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Abstract

Modeling interest rates over samples that include the Great Recession requires taking stock
of the effective lower bound (ELB) on nominal interest rates. We propose a flexible time–series
approach which includes a “shadow rate”—a notional rate that is less than the ELB during
the period in which the bound is binding—without imposing no–arbitrage assumptions. The
shadow rate serves as a latent state variable to characterize the joint dynamics of yields and
macro variables. The approach allows us to estimate the behavior of trend real rates as well as
expected future interest rates in recent years.
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1 Introduction

This paper models nominal interest rates, along with other macroeconomic data, using a flexi-

ble time-series model that explicitly incorporates the effective lower bound (ELB) on nominal

interest rates. We employ a modeling device that we refer to as a “shadow rate”—the nomi-

nal interest rate that would prevail in the absence of the ELB—which is conceptually similar

to the shadow rates studied in the dynamic term–structure literature, as in Kim and Single-

ton (2011), Krippner (2013), Priebsch (2013), Ichiue and Ueno (2013), Bauer and Rudebusch

(2015), Krippner (2015), and Wu and Xia (2016). Our time–series approach allows us to es-

timate the relationship between interest rates and macroeconomic data in a flexible way and,

similar to the approach taken in Diebold and Li (2006), does not impose rigid no–arbitrage

restrictions across the term–structure of interest rates.

We use our approach to estimate a trend–cycle model of U.S. data on interest rates, un-

employment, and inflation over a sample that includes the recent spell at the ELB. Since the

global financial crisis of 2008, real interest rates have been historically low, prompting some

— for example, Summers (2014) and Rachel and Smith (2015) — to argue that the long–run

normal level of real interest has fallen. Using our estimated model, we find that the trend com-

ponent of the nominal interest rate has declined almost continuously since the early 1980s. The

decline is due to long–standing downward trajectories of the trend component of both inflation

and the real short–term interest rate. While uncertainty bands around our estimate of the trend

real rate are wide, we find that any decline since the global financial crisis of 2008 is best

characterized as a continuation of a longer term downward trajectory. Similar to Laubach and

Williams (2003, 2015) and many others, we find large uncertainty bands notwithstanding some

differences in point estimates.1 However, none of these papers explicitly models the ELB.

Explicitly modeling the ELB has large effects on inference about out–of–sample expected

short–term interest rates and term premiums over the past several years. Our estimated shadow

rates are less than the ELB by construction, and our shadow–rate model delivers predicted

1 See, for example, Clark and Kozicki (2005), Hamilton et al. (2015), Kiley (2015), Lubik and Matthes (2015),
Hakkio and Smith (2017), Pescatori and Turunen (2015), and Del Negro et al. (2017). Notably, our estimated trend
real rate displays less movement than the trend estimates reported by Laubach and Williams (2003, 2015), and does
not not dip as low during the recent recession.
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paths for future short–term interest rates that include extended periods at the ELB. We com-

pare interest–rate forecasts from our model with forecasts from the Survey of Professional

Forecasters (SPF) and find that our model performs better than the SPF at longer horizons. In

addition, we compare interest–rate forecasts from our model to forecasts from the shadow-rate

term-structure model of Wu and Xia (2016) (WX-SRTSM), and find that our model performs

at least as well.

When the economy is away from the ELB, the shadow rate and the policy rate are identical.

At the ELB, the shadow rate is an unobserved state variable that matters for forecasting future

outcomes in the policy rate and other variables. Unexpected variations in the shadow rate

can thus be interpreted as reflecting changes in monetary policy implemented through uncon-

ventional tools (such as asset purchases or forward guidance). Using short-run identification

restrictions common in the literature, we identify monetary policy shocks from surprises in the

shadow rate and report impulse responses of the yield curve and macro variables. In contrast

to other related approaches (Wu and Xia, 2016), our impulse responses are estimated jointly

with the shadow rate. Our model reveals interesting time variation in those impulse response

functions around the recent ELB episode.

The way we incorporate the ELB and estimate the model can be extended to a broad class of

time series models. With short–term nominal interest rates at or near their ELBs in many parts

of the world, time series models that include interest rates but ignore the ELB—like a standard

vector autoregression—have been unable to adequately address the data. Moreover, reduced-

form explorations of the empirical relationship between short– and longer–term interest rates—

such as Campbell and Shiller (1991)—have often ignored the truncation in the distribution

of future short–term interest rates. Our modeling approach overcomes these shortcomings

in a wide class of otherwise conditionally–linear Gaussian state–space models. Examples

include the vector autoregressions studied in Sims (1980) and the models with time–varying

parameters studied in Primiceri (2005) and Cogley and Sargent (2005).

Following work by Black (1995), the no–arbitrage dynamic term–structure models stud-

ied in Kim and Singleton (2011), Krippner (2013), Priebsch (2013), Ichiue and Ueno (2013),

Bauer and Rudebusch (2015), Krippner (2015), and Wu and Xia (2016) identify shadow rates
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by imposing no–arbitrage cross–equation restrictions. These studies offer interesting insights,

yet the no–arbitrage assumptions that these authors maintain may preclude certain model fea-

tures, like stochastic model parameters. Our time series approach naturally incorporates time

variation in parameters, and thus, for some purposes—like including time–varying trends in

inflation and interest rate data or modeling stochastic volatility—offers a flexible alternative.

In addition, our shadow–rate estimates do not only reflect information embedded in longer–

term yield data but also condition on direct readings about business cycle conditions embedded

in macro variables such as inflation or the output– and unemployment–rate gaps (as measured

by CBO).2

Iwata and Wu (2006), Nakajima (2011), Chan and Strachan (2014) are the closest papers in

the literature to ours. These papers also estimate time series models that incorporate the ELB.

In all of these studies, lagged observed interest rates (rather than shadow rates) are explana-

tory variables in the dynamic system. We instead allow lagged shadow rates to be explanatory

variables. In doing so we are able to more closely align our approach with the no–arbitrage

term–structure literature, and, in additional, connect the concept of the shadow rate with the

level of the short–term rate that would prevail in the absence of the ELB because we allow it to

have the same persistence and co–variance properties as short–term interest rates. Neverthe-

less, our approach is flexible enough to include both shadow rates and observed rates as lagged

explanatory variables.

2 A Model of Interest Rates and the ELB

In this section we describe our time–series model, which explicitly includes the ELB. The

model includes inflation (πt), nominal interest rates of maturity 3–months (it), 2–years (y2
t ), 5–

years (y5
t ), and 10–years (y10

t ), and a cyclical measure of real activity (c̃t) (henceforth referred

2In an alternative time-series approach Lombardi and Zhu (2014) use a dynamic factor model to derive estimates
of the stance of monetary policy — labeled “shadow rate” — from interest rates, monetary aggregates and variables
characterizing the Federal Reserve’s balance sheet. However, as such, their underlying shadow–rate concept is quite
different from what is used here or in the dynamic term-structure literature in that their measure needs not be identical
to observed interest rates, even when the ELB is not binding, nor is their shadow rate constrained to lie below the ELB
when the bound is binding.
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to as “business cycle measure”). We use CBO output gap estimates as business cycle measure;

similar results are obtained based on CBO unemployment-rate gap estimates.

2.1 The Shadow Rate Approach

Our data set includes a short–term interest rate, which is constrained by the ELB. We model

the short–term interest rate as the observation of a censored variable. In particular, we assume

that the nominal interest rate is the maximum of the ELB and a shadow rate (st) so that

it = max (st, ELB) . (1)

The ELB might arise because of an arbitrage between bonds and cash, though the world has

seen negative short–term nominal interest rates in a number of countries. It also might be

thought of as a level below which monetary authorities are unwilling to push short–term in-

terest rates. For our purposes, it is taken as an exogenous known constant (which could be

made time–varying). In our empirical application, the ELB on nominal rates of all maturities

is assumed to bind at 25 basis points. We proceed by modeling the shadow rate, in conjunction

with the other variables in the model, using standard time–series methods, and account for the

ELB when conditioning the posterior distribution of our model on observed interest rate data.

In principle, the distinction between shadow rates and observed nominal rates could also

be extended here to other nominal yields; however, in our application the distinction would be

moot since the ELB never binds for the other yields in our data.

2.2 A Time Series Model with Shadow Rates

We assume that all our variables, except for the business cycle measure, can be decomposed

into trend and gap components. That is, for any data series xt we can write

xt = x̄t + x̃t where x̄t = lim
h→∞

Et (xt+h) and E(x̃t) = 0 (2)
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Measured as deviation from an infinite-horizon forecast, the defining feature of the gap com-

ponent, x̃t, is that it has a zero ergodic mean. Considering our business cycle measures, we

assume that c̃t satisfies the definition of a gap component, as expressed by x̃t in (2).3

The trend components x̄t are similar in spirit to the trend concept of Beveridge and Nelson

(1981); however, by treating the trends as unobserved components we allow for the conditional

expectations, Et(·) in (2), to reflect a possibly wider information set than what is known to an

econometrician at time t.4 Defining the trend components as infinite-horizon expectations

implies that changes in x̄t follow martingale-difference processes; and, as a result, the trend

components have unit root dynamics.5

For example, U.S. inflation dynamics are well captured by such a trend-cycle decomposi-

tion when trend shocks have time-varying volatility; see Stock and Watson (2007), Cogley and

Sargent (2015) or Mertens (2016). So, for the trend component of inflation, we write:

π̄t = π̄t−1 + σπ̄,tεπ̄,t. (3)

log
(
σ2
π̄,t

)
= (1− ρπ̄)µπ̄ + ρπ̄ log

(
σ2
π̄,t−1

)
+ φπ̄ηπ̄,t (4)

where επ̄,t ∼ N(0, 1) and ηπ̄,t ∼ N(0, 1) and |ρπ̄| < 1. Assuming a stationary AR(1) specifi-

cation for stochastic volatility (rather than the also commonly used random walk specification)

helps us obtain better behaved predictive densities for multi-step forecasting.

We assume that the trend shadow rate has two components

s̄t = π̄t + r̄t (5)

where r̄t will be our measure of the trend in real interest rates. We assume that r̄t evolves so

3For the unemployment rate (ut) we thus assume that the CBO’s measure of the long-run natural rate reflects a
trend estimate series akin to the x̄t component in (2). Similarly, for the output gap, we assume that the CBO’s measure
of potential real GDP reflects a trended series akin to the x̄t component in (2).

4See also the discussion in Mertens (2016).
5Similar trend-cycle decompositions have also been used in a variety of structural models, see, for example, Rude-

busch and Svensson (1999), Kozicki and Tinsley (2002, 2001, 2012) Ireland (2007), or Cogley et al. (2010).
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that

r̄t = r̄t−1 + σr̄εr̄,t. (6)

To capture a connection between the short–term interest rate and the other interest rates, we

assume that the other interest rates in our model (y2
t , y5

t , y10
t ) share a common trend with

the shadow rate, adjusted for average term–premiums.6 By assuming that yield spreads are

stationary, we impose the same cointegrating relationship on nominal yields that has also been

used by Campbell and Shiller (1987) and King and Kurmann (2002) or more recently by Bauer

and Rudebusch (2017a) and Benati (2017). In sum, there are two stochastic trends in our

model: π̄t and r̄t.7

While we model shocks to trend inflation with stochastic volatility, our baseline specifica-

tion assumes homoscedastic shocks to the trend real rate. Prior evidence suggests that time-

varying volatility in shocks to trend inflation serves well to capture changes in the anchoring of

public perceptions of long–term inflation expectations and the credibility of policymaker’s in-

flation goals in U.S. postwar data (Stock and Watson, 2007). By contrast, the variability of the

trend real rate is more likely to reflect slow–moving changes in long–term growth expectations,

demographic trends and other secular drivers (Rachel and Smith, 2015; Gagnon et al., 2016).

