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Abstract

Fake news has been influential and topical recently. The senders intentionally produce

fake news to benefit financially or politically from leveraging them to mislead the receivers

. We propose and fully solve a game theoretic model which captures the tension between

the sender and the receiver of fake news. We have a potentially infinite horizon continuous

time model with two agents with asymmetric information where the receiver does not know

whether the sender is sending fake news. The receiver receives a stream of news from the

sender, which contains both true news and fake news if it is a fake news sender. The fake

news differentiates from the true news in that their content follow different distributions. Based

on the news the receiver observes, she updates her belief on whether the sender is sending

fake news, then she dynamically decides whether to continue getting news from this source.

The sender dynamically decides the volume of the fake news facing a trade-off between the

immediate gain from making the receiver reads more fake news and the loss in the future

due to the loss of trust of the receiver. We prove the existence and uniqueness of Markov

equilibrium and show insights from the equilibrium strategies and payoffs. Practically, fake

news senders are specialized while the receivers are relative naive, therefore we model and
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analyze an off-equilibrium case where the receiver is not accurately anticipating the fake news

sender’s behavior.

1 Introduction

Fake news is not a new issue but it has become topical recently as it is argued to be very effective to

society these days (Parkinson 2016). Similar to Allcott and Gentzkow (2017), we define fake news

as false news articles that are intentionally designed to mislead readers. These articles could be

spread through traditional media like newspaper, TV or social media. The goal of this paper is to

provide a model that captures the tension between a fake news sender, which could be a traditional

news outlet or an identity on some social media, and a news receiver, who will benefit from true

news while harmed by fake news.

To illustrate the strategies and payoffs of the fake news sender (referred to as “sender” hereafter)

and the news receiver (referred to as “receiver” hereafter), we propose and fully solve a game

theoretic model. We have a potentially infinite horizon continuous time model with two agents

with asymmetric information where the receiver does not know whether the sender is sending fake

news at the beginning and learns this information as the game proceeds. The receiver observes a

stream of news, which is a stream of true news if the sender is not a fake news sender whereas a

mixture of true news and fake news if the sender is a fake news sender. To fit with the real-time

feature of the news, we model that the news are observed piece by piece discretely but can be at

any moment on the continuous time line. Also, in our model, both the sender and the receiver

are making decisions dynamically at every moment contingent on what they have observed in the

game. Specifically, the receiver decides whether to trust the sender, which from the receiver’s
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point of view, has some possibility of containing fake news. The sender decides the intensity of

fake news in the stream while facing the trade-off between the immediate gain from misleading

the receiver and the potential loss in the future due to the increasing suspicion of the receiver. To

capture the distinction between fake news and ordinary news, we model each piece of news as a

random variable and assume that the distribution of a piece of fake news is different from that of

true news, which is consistent with the characterization from the machine learning literature that

aims at detecting fake news (for example, Conroy et al. (2015) and Rubin et al. (2015)). The

distributions can be interpreted is various ways, including the likelihoods of occurrence of events,

the linguistic features or the likelihoods of passing some fact checking tools.

We prove the existence and uniqueness of a Markov equilibrium in our model. To provide

insights, we then use some numerical examples to illustrate the players’ strategies and payoffs. On

the sender’s side, we show that the sender’s optimal strategy is to be careful and not too aggressive

to keep the receiver from abandoning this source. Also, we compare the sender’s payoffs when the

receiver anticipates the distribution of fake news correctly and incorrectly. On the other hand, we

show that no matter whether the receiver knows the distributions, the most important thing for her

is to have at least some suspicion about the source at the beginning. We also show the receiver’s

benefit from having better understanding of the distributions, while in practice the receiver needs

to balance this benefit with the cost of learning the distributions.

2 Literature Review

Our paper is mainly related to three streams of literature in economics, including communication

games, media market analysis and deception games. In this section, we will discuss the relationship
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between our model and earlier literature and why it is necessary to make the refinements to fit with

the fake news settings.

In communication game literature, researchers are interested in the commitment power of the

sender. For example, Crawford and Sobel (1982) characterized the case where there is no com-

mitment while Kamenica and Gentzkow (2011) explored the case where there is full commitment.

