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Abstract

We define and construct a credit-implied volatility (CIV) surface from the firm-by-maturity
panel of CDS spreads. We use this framework to organize the behavior of corporate credit
markets into three stylized facts. First, CIV exhibits a steep moneyness smirk. Second, the
joint dynamics of credit spreads on all firms are captured by three interpretable factors in the
CIV surface. Third, the cross section of CDS risk premia is fully explained by exposures to
CIV surface shocks. We propose a structural model for joint asset behavior of all firms that is
characterized by stochastic volatility and severe, time-varying downside tail risk in aggregate
asset growth.
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1 Introduction

We introduce the concept of a credit-implied volatility (CIV) surface. This framework organizes

the behavior of corporate credit prices into a handful of easy-to-visualize facts. It also provides a

clear visual diagnostic of where and why candidate credit risk models fail to match data.

Like its option-implied volatility analogue, CIV is inverted from the observable CDS spread to

provide a relative measure of CDS value, after accounting for the effects of maturity, moneyness,

and the risk-free rate via the Merton (1974) model. CIV is interpretable as a measure of asset

volatility, answering the question: How much asset volatility does the Merton model require to

justify a firm’s observed credit spread, given its leverage and contract maturity? The CIV surface

provides a compact graphical summary for how the relative price of default insurance varies by time

to maturity and “moneyness,” where moneyness is defined as the distance between current asset

value and the default boundary. And as with options, CDS are available at a range of maturities for

any single reference entity, thus CIV provides a direct means for comparing CDS value along the

term structure. Yet CIV differs from option-implied volatility (OIV) in an important dimension.

Options for a single underlying equity are available at a variety of strike prices, so the OIV curve

(holding maturity fixed) also directly compares options with different moneyness for the same

underlying. In contrast, a firm’s CDS contract is available at a single “strike.” The strike price

for a credit instrument is the firm’s default boundary, which we proxy using firm leverage.1 CDS

trade at a wide range of maturities and on firms that differ greatly in their leverage. By jointly

analyzing the entire universe of CDS, we trace out the CIV surface as a function relating CIV to

firm leverage (moneyness) and to CDS maturity. And, because the “strike” price of a CDS is far

deeper out-of-the-money than a firm’s equity puts, CIV gives insight into regions of the risk-neutral

asset distribution that are impossible to infer from options prices.

Three main stylized facts emerge from our analysis and are organized around an understanding

of the empirical CIV surface.2 First, we identify a CIV moneyness “smirk.” That is, CIV is

steeply decreasing in firm leverage. This may be surprising at first glance. After all, CDS spreads

are naturally increasing in leverage—spreads of very low leverage firms are nearly zero and rise
1Merton model spreads are homogenous of degree one in total assets and face value of debt. Spreads can therefore

be modeled by normalizing total assets to unity and similarly normalizing the contract strike price (the face value of
debt) by total assets. The resulting normalized strike price is the leverage ratio.

2This mirrors the option literature’s orientation around empirical regularities in option-implied volatilities.
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monotonically with leverage, as leverage directly increases probability of default all else equal. But

the downward sloping CIV smirk tells us that firms with low leverage in fact have unusually high

CDS spreads in relative terms. That is, disproportionately high asset volatility is necessary to

generate a high enough probability of default, and thereby justify the observed spread, given how

little debt these firms carry. The CIV moneyness smirk is most steeply negative for CDS with one

year to maturity, and gradually flattens out over longer maturities up to ten years. Said another

way, the term structure of CIV is steeply negative for out-of-the-money (low leverage) credits, and

is slightly upward sloping for at-the-money (high leverage) firms.

The above facts are about the unconditional average CIV surface. Because the surface is

extracted from price data, it can be computed on any individual day. Our second stylized fact

uses time variation in the surface to succinctly summarize the dynamics of CDS prices. CIV across

all firms and maturities demonstrates large common (and persistent) fluctuations over time. In

recessions, the overall level of the surface rises as default risk increases. At the same time, the

moneyness smirk flattens, as relative insurance prices for highly levered credits rise faster than

those of low leverage firms. This flattening is more pronounced for long maturity CDS, introducing

variation in the slope of the CIV term structure, which becomes more negative in downturns.

Fluctuations in moneyness and term structure slopes twist and untwist the surface over time. This

twisting behavior indicates that more than one factor is necessary to describe CIV surface dynamics.

Principal components analysis shows that three factors provide a nearly perfect description of the

surface (R2 = 99%). The estimated factors possess clear interpretations; the first PC lines up with

the CIV surface level, the second PC with the term structure slope, and the third PC with the

moneyness slope.

Our third stylized fact moves from studying credit price levels to analyzing credit risk premia.

CDS Sharpe ratios line up monotonically in the leverage and maturity dimensions. Holding matu-

rity fixed, Sharpe ratios are highest for low leverage CDS and gradually decline as leverage rises.

Holding moneyness fixed, they are highest for one-year CDS and decline with maturity. The CIV

surface plays a fundamental role in understanding this pattern of risk compensation. Differences in

average CDS returns are nearly perfectly explained by heterogeneity in their exposures to the three

common factors in the CIV surface. We show how the credit risk premium can be divided into two

components. One is a standard premium arising from the CDS’s exposure to overall asset growth
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in the economy. The other is a variance risk premium earned from the embedded put option that

makes CDS a natural hedge against volatility shocks. Empirically we find that the majority of the

credit risk premium is compensation for bearing volatility risk.

What gives rise to the CIV moneyness smirk? There are two natural candidate explanations.

The first is firm heterogeneity—firms with different leverage differ on other dimensions as well.

Most importantly, they may have riskier assets, which would be reflected in higher CIV. While

there is some evidence that low leverage firms are riskier, this is not the primary explanation. We

find that the CIV smirk is qualitatively unchanged after controlling for other firm observables, such

as size, asset volatility, credit rating, and industry.

If firm heterogeneity is not the main driver of the CIV smirk, the most likely alternative is

that firm-level asset growth is heavy-tailed. It is well known from the options literature that

an implied volatility smirk (where implied volatilities are calculated under the Merton model’s

normality assumption) arises when the true distribution is left-skewed and/or leptokurtic. This

fact, coupled with the fact that CIV of all firms move in unison (via the three factors mentioned

above), raises the intriguing possibility that a few aggregate state variables are simultaneously

driving the asset growth distributions of all individual firms in the economy.

We explore this possibility in a structural model for the joint behavior of individual firms. We

propose a parsimonious specification with the following ingredients. First, we include an aggregate

asset growth process that is subject to stochastic volatility and jumps. Having at least two state

variables that mean revert at different speeds (such as one volatility process and one jump intensity

process) allows our model to match the term structure dynamics of CDS. Furthermore, jumps

incorporate severe skewness and kurtosis needed to match the steepness of the moneyness smirk.

Next, to match the tight comovement of firms’ CDS spreads, asset growth processes for individual

firms are linked together in two ways. They all have exposure to aggregate growth (as in the

CAPM) so that firms inherit the higher moment dynamics of the aggregate asset. We also allow

idiosyncratic asset growth to have higher moment dynamics that are correlated with the aggregate

growth distribution, a feature strongly suggested by the data.3 From here, we derive CDS spreads

in the model using the orignal Merton (1974) assumption that debt is a put option on the firm’s
3Kelly and Jiang (2014); Kelly, Lustig and Van Nieuwerburgh (2013); Herskovic et al. (2015); Connor, Korajczyk

and Linton (2006) show that firm-level idiosyncratic volatilities and tail risks strongly correlate with aggregate market
risks.
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assets, where the strike price equals the firm’s debt value and default occurs only at maturity. This

intentionally oversimplified contract structure provides a close quantitative match of the empirical

CIV surface. In particular, cross-sectional heterogeneity and time series dynamics in credit spreads

are driven only by firm leverage, CDS maturity, and exposure to a few aggregate state variables.

Our estimates point to the jump process as the single most important model ingredient for

matching credit spreads. Furthermore, estimated jump parameters amount to a rare disaster spec-

ification. Aggregate jumps arrive on average once every 116 years and when they arrive they are

cataclysmic, with an average log jump size of −71%. This is perhaps unsurprising given the basic

shape of the CIV moneyness smirk. Effective “strike” prices for CDS are much further out-of-the-

money than the deepest out-of-the-money equity put. In order for low leverage firms to experience

a default, nearly their entire asset value would need to be wiped out. Yet we see that the CIV

smirk steepens in the low end of the leverage support, illustrating substantial mass in this left tail

of the risk-neutral asset growth distribution. The estimated model formalizes the intuition that

large crash risk is necessary to match the high CIV values observed for firms with leverage below

20%.

In an extension, we study CIV extracted from corporate bonds rather than CDS. Our main

analysis focuses on CDS because they are standardized contracts, have fixed maturity structure,

avoid issues of optionality/callability, and tend to be less subject to illiquidity concerns. However,

CIV from corporate bonds share nearly identical patterns as those in CDS, so none of our docu-

mented patterns are isolated to the CDS market. In a second extension, we construct and analyze

the sovereign CIV surface from a panel of 24 countries. Sovereign CIV also demonstrates the same

qualitative patterns as corporate CIV.

1.1 Contributions and Literature Review

Our paper is related to several lines of research in the empirical credit risk literature. At the

broadest level, our work continues in the Merton (1974) tradition of using option pricing machinery

for understanding the behavior of credit claims. Previous work estimates asset volatility from

bonds to quantify default risk (e.g., Vassalou and Xing, 2004). We offer the new insight that a

complete surface of credit-implied volatility may be extracted from CDS on diverse firms and across

maturities. This allows a credit analyst to plainly visualize and interpret the drivers of default risk
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that join together credit price behavior throughout the economy.

Next, our statistical factor decomposition of the CIV surface shows that surface dynamics are

fully captured with a small number of common factors.4 Similar decompositions of the S&P 500

option-implied volatility surface have been studied by Cont, Da Fonseca et al. (2002) and Andersen,

Fusari and Todorov (2015). Andersen, Fusari and Todorov (2015) use statistical OIV factors to

draw insights into option price dynamics and use this to develop a significantly improved structural

specification. In the same vein, our statistical analysis of CIV patterns lends new perspective on

the structural drivers of corporate credit risk. For a model to describe the joint behavior of CDS

for all firms and maturities, it requires at a minimum the following features. First, because CIVs

of individual firms demonstrate minimal idiosyncratic variation, firms’ asset distributions must be

primarily driven by aggregate state variables.5 Second, the asset growth process must incorporate

heavy-tailed shocks in order to generate a moneyness smirk. We rely on stochastic volatility and

jumps in aggregate asset growth to achieve this.6

Non-Gaussian models have proven useful for understanding spreads because pure Gaussian

risk is incapable of generating large enough credit spreads at short maturities and for highly rated

firms—this is the so-called “credit spread puzzle” of Jones, Mason and Rosenfeld (1984) and Huang

and Huang (2012). The traditional puzzle can be equivalently restated as short maturity and highly

rated debt have abnormally high CIV. Our CIV surface, however, offers a more complete perspective

on the credit spread puzzle by providing a global map of relative credit prices. Steep differences

in relative credit prices do not appear just at very short maturities or just for AA credits, but

are prevalent throughout the maturity-moneyness plane. We also refine the traditional facts by

showing that leverage, as opposed to rating or other notions of credit quality, most accurately
4Collin-Dufresne, Goldstein and Martin (2001) document a factor structure in residuals from a regression of bond

spreads onto theoretically motivated determinants of spreads, but find this factor unrelated to commonly studied
macro and financial factors. In contrast, the factors we document possess clear economic meaning associated with
overall credit conditions and differences in CIV across maturity and moneyness.