Furthermore, as discussed by Hamilton et al. (2015), trend variability probably accounts for

only a small share of the variability in real rates, which cautions us against fitting a stochastic

volatility process for changes in this trend. As robustness check, we also estimate an alter-

native version of our model, where shocks to the real-rate trend are also subject to stochastic

volatility. As discussed in Section 3.2, this model variant fits the data worse — as measured

by the marginal data density — than our baseline specification.

We assume that the gap components of the series in our model follow a joint autoregressive

6Specifically, the trend in the nominal two-year yield is written as ȳ2t = s̄t + p̄20 where the constant p̄20 represents
the average term–premium, and its estimated value reflects the average spread between the short–term nominal interest
rate and the two-year yield in our model over our sample. As for all gap variables, the mean of the yield gap, E(ỹ2t ),
has been normalized to zero. Similar relationships hold for y5t and y10t .

7Shocks to both trends are assumed to be mutually uncorrelated.
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process. That is, we assume that

A(L)X̃t = BΣ̃
1/2
t ε̃t, X̃t ≡Xt − EtXt+∞, Xt ≡

[
πt c̃t st y2

t y5
t y10

t

]′
(7)

where A(L) is a polynomial in the lag operator that has all roots outside the unit circle, B

is a unit–lower–triangular matrix, ε̃t is multi–variate standard normal, and Σ̃
1/2
t is a diago-

nal matrix of stochastic volatilities; the vector σ2
t collects the diagonal elements of Σ̃t =

Σ̃
1/2
t

(
Σ̃

1/2
t

)′
.8 In order to give the model the flexibility to capture large changes in the gap

components over the business cycle, shocks to the gap–vectorautoregression are assumed to

follow stationary stochastic-volatility processes with mutually correlated shocks:

log
(
σ̃2
t

)
= (I − ρ̃) µ̃+ ρ̃ log

(
σ̃2
t−1

)
+ Φ̃η̃t η̃t ∼ N(0, I) (8)

where µ̃ is a vector of mean log-variances, ρ̃ is a diagonal matrix of lag coefficients that

are all inside the unit circle, and Φ̃ is the variance-covariance matrix of shocks to the SV

processes. Shocks to the stochastic volatilities in the gap shocks can be correlated, which

allows the model to pick up on commonalities in time-variation of business-cycle volatility

across variables (Jurado et al., 2015; Clark et al., 2016).

2.3 Relationship Between Shadow and Interest Rates

We conceptualize the shadow rate as the nominal interest rate that would prevail in the absence

of the ELB. On a period–by–period basis, the interest rate is either equal to the shadow rate

or equal to the ELB. The key distinction between shadow rates and interest rates is thus that

shadow rates have unbounded support.

In the model we presented in the previous section, we modeled the shadow–rate gap, as

well as its lags, as part of a joint dynamic system, which allows the shadow rate to have

the same persistence properties when the ELB is binding and when it is not. By contrast,

Iwata and Wu (2006) and Nakajima (2011) model the variables in their models as functions of

8Due to the stochastic volatilities, estimation is not invariant to the ordering of the variables Negro and Primiceri
(2015). Appendix D documents the robustness of estimates to alternative orderings.
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lagged observed interest rates. This means that, in those papers, at the ELB the value of the

shadow–rate in the previous period has no direct effect on its value today. This approach is

in stark contrast to the shadow–rate dynamics from dynamic term–structure literature; see, for

example, Wu and Xia (2016).9

Similar to the term-structure literature, we embed the shadow rate into a state vector with

auto–regressive dynamics, such that the persistence of the shadow rate does not depend on

whether the ELB binds. When the ELB is binding on observed interest rates, the shadow rate is

intended to capture the hypothetical level of the nominal rate that would prevail in the absence

of the ELB constraint; accordingly, we deem it beneficial that the estimated persistence of the

shadow rate in our specification reflects to a large degree the persistence of observed interest

rates when those are away from the ELB.

2.4 Interpretation of r̄t

Because interest rates are truncated shadow rates, the expected interest rate is necessarily

weakly larger than the expected shadow rate. In turn, it is also the case that,

lim
h→∞

Et (it+h) ≥ lim
h→∞

Et (st+h) = s̄t = π̄t + r̄t. (9)

In our model, s̄t is the median forecast of limh→∞ it+h, offering a direct connection between

far-ahead shadow rates and interest rates.10 Further, assuming that the Fisher hypothesis holds,

this connection gives r̄t the interpretation of the median forecast of the real interest rate in the

long run.11 Notably, the same relationship holds for the other yields in our model, up to a

constant offset, because of the co-integrating relationship we have assumed. For the remainder

of the paper, we refer to r̄t as the trend real interest rate.

9Our statistical approach is able to accommodate models with both lagged observed interest rates and lagged
shadow rates. See the appendix for further discussion.

10The value of s̄t is not a mean forecast because, in our model, at long horizons, there is positive probability
that the shadow rate will be less than zero, meaning limh→∞Et (it+h) > limh→∞Et (st+h); however, one could
conceptualize models in which the inequality needs not to be strict.

11 So long as s̄t ≥ 0, which it is in our estimates, then our interpretation of r̄t applies. However, if s̄t < 0, then the
median forecast of the limh→∞ it+h − πt+h is ELB − π̄t. Then r̄t would help determine the probability that interest
rates would be above the ELB over the business cycle and would be less than the long–run median real interest rate.
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Alternatively, r̄t could be interpreted as the point of attraction for the short–term real in-

terest rate, assuming no future shocks. In this way, r̄t is the expected short–term real interest

rate in the longer–run after all shocks have died out. As in the previous interpretation, r̄t can

be though of a the trend real interest rate.

Importantly, the co-integrating relationship between the yields in our model allows the

longer–term yields to offer direct evidence on r̄t. This disciplines movements in r̄t because

these yields are above the ELB throughout our sample.

2.5 Estimation Procedure

To estimate the parameters and unobserved states of the model, we use Bayesian methods.12

The novel modeling contribution of this paper lies in the sampling of the unobserved trend and

gap components of the data when the interest rate data are at the ELB, so we focus the text

on this step of the estimation procedure. Conditional on parameter values and a sequence of

volatilities, our model can be put into the form

ξt =Aξt−1 + BΣ
1/2
t εt εt ∼ N(0, I) (10)

Xt =Cξt (11)

it = max (st, ELB) st = cs Xt (12)

where ξt contains the stochastic trend and gap components of our model, as well as the appro-

priate number of lags to represent their dynamics in companion form, and Σ
1/2 is a diagonal

matrix of stochastic volatilities (as well as the constant volatility of real–rate trend shocks in

the baseline model). The matrices A, B, and C are constructed accordingly from the param-

eters in our model, 13 cs is a selection vector, and the max operator encodes the ELB in the

observation equation for the interest rate. We set the value of the ELB to 25 basis points,

and assume that the federal funds rate was at the ELB for every quarter in which the average

12 Our data are quarterly, and we include two lags inA(L).
13In Appendix A we show how A, B and C can easily be made time–varying. Missing data for the two–year yields

prior to 1976:Q2, are, for example, handled by deterministic time–variation in Ct where rows associated with missing
observations are set to zero.
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annualized 3–month yield was less than 25 basis points.

We collect the unobserved state variables of our model in the vector ξ, which contains each

vector ξt stacked by time. Our approach for drawing from the posterior of ξ is to first treat

the interest rate data at the ELB as missing and take draws from the posterior distribution of ξ,

which is straightforward using standard filtering and smoothing techniques. Knowing that the

interest rate is at the ELB (not simply missing) in period t amounts to knowing that the values

of ξt that are consistent with the data imply values of st that are less than the effective lower

bound during that period. Thus, we can draw from the posterior of ξ by first treating interest

rate data at the ELB as missing, and then rejecting draws until we find a ξ that is consistent

with the ELB. Notice that rejections of ξ are not part of a Metropolis-Hastings algorithm for

constructing the posterior of ξ. Instead, we reject draws of ξ that are inconsistent with the

knowledge that the short–term interest rate was at the ELB over certain periods, and thus use

the rejection step to draw directly from the posterior of ξ.

Our estimation procedure is a generalization of Park et al. (2007) that applies the method-

ology of Hopke et al. (2001). Appendix A explains in further detail how to construct a draw

from the posterior distribution of ξ, conditional on the data, in a conditionally–linear Gaus-

sian state–space model like ours. With a draw of ξ in hand, the posterior distribution of the

parameters can be sampled using standard methods in the literature on conditionally–linear

time series models with time–varying parameters and stochastic volatility, such as those used

in Primiceri (2005) or Cogley and Sargent (2005). We jointly estimate the parameters and un-

observed states of the model using Bayesian MCMC techniques; our priors and details of the

MCMC steps are described in Appendix B.

3 Shadow Rate and Trend Estimates

In this section we describe the posterior distribution of our model with regard to estimated

shadow rates and trends. Our model is estimated using quarterly data from 1960:Q1 to

2017:Q2, which includes the recent period at the ELB. All data are publicly available from

the FRED database maintained by the Federal Reserve Bank of St. Louis. Inflation is mea-
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sured by the quarterly rate of change in the PCE headline deflator (expressed as an annualized

percentage rate). Readings for the nominal yields are constructed as quarterly averages of the

Treasury’s constant maturity rates. The unemployment rate gap is computed as the difference

between the quarterly average rate of unemployment and the CBO’s measure of the natural

long–term rate of unemployment for a given quarter. The output gap is computed as the log

difference between real GDP and the CBO’s measure of potential real GDP for a given quar-

ter.14 All computations are based on the vintage of FRED data available that has been available

at the end of October 2017.15

3.1 The Shadow Rate

Our model delivers estimates of the shadow rate of interest that are, by construction, less

than the ELB during the period in which the bound is binding. While we consider both the

unemployment rate gap and the output gap as cyclical factors in our model, the shadow rate

estimates are similar in both cases. Figure 1 shows results from our model when the cyclical

factor is measured by the output gap.16 Panel (a) of Figure 1 shows the posterior mean of our

shadow rate, along with uncertainty bands, on the same plot as estimates from Wu and Xia

(2016), and Krippner (2013).17 Two features are worth noting. First, our estimated shadow

rate, which also conditions on the business cycle measure and inflation, is lowest during 2009,

near the trough of the Great Recession, according to the NBER. By contrast, the other estimates

reach low points much later, and those low points are more–negative than our estimate. Second,

all three estimates are remarkably similar at the end of 2015, just before the Federal Reserve’s

departure from the ELB.

14In order to be comparable to annualized growth rates, the log difference between actual and potential GDP has
been scaled by a factor of 400 when computing the output gap.

15The FRED database is available at https://research.stlouisfed.org/fred2/. In FRED, the PCE
headline deflator has the mnemonic PCECTPI. For Treasury yields we used TB3MS, GS2, GS5, and GS10. Data for
the 5-year yield is available only as of 1976:Q2 and prior observations are treated as missing within our state space
model. The unemployment rate and the CBO’s estimate of the natural rate of unemployment in the long run are given
by UNRATE and NROU. Real GDP and the CBO’s estimate of potential real GDP are given by GDPC1 and GDPPOT.

16Figure 8 in Appendix C shows results from our model when the cyclical factor is measured by the unemployment
rate gap.

17Measures of the shadow rate from Priebsch (2013) and Ichiue and Ueno (2013) are not shown because their
sample ends in 2013. Their measures are qualitatively similar in that they reach low points well after the trough of the
recent recession.
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Panel (b) of Figure 1 shows quasi real–time estimates of the shadow rate, which are condi-

tioned solely on data through period t.

[Figure 1 about here.]

The quasi real–time estimates of the shadow rate are notably similar to the full–sample esti-

mates. This similarity indicates that the data are informative about the shadow rate, even in

real time. Additionally, this similarity suggests that the length of the ELB period (7 years) does

not heavily influence the particular values of the full–sample estimates of the shadow rate.

