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Abstract

This paper investigates the impact of imperfect investor information on finan-

cial innovation. We identify volatility and dividends as specific information

sources for which issuers of financially engineered products have an informa-

tion advantage over retail investors. Issuers’ information advantage is crucial

to explaining the overpricing and design of financially engineered products.

We confirm our conjecture that issuers exploit this information channel by

analyzing a discontinuity in issuers’ information advantage. The insights are

of systemic importance because they suggest that product issuers’ behavior

in the financial innovation market aggravates investor information frictions in

the financial system.
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1 Introduction

A dark side of financial innovation is that retail investors’ investment mistakes have large

welfare costs (Schiller, 2003). One source of such mistakes, namely imperfect investor

information, has attracted particular attention since the 2007–2008 credit crisis because

of concerns that this friction causes dramatic market disruptions (Gennaioli, Shleifer,

and Vishny, 2012; Hanson and Sunderam, 2013). Information disclosure is, therefore,

at the forefront of the current regulatory efforts to improve financial market stability

and increase welfare. As Campbell (2006) stresses in his presidential address, disclosure

requirements can reduce the incidence of investment mistakes, but the challenge is to

design these requirements appropriately. A key prerequisite to tackle the challenge is a

deep understanding of the role and origin of imperfect investor information in financial

innovations. Yet, the exact origin of the information friction is largely unknown mainly

because investors’ information sets are usually not observable.

This paper investigates imperfect investor information in the market for structured

products. We overcome the information-observability challenge through our access to

a large database containing the information provided to structured product investors.

Our analysis provides two primary results. First, we identify two specific information

sources that cause issuers to exploit their informational advantage over retail investors,

namely volatility and dividends. Both information types are economically important

determinants of product overpricing, whereas standard proxies for the production cost of

structured products, market environment, and liquidity are mostly insignificant. Second,

issuers design products towards the sources of investor information frictions that we

identify. The design result is of systemic importance because it underpins the concern

that financial engineering aggravates imperfect investor information frictions in financial

markets.

Structured products have recently attracted attention in the financial innovation lit-

erature because of issuers’ flexibility to tailor these products to the desired function
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(Henderson and Pearson, 2011; Célérier and Vallée, 2017). They represent an ideal labo-

ratory in which we can explore the role of imperfect information on financial innovations,

as they are frequently issued to retail investors with information that is inferior to the

information held by financial intermediaries (Bhattacharya et al., 2012). In addition,

issuers’ flexibility allows us to analyze the impact of their informational advantage on

product design.

We have access to a large database containing the term sheets of all structured prod-

ucts on single stock underlyings issued in Switzerland. The market for structured prod-

ucts is well established in Europe and has, according to the SEC database, also grown

substantially in the US in recent years Bouveret et al. (2013). Issuers of structured prod-

ucts are obliged to disclose important product information to investors on term sheets.

Comparing term sheet information that is available to investors with the (costly) financial

information available to product issuers from EUREX and IBES allows us to measure the

informational gap between issuers and investors. Using the term sheets, we also calcu-

late the difference between product issue prices to retail investors and replication prices

for identical payout profiles to institutional investors. We label this difference the issue

premium (IP ). The IP measures the premium at which issuers sell products to retail

investors and, hence, the % overpricing of these products. Analyzing price differences

helps us to isolate the impact of the informational gap because any unobservable price

determinant that is correlated with our informational proxies should affect both prices

but not their difference.

We first examine product issuers’ exploitation of their volatility information advan-

tage. Whereas issuers have access to implied volatility estimates of a product’s under-

lying, term sheets do not disclose this information. Instead, retail investors tend to

rely on historical price discovery (Daniel et al., 2002; Sirri and Tufano, 1998), which is

commonly provided on term sheets. We find that issuers earn a 64% (95 bps) larger

IP with products for which the implied volatility is higher than the historical volatil-
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ity. As replication prices in our sample decline with implied volatility, this relationship

suggests that issuers earn higher IPs when investors, based on their information set,

overvalue a product. We present a battery of refinements to confirm that issuers exploit

their volatility information advantage. First, the effect is stronger for products that are

more value-sensitive to volatility information, have less coverage from implied volatility

providers, and have a higher portion of retail investors. Second, products with higher

implied than historical volatility tend to have relatively low implied volatility. Thus, the

result is not simply a consequence of investors’ being unable to recognize that higher

implied volatility reduces product prices (Henderson and Pearson, 2011). Third, using a

matched sample approach, we show that issuers select underlying stocks with a higher

implied than historical volatility when designing their products.

We then analyze issuers’ dividend information exploitation. Product values in our

sample decline with expected dividends because investors are long in the underlying stock,

but do not obtain dividends that accrue up to maturity. Whereas issuers have access to

dividend estimates, term sheets do not disclose this information. The dividend results

mirror our observations from the volatility analysis. Issuers earn a 53% (78 bps) higher

IP with products for which analysts forecast a higher future underlying dividend than the

publicly available historical dividend. We also find that issuers’ tendency to exploit this

information channel is stronger when product value-sensitivity to dividends is higher and

the portion of retail investors is larger. In addition, a matched sample approach reveals

that issuers select underlying stocks with a higher forecasted than historical dividend.

Although we take care to consider price differentials, relevant controls, robustness

tests, and refinements to exclude alternative explanations of our results, the challenge in

claiming causality between imperfect investor information and security issuance behavior

is the difficulty of isolating differences in issuers’ informational advantage independently

of observable and unobservable product, macroeconomic, competition, or issuer charac-

teristics. We address this identification problem by exploring a discontinuity in issuers’
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informational advantage regarding the timing of underlying dividends. Specifically, a

structured product’s payoff is specified with respect to the stock price at maturity and

investors are not entitled to receive the underlying’s dividend. Thus, investors overvalue

a product if they expect the share price at maturity to still trade cum-dividend but it

already trades ex-dividend. This overvaluation due to incomplete dividend payment date

information can only occur with products that have an ex-dividend date shortly before

maturity (just–before products), but not for those that have the ex-dividend date right

after maturity (just–after products).1 Therefore, issuers are able to exploit superior div-

idend timing information only with just–before products. We explore this discontinuity

in issuers’ informational advantage around future ex-dividend dates using a standard Re-

gression Discontinuity Design (RDD). We find that whereas just–before products have

observable characteristics that are very similar to those of just–after products, the former

are discontinuously more overpriced than just–after products. This result confirms that

issuers use their informational advantage to push overpriced securities to investors.

Our results relate to several streams of the literature. First, a vein of closely related

studies analyzes the reasons behind investors’ mistakes in the financial innovation market.

This literature finds that product complexity, ignorance of fees, obfuscation, or lack of

sophistication can partially explain the mistakes (DeMarzo, 2005; Coval et al., 2009; Choi

et al., 2009; Carlin, 2009; Carlin and Manso, 2011; Henderson and Pearson, 2011; Célérier

and Vallée, 2017). We contribute to this literature by identifying investors’ inferior access

to financial information as an important additional explanation.

Second, we contribute to the literature that points to imperfect investor information

as a crucial friction in the financial innovation market (Ashcraft and Schuermann, 2008;

An et al., 2011). Gennaioli et al. (2012), Gorton and Metrick (2012), Stein (2012), and

Hanson and Sunderam (2013) argue that this friction is tenuous to the entire financial

system as it can cause large market disruptions when new information arrives. Despite

1In case just–after product investors expect the ex-dividend date to be earlier than the true date,
their misjudgment could even induce them to undervalue a structured product.
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this concern, surprisingly little is known about the sources behind imperfect investor

information. An exception is the study of Piskorski et al. (2015), which finds significant

asset quality misrepresentation by issuers of residential Mortgage-Backed Securities. We

contribute to this literature in two ways. First, we identify volatility and dividends as

two important sources behind the investor information friction. As the recent disclosure

literature suggests that the type of information being disclosed is key in determining

whether disclosure is welfare improving (Bond and Goldstein, 2015; Goldstein and Yang,

2017), knowing the specific sources is crucial for guiding policymakers in the design of

appropriate disclosure measures that mitigate the friction. Second, our results pertaining

to the design of structured products emphasize the systemic stability concern, implying

that financial innovators deliberately structure products for which investors have inferior

information.

Third, we complement studies on the pricing of structured products. According to this

stream of the literature, it is challenging to explain variations in structured products’ IPs.

Henderson and Pearson (2011) analyze the mispricing of 64 retail structured products.

Out of nine potential explanatory variables, only one (implied volatility of the underlying)

is significantly associated with IPs. Benet et al. (2006) also find a substantial IP . They

show that both an underlying’s implied volatility and product maturity play a role.

Stoimenov and Wilkens (2005) investigate the secondary market prices of structured

products. We contribute to this literature stream by illustrating that imperfect investor

information is an economically important pricing determinant.

2 Structured products: Market and data sample

Structured products are investment instruments with payoffs that are linked to the per-

formance of one or several underlyings from a wide range of asset classes such as equity,

fixed-income, and commodities. They are composed of multiple financial instruments,
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commonly a combination of bonds, equities and derivatives. Structured products are

issued to investors on the primary market and subsequently traded on the secondary

market until they expire. In this study, we focus on the primary market, for two reasons.

First, the secondary market is relatively illiquid and has a much lower traded volume

than the issue volume on the primary market (SVSP, Schweizerischer Verband für Struk-

turierte Produkte, 2013). Second, we are also interested in issuers’ design of products,

which is determined at issue, and not only in issuers’ price setting decision.

Issuers have considerable flexibility to tailor the products by choosing the compo-

sition, underlying, option strikes, and issue pricing.2 This flexibility in product design

raises the concern that issuers exploit investors by using their privileged access to infor-

mation. It also weakens the competition mechanism as a potential remedy to this concern

because issuers can impede comparability of their products to those of competitors by

simply issuing different product designs. Regulations limit issuers’ flexibility along cer-

tain dimension.3 For example, pure forward and option transactions do not qualify as

structured products. In addition, products with a maturity beyond one year are subject

to the stamp tax in Switzerland.4 The latter regulation limits issuers’ flexibility to select

product maturities, which is important for our regression discontinuity approach.

The market for structured products has grown substantially. Bouveret et al. (2013)

report a total outstanding volume of structured products in Europe of almost EUR 770bn

as of December 2012. This notional volume amounts to 4% of household financial wealth,

or 12% of mutual funds’ assets under management in the European market. Whereas the

US structured product market has traditionally lagged behind its European counterpart,

it has dramatically increased its volume in recent years. Specifically, the yearly US sales

volume of publicly registered structured notes in the SEC database increased from USD

2Whereas issue prices are normalized for some products, issuers can simply determine the amount of
each instrument that such a normalized product package contains and, hence, the issue pricing.

3see the regulatory framework “Guidelines on informing investors about structured products” pub-
lished by the Swiss Bankers Association and approved by the Swiss Federal Banking Commission.

4The taxation of structured products is regulated in the circular letter issued by the Federal Tax
Adminstration on April 12, 1999 (not available in English).

6



0.3bn in the year 2000 to USD 43.5bn in the year 2015. Most products have equity

underlyings both from the US and Europe (Bloomberg Brief: Structured Notes, 2015;

Structured Retail Products, 2015).