5Previous credit risk models along these lines include Coval, Jurek and Stafford (2009) and Cremers, Driessen and
Maenhout (2008) who jointly model aggregate and idiosyncratic jumps in asset value. Ericsson et al. (2009) propose
a related reduced form model with distinct aggregate and idiosyncratic default intensity processes. Christoffersen,
Fournier and Jacobs (2013) and Kelly, Lustig and Van Nieuwerburgh (2016) study related models for pricing the
cross section of options.

6Several papers have investigated the usefulness of standard option pricing models for modeling credit risk. Ex-
amples of structural models with jumps include Mason and Bhattacharya (1981); Zhou (2001); Delianedis and Geske
(2001); Hilberink and Rogers (2002); Cremers, Driessen and Maenhout (2008); Chen and Kou (2009); Huang and
Huang (2012). Huang (2005) proposes a model with stochastic asset growth volatility and Huang and Zhou (2008)
argue that empirical evidence supports a role for stochastic asset volatility, though they do not model this.
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captures differences in relative credit costs across firms. Perhaps our most novel enrichment of

traditional credit spread puzzle facts is understanding state dependence in relative credit prices.

We show that at least two state variables are needed to match persistent fluctuations in the level

and curvature of the CIV surface, and we show that these factors are interpretable as time-varying

volatility and time-varying crash risk in aggregate asset growth.7

Lastly and most broadly, we contribute to a large literature examining the empirical determi-

nants of credit spreads. Most of the literature takes one of two approaches to empirical analysis.

The first calibrates structural models to “representative” credit securities in each rating category,

seeking to match, for example, unconditional average credit spreads for a given rating, rather than

matching spreads firm-by-firm and month-by-month. A benefit of the calibration approach is that

models can be evaluated based on their ability to match observed spreads while respecting historical

default rates. Examples of this approach include Cremers et al. (2008); Chen, Collin-Dufresne and

Goldstein (2009); Huang and Huang (2012). A shortcoming is that credit risk dynamics cannot be

directly analyze with this approach due to the inherent infrequency of historical defaults.

Our approach differs in that we target CDS spreads of all firms, all maturities, and in every time

period.8 Despite the strenuous demands this approach puts on our model, we show that restrictions

implied by our model appear well satisfied in the data. Rather than separately estimating the

physical asset growth distribution and risk premia, we directly estimate the risk-neutral asset

growth distribution, and then compare estimated risk-neutral moments to physical moments ex

post. In particular, we investigate risk premia by studying average realized CDS returns, and leave

a detailed investigation of model-based risk premia to future work.9

7Our focus on a small number of common aggregate risk factors and the model’s prediction of economy-wide high
credit spreads during risky episodes like the financial crisis capture the countercyclical spread patterns emphasized in
macroeconomic models of credit risk such as Chen, Collin-Dufresne and Goldstein (2009), Chen (2010), and Bhamra,
Kuehn and Strebulaev (2010). Our paper is also related to Chen et al. (2015) who study the interaction of default and
liquidity risks over the business cycle, to Seo and Wachter (2015) who study the value of CDX tranches though the
lens of a rare disaster endowment economy, and to Engle and Siriwardane (2015) who study the interaction between
volatility and leverage in a Merton model.

8Huang and Zhou (2008) and Feldhütter and Schaefer (2014) also target match the cross section and time series
behavior of credit spreads. Neither paper models the joint behavior of firms in the panel. Feldhütter and Schaefer
(2014) argue that individual firm calibration in large part resolves the credit spread puzzle, and resurrects the Merton
model as a viable descriptor of credit spreads. While we take a similarly disaggregated approach, the stark moneyness
skew and CIV dynamics that we find immediately illustrate failures of the Merton model in the same manner that
option-implied volatility patterns reject the Black-Scholes model.

9This approach is motivated in part by the great difficulty of accurately estimating physical jumps and stochastic
volatility from realized asset growth data, which is observed infrequently and with error (due to reliance, for example,
on quarterly balance sheet information). Comparing risk-neutral estimates to coarse measures of physical moments
confirms that the risk-neutral model does not unreasonably deviate from physical data.
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Our model produces a highly accurate match of the CIV surface evolution, despite abstracting

from a number of credit market features studied in previous work.10 Our model’s close fit of

spread data, despite leaving aside more subtle nuances of credit markets and credit instruments, is

consistent with the findings of Culp, Nozawa and Veronesi (2014).11 In robustness tests we study

how CIV is affected by mean reversion in leverage, as emphasized by Collin-Dufresne and Goldstein

(2001), and find that this cannot account for the shape of the CIV surface.

Our work is also related to the second common approach in empirical analysis of spreads, which

abandons the structural setting for linear panel regression. This method has the benefit of targeting

the full cross section and time series of spreads and its flexibility has proven useful for uncovering

problematic assumptions of structural models.12 In this area, our paper is most closely related to

Ericsson, Jacobs and Oviedo (2009) who emphasize the role of traditional theoretical determinants

of default risk, especially volatility and leverage. These studies, which most frequently regress

spreads onto firm-level characteristics, differ from our emphasis on common aggregate determi-

nants of firm-level credit spreads. Perhaps most interestingly, we show that our structural model

achieves explanatory power competitive with regression specifications while maintaining the rigor

and parsimony of structural model restrictions.

In the remainder of the paper, we first present our method for constructing CIV (Section 2) and

describe the data we use for our analysis (Section 3). Next, we analyze the empirical properties of

the CIV surface and credit risk premia (Section 4). We specify, estimate, and report results for our

cross-sectional CDS pricing model in Section 5. Finally, we analyze extensions to bond markets and

sovereign CDS markets in Section 6, and analyze the behavior of CIV in sector and credit rating
10Examples of such features include stochastic interest rates (e.g., Shimko and Tejima (1993)), endogenous default

(e.g., Leland (2006)), debt covenants (e.g., Black and Cox (1976), taxes (e.g., Elton et al. (2001)), coupon structure
(e.g., Bielecki and Rutkowski (2002)), maturity structure (e.g., Moody’s KMV), recovery rates (e.g., Altman, Resti
and Sironi (2004)), and others.

11These authors show that “pseudo-bonds,” constructed from equity options and risk free debt to mimic corporate
credit, can match many empirical regularities in corporate credit markets despite their lack of direct credit risk
exposure, suggesting that first order behavior of debt prices is unlikely to be driven by contractual or trading
environment features that are unique to corporate credit. Other work examining the link between a firm’s option
and credit prices includes Hull, Nelken and White (2004b); Cremers et al. (2008); Carr and Wu (2011); Cao, Yu and
Zhong (2010); Wang, Zhou and Zhou (2013).

12Examples of this approach include Collin-Dufresne and Goldstein (2001) who emphasize local market imbalances
as drivers of spreads, Elton et al. (2001) who document the role of taxes and risk premia, Campbell and Taksler
(2003) who illustrate the role of idiosyncratic volatility, Longstaff, Mithal and Neis (2005) who study the role of
liquidity, Zhang, Zhou and Zhu (2009) who document the role of realized volatility and jump risks, Cremers et al.
(2008) who illustrate the role of option-implied volatility and jump risks, and Siriwardane (2015) who documents the
role of financial intermediary capital. Doshi et al. (2013) propose a hybrid approach, embedding typical regression
covariates in a no-arbitrage credit pricing model.
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subsamples.

2 Credit Implied Volatility

In this section we describe our construction of credit-implied volatility (CIV) and document its

behavior in the data. CIV measures the asset volatility implied from CDS spreads via the Mer-

ton model formula for credit spreads. By starting from this simple baseline model, we can use

the model’s implied volatilities to visualize the relative expensiveness of insurance against credit

defaults, after accounting for the effects of maturity, moneyness, and the risk-free rate. Our CIV

construction is analogous to that of Black-Scholes implied volatilities for options, with modifications

for the credit setting and the interim swap payments of CDS contracts.

2.1 Definition of Credit Implied Volatility

In the seminal Merton (1974) theoretical framework, firm debt is equivalent to a portfolio of a risk

free bond and a short put on the firm’s assets. Debt takes an especially simple form. At maturity

T , debtholders receive either the full face value, D, or the remaining asset value AT if the firm

defaults (i.e., if AT < D).

CIV is derived from the valuation formula for the put component of the firm’s debt. As the

name suggests, a CDS contract is not structured as a bond but as a swap with intermittent spread

payments. We use a common approximation that equates the value of the put option implicit in

a firm’s debt to the capitalized value of future CDS spread payments following, for example, Hull,

Nelken and White (2004a) and Friewald, Wagner and Zechner (2014). In particular, CDS spreads

in the Merton model are given by the function

s (σA, L, T − t, r) = − 1
T − t

ln
(
N (d2) + N (−d1)

L

)
(1)

where the firm’s leverage is defined as L = A/De−r(T−t), its instantaneous asset volatility is σA, r

is the interest rate, and N (·) is the cumulative normal distribution with

d1 = − lnL
σA
√
T − t

+ 1
2σA
√
T − t, d2 = d1 − σA

√
T − t.
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Formula (1) adapts the Merton bond price formula to the swap structure of CDS. The spread

is monotonically increasing in the volatility of underlying assets, σA, so σA can be numerically

inverted from the observed CDS spread as long as T − t, r, and L are known. We define this inverse

as credit-implied volatility, CIV(s̃, L, T − t, r) = s−1(s̃, L, T − t, r), where s̃ is the observed credit

spread.

3 Data

We collect month-end CDS spreads and credit ratings from the Markit database from January 2002

to December 2014. We study CDS with maturities of 1, 3, 5, 7, and 10 years.13 We match CDS

spreads to CRSP/Computstat monthly equity market data and quarterly accounting data by the

reference entity’s cusip, and we lag accounting data by 3 months. We apply standard filters from

the literature that limit the influence of contracts that suffer from poor liquidity or are in financial

distress.14 We construct monthly observations based on the last available daily data each month for

each company. The final unbalanced panel consists of a 156 month time series and a cross-section

of 530 companies.15

The two central CDS characteristics in our analysis are firm leverage and CDS contract maturity.

We define leverage as

L = Book debt
Market equity + Book debt

where book debt value is the sum of short-term and long-term debt in Compustat (variables dlcq

and dlttq), and market equity value is shares outstanding times price per share in CRSP.16 Time to
13We use contracts with the most common default definition at each point in time. This is the MR clause from

January 1, 2002 to March 15, 2009, the XR clause from March 15, 2009 to September 22, 2014, and the XR14 clause
from September 23, 2014 onward.

14We exclude the two lowest ratings bins in our data (B and CCC), spread observations reported by fewer than
three dealers, spreads greater than 10%, and firms with fewer than 12 months of non-missing spreads. This eliminates
approximately two percent of our observations.

15Much of the previous work on credit risk studies bond data. We study bond-based CIV in Section 6 and find very
similar patterns to those for CDS. We prefer to study CDS when constructing CIV because CDS are standardized
contracts with essentially constant maturity and no call premiums. Also, the credit spread calculated from a bond
price depends on the bond’s liquidity and involves an assumption about the benchmark risk-free rate, and these issues
are more or less avoided when studying CDS.

16Unlike equity options in which the strike price is defined in the contract, the strike price in the Merton model and
in the model of Section 5 is less well defined. Our chosen definition of the default boundary is the level of total balance
sheet debt, but robustness analysis suggests that our findings are not sensitive to this choice. For example, instead of
using total debt, we obtained similar quantitative results when we instead use total liabilities as the default boundary.
We also find that the CIV smirk is similar within industry. To the extent that mismeasurement in moneyness has
an industry element (e.g. off-balance-sheet debt tends to be prominent among financials and operating leases among
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Figure 1: Summary Statistics
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Note. Statistics for merged sample of 530 firms from 2002 to 2014.

maturity is an observable contract feature. Risk-free rate data are from the monthly term structure

of constant maturity Treasury bonds in the H.15 data set of the Federal Reserve Board.17 With

these inputs, we numerically invert CIV from observed spreads via the Merton model CDS spread

formula in (1).

