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Abstract

This paper shows that biased persuaders can provide better information to a decision maker

due to cooperative, and not competitive, motives. I study Bayesian persuasion games with

persuaders who all want a decision maker to take the same action unconditionally. While

the optimal information policy from a unique persuader never benefits the decision maker,

I show that this is not the case when there are multiple identical persuaders. Despite the

fact that all persuaders share a common goal, there always exist strict equilibria in which

they endogenously design highly informative policies that benefit the decision maker. The

benefit of an additional non-competing persuader is as high as the value difference between

full information and no information. The persuaders’ motivation to provide extra information

is cooperative; the extra information helps offset their colleagues’ potential negative news.

Consequently, a highly informative equilibrium not only benefits the decision maker, but also

can result in a high payoff for the persuaders. In particular, when the persuaders’ information is

intrinsically imperfect, their payoff can be maximized in an equilibrium with highly revealing

information policies.
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1 Introduction

When persuaders want a decision maker to unconditionally take a particular action, they can bring
this about effectively by designing a biased information-collection process. For example, a re-
cruiter can influence his boss to hire a friend by giving the friend easy interview questions; a
doctor can promote surgery over conservative treatment by prescribing medical tests that are likely
to give bad results. In these cases, persuaders’ information changes the decision maker’s choice
without necessarily increasing her utility. Indeed, when there is only one persuader, his optimal
information design keeps all value of the information completely away from the decision maker
(Kamenica and Gentzkow, 2011). How can the decision maker do better? Traditional wisdom sug-
gests that the decision maker should seek information from multiple persuaders who have different
preferences (think of opposing sides in court). It seems plausible that, only when information
providers have different objectives, they are incentivized to collect extra information in order to
induce their own preferred outcomes. As a result of this competition, the decision maker benefits
from the the extra information. (Gentzkow and Kamenica, 2017a, 2017b)

However, is competition among persuaders really necessary to induce better outcomes for the
decision maker? This paper shows that the answer is “no.” Non-competing, identically biased per-
suaders can endogenously collect extra information that benefits the decision maker, and it is often
in their best interest to do so. To make the point clear, this paper focuses on a scenario in which
multiple persuaders collect information independently and share the identical state-independent
preference: they all want the decision maker to take the same action unconditionally.

This paper makes two contributions. The first is to show that, with as few as two non-competing
persuaders, beneficial equilibria with outcomes arbitrarily close to full information revelation al-
ways exist. Moreover, these equilibria are robust in the sense that they are strict perfect Bayesian
equilibria that do not reply on specific tie-breaking rules. While the literature (Gentzkow and
Kamenica 2017a, Gentzkow and Kamenica 2017b, Li and Norman 2017a) has acknowledged the
existence of a non-strict fully revealing equilibrium that is induced entirely by a truth-telling tie-
breaking rule,1 this paper is the first to characterize the set of strict beneficial equilibria with
non-competing persuaders. The paper’s second contribution is to show that, when persuaders’
information is intrinsically imperfect, the persuaders’ utility can be maximized in an informative
equilibrium that benefits the decision maker. This second contribution speaks to realistic situa-
tions in which the persuaders can only indirectly learn the true state. For example, recruiters can

1When there are multiple persuaders, regardless of their preferences, there always exists a fully revealing equilib-
rium in which all persuaders choose to reveal the true state. A persuader is indifferent towards all information policies
when all the other persuaders are revealing the true state. Full revelation is an equilibrium if the persuader also chooses
to reveal the true state when indifferent. However, this equilibrium is an unlikely prediction because all persuaders
strictly prefer a less informative outcome.
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only indirectly learn a job candidate’s ability by measuring his task performance; doctors can only
indirectly learn a patient’s condition by testing blood and tissue samples. In these cases, I show
that the best equilibrium for the biased persuaders can be one in which they endogenously collect
high-quality information to benefit the decision maker.

The following example illustrates the intuition behind these two contributions.

Example

Consider a patient who is choosing between surgery and a more conservative treatment for her
condition. For personal reasons, she prefers the surgery if and only if her current condition is
already severe. Her utility function, described by the table below, implies that she will choose
surgery if and only if the probability that her current condition is severe is at least 0.8. The uncon-
ditional probability of the current severity is Pr(severe) = 0.5. Without additional information, the
patient’s default choice is the conservative treatment.

current condition
severe not severe

treatment
surgery 1 0.2

conservative 0.8 1

The patient seeks advice from doctors and communicates her preference honestly with all of
them. The doctors want the patient to take the most effective treatment independent of whom she
gets the treatment from. Knowing the nature of her condition, the patient understands that all of
the doctors prefer that she chooses the surgery, regardless of the current severity.

To give credible advice, doctors ask the patient to take some medical tests that will yield either
positive or negative results. The strategy of each doctor is to design an independent medical test
with endogenous type I and type II errors. I separately analyze a case in which the patient’s true
state can be tested directly and a case in which it can be tested only indirectly.

In the first case, when doctors can directly test the true state, the medical tests are arbi-
trarily informative. A doctor’s strategy is to design the conditional probabilities of binary test
outcomes given the true state of the patient - i.e., each doctor chooses Pr(positive|severe) and
Pr(positive|not severe).

In the second and more realistic case, doctors do not have the technology to directly examine
the true severity of the patient’s condition. Instead, each doctor takes a blood sample, which is
imperfectly correlated with the true state. Assume that each blood sample is i.i.d. with

Pr(normal blood|not severe) = Pr(abnormal blood|severe) = 0.85.

3



In this case, a doctor’s strategy is to design a test on the blood sample by choosing condition
probabilities Pr(positive|abnormal blood) and Pr(positive|normal blood). (For example, the doc-
tors can endogenously define the threshold for “an alarming number” of white blood cells in the
sample.)

In both cases, the patient sees the design of the medical tests, as well as the test results. She
updates her belief based on this information and makes a decision. All doctors receive payoff 1 if
she chooses the surgery and 0 otherwise.

If the patient seeks advice from only one doctor, then, in either case, the doctor will design a
test such that Pr(severe|positive) = 0.8 to maximize the probability of a surgery. The patient is
indifferent between the two treatments when the test result is positive. She chooses the surgery to
break the tie, but her expected payoff is the same as that if she ignores the doctor’s information and
always chooses the default conservative treatment. In other words, the unique doctor’s information
does not increase her expected payoff. This case establishes the lower bound on the patient’s
expected payoff, which is equal to 0.9 in this example. Next, I will introduce equilibria in which
the patient’s payoff is higher than 0.9 when she visits more than one doctor. I refer to these
equilibria as “beneficial” equilibria.

Observation 1: Strict beneficial equilibria exist with direct tests

Suppose that the patient visits two doctors, and the doctors can directly test the true state. Each
doctor designs an independent test by choosing (Pr(positive|not severe),Pr(positive|severe)) as a
best response to the design of the other doctor’s test. The doctors understand that if they design
tests with sufficiently low false-positive rates, they need only one positive result to make the patient
choose surgery. Thus, there are infinitely many strict perfect Bayesian equilibria in which tests are
relatively informative with low false positive-rates. Here are two examples.

Beneficial equilibrium 1: Both doctors choose Pr(positive|not severe) ≈ 0.001 and
Pr(positive|severe)≈ 0.996. The patient chooses the surgery if at least one test result
is positive and her expected utility is 0.999. Each doctor’s expected utility is 0.501.

Beneficial equilibrium 2: Both doctors choose Pr(positive|not severe) ≈ 0.067 and
Pr(positive|severe)≈ 0.5. The patient chooses the surgery if at least one test result is
positive and her expected utility is 0.923. Each doctor’s expected utility is 0.440.

The conditional probabilities in both equilibria are chosen such that the patient is indifferent when
exactly one test result is positive. When both results are positive, the patient strictly prefers the
surgery. Therefore, she strictly benefits from the doctors’ information. Indeed, her expected utility
in both equilibria is strictly higher than 0.9.
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In both equilibria, each doctor’s design is the unique best response to the other doctor’s (sym-
metric) design. Therefore, these are strict perfect Bayesian equilibria. A deviation to some higher
Pr(positive|not severe) decreases Pr(severe|positive), and an increase in Pr(positive|severe) leads
to a decrease in Pr(severe|negative). If either doctor deviates to a higher Pr(positive|not severe)

or Pr(positive|severe), the patient must see two positive results to choose surgery, which decreases
her overall probability of choosing surgery.

An interesting observation is that both the patient and the doctors favor equilibrium 1 over
equilibrium 2. The tests in equilibrium 1 are almost fully revealing, so it is not surprising that the
patient prefers it. The less trivial finding is that the persuaders prefer this almost fully revealing
equilibrium, too. They like it because the chance of getting at least one positive result is higher
in this equilibrium, due to a significantly higher Pr(positive|severe). In general, cases in which
the decision maker and the persuaders have aligned ranking over equilibria are common. In an
arbitrary game with two persuaders, among all symmetric equilibria such that one positive result
is sufficient to induce the persuaders’ preferred action, the persuaders’ most preferred equilibrium
never minimizes the decision maker’s utility. Moreover, as the decision maker’s threshold of doubt
increases, the persuaders’ most preferred equilibrium converges to the fully-revealing equilibrium.

While beneficial equilibria exist, it is true that a non-beneficial equilibrium also exists. In this
example, there is a symmetric equilibrium in which both doctors choose Pr(positive|not severe) =

0.5 and Pr(positive|severe) = 1, and the patient chooses the surgery only when both test results
are positive. In this equilibrium, the patient’s expected utility (= 0.9) is the lowest, but the doctors’
expected utility (= 0.625) is higher than those in the beneficial equilibria.

Given this observation, the paper imposes a further question: among all symmetric equilibria,
can the doctors’ payoff be maximized in a beneficial equilibrium? The answer is “yes” when
medical tests are indirect measures of the true condition. Below is an example.

Observation 2: Beneficial equilibrium is Pareto dominant with indirect tests

Suppose now that the patient visits three doctors, and the doctors must indirectly test the true state.
Each doctor takes an independent blood sample from the patient and then performs an endogenous
test of the sample. Recall that this means that each doctor chooses Pr(positive|normal blood) and
Pr(positive|abnormal blood) as best responses to the choices of the other two doctors, knowing
that Pr(normal blood|not severe) = Pr(abnormal blood|severe) = 0.85.

