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Abstract

We estimate the effects of temperature on human capital production in India. We show
that high temperatures reduce both math and reading test scores through an agri-
cultural income mechanism—hot days during the growing season reduce agricultural
yields and test scores with comparatively modest effects of hot days in the non-growing
season. The roll-out of a workfare program, by providing a safety net for the poor,
substantially weakens the link between temperature and test scores. Our results imply
that absent social protection programs, climate change will have large negative impacts
on human capital production of poor populations in agrarian economies.
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1 Introduction

To what extent does the human condition vary with weather? This relationship has been

of long-standing interest in the economics literature, and the fact that the earth’s climate is

warming has renewed interest in the effects of weather on economic outcomes (Mendelsohn,

Nordhaus and Shaw, 1994; Dell, Jones and Olken, 2012, 2014; Burke, Hsiang and Miguel,

2015b). Because human capital is an important driver of economic growth (Nelson and

Phelps, 1966; Romer, 1986; Barro, 2000), a critical yet understudied question is the impact

of temperature on human capital production. This question is of particular interest in devel-

oping countries, which will experience disproportionately higher temperatures (Harrington

et al., 2016), where predominantly agrarian livelihoods are climate-exposed, and where indi-

viduals are unable to consumption smooth over aggregate weather shocks (Rosenzweig and

Stark, 1989; Rosenzweig and Wolpin, 1993; Paxson, 1993; Townsend, 1994; Deaton, 1997;

Dercon and Krishnan, 2000; Dercon, 2005; Cole et al., 2013).

We use math and reading test scores for more than 4 million children in primary and

secondary school to examine how high temperatures affect human capital production in India,

where the number of extremely hot days is expected to double by the end of the 21st century

(figure 1). We identify the mechanism of impact through reduced agricultural productivity

and estimate impacts of policy interventions designed to offset fluctuations in agricultural

income. In developed countries, temperature affects performance primarily through exposure

to higher temperatures on the day of the test and the sensitivity of certain parts of the

brain to those higher temperatures, effects that can likely be offset by climate-controlled

classrooms and test centers (Graff-Zivin, Hsiang and Neidell, 2015; Park, 2017).1 However,

in poor countries, human capital production is also affected by agricultural productivity

(Maccini and Yang, 2009), and to the extent that agricultural productivity is temperature

sensitive (Schlenker and Roberts, 2009; Schlenker and Lobell, 2010), higher temperatures

can affect performance through such an income mechanism.2

1We follow Graff-Zivin, Hsiang and Neidell (2015) to examine if similar effects exist in India. We find comparable estimates
(appendix A).

2While not the focus of our paper, hot weather can also affect human capital through harmful effects of early childhood
exposure to extreme temperature on health. A growing literature has documented that exposure to extreme temperatures
has harmful contemporaneous effects on human health (Basu and Samet, 2002; IPCC, 2014; Deschênes and Moretti, 2009;
Deschênes and Greenstone, 2011; Barreca et al., 2016). Such effects in turn have adverse implications for human morbidity and
mortality. Further, evidence suggests that the very young and very old are most sensitive to temperature exposure (Deschênes
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First, using test scores from an India-wide repeated cross-section between 2006-2014, we

show that over a longer-run horizon, measured as the number of hot days in the calendar year

prior to the test, high temperatures affect both math and reading scores; 10 extra days in a

year with average daily temperature above 29◦C (85◦F) relative to 15◦C-17◦C (59◦F-63◦F)

reduce math and reading test performance by 0.03 and 0.02 standard deviations respectively.3

These are large effects: an extra 40 hot days above 29◦C in a year, as is expected in India

by the end of the 21st century, would reduce math and reading test scores by 0.12 and

0.08 standard deviations respectively, equivalent to wiping out the gains from the median

educational intervention.4 We corroborate these findings using a rich longitudinal study from

a large state in Southern India, Andhra Pradesh.

Second, we find strong evidence that the underlying mechanism is the harmful effect of

higher temperatures on agricultural yields and incomes: (a) hot days during the agricultural

growing season have large negative effects on test score performance whereas those in the

non-growing season have minimal effects, (b) the effects of high temperatures are concen-

trated in warmer regions that grow below-median levels of heat resistant crops, and (c) high

temperatures have large negative effects on both agricultural yields and rural wages.5 We

rule out alternative explanations such as heat stress affecting learning in schools, teacher

attendance, and disease prevalence that could, in theory, mediate the relationship between

longer-run temperature and test scores.