Figure 1 plots summary statistics for our sample. The number of firms available each year is

approximately 350, ranging from just over 250 in 2002 to nearly 450 in 2005. Credit ratings range

from AA to BB, with most observations coming from intermediate credits (69.3% for A and BBB

firms). The lower left panel shows the distribution of observations across industries, and the lower

right panel shows the distribution by leverage ratio. Few firms have leverage below 10% or above

90%.
consumer non-durables), our industry-level analysis allays some fears that debt mismeasurement drives the smirk.
Vassalou and Xing (2004) provide an alternative method to estimate firm debt (along with firm asset volatility)

using firm equity and equity volatility. We choose to instead estimate leverage from firms’ balance sheets in the
interest of transparency and ease of implementation.

17The risk-free discount function can be extracted also from Libor and interest rate swaps. However, Duffie (1999)
shows that the risk-free discount function plays a negligible role in pricing credit default swap spreads. Therefore,
the choice of measurement has little impact on pricing errors.
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4 The Credit Implied Volatility Surface

The credit-implied volatility surface is a function that maps a CDS spread into asset volatility units

given the underlying firm’s leverage, the CDS contract maturity, and assumptions of the Merton

model. We first describe the unconditional properties of the surface and then document its dynamic

behavior.

4.1 Unconditional Properties of CIV

Two basic features summarize the unconditional average shape of the CIV surface. The first we

refer to as the CIV moneyness smirk. It describes average CIV as a function of the leverage of

the reference firm, holding CDS maturity fixed. The standard notion of moneyness in the option

literature is the ratio of the strike price to the underlying price. In the Merton model, default occurs

when assets fall below the face value of its debt, so the firm’s leverage ratio describes “moneyness” of

the put option implicit in its debt. For highly levered firms, the ratio of debt to assets is close to one

so there is little buffer between asset value and the default boundary. In this case, a CDS is nearly

“at-the-money” (ATM). On the other hand, a firm with leverage near zero would need to suffer

catastrophic deterioration of its assets before reaching default, thus its debt is “out-of-the-money”

(OTM).

Figure 2 shows scattergrams of CIV versus leverage pooling all firm-month observations and

broken out by CDS contract maturity. In each panel we fit a non-parametric curve to the CIV-

leverage relationship.18 Asset volatilities implied from CDS possess a clear smirk pattern with

respect to moneyness. The figures shows that, from the point of view of the Merton model, one

needs to assume disproportionately high values of asset volatility in order to match the CDS prices

for firms with low leverage. The cost of default insurance implicit in CDS spreads is thus relatively

more expensive for deeper OTM credits. This is the credit risk analogue of the implied volatility

smirk in equity options, which says that the Black-Scholes model requires relatively high values of

equity return volatility in order to match the prices of deep out-of-the-money puts, all else equal.

The second feature of the surface is the CIV term structure, which describes the average CIV
18The non-parametric curve represents the local average value of CIV at each value of leverage, and is calculated

with Matlab’s smooth.m function using the robust weighted least squares (“rlowess”) option and span parameter of
0.5.
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Figure 2: Credit Implied Volatility Smirk
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Note. Pooled scatter plots of monthly CIV versus firm leverage. The gray line is a fitted non-parametric curve. The
lower right panel overlays the fitted CIV curve at all maturities to trace out the CIV surface.

pattern across maturities, holding leverage fixed. The lower right panel of Figure 2 summarizes

the behavior of CIV in the term structure dimension. It overlays the fitted CIV smirk for each

maturity. The smirk is steepest for one-year CDS, and monotonically flattens as the contract

maturity lengthens. On average, the CIV term structure is therefore steeply downward sloping for

the deepest OTM (low leverage) CDS, and is slightly upward sloping for ATM (high leverage) CDS.

The CIV surface is a more complicated object than the option-implied volatility surface. Options

contracts at multiple maturities and strike prices are available for any single underlying firm,

allowing one to trace out the volatility surface holding the underlying firm fixed. For CDS, however,

there are multiple maturities but only one “strike price” per firm. The scatter plots in Figure 2

require deeper investigation because they pool together observations for all firms, and therefore mix
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many dimensions of heterogeneity such as industry, credit rating, and fundamental riskiness. They

are also heterogeneous in the time dimension, pooling observations over all periods so that data

points from the financial crisis are not differentiated from observations during the great moderation.

We find that the basic shape of the CIV surface is largely unchanged after exhaustively control-

ling for non-leverage dimensions of CDS heterogeneity. To establish this, we construct an adjusted

version of CIV that controls for heterogeneity across observations except firm leverage. We regress

CIV onto firm-level characteristics that include credit rating (six indicator variables), sector (ten

indicator variables), size (log total assets), and asset riskiness (monthly realized volatility, beta,

skewness, kurtosis of firms’ total asset returns). Appendix A describes our construction of daily

realized asset returns that we use to calculate asset riskiness. We include month fixed effects to

absorb time variation in CIV that is common across firms (due to, for example, fluctuations in

macro volatility). Finally, we control for maturity effects by running separate regressions for each

maturity. These regressions take the form

CIVi,τ,t = δ0,τ +δ′1,τ [Size,Beta,Vol,Skew,Kurt]′i,t+Rating FE+Sector FE+Month FE+εi,τ,t, (2)

where subscript i denotes the firm, τ denotes the CDS contract maturity, and t denotes the month of

an observation. We define the final characteristic-adjusted CIV measure as the regression residual,

ĈIVi,τ,t = εi,τ,t.

ĈIV isolates the behavior of CIV that is uniquely associated with firm leverage, stripping out the

influence of other observables.19

Figure 3 shows scatter plots of ĈIV versus firm leverage. The ĈIV scatter possesses the same

basic smirk shape as the raw CIV scatter in Figure 2, indicating that the comparatively high price

for default insurance of low leverage firms does not simply reflect differences in the size, industry,

equity risk, or credit ratings of low leverage firms. Nor does it appear that the smirk arises from

mixing observations at different points in the business or credit cycle, based on our inclusion of

month fixed effects.20

19We present detailed results from these regressions, including coefficients and R2, in Table 2.
20We have also constructed ĈIV controlling for measures of realized equity riskiness, rather than asset riskiness. In
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Figure 3: Credit Implied Volatility Smirk (Heterogeneity-adjusted)
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Note. Pooled scatter plots of monthly ĈIV versus firm leverage. The gray line is a fitted non-parametric curve. The
lower right panel overlays the fitted ĈIV curve at all maturities to trace out the ĈIV surface.

Table 1 compares the shapes of the CIV and ĈIV smirks by reporting differences in implied

asset volatility at different values of leverage. The first row shows the difference in CIV for firms

with 10% leverage and firms with 90% leverage—this describes the overall magnitude of the smirk

slope. The raw CIV smirk is two to three times as steep as the that for ĈIV. This row indicates

that at least some portion of the raw CIV moneyness slope is attributable to other dimensions of

firm heterogeneity that correlate with leverage.21

A closer look shows that the primary difference between the CIV and ĈIV in Figures 2 and 3

comes from the fact that the ĈIV smirk has more curvature, as shown in the second and third rows

general, equity risk has slighly less explanatory power for CIV than asset risk, as shown in the regressions of Table
2. We opt for the more conservative ĈIV construction using asset risk measures.

21This is consistent, for example, with Choi and Richardson (forthcoming), who show that high leverage firms have
lower average asset volatility, and with Schwert and Strebulaev (2014), who show that high leverage firms have lower
asset betas.
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Table 1: Moneyness Slope

1 Year 3 Year 5 Year 7 Year 10 Year

Leverage CIV ĈIV CIV ĈIV CIV ĈIV CIV ĈIV CIV ĈIV
10%− 90% 63.3 25.9 41.4 15.5 33.0 11.9 27.7 9.9 22.1 7.8
10%− 50% 39.4 22.4 24.5 14.0 18.6 11.0 15.1 9.3 11.5 7.5
50%− 90% 23.9 3.4 16.9 1.5 14.4 0.8 12.6 0.6 10.6 0.3

Note. Comparison of the slope of fitted non-parametric smirk curves for CIV and ĈIV. The first row reports the
difference in the fitted value of average CIV for 10% leverage firms versus that for 90% leverage firms, and likewise for
ĈIV. The second and third rows describe curvature of the smirk by separately calculating its slope for low leverage
firms (10% − 50%) and high leverage firms (50% − 90%). Slopes are separately reported for each maturity.

of Table 1. The ĈIV smirk slope is almost entirely concentrated among low leverage firms (between

10% and 50% leverage), and looks similar to the CIV curve in this region of the leverage support. In

contrast, there is little difference in ĈIV slope between medium and high leverage firms. The table

suggests that firm heterogeneity primarily drives differences in CDS pricing among high leverage

firms, but that the relative overpricing of deep OTM CDS, those for firms with below average

leverage, is a robust feature of the data that does not appear explained by firm heterogeneity other

than through leverage. It is likely that the remaining CIV smirk pattern is due to non-normalities,

such as stochastic volatility or disaster risk, in the firm asset growth distribution. We investigate

this possibility in the model of Section 5.

Note that correlation between leverage and the covariates in (2) can mean that the association

between ĈIV and leverage is understated. We have also considered a version of ĈIV in which firm

characteristics are first orthogonalized with respect to leverage before being included in (2). As one

would expect, the resulting ĈIV smirk is quantitatively steeper than what we report here. Section

5 explores CIV heterogeneity in deeper detail and provides a more precise model-based account for

how much of the smirk is driven by firm heterogeneity.

4.2 Dynamic Properties of CIV

Figure 4 plots snapshots of the CIV surface at specific points in time. The left panel shows the CIV

surface as of December 29, 2006, which corresponds to the lowest month-end value of VIX during

our sample. The right panel shows the surface on March 31, 2009, at the height of the financial

crisis. During the crisis, asset implied volatility for ATM (high leverage) credits is higher and the
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Figure 4: CIV Smirk Snapshots
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Note. Scatter plots of CIV (one-year and ten-year maturities) versus firm leverage at two points in time. The left
panel corresponds to December 29, 2006 and the right panel to March 31, 2009. Lines are non-parametric curves
fitted to CIV for each maturity.

moneyness slope is flatter than in the calm markets of 2006. While the curves are qualitatively

similar in both figures, they suggest a role for time variation in the CIV surface. This subsection

investigates dynamic properties of the surface in detail.

4.2.1 Leverage-sorted Portfolios

Firm-level CDS comprise a rather severely unbalanced panel, so it is difficult to track the evolution

of the CIV surface through time with a firm-level panel. Instead, we create and track portfolios

of CDS that are designed to have fixed leverage, which proves especially convenient for visualizing

fluctuations in the CIV surface.

We construct portfolio-level CIV each month by fitting a non-parametric curve through the

scatter of CIV against leverage, just as in Figure 2, using only data for that month. CIV for

constant-leverage portfolios is defined as the interpolated value of this curve at grid points of 20%,

40%, 60%, and 80% leverage. Portfolio-level CIV values from non-parametric curve fitting are local

averages of CIV at each leverage grid point, where the weight on each firm’s CIV is decreasing

in the distance between the grid point and the firm’s leverage.22 We fit separate curves at each
22As in Figures 2, 3, and 4, the non-parametric curve is calculated with the matlab smooth.m function using the

robust weighted least squares (“rlowess”) option and span parameter of 0.5, which defines the exact weighting scheme
for local averages at each grid point/portfolio.
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Figure 5: Credit Implied Volatility Time Series (20 Portfolios)
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Note. CIV for 20 constant-leverage and constant-maturity portfolios. Colors distinguish the portfolio moneyness
and portfolio maturity is printed beside each line.

maturity of 1, 3, 5, 7, and 10 years to produce a panel of monthly CIV for 20 constant-leverage

and constant-maturity CDS portfolios.

The portfolio CIV series are plotted in Figure 5. All portfolios share substantial common

fluctuations that manifest as shifts in the level of the surface. To summarize the evolution of

the shape of the CIV surface, we plot the moneyness smirk and term structure slope over time.