To show that the best symmetric equilibrium for the doctors is a beneficial one, it suffices to
show that this is true for the subset of symmetric equilibria such that Pr(positive|abnormal blood)=

1 for all doctors. This is because any equilibrium with Pr(positive|abnormal blood) < 1 must be
beneficial to the patient.2

2In a perfect Bayesian equilibrium, if some doctor chooses Pr(positive|abnormal blood) < 1, then the patient
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With three doctors, there are two symmetric equilibria with Pr(positive|abnormal blood) = 1.
One is beneficial to the patient; the other is not.

Beneficial equilibrium: all three doctors choose Pr(positive|normal blood)≈ 0.03 and
Pr(positive|abnormal blood) = 1. The patient chooses surgery if at least two test
results are positive. The patient’s expected utility is 0.96. Each doctor’s expected
utility is 0.514.

Non-beneficial equilibrium: all three doctors choose Pr(positive|normal blood) ≈
0.51 and Pr(positive|abnormal blood) = 1. The patient chooses surgery only when
all test results are positive. The patient’s expected utility is 0.9. Each doctor’s ex-
pected utility is 0.497.

The tests in the beneficial equilibrium are more informative than those in the non-beneficial equi-
librium. As a result, the patient’s expected utility in the beneficial equilibrium (0.96) exceeds the
lower bound (0.9), and she is willing to choose surgery even if one of the test results turns out to
be negative. The most important observation from this example is that the doctors strictly prefer
the beneficial equilibrium, too. In other words, the beneficial equilibrium Pareto dominates the
non-beneficial one. Since the latter is the only non-beneficial symmetric equilibrium in this game,
this implies that the doctors’ favorite symmetric equilibrium must be beneficial to the patient.

I show that this result is generally true when the samples are sufficiently noisy (e.g., when the
correlation between the blood sample and the true state is relatively low) or when the decision
maker’s threshold of doubt is sufficiently high (e.g., the patient chooses the surgery only when
Pr(severe) is above a relatively high threshold). In the former case, negative test results are com-
mon because of the exogenous noise; in the latter case, negative test results are common because
persuaders endogenously choose tests with low false-positive rates. In either case, persuaders ex-
pect to see negative test results often, so they highly value the fact that, in beneficial equilibria,
the decision maker is willing to forgo a few negative results. This is why the persuaders’ payoff
achieves its maximum in a beneficial equilibrium.

Overall, this paper generalizes results from this motivating example to games with multiple per-
suaders who have the identical state-independent bias. There always exists a set of strict equilibria
that benefit the decision maker. Elements of this set can be arbitrarily close to the fully revealing
equilibrium if the biased persuaders directly test the true state. These beneficial equilibria exist

must be wiling to choose surgery even when some test results are negative. If the patient chooses surgery only when
all results are positive, the doctor will be better off deviating to Pr(positive|abnormal blood) = 1. Hence, the patient
is at least indifferent when there is only one negative result. Then, in the possible case of no negative result, the patient
must strictly prefer to switch from the default conservative treatment to the surgery. This implies that, in expectation,
the doctors’ information must strictly benefit the patient.
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because when persuaders cannot guarantee perfect synchronization of their test results, they want
to be able to persuade the decision maker despite a few negative test results. This is achievable
only if positive test results are sufficiently informative. Therefore, each persuader lowers the false-
positive rate of his test in the presence of other persuaders. When persuaders must indirectly learn
the true state by testing noisy samples, unsynchronized test results are more common, and per-
suaders’ incentives to lower the false positive-rates are even stronger. As a result, a strict beneficial
equilibrium not only exists but it can also be the most efficient equilibrium for the persuaders.

The novelty of this paper is its emphasis on the fact that these beneficial equilibria do not at
all result from any inter-persuader misalignment or competition. Persuaders in this paper share
a common interest, but they still choose to collect extra information. Therefore, this paper sheds
light on a new avenue that explains why having more than one information provider is beneficial to
decision-making. Multiple persuaders provide extra information not because they want to compete
with their colleagues, but because they want to help offset their colleagues’ negative results.

The remainder of the paper is organized as follows. Section 2 summarizes related papers.
Section 3 characterizes the set of strict beneficial equilibria when persuaders directly test the true
state. Section 4 shows that, when persuaders learn about the true state through indirect tests, ben-
eficial equilibria not only exist but can also be persuader-optimal. Section 5 discusses alternative
modeling choices.

2 Related papers

This paper is closely related to three papers on Bayesian persuasion games: Kamenica and Gentzkow
(2011), Gentzkow and Kamenica (2017a), and Gentzkow and Kamenica (2017b). I extend Ka-
menica and Gentzkow (2011) by introducing multiple independent persuaders with identical state-
independent preferences. This extension gives rise to a wide range of equilibrium outcomes. In
particular, if there is only one persuader who wants the decision maker to switch from a default
action to a new action, then the decision maker never benefits from the collected information (Ka-
menica and Gentzkow, 2011). This is the case because the unique persuader can and, indeed, will
design his test in such a way that a positive result leaves the decision maker precisely indifferent.
Since the decision maker never strictly prefers to switch her action, the test never strictly increases
her expected utility. In contrast, in games with multiple identical persuaders, there always exist
strict equilibria in which the decision maker strictly prefers to switch her action. Moreover, in
the single-persuader equilibria studied in Kamenica and Gentzkow (2011), if the decision maker
chooses the default action, she is always certain of her choice. This is no longer the case in equi-
libria with multiple identical persuaders.
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Gentzkow and Kamenica (2017b) study multiple persuaders with arbitrarily different prefer-
ences. They show that, regardless of persuaders’ preferences, the competition among persuaders is
guaranteed to benefit the decision maker if and only if the information environment is Blackwell-
connected. That is, each persuader can unilaterally deviate to induce any feasible distribution of
belief that is more informative. In contrast, the current paper assumes a fixed set of preferences
(all persuaders unconditionally prefer a particular action), and its information environment is not
Blackwell-connected because the persuaders are independent3. Gentzkow and Kamenica’s result
does not apply in this setup. For comparison, an environment is Blackwell-connected if the tests
chosen by the persuaders are arbitrarily correlated. Gentzkow and Kamenica (2017a) particularly
focus on this situation. In this case, misaligned incentives among persuaders are necessary for
persuaders to reveal sufficient information that benefits the decision maker. If persuaders share
identical preferences, then, regardless of the total number of persuaders, all strict equilibria of the
game are outcome-equivalent to the single-persuader game, and the decision maker never gains.
This is why heterogeneous preferences among persuaders are necessary to induce more informa-
tion revelation in Gentzkow and Kamenica (2017a): a persuader will reveal extra information as a
means to induce his preferred action only when persuaders differ in their preferences. In contrast,
when persuaders are independent, I show that even if persuaders have identical preferences, there
always exist strict equilibria in which the persuaders endogenously design informative tests that
strictly benefit the decision maker. The persuaders act in this way not because they are competing
under different motives, but because when they design those informative tests, the Bayesian de-
cision maker switches her action upon seeing relatively few counts of positive results. Since the
persuaders cannot guarantee that their test results are always synchronized, they find it desirable
to lower the decision maker’s ex post switching standard at a cost of fewer false positive results.
Section 5.B shows that the same result holds when persuaders are partially correlated.

Two papers by Li and Norman extend Gentzkow and Kamenica (2017a) by studying misaligned
persuaders in slightly different settings. Li and Norman (2017a) look at independent persuaders
with different preferences who choose tests simultaneously. The paper provides an example in
which two persuaders release less information than one. Li and Norman (2017b) look at arbitrarily

3For example, let the true state be H or L with equal probabilities. Suppose that the first persuader chooses a
test with Pr(positive|H) = 0.8 and Pr(positive|L) = 0.2; the second persuader chooses an uninformative test with
Pr(positive|H) = Pr(positive|L) = 1. The induced posterior belief for the state H is 0.8 with probability 0.5 and 0.2
with probability 0.5. Blackwell-connectedness requires that, given the strategy of the first persuader, the second per-
suader can unilaterally deviate to a different test, so that the two tests induce a posterior belief of 0.9 with probability
0.5 and 0.1 with probability 0.5. However, since the two persuaders choose tests independently, such a belief distri-
bution is unattainable by a unilateral deviation. If the second persuader deviates to a more informative test so that he
can sometimes induce a posterior belief of 0.9 or 0.1, then it is always possible that his test result is negative when the
test result from the first persuader is positive, or vice versa. Either case induces a posterior belief between 0.8 and 0.2
with positive probability.

8



correlated persuaders with different preferences who choose their tests in a sequence. It shows
that while adding an extra persuader at the end or in the middle of the sequence can result in an
information loss, adding a persuader at the beginning of the sequence will not. These papers imply
that, when persuaders have different preferences, it can be worse for the decision maker to add a
persuader. In my paper, adding a second same-minded persuader never hurts the decision maker.

Other papers that discuss competitive persuasion include Board and Lu (2017) and Au and
Kawai (2017). Board and Lu (2017) study competing sellers of the same product who try to
attract searching buyers by disclosing information about the product. They show that the effect of
competition on information disclosure depends on whether the buyers’ beliefs are private. Au and
Kawai (2017) study the competition between sellers of different products who try to attract a single
buyer by disclosing information about their own products. The effect of competition is ambiguous
in general.

On the topic of noisy test results, a paper by Rick (2013) studies persuasion games with exoge-
nous noise. He studies a one-persuader game and shows that if the persuader cannot choose the
test design but can repeat the test an arbitrary number of times and report only the final result, then
the decision maker can be better off if, with some probability, she falsely receives a positive result,
even if the persuader did not send one. This is because the error induces a posterior belief that the
persuader favors even when he has not exerted effort to harvest false-positive evidence. This gives
the persuader an incentive to reduce false-positive reports and deliver more-truthful information.
In this paper, because the persuaders are able to choose the test design, the intuition from Rick
(2013) does not apply. When a persuader must learn the true state through indirectly testing a
noisy sample, the noise in the sample does not make him release more information when he is the
only persuader. Beneficial equilibria exist only when there exist other persuaders, too. Persuaders
are incentivized to design informative tests because they want to make their own positive results
powerful enough to outweigh others’ negative results. This incentive disappears if a persuader is
alone.

There are papers on cheap talk persuasion games with multiple persuaders (e.g., Battaglini,
2002; Ambrus and Takahashi, 2008; Ambrus and Lu, 2014). However, note that for any game in
which the persuaders’ preferences are state-independent, if the decision maker observes only the
results of the tests and not the design, the only equilibrium is a trivial one in which the persuaders
always conduct completely uninformative tests with uniformly positive results. The decision maker
is never persuaded (Sobel, 2013). Therefore, in this paper, it is crucial that the decision maker
observes both the design and the outcome of the test.