3.2 The Real Rate in the Long Run

Figure 2 displays the posterior median of our estimates of the trend real rate, r̄t, along with

uncertainty bands from our model when the cyclical factor is measured as the output gap.18

Panel (a) of Figure 2 shows the smoothed estimates, in that the entire data sample is used to

estimate the parameters and r̄t. Panel (b) of Figure 2 shows quasi real–time estimates of r̄t,

which are conditioned solely on data through period t. Consistent with results reported by

Hamilton et al. (2015), Kiley (2015), and Lubik and Matthes (2015), the uncertainty bands

surrounding our estimates of r̄t are wide.

[Figure 2 about here.]

The median estimate of r̄t using the entire data sample has about a 1 percentage point

decline from the mid 1990s to the end of the sample. The pseudo–real–time estimate of r̄t

is more volatile than the estimate from the entire data sample, and any downward movement

in r̄t seems to start around 2000. Notably, the size of the movement in the pseudo–real–time

estimate of r̄t since 2000 is not unprecedented. To the extent that these estimates could be taken

to suggest a downward shift in r̄t, the series peaked well before the Great Recession. Studies

like Laubach and Williams (2015) and Lubik and Matthes (2015) also document downward

trajectories in the trend real rate; however, our estimates do not dip nearly as much as their

18Figure 9 in Appendix C shows results from our model when the cyclical factor is measured by the unemployment
rate gap.
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estimates. One reason for the differences is our inclusion of stochastic volatility, which allows

for large movements in the gap components of our model in 2008 and 2009.

3.3 Stochastic Volatility in Real Rate Trend Shocks

In our benchmark model, the shocks to r̄t have a constant volatility. To assess if this assumption

is appropriate, we estimated a version of our model where r̄t evolves so that

r̄t = r̄t−1 + σr̄,tεr̄,t, (13)

log
(
σ2
r̄,t

)
= (1− ρr̄)µr̄ + ρr̄ log

(
σ2
r̄,t−1

)
+ φr̄ηr̄,t. (14)

As with the inflation trend, we assume that εr̄,t ∼ N(0, 1), ηr̄,t ∼ N(0, 1), and |ρr̄| < 1.

We compare the fit of the model with stochastic volatility in r̄t to our benchmark specification

using the marginal data density (MDD), p(Z), where Z is the observable data.

We estimate the MDD using the harmonic mean estimator of Geweke (1999), as presented

by Herbst and Schorfheide (2014), who express the MDD as

p(Z) ≈

[
1

N

N∑
i=1

f(θi)

p(Z|θi)p(θi)

]−1

, (15)

where N is the number of draws from the posterior distribution, θ is a vector that collects all

of the estimated parameters and θi is a particular draw from the posterior distribution, f is

a function of the parameter vector that integrates to one, p(θ) is the prior density of θ, and

p(Z|θi) is the likelihood.19 For our models, computation of the likelihood requires a particle

filter because of multiple layers of latent variables — trends and gaps as well as the stochastic

volatilities — as well as our handling of the ELB; see also Fuentes-Albero and Melosi (2013)

19For f , we use

f(θ) =τ−1(2π)−d/2|V θ|−1/2 exp
[
−0.5(θ − θ̄)′V −1θ (θ − θ̄)

]
× I

{
(θ − θ̄)′V −1θ (θ − θ̄) ≤ F−1

χ2
d

(τ)
}

where θ̄ and V θ are the mean and variance of the posterior distribution of θ, d is the length of θ, and Fχ2
d

is the
cumulative distribution function of the χ2 distribution with d degrees of freedom, and I is the indicator function. We
set τ = 0.9, and have found that results are robust to other choices of τ .
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and Chan and Grant (2015). Our particle filter is an auxiliary particle filter that employs Rao-

Blackwellization to handle the linear parts of the state space. Additionally, the particle filter

handles the ELB by sampling linear states from the truncated normal distributions implied by

the posterior distribution of the shadow rate.20

We find substantially higher MDD for the model without stochastic volatility in the real

rate trend: When the output gap is used as the business cycle measure, the log-MDD is esti-

mated at 304.6 as opposed to 228.8 for the model with stochastic volatility. Similarly, when

the unemployment rate gap is used as the business cycle measure, we find that the MDD is sub-

stantially larger for the model without stochastic volatility (570.1 as opposed to 492.6 for the

model with stochastic volatility).21 These results confirm our prior disposition, as informed by

results discussed in Hamilton et al. (2015), that r̄t is best modeled without stochastic volatility.

4 Forecasting Interest Rates

Our shadow–rate approach has significant implications for forecasting interest rates. In this

section we offer a number of ways to evaluate our shadow–rate approach by analyzing the

model’s out–of–sample predictions.

4.1 Predictive Density at Selected Dates

To create out–of–sample forecasts from our model, at each date we use the median of the pre-

dictive densities from the posterior distribution (using data only up to that date) to forecast

future interest rates. Our forecasting procedure thus captures uncertainty about both the pa-

rameter values and the unobserved states in our model. The posterior predictive distribution

can be highly asymmetric because of the ELB. As a result, we follow Bauer and Rudebusch

(2015) and use the posterior median as the point forecast for forecast evaluation, rather than

the posterior mean. We compare these forecasts to forecasts from the SPF, conducted by the

Federal Reserve Bank of Philadelphia, and to median forecasts from the WX-SRTSM.

20Further details regarding our particle filter are provided in Appendix E.
21Differences in log-MDD above one, which correspond to Bayes factors above three, are considered to be substan-

tial; see Kass and Raftery (1995) and Jeffreys (1961).

15



[Figure 3 about here.]

So as to illustrate its skewness, Figure 3 display statistics from the posterior predictive

density of the short–term nominal interest rate from our baseline model (with the output gap

as the cyclical factor) at different dates. The forecast horizon extends for five years, and, in

addition to mean and median predictions, shaded areas indicate 50 and 90 percent uncertainty

bands. The dashed lines that extend below the ELB indicate posterior quantiles of the shadow

rate distribution (as opposed to the interest rate distribution). The predictive density of the

interest rate is a truncated version of the predictive density of the shadow rate distribution, so

the quantiles of the shadow rate distribution become exactly the quantiles of the interest rate

distribution if the value is larger than the ELB. The truncation of the shadow–rate distribution

causes substantial asymmetry in the interest rate distribution leading to marked differences in

the predictive means and medians of our baseline model.

In 2008:Q4, the first period before the ELB (Panel (a) of Figure 3), the predictive density

from our model takes the ELB already into account and produces interest rate forecasts based

on the truncated distribution of future shadow rates. In doing so, the mean interest–rate forecast

rises appreciably above the median for several periods.

In 2009:Q1, the period the ELB begins to bind (Panel (b) of Figure 3), accounting for the

ELB produces interest rate forecasts that place substantial probability on remaining exactly at

the ELB for several quarters. As in Panel (a), the truncation of the shadow rate distribution in

order to produce interest rate forecasts creates a divergence of mean and median estimates of

interest rates for several years.

In 2010:Q4, after the ELB had been binding for some time (panel (c) of figure 3), our

baseline model still predicts substantial probability of interest rates at the ELB because of the

estimated negative shadow rate. Moreover, the median interest rate forecast remains at the

ELB for a number of quarters. Toward the end of the ELB period (2015:Q4, shown in panel

(d) of Figure 3), the forecasts for the short-term interest rate are similar to the forecasts for the

shadow rate, in large part because our estimated shadow rate is only slightly less than the ELB

at that point.
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4.2 Forecasting Performance

To assess the forecasting performance of our model, we compare the accuracy of forecasts

from our model to the accuracy of forecasts from the SPF and the WX-SRTSM. For the SPF,

forecasters submit survey responses in the middle of the quarter. Because forecasts are sub-

mitted in the middle of the quarter, we date the forecasts as being made in the previous quarter

so as to not give our model an informational advantage. For interest rate forecasts, forecasters

submit forecasts for the average value of the 3-month and 10-year Treasury rates in the current

and subsequent 4 quarters. These rates are part of our benchmark data set, and as such we

compare forecasts from our model directly to forecasts from the SPF. We compare our model’s

forecast to the average forecast across forecasters in the SPF.

The WX-SRTSM is estimated at a monthly frequency using month-end data on fitted zero-

coupon Treasury yields since 1990 from Gurkaynak et al. (2007). So as to be consistent, when

comparing our model to the WX-SRTSM, we estimate our model on data since 1990 and use

quarter-end interest rate data from the fitted zero-coupon Treasury yields from Gurkaynak et al.

(2007) of the same maturity as in our baseline case. We compare our model’s quarterly forecast

for quarter-end interest rates to the median forecast from the WX-SRTSM in the final month

of each quarter.

To assess performance, we focus on two statistics: the root–mean–squared error and the

mean absolution deviation. Table 1 compares the forecasts from the SPF with our model for

the post 2008 period. The statistics for our model are shown as calculated. The statistics for

the SPF are shown on a relative basis to our model.

Except at very short horizons where the SPF has an informational advantage, our model

performs better than the SPF at both the 3–month and 10–year horizon. To assess the statistical

significance of these differences, we use the statistic proposed by Diebold and Mariano (1995)

and West (1996).22 The differences in forecast performance between our model and the SPF for

the 3-month yield are not statistically significant, however our model statistically outperforms

22McCracken (2000) discusses issues related to forecast comparison using the mean absolute deviation when pa-
rameters of the model producing the forecasts are estimated. Our out-of-sample comparisons begin in 2008, affording
us a relatively small sample size. For the purposes of forecast comparison, we construct the statistics as in Diebold
and Mariano (1995).

17



the SPF for forecasting the 10-year yield at horizons greater than 3 quarters.

[Table 1 about here.]

Table 2 compares the forecasts from the WX-SRTSM with our model for the post 2008

period. The statistics for our model are shown as calculated and the statistics for the WX-

SRTSM are shown on a relative basis to our model. Our model performs at least as well

as the WX-SRTSM, on balance, for both the 3-month and 10-year Treasury yields. Thus,

even though our model does not impose the cross-equation restrictions associated with the no-

arbitrage assumptions of the WX-SRTSM, our model does no worse over the ELB period in

forecasting interest rates.

[Table 2 about here.]

4.3 Forecast Uncertainty

Naturally, the ELB has important effects on the predictive density for nominal interest rates

when the predictive density for shadow rates has non-negligible coverage below the ELB.

To illustrate the relevance of these effects, Figure 4 compares forecast uncertainty about the

shadow rate with forecast uncertainty about the short–term interest rate. For the purpose of this

figure, we measure forecast uncertainty by the conditional standard deviation of the predictive

densities described above for one and eight-quarters ahead. Overall, near– and medium–term

uncertainty about future short–term rates (and the shadow rate) has mostly declined since the

mid-1980s. Nevertheless, as the level of nominal rates has been trending down over this period

as well, the probability of reaching the ELB has become more and more non-negligible; this is

particularly true for longer–horizons forecasts made since 2000, causing forecast uncertainty

about the shadow rate to differ from forecast uncertainty about the short–term interest rate.

[Figure 4 about here.]

Not surprisingly, the onset of the last NBER recession in 2007 is reflected in higher esti-

mated levels of stochastic volatility to all shocks in our model, leading to increased shadow–

rate uncertainty. By accounting for the ELB, our baseline model recognizes that during the
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last recession, increased shadow–rate uncertainty is accompanied by a marked downward shift

of the shadow–rate distribution to values below the ELB such that the truncated distribution

of actual short–term nominal interest rates almost collapses at values at or slightly above the

ELB. Consequently, near–term uncertainty for short–term nominal rates declines during the

last recession when properly accounting for the ELB, as shown in Panel (a) of Figure 4. In

contrast, as shown in Panel (b) of the figure, medium–term uncertainty about nominal interest

rates increases with the increasing shadow–rate uncertainty, though not by quite as much, as

nominal rates are projected to return to their estimated non–negative trend level.

