the 

cognitive impairment start before the central heating season starts. Also, we divide the 

respondents into urban and rural samples in Table 4, if the results are confounded by 

central heating, we should expect more significant impact on urban samples because 

central heating is mainly provided in urban areas. We find the results are mainly 

driven by rural samples, suggesting central heating is not a confounding factor. 

 

 (2) (3) (6) (7) (10) (11) 
VARIABLES Cognition Immediate Recall Delayed Recall 
       
Fire × Harvest  
× Farm Household 

0.007 
(0.813) 

-0.000 
(0.997) 

-0.121 
(0.752) 

-0.209 
(0.584) 

-0.062 
(0.877) 

-0.175 
(0.668) 

       
Observations 10,619 10,448 9,946 9,803 9,865 9,724 
R-squared 0.610 0.619 0.650 0.656 0.643 0.648 
Control variables No Yes No Yes No Yes 
Year and Week FE Yes Yes Yes Yes Yes Yes 
Individual FE Yes Yes Yes Yes Yes Yes 

Table 5: Impact Differences between Farm Households and Non-Farm Households 
Notes: This table tests the impact difference of straw fire on cognitive function between farm 
and non-farm household in a difference-in-difference model, accounting for individual fixed 
effects and time fixed effects. The control variables include socioeconomic characteristics and 
weather variables. The first, third and fifth models are without control variables and the 
second, fourth and sixth models include all the control variables. Robust p-values are reported 
in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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4.4 Exploring Wind Direction 

The validity of DID results might be called into question if there are seasonal 

unobserved factors that are co-varying with fire points and health. For example, the 

seasonal disease, temperature or rainfall during harvest periods may be different in 

areas with high and low frequency of fire points, generating spurious relationships 

between fires and health. Local economic conditions may also confound the 

estimation if they are tied closely with harvest activities and fire points. 

 To further address the concern of unobserved factors, we leverage the spatial 

pattern of wind direction in distributing air pollution from neighbor counties. We 

replicate the analysis in Equation (1) by replacing the Fire dummy variable with a 

new dummy variable that is constructed from fire points in counties within 50 miles at 

the upwind directions. Following Rangel and Vogl (2016), upwind direction is 

defined as the octant (45 degrees) sector between two counties. As a comparison, we 

also construct a fire dummy variable from counties at the downwind directions, 

defined as the opposite octant sector between two counties. 

 Table 6 reports the cognitive impact of fire points from surrounding counties in 

upwind and downwind directions. We find that respondents in counties with higher 

frequencies of upwind fire points have scores that are 0.032 units (-3.7%) lower in the 

general cognition test but we did not find significant impacts of downwind fire points. 

This is consistent with our expectation that air pollution caused by fire points at the 

upwind counties will affect the population health in the downwind counties. In Figure 

6, instead of using fire points in upwind counties within 50 miles, we report the 

cognitive impacts of fire points in upwind counties within different distances. We find 

the overall impacts decrease when the fire points from upwind counties with longer 

distances are included.9 This suggests that the amount of pollutants decays as they 

travel. We also find a similar pattern for cognitive impacts using fire points in 

downwind counties but the magnitudes are smaller (Figure 7). 

                                                
9	 The cognitive impacts of fire points in neighbor counties within 30 miles are smaller due to less 
samples are included in the analysis. For some counties, the centroids between nearest neighbor 
counties are larger than 30 miles so counties without neighbors within 30 miles will be dropped.	
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 (1) (2) (3) (4) (5) (6) 
VARIABLES Cognition Immediate Recall Delayed Recall 
       
(A) Upwind      
UpFire × Harvest -0.026 -0.032* -0.053 -0.074 -0.153 -0.175 
 (0.134) (0.059) (0.830) (0.751) (0.526) (0.477) 
       
Observations 10,330 10,168 9,669 9,536 9,596 9,464 
       
(B) Downwind       
DownFire × Harvest 0.008 0.003 0.270 0.186 0.224 0.113 
 (0.690) (0.868) (0.180) (0.336) (0.298) (0.608) 
       
Observations 10,330 10,168 9,669 9,536 9,596 9,464 
Control variables No Yes No Yes No Yes 
Year and Week FE Yes Yes Yes Yes Yes Yes 
Individual FE Yes Yes Yes Yes Yes Yes 