Other papers (e.g., Bhattacharya and Mukherjee, 2013; Felgenhauer and Schulte, 2014; Hart,
Kremer, and Perry, 2016) study persuasion games in which state-independent persuaders cannot
choose the test design but can hide unfavorable test results. A key distinction is that the persuaders
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in those papers decide whether to report a result only after they see the results, whereas the per-
suaders in this paper unconditionally commit to report all results. Therefore, the persuaders in
their settings report only good evidence, and they dislike tests that can yield negative results in a
good state because that means fewer good reports. In contrast, all beneficial equilibria in this paper
feature persuaders who optimally choose tests that can yield negative results in a good state. They
are incentivized to do so because it increases the decision maker’s posterior belief when she sees
negative results, which makes it possible to persuade her even when some tests results are negative.

Many assumptions in this paper are similar to those in the standard voting literature, such as
Feddersen and Pesendorfer (1998). But there is one crucial difference that leads to very different
results. The decision maker in this paper does not commit to any decision rule that is based only
on test results. In the voting literature, the decision maker takes a certain action if the number
of votes passes an exogenous threshold, regardless of the voting strategy (e.g., the unanimity rule
or the majority rule). In contrast, the decision maker in this paper chooses the action that best
responds to both the test results and the test design. In particular, if the decision maker were to
commit to a fixed result-based standard (e.g., two positive results out of three tests), the persuaders
would simply choose uninformative tests that always yield positive results. If that were the case,
the decision maker would rather ignore the persuaders and always choose the default action. This
outcome is undesirable for both the decision maker and the persuaders.

3 Direct tests

In this section, I study a general case with n identical persuaders who endogenously design direct
tests on the true state. Strict beneficial equilibria with high payoffs for the decision maker always
exist.

3.1 Setup

There are two states of the world: ω ∈ {L,H}. 4 There are n persuaders and a decision maker. The
decision maker can choose one of two actions, aL or aH . (Think of aL as “conservative treatment”
and aH as “surgery” in the motivating example.) Her preference is described by a utility function
u that depends on her action and the true state: u(aL,L) = u(aH ,H) = 1, u(aH ,L) = 1− pd , and
u(aL,H) = pd , for some pd ∈

(1
2 ,1
)
. With these preferences, the decision maker prefers aH iff.

the posterior probability for state H is above pd . Thus, pd can be viewed as the decision maker’s
“threshold of doubt.” I assume here that the decision maker chooses aH when she is indifferent.

4The main result of the paper is robust when the state space is a continuum; see discussion in Section 5.
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The persuaders, on the other hand, all prefer that the decision maker chooses aH , regardless of
the true state. Their preference can be represented by a common utility function v with v(aH) = 1,
and v(aL) = 0.

The persuaders and the decision maker share a common prior: Pr(H) = Pr(L) = 1
2 . Each

persuader i can design an endogenous test on the true state. A test is a garbling of the true state that
generates a message mi ∈ {positive, negative} with probabilities conditional on ω . Results of this
paper do not hinge on the assumption of a binary message space. 5 The strategy of persuader i is
to choose the conditional probabilities (xi,yi), where xi ≡ Pr(positive|L) and yi ≡ Pr(positive|H).
Assume that xi ≤ yi for all i so that “positive” is positively associated with state H.

All persuaders choose their tests simultaneously. The decision maker observes both the tests
((x1,y1), ...,(xn,yn)) and their results (m1, ...,mn).

The timeline of the game is summarized below.

1. N persuaders simultaneously design tests (x1,y1), ...,(xn,yn).

2. Nature chooses the state of the world.

3. Each test generates a result mi.

4. After observing the test designs and the test results, the decision maker Bayesian updates her
belief about the true state and chooses an action a.

Let U denote the expected utility of the decision maker and let V denote the expected utility of
each persuader before test outcomes are revealed.

Let U ≡ 1
2(1+ pd) be the decision maker’s expected utility when she receives no information

from any persuader. In this case, she always chooses aL. Then, U ≥U in any equilibrium because
the decision maker can always ignore the persuaders’ information to guarantee U . Let U ≡ 1 be
the decision maker’s expected utility when she learns the true state. U ≤U always.

The solution concept used in this paper is strict perfect Bayesian equilibrium. The requirement
of strictness eliminates “nuisance” equilibria such as the one in which every persuader chooses
the fully-revealing test. This fully-revealing equilibrium relies on a strong tie-breaking assumption
that each persuader perfectly reveals the true state whenever indifferent; but this is an unlikely pre-
diction because all persuaders strictly prefer a less informative outcome. Therefore, by restricting
attention to perfect Bayesian equilibria that are strict,6 this paper emphasizes that any beneficial
equilibrium studied below is robust.

5Results of this paper hold when the message space is larger. See Section 5.E for details.
6It is not sufficient to eliminate the fully-revealing equilibrium by focusing only on admissible equilibria because

full revelation is not weakly dominated by any other strategy. For example, suppose that there are only two persuaders.
Let (x1,y1) 6= (0,1) be any arbitrary strategy from persuader 1 that is not fully revealing. Then, there exists some
strategy x2 = 0, y2 < 1 from persuader 2 such that 1) persuader 2 always reports “negative” state L, and 2) persuader 2
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3.2 Equilibrium

In this section, I start by identifying the necessary and sufficient condition for the equilibria that
benefit the decision maker. Then, I analyze the welfare implications of all symmetric equilibria
that satisfy these conditions when n = 2. The decision maker’s payoff can be arbitrarily close to
U in these equilibria; the persuaders and the decision maker often share the same ranking over
equilibria. At the end of this section, I prove the existence of beneficial equilibria for any n > 2.

To make equilibrium analysis easier, I first introduce a notation that represents the decision
maker’s decision rule after she sees the test results.

Note that if a persuader chooses a test whose result is positive with the same probability in
either state, then his test result is simply white noise. Call him an uninformative persuader. Since
persuaders are independent, adding or deleting uninformative persuaders has no impact on other
players’ equilibrium strategies. Therefore, the decision maker’s action in equilibrium depends only
on the strategy of informative persuaders.

Definition 1. A persuader i is informative if and only if xi < yi. In an equilibrium, let NI denote
the set of all informative persuaders.

In general, persuaders’ test designs can be asymmetric. The decision maker’s decision rule
is characterized by a set; she chooses action aH if and only if the positive results come from
persuaders belonging to this set.

Definition 2. In an equilibrium, let a ⊆ NI denote the set of informative persuaders whose test
results are positive. Then, A ∈P (NI) is called the acceptance set for this equilibrium when the
decision maker chooses aH if and only if a ∈ A.

When persuaders’ test designs are symmetric, the decision maker’s decision rule can also be
characterized by a single number.

Definition 3. In a symmetric equilibrium, define the acceptance fraction α ∈ [0,1] such that the de-
cision maker chooses aH if and only if the fraction of positive results from informative persuaders’
tests is at least α in this equilibrium.

Remark 1. Since the decision maker is Bayesian, an acceptance set must satisfy this: if a1 ∈ A

and a1 ⊂ a2, then a2 ∈ A. That is, more positive results cannot be less persuasive. The analogy
of a higher acceptance fraction in symmetric equilibria is a smaller acceptance set in asymmetric
equilibria.

sometimes reports “negative” in state H with probability y2. y2 is a function of (x1,y1) and is chosen to be sufficiently
low so that the decision maker chooses aL when the result is “positive” from persuader 1 and “negative” from persuader
2. Given persuader 2’s strategy, persuader 1 is strictly better off with the fully-revealing strategy (0, 1) than with
(x1,y1). Therefore, the fully-revealing strategy is not weakly dominated.
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Next, Proposition 1 provides two ways to identify whether the decision maker strictly benefits
from persuaders’ tests in an equilibrium. A beneficial equilibrium is identified by a minimum
acceptance set and the existence of informative persuaders whose tests may yield negative results
in state H. The key intuition behind the proof is simple yet important - the decision maker strictly
benefits from a set of tests if and only if some test outcomes make her strictly prefer action aH .
Proposition 1 is the backbone of all the other results in the paper.

Proposition 1. In any equilibrium with pd ∈
(1

2 ,1
)

and n≥ 1, the following statements are equiv-

alent:

(1) U =U.

(2) A = NI .

(3) yi = 1 for all i ∈ NI .

Proof. (1) implies (2): Prove by contraposition. Suppose that A(NI . This implies that there exists
an informative persuader i such that the decision maker chooses aH when i’s test result is negative,
but every other persuader’s test result is positive. When only i’s test result is negative, let µ1 denote
the decision maker’s posterior belief and u1 denote her expected utility. When everyone’s test result
is positive, let µ2 denote the decision maker’s posterior belief and u2 denote her expected utility.
Then, µ2 > µ1 ≥ pd and u2 > u1 ≥U . Since persuaders are informative, the event that every test
result is positive occurs with positive probability. This implies that the decision maker obtains
u2 >U with positive probability. Therefore, the decision maker’s ex ante expected utility U must
be strictly higher than U , which proves that (1) cannot hold when (2) fails.

(2) implies (3): Prove by contradiction. Suppose that yi < 1 for some i. Then, persuader i must
be strictly better off when he increases yi because, all else equal, it increases both the probability of
a positive result from his test and the posterior belief when his test result is, indeed, positive. The
acceptance set does not shrink after the deviation since A = NI is already the smallest acceptance
set. Therefore, such a deviation strictly increases the probability of aH , and persuader i strictly
prefers to deviate to yi = 1.

(3) implies (1) and (2): If informative tests never yield negative results in state H, a negative
result from a single informative test perfectly reveals state L. Therefore, the decision maker never
chooses aH when seeing an informative negative result - i.e., A = NI .

When A = NI and yi = 1 for all i ∈ NI , the persuaders must choose tests such that the decision
maker is indifferent when all results are positive. That is, tests (xi,yi) satisfy

∏
i∈NI

yi

xi
=

pd

1− pd
.

The decision maker never strictly prefers to choose aH . Her ex ante expected utility is equiva-
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lent to the amount when she chooses aL unconditionally - that is, U . Therefore, U =U .

Proposition 1 immediately implies that when n = 1, the decision maker never benefits from the
persuader’s optimal test.

Corollary 1. When n = 1, U =U for all pd ∈
(1

2 ,1
)
.