4.4 Long–Term Forecasts of Short–Term Rate

Our model’s predicted path for future short–term interest rates implies a forecast of the short–

term nominal interest rate in 10 years, as does the WX-SRTSM. In addition, once per year,

respondents to the SPF offer forecasts of the average short–term interest rate over the next 10

years. These forecasts are shown in Figure 5.

[Figure 5 about here.]

Bauer and Rudebusch (2017b) have emphasized the importance of long–term forecasts

for predicting interest rates at shorter horizons. The 10–year ahead forecast of the 3–month

Treasury rate from the WX-SRTSM is more volatile than the forecast from our model. While

the SPF provides forecasts of the average 3–month Treasury bill rate over the next 10 years,

those forecasts are only somewhat less volatile than our model’s 10–year ahead forecast of the

3–month rate. While all three lines appear to have some downward movement since 2000,

the forecasts from the WX-SRTSM are notable because they, at times, are equal to the ELB.

Unlike the WX-SRTSM, our model includes trend components in interest rates, which appears

to reduce the volatility of the long–term forecasts of the short–term interest rate.
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5 Impulse-Response Analysis

A common question of interest in empirical research is to measure the response of macroe-

conomic variables to identified economic shocks; for example, shocks due to monetary pol-

icy. Absent a binding lower–bound on nominal interest rates, the conventional tool for such

impulse-response function (IRF) analysis are linear vector-autoregressions (VARs). In this

section, we show how to perform a similar analysis within our shadow-rate approach to time

series modeling.

Our application is similar in spirit to the VAR analysis of Wu and Xia (2016) and others

who use estimated shadow rates as observables in a (factor-augmented) VAR system and iden-

tify monetary policy shocks via short-run restrictions on VAR-implied forecast errors for the

shadow rate.23 However, we also extend their approach in several dimensions: First, instead

of a two-step approach that ignores uncertainty about the true shadow-rate values, we estimate

impulse responses jointly with our shadow-rate inference. Second, our model implies a time-

varying vector moving average (VMA) representation of the data with respect to observable

forecast errors, which generates time-varying impulse responses with distinctively different

patterns at and away from the ELB. Similar to Wu and Xia (2016), we focus on monetary

shocks identified by short-run restrictions on surprise changes in the shadow rate. Specifically,

our short-run restrictions are identical to those used by Christiano et al. (1999) for the short-

term nominal interest rate. In the same spirit as Christiano et al. (1999), we define identified

shocks with respect to the level of the shadow rate, rather than any trend or cyclical component

separately.

5.1 Identification of monetary policy with shadow-rate shocks

In a VAR framework, the reduced-form dynamics of a vector of variables (Xt) are described

by A(L)Xt = et where A(L) =
∑∞

i=0AiL
i is a lag polynominal with A0 = I and

et = Xt − E(Xt|Xt−1) is a vector of mean-zero forecast errors with variance Ω.24 Eco-

nomic assumptions then allow to relate the reduced-form forecast errors to structural shocks

23See, for example, also Hakkio and Kahn (2014), Doh and Choi (2016), Bundesbank (2017), Francis et al. (2017)
24Practical application are typically limited to finite-order VARs whereAi = 0 ∀ i > p for some p.
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zt = Q−1et where QQ′ = Ω. For example, in their by-now canonical approach, (Chris-

tiano et al., 1999, henceforth: CEE) identify monetary policy shocks by placing a short-run

restriction on Q: Monetary policy shocks are assumed to be given by the residual obtained

from regressing forecast error in the policy rate on forecast errors in other macroeconomic

(though not financial) variables. This scheme can be implemented by ordering the policy rate

in Xt after other macroeconomic variables and before financial variables — similar to our

definition ofXt above (ignoring the distinction between shadow rate st and actual policy rate

it for now). Q can then be set equal to the lower–triangular Choleski factorization of the

variance-covariance matrix Ω of forecast errors, and the monetary policy shock is given by the

element of zt corresponding to the location of the policy rate in Xt. Impulse responses are

then generated by the VMA representation Xt = A(L)−1Qzt.

However, when considering the ELB on nominal interest rates, such a VAR approach runs

into complications: First, the linear dynamics implied by a VAR for the actual policy rate

are hardly applicable at the ELB. As proposed by our model as well as other shadow-rate ap-

proaches, it is, however, conceivable that the dynamics of the shadow rate can be described by

a process that is at least conditionally linear.25 At the ELB, the shadow rate is an unobserved

state variable that matters for forecasting future outcomes in the policy rate and other variables.

Unexpected variations in the shadow rate can thus be interpreted as reflecting changes in mon-

etary policy implemented through unconventional tools (such as asset purchases or forward

guidance). Similar to Wu and Xia (2016), we are thus interested in characterizing the response

of macroeconomic and yield-curve variables to monetary policy shocks as measured by sur-

prise changes in the shadow-rate after controlling for endogenous variations in the shadow rate.

For simplicity we adopt a short-run restriction that will be identical to the CEE identification

for policy-rate shocks when the ELB does not bind. When the ELB binds, we apply the CEE-

Choleski identification to surprise changes in the shadow rate, which is jointly estimated with

the IRF.
25By conditionally linear we mean to include cases like our state space model in (10) and (11), which is linear con-

ditional on knowledge of trends and gaps (the components of ξt) as well as the evolution of time-varying parameters,
like the stochastic volatilities that cause variation in Σt in (10). Of course, this includes also cases of outright linear
models, such as the FAVAR considered by Wu and Xia (2016).
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Second, economic theory suggests the economy might react differently to policy shocks

when the ELB binds – even after accounting for the immediate non-linearity in policy-rate

dynamics arising from the ELB.26 If so, impulse-responses generated from a time-invariant

VAR will hardly provide an appropriate characterization.

In principle, a VAR with time-varying parameters (TVP-VAR) could be used to address

concerns about time-varying IRFs (Gali and Gambetti, 2009). However, even when consid-

ering only a relatively relatively small set of variables as in our case, such an approach can

quickly run into curse-of-dimensionality problems; and, as documented already by Cogley

and Sargent (2005), there are likely fewer underlying sources of parameter variations than

VAR coefficients. Moreover, the many degrees of freedom of a TVP-VAR that exist already in

the case of known observables will impair our shadow-rate inference, which is build around a

missing observations problem.

In contrast, the unobserved components (UC) model characterized by (10) and (11) implies

a time-invariant VMA with respect to innovations et that are defined relative to the history of

the data vector Xt as well. However, in contrast to the case of a generic TVP-VAR, time-

variation in the resulting IRFs is the result of lower–dimensional variations in the stochastic

volatilities that affect the UC shocks εt in (10). Specifically, assume model parameters are

known and a trajectory of stochastic volatilities are given such that A, Bt, C are known when

taking expectations. And denote expectation of Xt and ξt relative to the history of Xt−1 by

Xt|t−1 and ξt|t−1, respectively.27 Denote innovations ofXt relative to its own history by

et = Xt −Xt|t−1. (16)

From (10) and (11) we then obtain a time-varying VMA representation of Xt with respect to

26See, for example, the models of Eggertsson and Krugman (2012), Christiano et al. (2011), Johannsen (2014), and
Gavin et al. (2015), as well as the DSGE-based estimates of Gust et al. (2017) and Aruoba et al. (2017). Alternatively,
estimates by Stock and Watson (2012) suggest that the propagation of shocks did not materially change over the Great
Recession (for variables other than the policy rate), at least after conditioning on a broad set of economic factors and
when accounting for the unusual depth of the recession. Wu and Zhang (2016) also argue that economic responses are
time-invariant once shadow-rate dynamics are included in the analysis.

27Formally we have thus Xt|t−1 = E
(
Xt|Xt−1) and ξt|t−1 = E

(
ξt|X

t−1) where Xt−1 denotes the infinite
horizon historyXt−1 = {Xt−1,Xt−2, . . .}.
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innovations spanned by its own history – henceforth the “the VMA ofXt”:

ξt|t = Aξt−1|t−1 +Ktet (17)

Xt =
(
I + C (I −AL)−1Kt L

)
et = Dt(L)et (18)

Time variation in Dt stems fromKt, which is a time-varying Kalman gain matrix induced by

the stochastic volatilities that cause variations in Bt.28 Time-variation in the VMA ofXt with

respect to et thus reflects changes in the signal-to-noise ratios involved in filtering out trends

and gaps, which leads to time-varying persistence in the effects of et onXt.

Applied to the UC model with stochastic volatility, standard Kalman-filtering computa-

tions, described in Appendix E, imply a time-varying variance covariance matrix for the inno-

vations Vart (et) = Ωt = QtQ
′
t with lower–triangular Choleski factor Qt. The third column

of Qt, which is associated with the component of the shadow-rate innovation that is orthog-

onal to innovations in inflation and the business cycle shall be denoted Qt,m. Echoing the

CEE-VAR approach, responses ofXt to a monetary policy shock are then given by

Xt = Dt(L)Qt,mzt,m = Dm,∗
t(L)zt,m. (19)

where zt,m denotes a standard–normal monetary policy shock. To generalize the impulse re-

sponses to the case of actual–rate dynamics, which are non–linear due to the censoring con-

straint (1), note that that the impulse response coefficients in Dm,∗
t(L) =

∑∞
k=0 Dm,∗

k,tL
k

reflect updates in forecasts of Xt+k prompted by the observation of a unit–sized policy shock

at time t:

Dm,∗
k,t = E

(
Xt+k|Xt−1, zt,m = 1

)
− E

(
Xt+k|Xt−1

)
(20)

where the expectations condition also on model parameters. The right-most term in (20) can

also be referred to as “baseline” forecast. Of course, once the economy has touched the ELB,

Xt−1 is not observable anymore and we condition instead on the observable data Zt−1 via

particle filter described further below and in the appendix.

28The Kalman filtering computations are standard with details described in Appendix E.
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By analogy, we can generate impulse responses for the actual rate by simulation of the pre-

dictive density for it+k, once conditional onXt−1 and then conditional on
(
Xt−1, zt,m = 1

)
,

compute expectations via numerical integration across the simulated draws of each predictive

density and then consider the updates in the forecast trajectories induced by the policy shock.

In our empirical implementation, we compute impulse response conditional on parameter

values that are set equal to their posterior median estimates from a full-sample MCMC esti-

mation of the model. However, in order to avoid look-ahead bias imparted by the smoothed

SV estimates generated by the MCMC estimation, we have embedded the IRF computations

in a particle filter. The IRF in (20) thus condition on a fixed set of model parameters estimated

over the full sample, but continuously update underlying filtered estimates of the stochastic

volatilities. Specifically, we exploit the conditionally linear structure of our model with a Rao-

Blackwellized particle filter that simulates a large range of SV trajectories (“the particles”)

and associated Kalman filters based on the “mixture Kalman filters” of Chen and Liu (2000);

see, for example, Creal (2012) and Lopes and Tsay (2011) and the applications in Mertens and

Nason (2017) and (Mertens, 2016). Output for each particle is then weighted by their respec-

tive likelihood. We perform the computations described above separately for each particle and

then integrate the resulting IRF estimates across particles. Similar to our MCMC algorithm,

shadow rate estimates are simulated from treating shadow rates as unobserved while impos-

ing that st < ELB when the policy rate is constrained by the ELB; details are provided in

Appendix E.