Table 6: The Cognitive Impact of Straw Fire from Upwind and Downwind Counties 
Notes: This table shows the cognitive impact of straw fire in counties at upwind and 
downwind directions in a difference-in-difference model, accounting for individual fixed 
effects and time fixed effects. The control variables include socioeconomic characteristics and 
weather variables. The first, third and fifth models are without control variables and the 
second, fourth and sixth models include all the control variables. Robust p-values are reported 
in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

 Our estimation using wind direction can serve as a robustness test to rule out the 

seasonal omitted variables. If it is the unobserved local weather and economic 

conditions, instead of agricultural fires, that drive our results, we should not see 

significant cognitive impact from fire points in upwind counties because wind 

direction is random. If the weather and economy in surrounding counties (both 

upwind and downwind counties) are all correlated, which drives the correlation 

between fire points from upwind counties and local unobserved factors that affect 

local health, then we should expect similar significant impact of fire points from 

downwind counties on cognition, but we did not.  



 31 

 
Figure 6: Cognitive Impacts of Upwind Fire Points by Distance 
Note: This figure reports the cognitive impact of agricultural fire from surrounding 
counties in upwind directions within different distances. 
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Figure 7: Cognitive Impacts of Downwind Fire Points by Distance 

Note: This figure reports the cognitive impact of agricultural fire from surrounding 
counties in downwind directions within different distances. 
 

4.5 Discussion 

The findings in this paper reveal a causal impact of agricultural fires on cognitive 

health, contributing to our understanding on the health impact of wildfires. 

Epidemiological studies have demonstrated the association between wildfire smoke 

exposure and general respiratory morbidity, exacerbations of asthma and Chronic 

Obstructive Pulmonary Disease (Linares et al. 2014; Reid et al. 2016), but very few 

have investigated the cognitive impact of wildfire and the findings are inconclusive in 

those studies. For example, Ho et al. (2014) find that the widespread haze due to 

forest fires in Indonesia in June 2013 is associated with mild psychological stress, but 

Moore et al. (2006) find no increase in physician visits for mental illness associated 

with PM during the 2003 wildfire season in British Columbia and Duclos et al. (1990) 

find no increase in mental health hospitalizations during the 1987 California fires. Our 
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study complements existing literature by providing one of the few estimates of the 

cognitive impact of air pollution due to biomass burning by leveraging spatially and 

temporally rich data on agricultural fire points and panel data on health surveys. 

 Our analysis focuses on the health impact of short-term air pollution exposure, in 

contrast to that of long-term exposure from policies that promote the use of central 

heating or living close to streets with heavy traffic (Chen et al. 2013; Sunyer et al. 

2014). Several recent studies also find significant cognitive impacts of short-term air 

pollution. Ebenstein, Lavy and Roth (2016) show that transitory PM2.5 exposure is 

associated with a significant decline in student performance as well as future 

educational attainment and earnings in Israel. Bensnes (2016) finds that an increase in 

the ambient pollen level by one standard deviation at the mean leads to a 2.5% 

standard deviation decrease in test scores, with potentially larger effects for allergic 

students. In addition to cognitive function, Daniels et al. (2014) and Hansen (1990) 

show that urban firefighters who are occupationally exposed to short-term smoke are 

at increased risk of developing lung cancer. 

 Our findings have important implications on potential healthcare costs. A 

growing body of medical research suggests that cognition impairment, even in a small 

range, is a predictor of serious health consequences including dementia, Alzheimer’s 

disease, cardiovascular events and life satisfaction (O'donnell et al. 2012; Ritchie and 

Touchon 2000). Moreover, there exist evidence that cognition decline increases the 

mortality risk across the entire spectrum of cognitive impairment (Brayne and 

Calloway 1988; St. John et al. 2015). Neale et al. (2001) find that the risk of mortality 

for population who suffer mild cognition impairment is 23% higher than those 

without cognition impairment. Agricultural fires can affect the cognitive health of a 

large rural population in developing countries, which could in turn increase late life 

disability and risk of deaths, and healthcare costs in the long run. 

5. Conclusion 

Understanding the health effect of air pollution from agricultural production is 

essential for designing efficient environmental and agricultural policies. By linking 
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remote sensing fire points with the China Health and Nutrition Survey (1997-2006), 

we compare cognition test scores of the survey respondents in counties with high 

versus low frequencies of fire points during the autumn harvest periods versus other 

periods. Individual respondent fixed effects are also included by taking advantage of 

the panel health data where the same sample respondents are interviewed in different 

weeks in follow-up surveys. 