Proof. When there is a single persuader with a state-independent utility function, the optimal test
design assigns x = 1−pd

pd
and y = 1. By Proposition 1, this implies that U =U .

If one persuader is useless, how about two? Theorem 1 confirms that when there are two
persuaders, despite their identical state-independent preference, there always exist infinitely many
strict equilibria that benefit the decision maker. In these equilibria, both persuaders choose to
design tests that are more revealing than the single-persuader test, and, consequently, the decision
maker lowers her acceptance fraction.

Theorem 1. Let n = 2. For all pd ∈
(1

2 ,1
)
, any pair of (x,y) such that

0 < x≤ 1
2
− 1

2

√
2− 1

pd
and y =

1
2
+

√
1
4
− pd

1− pd
(x− x2)< 1 (1)

constitutes a strict symmetric equilibrium in which both persuaders choose the same test (x,y);

the decision maker’s acceptance fraction is 1
2 and U >U.

The condition y = 1
2 +
√

1
4 −

pd
1−pd

(x− x2) comes from the requirement that the decision maker
is indifferent when exactly one test result is positive - i.e.,

y
x
· 1− y

1− x
=

pd

1− pd
. (2)

For y to be well-defined, x must be smaller than 1
2 −

1
2

√
2− 1

pd
. The proof in the Appendix

verifies that, when the first persuader chooses some (x,y) that satisfies (1), the second persuader’s
unique best response is always to choose the same (x,y). If the second persuader deviates to a
higher false-positive rate (x), then a positive result from his test is no longer informative enough
to outweigh a negative result from his colleague. If the second persuader deviates to a higher
true-positive rate (y), then a negative result from his test is too revealing to be outweighed by a
positive result from his colleague. Both types of deviation will make the decision maker raise her
acceptance fraction from 1

2 to 1, which always decreases the expected probability of aH . In other
words, a persuader optimally makes his positive test result informative enough to offset bad news
from his colleague, and he optimally makes his negative result uninformative enough so that it can
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be offset by good news from the colleague. This is why these informative but noisy test designs in
Theorem 1 constitute strict equilibria.

As Theorem 1 points out, there are infinitely many equilibria with test designs that benefit
the decision maker. The next Proposition ranks these equilibria by their corresponding utility
outcomes. The result shows that the decision maker is better off in an equilibrium associated
with a lower false-positive rate (x). Her expected utility converges to the value associated with
full revelation

(
U
)

as x converges to zero. In other words, with only two persuaders, the strict
equilibrium outcome is arbitrarily close to full revelation. Interestingly, the persuaders’ ranking
over these equilibria is partially aligned with the decision maker’s. They never prefer the least
informative equilibrium; in fact, their favorite equilibrium converges to the most revealing one as
pd converges to 1.

Proposition 2. Let n = 2. Suppose that x and y satisfy condition (1) in Theorem 1. Let U and V

denote the expected utility of the decision maker and the persuaders in the symmetric equilibrium

associated with x and y. Then, for all pd ∈
(1

2 ,1
)
,

1. y strictly decreases in x and lim
x→0

y = 1.

2. U strictly decreases in x and lim
x→0

U (x) =U.

3. V is strictly concave in x. Let x∗ (pd) be the maximizer of V and let x(pd) =
1
2 −

1
2

√
2− 1

pd

denote the upper bound of x. Then,

(a) U (x∗ (pd))>U for all pd;

(b) x∗(pd)
x(pd)

strictly decreases in pd and lim
pd→1

x∗(pd)
x(pd)

= 0. Among all equilibria characterized in

Theorem 1, the persuaders’ most preferred equilibrium converges to the most revealing

one as pd → 1.

Figures 1 and 2 illustrate the comparative statics in Proposition 2. The formal proof can be
found in the Appendix. Here, I describe the intuition behind these results.

In equilibrium, a high false-positive rate x weakens the persuasiveness of a positive result, so in
order for the decision maker to be indifferent after seeing one positive result and one negative result,
the persuaders must weaken the informativeness of a negative result by increasing Pr(negative|H).
As a result, (1) shows that y = 1−Pr(negative|H) decreases with x.

An equilibrium test design associated with a low x (and, consequently, a high y) is relatively
informative because of the high correlation between the test result and the true state. This directly
leads to result (2): the decision maker is better off in an equilibrium with a lower x. In particular,
as x converges to 0, the equilibrium test almost fully reveals the true state, and, consequently, the
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1. y strictly decreases in x. An equilibrium associated with a higher x has higher type 1 and type 2
errors.

2. U strictly decreases in x. The decision maker prefers an equilibrium associated with a lower x.

Figure 1: Comparative statics of symmetric equilibria with two persuaders and acceptance fraction
1
2 .

decision maker’s utility is infinitesimally close to U (i.e., her utility when she learns the true state).
Recall that the decision maker’s utility is always U when there is only one persuader. This result
in Proposition 2 emphasizes that the benefit of just one additional identical persuader is as large as
U−U .

From the perspective of the persuaders, their ranking of the equilibria is partially aligned with
the decision maker’s. Part 3 shows that their favorite equilibrium is never the least informative one.
Since y must decrease with x in equilibrium, the least informative equilibrium is associated with the
lowest rate of positive results in state H and, therefore, does not induce the highest unconditional
probability of aH . When the decision maker’s threshold of doubt pd is high, as the false-positive
rate in state L increases, the corresponding true positive rate in state H must drop significantly in
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3(a). The maximizer of V does not minimize U . The persuaders’ favorite equilibrium is relatively
informative.

3(b). The maxizer of V (the x-intercept) decreases faster than x. As pd converges to 1, the
persuaders’ most preferred equilibrium converges to the most revealing one.

Figure 2: (Continue) Comparative statics of symmetric equilibria with two persuaders and accep-
tance fraction 1

2 .

order to maintain the same acceptance fraction. This significant drop in y results in a low expected
utility for the persuaders in equilibria with high x. This is why they are better off in a more
informative equilibrium.

Finally, Theorem 1 can be generalized to cases with more than two persuaders.

Proposition 3. Let n > 2. For all pd ∈
(1

2 ,1
)
, there exists a strict equilibrium in which the decision

maker’s expected utility is strictly higher than U.

The proof of Proposition 3 takes the set of two-persuader equilibria as a starting point. It
shows that a non-empty subset of these equilibria can be extended into an n-persuader equilibrium
in which the first two persuaders play the same strategy as in the two-persuader equilibrium, while
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the other persuaders choose uninformative tests. Whether symmetric equilibria with high U exist
for arbitrary n and pd remains an open question; the exponentially increasing number of potential
deviations makes proving this statement a challenge. However, when n is small, examples of
symmetric equilibria with high U are easily found. Here is an example with n = 3.

Example 1. Let n = 3 and pd = 81
113 . There exists an equilibrium in which all persuaders choose

the test (0.2,0.9), and the decision maker’s acceptance fraction is 2
3 . U = 0.96 >U = 0.86.

I verify that this is a strict equilibrium in the Appendix.
The results in this section show that robust equilibria with high payoffs for the decision maker

always exist as long as n > 1. The information revealed in these equilibria is arbitrarily close to full
revelation and, in cases in which the decision maker’s threshold of doubt is high, the persuaders
rank the revealing equilibria highly, too.

However, while equilibria with U > U always exist for n ≥ 2, non-beneficial equilibria that
induce U =U also exist. For example, in the symmetric non-beneficial equilibrium, each of the n

persuaders chooses the test with x =
(

1−pd
pd

) 1
n and y = 1. In this equilibrium, either the decision

maker is indifferent or she learns that the state is L. Results from Kamenica and Gentzkow (2011)
imply that the persuaders’ expected utility is maximized in this equilibrium. In other words, the
persuaders prefer this non-beneficial equilibrium over the ones with U >U .

Is there a scenario in which both the decision maker and the persuaders prefer an equilibrium
with U >U over one with U =U? The next section shows that the answer is “yes” when persuaders
indirectly learn the true state through endogenously testing imperfect samples.

4 Indirect tests

In this section, I study multiple identical persuaders who learn the true state through endogenous
indirect tests. Strict beneficial equilibria with high payoffs for the decision maker always exist,
and, moreover, the persuaders’ payoffs can be maximized in a beneficial equilibrium, too.

4.1 Setup with indirect tests

Suppose that persuaders cannot directly test the true state. Instead, they must indirectly learn the
true state by designing tests on some samples that are imperfectly correlated with the true state.
(In the motivating example, doctors design medical tests on the patient’s blood samples, which are
imperfectly correlated with the patient’s true condition.)
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Formally, assume that persuader i can perform an endogenous test on an i.i.d. sample si ∈
{sH ,sL} that is correlated with the true state with Pr(sH |H) = Pr(sL|L) = p.7 Assume that pd ≤
p < 1; the decision maker prefers aH if she directly observes sH . The strategy of persuader i is to
choose conditional probabilities x̃i ≡ Pr(positive|sL) and ỹi ≡ Pr(positive|sH). (Recall that in the
last section, persuader i chose xi = Pr(positive|L) and yi = Pr(positive|H). )

Everything else is identical to the setup in the last section with direct tests. With the new
assumption, a test result can be negative in state H even if the persuader chooses ỹ = 1.

4.2 Equilibrium with indirect tests

In this section, I first identify the necessary and sufficient condition for equilibria that benefit
the decision maker. Then, I focus on the set of symmetric equilibria for an arbitrary number of
persuaders. I characterize elements of this set and show that the payoff-maximizing symmetric
equilibrium for the persuaders can be one that benefits the decision maker.

The first proposition is an analogy of Proposition 1. It states that, even when tests are indirect,
non-beneficial equilibria with U = U can be identified by the smallest acceptance set. There is
one difference between Proposition 4 and Proposition 1: ỹi = 1 for all i no longer implies that the
equilibrium is not beneficial to the decision maker. This is because a negative result from a test
with ỹ = 1 no longer implies that the state is L for certain, and the decision maker may still choose
aH if there are enough positive results from the other tests. This gives rise to equilibria in which
all persuaders choose ỹ = 1, but the decision maker’s acceptance set is large.

Proposition 4. In any equilibrium with pd ∈
(1

2 ,1
)
, pd ≤ p < 1, and n≥ 1,

(1) U =U if and only if A = NI .

(2) ỹi = 1 for all i is a necessary but not sufficient condition for U =U.