We argue that in the fake news settings, the commitment power is actually somewhere between the

two extremes — the receivers are not clear about whether the sender is trustful or not. Especially,

the trust of the receiver towards the sender is updated dynamically through observing the sender’s

behavior. For example, the receiver will trust the sender more when the receiver does some fact

checking and the sender’s message passes it and vice versa. Therefore, in our model, the receiver

is dynamically Bayesian learning the sender’s commitment power through time. Such a learning

process can also be interpreted as a lying cost in the Kartik (2009) model, because the sender is

suffering from a loss of trust in the future if he lies.

In traditional media market research, includingMullainathan and Shleifer (2002) and Gentzkow

and Shapiro (2006), the incentives of the media are assumed to be attaining more revenue by selling

more products. However, we argue that in the fake news settings, the fake news media are aiming at

misleading more readers. The difference is that, in our model, we specify how the sender’s payoff

differs based on the receivers’ trust, even when the receivers consume the news. Also, we use a

dynamic continuous time model to specify the continuation payoff of the sender, which was only

generally characterized in previous literature. This continuous time model can serve as a basis for

more fruitful research around this topic, for example, how the sender would set the specific timing

of the fake news to make it most efficient.

Finally, our research is related to the deception games literature because the fake news sender
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can be seen as a deceiver trying not to be detected as fake. Our model is most related to the

dynamic deception game model developed by Anderson and Smith (2013) because in both models,

the sender can deceive due to some noise and we are using the same solution concept, namely

Markov equilibrium. This is also one of our major differences from Gentzkow and Shapiro (2006):

They focus on the aspect that the fake news senders can deceive because the receivers have their

own belief about the reality, while we explore the aspect on how random noise help the senders

to deceive, which we believe is complementary to their work. Compared to Anderson and Smith

(2013), we generalized their model because in the fake news settings, each piece of news is observed

discretely and can follow arbitrary distributions.

3 Model development

To model the traffic of news and the interaction between the sender and the receiver, we propose a

game-theoretic model based on point processes. In this section, we first provide a brief overview

of point processes and then specify the players’ information and payoff structures in our model.

3.1 Point processes

A point process is a type of stochastic process that models the occurrence of events as a series of

random points in time or geographic space (Xu et al. (2014)). For example, in the context of this

study, the receiver’s observation of each piece of news can be modeled as a point occurring along

the time line. We can describe such a point process by N(t), which is an increasing non-negative

integer-valued counting process such that N(t2) − N(t1) is the total number of points that occurred

within the time interval (t1, t2]. Most point processes can be fully characterized by the conditional
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intensity function defined as follows (Daley and Vere-Jones (2007)):

λ(t |Ht) = lim
∆t→0

Pr(N(t + ∆t) − N(t) > 0|Ht)

∆t
(1)

where Ht is the history up to time instant t, which includes all the information before t. The

intensity measures the probability of instantaneous point occurrence given the previous history. To

be specific, given the historyHt , the probability of a point occurring within (t, t +∆t] is λ(t |Ht)∆t.

It is worth noting that the commonly used Poisson processes can be seen as a special kind

of point processes where the intensity λ(t |Ht) is independent of the history Ht . If the intensity

λ(t |Ht) is constant over the whole process, then the point process reduces to a homogeneous Poisson

process, and if the intensity λ(t |Ht) is not constant but can be a deterministic function of time t and

independent of the history, then the point process reduces to a nonhomogeneous Poisson process.

3.2 Players’ information structure

In the game we are modeling, there are two players—the sender and the receiver—and there is

information asymmetry in the game: the sender has perfect information about the receiver, whereas

the receiver does not know whether the sender is sending fake news or not. We will discuss their

information structure in detail in this subsection.

In the game, the receiver observes the incoming traffic, which is a mixture of true news and

fake news in the case we are interested in whether the sender is a fake news sender. We assume

that the true news is exogenous whereas the fake news is endogenously decided by the sender. We

need to model two characteristics of each piece of news: the timing and the content. We use two

point processes to model the timing of each piece of fake news and true news. Specifically, we

use Na(t) to denote the stochastic process that counts the number of pieces of fake news up to
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time t and similarly use N0(t) to denote the count of true news. Following (1), denote Λ0(t |Ht)

and Λa(t |Ht) as the conditional intensity functions of N0 and Na, respectively. We assume that