We find that respondents (aged 55 and above) in counties with high frequencies 

of fire points have scores that are 0.044 lower (-5.1%) in a general cognition test, and 

recall 0.474 fewer objects (-11.8%) in the delayed memory test. The results are largely 

driven by the cohort aged 65. This is consistent with existing epidemiological 

literature that documents how aging populations are especially vulnerable to hazards 

in their immediate environment, suggesting that improvements to air quality may be 

an important mechanism for reducing age-related cognitive decline (Ailshire and 

Clarke 2015; Wilker et al 2015). The results are also largely driven by the rural 

residents that are closer to the fire points and thus suffer severer impacts. This is 

consistent with existing literature on socioeconomic gradient in health (Neidell 2004; 

Smith 1999) that health burden of environmental problems might more likely to be 

borne by rural residents because they have lower income, more limited options for 

avoiding the pollution, or less access to medical care. 

In addition, we leverage the spatial variation of wind direction and find 

significantly negative impacts of fire points on respondents living in downwind 

counties but not upwind counties. We also find that the impacts of agricultural fires 

are smaller when the fire points are from upwind counties that are farther away. This 

is consistent with the fact that pollutants decay as they travel and thus have less 

impacts on downstream populations. The findings relying on exogenous wind 

direction reaffirm that our results are not driven by seasonal unobserved factors such 

as weather and economic conditions. 

Agricultural fires have been used for thousands of years, but their health impacts 

are not fully understood. Straw burning may lead to high concentrations of pollutants 

such as polycyclic aromatic hydrocarbons (PAHs), dioxins and very small particulate 
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matter (PM2.5 and PM10), all of which are carcinogenic pollutants. Although the 

current study provides evidence that straw burning affects cognitive function, other 

health outcomes deserve future research. These studies will not only strengthen our 

understandings of health impact of agricultural air pollution in developing countries 

but also inform the potential health impacts of climate change which is believed to 

increase the frequency and duration of wildfires. 
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Appendix:  

Table A1: Test of Attrition Bias 

 (1) (2) 
VARIABLES Missing Responses 
   
Harvest 0.022 0.020 
 (0.540) (0.700) 
Fire × Harvest -0.010 -0.018 
 (0.642) (0.347) 
Age  0.223*** 
  (0.000) 
Age square  -0.002*** 
  (0.000) 
Smoke  0.087*** 
  (0.000) 
Drink  0.077*** 
  (0.000) 
Income  -0.004 
  (0.117) 
Temperature  -0.001 
  (0.611) 
Precipitation  0.001 
  (0.132) 
Pressure  0.011* 
  (0.094) 
Constant 0.362*** -6.429*** 
 (0.000) (0.000) 
   
Observations 23,017 22,539 
R-squared 0.668 0.715 
Control variables No Yes 
Year and Week FE Yes Yes 
Individual FE Yes Yes 

Notes: This table tests the attrition bias in a difference-in-differences model, accounting for 
individual fixed effects and time fixed effects. The dependent variable equals one if the 
answers for cognitive tests are non-missing and zero otherwise. The control variables 
include socioeconomic characteristics and weather variables. The first model is without 
control variables and the second model includes all the control variables. Robust p-values 
are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A2: Robustness Check by Using Province Specific Treatment Window 

 (1) (2) (3) (4) (5) (6) 
VARIABLES Cognition Immediate Recall Delayed Recall 
       
Harvest 0.002 0.005 0.338* 0.338* 0.442** 0.433** 
 (0.925) (0.813) (0.088) (0.075) (0.034) (0.031) 
Fire × Harvest -0.037* -0.035 -0.374* -0.428** -0.478* -0.503* 
 (0.090) (0.112) (0.073) (0.042) (0.071) (0.060) 
Age  0.065***  0.155  0.297* 
  (0.001)  (0.393)  (0.086) 
Age square  -0.000***  -0.001*  -0.001 
  (0.000)  (0.077)  (0.135) 
Smoke  -0.006  0.163*  0.077 
  (0.609)  (0.064)  (0.453) 
Drink  0.004  -0.011  -0.056 
  (0.565)  (0.904)  (0.576) 
Income  0.004  0.028  0.005 
  (0.133)  (0.206)  (0.852) 
Temperature  -0.000  -0.012  -0.022** 
  (0.769)  (0.165)  (0.042) 
Precipitation  -0.000  -0.013  -0.012 
  (0.823)  (0.112)  (0.210) 
Pressure  0.000  0.078  0.124 
  (0.931)  (0.276)  (0.109) 
Constant 0.919*** -1.198 5.745*** 1.836 4.636*** -7.770 
 (0.000) (0.269) (0.000) (0.851) (0.000) (0.416) 
       