Steepness of the moneyness smirk each month is defined as the difference in CIV for 20% and 80%

leverage portfolios. The left panel of Figure 6 plots time variation in smirk steepness for each

maturity, and highlights the stability of the smirk pattern over time. In every month of our sample

the moneyness slope is positive at every maturity.

Furthermore, the smirk is monotonically steeper for shorter maturity contracts, a relationship

that again holds in each individual month. For one-year CDS, the smirk slope shows little time

variation other than a slight downward trend. For other maturities, the smirk flattens during down-

turns, especially during the financial crisis. That is, while CIV rises for all portfolios during these
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Figure 6: Moneyness and Term Structure Dynamics
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Note. Slope of the moneyness smirk (left panel) is defined as the difference in CIV for the 20% and 80% leverage
portfolios and is plotted separately for each maturity. The term structure slope is defined as the difference in CIV
for ten-year and one-year maturity portfolios and is plotted separately for each point on the leverage grid.

risky episodes (as seen from Figure 5), the relative price of CDS rises fastest for high leverage firms.

Note, however, that time variation in the moneyness smirk is typically smaller than differences in

the unconditional average smirk across maturities.

The right panel of Figure 6 shows dynamics in the CIV term structure slope, which is defined as

the difference in the ten-year and one-year CIV, holding leverage fixed. In every month, the term

structure of CIV is steeply downward sloping for deep OTM CDS, and is mildly upward sloping

for ATM CDS, again showing that the basic shape of the unconditional surface holds at each point

in time. And while there is clear cyclical variation in the term structure slope, this variation tends

to be smaller than differences in the unconditional slope across leverage groups.

4.2.2 CIV Factor Structure

The time series patterns in Figures 5 and 6 suggest a high degree of commonality in CIV fluctuations

for portfolios sorted by leverage and maturity. We analyze the factor structure of the CIV surface

using principal component (PC) analysis. We extract PCs from the panel of 156×20 month-by-

portfolio CIV observations. The five leading components explain 87.4%, 9.6%, 1.8%, 0.4%, and

0.3% of the panel variation in CIV, respectively, leading us to focus our analysis on the first
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Figure 7: Principal Components of CIV Surface
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Note. Principal component analysis of CIV for 20 constant-leverage and constant-maturity portfolios. Loadings for
the first three factors are shown on the left, and the first three factor time series are shown on the right.

three PCs. The left side of Figure 7 plots the loadings of the 20 leverage/maturity portfolios on

each component. Loadings on the first PC are uniformly positive across portfolios, giving it the

interpretation of a CIV level factor. Indeed, the top right panel shows that the first component

shares a correlation of 99.8% with the average CIV across all portfolios. It also shows that the first

component is closely related to the VIX index, with the two sharing a correlation of 81.2%.

Portfolio loadings on the second component align with portfolio maturity, indicating that this

component is a term structure factor. It shares a correlation of 93.2% with the term structure

slope (one-year CIV minus ten-year CIV, averaged across leverage groups). Loadings on the third
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component line up with portfolio leverage, giving it the interpretation of a moneyness factor.

When we compare this factor to the moneyness smirk slope (CIV at 20% leverage minus CIV at

80% leverage, averaged over maturities), we find they share a correlation of 56.9%.

Collectively, Figures 2 through 7 suggest that the vast majority of heterogeneity among CIV

observations, both across individual CDS and over time, is associated with the leverage of the

reference entity, the maturity of the CDS contract, and a small number of common time series

factors (the most important of which behaves like aggregate market volatility).

Table 2 reports regressions that formalize this statement (using the firm panel as opposed to

portfolios). In all columns, the dependent variable is CIVi,τ,t, where subscripts i, τ, and t again

denote reference firm, contract maturity, and month, respectively. The specification reported in

the first column is

CIVi,τ,t = δ0 + δ1Leveragei,t + εi,τ,t, (3)

and summarizes the extent to which variation in CIV is explained by leverage alone. Leverage

is highly significant and explains 48.6% of the panel variation in CIV. The coefficient estimate

of −0.397 is interpretable as the average slope of the CIV smirk—a change in leverage from zero

to 100% is associated with a decrease in CIV of 40% per year. This is of course pooled over all

observations and ignores non-linearities in the empirical smirk.

The second column modifies the previous regression to include an additional term equal to

δ3,iVIXt. This controls for CIV fluctuations that arise from a common aggregate factor in CDS

prices, in this case proxied by the VIX index. Rather than using month fixed effects, we choose this

specification because it accommodates heterogeneity in firm exposure to the common factor via the

δ3,i coefficient and is motivated by the structural model we propose in Section 5. Accounting for a

single common factor in CIV raises the regression R2 to 67.5%.

We next modify the regression to include the effects of contract maturity,

CIVi,τ,t = δ0 + δ1Leveragei,t + Maturity FE + δ′2Maturity FE× Leveragei,t + εi,τ,t.

Maturity fixed effects capture differences in the overall level of CIV across the term structure, and

interacting leverage with maturity dummies captures differences in the moneyness slope at different
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Table 2: Determinants of CIV

(1) (2) (3) (4) (5) (6)

Lev. -0.397* -0.402* -0.201* -0.206* -0.130* -0.191*

1Y 0.311* 0.311* 0.290* 0.311*
3Y 0.102* 0.101* 0.092* 0.101*
5Y 0.050* 0.049* 0.043* 0.049*
7Y 0.022* 0.022* 0.020* 0.022*

1Y×Lev -0.529* -0.530* -0.497* -0.530*
3Y×Lev -0.246* -0.245* -0.231* -0.246*
5Y×Lev -0.138* -0.137* -0.129* -0.137*
7Y×Lev -0.070* -0.070* -0.067* -0.070*

Size -0.659* -0.729*
Vol. 0.262* 0.128*
Skew. -0.187* -0.141*
Kurt. -0.028* -0.023*
Beta -0.025 0.870*

AA -0.003 -0.004
BBB -0.001 0.008
BB 0.017* 0.026*

Cons. Prod. 0.005 0.002
Cons. Svc. 0.003 0.001
Energy -.002 -0.017
Financials -0.027 -0.016
Hlth. 0.014 0.021
Indust. -0.011 -0.010
Tech. 0.023 0.071*
Telcom. Svc. -0.001 0.001
Util. -0.026 -0.025*

VIX No Yes No Yes Yes Yes

N 253,410 253,410 253,410 253,410 151,259 253,188
R2 0.486 0.675 0.650 0.840 0.878 0.869

Note. Dependent variable is firm level CIV. VIX row indicates whether the VIX index enters as a common explana-
tory variable (with firm-specific loading). In Column 5, realized risk measures are computed from total asset returns,
while in Column 6 they are estimated from equity returns. Omitted dummies are 10-year maturity, Materials sector,
and credit rating A. Coefficients on Size, Skew., Kurt., and Beta are multiplied by 100. Standard errors are clustered
by month and sector. Asterisk indicates significant at the 1% level or better.

points in the term structure. This specification is equivalent to running regression (3) separately

for each maturity. We consider a version of this regression excluding the δ3,iVIXt term (Column 3)

and including it (Column 4). Accounting for the effect of maturity on CIV increases the regression

R2 to 65.0% and 84.0% in Columns 3 and 4, respectively.

The final two columns modify the previous specifications to allow for additional firm-level char-

acteristics including size, riskiness, industry sector, and credit rating:

CIVi,τ,t = δ0 + δ1Leveragei,t + Maturity FE + δ′2Maturity FE× Leveragei,t + δ3,iVIXt

+δ′4[Sizei,t,Voli,t, Skewi,t,Kurti,t,Betai,t]′ + Sector FE + Rating FE + εi,τ,t.
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Volatility, skewness, kurtosis, and market beta in Column 5 are measured from asset returns (de-

scribed in Appendix A), and are measured from equity returns in Column 6. This regression is

designed to quantify the fraction of CIV variation that is driven by firm characteristics but that

cannot be accounted for by leverage, maturity, and exposure to aggregate risk. The regression R2

in these specifications rises from 84.0% in Column 4 to 87.8% and 86.9% in Columns 5 and 6, indi-

cating little marginal explanatory power from firm characteristics beyond leverage. The regression

coefficient on leverage is lower in Column 5 due to positive correlation between leverage and asset

volatility.

4.3 CIV and Risk Premia

Thus far our CIV analysis has focused on CIV levels. The analysis in Figure 7 shows that CIV of

leverage and maturity sorted portfolios are all but perfectly explained with two or three common

factors. Perhaps more interestingly, the regressions in Table 2 indicate that leverage and maturity

are among the most important dimensions of heterogeneity for understanding relative credit price

levels. This naturally invites the question: Do average returns of a CDS contract also align with its

leverage and maturity? This is a sensible hypothesis if CDS risk exposures also align with contract

moneyness and maturity.

We investigate this question by constructing realized returns on the same constant-leverage and

constant-maturity portfolios studied above. As with portfolio CIV, portfolio returns are calculated

as local averages of individual CDS returns at each maturity, where the portfolio weights each month

are inversely related to the distance between a contract’s leverage and a given constant-leverage

grid point.23

Figure 8 plots annualized Sharpe ratios of monthly returns on the 20 CDS portfolios (along

with 95% boostrap confidence intervals). These are returns to a CDS seller and so represent risk

premia that accrue to an insurance provider. The answer is yes, differences in compensation for

selling CDS closely align with CDS leverage and maturity. The term structure of CDS Sharpe

ratios is steeply downward sloping, reaching as high as 1.6 for one-year CDS and falling to as low

as 0.5 at ten years. In the moneyness dimension, Sharpe ratios are highest for deep OTM CDS and
23The CDS return definition is given in Appendix A. Portfolio average returns are again calculated with the matlab

smooth.m function with the “rlowess” option and span parameter of 0.5. This defines the exact weighting scheme for
average returns in each leverage portfolio.
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Figure 8: Sharpe Ratios of Leverage and Maturity Portfolios
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Note. The solid line shows annualized Sharpe ratios from monthly CDS returns of constant-leverage and constant-
maturity portfolios. Dotted lines are the associated 95% bootstrap confidence intervals.

gradually decline with leverage.24

Furthermore, differences in risk compensation across CDS are explained by their differences in

exposure to aggregate CIV shocks. We show this by constructing pricing factors that are shocks

to the first three principal components of the CIV surface.25 We evaluate the ability of factors

to price mean CDS returns using two-pass regression; first estimating betas from full sample time

series regressions of each portfolio’s return onto the shocks, then running a single second-pass cross

section regression of average portfolio returns on first-pass betas.

Figure 9 plots the predicted average portfolio returns from the second stage regression against

actual values. The left panel is based on a three-factor model (from the first three components), and

the right panel uses only the first principal component. The fits show that differences in risk premia

across portfolios are essentially fully explainable with differences in their exposure to changes in

the surface. Using the level, moneyness, and term structure factors jointly in a three-factor model
24The finding that short-maturity CDSs have higher Sharpe ratios is consitent with Palhares (2013), who shows

that short positions in one-year CDS suffered worse losses than five and ten-year contracts during crisis, consistent
with the higher compensation we find for selling short-dated contracts.

25We define shocks as first differences of the PCs, but results are nearly identical for other shock definitions such
as residuals from a vector autoregression using the first three PCs.

23



Figure 9: Average Return Fits
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Note. Second-pass fitted versus actual average returns for the 20 constant-leverage and constant-maturity portfolios
from three-factor and one-factor models in which factors are defined as changes in the leading principal components
of the CIV surface. Axes are annualized percentage returns, and the second-pass regression R2 is reported in the
upper left.

delivers pricing errors that are uniformly close to zero with a cross section R2 of 95.3%. Nearly all

of this explanatory power comes from exposure to the level shock, as shown in the right panel of

the figure, where the first factor alone produces almost identical fits to the three-factor model and

results in a cross section R2 of 91.6%.