Third, we examine the effect of a national policy, designed to offset fluctuations in agricul-

tural income, in modulating the effect of temperature on test scores. We consider the world’s

largest workfare program, the National Rural Employment Guarantee Scheme (NREGA)

and Moretti, 2009; Deschênes and Greenstone, 2011). The excess sensitivity of infants to heat may stem from the fact that their
thermoregulatory systems are not yet fully functional (Knobel and Holditch-Davis, 2007). The fact that fetal and infant health
may be especially sensitive to temperature is important in light of recent evidence pointing to the persistent impacts of early-life
environmental conditions on long-run outcomes (Almond, Edlund and Palme, 2009; Almond and Currie, 2011; Sanders, 2012;
Black et al., 2013; Isen, Rossin-Slater and Walker, 2015; Bharadwaj, Løken and Neilson, 2013; Bharadwaj et al., 2017).

3We use the term “longer-run” temperature to distinguish these effects from those of day-of-test temperatures documented
in appendix A.

4See McEwan (2015) for a review of educational interventions in developing countries. The effect of the median educational
intervention is between 0.08 and 0.15 standard deviations.

5Higher wages increase human capital investments (Jacoby and Skoufias, 1997; Jensen, 2000; Maccini and Yang, 2009), and
increased investment in human capital has been shown to increase test scores (Das et al., 2013). More recently, Shah and
Steinberg (2017) have shown that higher wages can reduce human capital through an opportunity cost mechanism. If extreme
weather affects household income, such income effects could be another potential channel through which extreme temperatures
affect human capital production in the long run. Relatedly, recent research in India has documented a causal link between
rainfall and agricultural incomes, as well as hot weather and mortality (Burgess et al., 2017). Our detailed temperature and test
score data that includes information on the day of the test, allows us to separately estimate the direct neurological short-run
effect as distinct from long-run effects that may differ due to other channels and endogenous adaptation.
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that guarantees every rural household in India 100 days of paid work each year. We find

that NREGA attenuates the marginal effect of extra hot days on both math and reading

scores by 38%. We also show that hotter days in the growing season in the previous year

increase participation in NREGA. Our NREGA results not only reinforce the underlying

agricultural income mechanism linking hotter days to lower test scores, but also demon-

strate the critical role of social protection programs in helping the poor cope with climate

stressors.

In investigating how higher temperatures affect performance and human capital, we con-

nect two distinct literatures. The first is the literature that examines the relationship between

weather and economic outcomes, within which a small number of new papers have considered

the relationship between temperature and human capital (Graff-Zivin, Hsiang and Neidell,

2015; Park, 2017; Cho, 2017).6 In contrast to prior work that has emphasized a single path-

way between weather and an outcome of interest, we show that there can exist multiple

mechanisms between weather and a single outcome of interest (e.g., human capital) over

different time horizons. We find that day-of-test effects are likely driven by the physiological

effects of heat stress (short-run temperature), whereas annual effects are likely driven by

the effects of weather on livelihoods (longer-run temperature).7 Consequently, adaptation

to a single climate stressor will require multiple policy instruments; climate-controlled class-

rooms or climate-cognizant test calendars will reduce the effects of day-of-test temperature,

but income-stabilizing social protection programs may be needed to reduce the damage from

longer-run temperature. Importantly, existing literature on climate change has used the

difference between short-run weather and long-run climate as an estimate of the magnitude

of adaptation, with short-run estimates giving impacts without adaptation, and long-run

estimates measuring impacts inclusive of adaptation (Dell, Jones and Olken, 2014; Burke

6A rich literature considers the impacts of higher temperatures on a variety of economic outcomes including, but not limited
to, output (Burke, Hsiang and Miguel, 2015b; Somanathan et al., 2015; Burke and Emerick, 2016), mortality (Deschênes and
Moretti, 2009; Barreca et al., 2016; Burgess et al., 2017), and conflict (Burke, Hsiang and Miguel, 2015a).