Observations 10,741 10,568 10,055 9,911 9,974 9,831 
R-squared 0.606 0.615 0.648 0.654 0.641 0.647 
Control variables No Yes No Yes No Yes 
Year and Week FE Yes Yes Yes Yes Yes Yes 
Individual FE Yes Yes Yes Yes Yes Yes 
Notes: This table tests the robustness of the impact of straw fire on cognitive function by 
allowing the treatment window to vary in each province in a difference-in-differences model, 
accounting for individual fixed effects and time fixed effects. The control variables include 
socioeconomic characteristics and weather variables. The first, third and fifth models are 
without control variables and the second, fourth and sixth models include all the control 
variables. Robust p-values are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A3: Parallel Trend Tests 

 (1) (2) (3) 
VARIABLES Cognition Immediate Recall Delayed Recall 
    
Week34 × Fire 0.035 0.323 0.597 
 (0.814) (0.852) (0.768) 
Week35 × Fire -0.099 0.066 0.608 
 (0.439) (0.970) (0.751) 
Week36 × Fire 0.029 0.555 1.177 
 (0.831) (0.741) (0.528) 
Week37 × Fire -0.027 0.565 0.700 
 (0.859) (0.753) (0.728) 
Week38 × Fire 0.052 0.490 0.966 
 (0.696) (0.775) (0.628) 
Week39 × Fire 0.023 0.826 0.444 
 (0.860) (0.636) (0.820) 
Week40 × Fire 0.080 0.404 0.653 
 (0.789) (0.888) (0.807) 
Week41× Fire -0.000 0.564 0.443 
 (1.000) (0.736) (0.826) 
Week42 ×Fire 0.019 0.578 0.580 
 (0.875) (0.724) (0.753) 
    
Observations 6,152 5,880 5,827 
R-squared 0.727 0.753 0.740 
Control variables Yes Yes Yes 
Year and Week FE Yes Yes Yes 
Individual FE Yes Yes Yes 

Notes: This table tests the parallel trend assumption in a difference-in-differences model, 
accounting for individual fixed effects and time fixed effects. The control variables include 
socioeconomic characteristics and weather variables. All three models include all the control 
variables. Robust p-values are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A4: The Impact of Straw Fire (Treatment Intensity) on Cognitive Function 

 (1) (2) (3) (4) (5) (6) 
VARIABLES Cognition Immediate Recall Delayed Recall 
       
Harvest 0.042 0.030 -0.448 -0.750 -0.215 -0.943 
 (0.287) (0.596) (0.280) (0.138) (0.656) (0.119) 
Fire × Harvest/1000 -0.021* -0.020* -0.005 -0.004 -0.072 -0.083 
 (0.067) (0.073) (0.951) (0.964) (0.472) (0.391) 
Age  0.063***  0.136  0.341** 
  (0.000)  (0.453)  (0.044) 
Age square  -0.000***  -0.001  -0.001 
  (0.000)  (0.147)  (0.131) 
Smoke  -0.005  0.165*  0.076 
  (0.654)  (0.063)  (0.441) 
Drink  0.004  -0.037  -0.070 
  (0.610)  (0.683)  (0.467) 
Income  0.003  0.023  0.002 
  (0.142)  (0.270)  (0.956) 
Temperature  -0.000  -0.013  -0.025** 
  (0.686)  (0.118)  (0.030) 
Precipitation  -0.000  -0.011  -0.010 
  (0.805)  (0.214)  (0.356) 
Pressure  0.000  0.076  0.125 
  (0.941)  (0.290)  (0.113) 
Constant 0.915*** -1.065 6.067*** 2.425 4.899*** -9.712 
 (0.000) (0.286) (0.000) (0.804) (0.000) (0.303) 
       
Observations 10,619 10,448 9,946 9,803 9,865 9,724 
R-squared 0.610 0.619 0.649 0.655 0.642 0.647 
Control variables No Yes No Yes No Yes 
Year and Week FE Yes Yes Yes Yes Yes Yes 
Individual FE Yes Yes Yes Yes Yes Yes 

Notes: This table shows the impact of continuous fire points on cognitive function (a general 
cognitive test, immediate recall and delayed recall) in a difference-in-differences model, 
accounting for individual fixed effects and time fixed effects. The model only includes 
respondents aged 55 and above. The control variables include socioeconomic characteristics 
and weather variables. The first, third and fifth models are without control variables and the 
second, fourth and sixth models include all the control variables. Robust p-values are 
reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 