In this study, we focus on a large database of structured products issued in the Swiss

market. Banks in this market rely on standardized product categories, which is important

for the systematic collection of comparable products (Structured Retail Products, 2015).

With a total sales volume of USD 21.3bn, Switzerland was the second largest European

issuer of structured products in 2014 (Structured Retail Products, 2015). The Swiss

market has also been the global leader in terms of the volume of structured products

invested in custody accounts (Swiss Bankers Association, 2011).

Our structured products database is provided by Derivative Partners. It contains

term sheets of all structured products on equity underlyings issued in Switzerland be-

tween January 2005 and December 2010. The database comprises 15’170 publicly issued

products that target the retail market.5

From this database, we exclude products on multiple underlyings (14’138) and with

missing data (20), leaving us with a total sample of 1012 products on a single equity

underlying. We focus on products with a single equity underlying because they can be

replicated from observed market prices of interest rates and EUREX options on the corre-

sponding underlying.6 The availability of market prices is important for investigating the

difference between structured product prices for retail investors and replication (market)

prices for institutional investors. Our sample of priced products is considerably larger

than those used in existing studies. For example, Henderson and Pearson (2011) con-

sider 64 products, Célérier and Vallée (2017) price 141 products, and Arnold et al. (2016)

extract 501 products from the same structured products database.

Table 1 reports the number of launched products grouped by issuer, product category,

5Above a minimum investment threshold of around CHF 25’000, most issuers in the Swiss market offer
individual structuring of products on behalf of clients. These tailor-made products are issued privately
and, hence, are not included in the database.

6EUREX options data are provided by the FMI department of the Karlsruhe Institute of Technology.
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and year. The products were issued by two Swiss banks and five international banks in

Switzerland. Together, the two Swiss banks, Credit Suisse and UBS, account for more

than two-thirds of our sample. Goldman Sachs and Royal Bank of Scotland issue a share

of 14.3% and 13.2%, respectively. The sample contains six separate product categories

with 87 unique underlyings. Discount Certificates, Barrier Reverse Convertibles, and

Bonus Certificates are the most prevalent categories. From 2005–2008, the number of

issued products increased each year, whereas it declined between 2008 and 2010.

INSERT TABLE 1 NEAR HERE

Product payoff profiles are defined in the term sheets. On the initial fixing date, the

issuing bank defines the terms of a structured product such as the issue price, strikes,

coupon payments, barrier level, redemption, and all relevant dates. These terms are

communicated to an investor in a product’s final term sheet. Derivative Partners provides

a database which lists all final term sheet items for every structured product, we manually

double-check each database entry with the corresponding term sheet.7 Product categories

in our sample have the following profiles:

With a Discount Certificate, an investor purchases an underlying stock at a discount

but resigns the upside stock performance beyond a prespecified cap. If the stock closes

above this cap at maturity, the investor obtains a payoff equal to the difference between

the initial stock and the strike prices. Otherwise, he receives the stock performance.

Barrier Discount Certificates likewise embed a discount feature that allows an in-

vestor to buy an underlying stock below its market price. The barrier feature provides

conditional capital protection. The investor receives a prespecified payoff if the stock

never touches the lower barrier during the product’s lifetime. If this barrier is touched,

the capital protection is cancelled and the product converts into a Discount Certificate.

Reverse Convertibles have the same payoff profile as Discount Certificates. The only

difference is that Reverse Convertibles also pay coupons and have a nominal amount.

7In total, we find and correct 31 entries that contain an error mostly in the date item.
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Capped Outperformance Certificates allow an investor to participate disproportion-

ately in the performance of the underlying stock above the strike price. If the stock

closes below this strike at maturity, the product has the same payoff structure as the

stock. Above the strike, the investor obtains a multiple of the difference between the

stock and strike prices up to a predetermined cap.

Barrier Reverse Convertibles pay a fixed coupon and are capital-protected as long

as the underlying stock does not touch a prespecified lower barrier during a product’s

lifetime. If the barrier is touched, the capital protection is canceled and a Barrier Reverse

Convertible converts into a Reverse Convertible.

Bonus Certificates allow an investor to participate in an underlying stock with a down-

side protection at a fixed bonus level as long as the stock does not touch a prespecified

lower barrier during a product’s lifetime. Once the barrier is touched, the down-side

protection is canceled and the Bonus Certificate simply follows the stock performance.

In contrast to a direct investment in an underlying stock, an investor is not entitled

to receive the stock’s dividend payments. This applies to all product categories.

3 Product overpricing and imperfect information

In this section, we first present our main variables, hypotheses, and empirical identifica-

tion strategy to analyze product overpricing. We then summarize the results regarding

the impact of imperfect information on product overpricing.

3.1 Overpricing measure: Issue premium

We use the IP of structured products as our dependent variable. The IP is the percent-

age difference between the issue price and the replication price of a structured product
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(Henderson and Pearson, 2011). We calculate IP as

IP =
IssuePrice−ReplicationPrice

IssuePrice
, (1)

where Issue Price is the initial price at which banks sell a structured product to retail in-

vestors. This price includes all issuance fees and commissions that are directly associated

with the products. Due to their access to fixed income and option markets, institutional

investors can replicate the payoff profile of a structured product with traded instruments.

Thus, the Replication Price is the market price for institutional investors of replicating a

product’s payoff profile. Intuitively, the IP is the percentage difference between prices for

retail and institutional investors of the same payout profile at the same time. As a prod-

uct issuer can hedge his future obligation to a retail investor when selling a structured

product by simply replicating the payoff profile, the IP reflects the percentage product

overpricing at issue and, hence, the issuer’s profit for launching a product.8

Whereas product term sheets provide us with issue prices, we also need to calculate

replication prices. To this end, we first determine the fixed-income and option components

that replicate a structured product. Second, we derive the price of each component from

observed market prices. Finally, the replication price of a structured product is the sum

of the prices of the components that replicate its payoff profile. The Appendix illustrates

the derivation of replication prices in detail.

As presented in Table 2, the average issue premium in our sample is 1.48%. This

magnitude coincides with the average IP in empirical samples of similar simple-short

term structured products (Burth et al., 2001; Baule et al., 2008; Célérier and Vallée,

2017). Outside of Switzerland, IPs tend to be higher. The studies of Stoimenov and

Wilkens (2005) on the German market and of Henderson and Pearson (2011) on the US

market find average issue premiums of 3.89% and more than 8%, respectively.

8We control for additional factors affecting hedging costs in our analysis.
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INSERT TABLE 2 NEAR HERE

3.2 Imperfect information: Volatility and dividends

We investigate the information provided by issuers to structured product investors to

define our explanatory variables that capture imperfect information. This information

is collected in product term sheets. The term sheets disclose most parameters that are

relevant to assessing the value of a structured product. Thus, it is relatively easy even for

less financially sophisticated retail investors to compare term sheet information between

products. For instance, a product with a higher coupon is more attractive than a product

with a lower coupon but otherwise identical term sheet information. It is, however, more

challenging for retail investors to compare products along dimensions that are not exposed

on term sheets. Therefore, we argue that it is simpler for issuers to sell structured products

to retail investors that are overpriced in terms of product characteristics which are not

observable on term sheets. Two important replication price determinants of structured

products, on which there is no information on term sheets, are the implied volatility of

the underlying and the expected dividend.

We define implied volatility (Impl V ola) as the annualized implied volatility of an at-

the-money put option on a product’s underlying with a maturity equal to the product’s

maturity. We extract this implied volatility from traded EUREX options as described in

the Appendix.

Impl V ola is available to product issuers through, for example, EUREX or BLOOM-

BERG. It is, however, difficult for retail investors to obtain implied volatility estimates

because access to traded options data is restricted and costly; e.g., one year of access

to BLOOMBERG’s proprietary computer system costs around $25,000 per user. Hence,

retail investors must resort to alternative measures when gauging the expected volatil-

ity of a product’s underlying. As suggested by the literature (Daniel et al., 2002; Sirri

and Tufano, 1998), they tend to rely on historical information. This conjecture is sup-

ported by our observation that many structured product term sheets contain a picture
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of the historical price evolution of the product’s underlying.9. To capture the volatility

information available to retail investors, we, therefore, calculate the historical volatility

(Hist V ola) as the standard deviation of a product underlying’s returns over the 255

trading days before the initial fixing date. We choose 255 days as it corresponds to the

median product maturity in our sample. The average implied and historical volatilities

are 0.29% and 0.31%, respectively, as shown in Table 2. Whereas they are of similar

average magnitude, historical volatility has a larger standard deviation.

Because replication prices of all products in our sample decline with volatility, issuers

have an informational advantage over retail investors if Impl V ola is larger than Hist

V ola. In this case, retail investors underestimate volatility based on their available in-

formation and, hence, overestimate a product’s value. Thus, we proxy issuers’ volatility

information advantage with the simple dummy variable Higher V ola that is one if Impl

V ola is larger than Hist V ola. For 563 of the 1012 products in our sample the Higher

V ola dummy is one. We use a dummy in the primary analysis to avoid that our results

are driven by, for example, large negative differences between the two volatility measures

that are difficult to interpret. Section 6 shows that the results are robust to using the

difference between Impl V ola and Hist V ola as a proxy of the informational advantage.

Our first hypothesis is that issuers overprice products more when they have a volatility

information advantage.

The expected dividends of a product’s underlying are a second crucial pricing factor,

which is not provided in product term sheets. Product issuers usually have access to

dividend forecasts such as IBES. We capture the issuers’ dividend information (IBES

Div) as the ratio between the present value of expected dividend payments based on

IBES forecasts that occur during a product’s lifetime and the underlying’s stock price

at the initial fixing date. We estimate the expected ex-dividend dates by projecting the

historical ex-dividend dates within a year prior to the initial fixing date into the future.

9In Figure A1 of the Appendix, we extract the typical picture of the underlying’s historical price
evolution as provided in a product term sheet from our sample.
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Dividend forecasts are restricted and costly. Retail investors can instead resort to his-

torical dividend information, which is publicly available on the Internet, to estimate ex-

pected dividends.10 We capture retail investors’ dividend information by Hist Dividend,

which is the ratio between the present value of expected dividend payments based on

historical dividend amounts paid in the 255 days prior to the initial fixing date and the

underlying’s stock price at the initial fixing date. IBES Dividend and Hist Dividend

have similar means and quantiles as shown in Table 2. Both dividend measures are

characterized by a relatively low standard deviation.

Structured product investors are usually not entitled to receive dividend payments be-

cause they hold only derivative positions on the underlying. Since the replication prices

of all products in our sample are positively related to the stock price of the underlying

(all products exhibit a delta that is strictly above zero), a higher future dividend payment

during the lifetime of a structured product ceteris paribus reduces the product’s current

replication price. Thus, issuers have an informational advantage over retail investors if

IBES Div is larger than Hist Div. In this case, retail investors underestimate dividends

based on their available information and, hence, overestimate a product’s value. There-

fore, we proxy issuers’ dividend information advantage with the simple dummy variable

Higher Div that is one if IBES Div is larger than Hist Div. For 608 of the 1012 prod-

ucts in our sample, Higher Div is equal to one. We use a dummy in the primary analysis

to avoid that our results are driven by, for example, large negative differences between

the two dividend measures that are difficult to interpret. Section 6 shows that the results

are robust to using the difference between IBES Div and Hist Div as a proxy of the

informational advantage. Our second hypothesis is that issuers overprice products more

when they have a dividend information advantage.