These facts are related to Palhares (2013), who also documents that CDS Sharpe ratios are

decreasing in maturity. We expand on that analysis by providing a more complete view of CDS

prices and risk premia in the dimensions that appear most empirically relevant: leverage and

maturity. Palhares (2013) also proposed an empirical pricing model to explain the term structure

of expected returns using two factors, the average CDS return and the CDS return on a short-

maturity/long-maturity spread portfolio. We tie the behavior of credit risk premia directly to the

CIV surface and find that a single CIV factor successfully explains the cross section differences in

average CDS returns.26

26This result is also related to Fama and French (1993) who find that average returns on maturity-sorted Treasury
bond portfolios and ratings-sorted corporate bond portfolios can be explained with a two-factor model (the factors
being the term spread and the default spread), as well as to Frazzini and Pedersen (2012) who find option return
premia with similar moneyness and maturity patterns.
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Figure 10: Sharpe Ratios of Delta-hedged CDS Portfolios
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Note. The solid red line shows annualized Sharpe ratios from monthly delta-hedged CDS returns of constant-
leverage and constant-maturity portfolios. Dotted red lines are the associated 95% bootstrap confidence intervals.
For comparison, the black line overlays the Sharpe ratio of unhedged CDS returns from Figure 8.

Lastly, we decompose the credit risk premium measured from CDS portfolios into two com-

ponents, each understandable from the interpretation of a CDS as an option contract. One is an

asset risk premium component, closely related to the standard equity risk premium, arising from

the fact that a CDS (or “put on assets”) has a mechanical loading (or “delta”) on overall asset

growth in the economy. Second, the embedded put option gives CDS returns a mechanical loading

(or “vega”) on shocks to asset volatility, which earns it a variance risk premium.

To analyze the portion of total credit risk compensation that comes from bearing variance risk,

we construct delta-hedged CDS portfolios. These begin with a short position in CDS and take an

offsetting position in the firm’s equity:

Rhedge,i,t = Rcds,i,t −∆i ×Requity,i,t.

We construct the hedge ratio, ∆i, using a full sample regression of CDS returns for portfolio i

onto the underlying equity return (using the same weighting scheme to construct portfolio equity

returns as for CDS returns). The standard way of constructing a delta-hedged portfolio in the
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options literature is to calculate ∆i using the Black-Scholes model and use this to hedge out the

underlying equity return. The analogue in our setting is to calculate ∆i from the Merton model and

hedge out the underlying asset return. We have thus taken a more statistically oriented approach

of hedging with the underlying equity and use the empirical hedge ratio, though our results are

qualitatively the same if we construct (approximate) asset returns as in Appendix A and hedge using

the Merton-implied ∆i.27 Properly speaking, a delta-hedged option position earns compensation

for exposure to all higher moment risk, not just variance. But this is true in most variance risk

premium calculations and we continue to use variance terminology in accordance with previous

literature.

Sharpe ratios of delta-hedged CDS portfolios are plotted in Figure 10. We also plot the 95%

bootstrap confidence interval for each portfolio, and overlay on this the raw CDS Sharpe ratio from

Figure 8 for comparison. The basic pattern of Sharpe ratios with respect to moneyness reverses, and

is now increasing in moneyness, compared to a decreasing pattern for the unhedged CDS position.

Other than this difference, delta-hedged Sharpe ratios are qualitatively and quantitatively similar to

unhedged CDS. In particular, the steep negative term structure pattern is entirely preserved.28 This

suggests that the component of the Sharpe ratio associated with the standard equity premium only

varies in the moneyness dimension, and that the term structure of credit risk premia is dominated

by the variance risk premium.

5 A Structural Model of Credit Risk

The options literature has sought, and has been successful in isolating, models to accurately describe

option pricing phenomena. This research has targeted the implied volatility surface as the object

of interest based on its convenience for summarizing the joint behavior of many option prices on

a common scale. The patterns in credit-implied volatility closely resemble those of option-implied

volatility.29 CIV is higher for OTM CDS, just as OIV is higher for OTM puts, holding other
27Our delta-hedged CDS strategy is similar in spirit to the capital structure arbitrage strategy studied in Duarte,

Longstaff and Yu (2007).
28This fact bears a close resemblence to the term structure of equity variance risk premia studied by Dew-Becker

et al. (2015), and is consistent with a more general pattern in the term structure of Sharpe ratios for many asset
classes pointed out by Van Binsbergen and Koijen (2015).

29See Andersen, Fusari and Todorov (2015) for a detailed description of the implied volatility surface of S&P 500
index options.
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features of the underlying and the contract fixed. In both credit and option markets, the implied

volatility surface is driven by a small number of common factors. The most important factor

corresponds to persistent shifts in the overall level of the CIV surface, and this factor closely tracks

aggregate market volatility. And in both cases, other important factors capture time variation in

the steepness of the moneyness smirk and shape of the term structure. Recognizing the similarities

between CIV and OIV surfaces enables us to improve our understanding of CDS pricing by drawing

on prior work modeling equity options.

In this section we propose a model to describe the joint behavior of CDS for all firms and all

maturities. Three ingredients are necessary to match the CIV patterns described in the preceding

sections. First, we pursue a specification in which asset growth of individual firms is driven by

exposure to aggregate asset growth and an idiosyncratic growth shock. This assumption of a factor

structure in growth rates has strong empirical support and is one means of tying together behavior

of CDS spreads across firms. Second, motivated by the options literature, we embed stochastic

volatility and jumps in the aggregate asset growth process. This produces the non-normalities in

asset growth required to generate a moneyness smirk. Dynamics in aggregate volatility and jump

risk produce common fluctuations in firms’ CDS prices. Third, idiosyncratic variance and jump

risk dynamics are closely aligned with the same state variables that drive aggregate asset growth,

a pattern well documented in prior literature (see Herskovic et al. (2015) and Kelly and Jiang

(2014)). By virtue of firms’ common exposure to aggregate risks, CDS dynamics of all firms and at

all maturities inherit the dynamics of a few common state variables, capturing the persistent level

shifts and twisting motion of the CIV surface. We find that at least two factors are necessary to

generate the distinct time-series patterns we see for the level of the surface, the moneyness slope,

and the term structure slope.

In the language of the credit risk literature, our model is structural, in the sense that it specifies

a process for aggregate asset growth and derives cross-equation restrictions for pricing CDS across

individual firms and across maturities based on firms’ sensitivities to aggregate growth. However,

we abstract from specifying deep technologies and preferences and do not model the optimizing

behavior of firms or consumers. That is, we model exogenous asset growth processes under the

risk-neutral, or Q, measure, and in this sense our model is partly reduced form. These abstrac-

tions are necessary for keeping the estimation problem tractable while emphasizing the role of firm
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heterogeneity and state dependence in credit price behavior. The goal of this section is to demon-

strate that a parsimonious no-arbitrage model with a unified description of asset growth for all

firms delivers highly accurate fits of CDS prices across a wide range of credit risk and at all points

throughout the credit cycle.

5.1 Model

We analyze four models of the joint asset value dynamics of all firms in the economy. The models

are of gradually increasing complexity—here we present the most general version that nests the

other three specifications.

In the most general model we consider, aggregate asset growth follows a three state variable

process. The choice of at most three states is motivated by the PCA results in Section 4. The

first two states govern stochastic growth rate volatility. One process, v1,t, captures patterns in

volatility that persist over the business cycle and other low frequencies. The second state, v2,t,

captures higher frequency movements in volatility that mean revert within months. We allow for

a two volatility specification based on a large literature documenting fast-moving and slow-moving

components of volatility.30 We allow for a third state variable that governs jumps in aggregate

asset value and allows for stochastic arrival intensity. This injects more excess kurtosis in the

asset growth distribution and is motivated by the steep CIV moneyness smirk.31 The three state

variables govern the aggregate asset growth process according to

dAm,t
Am,t

= rdt+√v1,tdW
m,1
t +√v2,tdW

m,2
t +

((
e−qm − 1

)
dJ (λt)− λtξm

)
, (4)

where (Wm,1
t ,Wm,2

t ) are independent Brownian motions and the third term is a standard Poisson

mixture of normals jump specification. Variances are CIR processes (Cox, Ingersoll and Ross,
30Bates (2000); Andersen, Fusari and Todorov (2015); Johnson (2012) document the need for two volatility factors

to match the diffusive component of aggregate equity market returns. Furthermore, because CDS are derivatives
on underlying asset values, they are also closely connected to macroeconomic volatility. Jurado, Ludvigson and Ng
(2015) also document a low frequency component in macroeconomic volatility with a half-life of over four years.

31A large literature documents that jumps are crucial for producing sufficient leptokurtosis to match the OIV
moneyness smirk. See, for example, Bakshi, Cao and Chen (1997); Broadie, Chernov and Johannes (2007).
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1985),

dv1,t = κv1 (θv1 − v1,t) dt+ σv1
√
v1,tdW

v1
t

dv2,t = κv2 (θv2 − v2,t) dt+ σv2
√
v2,tdW

v2
t ,

and are allowed to mean revert at different rates (κ), to different unconditional levels (θ), with

different volatility of volatility (σ).32 The arrival intensity of jumps is allowed to depend on both

variance processes as well as on third state variable zt that independently drives jump risk:

λt = a(v1,t + v2,t) + zt.

The independent component of the jump intensity also follows a CIR process,

dzt = κz (θz − zt) dt+ σz
√
z,tdW

z
t .

Finally the distribution of jump sizes is qm ∼ N
(
µqm , σ

2
qm

)
, and the jump compensator is ξm =

e−µqm+.5σ2
qm − 1.

Next, asset growth rates for individual firms are tied together by exposure to the aggregate

growth rate distribution. In particular, asset growth of firm i has a systematic component tied to

aggregate growth as well as an idiosyncratic growth rate:

dAi,t
Ai,t

= rdt+ βi

(
dAm,t
Am,t

− rdt
)

+√vi,tdW i
t +

((
e−qi − 1

)
dJ (λt)− λtξi

)
. (5)

The idiosyncrasy possesses diffusive and jump components. We tightly link the conditional dis-

tribution of idiosyncratic growth to that of aggregate growth.33 In particular, we assume that

idiosyncratic stochastic volatility is perfectly correlated with aggregate stochastic volatility,

vi,t = vi + γi(v1,t + v2,t),
32We also allow for a correlation between variance shocks and asset growth. This enters through a correlation of

ρvj between dW v,j
t and dWm,j

t , j = 1, 2.
33This assumption is in part motivated by Campbell and Taksler (2003) who emphasize the role of idiosyncratic

risk in explaining credit spreads.
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Table 3: Portfolio Parameter Estimates

20% 40% 60% 80%
βi 1.490 1.288 1.033 0.798
Asset gr. R2 (%) 24.8 28.6 34.0 43.2

γi 1.895 1.300 0.866 0.453
vi 0.019 0.010 0.004 0.002
Asset var. R2 (%) 77.2 84.7 88.9 88.8

Note. Parameter estimates for constant-leverage portfolios.

and we assume that idiosyncratic jumps share the same distribution as aggregate jumps, qi ∼

N
(
µqm , σ

2
qm

)
, and arrive with the same intensity λt.

This specification for firm-level asset growth is empirically motivated. First, asset growth of

individual firms is highly correlated with aggregate growth. To demonstrate this, we run separate

time series regressions of monthly asset returns (described in Appendix A) for each firm in our

sample on aggregate asset growth (asset-weighted average returns across all firms). Table 3 reports

the average beta and regression R2 within each constant-leverage portfolio. Portfolio betas range

from 0.79 to 1.49 and the R2 is between 24.8% and 43.2%. Second, idiosyncratic firm volatility

is highly correlated with aggregate volatility. For each leverage portfolio, we regress its realized

monthly asset variance on aggregate asset variance. The intercept (denoted vi) and slope coefficient

(denoted γi) are also reported in Table 3, as well as the regression R2. The aggregate asset

variance process describes between 77.2% and 88.9% of the variation in idiosyncratic variance.