7In appendix A, we estimate the effect of short-run temperature – measured as the average temperature on the day of
the test – on cognitive performance. We find that the day-of-test average temperature above 27◦C (80◦F) relative to day-of-
test average temperature below 23◦C (73◦F) reduces math score performance by 0.3 standard deviations. Consistent with a
physiological mechanism wherein the temperature-sensitive part of the brain performs mathematical tasks, we find no effect
of higher temperatures on reading scores (Hocking et al., 2001). Our methodology and estimates are remarkably similar to
related work in developed countries (Graff-Zivin, Hsiang and Neidell, 2015; Park, 2017; Cho, 2017). While these effects are
temporary, we recognize that more permanent economic effects can arise from short-term physiological effects of heat stress
and air pollution on performance when high-stakes exams introduce path dependence in human capital production, as in the
cases of Park (2017) and Ebenstein, Lavy and Roth (2016), respectively.
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and Emerick, 2016). To the best of our knowledge, we are the first to provide evidence of

different structural relationships over different time scales between temperature and a single

economic outcome, suggesting that inferring the extent of adaptation from comparisons of

the effects of short- and longer-run temperature may not be appropriate in all contexts.8

Second, we build on a vast literature on the effects of social protection programs.9 Even

though there is considerable research on the level effects of such programs, little is known

about the extent to which such social protection programs can attenuate the effect of weather

shocks (Adhvaryu et al., 2015). Our paper is the first to provide evidence on the role of social

protection programs in helping households in poor countries to cope contemporaneously with

extreme temperatures.10 As such, we demonstrate that social protection programs such as

NREGA reduce the temperature sensitivity of poor households, providing benefits that have

previously received little consideration (Hsiang, Oliva and Walker, 2017).11 In doing so, we

identify an important policy instrument for adaptation, especially in developing countries

where the rural poor are often unable to smooth consumption over district-level aggregate

weather shocks (Rosenzweig and Stark, 1989; Rosenzweig and Wolpin, 1993; Paxson, 1993;

Townsend, 1994; Deaton, 1997; Dercon and Krishnan, 2000; Dercon, 2005; Cole et al., 2013;

Burgess et al., 2017).

The rest of the paper is organized as follows. Section 2 describes the data. In section 3

we outline the empirical strategy. In section 4 we describe our results and the underlying

mechanism, and discuss competing explanations. In section 5 we demonstrate the role of

social protection programs in attenuating the marginal effect of temperature. Finally, in

section 6 we provide concluding remarks.

8If we were to compare our estimates of the effect of short- and longer-run temperature, we would incorrectly conclude
that the rural poor were able to adapt almost perfectly (97%) within a year, masking the large effects of heat stress on both
physiology and livelihoods and subsequently human capital production. Relatedly, recent work by Shrader (2016) provides a
method to use informational interventions to quantify the ex-ante benefit of adaptation.

9See, for example, Fiszbein et al. (2009) and Parker and Todd (2017) for exhaustive reviews on conditional cash transfers.
10Furthermore, we isolate the distributional consequences of heat stress arising out of income differences from non-linearities

in the so-called “damage function” (Hsiang, Oliva and Walker, 2017). The NREGA research design (employing an event-study
framework and a triple differences approach) allows us to overcome the econometric challenge of non-random assignment of
observable drivers of heterogeneity (e.g., income) in the marginal effects of heat stress.

11The closest work to us in this regard is Fetzer (2014), who shows that NREGA weakens the relationship between rainfall
and conflict.
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2 Data

In this section, we provide details on the various data sets we employ to uncover the relation-

ship between temperature and test scores. We use multiple data sets on test performance

as well as detailed gridded data on daily weather variables, including temperature, rainfall,

and humidity. We obtain agricultural data from the International Crops Research Institute

for Semi-Arid Tropics (ICRISAT).

2.1 Test Scores

We obtain data on cognitive performance from two sources of secondary data—the Annual

Status of Education Report (ASER) and the Young Lives Survey (YLS). The ASER provides

a repeated cross-section that allows us to generate a pseudo-panel at the district level for all

of India, whereas the YLS is an individual panel that provides coverage for the single state

of Andhra Pradesh.