The correlation between Higher V ola and Higher Div is 0.08. Thus, the two dummy

variables identify mainly two distinct product groups.

10For example, on finance.yahoo.com.
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3.3 Empirical approach and identification

To investigate the impact of imperfect information on product overpricing, we run cross-

sectional OLS regressions of IP on our explanatory and control variables. Our main

regression model is

IPi = α + β1Higher Dummyi + βjControlsij + εi, (2)

where IPi is the IP of product i. Higher Dummyi represents our information advantage

proxy, which is the Higher V ola dummy for volatility and the Higher Div for dividends.

Hence, Higher Dummyi is our main explanatory variable.

Our main identification challenge arises from potential omitted variables that are

correlated with both IPs and an explanatory variables. We mitigate this challenge by

incorporating a comprehensive set of controls and considering price differences as the

dependent variable.

First, we incorporate the control variables of Henderson and Pearson (2011) into

our analysis, which are captured in the vector of controls Controlsij.
11 Specifically, we

control for investor attention (ExcessReturn, Market Cap and Underlying Turnover)

and issuers’ hedging costs (Option V olume). We calculate Excess Return as the return

of the 3- and 12-month continuous annual returns of the underlying in excess of the 3-

and 12-month continuous annual returns of the Swiss Market Index (SMI), respectively.

Market Cap is the natural logarithm of the market value of equity of the underlying

(in USDbn) at the initial fixing date, and Turnover is natural logarithm of the dollar

value (in USDm) of the cumulated trading volume of the underlying 1- and 3-months

prior to the initial fixing date, respectively. 1m Call V olume and 1m Put V olume are

the cumulated trading volumes of EUREX call (put) options written on the underlying

during the 20 trading days preceding the initial fixing date of a structured product divided

11The only control to which we do not have access is the issuance volume of each product.
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by the volume of call (put) options written on all underlyings during the same time

period. As in Henderson and Pearson (2011), we also consider year fixed effects in all

regressions to control for aggregate trends such as in product demand. In Section 6, we

incorporate additional control variables. Our results are robust to including measures for

competition, issuers’ default risk, funding needs, the economic environment, products’

time to maturity, product complexity, product category fixed effects, issuer fixed effects,

and underlying fixed effects. All data on underlyings, options components, and dividend

consensus estimates are from Datastream, the EUREX database, and IBES, respectively.

We present the summary statistics for all controls in Table 2.

Second, the advantage of using IP as the dependent variable is that IP is a price

differential, which mitigates the omitted variables concern. Specifically, if unobserved

variables (similarly) affect Issue Price and Replication Price, their impact on our results

cancels out in the differential and, hence, they do not bias our estimation.

Finally, we enhance the credibility of our informational explanation by showing that

the relation between the dependent and the explanatory variables is stronger when the

information channel is more plausible. To this end, we interact our explanatory variables

with several additional variables that are included in Table 2. Delta (V ega) is a prod-

uct’s first-order derivative with respect to the price (volatility) of the underlying using the

Black-Scholes formula, scaled by the product’s denomination. Delta (V ega) of products

with barrier options is calculated numerically. The V ega of all our products is nega-

tive and the Delta positive, which implies that investors gain from volatility reductions,

underlying price increases, or expected dividend cuts during a product’s lifetime. In ad-

dition, we collect structured products’ trading size because the literature finds a negative

relationship between trading size and investor sophistication (Battalio and Mendenhall,

2005; Bhattacharya et al., 2007; Bhattacharya, 2001). Specifically, we calculate Trading

Size as the logarithm of the average trading size of each structured product in USD on

the secondary market and use this variable as a proxy for the sophistication of a prod-
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uct’s investors. We also consider IV olatility, which is a dummy variable that is one if

a product’s underlying is covered on IVolatility.com at the initial fixing date and zero

otherwise. IVolatility.com is a widely used volatility information provider.12 It is the first

provider that offers single volatility quotes on selected individual underlyings to retail

investors, whereas alternative providers only offer entire volatility information packages.

This single quote feature is important in the context of our study because IVolatility.com

coverage of an underlying considerably reduces the volatility information advantage of is-

suers over retail investors for that underlying. Specifically, a structured product investor

could acquire the volatility information of a product with a covered underlying for a few

dollars but would have to buy the entire volatility package for several thousand dollars if

he wanted the volatility information of an uncovered underlying.13 For 768 products in

our sample, volatility information on underlyings was available on IVolatility.com at the

initial fixing date.

Another identification challenge is to establish a causal link between issuers’ infor-

mational advantage and product overpricing. We address this challenge by applying a

regression discontinuity approach in Section 4.

3.4 Overpricing and imperfect volatility information

We start by investigating the impact of imperfect volatility information on IPs. In

Column (1) of Table 3, we first replicate the regression of Henderson and Pearson (2011)

to ensure that our setting is consistent with their study. As in Henderson and Pearson

(2011), only Impl V ola is positively associated with IPs. The remaining controls are

either insignificant or not robust to alternative controls (see Columns (1)–(5)).

INSERT TABLE 3 NEAR HERE

Next, we test our hypothesis by adding the Higher V ola dummy in Column (2).

12See www.ivolatility.com.
13The charge for single quotes starts at 3 USD.
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The coefficient on Higher V ola implies that issuers demand a 0.951% larger IP for

products with higher implied than historical volatility. This magnitude is important,

accounting for almost two-third of average IPs. This result suggests that issuers overprice

products when they have a volatility information advantage, i.e., when retail investors

underestimate volatility based on their historical information. A caveat with our Higher

V ola dummy is that it could be correlated with a volatility risk premium. Whereas this

premium affects option prices (e.g., Carr and Wu, 2016), the advantage of using IP in

our regressions is that the IP corresponds to the difference between prices paid by retail

and institutional investors. Thus, even if the volatility risk premium affects option prices,

it should not drive the price difference of the same option.

We address the concern that Higher V ola simply identifies products with particularly

high Impl V ola by calculating the average Impl V ola of products that have a Higher

V ola dummy of one. Their average Impl V ola (0.265%) is significantly smaller than

that of products with a Higher V ola dummy of zero (0.314%), with a t-statistics of 6.93

using a two-sample t-test. Thus, issuers also increase IPs when Impl V ola is relatively

small yet larger than the historical volatility and not simply when Impl V ola is large.

Therefore, imperfect information plays a role that is independent of the financial literacy

explanation in Henderson and Pearson (2011). This literacy explanation would imply that

because retail investors are unaware of the negative impact of volatility on structured

products’ replication prices, issuers would simply install larger IPs for products with

higher ImplV ola.

To investigate whether the quantitative magnitude of the Higher V ola coefficient

is consistent with our information exploitation story, we first calculate the difference

between the implied and historical volatilities for all products with Higher V ola equal to

one. The approximate value of a product’s informational advantage for an issuer is then

retrieved by multiplying this difference by the product V ega. Intuitively, this value is a

retail investor’s percentage overvaluation of a product if he or she relies on the historical
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instead of the implied volatility. Issuers’ average informational advantage value across

all products with a dummy equal to one is 1.859%. Thus, the coefficient of Higher V ola

in Column (2) suggests that issuers are, on average, able to exploit approximately 51%

(0.951% of 1.859%) of their informational advantage. The economic magnitude of this

exploitation is plausible given that approximately half of all products in Switzerland are

sold to retail investors (SVSP, Schweizerischer Verband für Strukturierte Produkte, 2013)

and that Higher V ola is only a proxy of issuers’ volatility informational advantage.

We now present several refinements to support our first hypothesis that issuers exploit

imperfect volatility information.

If the exploitation of imperfect volatility information drives our results, then the

coefficient on Higher V ola should be more pronounced for products with a more negative

V ega. For such products, investors overestimate product values particularly when they

underestimate volatility. Indeed, the coefficient on the interaction Higher V ola x V ega

in Column (3) shows that if V ega is more negative, the impact of Higher V ola on IPs

is stronger.

In Column (4), we investigate how the coverage of a product’s underlying at the issue

date on IVolatility.com affects our results. The negative and significant coefficient of

the interaction term between Higher V ola and IV olatility implies that, consistent with

our hypothesis, improving retail investors’ volatility information accessibility mitigates

issuers’ exploitation of this information advantage channel.14 A potential explanation

for the result that exploitation declines with investor information accessibility is the

reputation concern of issuers. This channel may work independent of whether investors

actually collect that information.

As shown in Column (5), the interaction between Higher V ola and Trading Size

as a proxy for investor sophistication has a significantly negative coefficient. This result

14If we include underlying fixed effects, the coefficient of the interaction term is equal to −0.53 and sta-
tistically significant at the 10% level. Thus, the effect is not driven by underlying specific characteristics
but the change in the availability of implied volatility information.
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also supports our imperfect information exploitation hypothesis because it implies that

issuers particularly use their informational advantage to overprice securities when investor

sophistication is low.

3.5 Overpricing and imperfect dividend information

We now test whether product issuers exploit their informational advantage regarding

dividends. The results are presented in Table 4. In the first column, we include IBES

Div as a measure of forecasted dividend payments. The significantly positive coefficient

of IBES Div shows that an increase in expected dividend yield raises the IP . The

magnitude of the coefficient implies that increasing IBES Div by one standard deviation

(0.022) enhances the IP by 0.15%.

INSERT TABLE 4 NEAR HERE

We incorporate our proxy for retail investors’ information on dividends in Column (2).

Products with Higher Div equal to one carry an IP that is on average 0.783% higher.

This effect is economically important because it corresponds to an increase of more than

52% of the average IP . These results provide a first indication regarding our second

hypothesis that issuers collect higher IPs if they have a dividend information advantage

over retail investors.

To investigate whether the quantitative magnitude of the Higher Div coefficient is

consistent with our information exploitation story, we first calculate the difference be-

tween the present values of expected IBES dividends and historical dividends over the

lifetime of all products with Higher Div equal to one. We then obtain the approximate

value of a product’s informational advantage for an issuer by multiplying this difference by

the product Delta. Intuitively, this value is a retail investor’s percentage overvaluation of

a product if he or she relies on historical instead of forecasted dividends. Issuers’ average

informational advantage value across all products with a dummy equal to one is 1.465%.

Thus, the coefficient of Higher Div included in Column (2) suggests that issuers are, on
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average, able to exploit around 54% (0.783% of 1.465%) of their informational advantage.

The economic magnitude of this exploitation is plausible given that approximately half

of all products in Switzerland are sold to retail investors (SVSP, Schweizerischer Ver-

band für Strukturierte Produkte, 2013) and that Higher Div is only a proxy for issuers’

informational advantage.

In Column (3), we include the interaction between Higher Div and Delta. If Delta

is larger, underestimating dividends has a stronger impact on retail investors’ perceived

product value. The significantly positive coefficient of this interaction suggests that our

dividend information exploitation result is more pronounced for products with higher

sensitivity to this information. This finding supports our imperfect dividend information

exploitation hypothesis.