Proof. (1) The proof for the “only if” part is identical to the proof in Proposition 1. For the “if”
part, note that A = NI means that the decision maker chooses aH only when all tests results are
positive. Thus, either she chooses aL (the default action under her prior belief), or she is indifferent
between aH and aL. As a result, the decision maker’s ex ante expected utility is equal to her utility
when she chooses aL unconditionally - i.e., U =U .

(2) The proof to show that U = U ⇒ ỹi = 1 for all i is identical to the proof in Proposition
1. The motivating example in the Introduction and in Theorem 2 in this section show that there
generally exist equilibria in which ỹi = 1 for all i, but U >U .

7Although exogenous noise is modeled to be symmetric (i.e., Pr(sH |H) = Pr(sL|L) = p) in this section, the sym-
metry is not necessary for the results. To see why, note that the symmetric constraint puts an upper bound on both
posterior probabilities Pr(H|positive) and Pr(L|negative). In equilibrium, only the latter constraint on Pr(L|negative)
binds since the persuaders endogenously choose tests with relatively low Pr(H|positive) anyway. Therefore, relaxing
the constraint on Pr(sL|L) does not change the equilibrium outcome.
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The next corollary is an analogy of Corollary 1. The optimal test of a unique persuader is still
useless for the decision maker in the case with indirect tests.

Corollary 2. When n = 1, U =U for all pd ∈
(1

2 ,1
)

and pd ≤ p < 1.

Proof. When there is a single persuader with a state-independent utility function, the optimal test
design assigns x̃ = 1−pd

pa
and ỹ = 1. The decision maker chooses aH only when the test result is

positive. By Proposition 4, this implies that U =U .

In the remainder of this section, I focus on the set of strict symmetric equilibria.8 In particular,
I show that the persuaders’ favorite strict symmetric equilibrium can be one with U > U . By
Proposition 4, it is sufficient to prove this statement if the persuaders’ favorite equilibrium among
all strict symmetric equilibria s.t. ỹi = 1 for all i is one with U >U . This is because any equilibrium
with yi < 1 for some i must imply that U >U (part 2 of Proposition 4).

The results below generalize the observations from the motivating example in the Introduction.
Theorem 2 characterizes all strict symmetric equilibria with ỹi = 1 for all i. Proposition 5 ranks
these equilibria by the decision maker’s payoff. An equilibrium is more beneficial to the decision
maker if it is associated with a lower acceptance fraction. Proposition 6 ranks these equilibria by
the persuaders’ payoff. It shows that when the accuracy of the samples (p) is sufficiently close to
the decision maker’s threshold of doubt (pd), the persuaders prefer an equilibrium with U > U .
Finally, Theorem 3 concludes that the best symmetric equilibrium for the persuaders is one that
strictly benefits the decision maker when p is close to pd .

First note that when there are n ≥ 3 persuaders, there are n+1
2 possible acceptance fractions if

n is odd, and n
2 possible acceptance fractions if n is even. Each acceptance fraction corresponds

to a unique symmetric equilibrium with test designs (x̃,1) where x̃ is a function of the acceptance
fraction.

Theorem 2. Let p < 1. Given any n > 2 and any integer k such that n
2 < k≤ n, there exists a strict

symmetric equilibrium in which (x̃i, ỹi) = (x̃,1) for all i, where

x̃ =
p− (1− p)

(
pd

1−pd

) 1
k
(

p
1−p

) n−k
k

p
(

pd
1−pd

) 1
k
(

p
1−p

) n−k
k − (1− p)

, (3)

and the decision-maker’s acceptance fraction is k
n .

8While I restrict the remaining discussion to symmetric equilibria, it is worth mentioning that asymmetric equi-
libria with U >U generally exist as well. For example, when n = 3, p = 0.8, and pd = 2

3 , there is a strict equilibrium
in which the first two persuaders choose the most revealing test (0,1), and the last persuader chooses a less revealing
test

( 2
7 ,1
)
. The decision maker’s acceptance set is {{1,2} ,{1,3} ,{2,3} ,{1,2,3}}, and her ex ante expected utility is

strictly above U .
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Condition (3) is derived from the fact that the decision maker is indifferent when exactly k

out of n tests results are positive. The proof in the Appendix verifies that no profitable deviation
exists for any persuader. In particular, a deviation to some higher x̃ raises the acceptance fraction
instantly, and this always lowers the persuader’s utility.

To better understand what the equilibria in Theorem 2 are like, Proposition 5 ranks them by
the informativeness of their corresponding test designs, as well as by the decision maker’s ex-
pected utility. In equilibrium, a higher acceptance fraction is associated with less-informative
tests. Therefore, the decision maker’s expected utility is higher in an equilibrium with a lower
acceptance fraction, and she strictly benefits in all equilibria except for the one with the highest
acceptance fraction (α = 1). As the number of persuaders goes to infinity, the decision maker
almost always learns the true state and gets the highest expected utility U . The only exception is
the case in which her acceptance fraction is one.

Proposition 5. Let pd ∈
(1

2 ,1
)

and pd ≤ p< 1. Given n> 2 and some integer k such that n
2 < k≤ n,

let x̃ satisfy equation (3) in Theorem 2. Then:

1. Fixing n, x̃ strictly increases in k.

2. Let U denote the decision maker’s expected utility in equilibrium. Fixing n, U strictly

decreases in k. When k = n, U =U.

Let α be the acceptance fraction in some equilibrium with N < ∞ persuaders. For each α ,

define sequences {x̃α
n }

∞

n=N and {Uα
n }

∞

n=N such that (x̃α
n ,1) is the test in the n-persuader equilibrium

associated with the same acceptance fraction α , and Uα
n is the corresponding expected utility of

the decision maker. Then:

3. If α < 1, then lim
n→∞

x̃α
n < 1 ; if α = 1, then lim

n→∞
x̃α

n = 1 . Asymptotically, the state is revealed

if and only if α < 1.

4. If α < 1, then lim
n→∞

Uα
n =U ; if α = 1, then Uα

n =U for all n≥ N .

To see why (1) and (2) are true, note that a high acceptance fraction (high k
n ) implies that each

positive result is relatively weak due to frequent false positives (high x̃). This explains why x̃ and
k always move in the same direction. The fact that x̃ increases in k leads directly to the results in
(2). Since a higher equilibrium acceptance fraction is associated with less-informative tests, the
decision maker’s expected utility is lower in an equilibrium with a higher acceptance fraction.

To see why (3) and (4) are true, note that, in equilibria with the highest acceptance fraction
(α = 1), tests are chosen so that the decision maker is merely indifferent when all test results are
positive. By the law of large numbers, when the number of persuaders is infinite, if there is any
informativeness in each persuader’s test, the accumulated information will reveal the true state to
the decision maker. Therefore, the decision maker remains indifferent in the limit only if each
persuader’s test converges to the uninformative one - i.e., lim

n→∞
x̃α

n = 1. In equilibria with lower
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acceptance fractions (α < 1), tests remain informative even when the number of persuaders is
large. As the number of persuaders grows, the decision maker eventually learns the true state by
comparing the different fractions of positive and negative results.

Proposition 5 establishes that the decision maker’s expected utility monotonically decreases
with the equilibrium acceptance fraction. She strictly benefits from an equilibrium if and only if
the acceptance fraction α 6= 1. What about the persuaders? To prove that persuaders can prefer
an equilibrium that strictly benefits the decision maker is equivalent to showing that persuaders’
expected utility is not maximized in the equilibrium with acceptance fraction α = 1. Proposition
6 and Remark 2 below confirm this.

Proposition 6. Focus on equilibria characterized in Theorem 2.

Let α be the acceptance fraction in some equilibrium with N < ∞ persuaders. For each α ,

define sequence {V α
n }

∞

n=N such that V α
n is the persuaders’ expected utility in the n-persuader equi-

librium associated with the same acceptance fraction α . Then:

If α < 1, then lim
n→∞

V α
n = 1

2 ; if α = 1, then lim
n→∞

V α
n is equal to

V α=1
∞ ≡ 1

2

[(
pd

1− pd

) p−1
2p−1

+

(
pd

1− pd

) −p
2p−1
]
.

Moreover, there exist B ∈ [0,1]2 s.t. when (pd, p) ∈ B, V α=1
∞ < 1

2 - i.e., the persuaders are

strictly better off in the state-revealing symmetric equilibria with α < 1.

The set B in the last statement is visualized in Figure 3.
Proposition 6 shows that asymptotically, when pd and p are sufficiently close, all players rank

state-revealing symmetric equilibria (α < 1 and U =U) over the non-revealing equilibrium (α = 1
and U =U). To see why persuaders can prefer the state-revealing equilibria, note that the key trade-
off for the persuaders is benefits from a high frequency of positive results (high x̃) versus benefits
from a low acceptance fraction. The existence of set B shows that the the latter can dominate
the former. Specifically, when p is not significantly higher than pd , the decision maker is hard to
persuade and the test samples are noisy. For positive test results to be sufficiently persuasive, x̃ is
generally kept low across all acceptance fractions. This makes negative results common. There-
fore, the persuaders benefit more from the lower acceptance fraction in state-revealing equilibria.

The same result from Proposition 6 extends to finite n, too. When n is finite, the persuaders’
expected utility V is different across all acceptance fractions. Making a statement about the full
ranking of V across all acceptance fractions may be challenging. Nevertheless, to prove that per-
suaders can prefer a beneficial equilibrium, it is sufficient to compare the two equilibria with α = 1
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Figure 3: Persuaders prefer the state-revealing symmetric equilibria over the non-revealing sym-
metric equilibrium asymptotically iff. (pd, p) ∈ B.

and α = n−1
n . The persuaders’ expected utilities in these two equilibria, V α=1 and V α= n−1

n , can
be expressed analytically as functions of n, p, and pd . If V α=1 < V α= n−1

n , then the persuaders’
favorite equilibrium must be one with α < 1 and U > U . Remark 2 verifies that for small n, this
is, indeed, true when pd and p are sufficiently close.

Remark 2. Let V α=1 and V α= n−1
n denote the persuaders’ expected utilities in the symmetric equi-

libria with ỹ = 1 and acceptance fractions α = 1, α = n−1
n , respectively.

For n = 3, 5, 10, 20 and p = 0.8, 0.99, V α=1 <V α= n−1
n when pd is sufficiently close to p.

Let ∆V ≡ V α= n−1
n −V α=1. Figure 4 plots ∆V against pd for the above values of p and n. In

every case, the plots show that ∆V > 0 when pd is sufficiently close to its upper bound p.
The same result holds if the values of n and p are different those from above. I omit the

(infinitely many) other combinations simply due to space limitations.