5.2 Economic responses to shadow-rate shocks

Figure 6 reports impulse response to monetary policy shocks identified as surprise innovations

in the shadow rate that are uncorrelated with contemporaneous forecast errors in the business

cycle and inflation. Shocks are identified as part of a particle filtering loop, which simultane-

ously estimates the linear states of our model (ξ) as well as the stochastic volatilities. Variations

in the latter cause variations in the filters assessment of the permanent effects of shocks de-

fined relative to the history of Xt. We consider impulse-responses at four different dates that

represent different points in time before, during and after the ELB had been binding in recent
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U.S. history: 2007, 2009, 2011, and 2016.29 For the sake of comparability, monetary policy

shocks have been scaled to generate a percentage point drop in the shadow rate on impact.

[Figure 6 about here.]

Monetary policy shocks are estimated to have transitory and permanent effects on the

shadow rate. As shown in Panel 6a, it takes roughly a year for the shadow rate to settle on

a new permanent level after a shock. Moreover, shadow-rate shocks are estimated to have had

much less permanent effects on the level of the policy rate during the ELB years compared to

non-ELB times. A similar pattern is also visible in the responses of longer-term yields, see

Panels 6c and 6d.

At least part of the permanent effect of a policy shock on the level of interest rates is

attributed to a shift in the inflation, with the remainder accounted for by the real rate trend. As

shown in Panel 6e, the response of inflation to a monetary policy shock is characterized by a

fairly swift adjustment to the new trend level without much transitory dynamics. If anything,

at the ELB, inflation slightly overreacts to its new trend level (i.e. drops initially by more)

whereas the adjustment is more monotonic when away from the ELB. Similar to the nominal-

rate responses, shadow-rate shocks have much less permanent effects on inflation when the

ELB binds.

The responses of the output gap (our business cycle measure) also differ markedly at times

when the ELB binds rather than not. In particular, same-sized monetary policy shocks are

estimated to generate a more sizable pick-up in real activity — that peaks after about a year

and then wanes only gradually over the next few years — when the ELB was binding rather

than when not.30

The actual policy rate depends on the shadow rate via the censoring function (1). Because

of this censoring, responses of the actual rate to shocks depend on the current level of the actual

rate as well as the size and the sign of the impulse.31

29Results reported for the years 2007 and 2016 are also similar to what we obtained during earlier decades.
30Since the trend level of the business cycle measure is fixed at zero, the effects of any shock on the business cycle

are ultimately transitory.
31All other responses shown in Figure 6 are symmetric and correspond up to their sign to the effects of a con-

tractionary shock as well. (While the ELB could in principle also bind for longer-term yields, their levels remained
sufficiently elevated for the ELB not to matter for the impulses responses shown here.)
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The effects of the ELB on the actual rate impulses visible by comparing the responses of

actual rate and shadow rate shown in Panels 6b and 6a, respectively. Not surprisingly, during

the ELB years, the actual-rate responses to a negative shadow-rate shock are close to zero.

However, given the estimated low levels of the shadow rate — reported in Figure 1 — for the

years considered here, actual-rate responses to a percentage-point increase in the shadow rate

(not shown) also flatline close to zero. Considering responses estimated for 2007:Q4 — when

the 3-month rate was still above 3 percent and thus well away from the ELB — actual-rate

and shadow-rate response are fairly similar. In contrast, the actual-rate response to a one-

percentage point drop in the shadow rate estimated for in 2016:Q4 is still quite muted, as the

3-month rate still just hovered below 0.5 percent at that time.

[Figure 7 about here.]

Given the duration and tightness of the ELB period over the last decade, it might seem

surprising to see any decline at all in the estimated actual-rate responses to a drop in the

shadow-rate reported in Panel 6b. However, impulse response paths merely reflect changes

in forecasted trajectories, not changes relative to the initial level of the actual rate. During the

ELB years, the actual rate is estimated to have been below its estimated longer-run level to

which it is forecasted to rise back again. Negative values for the actual-rate responses after

a drop in the shadow rate merely indicated a slower return to trend levels than before, not a

cut below the level of the actual rate that prevailed on impact. The resulting asymmetries are

also illustrated in Figure 7, which contrasts the hypothetical effects of a positive and a negative

shadow rate shock in 2015:Q4 (the quarter of the first rate hike since the economy had reached

the ELB in 2009).

6 Conclusion

In this paper, we develop a methodology to account for the ELB in time series models. Our

method applies not only to models that — apart from the ELB constraint – are Gaussian and

linear, but also to models that are only conditionally linear and Gaussian, for example, due to
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time-varying parameters, like stochastic volatilities. Further, we demonstrate how to estimate

the parameters and latent states of such a model with an otherwise standard Bayesian MCMC

sampler.

We document that including the ELB can have drastic effects for interest rate forecasts,

as well as the expectations component of longer–term yields and thus also the computation

of term–premiums. Further, accounting for the ELB using our shadow–rate approach appears

to improve forecast performance for interest rates. We also estimate changes in the trend real

rate, defined as a long–term forecast of the real interest rate, and find that any decline in the

trend real rate since the onset of the Great Recession is best characterized as a continuation of

a downward trajectory that began well before. In addition, our model estimation empirically

reveals interesting time variation in impulse response functions around the recent ELB episode.

APPENDIX

A Sampling States with Censored Data

Our Gibbs sampling procedure is a generalization of Park et al. (2007) that applies the method-

ology of Hopke et al. (2001). Assume that the vector ξt is a random variable that evolves so

that

ξt = Atξt−1 + Btεt (21)

where εt is a vector of standard normal random variables of appropriate length and the se-

quence of matrices {At}Tt=1 and {Bt}Tt=1 are given.32

Define the vector

Xt = Ctξt (22)

32In our application, described in the main body of the paper note that we have a constant At = A while Bt is
given by Bt = BΣ

1/2
t where B is unit–lower–triangular.
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where the sequence of matrices {Ct}Tt=1 are known.33 We assume that Xt has a partition

made up of a vector shadow rates, (St), and a partition of variables that are unconstrained by

the ELB, (M t).34 That is,

Xt =

 St
M t

 (23)

The observed data are

Zt =

max (St, ELB)

M t

 (24)

where the max operator is applied element by element. The ELB acts as a censoring function

in the model through the max operator, though more general censoring functions could be

used.

DefineX ≡ [X ′1,X
′
2, . . . ,X

′
T ]′, and Z ≡ [Z ′1,Z

′
2, . . . ,Z

′
T ]′. We split Z into two parts,

one part containing all non-interest rate data and all observations for interest rates that are not

constrained by the ELB, ZNC , and another part with the interest rate data constrained at the

ELB, ZC .35 The corresponding elements of X are XNC and XC . Note that, the elements of

XC are all shadow rates that are less than the ELB.

Given a normal distribution for ξ0, it follows that the vectorsXNC and ξ = [ξ′1, ξ
′
2, . . . , ξ

′
T ]′

have a multivariate normal (prior) distribution

XNC

ξ

 ∼ N

µX
µξ

 ,
V XX V X,ξ

V ξ,X V ξ,ξ


 (25)

and we can derive the posterior distribution for ξ conditional on observed interest rates, when

the ELB is not binding, as well as all observations for macroeconomic, non-interest-rate vari-

33In our application, described in the main body of the paper note that we have a constant Ct = C.
34In the application described above, there are in principle two shadow rates, one associated with the short–term

interest rate and one associated with the medium–term yield described; in practice, the ELB constraint has been
binding only for the former, however.

35Accordingly, ZC consists solely of observations for interest rates that are equal to ELB.
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ables (M t):

ξ
∣∣ (XNC = ZNC

)
∼ N

(
µ̂ξ, V̂ ξ,ξ

)
. (26)

In general, the posterior moments in (26) are given by

µ̂ξ = µξ +K
(
ZNC − µX

)
with K = V ξ,XV

−1
XX (27)

and V̂ ξ,ξ = V ξ,ξ − V ξ,XV
−1
XXV X,ξ . (28)

Typically, these posterior moment matrices will by quite large; µξ is, for example, a vector

of length T × Nξ = 224 × 12 = 2, 688 in our application, However, the Kalman smoother,

adapted for handling missing observations for interest rates when the ELB binds, provides a

convenient way to recursively compute the moments in (27) and (28) while recovering the

distribution of ξ conditional on observations for ZNC . To this point, our procedure amounts

to treating the observations for ZC as missing data.36

We then note that the information contained in the interest rate data at the ELB is that

XC ≤ ELB (for every element of XC). The posterior distribution of ξ, conditional on Z, is

then

ξ|(X = Z) ∼ TN
(
µ̂ξ, V̂ ξ,ξ;X

C ≤ ELB
)

(29)

where TN stands for a truncated normal such that its density function is

Pr (ξ|Z) ∝ φ
(
µ̂ξ, V̂ ξ,ξ

)
1(XC ≤ ELB) (30)

where φ is the multivariate normal density function andXC is a shadow rate draw where every

element is below the ELB. To sample from the posterior distribution of ξ conditional on all

observations in Z, we first draw ξ from Pr
(
ξ
∣∣XNC = ZNC

)
. We then reject draws until

we find a draw that satisfies the requirement that XC ≤ ELB for every element. Rejection

36Alternatively, Chan and Jeliazkov (2009) describe ways to efficiently compute the moments in (27) and (28) based
on sparse matrices that exploit the state space structure inherent in (25).
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sampling is thus done on an entire draw of ξ, which corresponds to an entire draw of the time

series for ξt.

In our baseline framework, lagged values of ξt appear as explanatory variables and are not

censored. A straightforward extension is to incorporate a given number of p lags of Zt, which

includes interest rate data that can be constrained the ELB. In this case, we change (21) to be

ξt = Atξt−1 + F tζt−1 + Btεt (31)

ζt−1 ≡ [Z ′t−1,Z
′
t−2, . . . ,Z

′
t−p]

′ (32)

where {F t}Tt=1 are conformable matrices that are known. The posterior of ξ can be constructed

exactly as in our baseline model, treating {ζt−1}Tt=1 as exogenous in every period because the

rejection step will ensure that the sampled values of ξ are consistent with ζt−1 for all t. For

comparison, the models of Iwata and Wu (2006) and Nakajima (2011) can be cast, conditional

on parameter values, as special cases of this setup in which the matrix At = 0. A notable

difference in the posterior simulation of the model is that the truncated distributions in Iwata

and Wu (2006) and Nakajima (2011) can be cast as period–by–period truncated normals. By

contrast, our posterior estimates require rejection sampling on an entire time series draw of ξ.

B Priors and Posterior Sampling

MCMC estimates of the model are obtained from a Gibbs sampler. The sampler is run multiple

times with different starting values and convergence is assessed with the scale reduction test of

Gelman et al. (2003).37 For each run, 10, 000 draws are stored after a burn-in period of 10, 000

draws; the post-burnin draws from each run are then merged.

Our models consist of two layers of latent states as well as various parameters; the latent

states are:

ξt =

[
X̄
′
t X̃

′
t X̃

′
t−1 . . . X̃

′
t−p+1

]
37Specifically, for every model, 10 independent runs for the Gibbs sampler were evaluated; each run initialized

with different starting values drawn from the model’s prior distribution. Convergence is deemed satisfactory when
the scale reduction statistics for every parameter and latent variable are below 1.2; (values close to 1 indicate good
convergence).
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where p = 2 is the lag length of the gap VAR (7), as well as the vector of stochastic log-

variances of the gap shocks, h̃t ≡ log
(
σ2
t

)
in (8) and the stochastic log-variance process of

shocks to the inflation trend, h̄t ≡ log (σ2
π̄,t) in (4).38

The parameter vector of the model comprises the means, persistence and variance-covariances

of shocks to h̄t and h̃t, see (4) and (8). as well as the variance of shocks to the trend real rate,

denoted σ2
r̄ , the transition coefficients of the gap VAR (7), stacked in a vector a, and the lower

diagonal elements of gap shock loadings B in (7) that can be stacked in a vector denoted b.