Column (4) shows that the interaction between Higher Div and Trading Size has

a significantly negative coefficient. This result supports the information exploitation

hypothesis because it implies that issuers use their dividend information advantage in

particular to overprice securities when investor sophistication is low.

Overall, Section 3 suggests that volatility and dividend are two key information sources

that cause the investor information friction. They explain a substantial part of the level

and cross-sectional variation of the products’ overpricing.

4 A regression discontinuity design for dividend pay-

ments around the maturity date

Product issuers have privileged access to dividend timing information that is unavailable

to retail investors. For example, they can rely on internal and external analyst forecasts,

or on timing information from market makers’ order books (Chae, 2005). In addition,

some retail investors lack information on the impact of this timing on structured product

payoffs. For instance, the ex-dividend date is relevant to this payoff but not the dividend
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announcement, payment, or record date. In this section, we exploit a discontinuity in

issuers’ dividend timing information advantage to support our second hypothesis.

4.1 Intuition behind the RD approach

A structured product investor is not entitled to receive the underlying’s dividend that

accrues during the lifetime of a product, i.e., product payoffs are defined on the under-

lying’s ex-dividend price. A discrete dividend before product maturity then reduces the

investor’s final payoff of a structured product. Thus, even a minor misjudgement of fu-

ture ex-dividend dates can have a large impact on perceived product values. Specifically,

if an investor expects the ex-dividend date to occur after product maturity but the un-

derlying actually goes ex-dividend before or at maturity, he or she obtains the product

payoff based on the ex-dividend share price instead of cum-dividend.15 Therefore, retail

investors may overvalue a product if they have incomplete dividend timing information

and the future ex-dividend date occurs shortly before product maturity (just–before prod-

ucts). Such overvaluation cannot occur if the future ex-dividend date occurs shortly after

product maturity (just–after products). In this case, investors would undervalue a struc-

tured product if they misjudge the ex-dividend date to occur before product maturity.16

Thus, issuers can use their informational advantage on dividend timing to push overpriced

securities to investors with just–before products but not with just–after products.

This discontinuity in issuers’ informational advantage at product maturity is quanti-

tatively important for product IPs. For instance, consider product A with a maturity

of one year, one discrete dividend payment of 1.5%, an ex-dividend date one day after

maturity, a Delta of one, and an IP equal to our sample’s average of 1.48%. An otherwise

identical product B with a maturity that is just one day shorter than that of product A

15A share starts trading ex-dividend in the opening of an ex-dividend date, but a structured product
matures at closing.

16If investors were to believe, mistakenly, that the ex-dividend date would occur after the future ex-
dividend date, this misjudgment would have no impact on their product valuation as both dates occur
after product maturity.
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has around a 1.5% lower replication price (ignoring discounting). Thus, if retail investors

misjudge the future dividend date of product B to be one or more days later, such that

they are ready to pay the same issue price as for product A, product B’s IP doubles to

1.48% + 1.5% = 2.98% compared with product’s A IP of 1.48%. Whereas issuers double

their proceeds with product B, however, investors attain a less attractive product. Specif-

ically, the 1.5% lower replication price of product B implies that, on average, investors

attain a 1.5% smaller investment performance with product B than with product A.

4.2 RD approach and results

We now exploit the discontinuity in issuers’ informational advantage regarding dividend

timing information around product maturity dates to investigate the impact of imperfect

information on an outcome variable that captures product performance. To this end, we

closely follow the standard regression discontinuity (RD) approach in Chang et al. (2014).

We define our assignment variable as the difference between the closest expected ex-

dividend date and the product maturity date expressed in days. The closest expected

ex-dividend date is the product underlying’s expected ex-dividend date that is nearest to

product maturity. We estimate expected ex-dividend dates by projecting the historical

ex-dividend dates in the year prior to the initial fixing date of a product into future

years.17 A negative (positive) value of the assignment variable indicates that the expected

ex-dividend date occurs before (after) the maturity date. A product with a negative

or zero assignment variable (a just–before product) is treated because issuers have an

exploitable informational advantage with respect to dividend timing. A product with a

positive assignment variable is non-treated (a just–after product). We expect the treated

products to be more overpriced compared than the non-treated products.

We use unexplained product performance (UP ) as a measure of structured products’

17Ex-dividend dates are usually relatively stable. The mean deviation from the previous year’s date
in our sample is only seven days.
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initial overpricing to retail investors. The outcome variable UP is the fraction of a

product’s ex-post performance that is not explained by the performance of its underlying.

We use UP as an overpricing measure because higher overpricing, i.e., higher IPs, leads

to inferior unexplained product performance for investors. In our main analysis, we do not

use IP directly as the outcome variable. The calculation of IPs is based on replication

prices that depend on our own projection of expected dividend dates (see the Appendix).

Thus, potential ex-dividend date projection errors could lead to spurious correlations

between treatment assignment and the outcome variable IP . Such errors may even cause

discontinuities in the outcome variable around the threshold and, hence, could drive our

conjecture from the RD design. In contrast, UP is independent of how we calculate initial

replication prices and, thus, cannot exhibit any discontinuity around the threshold due

to dividend projection errors. Thus, we proceed by using UP as the outcome variable in

the main RD design.18

To obtain UPs, we collect the residuals of the regression

Product Performancei = α + β1ReturnUnderlyingi+

β2ProductCategoryi + β3ReturnUnderlyingi xProductCategoryi + εi,
(3)

where Product Performance is the annualized ex-post performance of product i calcu-

lated as the return between the issue price and the final payoff and Return Underlying

is the annualized ex-post total return of the underlying of product i multiplied by delta.

Multiplying the underlying return by Delta accounts for the property in virtue of which

structured products have differing sensitivities to their underlyings. As alternative prod-

uct categories exhibit diverse payout profiles, we also incorporate Category, which cap-

tures the product category of product i, and its interaction with Return Underlying.

We present the regression output in Table 5. With an R-squared of 90%, the regression

18Using IP yields very similar results. Figure A2 in the Appendix, for example, confirms that treated
products exhibit a discontinuously larger IP compared to non-treated products.
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model reflects the variation in Product Performance very well. The residuals of Eqn.

(3) exhibit a standard deviation of 0.093. We use these residuals as our outcome variable

UP . A low UP indicates high initial overpricing. UP , however, could also be affected

by a misspecification of the pricing model in Eqn. (3). We mitigate this concern in two

ways. First, we apply alternative pricing model specifications. Second, we measure the

UP differences between treated and non-treated products within the RD approach and,

thus, systematic misspecifications should cancel out.

INSERT TABLE 5 NEAR HERE

Figure 1 depicts UPs around the threshold. We fit a linear function on either side

of the threshold using binwidths of 5 and 10. Each bin represents the average of either

5 or 10 observations.19 The discontinuity in UPs at the threshold implies that just–

before products experience discontinuously lower unexplained product performance than

just–after products.

INSERT FIGURE 1 NEAR HERE

If the variation in the treatment near the threshold is approximately randomized,

just–before and just–after products should differentiate only with respect to issuers’ in-

formational advantage. To ensure randomization around the threshold in our application,

issuers should not be able to completely manipulate the difference between ex-dividend

and maturity dates (McCrary, 2008). We provide statistical and intuitive practical evi-

dence along three dimensions that this randomization condition of the assignment variable

is satisfied in our setting. First, we test the randomization condition with the standard

manipulation test based on McCrary (2008) and find no discontinuity in the density

function of the assignment variable around the threshold (t-statistics of 0.76).

Second, Figure 2 shows that banks issue structured products throughout the year.

Around 80% of ex-dividend dates in our sample, however, occur in the dividend season

19The number of observations per bin can vary if there is an unusually high or low number of obser-
vations on a given day.
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during March, April, or May. Thus, issuers would have to considerably deviate from

standardized maturities (0.5, 1, 1.5, 2, 2.5 or 3 years) with products issued in June, July,

August, December, January, or February to create just–before products by manipulating

their maturities. We find, however, that 76% of products issued in these month have

standardized maturities, which is even larger than the 70% of products with standardized

maturities issued in March, April, May, August, September, or October.

Finally, we plot products’ time to maturity around the RD threshold in Figure 3. Most

products have a maturity of one year or just less than one year because products with a

maturity beyond one year are subject to the stamp tax in Switzerland. Whereas issuers

could manipulate the just–after products with a one-year maturity on the right-hand

side of the threshold to become just–before products by simply increasing their maturity

by a few days, such manipulated products would lose their tax advantage. As almost

no dots on the right-hand side of the threshold are slightly above the one-year maturity

line, Figure 3 implies that issuers abstain from such manipulation. This example also

illustrates that exogenous reasons for product maturities such as taxes prevent issuers

from completely manipulating the assignment variable.

INSERT FIGURE 2 NEAR HERE

INSERT FIGURE 3 NEAR HERE

We now apply a fuzzy RD design to establish a causal relationship between issuers’

informational advantage and the degree of product overpricing. We use a fuzzy RD ap-

proach because, at product initiation, issuers have estimated future ex-dividend dates but

not realized ex-dividend dates and, hence, do not know with certainty whether a prod-

uct is treated. To explore the discontinuity in issuers’ informational advantage around

product maturity dates, we use our projected ex-dividend dates as an instrument for

the actual ex-post realized ex-dividend dates. Following Chang et al. (2014), we employ

a two-stage least-squares approach. As we have no prior on the functional relationship
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between our assignment variable and the outcome variable, we use a local polynomial of

order one to construct the point estimator.20

The first-stage regression model is

ExPosti = α1 + β1Daysi + ExAntei[α2 + β2Daysi] + εi, (4)

where Ex Posti is a dummy equal to one if the actual (ex-post) ex-dividend date closest

to the maturity date occurred after product maturity and zero otherwise. Daysi is the

difference between our projected ex-dividend date closest to the maturity date and the

maturity date measured in days. Ex Antei is a dummy equal to one if our projected

ex-dividend date occurred after product maturity and zero otherwise. We present the

regression output in Table 6.

INSERT TABLE 6 NEAR HERE

We apply the fitted values from Eqn. (4) as an instrument for ExPosti in the second-

stage regression. The second-stage regression model is

UPi = α1 + β1Daysi + ̂ExPosti[α2 + β2Daysi] + εi, (5)

where UPi is the outcome variable, ̂ExPosti is the predictor for Ex Posti estimated

in Eqn. (4), and α2 is the coefficient of discontinuity at the threshold. If issuers push

overpriced products to retail investors when their informational advantage is higher, α2

should be positive.

The RD design requires the specification of a bandwidth determining the number

of observations on either side of the threshold. We follow the rule-of-thumb bandwidth

calculation presented in Lee and Lemieux (2010). The optimal bandwidths of the UPs

requires 86 observations on the left-hand side and 51 observations on the right-hand side

20The results are also robust for local polynomials of order two or higher.
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of the threshold, respectively. These bandwidths correspond to a time window of [-19,

19] days around the maturity date.