Finally, Theorem 3 incorporates Theorem 2, Propositions 4, 5, 6 and Remark 2 to show that
the best symmetric equilibrium for persuaders can be one that strictly benefits the decision maker.
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a. p = 0.8

b. p = 0.9

c. p = 0.99

Figure 4: When pd is sufficiently close to p, ∆V = V α= n−1
n −V α=1 > 0 - i.e., the persuaders’

expected utility in the non-beneficial equilibrium with α = 1 is less than that in the beneficial
equilibrium with α = n−1

n .

Theorem 3. For n > 2, the best symmetric equilibrium for persuaders is one with U >U when pd

and p are sufficiently close.

Proof. When n > 2, there is a unique symmetric equilibrium with U =U . It is the one with ỹ = 1
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and x̃ =
p−(1−p)

(
pd

1−pd

) 1
n

p
(

pd
1−pd

) 1
n−(1−p)

(Proposition 4 and 5 and Theorem 2). There also exist other symmetric

equilibria with U >U (Theorem 2 and Proposition 5). Proposition 6 and Remark 2 show that the
unique equilibrium with U =U does not maximize the persuaders’ expected utility when pd and p

are sufficiently close. Therefore, in these cases, the best symmetric equilibrium for the persuaders
must be one with U >U .

5 Discussion

A. Single persuader with multiple tests

This paper features games with multiple identical persuaders, each of whom independently con-
ducts one test. One might ask what happens if there is only one persuader in charge of multiple
independent tests. In the case of one persuader, the equilibrium is unique: the persuader chooses
tests that maximize V . If this persuader directly tests the true state, the result from Kamenica
and Gentzkow (2011) implies that the decision maker never benefits because the optimal tests that
maximize V induce a two-point posterior belief distribution; either the decision maker learns that
the state is L or she is indifferent. However, if the persuader tests the true state only indirectly
and the tests must be identical, Theorem 3 implies that the persuader can optimally design fairly
informative tests that benefit the decision maker.

Overall, when there is a single persuader conducting multiple tests (or, alternatively, when all
persuaders collaborate), outcomes with a high payoff for the decision maker are more rare. This
comparison emphasizes that it is the strategic interaction between independent persuaders that
facilitates the beneficial outcomes for the decision maker.

B. Correlated persuaders

In this paper, I assume that the persuaders are independent. Section 2 mentioned that Gentzkow
and Kamenica’s studies (2017a, 2017b) applied to the opposite case, in which persuaders are ar-
bitrarily correlated. When identical persuaders are independent, there are many strict equilibria
that benefit the decision maker; when these persuaders are arbitrarily correlated, there are none.
A natural question is to ask what happens when persuaders are partially correlated. Here, I argue
that equilibrium outcomes with partial correlation are more likely to resemble the outcomes in this
paper.

Borrowing the modeling language from Li and Norman (2017a), say that the result of a test
depends on the true state and the realization of a sunspot variable independent of the state (e.g.,
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a random variable uniformly distributed on [0,1]). The sunspot variable is responsible for the
randomness of the test result. Then, n persuaders are arbitrarily correlated if there is a public
sunspot variable and all n test results are conditioned on it; persuaders are independent if there
are n i.i.d. private sunspot variables, and each persuaders’ test result is conditioned on his private
sunspot. One way to model partial correlation is to say that n persuaders are partially correlated if
their test results are conditioned on the public sunspot with probability z and the private sunspots
with probability 1− z for some z ∈ (0,1), assuming that all players, including the decision maker,
know which sunspot(s) is(/are) actually used. It does not matter if the persuaders are restricted to
designing tests independent of the sunspot selection or if their test designs can be conditional on
the sunspot selection. In either case, it is with positive probability that persuader i’s test result will
be different from j’s. In particular, the number of positive results in state L will be random, and
this randomness incentivizes the persuaders to lower the decision maker’s acceptance fraction by
designing more-revealing tests. This gives rise to equilibria that benefit the decision maker.

C. Sequential persuaders

The persuaders in this paper choose tests designs simultaneously. Suppose, instead, that they
choose the test designs sequentially. Since all persuaders share a common interest, the outcome
of this scenario resembles that of a one-persuader game. Results from Kamenica and Gentzkow
(2011) predict that the first persuader optimally chooses a test design as if he were the only per-
suader, and all later persuaders choose uninformative tests. This unique subgame perfect equi-
librium maximizes the persuaders’ expected utility. The decision maker does not benefit from
persuaders’ information.

D. Continuous state space

This paper does not hinge on the assumption of the binary state space. Suppose that the true state
is a continuous variable z ∈ R. If the action space of the decision maker is still {aH ,aL}, and the
persuaders still strictly prefer aH regardless of the true state, then the persuaders adopt a threshold
strategy (Kolotilin, 2015) and the main results of the paper still apply.

For example, when there are two persuaders, there exists a symmetric equilibrium in which
both persuaders choose tests that yield positive results when z≥ z and negative results when z < z,
where z is a relatively high9 threshold chosen in such a way that the decision maker is indifferent
when exactly one test result is positive. Since the acceptance fraction is less than one, the decision
maker strictly benefits from the tests.

9compared to the threshold in the game with only one persuader.
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E. Non-binary test results

Recall that a test generates a message m ∈M. In this paper, M = {positive, negative}. In general,
this binary assumption is not without loss of generality when there are multiple persuaders, but it
does not affect this paper’s results.

For example, suppose that M1 = {positive, negative} for persuader 1, and he chooses Pr(positive |H)≈
0.067 and Pr(positive |L) ≈ 0.5 (this is the same test as that of “Beneficial equilibrium 2” in the
Introduction). Assume that M2 = {A, B,C} for persuader 2. Consider the following strategy:
Pr(A|H) = 3

5 , Pr(A|L)≈ 0.08, Pr(B|H) = 2
5 , Pr(B|L)≈ 0.75, Pr(C|H) = 0, Pr(C|L)≈ 0.17. These

numbers are chosen so that the decision maker is just indifferent when she sees (negative, A) or
(positive, B). Hence, the persuader’s payoff is the unconditional probability Pr(A)+Pr(positive, B)≈
0.465. This value is higher than the maximum payoff that a persuader can get when M2 =

{positive, negative} (see “Beneficial equilibrium 2” in Introduction). Therefore, there does not
exist any feasible test under M2 = {positive, negative} that is outcome-equivalent to the proposed
test with M2 = {A, B,C}.

However, any equilibrium with M ⊆ R and U = U is outcome-equivalent to some equilib-
rium with M = {positive, negative}. To see why, note that, in equilibria with M ⊆ R and U =U ,
the decision maker chooses aH with positive probability and is always indifferent when choosing
aH . This implies that each persuader i’s test has a most positive message m∗i with the highest
Pr(m∗i |H)
Pr(m∗i |L)

among all possible messages, and the decision maker chooses aH if and only if the real-

ized messages are {m∗1,m∗2, ...,m∗n}. In this case, it is possible to construct an outcome-equivalent
test with M′ = {positive, negative} for each persuader i. Let Pr(positive|ω) = Pr(m∗i |ω) and
Pr(negative|ω) = ∑

m6=m∗i
Pr(m|ω). The distribution of the decision maker’s actions conditional on

the state under the new tests is the same as under the original tests.
Therefore, relaxing the binary restriction on M does not change the set of equilibria outcomes

with U = U ; it only increases the number of equilibrium outcomes with U > U . Since equilibria
with U >U already exist when M is binary, they continue to exist when M is larger; if persuaders
prefer some equilibrium with U > U over those with U = U when M is binary, they continue to
exhibit this preference when M is larger. Hence, the results of this paper are robust when the binary
restriction of M is relaxed.
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6 Appendix

6.1 Proof of Theorem 1

Let x and y satisfy

0 < x≤ 1
2
− 1

2

√
2− 1

pd
and y =

1
2
+

√
1
4
− pd

1− pd
(x− x2)< 1.

Given that the decision maker’s acceptance set is A = {{1} ,{2} ,{1,2}} (i.e., chooses aH upon
seeing at least one positive result), each persuader’s expected utility is

V ∗ =
1
2
[
2y(1− y)+ y2 +2x(1− x)+ x2]

=
1
2
(
2y− y2 +2x− x2) .

I now go through each case of unilateral deviation to identify the conditions for x and y such
that the proposed strategies, indeed, form a strict equilibrium.

a. Suppose that persuader 1 deviates to some (xa,ya) s.t. the decision maker’s acceptance set
becomes Aa = {{1} ,{2} ,{1,2}}. Aa implies that xa and ya must satisfy

ya

xa
· 1− y

1− x
≥ y

x
· 1− y

1− x
,

y
x
· 1− ya

1− xa
≥ y

x
· 1− y

1− x
.

The inequalities imply that

y
x
· xa ≤ ya ≤

y− x+(1− y)xa

1− xa
,

which, in turn, implies that
xa ≤ x and ya ≤ y.

Following this deviation, persuader 1’s expected utility is

Va =
1
2
[ya (1− y)+ xa (1− x)+(1− ya)y+(1− xa)x+ yay+ xax]

=
1
2
[(1− y)ya +(1− x)xa + x+ y] .

Since Va is increasing in both xa and ya, Va is maximized when xa = x and ya = y, i.e. there is
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no profitable deviation to some (xa,ya) 6= (x,y) s.t. Aa = {{1} ,{2} ,{1,2}}.
b. Suppose that persuader 1 deviates to some (xb,yb) s.t. Ab = {{2} ,{1,2}}. Ab implies that

xb and yb must satisfy
y
x
· 1− yb

1− xb
≥ y

x
· 1− y

1− x
,

and persuader 1’s expected utility is

Vb =
1
2
(y+ x)

<
1
2
[
y+ x+

(
y− y2)+ (x− x2)]=V ∗.

Therefore, there is no profitable deviation to some (xb,yb) s.t. Ab = {{2} ,{1,2}}.
c. Suppose that persuader 1 deviates to some (xc,yc) s.t. Ac = {{1,2}}. Then, persuader 1’s

expected utility following this deviation is

Vc =
1
2
(y · yc + x · xc)

≤ 1
2
(y+ x)

≤ Vb

< V ∗.