For ease of reference, all parameters are collected in the vector θ. Furthermore, since MCMC

estimates of h̄T and h̃
T

will be obtained from the multi–move filter of Kim et al. (1998), the

use of a set of discrete indicator variables, sT , is required to to approximate log η2
π̄,t and log η̃2

t

in (4) and (8), respectively, with a mixture of normals. For ease of exposition, we stack the log

of the stochastic variances of trend and gap shocks into the vector ht; combining (4) and (8)

yields the following vector system:39

ht = (I − ρ)µ+ ρht−1 + Φηt ηt ∼ N(0, I) (33)

Conditional on draws for the various parameters, (θ), and log-volatilities hT , we can con-

struct matrices A, B, C. and {Σt}Tt=1 and obtain the linear, Gaussian state space system

described by equations (21) and (22) in Appendix A.

For the initial values of the latent states, the following priors were used:

ξ0 ∼ N (E(ξ0),Ω) with E(ξ0) =

ξ̄
0

 and Ω =

Ω̄ 0

0 Ω̃

 (34)

An uninformative prior for the initial gap levels is obtained by setting Ω̃ equal to the ergodic

variance-covariance matrix of the gaps implied by the VAR (7), evaluated at the time zero

draws for the stochastic volatilities, encoded in Σ0, for every MCMC draw.40 The prior for the

38In the extended model with stochastic volatility in shocks to the real rate trend, the latter can also be wrapped into
h̄t.

39Since trend SV in (4) are independent of the gap SV in (8), Φ is block-diagonal, and both SV blocks can actually
be estimated in separate Gibbs steps.

40In the case of a VAR(1), the ergodic variance-covariance matrix solves Ω̃ = AΩ̃A′ +BΣ0B
′ for given values
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initial trend levels are set to be consistent with

π̄0

r̄0

r̄2
0

r̄5
0

r̄10
0


∼ N





2.0

2.0

2.5

3.0

3.5


, 100 · I


(35)

which implies generally vague prior levels for the various trend components.

The prior for the average levels of the log-variances is normal, with a mean value of

log (0.1) and variance corresponding to the ergodic distribution implied by draws for the shock

variance and AR(1) lag coefficients associated with the corresponding log-variance process.

For each AR(1) lag coefficient, the prior isN(0.8, 0.22), as in Clark and Ravazzolo (2014). For

the variance of shocks to SV in the inflation trend, the prior is inverse gamma with 6 degrees of

freedom and centered around a mean of 0.22, which coincides with the fixed coefficient-value

of 0.2 used by Stock and Watson (2007) in their univariate model for inflation. For the vector

of shocks to the gap SV vector, ηt in (8), the prior is inverse Wishart, centered around a mean

of 0.22 · I and N + 11 degrees of freedom where N is the number of gap variables (N = 6 in

our baseline model).

The parameter governing the variability of real-rate trend shocks, σ2
r̄ , has a univariate

inverse–Wishart distribution with 3 degrees of freedom (corresponding to an inverse–gamma

distribution with a shape parameter equal to 1.5 degrees of freedom) and is centered around

a prior mean of 0.22. While this vaguely informative prior embeds the belief that the trend

shocks explain only a small share of variations in real rates, it also helps to avoid the pile–up

problem — known, for example, from Stock and Watson (1998) and considered in the context

of estimating σ2
r̄ also by Laubach and Williams (2003) as well as Clark and Kozicki (2005) —

by keeping posterior draws for the parameter away from zero.

A Minnesota-style prior (centered around a mean of zero) is used for the VAR coefficients

a, with hyperparameters λ1 = 0.5 (own lags) and λ2 = 0.2 (cross lags). The prior b is

ofA,B, and Σ0.
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multivariate normal, b ∼ N (0, I). And

The Gibbs sampler is initialized with values drawn from the prior for hT , and θ and then

generates draws from the joint posterior distribution

p
(
ξT ,hT ,a, b,ρ,µ, σ2

r̄ ,φ
2
π̄,Φ, s

T
∣∣ZT )

by iterating over draws from the following conditional distributions:41

1. Draw from p
(
ξT
∣∣hT ,a, b,ρ,µ, σ2

r̄ ,φ
2
π̄,Φ, s

T ,ZT
)

with the disturbance smoothing

sampler of Durbin and Koopman (2002) and rejection sampling for the shadow rate

when the observed nominal short–term rate is at the ELB as described in Appendix A.

2. Draw from p
(
a
∣∣ξT ,hT , b,ρ,µ, σ2

r̄ ,φ
2
π̄,Φ, s

T ,ZT
)

= p
(
a
∣∣ξT ,hT , b), a normal con-

jugate posterior for a VAR with known heteroscedasticity, with rejection sampling to

ensure a stationary VAR (Cogley and Sargent, 2005; Clark, 2011)

3. Draw from p
(
b
∣∣ξT ,hT ,a,ρ,µ, σ2

r̄ ,φ
2
π̄,Φ, s

T ,ZT
)

via recursive Bayesian regressions

with known heteroscedasticity to orthogonalize the gap shocks of the VAR in (7).

4. Draw from the inverse-gamma conjugate posteriors for σ2
r̄ and Φ:

p
(
σ2
r̄

∣∣ξT ,hT ,a, b,ρ,µ,φ2
π̄,Φ, s

T ,ZT
)

= p
(
σ2
r̄

∣∣ξT )

5. Draw from the inverse-gamma conjugate posterior for φ2
π̄:

p
(
φ2
∣∣ξT ,hT ,a, b,ρ,µ, σ2

r̄ ,Φ, s
T ,ZT

)
= p

(
φ̄2
∣∣h̄T )

6. Draw from the inverse-Wishart conjugate posterior for Φ:

p
(
Φ
∣∣ξT ,hT ,a, b,ρ,µ, σ2

r̄ ,φ
2
π̄, s

T ,ZT
)

= p
(
Φ
∣∣h̃T)

41For ease of notation, h̄T and h̃
T

are stacked into hT unless when the distinction becomes material.
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7. Draw from the normal conjugate posterior for ρ:

p
(
ρ
∣∣ξT ,hT ,a, b, σ2

r̄ ,µ,φ
2
π̄,Φ, s

T ,ZT
)

= p
(
ρ
∣∣h̃T)

(Not that the presence of correlated shocks in (8) necessitates a SUR regression to con-

struct the posterior for ρ.)

8. Draw the mixture indicators sT from:

p
(
sT
∣∣ξT ,hT ,a, b, σ2

r̄ ,φ
2
π̄,Φ,µ,Z

T
)

9. Draw from p
(
hT ,µ

∣∣sT , ξT ,a, b,ρ, σ2
r̄ ,φ

2
π̄,Φ, s

T ,ZT
)

= p
(
hT
∣∣sT , ξT ,φ2

π̄,Φ,ρ,
)

embedding the disturbance smoothing sampler of Durbin and Koopman (2002) in a linear

state space for
(
hT ,µ

)
as in Kim et al. (1998).42

Strictly speaking, this is not a simple Gibbs sampler consisting of steps 1 – 9, but rather a

Gibbs-within-Gibbs sampler with the outer Gibbs sampler iterating between

p
(
sT , ξT ,θ

∣∣hT ,ZT
)

(thus, a block consisting of steps 1 through 8)

and p
(
hT ,µ

∣∣sT , ξT ,a, b, σ2
r̄ ,φ

2,ZT
)

(step 9),

similar to the discussion by Negro and Primiceri (2015).

C Results with Unemployment Rate Gap

[Figure 8 about here.]

[Figure 9 about here.]
42The constant µ is embedded in the state space as a unit root without shocks, which improves the efficiency of the

Gibbs sampler by jointly sampling hT and µ.
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D Results with Alternative Orderings of Gap Variables

Our model embeds a VAR for the gap components with stochastic-volatility in its orthogonal-

ized shocks, see (7). In a constant–variance case, estimation of the VAR would be invariant

of the ordering of shocks in the Choleski decomposition implied by the unit–lower–triangular

structure of B in (7) However, due to the stochastic volatilities, estimation of the VAR co-

efficients is not invariant to the ordering of variables in the stochastic—volatility case Negro

and Primiceri (2015). This appendix documents the robustness of trend and gap estimates to

different variable orderings.

D.1 Using Output Gap as Business Cycle Measure

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

D.2 Using Unemployment Gap as Business Cycle Measure

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

E Computation of Likelihood and IRF Using Particle

Filter

Computation of the marginal data densities (MDD) and the impulse responses in Sections 3.3

and 5, respectively, are based on particle filter estimates of our model.

For the MDD computations, the particle filter provides an approximation to the likelihood

of the data (Z) conditional on values for the model’s constant parameters (stacked into θ);
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see equation (15) in Section 3.3. Using notation introduced in Appendix B, our model has two

layers of latent state variables, trends and gaps stacked in ξt as well as the stochastic volatilities

captured by ht. Conditional on the stochastic volatilities, the dynamics of ξt are linear, and

we will refer to ξt also as “linear state variables.” Both layers of latent variables need to be

integrated out for the likelihood computation, which is not provided by the MCMC sampler.

However, for given parameter values θ, estimation is possible via particle filter. In fact, apart

from the ELB constraint, estimation is straightforward with a Rao-Blackwellized particle filter

that exploits the conditionally linear structure of the model; see, for example, Creal (2012) and

Lopes and Tsay (2011) and the applications in Mertens and Nason (2017) and (Mertens, 2016).

For the impulse-responses, we identify shocks from the space of forecast errors to the vector of

observables (et) as described in Section 5 which are again not provided by the MCMC sampler

but a particle filter. This appendix first describes the by now fairly standard application of an

auxiliary particle filter with Rao-Blackwellization and then turns to our handling of the ELB

constraint.

E.1 Rao-Blackwellized Particle Filter (Ignoring the ELB)

The particle filter approximates the posterior density of the latent state vector St =

[
h′t ξ′t

]
for given parameters values θ.43 The priors for the initial values S0 are as described in Ap-

pendix B.44 For now, we are ignoring the ELB constraint at this point and treat Xt as synony-

mous with observed data Zt.

At each point in time, indexed by t, the filter tracks a swarm of M “particles”, indexed by

i, that consist of the stochastic volatilities h(i)
t and Kalman filtered estimates of the linear state

that condition on the particles history of h(i)
t ; the particle’s Kalman filtering distribution of the

linear states and conditional on data Xt is characterized by mean vector ξ(i)
t|t and variance-

covariance matrix Ψ
(i)
t|t .

43As described in the main text, the MDD computation involves separate evaluation of the particle–filter generated
likelihood conditional on each draw θ obtained from the MCMC sampler applied to the full data sample. For the IRF,
we keep parameters fixed at their posterior medians estimated by MCMC over the full data sample.

44As before, the ergodic variance of the gaps components in ξ0, depends on the parameter vector θ; the gap variance
is recomputed based on the parameter vector used when evaluating the particle filter.
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We utilize an auxiliary particle filter as described by Lopes and Tsay (2011). First intro-

duced byPitt and Shephard (1999), the auxiliary particle filter (APF) is a refinement of the

bootstrap filter. While the bootstrap filter propagates particles from one period to the next

based on their prior distribution, the APF seeks to adapt new particles based on the likelihood

they imply for the data. Before turning to the unique steps of the auxiliary particle filtering

steps, we describe the standard bootstrap algorithm.

The filter begins by generating M initial particles h(i)
0 , ξ(i)

t|t and Ψ
(i)
t|t from the their re-

spective priors described in Appendix B. For t = 1, . . . , T , the filter repeats the following

steps:

1. For i = 1, . . . ,M draw new particles h(i)
t based on its prior conditional on h(i)

t−1 implied

by (33) and construct the corresponding diagonal matrix of log-volatilities Σ
1/2,(i)
t and

B(i)
t = BΣ

1/2,(i)
t .