The results of the second-stage regression are presented in Table 7. We find a positive

and significant discontinuity in UP of 10.1% at the threshold between treated and non-

treated products with a t-statistic of 2.18. This discrete jump represents 1.1 times the

one-standard-deviation change in UPs. According to our RD design, just–before and

just–after products should differentiate in issuers’ informational advantage only around

the threshold. Thus, the upward jump implies that issuers increase the price of products

when they have an informational advantage over investors.

Table 7 also reports the coefficients and t-statistics of the second-stage regression for

all cut-offs in a six-week time window around our assignment variable threshold of zero.

As expected, days around zero are significant. From all remaining cut-offs, only day six

exhibits a marginally significant discontinuity. This result confirms that the discontinuity

is important only around our threshold.

INSERT TABLE 7 NEAR HERE

To further verify the RD assumption of local randomization, we investigate whether

observable variables also exhibit discontinuities around the threshold. To this end, we

repeat our RD approach but replace UPi in Eqn. (5) with the respective variable. A

significant jump/drop of alternative variables besides UP at the threshold could mean

that the just–before products used in our RD approach differ discontinuously from just–

after products along other dimensions than the informational advantage, which could

drive our main finding. The results are presented in Table 8. We find no significant

discontinuity for most observable variables. Only Delta is marginally significant and

positive. This jump, however, tends to reduce UP for just–after products compared

with just–before products (see Eqn. 3) and, hence, works against finding a positive

discontinuity in UP . Another caveat is that the discontinuity in UP could be driven

by a discontinuity in the underlyings’ return. We observe, however, no discontinuity
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for Underlying Return. We further test whether the time to maturity of just–before

products deviates more often from standardized time to maturities compared with just–

after products. We measure Deviation as the absolute distance between the structured

products’ time to maturity and the closest standardized time to maturity (0.5, 1, 1.5,

2, or 3 years) in years. A negative coefficient would indicate that issuers deviate more

often from standardized maturities before than after the threshold to manipulate product

maturities. More frequent deviations could imply a non-randomization of treatment

around the threshold. We find, however, no significant discontinuity.

INSERT TABLE 8 NEAR HERE

Overall, our RD approach confirms our conjecture of Section 3.2 that issuers partic-

ularly overprice products when their informational advantage is larger.

5 Product design and imperfect information

In this section, we examine whether issuers also structure products towards their infor-

mational advantage. To this end, we employ a matched-sample approach to compare

the informational advantage of underlyings that are chosen for a product with otherwise

similar underlyings that are not chosen. This approach allows us to reduce the bias due

to confounding variables and, thus, increases the validity of our results.

We proceed as follows. We start by defining the set of underlyings that issuers might

choose for their structured products. We assume that this available set consists of all

underlyings that have ever been chosen by an issuer during our observation period. For

each week and underlying in the available set, we calculate Impl V ola, Hist V ola, IBES

Div, and HistDiv for a time to maturity of 255 days. We choose 255 days because

this corresponds to the median product maturity in our sample. We proxy information

advantage with our Higher V ola and Higher Div dummies defined in Section 3.2.

For each underlying that is actually chosen for a structured product, we then select

28



five underlyings from the available set that are the closest neighbors with respect to the

square root of the sum of squared distances weighted by the inverse sample covariance

(the Mahalanobis distance). As matching variables, we use the control variables suggested

by Henderson and Pearson (2011), the index of the underlying, and the corresponding

industry based on the two-digit Standard Industrial Classification (SIC) code. The ma-

jority of products, namely 579 out of the 1012, are issued on underlyings listed in the

Swiss Market Index (SMI). Furthermore, 292 products are constructed with underlyings

that belong to the EuroStoxx 50 Index. We assign the remaining 141 product underly-

ings to the category “Other”. As launching a product takes some time due to the design,

planning, and subscription period, we lag the matching variables by up to three weeks.

Finally, we compute the difference between the value of Higher V ola (Higher Div)

of the actually chosen underlying and the average value of Higher V ola (Higher Div) of

the matched underlyings. We perform one-sided t-tests to analyze whether this difference

is significantly above zero. Our findings are presented in Table 9.

INSERT TABLE 9 NEAR HERE

In Column (1) we lag the matching variables by one week. The results show that

chosen underlyings have significantly more Higher V ola and Higher Div dummies equal

to one than comparable available underlyings. Quantitatively, the differences imply that

the probability of having a higher implied than historical volatility is 2.3% higher with

chosen than with available underlyings, whereas that of having a higher expected than

historical dividend is 6% higher. As shown in Columns (2) and (3), the results are also

significant if we lag the matching variables by two and three weeks. Thus, after controlling

for exogenous factors that can influence issuers’ product underlyings choices, we find that

issuers tend to select underlyings for which they have a stronger informational advantage

regarding volatility and dividends.
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6 Robustness

We conduct several robustness tests for our overpricing and regression discontinuity re-

sults, which we summarize in this section.

6.1 Robustness of overpricing results

In Tables 10 and 11, we discuss alternative specifications of the main regressions in Tables

3 and 4.

INSERT TABLE 10 NEAR HERE

INSERT TABLE 11 NEAR HERE

To incorporate a potential non-linear relationship between volatility or dividend and

IP , we also consider the square product of Impl V ola (Impl V ola Squared) and IBES

Dividend (IBES Div Squared) into our regression model. The Columns (1) in both

tables show that our results remain qualitatively unchanged.21

A systematic error in the calculation of Impl V ola could introduce a correlation

between the independent variable IP and the control variable Impl V ola or Higher

V ola because some structured products entail options (used to calculate the IP via the

replication price) with maturity and strike that are close to those of the extracted control

variable Impl V ola. We address this endogeneity concern with the approach suggested in

Henderson and Pearson (2011). Specifically, we use the implied volatility of at-the-money

put options with a time to maturity of 182 trading days to define the controls Impl V ola

182 and Higher V ola 182 in our regressions. Whereas this implied volatility should still

proxy for future expected volatility, none of our structured products is replicated with a

182 trading days at-the-money put option. Column (2) in Table 10 shows that our results

are robust to this specification.

21Impl V ola Squared has a negative coefficient but the point estimate of implied volatility is positive
for the entire implied volatility distribution in our sample.
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In Column (3) of Table 10 and Column (2) of Table 11, we replace our explanatory

dummies with continuous variables. V ola Difference is the difference between Impl

V ola and Hist V ola. Div Difference is the difference between IBES Div and Hist

Div. The coefficients of both variables are positive and significant. Thus, products with

larger volatility and dividend informational advantages exhibit, on average, higher IPs.

A potential concern with our results is that they are driven by issuers’ installing higher

IPs for certain product categories. A correlation of the unobserved heterogeneity on the

product category level with at least one of the main explanatory variables could bias our

conclusion. The same problem arises if certain issuers tend to require higher IPs than

others. Thus, we rerun the regressions with product category and issuer fixed effects.

Our results are robust to this alternative specification, as shown in Column (4) of Table

10 and Column (3) of Table 11.

Another objection to our findings is that the coefficients of the informational advan-

tage proxies could be affected by cross-sectional heterogeneity of underlyings or correlated

standard errors within underlying clusters. To address this concern, we also include un-

derlying fixed effects and clustered standard errors at the underlying level in Column (5)

of Table 10 and Column (4) of Table 11. Our results are robust to this specification.

Next, we include a battery of additional control variables that could affect our results

in Column (6) of Table 10 and Column (5) of Table 11. We incorporate Hist V ola and

Hist Div, respectively, to account for the concern that the results for our informational

proxies Higher V ola and Higher Div could be driven by the historical information. For

example, issuers may increase IPs when Hist V ola or Hist Div is low.

The degree of competition in the structured products market may also affect issuers’

IP decision. In a more competitive market, for example, competitors’ price decisions

could exert price pressure on the issuer. Thus, we incorporate the HH − Index as an

additional control. HH−Index is the Herfindal-Hirshman-Index calculated based on the

market shares of issuers in the number of products at each date. A higher value indicates
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a more monopolistic market.22

Structured products may also serve banks as a medium-term funding source. Thus, is-

suers’ funding needs can influence their product pricing behavior. We control for Funding

Needs with the quarterly ratio between deposit and total assets of each issuer.

Because investors face the default risk of the issuer when investing in a structured

product, issuers may need to compensate investors for this risk (Arnold et al., 2016).

Hence, the IP could depend on the issuer’s creditworthiness. Thus, we incorporate the

issuer’s CDS Spread as a proxy for default risk. This spread is interpolated to the

product’s maturity.

The economic environment also influences the market conditions under which struc-

tured products are issued. We include the values of the Economic Barometer published

by the KOF Swiss Economic Institute as a proxy for the economic environment. The

Economic Barometer is based on the month-on-month growth rate of Switzerland’s GDP

and aims to indicate the Swiss business cycle.

Issuers might face opportunity costs from issuing products with longer maturities.

Therefore, we also control for a product’s Time to Maturity. We also include a dummy

variable that is equal to one if a product has a time to maturity of one year or shorter to

control for the tax advantage of these products in Switzerland (Short− term Product).

Following the idea of Célérier and Vallée (2017) that complexity affects IPs, we also

incorporate a proxy for complexity. As in Célérier and Vallée (2017) we define complexity

as the number of features contained in a product’s payoff formula (Features). The idea

behind this proxy is that the valuation of products with more features is more complex.

Another potential concern with the volatility result is that the IP is driven by the

possibility that retail investors demand a different volatility risk premium than institu-

tional investors. In Table 10, we therefore include V SMI, which is an index based on

implied volatilities of SMI options across maturities, to control for time variation in the

22We also use the number of active products and banks as alternative proxies for competition. The
results are robust to these alternatives.
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volatility risk premium.

Our result of a significant role of informational advantage proxies for explaining IPs

is robust to these additional controls. In addition, the coefficient of Higher V ola is

negative and significant. Thus, IPs are also driven by historical volatility information.23

The negative and significant coefficient of CDS Spread indicates that products of issuers

with higher default risk exhibit lower IPs. As expected, products with a longer Time

to Maturity exhibit larger IPs. The positive and significant coefficient of Features

confirms the positive relationship between complexity and IPs in Célérier and Vallée

(2017).24 The remaining control variables are not statistically significant.

6.2 Robustness of regression discontinuity approach

Our RD results are robust to alternative methodologies and specifications.

As structured products entail derivative components, their return is not linearly re-

lated to the underlying. Therefore, we rerun the regression model 3 by including the

quadratic term of Return Underlying and its interaction with Product Category. The

jump at the threshold remains statistically significant.

Following the suggestion of Imbens and Lemieux (2008), we also investigate the sen-

sitivity of our results to the bandwidth choice. Thus, we repeat the RD analysis by

considering multiples of the baseline bandwidths. The discontinuity is robust to alterna-

tive bandwidths definitions. For example, if we double (triple) the number of observations

on both sides of the threshold, the coefficient is equal to 9.77% (4.92%). As expected,

the magnitude of the coefficient declines and significance vanishes for very large multiples

because just–before products with a wide distance between their ex-dividend date and

the maturity date become just–after products in terms of the previous ex-dividend date

23If we include Hist V ola as a control variable, the model exhibits considerable multicolinearity mea-
sured by the Variance Inflation Factor. The coefficient of Higher V ola remains positive and significantly
positive if we exclude Hist V ola from the model in Column (6).