2.1.1 Annual Status of Education Report

The Annual Status of Education Report is a survey on educational achievement in primary

school children in India and has been conducted by Pratham, an educational non-profit, every

year starting in 2005.12 The sample is a representative repeated cross section at the district

level. The ASER surveyors ask each child, in his or her native language, four potential

questions in math and reading. In each subject, the surveyors begin with the hardest of the

four questions. If a child is unable to answer that question, they move on to the next hardest

question, and so on and so forth.

The ASER is a valuable data set for our analysis for multiple reasons. First, ASER

provides national coverage and a large sample size; in our study period of 2006-2014, ASER

conducted more than 4 million tests across every rural district in India.13 Given the con-

siderable spatial variation in weather in India, the national coverage of ASER allows us to

study the impacts of temperatures on test scores over a large support. Importantly, it is

12We are incredibly grateful to Prof. Willima Wadhwa, who continues to generously make this data available to researchers.
13While the ASER originated in 2005, that wave is not in the public domain, and the organizing body is no longer making

the 2005 data available.
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administered each year on two or three weekends during the period from the end of Septem-

ber to the end of November, limiting considerations of spatially systematic seasonality in

data collection. Second, unlike schools-based data, ASER is not administered in schools and

therefore covers children both in and out of school. To ensure that children are at home,

the test is administered on weekends. This allows us to measure effects on test performance

without confounding selection related to school attendance or access to schools. ASER tests

children aged 5-16, who are currently enrolled, dropped out, or have never enrolled in school.

In appendix E.1, we show average raw test scores for both math and reading from 2006-2014.

2.1.2 Young Lives Survey

While the ASER has the advantages of national coverage and a large number of tests, its

repeated cross-sectional nature (as opposed to an individual level panel) doesn’t allow us

to account for the role of prior human capital accumulation. Therefore, we also employ

the Young Lives Survey, which is an international study of childhood poverty coordinated

by a team based at the University of Oxford. In this study we use data from the period

between 2002 and 2011 in the state of Andhra Pradesh (unlike ASER, YLS is conducted

in a single state in India).14 The study has collected data on two cohorts of children:

1,008 children born between January 1994 and June 1995, and 2,011 children born between

January 2001 and June 2002. We limit our sample to the younger cohort, since we have

at least three survey rounds with test scores data for those children. Data was collected

from children and their families using household visits in 2002, 2006, 2009, and in 2013/14.

Extensive test data were collected from children in the sample in all rounds of the survey.

The tests differed in their focus on which dimension of cognitive achievement they attempted

to capture and how closely they related to the formal school curriculum in Andhra Pradesh;

often, different tests were administered to children across rounds in order to ensure that

they were appropriate for the children’s age and cureent stage of education. In contrast to

the ASER tests, the YLS tests are much longer and more comprehensive, with the math

questionnaire containing 30 questions and the reading test covering close to 100 questions.

14Andhra Pradesh is the fourth-largest state in India by area and had a population of more than 84 million in 2011. Admin-
istratively the state is divided into districts, which are further sub-divided into sub-districts, which are the primary sampling
units within our sample.
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Further, YLS has particularly rich information about the socio-economic background of the

children’s households, child-specific data on time-use, nutritional intake data, health data,

and data on medical expenditures.

2.2 Weather Data

In an ideal research setting, we would use observational weather data from ground stations

in each location where the ASER and YLS data were collected. However, the spatial and

temporal coverage of ground stations in India is severely lacking. In the absence of consis-

tent coverage from ground weather stations, we use temperature, precipitation, and relative

humidity reanalysis data from the ERA-Interim archive, which is constructed by researchers

at the European Centre for Medium-Term Weather Forecasting (ECMWF). Such reanal-

ysis data has been supported in the literature as generating a consistent best-estimate of

weather in a grid-cell and has been used extensively in economics (Schlenker and Roberts,

2009; Schlenker and Lobell, 2010; Auffhammer et al., 2013). We use the ERA-Interim daily

temperature and precipitation data on a 1 x 1 degree latitude-longitude grid, from 1979 to

present day. Dee et al. (2011) provide more details about the methodology and construction

of the ERA-Interim data set. To construct weather variables for each district or village,

we construct an inverse-distance weighted average of all the weather grid points within a

100-kilometer range of the district centroid. For each district, we construct the daily av-

erage temperature, daily total rainfall, and daily mean relative humidity. Figure 2 shows

the spatial distribution of temperature in India during the study period and figure 3 shows

the distribution of daily temperatures for India and the state of Andhra Pradesh. Figure

E.1 shows the long-run variation in temperature in Andhra Pradesh (panel A) and all India

(panels B, C).