Λa, the intensity of fake news, is decided by the sender, whereas Λ0, the intensity of true news,

is exogenous and constant for the entire process, which implies that N0 is a Poisson process. For

the content, as mentioned in the introduction, we use two random variables to model the content

of each piece of fake news versus true news. Formally, denote Z0, Za : Ω → R to be the random

variables that characterizes true news and fake news. Practically, the event space Ω is determined

by how the receiver perceives fake news against true news. In the present model, we do not go

into the receiver’s decision model of Ω. We assume Ω to be exogenous. Denote the distributions

of Z0, Za to be P0, Pa respectively. Pa characterizes the fake news generation technology of the

sender. The smaller the difference between P0 and Pa, the better technology the sender has because

the sender can be more deceptive. We assume P0 and Pa to be exogenous and invariant through

the game. To summarize, the receiver observes the incoming news traffic as a stochastic process Y

that subjects to

dY = Z0dN0 + ZadNa (2)

However, with this observation of Y , the receiver does not know whether the sender is sending

fake news or not. Formally speaking, there are two states of world: In State 1, the sender is sending

fake news, and Y comes from (2). In State 2, the sender is only sending true news, and Y subjects

to dY = Z0dN′0, where N′0 is a point process whose intensity Λ
′
0 satisfies Λ

′
0 = Λ0 + Λa. At each

time t, the receiver has a belief q(t) ∈ [0, 1] that the world is in State 1 and a belief 1 − q(t) that the

world is in State 2. q is Bayesian updated through the observation of Y and follows:
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dq =
q(1 − q)(ΛaPa(dY )+Λ0P0(dY )

Λ0+Λa
− P0(dY ))

q · ΛaPa(dY )+Λ0P0(dY )
Λ0+Λa

+ (1 − q)P0(dY )
(3)

When proposing (3), we are making three assumptions. First, the receiver is learning whether

it is fake news sender from and only from the content of news, which means that the timing of news

is not informative to the receiver. We assumes that Λ′0 = Λ0 + Λa in State 2 to make sure that the

timing of news in both states is expected by the receiver to be the same, which makes the timing

does not include information of the existence of the sender. Second, we assume that the receiver

knows P0 and Pa beforehand, which could come from some previous experience or research. In

the latter part of our paper, we relax this assumption to analyze and compare the case where the

receiver does not have accurate information about the distributions. Third, we assume that the

receiver has correct anticipation ofΛ0 andΛa, conditional on the world in State 1. This assumption

is mandatory when one is trying to analyze the Bayesian Nash equilibrium of a game-theoretic

model. The solution concept we are using, Markov equilibrium, is a subset of Bayesian Nash

equilibrium, which makes this assumption required. We will discuss our solution concept in detail

in Section 3.

The information is asymmetric in the game. While the receiver does not know whether the

world is in State 1 or State 2, the sender knows that he is sending fake news, meaning that the world

is in State 1. Besides the timing and content of the fake news he sends, we assume that the sender

also knows the timing and content of occurred true news, which is natural. We also assume that the

sender knows the initial belief of the receiver, q(t0). Then from (3), the sender knows the receiver’s

belief, q(t), at any moment t.
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3.3 Players’ payoff structure

With the information structure above, next we model the decision variables and payoff structure for

both players.

First, for the receiver, it is worth noting that she is deciding whether to continue using this

source of news, instead of picking the pieces of news from this source that look authentic and using

them. Thus, the receiver needs to decide whether to abandon this news source, fully depend on it,

or partly depend on it. Denote p(t) ∈ [0, 1] as the receiver’s dependence on the focal news source at

time t, which is her decision variable. Normalize her payoff from the outside option, like relying on

other news sources, as 0. We assume that the receiver will get a unit positive payoff from depending

on each piece of true news. On the other hand, we assume that the receiver suffers L loss when she

depends on a piece of fake news. With a belief process q(t), through dynamically choosing p(t)

based on the history before t, the receiver maximizes her expected payoff:

E[
∫ ∞

0
p((1 − q)(Λ0 + Λa) + q(Λ0 − LΛa))dt] (4)

The sender’s goal is to mislead the receiver. Therefore, his payoff depends on how much fake

news is taken by the receiver and how much the receiver depends on the fake news. Through

dynamically choosing the fake news intensity Λa(t), the sender maximizes his payoff:

E[
∫ ∞

0
e−rt pΛadt] (5)

in which r is the time discount factor. We did not assume a time discount factor for the receiver,

and we will explain why in the equilibrium analysis. We assume that the capacity of the sender is

c, that is, Λa(t) ∈ [0, c] for all t.
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4 Equilibrium analysis

In the present research, we focus on the Markov equilibrium of the game, where both players’

strategies are Markovian and at each time t depends only on the receiver’s current belief q(t), which

is also known by the sender. In other words, we want to analyze the equilibrium strategies where

both decision variables of the players, p and Λa, can be written as deterministic functions of q.

To simplify notation, define function g(·; q,Λa) as

g(·) =
q(1 − q)(ΛaPa(·)+Λ0P0(·)

Λ0+Λa
− P0(·))

q · ΛaPa(·)+Λ0P0(·)

Λ0+Λa
+ (1 − q)P0(·)

Then, equation (3) can be rewritten as

dq = g(dY )

Based on the property of point processes, we know that at any time period dt, the likelihood of

dN0 + dNa ≥ 2 is O(dt2). Therefore, with likelihood 1−O(dt2), dN0 and dNa are either 0 or 1 and

are not both 1. Therefore,

dq = g(Z0)dN0 + g(Za)dNa (6)

Now, we start analyzing the equilibrium strategies of the players.

Because both players’ strategies are only dependent on q and equation (6) suggests that the

receiver’s strategy p will not influence the evolution of q, the receiver’s current decision will not

have any impact in the future. Therefore, the receiver’s dynamic optimization problem is equivalent

to optimization at each static time point t. This is the reason why we did not assume time discount

factor for the receiver, since it does not affect her strategy. With this argument, the receiver’s

optimization problem (4) can be rewritten as
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p(q) ∈ arg sup
p∈[0,1]

p((1 − q)(Λ0 + Λa) + q(Λ0 − LΛa)) ∀q ∈ [0, 1] (7)

For the sender, denote V(q) as the maximal payoff he can get, given the receiver’s strategy p, if

the initial belief of the receiver, q(t0), is q. Formally,

V(q) � E(
∫ ∞

0
e−rt pΛadt |q0 = q)

Then, with the Hamilton-Jacobi-Bellman equation, we have

rV = sup
Λa∈[0,c]

pΛa +
1

dt
E(dV) ∀q ∈ [0, 1]

That is,

rV = sup
Λa∈[0,c]

pΛa + V ′(E[g(Z0)|q,Λa]Λ0 + E[g(Za)|q,Λa]Λa) ∀q ∈ [0, 1]

which can be separated into two conditions:

Λa(q) ∈ arg sup
Λa∈[0,c]

pΛa + V ′(E[g(Z0)|q,Λa]Λ0 + E[g(Za)|q,Λa]Λa) ∀q ∈ [0, 1] (8)

and

rV = pΛa + V ′(E[g(Z0)|q,Λa]Λ0 + E[g(Za)|q,Λa]Λa) ∀q ∈ [0, 1] (9)

Thus, in all, a Markov equilibrium is a 3-tuple (p,V,Λa), where each entry is a function of q,

such that conditions (7),(8),(9) are satisfied.

With the definition above, we have the following result:

Theorem 1: There exists a unique Markov equilibrium.

Proof: We prove this by solving both players’ equilibrium strategies from (7), (8), (9). For details

of proof and equilibrium strategies, see appendix.
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5 An illustrative example

In this section, to illustrate and analyze the equilibrium strategies, we use an example where both

distributions of Z0 and Za, P0 and Pa, are binary distributions. Other than the computational

convenience, another advantage of choosing the binary distributions is that it is easier to measure

the efficiency of the sender’s technology for producing fake news. To be specific, assume that there

are two states in the event space of Z0 and Za, Ω, denoted as State M and State N . Z0 is realized

as State M with probability p0, realized as State N with probability 1 − p0; Za is realized as State

M with probability pa, realized as State N with probability 1 − pa. The efficiency of the sender’s

technology can be measured by the difference between P0 and Pa, which in this case reduces to

|p0 − pa |. When |p0 − pa | = 0, the sender’s technology is flawless and the receiver has no way to

distinguish between true and fake news, which makes our research trivial. Thus, we study the case

where |p0 − pa | , 0.