24Alternative complexity measures yield similar results.
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(and vice versa).

We also implement the RD design based on bias-corrected RD estimators and robust

standard errors as suggested by Calonico et al. (2014). In this approach, we use a trian-

gular kernel function to construct the local-polynomial estimator. Our results are robust

to this alternative methodology (not reported).

7 Conclusion

We present evidence that the overpricing and design of structured products are driven

by specific information sources over which issuers enjoy an informational advantage com-

pared with retail investors. In particular, we show that products with a volatility informa-

tion advantage for issuers have an approximately 64% larger overpricing than without this

advantage, and products with a dividend information advantage for issuers have a 53%

higher overpricing. Consistent with the hypothesis that issuers exploit their informational

advantage, overpricing is larger for products with a higher value sensitivity to the cor-

responding information source, a higher cost to retail investors of accessing information,

and a larger portion of less-sophisticated investors. The power of the informational advan-

tage channel to explain overpricing is important statistically and economically, whereas

standard proxies for the production cost of structured products, the market environment,

or liquidity are mostly insignificant. Our results imply that issuers’ volatility and div-

idend information advantages have important explanatory power for the existence and

cross-sectional variation of product overpricing. We also show that banks design products

towards the information friction sources that we identify. This design result is a concern

for systemic stability because it suggests that financial engineers actively contribute to

imperfect information in the financial system.

There is a vigorous ongoing debate on the caveats of financial innovation such as prod-

uct complexity and investor sophistication (e.g., Carlin, 2009; Zingales, 2015; Célérier and
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Vallée, 2017). We contribute to this discussion with evidence that unequal access to in-

formation is an additional important caveat of financial innovations. Our results imply

that the current product disclosure policy is insufficient to prevent financial engineers

from exploiting their informational advantage over investors. The Dodd-Frank Act, for

instance, only broadly suggests that adequate information should be given to investors.

Hence, information exploitation appears to have largely escaped regulators in charge of

investor protection. As we find that financial engineers have a tendency to design prod-

ucts of which investors are incompletely informed and because of the concern that this

incomplete information causes market fragility (Rajan, 2006; Gorton and Metrick, 2012;

Stein, 2012; Gennaioli et al., 2012), desirable regulatory policies should aim at mitigating

this information friction. By identifying the specific information sources through which

financial engineers exploit their informational advantage over investors, our study is use-

ful by guiding this policy debate along two dimensions. First, it helps to decide which

type of information should be publicly disclosed. For example, we show that improving

investors’ access to implied volatility information reduces issuers’ exploitation of their

volatility information advantage. Second, it allows policy makers to evaluate and incor-

porate in their decision the conclusion of the disclosure literature that depending on the

information type, publicly disclosing more information can benefit or harm welfare (Bond

and Goldstein, 2015; Goldstein and Yang, 2017). The content and exact form of such

information provision regulations seem fruitful directions for future research.
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Appendix: Replication prices

Each structured product is replicated by using fixed-income and option components.

Discount Certificates (DC) are replicated as

DC =
M

exp(rT )
− P (S − PV (D),M, T, σP ), (6)

where M is the redemption amount of the bond component, r is the interest rate, T is

the time to maturity of the product, and P (S−PV (D),M, T, σP ) is a put option on the

underlying of the product strike M and time to maturity T . We adjust the spot price S

by subtracting PV (D), which is the present value of all dividend payments predicted by

IBES to occur during the lifetime of a product. σP is the implied volatility of the put

option with corresponding strike and maturity.

We replicate a Barrier Discount Certificate (BDC) as

BDC =
M

exp(rT )
+ C(S − PV (D), Y, T, σC)−DIP (S − PV (D), X,B, T, σDIP ), (7)

where M is the redemption value of the bond component, r is the interest rate, T is

the time to maturity of the product, C(S − PV (D), Y, T, σC) is a call option on the

underlying of the product with strike Y , time to maturity T , and implied volatility σC ,

and DIP (S − PV (D), X,B, T ) is a down-and-in put option on the underlying of the

product with strike X, barrier level B, time to maturity T , and implied volatility σDIP .

Reverse Convertibles (RC) are replicated by

RC =
N

exp(rT )
+

∑
ti≤T

cti
exp(rti)

− αP (S − PV (D), X, T, σP ), (8)

where N denotes the nominal amount, ti is the coupon payment dates, cti is the coupon

payments at time ti, and P (S − PV (D), X, T, σP ) is a put option on the underlying of
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the product with strike X, time to maturity T , and implied volatility σP . α = N/X

reflects the number of put options contained in the nominal amount of a certificate.

We replicate Capped Outperformance Certificates (COC) as

COC =
M

exp(rT )
− P (S − PV (D),M, T, σP )+

(α− 1)C(S, Y, T, σC1)− (α− 1)C(S − PV (D),M, T, σC2),

(9)

where M is the redemption amount of the bond component, Y is the lower thresh-

old of the underlying above which the investor disproportionately participates in the

performance of the underlying, α is the total participation rate between Y and M ,

C(S − PV (D), Y, T, σC1) is a call option with strike Y , time to maturity T and, im-

plied volatility σC1. C(M,T ) is a call option with strike M .

Barrier Reverse Convertibles (BRC) are replicated by

BRC =
N

exp(rT )
+

∑
ti≤T

cti
exp(rti)

− αDIP (S − PV (D), X,B, T, σDIP ), (10)

where α is the number of put options contained in the nominal amount of a certificate,

calculated as α = N/X, and DIP (S − PV (D), X,B, T, σDIP ) is a down-and-in put

option on the underlying of the product with strike X, barrier B, time to maturity T ,

and implied volatility σDIP .

Finally, we construct Bonus Certificates (BC) with

BC =
M

exp(rT )
+ C(S − PV (D),M, T, σC)−

P (S − PV (D),M, T, σP ) + αDOP (S − PV (D),M,B, T, σDOP ),

(11)

where M is the redemption amount of the bond components, α is the total participation

rate, and DOP (S − PV (D), X,B, T, σDOP ) is a down-and-out put option on the under-

lying of the product with strike M , barrier B, time to maturity T , and implied volatility
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σDOP .

We obtain the option components in a replication price by transforming traded (Amer-

ican) EUREX option prices into the (European) option prices of the structured product.

For an accurate transformation, we need the expected dividend and implied volatility

of the underlying as well as the pricing parameters provided in the term sheet of each

product at the initial fixing date.

We collect consensus dividend forecasts from IBES. For each product, we use the IBES

database’s latest mean expected dividend entry prior to the initial fixing date to forecast

the dividend amount paid during a product’s lifetime. We obtain expected ex-dividend

dates by projecting historical ex-dividend dates within a year prior to the initial fixing of

a product into the future.

We extract implied volatilities from traded EUREX options. For each option con-

tained in a structured product, we identify four corresponding EUREX options: one

with the closest lower strike price and closest longer maturity, another with the closest

lower strike price and closest shorter maturity, a third with the closest higher strike price

and closest longer maturity, and a fourth with the closest higher strike price and closest

shorter maturity. If we do not find all four options, we use the EUREX option that

most closely matches the maturity and the strike price of a product’s implicit option

(e.g. Henderson and Pearson (2011)). As EUREX options are of the American type, we

extract the implied volatility of each option by using a binomial tree model based on Cox

et al. (1979). We apply a daily discretization for the tree with p = (er(1/360)− d)/(u− d),

q = 1 − p, u = eσ
√

(1/360), and d = 1/u, in which p (q) is the probability of an increase

(decrease), and u (d) is the discrete factor for an increase (decrease) in the stock price.

We incorporate the discrete expected ex-dividend dates in the binomial tree. We obtain

the implied volatility of an option by extracting the volatility in the tree that equates the

tree’s option price with the observed EUREX option settlement price. Subsequently, we

bilinearly interpolate the implied volatilities of the four corresponding EUREX options
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based on their distance to the strike and the time to maturity of the option contained in

the structured product.

For the interest rate, r, we follow the literature by using interpolated London In-

terbank Offered Rates (LIBOR) in the currency of the structured product for different

maturities (Henderson and Pearson, 2011). For maturities beyond twelve months, we

apply the corresponding swap rates. As the maturity of a structured product rarely

ever matches the maturity of publicly available LIBOR rates exactly, we linearly inter-

polate for each product the LIBOR rates with the closest longer and the closest shorter

maturities to obtain an estimation for the appropriate interest rate.

Because structured products in our sample entail only options of the European type,

we apply the Black-Scholes formula to price the plain vanilla options contained in a

product. Barrier options are calculated by using the formula of Hull (2009) for knock-

in and knock-out options. We incorporate the estimated dividends, implied volatility,

and interest rate. The stock price that is relevant to calculating the replication price of

structured products is S − PV (D), in which S is the market price of the underlying at

the initial fixing date and PV (D) is the present value of the dividend payments that are

expected to occur during a product’s lifetime.
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Figure A1: Historical Price Evolution
This figure depicts an excerpt of a product term sheet in our sample that shows
the historical price evolution of the BMW AG share over the years before issuance.
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Figure A2: Issue Premium
This figure shows the distribution of the issue premium (IP ) in a time window of [-19, 19] days around the maturity
date. The projected dividend payment date is defined as the difference between the expected ex-dividend date and the
maturity date in days. A negative (positive) value indicates that the ex-dividend date is expected to occur before (after)
the maturity date. A low (high) IP indicates relatively attractive (unattractive) products. We fit a linear function on
either side of the threshold using binwidths of 5 and 10. Each bin represents the average of either 5 or 10 observations.
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Table 1
Overview of Structured Products Sample

This table presents the number of structured products in our sample grouped by issuer, product
category, and year. Our starting point is a term sheets database containing all structured equity
products issued in Switzerland from January 2005 through December 2010. We collect data on
products issued in Switzerland on a single equity underlying.