2. For each particle i, engage the Kalman filter for (21) and (22) to compute:

Ψ
(i)
t|t−1 = At Ψ

(i)
t−1|t−1 A′t + B

(i)
t B

(i)
t

′
(36)

Ω
(i)
t|t−1 = Ct Ψ

(i)
t|t−1 Ct

′ (37)

e
(i)
t = Xt − Ct At ξ

(i)
t−1|t−1 (38)

l
(i)
t = −1

2

{
log (2 · π) ·N∗x + log

∣∣∣∣Ω(i)
t|t−1

∣∣∣∣
+

+ e
(i)
t

′ (
Ω

(i)
t|t−1

)+
e

(i)
t|t−1

}
(39)

K
(i)
t = Ψ

(i)
t|t−1 Ct

′
(
Ω

(i)
t|t−1

)+
(40)

ξ
(i)
t|t = ξ

(i)
t|t−1 +K

(i)
t e

(i)
t (41)

Ψ
(i)
t|t = Ψ

(i)
t|t−1 −Ψ

(i)
t|t−1 Ct

′
(
Ω

(i)
t|t−1

)+
Ct Ψ

(i)
t|t−1

′
(42)

In light of the possibility of missing data—encoded as elements ofXt fixed at zero and a

rank deficient Ct—note that N∗x is the number of actual observations inXt, correspond-

ing to the number of non-zero rows of Ct, and |·|+ and ·+ denote the pseudo-determinant

and pseudo-inverse operators, respectively.
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3. Compute the particle weights

w
(i)
t =

exp
(
l
(i)
t

)
∑M

i exp
(
l
(i)
t

) .
The filtered distribution of ht is approximated by the discrete distribution of particle

draws h(i)
t using the pdf described by w(i)

t . The associated filtered distribution of ξt

is approximated by a mixture of normals N
(
ξ

(i)
t|t ,Ψ

(i)
t|t

)
with weights w(i)

t . (For this

purpose, the values for h(i)
t , ξ(i)

t|t and Ψ
(i)
t|t are stored before the resampling described in

the next step.)

4. For t < T prepare the next iteration by applying systematic resampling to the particles

h
(i)
t , ξ(i)

t|t and Ψ
(i)
t|t based on the particle weights w(i)

t =
exp

(
l
(i)
t

)
∑M

i exp
(
l
(i)
t

) .

The likelihood of the date t observation, conditional on parameters and the previous history

of observations is estimated by averaging over the likelihoods of each particle:45

p
(
Xt|Xt−1,θ∗

)
∝ 1

M

M∑
i=1

exp
(
l
(i)
t

)
(43)

The log-likelihood, which corresponds also to the log-predictive score for given parameter

values θ∗ (Geweke and Amisano, 2010; Creal et al., 2010), is then given by

L
(
XT |θ∗

)
=

T∑
t=1

log
{
p
(
Xt|Xt−1,θ∗

)}
(44)

The bootstrap filter described above generates new particles for item t merely by propa-

gating stochastic volatilities based on their prior values, h(i)
t−1 and the law of motion (33) but

without regard for the likelihood they will attract at t. The APF seeks to adapt new parti-

cle draws h(i)
t to data at t. To do so, we employ an algorithm described byLopes and Tsay

(2011) for Rao-Blackwellized particle filters that performs two resampling steps. First, before

simulating new particles h(i)
t−1 from (33), t − 1 particles are resampled based on the particle

weights implied at t when using the auxiliary particles h(i),∗
t = µ + ρ

(
h

(i)
t−1 − µ

)
.46 De-

45Since particles get reweighted at every step, the simple average is appropriate, see, for example, Creal (2012).
46The auxiliary particles are thus generated at the means implied by the prior particles.
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noting the weights implied by the auxiliary particles w̃(i)
t , (non-normalized) particle weights

are then given by ŵ(i)
t = l

(i)
t /w̃

(i)
t where l(i)t continue to describe the likelihood contributions

in (39) generated by the particles obtained from propagating h(i)
t−1 after the auxiliary reweight-

ing. Further details are provided by Lopes and Tsay (2011).

E.2 Particle Filter with ELB constraint

The Rao-Blackwellized (RB) particle filter exploits the conditionally linear structure of our

unobserved components, which enables an analytic description of posterior for the linear states

ξt conditional on particle draws for the stochastic volatilities. For data histories where the ELB

has not been binding, we haveXt = Zt and can directly employ the RB-APF described above.

However, once the ELB binds, the shadow rate becomes a latent variable, and thus Xt 6= Zt,

and the posterior for ξt is characterized by a truncated normal as described in Appendix A.

When the ELB binds, we need to (partially) abandon the Rao-Blackwellization and proceed as

described below. Specifically, for the MDD computation, we add draws for ξ(i)
t to the particle

vector that satisfies the truncation constraint st = cs ξ
(i)
t ≤ ELB exactly. For the IRF, we

employ a slightly different modification that approximates the truncated distribution for ξ(i)
t|t

while adhering to the filtering framework that underpins the Wold decomposition in the space

ofXt described in Section 5.

For the MDD computations, the ELB is enforced exactly as follows: Consider first the

case where the ELB has not been binding for Zt−1 but binds for Zt. In this case, we inherit par-

ticles ξ(i)
t−1|t−1 and Ψ

(i)
t−1|t−1. Analogously to the MCMC algorithm described in Appendix A,

these priors for ξt can be updated to ξNC,(i)t|t and Ψ
NC,(i)
t|t by conditioning only on the ele-

ments of Zt for which the ELB did not bind. To account for the ELB that binds at t, we then

sample particles ξ(i)
t from N

(
ξ
NC,(i)
t|t ,Ψ

NC,(i)
t|t

)
that are consistent with st ≤ ELB. The

particle-filtering algorithm described above can then simply be amended by replacing the prior

particles
(
ξ

(i)
t|t−1,Ψ

(i)
t|t−1

)
by the draw ξ(i))

t as well as a matrix of zeros before evaluating the

time t Kalman filtering steps described above.

Furthermore, we amend the likelihood contributions l(i)t in (39) by adding the probability
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of the shadow rate being below the ELB conditional on all other elements of Zt, which is

straightforward to compute based on the normal CDF for st implied by ξNC,(i)t|t , and Ψ
NC,(i)
t|t .

This add factor accounts for the information contained in observing it = ELB by tilting

particle weights towards particles that place higher likelihood on the ELB binding.

Specifically, (39) is replaced by

l
(i)
t = −1

2

{
log (2 · π) ·N∗x + log

∣∣∣∣Ω(i)
t|t−1

∣∣∣∣
+

+ e
(i)
t

′ (
Ω

(i)
t|t−1

)+
e

(i)
t|t−1

}
+ log

(
Prob

(
st ≤ ELB|ξNC,(i)t|t ,Ψ

NC,(i)
t|t

))
(45)

For the IRF computation, we compute the time-varying VMA Dt defined in (18) as well

as the innovation variance Ωt|t−1 and the associated structural VMADm,∗
t separately for each

particle. Impulse responses are then reported as particle–weighted averages.

As discussed in Section 5, the key driver for time–variation in the VMA is time–varying un-

certainty about trend and gap shocks. When abandoning the Rao-Blackwellization at the ELB,

as described above, no uncertainty remains about trend and gap levels per particle (except for

current shocks) since each particle conditions on a specific draw ξ(i)
t−1 before propagating. In

order to maintain uncertainty about trend and gap levels per particle for the purpose of the

IRF computations, we approximate the ELB constraint as follows: When the ELB binds at

t, we generate N
(
ξ
NC,(i)
t|t ,Ψ

NC,(i)
t|t

)
as before. Instead of drawing a specific realization of

ξt that obeys the ELB constraint, we approximate the truncated normal for ξ(i)
t implied by

TN
(
ξ
NC,(i)
t|t ,Ψ

NC,(i)
t|t |st ≤ ELB

)
by a normal distribution N

(
ξ
∗,(i)
t|t ,Ψ

∗,(i)
t|t

)
where ξ∗,(i)t|t

and Ψ
∗,(i)
t|t are mean and variance of the truncated normal. Estimates of the model’s latent vari-

ables obtained with this approximation are close to this obtained from the previously described

particle filter where the ELB is enforced exactly.

F Computation of Predictive Densities

In order to derive interest-rate forecasts that conform to the ELB (and other data in Zt), we

first proceed by characterizing the predictive density for the shadow rate. Forecasts for ac-
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tual rates can then be computed by integrating over the censored shadow–rate density. The

shadow rate is included in the non-censored vector of variables Xt described in Appendix A.

Apart from handling the truncation issues related to the ELB, our approach is fairly standard,

building, for example, on the work by Geweke and Amisano (2010), Christoffel et al. (2010),

and Warne et al. (2015). Given the truncation issues for interest rates and the fat tails intro-

duced into the predictive density by the stochastic volatility specification, we have chosen to

compute the predictive density based on the mixture of normals that is implied by the draws

from our MCMC sampler, instead of approximating the predictive density solely based on its

first two moments, treating the predictive density as a normal distribution, as has been done,

for example, by Adolfson et al. (2007) in the case of linearized, constant-parameter DSGE

models.

In order to compute the predictive density for Zt+h jumping off data at time t, we first

employ the MCMC sampler described in Appendix B to re-estimate all model parameters and

latent variables (θ, ξt and ht) conditional on data available through time t. Draws from this

MCMC sampler will henceforth be indexed by k.

Conditional on draws (ξkt ,h
k
t ,θ

k), it is straightforward to compute the predictive mean for

uncensored variables:

E
(
Xt+h

∣∣ξkt ,hkt ,θk) = Ck
(
Ak
)h
ξkt (46)

and the predictive mean, conditional solely on data through t, can then be approximated by

averaging over the means derived from each MCMC draw:

E
(
Xt+h|Zt

)
≈
∑
k

E
(
Xt+h

∣∣ξkt ,hkt ,θk) (47)

However, in order to characterize the entire predictive density for uncensored variables or

even the predictive density for interest rates, which are subject to censoring due to the ELB

constraint, we need to account for non-linearities in the distribution for future ξt:t+h arising

from the stochastic volatility shocks in our model. We simulate J = 100 trajectories, each

indexed by j, of hk,jt:t+h as well as shocks to ξt:t+h for each draw k from the MCMC sampler.
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Figure 1: Shadow Rate Estimates

(a) Full-Sample Estimates and Other Estimates

(b) Full-Sample and Quasi Real–Time Estimate

Note: Shaded areas indicate 50 and 90 percent uncertainty bands, dashed lines are posterior means.
Results shown in Panel (a) reflect the endpoints of sequentially re-estimating the entire model over
growing samples of quarterly observations starting in 1960:Q1, thus reflecting “filtered” estimates
of the model’s latent variables. Results shown in Panel (b) reflect “smoothed” estimates using
all available observations from 1960:Q1 through 2017:Q2. Uncertainty bands reflect the joint
uncertainty about model parameters and states.
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Figure 2: The Real Rate in the Long Run

(a) Smoothed Estimates

(b) Quasi Real–Time Estimate

Note: Shaded areas indicate 50 and 90 percent uncertainty bands, dashed lines are posterior means.
Results shown in Panel (a) reflect the endpoints of sequentially re-estimating the entire model over
growing samples of quarterly observations starting in 1960:Q1, thus reflecting “filtered” estimates
of the model’s latent variables. Results shown in Panel (b) reflect “smoothed” estimates using
all available observations from 1960:Q1 through 2017:Q2. Uncertainty bands reflect the joint
uncertainty about model parameters and states.
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Figure 3: Short–Term Interest Rate Forecasts During the ELB Period
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(b) Forecasts from 2009:Q1, Baseline
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(d) Forecasts from 2015:Q4