Both sets of regressions support the firm-level asset specification in (5). Third, our choice to set

idiosyncratic jump risk equal to aggregate jump risk is motivated by the fact that fluctuations

in firm-level tail risks are strongly correlated in the cross section (Kelly and Jiang, 2014). But,

in contrast to idiosyncratic volatility comovement, tail risk comovement is difficult to precisely

quantify. Thus, our assumption captures the basic empirical fact without additional (and hard to

estimate) parameterization of the model.

In our model analysis we also consider three smaller models nested in this main “2 Vol, 1 Jump”

specification. The simplest, which we refer to as “1 Vol, 0 Jump,” includes a single stochastic

volatility process and shuts off the second volatility and the jump. We also consider a jump-only

specification, “0 Vol, 1 Jump,” that shuts down both volatilities. Lastly, we study the “1 Vol, 1

Jump” specification that shuts off only the second volatility.

30



5.2 Estimation

We derive the CDS pricing formula for this model in Appendix B using the framework of Duffie,

Pan and Singleton (2000). The formula evaluates spreads predicted by our model for any CDS given

the leverage of the reference entity, the maturity of the CDS contract, and given model parameters.

In the most general version of the model there are 14 parameters for the aggregate asset growth

process,

Θm = (κv1 , θv1 , σv1 , ρv1 , κv2 , θv2 , σv2 , ρv2 , κz, θz, σz, µqm , σqm , a)

and three parameters for each reference entity, Θi = (βi, vi, γi).

We estimate the model using data for the 20 constant-leverage and constant-maturity CDS

portfolios. These 20 portfolios only require modeling four distinct “reference entities,” one for each

leverage group (the model must match behaviors of all five maturity bins while respecting a single

asset process for each reference entity). Thus our general specification includes a total of 26 static

parameters.

We split the estimation problem into two steps. In the first step, we set the betas and id-

iosyncratic volatility parameters (Θi) to the regression estimates in Table 3. Because these are

estimated from realized asset growth data, they represent parameter values under the physical, or

P, measure. We follow the standard consistency conditions imposed in the literature and equate

betas and idiosyncratic risks under P and Q.34 There are two caveats to this approach. First, we

only use the variance regressions to pin down the diffusive idiosyncratic variance parameters while,

properly speaking, asset growth variance depends on both diffusive and jump risks. We make this

approximation for tractability. Second, as noted above, we assume that the idiosyncratic jump

distribution is identical with (but independent of) the aggregate jump distribution. This is, again,

an assumption for tractability.

We estimate the remaining parameters, Θm, directly from portfolio CDS spreads. The es-

timation objective is to minimize the squared distance between actual spreads, Si,τ,t, and model-

predicted spreads, Ŝ(Θm, Θ̂i, Xt, τ), where i indexes the underlying entity’s leverage, τ the contract

maturity, t the month, and Xt the vector of latent states. The scale of spreads varies substantially

across leverage and maturity portfolios. We normalize pricing errors for each portfolio by the time
34This is similar to the approach by Ang and Longstaff (2013).
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Table 4: Model Comparison

No-arbitrage Unrestricted
1 Vol, 0 Jump 0 Vol, 1 Jump 1 Vol, 1 Jump 2 Vol, 1 Jump PCA1 PCA2 PCA3

R2 (%) 10.6 70.0 77.9 83.5 88.6 98.6 99.4
Parameters 4 + 12 5 + 12 10 + 12 14 + 12 40 60 80
States/factors 1 1 2 3 1 2 3

Note. Comparison of CDS spread fits from structural no-arbitrage models and PCA with one to three factors.
We report the R2 with respect to spreads and the parameterization of each model. For parameter counts in the
no-arbitrage models, “+12” highlights that 12 parameters are estimated in a preliminary step from physical CDS
returns. Those 12 estimates are not, however, free parameters in the structural model estimation. It is therefore
most natural to compare, for example, 10 parameters in “1 Vol, 1 Jump” with 60 parameters in “PCA2.”

series standard deviation of the portfolio’s observed spreads. This places all portfolios on a level

playing field in terms of their contribution to the objective function.35 The optimization problem

is therefore

min
Θm,{Xt}

∑
i,τ,t

(
Si,τ,t − Ŝ(Θm, Θ̂i, Xt, τ)

Std(Si,τ,t)

)2

. (6)

We take an iterative implied state estimation approach along the lines of Pan (2002). First, we

guess a value for the static model parameters. Then, holding these parameters fixed, we estimate

the latent states (Xt) by minimizing pricing errors for all portfolios in month t. Given the estimated

values of Xt, we search for a new set of static parameters that lowers the objective function, and

iterate this procedure to convergence.36

5.3 Results

Table 4 summarizes model fits in terms of total R2 for spreads on all 20 portfolios. The structural

models are organized under the “No-arbitrage” heading, referring to their enforcement of cross-

equation pricing restrictions across leverage and maturity, and are ordered from least parameterized

to most parameterized. The immediate take-away from this analysis is that jumps are the crucial
35Another natural normalization is to minimize errors in CIV, as asset implied volatilities are more directly com-

parable across portfolios than are spreads. We check that this produces nearly identical results by using optimized
parameters from the spread-based objective as starting values in the CIV-based optimization. We choose to focus
our analysis on spreads as this objective requires less computation time by avoiding the CIV inversion for each data
point in each numerical interation.

36Our estimation uses a Matlab optimization routine that alternates between simulated annealing, direct search,
and gradient descent to identify globally optimal parameter estimates.

32



modeling element for matching spreads on leverage and maturity portfolios. Stochastic volatility

alone (“1 Vol, 0 Jump”) cannot explain spreads, delivering an R2 of only 11%. But a single jump

process (“0 Vol, 1 Jump”), which costs only one more parameter than the volatility specification,

delivers an R2 of 70.0%. Adding a second or third state variable produces further fit gains but

requires richer parameterization (an entire time series of state realizations must be estimated for

each additional state variable). “1 Vol, 1 Jump” increases the R2 to 77.9% but requires 5 additional

static parameters and one additional state series, and “2 Vol, 1 Jump” increases the R2 again to

83.5% but requires another four static parameters and a third state series. In terms of model

comparison, the “1 Vol, 0 Jump” is easily rejected in favor of the alternatives. An F -test rejects “0

Vol, 1 Jump” in favor of “1 Vol, 1 Jump” with a p-value of essentially zero. The “1 Vol, 1 Jump”

specification is only marginally rejected in favor of “2 Vol, 1 Jump” with a p-value of 0.04.

We also compare the structural model to the fits from PCA. The PCA model takes the form

Si,m,t = α0,i,m + α′1,i,mFt + ωi,m,t.

The dependent variable is the panel of spreads for the 20 portfolios. The subscript i describes

the portfolio leverage, m describes its maturity, and t the month of the observation. There are

two key differences between the structural and PCA specifications. The first difference is that

PCA is a linear specification while the structural framework is non-linear. The second difference is

that PCA is an unrestricted model—it does not impose cross-equation pricing restrictions implied

by no-arbitrage. In particular, for any given underlying i, the factor loadings of i’s CDS spreads

at different maturities (γ1,i,m) are in no way linked together; however, in a no-arbitrage setting,

the state sensitivity of spreads across maturity must all be determined by the same deep model

parameters. The unrestricted nature of PCA allows for substantially more parameters than a

no-arbitrage specification with the same number of factors.

Despite the much richer parameterization of PCA, the structural specifications with jumps

are competitive in terms of R2. Because our model uses many fewer parameters, its comparative

fit success must be driven by cross-equation restrictions and non-linearities embedded in the no-

arbitrage accurately capturing the joint behavior of CDS with different moneyness and maturity.

Next, we evaluate the fits of the model by studying its ability to match the unconditional
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Figure 11: Structural Model Moneyness Slope
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Note. Actual and model-predicted moneyness smirk for 20 constant-leverage and constant-maturity portfolios.

average shape of the CIV surface. Figure 11 plots the average CIV smirk for each maturity. CIV

data values are shown in blue and predicted values from each model are in red. Overall, all models

successfully generate a steep CIV moneyness slope that is quantitatively consistent with the data.

Only the “1 Vol, 0 Jump” specification noticeably underperforms the other versions, and its biggest

flaw is underpricing highly levered CDS at long maturities.

Moving beyond unconditional averages, Figures 12 and 13 show the actual versus fitted spreads

in each month, observation-by-observation. These figures plainly reveal where each model fails. A

pure stochastic volatility specification (Panel A) fails because it cannot generate meaningful time

variation in spreads at maturities beyond one year, as seen from their flat pattern in the Figure 12

scatters.37 This failure is less severe in the jump-only model (Panel B), where the model’s failure

is concentrated primarily in the 80% leverage (at-the-money) portfolio. In Panel C, the “1 Vol, 1

Jump” model matches spread behavior across the board with one exception: one-year CDS for high

leverage firms. The “2 Vol, 1 Jump” specification (Panel D) remedies this deficiency to provide an

accurate fit of all portfolios in every month of our sample.

Figures 12 and 13 emphasize the fits in terms of spreads. We next analyze the models’ ability

to match the main dynamic features of the CIV surface documented in Section 4. Each month
37One may fix this by increasing the persistence of volatility (by lowering κv1), but this would in turn force the

model to have smaller volatility shocks (lower σv1), which would make the model incapable of matching the level of
short-maturity spreads. The tension between persistence and shock variance in our CIR processes arises from the
“Feller condition,” 2κθ−σ2 > 0, which must be satisfied in order to keep the stochastic volatility and jump intensity
strictly positive.
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Figure 14: Model-based CIV Surface Dynamics

Panel A: CIV Level
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Panel B: CIV Term Structure Slope
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Panel C: CIV Moneyness Slope
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Note. Monthly CIV surface level, moneyness slope, and term structure slope for 20 portfolios in the data and four
variations of the structural model.
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Table 5: Aggregate Asset Process Parameter Estimates

1 Vol, 0 Jump 0 Vol, 1 Jump 1 Vol, 1 Jump 2 Vol, 1 Jump
κv1 1.920 0.109 0.238
θv1 0.030 0.008 0.003
σv1 0.340 0.0001 0.0001
ρv1 -0.999 -0.952 0.999

κz 0.052 0.564 0.007
θz 0.063 0.002 0.041
σz 2e-06 0.039 2e-06
µqm 0.852 0.710 0.666
σqm 1.366 2.072 1.999
a 0.829 0.612

κv2 0.976
θv2 0.005
σv2 0.134
ρv2 0.999

Note. Structural model parameter estimates for the aggregate asset growth process.

we re-calculate the average CIV surface level, moneyness slope, and term structure structure slope

using the fitted values for portfolio CIV based on the estimated model, and plot these alongside

the data values in Figure 14. The figures show that all four models do an equally good job of

describing the average CIV level (Panel A). However, the models with a single state variable fail to

capture the distinct variation in the term structure slope and the moneyness smirk (Panels B and

C, respectively). The two-state and three-state models are essentially identical in describing the

term structure slope, but the three-state model provides a somewhat better fit of the moneyness

smirk.

Comparing Figure 11 versus Figures 12 to 14 shows how unconditional averages can mask

poor model performance. It is common practice in the credit pricing literature to estimate and

compare models based on their fit of unconditional moments. In our setting, all four models

look at least reasonable in terms of their average spreads and CIV. But one-factor models look

substantially worse when evaluated on their ability to match the dynamic behavior of spreads—

raising a cautionary note for credit analysts who focus on unconditional average fits.