Our focus in this section is to illustrate both players’ strategies and payoffs and understand how

the sender’s technology will influence them. First, we are interested in how the game proceeds as

the time evolves and we have the following result when both players are playing their equilibrium

strategies.

Theorem 2: When 0 < q < 1, E[dq/dt] > 0. Therefore, there are only two absorbing states: q = 0

and q = 1. If the receiver’s initial belief q0 > 0, q→ 1 when t →∞.

Proof: See appendix.

From Theorem 2, we observe that if the receiver’s initial belief is strictly between 0 and 1, then

this game is like a Ponzi Scheme: At the end of the game, the receiver learns that there is a fake

news sender; however, she lost some value through the learning process, which can be seen as the
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cost of learning, and the sender also gains as a result of the game.

To visualize both players’ strategies and payoffs, we use a numerical example. Because we are

interested in the influence of the sender’s technology, we set parameters including L, c, r,Λ0, p0 to

be fixed and analyze the change of pa. For example, we set L = 3, c = 3, r = 0.1,Λ0 = 1, p0 = 0.1,

and compare strategies and payoffs between cases where pa = 0.3 and pa = 0.4.

Figure 1: Comparison of sender’s strategies

Figure 1 depicts the sender’s strategies in the two cases. In both cases, the sender fully employs

his capability when the receiver’s belief is below a threshold, and starts declining after the threshold

with the increase of the belief. The intuition is that when the receiver is more suspicious of the news

source, the sender needs to be more cautious to keep the receiver from abandoning the source. The

sender’s strategies fully overlap in the two cases, suggesting that the strategies remain the same with

different technologies. This is because given the belief of the receiver, the receiver’s optimization

problem (7) is independent of the sender’s technology, which makes the intensity needed by the

sender to keep the receiver using the source is independent of the sender’s technology.

Figure 2 depicts the receiver’s strategies. With a lower belief, implying a higher trust of the

news source, the receiver will fully depend on the source. As the belief increases, the receiver
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Figure 2: Comparison of receiver’s strategies

will rely less on the source. The dependence converges to 0 as the belief converges to 1. It is

worth noting that the receiver’s strategies converge to 0 continuously because, in the equilibrium,

the sender is also carefully managing his intensity to ensure that he is not too aggressive, which

provides the receiver some incentive to keep using the news source even if she has significant belief

that it could be a fake news sender. Another observation from Figure 2 is that when the sender has

a better technology (pa = 0.3), the receiver will be less dependent on the news source, given the

same belief.

Figure 3: Comparison of sender’s payoffs
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Figure 3 depicts the sender’s value function V(q), which can be interpreted as the sender’s

expected payoff throughout the gamewhen the receiver’s initial belief q(t0) = q. It is straightforward

to demonstrate that V is monotonously decreasing with q because the more trust the receiver has

at the beginning, the more room for the sender to extract profits. Comparing the two cases where

the sender’s technology differs, we observe that if the initial belief of the receiver is low, the sender

is better off with a superior technology; meanwhile, if the initial belief of the receiver is high,

the sender is better off with an inferior technology. The intuition here is that having a superior

technology has two effects: First, the difference between the distributions of true and fake news is

less, therefore the receiver will update her belief slower. Second, as shown in Figure 2, the receiver

will be more cautious and depend on the news source less, especially when her belief is high.

When the initial belief of the receiver is lower, there is a longer period in terms of belief where

the receiver’s strategies—given different technologies of the sender—do not diverge, which makes

the first effect overwhelms the second effect more. On the other hand, when the initial belief of

the receiver is relatively high, the second effect overwhelms the first effect. This contrast between

these two effects leads to the comparison of the sender’s payoffs, shown in Figure 3.

With theorem 2, the receiver’s expected payoff (4) can be calculated (for details, see appendix)

and is shown in Figure 4.

When there is a fake news sender, it is no surprise that the receiver needs to incur more cost

of learning if she starts with a lower initial belief, and this cost converges to infinity when the

initial belief is approaching 0. Therefore, having an initial belief that is strictly larger than 0 can

significantly reduce this cost. On the other hand, from Figure 2 we see that the receiver’s strategy

holds the same when her belief is under a threshold, implying that when the sender is only sending

true news, having a reasonably low initial belief that is different from 0 will not hurt the receiver
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Figure 4: Receiver’s expected payoffs

at all. Taking both possibilities into account, it is suggested that the receiver should have some

suspicion (a reasonably low initial belief) for any news source.