Number of Issued Products

Panel A: By Issuer

UBS 550
Goldman Sachs 144
Credit Suisse 136
Royal Bank of Scotland 134
Deutsche Bank 29
Merrill Lynch 11
J.P. Morgan 8

Panel B: By Product Category

Discount Certificate 358
Barrier Reverse Convertible 295
Bonus Certificate 188
Reverse Convertible 97
Capped Outperformance Certificate 54
Barrier Discount Certificate 20

Panel C: By Year

2005 73
2006 165
2007 249
2008 272
2009 178
2010 75
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Table 2
Descriptive Statistics

This table presents descriptive statistics for our sample of structured products issued in Switzerland
from January 2005 through December 2010. We collect data on products on a single equity underly-
ing. Issue Premium (IP ) is the issue price of a structured product minus its replication value, scaled
by the issue price, expressed in percentage points. Impl V ola is the annualized implied volatility of
the product’s option on the underlying calculated for the lifetime of the product. We calculate Hist
V ola as the standard deviation of a product underlying’s returns over the 255 trading days before
the initial fixing date. Higher V ola is a binary variable that is equal to one if Impl V ola is larger
than Hist V ola, and zero otherwise. IBES Div is the ratio between the present value of expected
dividend payments based on IBES forecasts that occur during the lifetime of a product and the stock
price of the underlying at the initial fixing date. We define Hist Dividend as the ratio between
the present value of the expected dividend payments based on historical dividend payment patterns
and the stock price of the underlying at the initial fixing date. Higher Div is a binary variable
that is equal to one if IBES Dividend is larger than Hist Dividend, and zero otherwise. Market
Cap is the natural logarithm of the market value of equity of the underlying (in USDbn). 3m and
12m Excess Return are the 3- and 12-month continuous annual returns of the underlying in excess
of the 3- and 12-month continuous annual returns of the Swiss Market Index (SMI), respectively.
1m and 3m Turnover are defined as the natural logarithm of the dollar value (in USDm) of the
cumulated trading volume of the underlying over one month and three months prior to the issuance,
respectively. We calculate 1m Call V olume and 1m Put V olume as the cumulated trading volume
of EUREX call (put) options written on the underlying over one month preceding the initial fixing
date divided by the volume of call (put) options written on all underlyings during the same time
period. V ega (Delta) is the product’s annualized Vega (Delta) scaled by its issue price. IV olatility
is a binary variable that is equal to one if, on the initial fixing date, a product’s underlying is covered
in the database of IVolatility.com and zero otherwise. Trading Size is the logarithm of the average
trading size in USD on the secondary market. Features is defined as the number of different features
contained in a product’s payoff formula based on the typology of features proposed by Célérier and
Vallée (2017). We calculate Implied V olatility Squared as the square product of Impl V ola, Impl
V ola 182 as the annualized implied volatility of an at-the-money put option with a maturity of 182
days on the product’s underlying and IBES Div Squared as the square product of IBES Div.
Time to Maturity is defined as the number of business days between the initial fixing date and
maturity date of a structured product.

N Mean Std.
Dev.

Q25 Median Q75

Issue Premium 1012 1.48 2.09 0.52 1.35 2.24
Impl Vola 1012 28.67 11.26 21.27 26.18 33.95
Hist Vola 1012 31.24 18.59 18.85 24.40 36.69
Higher Vola 1012 0.56 0.50 0 1 1
IBES Div 1012 0.03 0.02 0.01 0.03 0.04
Hist Div 1012 0.04 0.06 0.01 0.02 0.04
Higher Div 1012 0.60 0.49 0 1 1
Market Cap 1012 3.80 1.09 3.26 4.08 4.70
3m Excess Return (x100) 1012 1.46 11.09 -5.26 1.35 8.44
12m Excess Return (x100) 1012 0.87 21.26 -11.48 0.18 12.75
1m Turnover 1012 7.45 1.92 6.15 8.21 8.98
3m Turnover 1012 8.55 1.91 7.24 9.27 10.06
1m Call Option Volume 1012 2.63 3.79 0.31 1.66 3.13
1m Put Option Volume 1012 2.55 3.41 0.33 1.66 3.27
Vega 1012 -0.46 0.29 -0.49 -0.43 -0.39
Delta 1012 0.02 0.18 0.01 0.01 0.02
IVolatility 1012 0.76 0.43 1 1 1
Trading Size 783 10.71 1.15 9.98 10.68 11.33
Features 1012 2.12 0.90 1.00 2.00 3.00
Impl Vola Squared 1012 9.49 8.40 4.52 6.85 11.52
Impl Vola 182 994 31.19 14.73 21.65 28.32 37.46
IBES Div Squared (x100) 1012 0.12 0.17 0.01 0.06 0.15
Time to Maturity (trading days) 1012 294.16 150.80 249 255 265



Table 3
OLS Regressions of the Issue Premiums for Volatility Measures

This table presents results of OLS regressions. The dependent variable is the Issue Premium (IP ),
which is the issue price of a structured product minus its replication value, scaled by the issue price,
expressed in percentage points. Impl V ola is the annualized implied volatility of the product’s option
on the underlying calculated for the lifetime of the product. We calculate Hist V ola as the standard
deviation of a product underlying’s returns over the 255 trading days before the initial fixing date.
Higher V ola is a binary variable that is equal to one if Impl V ola is larger than Hist V ola, and zero
otherwise. V ega is defined as the product’s annualized Vega scaled by its issue price. IV olatility is
a binary variable that is equal to one if, on the initial fixing date, a product’s underlying is covered
in the database of IVolatility.com and zero otherwise. Trading Size is calculated as the logarithm
of the average trading size in USD on the secondary market. The standard controls are defined in
Table 2. We control for year fixed effects. t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗

denote significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5)
VARIABLES IP IP IP IP IP

Impl Vola 4.879*** 4.071*** 3.768*** 4.102*** 4.570***
(6.41) (5.37) (4.98) (5.41) (6.28)

Higher Vola 0.951*** 0.553** 1.343*** 3.469***
(6.35) (2.18) (5.08) (3.01)

Vega 1.056***
(3.93)

Higher Vola × Vega -0.745*
(-1.70)

IVolatility 0.151
(0.72)

Higher Vola × IVolatility -0.508*
(-1.77)

Trading Size 0.006
(0.07)

Higher Vola × Trading Size -0.246**
(-2.28)

Features

Market Cap 0.164** 0.122* 0.115 0.127* 0.113
(2.24) (1.69) (1.61) (1.75) (1.59)

3m Excess Return 0.793 1.119* 1.229** 1.135* -0.316
(1.29) (1.85) (2.04) (1.88) (-0.52)

12m Excess Return -0.432 -0.422 -0.398 -0.450 -0.033
(-1.34) (-1.34) (-1.27) (-1.42) (-0.10)

1m Turnover 0.185 -0.090 -0.082 -0.066 0.334
(0.64) (-0.32) (-0.29) (-0.23) (1.20)

3m Turnover -0.221 0.065 0.062 0.039 -0.334
(-0.76) (0.23) (0.22) (0.13) (-1.18)

1m Call Option Volume -1.673 -0.659 -0.447 -0.351 -3.640
(-0.49) (-0.20) (-0.13) (-0.10) (-0.84)

1m PutOption Volume 3.754 3.291 2.868 3.222 6.731
(0.98) (0.88) (0.77) (0.86) (1.48)

Constant 0.020 -0.867 -0.319 -0.938* -0.576
(0.04) (-1.62) (-0.58) (-1.68) (-0.56)

Year FE Yes Yes Yes Yes Yes
Observations 1,012 1,012 1,012 1,012 783
R-squared 0.133 0.167 0.180 0.170 0.147



Table 4
OLS Regressions of the Issue Premiums for Dividend Measures

This table presents results of OLS regressions. The dependent variable is the Issue Premium (IP ),
which is the issue price of a structured product minus its replication value, scaled by the issue
price, expressed in percentage points. IBES Div is the ratio between the present value of expected
dividend payments based on IBES forecasts that occur during the lifetime of a product and the stock
price of the underlying at the initial fixing date. We define Hist Dividend as the ratio between
the present value of the expected dividend payments based on historical dividend payment patterns
and the stock price of the underlying at the initial fixing date. Higher Div is a binary variable
that is equal to one if IBES Dividend is larger than Hist Dividend, and zero otherwise. Delta is
defined as the product’s annualized Delta scaled by its issue price. Trading Size is calculated as
the logarithm of the average trading size in USD on the secondary market. The standard controls
are defined in Table 2. We control for year fixed effects. t-statistics are reported in parentheses. ∗,
∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4)
VARIABLES IP IP IP IP

IBES Div 6.751** -0.549 -0.080 -6.905**
(2.14) (-0.16) (-0.02) (-1.97)

Higher Div 0.783*** 0.360** 3.269***
(5.22) (2.02) (2.74)

Delta -22.548***
(-4.57)

Higher Div × Delta 26.074***
(3.90)

Trading Size 0.065
(0.73)

Higher Div× Trading Size -0.244**
(-2.22)

Impl Vola 5.260*** 5.935*** 6.314*** 5.774***
(6.74) (7.60) (8.12) (7.64)

Market Cap 0.145* 0.092 0.100 0.107
(1.96) (1.25) (1.37) (1.48)

3m Excess Return 0.785 0.851 0.672 -0.348
(1.28) (1.40) (1.12) (-0.56)

12m Excess Return -0.319 -0.445 -0.478 -0.183
(-0.98) (-1.38) (-1.50) (-0.56)

1m Turnover 0.218 0.204 0.239 0.510*
(0.76) (0.72) (0.85) (1.83)

3m Turnover -0.249 -0.222 -0.250 -0.504*
(-0.86) (-0.78) (-0.88) (-1.78)

1m Call Option Volume -1.120 -0.524 -1.116 -4.225
(-0.33) (-0.16) (-0.33) (-0.96)

1m Put Option Volume 2.765 1.987 2.597 6.820
(0.72) (0.52) (0.69) (1.48)

Constant -0.106 -0.546 -0.319 -0.927
(-0.20) (-1.03) (-0.60) (-0.83)

Year FE Yes Yes Yes Yes
Observations 1,012 1,012 1,012 783
R-squared 0.137 0.160 0.178 0.133



Table 5
OLS Regression of the Unexplained Performance

This table presents results using an OLS regression. The dependent variable is Product
Performance, which is the annualized ex-post performance of a structured product calculated as
the return of the final payoff over the issue price. Return Underlying is the annualized ex-post total
return of the underlying of a product multiplied by Delta. We use Product Category fixed effects
and the interaction between them and Return Underlying. t-statistics are reported in parentheses.
∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

(1)
VARIABLES Product Performance

Return Underlying 0.879***
(9.35)

Product Category FE Yes
Product Category FE Interaction Yes

Observations 1012
R-squared 0.900

Table 6
Fuzzy RD Design: First-Stage Regression

This table presents the first-stage regression from a Fuzzy RD Design. The dependent variable is
ExPost, a dummy that is equal to one if the actual (ex-post) dividend payment date closest to
the maturity date occured after product maturity, and zero otherwise. Days is calculated as the
difference between the estimated ex-dividend date closest to the maturity date and the maturity date
measured in days. ExAnte is a dummy equal to one if the estimated ex-dividend date closest to the
maturity date occured after product maturity, and zero otherwise. We apply optimal bandwidths
based on the rule-of-thumb approach. t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote
significance at the 10%, 5%, and 1% levels, respectively.