2.3 Other Data Sources

We use multiple data sets to uncover the mechanisms underlying the relationship between

temperature and test scores. In particular, we use data on agricultural yields (ICRISAT)

and data on NREGA.
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Agricultural Yields and Rural Wages

We use agricultural data from the Village Dynamics in South Asia Meso data set, which

is compiled by researchers at the International Crops Research Institute for the Semi-Arid

Tropics (ICRISAT, 2015). The data set provides district-level information on annual agricul-

tural production, prices, acreage, and yields, by crop. We generate aggregate price-weighted

district level measures of total yield in each district for the six major crops (rice, wheat, sug-

arcane, groundnut, sorghum, and maize), as well as the five major monsoon crops (excludes

wheat). ICRISAT also provides data on district-level averages of rural wages.

National Rural Employment Guarantee Act

The National Rural Employment Guarantee Act, also known as the Mahatma Gandhi Na-

tional Rural Employment Guarantee Act, is the largest workfare program in the world. It

legally guarantees each rural household up to 100 days of public-sector work each year at

the prevailing minimum wage. It was rolled out non-randomly, in three phases, according

to a backwardness index developed by the Planning Commission of India. The first phase

began with 200 districts in February 2006; an additional 130 districts received the program

in 2007. By April 2008 the scheme was operational in all rural districts in India. Any rural

resident who is 18 years or older can apply for work at any time of the year. Men and women

are paid equally, though at least one-third of the beneficiaries must be women. Projects un-

der NREGA involve construction of local infrastructure that improves water management

through conservation, rain water collection, and irrigation, as well as flood control, drought

proofing, rural connectivity, and land development. NREGA wages vary from state to state,

but the floor and ceiling wages under the scheme are set by the central government. We

obtain data on NREGA participation for 2006-2016 from the Management Information Sys-

tems (MIS).15 In particular, we focus on the number of rural households enrolled in NREGA

in a particular district in a given year. In appendix E.3, we show summary statistics on

NREGA participation, and labor as well as material expenditures from 2006-2014.

15We thank Clément Imbert for generously sharing these data.
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3 Research Design

To examine the effect of temperature on test scores, we use the ASER and YLS data sets.

The ASER data set has the advantage of national coverage, with greater spatial variation in

temperature exposure with a repeated yearly cross-section at the district level. In contrast,

the YLS data set provides an individual level panel but with coverage limited to a single

state. With each data set we estimate both flexible and parsimonious models.

All India Repeated Cross-Sectional Data (ASER)

To understand the relationship between temperature and test scores throughout India, we

use the ASER data set. Following Deschênes and Greenstone (2011) and Hsiang (2016), we

first estimate a flexible model:

Yiajqt =
10∑
k=1

γkTMEANk
jq,t−1 + f (rainjq,t−1) + g (humidityjq,t−1) + χa + αj + µt + εijqt (1)

Yiajqt is math or reading test scores for child i, of age a, in district j, in state q, in year

t, standardized by year-age. TMEANk
jq,t−1 is the kth of 10 temperature bins. We estimate

separate coefficients γk for each of these k bins. The coldest temperature bin is a count of

the number of days with average temperature less than 13◦C, and the hottest temperature

bin is a count of the number of days with average temperature greater than 29◦C. We

chose these endpoints because 13◦C and 29◦C are the 10th and 90th percentiles of average

daily temperatures across India from 2006-2014. The bins in between are evenly spaced two

degrees apart. The omitted bin is the 15◦C-17◦C bin, which we chose to omit because it has

the maximum coefficient of all the bins (e.g., it has the most optimal effect on test scores).

All other bins are interpreted relative to this bin. For example, γ10, the coefficient on the

hottest bin, is the marginal effect on test scores of an extra day with average temperature

greater than 29◦C relative to a day with average temperature between 15◦C and 17◦C.