Table 5 reports the fitted risk-neutral parameters of the aggregate asset growth process in each

model. We focus our discussion on parameters in the “1 Vol, 1 Jump” specification, which achieves

fits nearly as accurate as the three factor model but with less complexity. The stochastic variance

process has a long-run mean of θv1 = .008, so on average the diffusive volatility of aggregate asset
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growth is about 9% per year. The typical shock to v1,t has a magnitude of about 1% in annualized

volatility terms and is highly persistent (a half-life of 6.3 years). As previous results pointed out,

the key model component for matching credit spreads is the jump process. Our estimation looks

much like a rare disaster model under the risk-neutral measure. Aggregate jumps arrive on average

once every 116 years based on the mean intensity of aθv1 + θz and when they arrive they are

potentially cataclysmic. The log jump size has an expected value of −71% (µqm is the magnitude

of the downward jump) and a standard deviation of 207%. Why the empirical patterns lead to

these estimates can be seen from the heterogeneity-adjusted CIV smirk in Figure 3. Extreme jumps

add more mass to the far reaches of the asset growth distribution compared to a normal model.

The smirk in Figure 3 is flat for closer-to-the-money firms whose default risk is more closely tied to

moderate recessions. CIV smirk bends most steeply upward for very low leverage firms. That is,

credit risk is comparatively overpriced in the CDS of firms like Apple and Google, whose historical

leverage ratios are below 20% and realistically will only default in catastrophic states of the world.

The model reads this CIV smirk from the spreads and interprets it as a (risk-neutral) rare disaster

specification.

Our final model-based analysis investigates the extent to which the CIV moneyness smirk is

generated by excess kurtosis of asset growth versus being generated by heterogeneity across firms.

A purely empirical attempt to disentangle the drivers of the smirk is necessarily confounded by

the tendency of firms with different leverage to systematically differ on other dimensions as well,

as discussed in Section 4. Working within a structural setting provides an alternative way to

understand the nature of the smirk. The model takes a stance on the nature of firm heterogeneity,

which in our model enters through heterogeneous risk exposures and idiosyncratic volatilities (βi,

vi, and γi), and takes a stance on the form of non-normalities, entering through stochastic volatility

and jump risk.

We work from our estimated “1 Vol, 1 Jump” model which incorporates both underlying firm

heterogeneity and excess kurtosis, and study their effects on the CIV smirk by shutting down

non-normalities in the model. To remove the effect of non-normalities, we set the variance of the

hypothetical normal asset growth distribution equal to observed CIV. With normally distributed

39



Figure 15: Heterogeneity vs. Non-normality in Moneyness Slope
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Note. Actual and model-predicted moneyness smirk for 20 constant-leverage and constant-maturity portfolios.

aggregate and idiosyncratic shocks, the CIV of portfolio i must obey

CIVi,t =
√

(β2
i + γi)CIV2

m,t + vi, (7)

where CIVm,t is the normal variance of aggregate asset growth. Under normality, differences in

CIV across portfolios must arise solely from heterogeneity in βi, vi, and γi. Thus, we construct

a hypothetical “normal” CIV smirk, one that can only be driven by portfolio heterogeneity, by

inverting (7) for CIVm,t from the 80% leverage portfolio (taking direct estimates of βi, vi, and γi

as given) and using it to build the hypothetical CIV for the 20%, 40% and 60% leverage portfolios.

The results are shown in Figure 15. The original data is in blue, and the non-normal model

fit is in gray. The fitted smirk due to heterogeneity alone—shutting down non-normalities—is

in red. For the one-year maturity, heterogeneity explains roughly 40% of the smirk slope, the

remainder 60% arising due to non-normality in the asset growth distribution. At longer maturities

non-normality plays a smaller role and by ten years heterogeneity can explain essentially the entire

smirk, consistent with the patterns in Figure 3.
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6 Extensions

6.1 Bond CIV

This subsection studies CIV calculated from corporate bond spreads rather than from CDS. We use

data on option-adjusted spreads (OAS) for US corporate bonds from the Merrill Lynch Corporate

Bond Database.38 To maintain comparability to our earlier results, we restrict our analysis to

bonds of companies that also appear in our CDS sample. We use senior unsecured bonds and

exclude bonds that are close to being called (where option-adjusted duration is less than 50% of

the non-adjusted duration).

From OAS, we calculate bond-level CIV in the same manner as previous sections. Then, for

each firm, we interpolate CIV to match the same maturity grid that we have for CDS (1, 3, 5, 7,

and 10 years). If an issuer has bonds with maturities that straddle a grid point then we linearly

interpolate CIV. If a firm’s longest bond (call this bond “long”) has maturity no more than 6

months below a grid point, the firm’s CIV at this nearest grid is set to the CIV of “long”, else the

CIV at that grid point is designated missing. If a firm’s shortest bond (call this bond “short”) has

maturity no more than 6 months beyond a grid point, the firm’s CIV at this nearest grid is set to

the CIV of “short”, else the CIV at that gridpoint is designated missing. Our final sample includes

bond CIV for a subset of 405 out of 530 firms in our main CDS sample.

Figure 16 plots the moneyness smirk at each maturity for CIV extracted from bond spreads. As

in our earlier analysis, we fit a non-parametric curve to the bond CIV scatter plot, which is shown

in red. We also overlay on these plots the curve fitted to the CDS data in green. Comparing these

two curves shows that the average shape of the CIV surfaces from bonds and CDS are qualitatively

identical and are quantitatively very similar, establishing that the credit patterns we document are

not unique artifacts of CDS markets.
38This data is used in a number of papers studying bond spreads such as Shaefer and Strebulaev (2008) and

Acharya, Amihud, and Bharath (2013). It has a few advantages over other data sets such as TRACE. Most papers
that use TRACE drop callable bonds, which tends to remove high yield bonds from the sample as these are typically
callable. Also, the Merrill Lynch data is less stale because it includes quotes, while TRACE only has traded prices.
Many bond quotes are updated daily though they are not necessarily traded.
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Figure 16: Bond CIV Smirk
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Note. Pooled scatter plots of monthly CIV versus firm leverage. In this figure, CIV is inverted from corporate bond
spreads rather than CDS spreads. The red line is a fitted non-parametric curve for the bond CIV data. The green
curve is the fitted curve based on CDS data taken from Figure 2. The lower right panel overlays the fitted bond CIV
curve at all maturities to trace out the bond CIV surface.

6.2 Sovereign CIV

We next investigate the role of leverage in the relative pricing of sovereign CDS. Our leverage data

are derived from the OECD’s consolidated national balance sheets for general government (OECD

data table 710). This includes line items for total government financial assets and liabilities. OECD

(2015) states that

[T]he difference between the financial assets and liabilities held by governments (also
known as financial net worth or as a broad description of net government debt), gives
an extensive measure of the government’s capacity to meet its financial obligation.
While financial assets reflect a source of additional funding and income available to
government, liabilities reflect the debts accumulated by government. Thus, an increase
in the financial net worth signals good financial health. Net worth may be depleted
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Figure 17: Sovereign CIV Smirk
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Note. Pooled scatter plots of monthly sovereign CIV versus sovereign leverage. The red line is a fitted non-parametric
curve. The lower right panel overlays the fitted CIV curve at all maturities to trace out the sovereign CIV surface.
Leverage is calculated from OECD consolidated balance sheets for general government. The sample includes Australia,
Austria, Belgium, Brazil, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland, Israel,
Italy, Mexico, Netherland, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, and the UK, from 2002 to
2012.

by debt accumulation, indicating a worsening of fiscal position and ultimately forcing
governments to either cut spending or raise taxes.

We thus define sovereign leverage from OECD data as the ratio of total financial liabilities (net

of shares and other equity) to financial assets for the general government sector. Given leverage,

we invert CDS spreads for sovereign CIV via the Merton model. Our sample includes 24 countries

from 2002 to 2012 for which we have both OECD balance sheet data and sovereign CDS spreads,

listed in Figures 17 and 18.39

Figure 17 plots the moneyness smirk for sovereign CIV at maturities up to ten years. The lower
39We omit Greece which experienced a sovereign default during our sample and carried a leverage ratio of at least

1.7 since 2002.
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Figure 18: Sovereign CIV Smirk Detail
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Note. Monthly CIV from sovereign CDS with one-year maturity from 2002 to 2012. Circles represent observations
through July 2008 and crosses are August 2008 onward. Sovereign leverage is from the OECD. The dashed grey line
is a fitted non-parametric curve.

right panel overlays estimated non-parametric curves for each maturity to trace out the three-

dimensional sovereign CIV surface. The general shape of the surface is the same in sovereign and

corporate credit markets, with the moneyness slope steepest at one year and gradually flattening

out with maturity.

Figure 18 provides more detail on the composition of the data cloud by country and by subsam-

ple for one-year CDS. Countries are color-coded and labeled. We distinguish observations before

the financial crisis (January 2002 through July 2008, shown with circles) from observations after

the start of the crisis (August 2008 through December 2012, shown with crosses). The figure shows

that the points lying far above the main smirk curve are all crisis observations.40 They also are

associated with a particular group of distressed sovereigns. The most conspicuous outliers are

Ireland and Portugal, who were explicitly bailed out by the EU and IMF (other countries in our
40The seemingly neglected blue circles on the lower left of Figure 18 are observations from Brazil in 2004 and 2005.
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sample that received EU/IMF bailout funds are Hungary and Spain, and also have large crisis

CIV). Another large departure from the curve is Estonia, who suffered a 14% contraction of GDP

in 2009 and implemented an “internal devaluation.”

We also find that sovereign CIV possesses a similar factor structure to that for corporate CIV.

In our panel of countries, the first PC explains 86% of panel variation in CIV, the second PC

explains 10%, and the third explains 2%, consistent with the findings of Longstaff et al. (2011).

The similarity in patterns of corporate and sovereign CIV suggests scope for a model of sovereign

credit risk, akin to that of corporates in Section 5, in which an individual sovereign’s asset growth

is driven by exposure to a global asset growth factor that is subject to heavy-tailed shocks under

the risk-neutral pricing measure.

6.3 Sectors and Ratings

A common sampling choice in the bond and CDS literature is to remove financial firms. This filter

is presumably motivated by financial intermediaries’ unique capital structure and other notions of

bank “specialness.” Another common choice is to remove the government-regulated utility sector.41

Figure 19 shows a sector breakout of the moneyness smirk using all monthly CIV observations

from five-year CDS (using Markit’s ten-sector classification). The figures clearly illustrate different

leverage patterns across industries, with healthcare and technology taking the least leverage and

financials and utilities being the most levered. All sectors, however, demonstrate the same basic

CIV moneyness smirk. There is no individual industry that single-handedly drives the smirk and

no industry that deviates from it.42

The empirical credit literature also tends to exclude speculative grade bonds. Our main analysis

includes BB, which is the highly rated end of the junk spectrum and constitute a relatively large

portion (15.9% by observation count) of the available sample, and excludes rating categories B and

CCC (accounting for 10% and 6.6% of the available sample, respectively). Figure 20 breaks out the

CIV smirk for five-year CDS by rating category. It shows that deviations from the main moneyness

smirk are larger the lower rated a firm’s credit, lending some credence to the view that junk names
41Schaefer and Strebulaev (2008); Collin-Dufresne, Goldstein and Martin (2001); Bharath and Shumway (2008)

exclude financial firms. Chava and Purnanandam (2010); Chen et al. (2015) exclude utiltities in addition to financials.
42This finding is related to Atkeson, Eisfeldt and Weill (2013), who argue that the credit risk of large financial

firms behaves similarly to that of large non-financial firms.
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Figure 19: CIV Smirk by Sector

Basic Materials Consumer Products Consumer Services Energy Financials

Healthcare Industrials Technology Telecommunications Utilities

Note. CIV from five-year CDS broken out by Markit sector pooling all firm-months. For comparison, the scatter
for the full sample combined is shown as gray background in every sub-plot.

demonstrate qualitatively different behaviors than investment grade. While speculative grade firms

have unconditionally higher CIV (especially at very high leverage), their dynamic CIV patterns

share some similarity to those for investment grade firms. We calculate the time series correlation

of monthly average CIV for AA to BB credits with the monthly average for B to CCC, and find

a correlation of 70%. This, however, contrasts with the fact that CIV among firms in investment

grade rating categories tend to have correlations well over 90% with other investment grade firms.