(1)
VARIABLES Ex-Post

Days 0.001
(0.12)

Ex Ante 0.688***
(5.77)

Days x Ex Ante 0.005
(0.43)

Observations 137
R-squared 0.554
F 57.40
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Table 7
Fuzzy RD Design: Second-Stage Regression

This table presents results of the Fuzzy RD Design using a two-stage least-squares approach with
local polynomials of order one. First, we use dividend payment date projections to instrument the
actual ex-post outcome based on Eqn. (4). Second, we use the fitted values from the first-stage
regression as an instrument in Eqn. (5). The dependent variable is the unexplained performance
measure (UP ), which is defined as the residuals of the model estimated with Eqn(3). We apply
optimal bandwidths based on the rule-of-thumb approach. We report the coefficients of discontinuity
α2 estimated in Eqn. (5) for thresholds at various cut-offs in a time window of six weeks around day
0. The thresholds are defined as the differences between the estimated ex-dividend date closest to
the maturity date and the maturity date measured in days. t-statistics are reported in parentheses.
∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

-15 -14 -13 -12 -11 -10 -9 -8

α2 -0.099 -0.010 0.010 0.015 -0.014 0.047 0.081 -0.021
(-0.56) (-0.13) (0.21) (0.35) (-0.30) (0.55) (1.14) (-0.31)

N 163 161 163 160 157 149 149 151

-7 -6 -5 -4 -3 -2 -1 0

α2 -0.014 -0.031 0.200 0.072 0.225 0.108* 0.097** 0.101**
(-0.29) (-0.49) (1.00) (0.67) (1.53) (1.68) (1.99) (2.18)

N 149 149 140 139 136 142 141 137

1 2 3 4 5 6 7 8

α2 0.086 0.077 -0.158 -0.094 -0.011 -0.159* -0.197 -0.158
(1.29) (0.99) (-1.30) (-0.60) (-0.11) (-1.67) (-1.60) (-1.16)

N 136 132 131 122 116 118 118 118

9 10 11 12 13 14 15

α2 -0.168 -0.148 -0.063 -0.047 0.091 0.119 0.190
(-1.47) (-1.37) (-0.33) (-0.41) (0.78) (1.07) (1.65)

N 118 114 109 103 102 99 93
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Table 8
Validity Test: Control

This table presents the RD design validity test for observable control variables using a two-stage
least-squares approach with local polynomials of order one. The standard controls are defined in
Table 4. Return Underlying is the annualized ex-post total return of the underlying. Deviation is
defined as the absolute distance between the time to maturity of a structured product and its closest
standardized time to maturity (0.5, 1, 1.5, 2, or 3 years) in years. We apply optimal bandwidths
based on the rule-of-thumb approach. We report the coefficients of discontinuity α2 estimated in
Eqn. (5). t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%,
and 1% levels, respectively.

IBES Div Hist Div Higher Div Delta

α2 0.011 0.050 -0.085 0.017*
(0.92) (1.12) (-0.32) (1.70)

N 137 137 137 137

Trading Size Features Impl Vola Market Cap

α2 0.181 -0.699 -0.062 0.506
(0.27) (-1.55) (-1.12) (0.93)

N 99 137 137 137

3m Excess Return 12m Excess Return 1m Turnover 3m Turnover

α2 -0.078 -0.084 0.040 -0.006
(-1.41) (-0.63) (0.05) (-0.01)

N 137 137 137 137

1m Call Option
Volume

1m Put Option
Volume

Return Underlying Deviation

α2 0.006 0.006 -0.035 0.037
(0.36) (0.35) (-0.19) (1.01)

N 137 137 137 137
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Table 9
Nearest Neighbor Matching

This table presents results of the Nearest Neighbor matching approach. For each underlying that is
actually chosen for a structured product, five non-chosen underlyings that are closest neighbors with
respect to the Mahalanobis distance are selected. The matching variables are the index and industry
of an underlying, the underlying’s market capitalization, the 3- and 12-month excess returns, the
one-month and three-month cumulated trading volumes as well as the relative one-month call (put)
volume written on the underlying. Depending on the specification of the model, the matching vari-
ables are lagged by one, two, and three weeks. Corresponding Index is the index of the underlying.
We define Industry as the two-digit SIC code. Higher V ola (Higher Div) is a binary variable that
is equal to one if Impl V ola (IBES Div) is larger than Hist V ola (Hist Div), and zero otherwise.
Mean Difference Higher V ola (Mean Difference Higher Div) is calculated as the difference
between the value of Higher V ola (Higher Div) of the underlying that is actually chosen and the
mean value of Higher V ola (Higher Div) of the matched underlyings. The standard controls are
defined in Table 2. p-values of the one-sided t-test are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote
significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3)

Corresponding Index Yes Yes Yes
Industry Yes Yes Yes
Market Cap Yes Yes Yes
3m Excess Return Yes Yes Yes
12m Excess Return Yes Yes Yes
1m Turnover Yes Yes Yes
3m Turnover Yes Yes Yes
1m Call Option Volume Yes Yes Yes
1m Put Option Volume Yes Yes Yes

Lag 1 Week 2 Weeks 3 Weeks

Mean Difference Higher Vola 0.023** 0.020* 0.022**
(0.04) (0.06) (0.05)

Mean Difference Higher Div 0.060*** 0.058*** 0.062***
(0.00) (0.00) (0.00)
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Table 10
Robustness Tests: Volatility Measures

This table presents various robustness tests for our main findings. The dependent variable is the
Issue Premium (IP ), which is the issue price of a structured product minus its replication value,
scaled by the issue price, expressed in percentage points. Higher V ola is a binary variable that
is equal to one if Impl V ola is larger than Hist V ola, and zero otherwise. Impl V ola Squared is
calculated as the square product of Impl V ola. V SMI is an index based on implied volatilities of
SMI options across maturities. Higher V ola 182 is a binary variable that is equal to one if Impl
V ola 182 is larger than Hist V ola, and zero otherwise. Impl V ola 182 is the annualized implied
volatility of an at-the-money put option on the product’s underlying with a maturity of 182 days.
V ola Difference is calculated as the difference between Impl V ola and Hist V ola. HH−Index is
defined as the Herfindal-Hirshman-Index calculated based on the market shares of the firms in the
number of products on the initial fixing date. We calculate Funding Needs as the quarterly ratio
between deposit and total assets. CDS Spread is the CDS spread of the issuer at the initial fixing
date. We use the Economic Barometer published by the KOF Swiss Economic Institute as a proxy
for Economic Environment. Time to Maturity is measured in years. Short − term Product is
a binary variable that is equal to one if Time to Maturity is smaller or equal to 1 year, and zero
otherwise. Features is defined as the number of different features contained in a product’s payoff
formula based on the typology of features proposed by Célérier and Vallée (2017). We include the
same standard control variables as in Table 3. We control for year fixed effects. Depending on the
specification of the model, we additionally control for product category, issuer, and underlying fixed
effects. t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%,
and 1% levels, respectively.

(1) (2) (3) (4) (5) (6)
VARIABLES IP IP IP IP IP IP

Impl Vola 16.698*** 4.245*** 5.381*** 3.920** 13.269***
(5.86) (5.69) (7.59) (2.40) (10.11)

Higher Vola 0.858*** 1.072*** 0.872*** 0..688***
(5.74) (7.91) (4.43) (4.08)

Impl Vola Squared -16.581***
(-4.59)

Impl Vola 182 -0.456
(-0.79)

Higher Vola 182 0.711***
(4.34)

Vola Difference 5.791***
(7.49)

Hist Vola -6.653***
(-7.01)

VSMI -0.035**
(-2.22)

HH-Index 3.069
(1.15)

Funding Needs -2.678
(-1.26)

CDS Spread -0.431**
(-2.05)

Economic Environment 0.004
(0.33)

Time to Maturity 0.388*
(1.95)

Short-term Product -0.023
(-0.08)

Features 0.387***
(4.48)

Constant -2.853*** 0.948* -0.195 -0.101 0.562 -1.837
(-4.17) (1.80) (-0.38) (-0.16) (0.22) (-1.19)

Standard Controls Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Product Category FE No No No Yes No No
Issuer FE No No No Yes No No
Underlying FE No No No No Yes No
Underlying Cluster SE No No No No Yes No
Observations 1,012 994 1,012 1,012 1,012 851
R-squared 0.184 0.114 0.179 0.360 0.282 0.311



Table 11
Robustness Tests: Dividend Measures

This table presents various robustness tests for our main findings. The dependent variable is the
Issue Premium (IP ), which is the issue price of a structured product minus its replication value,
scaled by the issue price, expressed in percentage points. Higher Div is a binary variable that
is equal to one if IBES Div is larger than Hist Div, and zero otherwise. IBES Div Squared
is calculated as the square product of IBES Div. Div Difference is defined as the difference
between IBES Div and Hist Div. HH − Index is the Herfindal-Hirshman-Index calculated based
on the market shares of the firms in the number of products on the initial fixing date. We calculate
Funding Needs as the quarterly ratio between deposit and total assets. CDS Spread is the CDS
spread of the issuer at the initial fixing date. We use the Economic Barometer published by the KOF
Swiss Economic Institute as a proxy for Economic Environment. Time to Maturity is measured in
years. Short− term Product is a binary variable that is equal to one if Time to Maturity is smaller
or equal to 1 year, and zero otherwise. Features is defined as the number of different features
contained in a product’s payoff formula based on the typology of features proposed by Célérier
and Vallée (2017). We include the same standard control variables as in Table 4. We control for
year fixed effects. Depending on the specification of the model, we additionally control for product
category, issuer, and underlying fixed effects. t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗

denote significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5)
VARIABLES IP IP IP IP IP

IBES Div -3.353 5.425* -1.140 6.443 1.847
(-0.37) (1.73) (-0.37) (1.13) (0.49)

Higher Div 0.800*** 0.345** 0.763*** 0.326**
(5.06) (2.47) (4.03) (2.04)

IBES Div Squared 36.597
(0.33)

Div Difference 4.487***
(4.42)

Hist Div -1.146
(-1.10)

HH-Index 0.651
(0.23)

Funding Needs -3.216
(-1.43)

CDS Spread -0.513**
(-2.55)

Economic Environment -0.008
(-0.61)

Time to Maturity 0.490**
(2.29)

Short-term Product -0.042
(-0.14)

Features 0.295***
(3.20)

Impl Vola 5.910*** 5.674*** 6.522*** 6.822*** 7.616***
(7.53) (7.28) (8.84) (4.29) (8.52)

Constant -0.526 -0.185 0.600 0.708 0.240
(-0.99) (-0.35) (0.90) (0.26) (0.15)

Standard Controls Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Product Category FE No No Yes No No
Issuer FE No No Yes No No
Underlying FE No No No Yes No
Underlying Cluster SE No No No Yes No
Observations 1,012 1,012 1,012 1,012 851
R-squared 0.160 0.154 0.324 0.290 0.217
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Figure 1
Unexplained Performance

This figure shows the distribution of the unexplained performance (UP ) in a time window of [-19, 19] days around the
maturity date. The projected dividend payment date is defined as the difference between the expected ex-dividend date
and the maturity date in days. A negative (positive) value indicates that the ex-dividend date is expected to occur
before (after) the maturity date. UP is calculated as the residual of regression Eqn. (3). We fit a linear function on
either side of the threshold using binwidths of 5 and 10. Each bin represents the average of either 5 or 10 observations.
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Figure 2
Product Issuances throughout the Year

This figure depicts the number of products issued per month. Month number 1 is
January, number 2 is February and so forth.
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Figure 3
Time to Maturity

This figure shows the distribution of time to maturity in a time window of [-19, 19]
days around the maturity date. The projected dividend payment date is defined as
the difference between the expected ex-dividend date and the maturity date in days.
A negative (positive) value indicates that the ex-dividend date is expected to occur
before (after) the maturity date. The time of maturity is calculated in years. Solid
dots indicate products with a time to maturity of one year or shorter and hollow dots
products with a time to maturity of longer than one year.
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