6 Off-equilibrium analysis

In the previous section, we illustrated equilibrium strategies and payoffs, assuming that the receiver

knows accurately what technology the fake news sender would be using. However, in practice, this

assumption could be too restrictive. In behavioral game theory, it is argued that players may need

time and effort to learn the structure of the game (for example, Fudenberg and Levine (2016) and

Sargent (1999)), which makes the Nash equilibrium concept not applicable. In our case, the fake

news sender is specialized in producing fake news while the receiver can be an ordinary person

which is relatively naive. Therefore, assuming that the receiver understands perfectly the structure

of the game at the beginning is not realistic. In this section, we relax this assumption and explore a

case where the receiver does not perfectly anticipate the sender’s technology to get more insights.

In this case, following the same arguments as before, we keep assuming Z0 and Za to be binary
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distributions, and keep using previous notations p0 and pa to model the distributions of Z0 and Za.

However, in this case, the receiver is anticipating the sender’s technology, pa, to be p′a, which is not

equal to pa. Therefore, instead of using the equilibrium strategy where the technology is pa, the

receiver uses the equilibrium strategy where the technology is p′a, which is suboptimal in this case.

Also, the receive updates the belief q based on her wrong anticipation, meaning that in function

g(·) the parameter pa is substituted by p′a, and Λa is substituted by the receiver’s anticipation on the

sender’s attacking intensity, which is the sender’s equilibrium strategy when his technology is pa.

Assume that the sender knows how the receiver estimates his technology and therefore updates his

strategy to be optimal given the receiver’s strategy. In other words, in this case, equation (7) does

not hold because the receiver is not optimizing, whereas equations (8) and (9) hold given a certain

p, which is the equilibrium strategy of the receiver where the technology is p′a.

We say that the receiver underestimates the sender’s technology if p0 < pa < p′a or p′a < pa <

p0. The larger (p0 − p′a)/(p0 − pa) is, we say that the sender is more underestimated. Practically,

this underestimation is likely to come from the sender’s improvement of technology, which is not

known by the receiver.

Analogous to Theorem 2, we are still interested in how the game proceeds as time evolves.

However, the result is different with the following property:

Theorem 3: Assume that Lc > Λ0. If the sender is underestimated, then there exists a unique

qe ∈ (0, 1), such that:

i) when 0 < q < qe, E[dq/dt] > 0

ii) when q = qe, E[dq/dt] = 0

iii) when qe < q < 1, E[dq/dt] < 0

Therefore, other than q = 0 and q = 1, qe is another absorbing state. If 0 < q(t0) < 1, as t →∞, q
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will fluctuates around qe and the sender’s intensity fluctuates around Λa(qe). Specifically, Λa(qe)

satisfies:

i) Λa(qe) =
p0−p′a

Lp0+p′a−pa−Lpa
Λ0, if

p0−p′a
p0−pa

< c
c+Λ0
(1 + L).

ii) Λa(qe) = c, if p0−p′a
p0−pa

≥ c
c+Λ0
(1 + L)

Proof: See appendix.

The assumption at the beginning is trivial: When Lc < Λ0, there is actually no game because

the sender is not capable enough to hurt the receiver as much as her gain, so the receiver will

always be fully dependent on the news source and still benefit even when it contains fake news.

From Theorem 3, as t → ∞, q does not converge to 1, therefore the receiver’s expected payoff at

each time does not converge to 0, so we cannot use equation (4) to evaluate her expected payoff

throughout the game. Instead, we use the intensity of fake news in the stream in the long term to

evaluate the receiver’s payoff. If the receiver’s initial belief is q(t0) = 1, then she will abandon the

source at all time; and if the receiver’s initial belief is q(t0) = 0, then she will be receiving fake

news at the sender’s capacity, c, at all time. Other than those two trivial cases, in the long term,

the fake news intensity will fluctuates around Λa(qe). As (p0 − p′a)/(p0 − pa) characterizes how the

sender is underestimated, we see that as long as the receiver does not underestimates the sender too

much, she will ends up with Λa(qe) =
p0−p′a

Lp0+p′a−pa−Lpa
, which is easy to show that it is smaller than

c. Actually, in practical cases like the numerical example we raise in the following, this difference

is significant. Therefore, following the same arguments as in the equilibrium case, the receiver is

suggested to have a low but non-zero initial belief because this will not hurt the receiver at all if

there is no sender but benefits the receiver significantly if there is a sender. In addition, we get the

following result:

Theorem 4: If the receiver has initial belief 0 < q(t0) < 1 and underestimates the sender’s
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technology, she will receive more fake news in the long run if the sender is more underestimated.

Or formally, Λa(qe) is an increasing function with respect to (p0 − p′a)/(p0 − pa).

Proof: See appendix.

This result shows that it is beneficial for the receiver to have better understanding of the sender’s

technology, even with some upfront cost, because it will benefit her payoff in the long term.

In this section, we still use a numerical example, to show the effects of underestimating the

sender’s technology. Specifically, we keep assuming L = 3, c = 3, r = 0.1,Λ0 = 1, p0 = 0.1 while

setting pa = 0.3 and p′a = 0.4.

Figure 5: Comparison of sender’s equilibrium strategy and strategy when the receiver is underes-

timating the sender’s technology

Figure 5 depicts the sender’s strategy when the receiver is underestimating her technology. As

expected, under the same belief, he is attacking with a higher intensity than in the equilibrium

case because he benefits more from the receiver’s higher dependence on the data source than in the

equilibrium strategy (as shown in Figure 2).

Figure 6 depicts the comparison between the sender’s payoff in the off-equilibrium case where

pa = 0.3 and p′a = 0.4; and in those two equilibrium cases where pa = 0.3, 0.4. First, the sender
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Figure 6: Comparison of sender’s payoffs when the receiver is underestimating the sender’s

technology

is strictly better off in the case where equilibrium strategies are played as pa = 0.4. The intuition

is straightforward that the receiver is using the same strategy in these two cases while the sender

has a superior technology. The comparison between the off-equilibrium case and the pa = 0.3

equilibrium case is more complicated. In this comparison, the sender’s technologies are the same,

so the difference comes from the receiver’s underestimation of the sender’s technology, which can

also be interpreted as the improvement of the sender’s technology.

This underestimation has two effects: First, as shown in Figure 2, the receiver has higher

dependence when her belief is high. Second, the Bayes’s Rule suggests that, for each piece of

suspicious news that is realized as State M , the receiver will updates her belief more toward there

being a sender when she underestimates the sender’s technology. Therefore, when the receiver’s

belief is relatively low such that she’s fully dependent on the source, this underestimation will make

her belief updated faster and, as a result, reduce the sender’s payoff. Aggregating these two effects

leads to what we observe in Figure 6: If the receiver’s initial belief is high, the sender is better off

by this underestimation, however, when the initial belief gets lower, this difference shrinks.
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Because improving technology to generate fake news is costly for the sender, this result provides

insight for the sender to make the decision on how much effort he should exert on sharpening his

technology. In either case where the belief is low or the belief is high, improving the technology

will not give him a big boost in payoff; however, when the belief is moderate, the sender may want

to spend more effort to improve his technology.

7 Conclusions and future directions

In the present research, we proposed a game-theoretic model based on a point processes to model

the news traffic that potentially contains fake news and to provide insights for both the sender and

the receiver of fake news. Specifically, we show that for the receiver, having some suspicion of the

news source initially can be greatly helpful, even when the receiver does not accurately anticipate

about the fake news sender’s technology.

Discussions remain open in many aspects around this issue. First, it will be interesting to

understand more synergies between pieces of news. The synergies can include both timing and

content: For example, the sender may need to be consistent on their fake news and gives rein-

terpretation when true news happens. Second, practically speaking, the receiver can decide the

event space of each piece of news, Ω, by choosing different strategies to check them. An Ω with

a higher dimension means higher cost for the receiver but also allows the receiver to have better

understanding on whether there is fake news. How to balance this trade-off is also an important

issue for the receiver. Third, the fake news sender’s technology of generating fake news may be

endogenous, especially practically, senders may face a trade-off between how deceptive the news

is and how much the news can mislead readers.
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