Note: Shaded areas indicate 50 and 90 percent credible sets, solid lines are posterior medians,
wide dashed lines are posterior means of the projected interest rate. In the left panels, dashed lines
less than the ELB are the posterior median and 50 and 90 percent credible sets of the shadow rate.
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Figure 4: Time-varying Uncertainty about Future Short–Term Interest Rates

(a) One-quarter ahead uncertainty

(b) Eight-quarter ahead uncertainty

Note: Forecast uncertainty about future short–term interest rates as measured by the interquartile
range of the model’s predictive densities for it. The predictive densities are re-estimated over
growing samples that all start in 1960:Q1. In the baseline model (black solid lines), the predictive
density is truncated at the ELB, whereas no constraint is imposed on the predictive density in the
alternative model that ignores the ELB (red dashed line).
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Figure 5: Long–Term Forecasts of 3-Month Treasury Rate

Note: The series labeled “J-M Model” is the median forecast of the 3-month Treasury rate 10-
years ahead from the benchmark version of our model with the output gap as the business cycle
component. The series labeled “WX-SRTSM” is the median forecast of the 3-month Treasury rate
10-years from the model of Wu and Xia (2016). The series labeled “SPF” is the mean forecast in
the Survey of Professional Forecasters of the average value of the 3-month treasury bill over the
next 10 years.
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Figure 6: Responses to Monetary Policy Shock
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Note: Responses to monetary policy shocks estimated for 2007:Q4, 2009:Q4, 2011:Q4 as well
as 2016:Q4; dashed lines indicate responses at times when the ELB was binding for actual data.
Shocks are scaled to generated a one percentage point drop in the shadow rate on impact. All
y-axis units are in annualized percentage points for yields and inflation, as well as fluctuations
in the business cycle (as measured by the output gap). The x-axis measures time after impact in
quarters.
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Figure 7: Projected Policy Path Before And After Monetary Policy Shocks
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Note: The left panel depicts the baseline path projected for the actual rate at the end of 2015:Q3
(black) as well as two updated forecast trajectories that would result in 2015:Q4 from a surprise
increase (red), or decrease (blue), respectively, in the shadow rate by one percentage point. The
right panel reports the corresponding impulse responses, computed as differences between the
updated forecast trajectory generated by the shadow-rate impulse and the baseline.
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Figure 8: Shadow Rate Estimates (Based on Unemployment Rate Gap)

(a) Full-Sample Estimates and Other Estimates

(b) Full-Sample and Quasi Real–Time Estimate

Note: Shaded areas indicate 50 and 90 percent uncertainty bands, dashed lines are posterior means.
Results shown in Panel (a) reflect the endpoints of sequentially re-estimating the entire model over
growing samples of quarterly observations starting in 1960:Q1, thus reflecting “filtered” estimates
of the model’s latent variables. Results shown in Panel (b) reflect “smoothed” estimates using
all available observations from 1960:Q1 through 2017:Q2. Uncertainty bands reflect the joint
uncertainty about model parameters and states.
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Figure 9: The Real Rate in the Long Run (Based on Unemployment Rate Gap)

(a) Smoothed Estimates

(b) Quasi Real–Time Estimate

Note: Shaded areas indicate 50 and 90 percent uncertainty bands, dashed lines are posterior means.
Results shown in Panel (a) reflect the endpoints of sequentially re-estimating the entire model over
growing samples of quarterly observations starting in 1960:Q1, thus reflecting “filtered” estimates
of the model’s latent variables. Results shown in Panel (b) reflect “smoothed” estimates using
all available observations from 1960:Q1 through 2017:Q2. Uncertainty bands reflect the joint
uncertainty about model parameters and states.
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Figure 10: Inflation Trend Estimates with re-ordered Gap-VAR
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Note:Estimates generated from alternative orderings of gap variables in the VAR described in
equation (7). Panel 10a depicts baseline estimates; alternative orderings are as indicated above
where “y” indicates the block of yield gaps y2, y5, y10. Filtered estimates in red, smoothed
estimates in black; both surrounded by 90% uncertainty bands (Filtered estimates reflect the
endpoints of sequentially re-estimating the entire model over growing samples starting in 1960:Q1.
Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Figure 11: Real Rate Trend Estimates with re-ordered Gap-VAR
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Note:Estimates generated from alternative orderings of gap variables in the VAR described in
equation (7). Panel 11a depicts baseline estimates; alternative orderings are as indicated above
where “y” indicates the block of yield gaps y2, y5, y10. Filtered estimates in red, smoothed
estimates in black; both surrounded by 90% uncertainty bands (Filtered estimates reflect the
endpoints of sequentially re-estimating the entire model over growing samples starting in 1960:Q1.
Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Figure 12: Shadow Rate Estimates with re-ordered Gap-VAR
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Note:Estimates generated from alternative orderings of gap variables in the VAR described in
equation (7). Panel 12a depicts baseline estimates; alternative orderings are as indicated above
where “y” indicates the block of yield gaps y2, y5, y10. Filtered estimates in red, smoothed
estimates in black; both surrounded by 90% uncertainty bands (Filtered estimates reflect the
endpoints of sequentially re-estimating the entire model over growing samples starting in 1960:Q1.
Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Figure 13: Inflation Trend Estimates with re-ordered Gap-VAR (w/Unemployment Rate Gap)
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Note:Estimates generated from alternative orderings of gap variables in the VAR described in
equation (7). Panel 13a depicts baseline estimates; alternative orderings are as indicated above
where “y” indicates the block of yield gaps y2, y5, y10. Filtered estimates in red, smoothed
estimates in black; both surrounded by 90% uncertainty bands (Filtered estimates reflect the
endpoints of sequentially re-estimating the entire model over growing samples starting in 1960:Q1.
Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Figure 14: Real Rate Trend Estimates with re-ordered Gap-VAR (w/Unemployment Rate Gap)
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Note:Estimates generated from alternative orderings of gap variables in the VAR described in
equation (7). Panel 14a depicts baseline estimates; alternative orderings are as indicated above
where “y” indicates the block of yield gaps y2, y5, y10. Filtered estimates in red, smoothed
estimates in black; both surrounded by 90% uncertainty bands (Filtered estimates reflect the
endpoints of sequentially re-estimating the entire model over growing samples starting in 1960:Q1.
Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Figure 15: Shadow Rate Estimates with re-ordered Gap-VAR (w/Unemployment Rate Gap)
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Note:Estimates generated from alternative orderings of gap variables in the VAR described in
equation (7). Panel 15a depicts baseline estimates; alternative orderings are as indicated above
where “y” indicates the block of yield gaps y2, y5, y10. Filtered estimates in red, smoothed
estimates in black; both surrounded by 90% uncertainty bands (Filtered estimates reflect the
endpoints of sequentially re-estimating the entire model over growing samples starting in 1960:Q1.
Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Table 1: Forecast Evaluation vs. SPF (Post 2008)

Forecast horizon h

1 2 3 4 5

Panel A: Short-term interest rate it+h

Model (output gap)

MAD 0.01 0.02 0.06 0.14 0.29
RMSE 0.00 0.00 0.01 0.04 0.12

SPF rel. to model (output gap)

rel. MAD 0.34 1.17 1.55 1.32 1.12
rel. RMSE 0.36 1.03 1.26 1.30 1.25

Model (unemployment rate gap)

MAD 0.02 0.03 0.07 0.11 0.22
RMSE 0.00 0.01 0.02 0.05 0.10

SPF rel. to model (unemployment rate gap)

rel. MAD 0.27 0.94 1.29 1.67 1.49
rel. RMSE 0.27 0.72 1.00 1.24 1.42

Panel B: 10-year interest rate y10
t+h

Model (output gap)

MAD 0.26 0.40 0.50 0.57 0.65
RMSE 0.11 0.26 0.36 0.47 0.59

SPF rel. to model (output gap)

rel. MAD 0.68∗∗∗ 1.12 1.23∗ 1.39∗∗ 1.55∗∗∗

rel. RMSE 0.67∗∗∗ 1.07 1.25∗∗ 1.35∗∗∗ 1.49∗∗∗

Model (unemployment rate gap)

MAD 0.26 0.41 0.51 0.59 0.67
RMSE 0.11 0.27 0.38 0.49 0.62

SPF rel. to model (unemployment rate gap)

rel. MAD 0.69∗∗∗ 1.11 1.21∗ 1.35∗∗∗ 1.50∗∗∗

rel. RMSE 0.67∗∗∗ 1.06 1.23∗∗ 1.33∗∗∗ 1.46∗∗∗

Note: RMSE are root-mean-squared errors computed from using the medians of our model’s and the mean forecast
from the SPF as forecasts; MAD are mean absolute deviations obtained from using the same forecasts. Relative RMSE
and MAD are expressed as ratios relative to the corresponding statistics from the baseline model (values below unity
denoting better performance than our model). Predictive densities are re-estimated over growing samples that all
start in 1990:Q1 for our model. For the forecast evaluation, the first forecast jumps off in 2009:Q1 and the last in
2017:Q1. Stars indicate significant differences, relative to baseline, in squared losses, absolute losses and density
scores, respectively, as assessed by the test of Diebold and Mariano (1995) and West (1996); ∗∗∗, ∗∗ and ∗ denote
significance at the 1%, 5% respectively 10% level.
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Table 2: Forecast Evaluation vs. WX-SRTSM (Post 2008)

Forecast horizon h

1 2 3 4 5 8

Panel A: Short-term interest rate it+h

Model (output gap)

MAD 0.09 0.10 0.11 0.12 0.11 0.47
RMSE 0.18 0.21 0.24 0.25 0.22 0.56

WX-SRTSM rel. to model (output gap)

rel. MAD 0.78 0.96 1.05 1.30 1.64 0.76
rel. RMSE 0.68 0.94 1.01 1.10 1.44 0.94

Model (unemployment rate gap)

MAD 0.08 0.09 0.10 0.10 0.13 0.49
RMSE 0.17 0.18 0.20 0.19 0.21 0.63

WX-SRTSM rel. to model (unemployment rate gap)

rel. MAD 0.85 1.11 1.24 1.51 1.45 0.72∗∗

rel. RMSE 0.72 1.07 1.22 1.48 1.48∗ 0.84∗

Panel B: 10-year interest rate y10
t+h

Model (output gap)

MAD 0.39 0.54 0.68 0.68 0.71 0.88
RMSE 0.51 0.70 0.80 0.84 0.90 1.14

WX-SRTSM rel. to model (output gap)

rel. MAD 1.00 1.04 1.03 1.16∗∗ 1.18∗∗ 1.22∗∗∗

rel. RMSE 0.99 1.03 1.06 1.10∗ 1.12∗∗∗ 1.18∗∗

Model (unemployment rate gap)

MAD 0.40 0.52 0.69 0.71 0.80 0.96
RMSE 0.52 0.69 0.79 0.86 0.99 1.30

WX-SRTSM rel. to model (unemployment rate gap)

rel. MAD 0.96 1.06 1.02 1.10∗∗ 1.04 1.12∗

rel. RMSE 0.97 1.05 1.07∗∗ 1.07 1.03 1.04

Note: RMSE are root-mean-squared errors computed from using the medians of our model’s and the WX-SRTSM’s
predictive densities as forecasts; MAD are mean absolute deviations obtained from using the same forecasts. Relative
RMSE and MAD are expressed as ratios relative to the corresponding statistics from the baseline model (values below
unity denoting better performance than our model). Predictive densities are re-estimated over growing samples that
all start in 1990:Q1 for our model and 1990:M1 for the WX-SRTSM. For the forecast evaluation, the first forecast
jumps off in 2009:Q1 and the last in 2017:Q1. Stars indicate significant differences, relative to baseline, in squared
losses, absolute losses and density scores, respectively, as assessed by the test of Diebold and Mariano (1995) and
West (1996); ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5% respectively 10% level.
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