Therefore, there is no profitable deviation to some (xc,yc) s.t. Ac = {{1,2}}.
d. Finally, suppose that persuader 1 deviates to some (xd,yd) s.t. Ad = {{1} ,{1,2}}. Ad

implies that xd and yd must satisfy

yd

xd
· 1− y

1− x
≥ y

x
· 1− y

1− x

⇒xd ≤
x
y

and y≤ 1.

Following this deviation, persuader 1’s expected utility is

Vd =
1
2
(yd + xd)

≤ 1
2

(
1+

x
y

)
.

A sufficient condition for Vd ≤V ∗ is 1
2

(
1+ x

y

)
≤V ∗.

Summarizing the four cases of possible deviation, it suffices to prove Theorem 1 if 1
2

(
1+ x

y

)
≤
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V ∗. This inequality can be written as

(
2y− y2 +2x− x2)−(1+

x
y

)
≥ 0. (4)

Replacing y with 1
2 +
√

1
4 −

pd
1−pd

(x− x2), the left-hand side of (4) can be rewritten as

g(x)≡
(

pd

1− pd
+1
)(

x− x2)+ x+
1
2
+

[
1
4
− pd

1− pd

(
x− x2)] 1

2

,

which is always non-negative whenever 0 < x≤ 1
2 −

1
2

√
2− 1

pd
.

This completes the proof.

6.2 Proof of Proposition 2

Let n = 2 and 0 < x≤ 1
2 −

1
2

√
2− 1

pd
. Let y(x) = 1

2 +
√

1
4 −

pd
1−pd

(x− x2).
1.

y
′
(x) =− pd (1−2x)

2(1− pd)

√
1
4 −

pd(x−x2)
1−pd

< 0

whenever 0 < x≤ 1
2 −

1
2

√
2− 1

pd
.

2. The decision maker’s ex ante expected utility is

U(x) =
1
2

{[
2y(x)(1− y(x))+ y(x)2]+(1− pd)

[
2x(1− x)+ x2]+ pd [1− y(x)]2 +(1− x)2

}
.

Take the derivative of U with respect to x to get

U
′
(x) =

pd

[
x− 1

2 −
1
2

√
pd(2x−1)2+1−2pd

1−pd

]
√

pd(2x−1)2+1−2pd
1−pd

< 0

whenever 0 < x≤ 1
2 −

1
2

√
2− 1

pd
.

3. The persuaders’ ex ante expected utility is

V (x) =
1
2
{

2y(x) [1− y(x)]+ y(x)2 +2x(1− x)+ x2} .
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The derivative of V with respect to x is

V
′
(x) = 1− x+

pd (2x−1)

[√
pd(2x−1)2+1−2pd

1−pd
−1

]

2(1− pd)

√
pd(2x−1)2+1−2pd

1−pd

,

which is positive for small values of x and negative for large values of x.
The second derivative of V with respect to x is

V
′′
(x) =

[
pd
(
1−4x2 +4x

)
−1
]√ pd [1−4x(x−1)]−1

pd−1
− pd (2pd−1)√

(1− pd) [pd (4x2−4x−1)+1] · [pd (4x2−4x−1)+1]
< 0

whenever 0 < x≤ 1
2 −

1
2

√
2− 1

pd
.

Since V is strictly concave, the maximizer of V can be found by solving

V
′
(x) = 0,

which yields

x∗ (pd)≡ argmaxV

=
8(p2

d+pd−3)(2pd−1)
2
3

48· 3
√

p2
d{[(14−5pd)pd−17]pd+9}−3

√
3
√
(pd−1)3 p3

d{(pd−1)pd [(pd−1)pd+3]−1}
− pd−2

3

− 1
6pd

3

√
(2pd−1)

{
p2

d

[(
14pd−5p2

d−17
)

pd +9
]
−3
√

3
√

(pd−1)3 p3
d

[
(pd−1) pd

(
p2

d− pd +3
)
−1
]}

.

Note that since x(pd)=
1
2−

1
2

√
2− 1

pd
converges to 0 as pd→ 1, x∗ (pd) converges to 0 trivially.

Therefore, to examine which equilibrium the persuaders prefer as pd → 1, I need to look at the
ratio between x∗ and x. A small ratio implies that the persuaders prefer a relatively informative
equilibrium. Formally, define xr ≡ x∗(pd)

1
2−

1
2

√
2− 1

pd

. xr strictly decreases in pd and lim
pd→1

xr = 0. (See

Figure 5 for the graphical illustration.) Therefore, among all equilibria characterized in Theorem
1, the persuaders prefer the most informative one when pd → 1.
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Figure 5: xr =
x∗
x strictly decreases in pd and converges to 0 as pd→ 1. Smaller xr implies that the

persuaders prefer a more informative equilibrium.

6.3 Proof of Proposition 3

Let n > 2. Let 0 < x≤
√

2pd−1
4pd

and y = 1
2 +
√

1
4 −

pd
1−pd

(x− x2)< 1. It suffices to show that there
exists an equilibrium in which x1 = x2 = x, y1 = y2 = y, xi = yi = 1 for all i > 2, and the acceptance
set is A = {{1} ,{2} ,{1,2}}. Let

V ∗ =
1
2
(
2y− y2 +2x− x2)

denote the persuaders’ expected utility induced by this strategy profile.

Theorem 1 implies that there is no profitable deviation for the first or the second persuader.
Here, I prove that without loss of generality, among all pairs of (x,y) that satisfy the condition in
Theorem 1, there always exists some (x,y) such that no profitable deviation exists for the third
persuader.

First, note that a unilateral deviation by the third persuader may be profitable only if a positive
result from his test dominates two negative results from both the first and the second persuaders -
i.e.,

(1− y)2

(1− x)2 ·
y3

x3
≥ pd

1− pd
.

Since pd
1−pd

= y
x ·

1−y
1−x , the above condition is equivalent to

y3

x3
≥ y

x
· 1− x

1− y
. (5)
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Since the decision maker is indifferent after one positive result and one negative result from
the first two persuaders, it is impossible for the decision maker to choose aH when, in addition to
one positive and one negative, the result from the third persuader is negative as well. Therefore, it
is sufficient to check only the following two cases of deviation:

a. The third persuader deviates to some (xa,ya) such that Aa = {{3} ,{3,1} ,{3,2} ,{3,1,2}}.
In this case, it is most profitable for the third persuader to choose xa ∈ (0,1) and ya = 1, which
yields an expected utility of Va =

1
2 (1+ xa) =

1
2

(
1+ x

y ·
1−y
1−x

)
.

The proof of Theorem 1 shows that 2y−y2+2x−x2 ≥ 1+ x
y . Since x < y, 1−y

1−x ∈ (0,1). Hence,

it must be the case that V ∗ = 1
2

(
2y− y2 +2x− x2) > 1

2

(
1+ x

y ·
1−y
1−x

)
= Va. Therefore, it is not

profitable for the third persuader to deviate in this way.
b. Persuader 3 deviates to some xb ∈ (0,1) and yb ∈ (0,1) s.t.
Ab = {{1,2} ,{3} ,{3,1} ,{3,2} ,{3,1,2}}. Ab implies that, in addition to (5), xb and yb must

also satisfy
1− yb

1− xb
≥ x

y
· 1− y

1− x
. (6)

Since Vb =
1
2

[
yb + xb +(1− yb)y2 +(1− xb)x2] increases in xb and yb, Vb is maximized when

both (5) and (6) hold with equality - i.e.,

yb

xb
=

y
x
· 1− x

1− y
and

1− yb

1− xb
=

x
y
· 1− y

1− x
,

which yields
xb =

x− xy
x+ y−2xy

and yb =
y− xy

x+ y−2xy
.

Vb (x,y) =
y+ x2y− x3y+ x

(
1−2y+ y2− y3)

2(x+ y−2xy)

V ∗−Vb =
x3 (1−3y)+(1− y)2 y+ x2 (6y−2)+ x

(
1−6y+6y2−3y3)

−2y+ x(4y−2)

Replace y with y(x) = 1
2 +
[

1
4 −

pd
1−pd

(
x− x2)] 1

2 and express V ∗−Vb as a single function of x.
Define h(x)≡V ∗−Vb then,

h(x) =−
(x−1)x

{[
pd

1−pd
(3x−1)+3(x−1)

]√
1+4 pd

1−pd
(−1+ x)x− pd

1−pd
(3x−1)+(x−1)

}
(4x−2)

√
1+4 pd

1−pd
(x−1)x−2

.

Note that h(0) = 0 and h′(0) = 1. In other words, there always exists some x in the positive
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neighborhood of 0 s.t. V ∗−Vb > 0, and no profitable deviation exists for the third persuader. This
completes the proof.

6.4 Verifying Example 1

Let n = 3, pd = 81
113 , and p = 1. I verify that t = ((0.2,0.9) ,(0.2,0.9) ,(0.2,0.9)) and A(t) =

{{1,2} ,{1,3} ,{2,3} ,{1,2,3}} is an equilibrium.
When players choose the above strategies, V (t) = 0.538. Given (x2,y2) = (x3,y3) = (0.2,0.9),

I show that persuader 1 is strictly worse off if he deviates to some
(

x
′
1,y

′
1

)
6= (0.2,0.9). I use t′ to

denote the tests after persuader 1’s deviation.
Among all deviations that induce A(t′) = {{1,2,3}}, the most profitable is

(
x
′
1,y

′
1

)
= (1,1),

which yields V (t′) = 0.425 <V (t).
If a deviation by persuader 1 induces A(t′) = {{1,2,3} ,{2,3}}, then

(
x
′
1,y

′
1

)
must satisfy

0.92

0.22 ·
1− y

′
1

1− x′1
≥ pd

1− pd
.

Among all deviations that satisfy the above inequality, persuaders’ payoff is maximized when(
x
′
1,y

′
1

)
→ (1,1), and V (t′)→ 0.425 <V (t).

If a deviation by persuader 1 induces A(t′) = {{1,2,3} ,{1,2} ,{1,3}}, then
(

x
′
1,y

′
1

)
must

satisfy
0.9
0.2
· 0.1

0.8
·

y
′
1

x′1
≥ pd

1− pd
.

Among all deviations that satisfy the above inequality, persuaders’ payoff is maximized when(
x
′
1,y

′
1

)
= (2

9 ,1), and V (t′) = 0.535 <V (t).

If a deviation by persuader 1 induces A(t′) = {{1,2,3} ,{1,2} ,{1,3} ,{2,3}}, then
(

x
′
1,y

′
1

)
must satisfy

y
′
1

x′1
≥ 0.9

0.2
,

1− y
′
1

1− x′1
≥ 0.1

0.8
.