The comparatively low correlation between speculative and investment grade CIV again suggests

that distressed credit is subject to forces other than simple default risk.43

43We also find quantitatively similar results to all portions of our main analysis when we include B and CCC firms
in our sample (untabulated). The primary difference in this case is that model fits deteriorate for the 90% leverage
portfolio at long maturities (7 and 10 years).
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Figure 20: CIV Smirk by Credit Rating

AA A BBB

BB B CCC

Note. CIV from five-year CDS broken out by credit rating pooling all firm-months. For comparison, the scatter for
the full sample combined is shown as gray background in every sub-plot.

6.4 Mean-reverting Leverage Ratios

A long held tenet of corporate finance is that firms seek to maintain a targeted leverage ratio.44 A

firm experiencing a positive shock to its asset value sees its leverage decline and is likely to issue

additional debt in the future to restore the firm’s targeted leverage ratio. Similarly, a firm that

suffers a loss in asset value will experience high leverage until it has the opportunity to de-lever. In

this case, when a firm’s leverage is below it’s targeted level, the effective leverage that investors have

in mind when valuing CDS is higher than the measured leverage (and vice versa when measured

leverage exceeds its targeted value). As a result, calculating CIV from current measured leverage
44For empirical evidence, see for example Hovakimian, Opler and Titman (2001). Seminal theoretical work is

Leland (1994). Collin-Dufresne and Goldstein (2001) study the theoretical implications for credit spreads.
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Figure 21: CIV with Anticipated Mean Reversion in Leverage

1-year 5-year

1-year 5-year

Note. The top two panels plot realized future leverage against current leverage for all firm-months in our sample
along with the pooled OLS regression fit. The bottom two panels plot expectations-adjusted CIV (that is, recomputed
using expected future leverage based on the regressions in the top panel) against current leverage, along with a fitted
non-parametric curve in red. We overlay the corresponding raw CIV curve from Figure 2 in green.

may erroneously produce a moneyness smirk.

We quantitatively investigate this possibility in our data. Let Li,t denote measured leverage for

firm i in month t. The top left panel of Figure 21 compares current leverage to realized leverage

twelve months into the future. The fitted line in the figure is from a pooled OLS regression of

Lt+12 on current leverage Li,t. The result shows, unsurprisingly, that leverage is very sticky at

the one year horizon, with an intercept estimate of 0.03 and a slope of 0.93. But these are highly

statistically different from 0 and 1, respectively, demonstating significant mean reversion in leverage

ratios.

To understand the effect that expected leverage reversion has on our implied volatility esti-
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mates, we recompute one-year CIV using expected future leverage over the one-year life of the

CDS contract.45 The lower left panel of Figure 21 plots this expectations-adjusted CIV against

current leverage and fits a non-parametric curve to the data points (shown in red). We overlay on

this the corresponding curve using raw CIV from Figure 2 (shown in green). Evidently, expected

leverage reversion over one year bears little impact on the shape of the one-year CIV smirk, as the

raw and expectations-adjusted smirk almost exactly coincide. The right hand panel repeats these

analyses using realized leverage five years into the future. Here, the role of mean-reversion appears

more important—the magnitude of the five-year smirk slope is reduced by roughly one-third—but

otherwise leaves a steep five-year CIV smirk intact.

7 Conclusion

We present the credit implied volatility surface as an organizing framework for empirical analysis

of credit spreads. We show that most of the variation in the relative cost of a credit instrument

lines up with moneyness of the contract, summarized by the underlying firm’s leverage ratio, and

the contract’s maturity. We document a steep CIV moneyness slope that implies large deviations

from normality in the risk-neutral distribution of aggregate asset growth. Dynamics of the CIV

surface can be summarized with a few common factors, interpretable as CIV level, term structure

slope, and moneyness slope, that provide a compact and complete description of time-variation in

the entire panel of firm-level credit spreads. We also show that the cross section of CDS risk premia

align with moneyness and maturity of the CDS and is fully explained by exposure to the CIV level

factor. Finally, we show that a parsimonious structural model with stochastic volatility and jumps

provides an accurate description of CDS spreads for firms across the credit spectrum, at short and

long maturities, and at all points throughout the credit cycle. Our estimation suggests that the

risk-neutral distribution of aggregate asset growth can be effectively described as a rare disaster

model.

45We set expected leverage equal to the midpoint of current leverage and predicted one-year-ahead leverage esti-
mated from the regression line in Figure 21.
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Appendix

A Measuring Realized Growth in Asset Values
In this appendix we describe our calculation for growth rates in firm-level asset values at the daily
frequency. We use this in Section 4 to construct measures of firm-level asset riskiness for the
regressions in Table 2 and for the construction of heterogeneity-adjusted CIV in Figure 3. We also
use this data in Section 5 to estimate portfolio asset betas and idiosyncratic asset growth volatility.

The return on the (market value) of firm’s assets is equal to the weighted average return on its
debt and equity, where the weights are defined by the firm’s capital structure. The difficulty in
observing asset values stems from the fact that most companies have non-public debt or debt-like
obligations (e.g. bank loans, supplier credit, and other liabilities) therefore one cannot simply look
at the value of the bonds a company has outstanding. Even for firms that have most of their debt
in bonds, it is unlikely that all those bonds will be liquid, introducing problems of synchronicity.

To circumvent this problem, we approximate asset returns by combining information from CDS
and equity prices. The key step in our construction approximates the return on debt with a portfolio
consisting of a short CDS and a long risk-free bond. Because CDS are swap contracts, the daily
return on a CDS is defined as

rCDS,i,t = Si,t
250 −DurCDS,i,t∆Sit.

The first term captures the “carry” component of the return, or fraction of the annual swap payment
that the CDS seller accrues each day. The second term captures the capitalized gain/loss from a
change in the CDS spread, with DurCDS,i,t adjusting for the risky duration of the CDS. Our CDS
return calculation uses a firm’s five-year CDS spread, and we calculate the CDS risky duration
according to Palhares (2013). The CDS return is then combined with the risk-free return, calculated
as the return to an interpolated four-year duration Treasury bond and denoted rf,t. Next, to
approximate a firm’s return on debt, the CDS and risk-free returns within the portfolio are combined
so that the portfolio’s duration matches the duration of the firm’s debt, DurD,i,t, which is calculated
as the capital-weighted duration across all bonds issued by a firm. In particular, we calculate the
return on debt as

rD,i,t = DurD,i,t
DurCDS,i,t

rCDS,i,t + DurD,i,t
Durf,t

rf,t.

This in turn allows us to approximate the realized physical return on total assets as

rA,i,t = Di,t

Ai,t
rD,i,t + Ei,t

Ai,t
rE,i,t,

and we aggregate firm-level asset returns into constant-leverage portfolios to corresponding to those
used in our model estimation. We calculate measures of asset riskiness from these daily asset returns
within each month.

B Pricing Derivation for Structural Model
In this appendix we present and derive the structural model we use to fit the panel of CDS spreads.
We derive a closed-form solution for the characteristic function of the probability of finishing in-
the-money, and use the Fourier transform to recover this probability, following Duffie, Pan and
Singleton (2000) and Carr and Madan (1999).
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Denote the log asset process as Yi,t = lnAi,t, where the dynamics of Ai,t are defined in Section
5. Define the characteristic function ϕ (u, t, T ) as46

ϕ (u, t, T ) ≡ EQ
t

[
eiuYT

]
.

By Ito’s lemma, the dynamics of Yi,t = lnAi,t are

dY =
(
r − 1

2β
2
i v1,t −

1
2β

2
i v2,t −

1
2vi,t − (1 + βi)λm,tξm

)
dt

+βi
(√

v1,tdW
1
t +√v2,tdW

2
t +

(
e−qm − 1

)
dJ (λm,t)

)
+√vi,tdW i

t +
(
e−qm − 1

)
dJ (λm,t) .

An application of the Feynman-Kac theorem to the above characteristic function gives the following
expected PDE:

E [dϕ (u, t, T, Y )] = ∂ϕ

∂t
+ ∂ϕ

∂Y

(
r − 1

2β
2
i v1,t −

1
2β

2
i v2,t −

1
2vi,t − λi,tξi − βiλm,tξm

)
dt

+1
2
∂ϕ2

∂2Y

(
β2
i (v1,t + v2,t) + vi,t

)
dt

+ ∂ϕ

∂v1
kv1 (θv1 − v1,t) dt+ 1

2
∂ϕ2

∂2v1
σ2
v1v1dt+ σv1v1βiρY v1

∂ϕ2

∂Y ∂v1
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∂v2
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Conjecture the following solution that is exponential in the state variables

ϕ (u, t, T ) = eA(T−t)+B(T−t)v1,t+C(T−t)v2,t+D(T−t)zt+iuYt

where
∂ϕ
∂t =

(
−Ȧ− Ḃv1 − Ċv2 − Ḋz

)
ϕ , ∂ϕ

∂Y = iuϕ , ∂ϕ2

∂2Y = −u2ϕ

∂ϕ
∂v1

= Bϕ , ∂ϕ2

∂2v1
= B2ϕ , ∂ϕ2

∂Y ∂v1
= iuB

∂ϕ
∂v2

= Cϕ , ∂ϕ2

∂2v2
= C2ϕ , ∂ϕ2

∂Y ∂v2
= iuC

∂ϕ
∂z = Dϕ , ∂ϕ2

∂2z = D2ϕ , ∂ϕ2

∂Y ∂z = iuD.

Substituting the above partial derivatives and applying the separation of variables method, we get
46For clarity of exposition, we drop the dependence of the characteristic function on state variables.
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the following system of ODE’s:

Ȧ = iur − 1
2vi

(
iu+ u2

)
+Bkv1θv1 + Ckv2θv2 +Dkzθz

Ḃ = −1
2
(
β2
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2D

2σ2
z

where ψm (u) = 1− e−iuµqm−.5u2σ2
qm is the characteristic exponent. Solutions to the ODEs are

B (τ) = cv1 − dv1

σ2
v1

e−dv1τ − 1
fe−dv1τ − 1

C (τ) = cv2 − dv2

σ2
v2

e−dv2τ − 1
fe−dv2τ − 1

D (τ) = cz − dz
σ2
z

e−dzτ − 1
fe−dzτ − 1

A (τ) = iur − 1
2vi

(
iu+ u2

)
+kv1θv1

σ2
v1

[
(cv1 − dv1) τ − 2 ln

{
ψv1 (τ)− 1
ψv1 (0)− 1

}]
+kv2θv2

σ2
v2

[
(cv2 − dv2) τ − 2 ln

{
ψv2 (τ)− 1
ψv2 (0)− 1

}]
+kzθz
σ2
z

[
(cz − dz) τ − 2 ln

{
ψz (τ)− 1
ψz (0)− 1

}]
where τ = T − t, and

cv1 = kv1 − iuσv1βiρY v1

dv1 =
√
c2
v1 + σ2

v1

[(
β2
i + γi

)
(iu+ u2) + 2a (1 + β) (ξmiu+ ψm (u))

]
cv2 = kv2 − iuσv2βiρY v2

dv2 =
√
c2
v2 + σ2

v2

[(
β2
i + γi

)
(iu+ u2) + 2a (1 + β) (ξmiu+ ψm (u))

]
cz = kz

dz =
√
c2
z + 2 (1 + βi)σ2

z (iuξm + ψm (u))
ψI (τ) = fIe

−dIτ for I = v1, v2, z
fI = (cI − dI) /(cI + dI) for I = v1, v2, z

Finally, we evaluate put option prices following the numerical procedure suggested by Carr and
Madan (1999).
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