Among all deviations that satisfy the above inequalities, persuaders’ payoff is uniquely maxi-
mized when

(
x
′
1,y

′
1

)
= (x1,y1) = (0.2,0.9).

If {1} ∈ A(t′), then
(

x
′
1,y

′
1

)
must satisfy

y
′
1

x′1
· 0.1

2

0.82 ≥
pd

1− pd
⇒

y
′
1

x′1
≥ 162.
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Among all deviations that induce A(t′) = {{1} ,{1,2} ,{1,3} ,{1,2,3}}, the most profitable is(
x
′
1,y

′
1

)
= ( 1

162 ,1), which yields V (t′) = 0.503 <V (t).
Among all deviations that induce A(t′) = {{1} ,{1,2} ,{1,3} ,{2,3} ,{1,2,3}}, the most prof-

itable is
(

x
′
1,y

′
1

)
= ( 7

1295 ,
162
185), which yields V (t′) = 0.511 <V (t).

{2} /∈ A(t′) and {3} /∈ A(t′) for all t′. Therefore, persuader 1 is strictly worse off after a
deviation to some

(
x
′
1,y

′
1

)
6= (0.2,0.9).

Finally, U = 1
2 (1+ pd)≈ 0.86, and the expected utility of the decision maker is

U =
1
2
[Pr(aL|L)+Pr(aH |H)+(1− pd)Pr(aH |L)+ pd Pr(aL|H)] ,

where Pr(aL|L) = (1− x)3 +3x(1− x)2, Pr(aH |H) = 3y2(1− y)+ y3,
Pr(aH |L) = 3x2(1− x)+ x3, and Pr(aL|H) = (1− y)3 +3y(1− y). Plug in values of pd , x, and y

to get U ≈ 0.96. Hence, U >U .

6.5 Proof of Theorem 2

Given n, k, suppose that all persuaders choose x̃ that satisfies condition (3) in Theorem 2. Then,

Pr(H|exactly k positive results)
Pr(L|exactly k positive results)

=

[
p+(1− p)x̃
(1− p)+ px̃

]k(1− p
p

)n−k

=
pd

1− pd
. (7)

The decision maker is indifferent (and, hence, chooses aH) when exactly k out of n test results
are positive. Hence, her acceptance fraction is k

n .
In this equilibrium, each persuader i strictly prefers to choose ỹ = 1. To see why, note that

a deviation to some
(

x
′
,y
′
)

s.t. y
′
< 1 is profitable only when it induces the decision maker to

choose aH , even if n−k+1 test results, including the one from persuader i, are negative. However,
this is never the case for any x′ ≤ y′ < 1. Therefore, a downward deviation in y

′
always strictly

decreases the persuader’s expected utility because it lowers the rate of positive results and makes
each positive result weaker.

Next, I show that a persuader strictly prefers to choose x̃ when everyone else chooses x̃.
Suppose that persuader i deviates to a test with x′ > x̃. The equilibrium outcome is affected

only when the test result of i is positive. Given the higher x
′
, a positive result from i’s test is

less informative. This implies that the decision maker now strictly prefers aL when exactly k test
results (including i’s) are positive. In other words, when i reports a positive result, the decision
maker needs to see at least k more positive results from the other persuaders in order to choose
aH . To find out the decision maker’s exact response to the deviation, consider the extreme case in
which x′ = 1. That is, persuader i deviates to the least informative test, which always has a positive
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result. Under this extreme case, persuader i is completely uninformative, and the decision maker
chooses an action based only on information delivered by the other persuaders. Moreover, among
the rest of the n− 1 persuaders, k positive results and n− k− 1 negative results are sufficient to
induce action aH . Therefore, when i reports a positive result, the decision maker requires exactly
k more positive results from the other persuaders to choose aH , and this is true for all x′ ∈ (x̃,1].
Knowing how the decision maker responds to an upward deviation in x̃, it is most profitable for the
persuader to choose x′ = 1. Then, the new expected utility for the persuaders is equal to the prob-
ability of having at least k positive results among the rest of the n− 1 persuaders. Since those
n− 1 persuaders are still choosing the test x̃, Pr(at least k positive results|n− 1 tests with x̃) <

Pr(at least k positive results|n tests with x̃). Therefore, any deviation to some x′ > x̃ strictly de-
creases i’s expected utility.

Suppose that persuader i deviates to a test with x′ < x̃. Again, the equilibrium outcome is
affected only when the test result of i is positive. A deviation to a more informative test with lower
Pr(positive|sL) can be profitable only if it induces the decision maker to choose aH upon seeing
fewer positive results - i.e., she chooses aH when there are only k−1 positive results. This never
happens. Suppose that i deviates to the most informative test, x′ = 0, and his test result is positive.
Suppose, further, that among the rest of the n− 1 persuaders, k− 2 report positive results, and
n− k+1 report negative results. Then, the posterior likelihood in this case is

Pr(H)

Pr(L)
=

(
p

p−1

)[
p+(1− p)x̃
(1− p)+ px̃

]k−2(1− p
p

)n−k+1

=

[
p+(1− p)x̃
(1− p)+ px̃

]k−2(1− p
p

)n−k

<
pd

1− pd
.

Even if i deviates to the most informative test, the decision maker’s acceptance fraction is
still k

n . This implies that a downward deviation in x̃ always strictly decreases the persuader’s
expected utility. Therefore, given that all the other persuaders choose (x̃,1), it is uniquely optimal
for persuader i to choose (x̃,1), as well.

6.6 Proof of Proposition 5

1. Recall that

x̃ =
p− (1− p)

(
pd

1−pd

) 1
k
(

p
1−p

) n−k
k

p
(

pd
1−pd

) 1
k
(

p
1−p

) n−k
k − (1− p)

.

36



When k increases,
(

pd
1−pd

) 1
k
(

p
1−p

) n−k
k strictly decreases, which means that the numerator in

the above equation strictly increases and the denominator strictly decreases. As a result, x̃ strictly
increases in k.

2. Let k1 < k2. Let x̃1 and x̃2 be the corresponding tests in the symmetric equilibria with accep-
tance fractions k1

n and k2
n , respectively. Part 1 implies that x̃1 < x̃2. Let’s compare the equilibrium

outcomes from the perspective of the decision maker. In the first equilibrium, she picks the best
action based on information from n tests with condition probabilities (x̃1,1). In the second equi-
librium, she picks the best action based on information from n tests with condition probabilities
(x̃2,1). Since x̃1 < x̃2, tests (x̃1,1) generate strictly fewer false positive outcomes than (x̃2,1),
and the posterior belief distribution induced by (x̃1,1) is a mean-preserving spread of the one in-
duced by (x̃2,1). Hence, the decision maker’s expected utility is strictly higher in the equilibrium
associated with k1.

When k = n, the decision maker chooses aH only when all test results are positive. Proposition
4 implies that U =U .

3-4. As n→ ∞, the actual fraction of positive results converges to the expected fraction, which
is equal to Pr(positive|H) = p+ x̃(1− p) when the state is H and Pr(positive|L) = 1− p+ x̃p when
the state is L. Pr(positive|H)> Pr(positive|L) if and only if x̃ < 1. Therefore, asymptotically, the
decision maker can distinguish the two states by observing the fraction of positive results if and
only if lim

n→∞
x̃α

n < 1. Recall that

x̃α
n =

p− (1− p)
(

pd
1−pd

) 1
αn
(

p
1−p

) 1−α

α

p
(

pd
1−pd

) 1
αn
(

p
1−p

) 1−α

α − (1− p)
.

When α < 1,

lim
n→∞

x̃α
n =

2p−1
p(1− p)

[(
p

1− p

) 1
α

−1

]−1

− 1− p
p

< 1.

Therefore, in the limit, the decision maker can always distinguish the two states and choose the
action that exactly matches the true state. As a result, lim

n→∞
Uα

n =U when α < 1.
When α = 1, Proposition 4 implies that Uα

n =U always. In this case,

x̃α=1
n =

p− (1− p)
(

pd
1−pd

) 1
n

p
(

pd
1−pd

) 1
n − (1− p)

, (8)

which converges to 1 when n→ ∞. Asymptotically, the decision maker cannot distinguish the two

37



states.

6.7 Proof of Proposition 6

When α < 1, part 3 of Proposition 5 implies that the decision maker learns the true state, and she
chooses aH if and only if the true state is H. Therefore, V α

n converges to 1
2 , the ex ante probability

of state H.
When α = 1, everyone chooses the x̃ as defined by equation (8), and

Pr(aH |H) = [Pr(positive|H)]n = [p+(1− p)x̃]n

=

p+(1− p) ·
p− (1− p)

(
pd

1−pd

) 1
n

p
(

pd
1−pd

) 1
n − (1− p)


n

→
(

pd

1− pd

) p−1
2p−1

as n→ ∞.

Pr(aH |L) = [Pr(positive|L)]n = [(1− p)+ px̃]n

=

1− p+ p ·
p− (1− p)

(
pd

1−pd

) 1
n

p
(

pd
1−pd

) 1
n − (1− p)


n

→
(

pd

1− pd

) −p
2p−1

as n→ ∞.

Hence,

V =
1
2
·Pr(aH |H)+

1
2
·Pr(aH |L)→

1
2

[(
pd

1− pd

) p−1
2p−1

+

(
pd

1− pd

) −p
2p−1
]
≡V α=1

∞ ,

with

∂V α=1
∞

∂ pd
=

(
pd

1−pd

) p−1
2p−1

(
1+ p

pd
−2p

)
2(1−2p) pd (1− pd)

< 0,
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lim
pd→ 1

2

V α=1
∞ = 1,

lim
pd→p

V α=1
∞ =

1
2
· p

−p
2p−1 (1− p)

1−p
2p−1 <

1
2
.

∂V α=1
∞

∂ p
=

(
pd

1−pd

) −p
2p−1

[
1+
(

pd
1−pd

)]
ln
(

pd
1−pd

)
2(2p−1)2 > 0,

lim
p→pd

V α=1
∞ =

1
2
· p

−pd
2pd−1

d (1− pd)
1−pd

2pd−1 <
1
2
,

lim
p→1

V α=1
∞ =

1
2

(
1+

1− pd

pd

)
>

1
2
.

Therefore, ∀pd ∈
(1

2 ,1
)
, there exist p s.t. p ∈ (pd, p) implies V α=1

∞ < 1
2 . Define region B

accordingly.
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