We control for rainfall (in annual cumulative terciles relative to district-specific historical

averages), relative humidity (in terciles of annual averages), age fixed effects (χi), district
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fixed effects (αj) and year fixed effects (µt).
16 We cluster standard errors at the district

level to account for serial correlation within the district over time. Each coefficient γk is

identified under the assumption that, after controlling for rainfall and humidity, changes in

the number of hot days are exogenous to district-specific unobservable characteristics that

vary over time. The assumption is plausible given the randomness of weather fluctuations

and the inability of rural households in India to predict such fluctuations. In estimating this

flexible approach we follow prior work in climate economics and avoid imposing restrictive

assumptions on the functional relationship between temperature and test scores (Hsiang,

2016). We also estimate a parsimonious version of equation (1) with the upper threshold of

21◦C and lower threshold of 15◦C. Our choice of 15◦C and 21◦C for the parsimonious model

is based on the (approximation of the) nonparametric analysis (equation 1) that revealed a

kink at that level.

Yijaqt =γ1TMEAN(> 21◦C)jq,t−1 + γ2TMEAN(< 15◦C)jq,t−1

f (rainjq,t−1) + g (humidityjq,t−1) + χa + αj + µt + εijqt (2)

An important limitation of the ASER data is that it does not provide the exact date of

the test; we know only that the test is conducted in a given district on a single weekend

between the end of September and the end of November. Since our hypothesis is that

hot days affect test scores by affecting household income that relies on agricultural output,

we must measure the effect of heat during at least one full agricultural cycle prior to the

test. We discuss this timeline in figure 4. India’s main agricultural season is the Kharif

season, with the growing season from June through October and harvest in October and

November. Given that our tests are conducted concurrently or before harvest, heat during

the growing season in the same calendar year as the test should not directly affect test scores,

because that income effect would not have transpired by the time of the test. Instead, we

use the daily temperature distribution of the prior calendar year as our main independent

variable. Importantly, this also sets up a falsification test for competing explanations that

16Our results are robust to alternative specifications of rainfall, including linear and quadratic terms for total annual rainfall.
Those results are available on request.
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do not adhere to an agricultural calendar. While temperature in the previous year could

affect test scores through an agricultural income channel (and potentially other mechanisms),

temperature in the same year as the test (the “current year”) would affect test scores through

only non-agricultural channels (e.g., learning, teacher attendance, disease prevalence, etc.,

as detailed in section 4.2). Next, we use the YLS data set, in which we have information on

the exact date of the test to estimate the effect of hot days between successive tests (covering

at least one full agricultural cycle) on test scores. We describe that strategy below.

Individual Panel Data (YLS)

Using the YLS survey we first estimate the following flexible model of the effects of temper-

ature on test scores:

Yijdmt = γ2T (23◦C − 25◦C)j,t−1 + γ3T (25◦C − 27◦C)j,t−1 + γ4T (> 27◦C)j,t−1

+ f (rainj,t−1) + αi + µ1d + µ2m + µ3t + εijdmt (3)

Yijdmt is the math or reading test score of child i in district j on day-of-week d in month-

of-year m in survey-round t, standardized by year-age. We control for cumulative rainfall,

and include fixed effects for child (αi), day-of-week (µ1d), month-of-year (µ2m), and survey-

round (µ3t). T (·) is a count of the number of the days since the previous test with average

daily temperature within the specified range. For example, T (23◦C − 25◦C) is the number

of days since the last test with average daily temperature between 23◦C and 25◦C. Since the

YLS data covers a single state (Andhra Pradesh), the temperature distribution is narrower

than in the other national data sets that we use. Furthermore, since the number of days

in a year is fixed at 365, we normalize the coefficient on the “optimal” temperature bin,

in this case T (< 23◦Cjt), to zero, making it the reference bin. Thus γ4 is the marginal

effect of an extra day since the last test with average temperature above 27◦C relative to a

day with average temperature below 23◦C. Our four temperature bins have, on average, an

equal density with 23◦C, 25◦C, and 27◦C representing the first, second and third quartiles

of the temperature distribution in Andhra Pradesh during our study period. We cluster

standard errors at the district-week level to allow for arbitrary correlation in test scores in

11



a district in a given testing week and for conservative inference when multiple children are

assigned the same temperature observation. Each γi is identified under the assumption that

the number of hot days experienced by a child in a given bin between successive tests is

exogenous to child-specific unobservable characteristics that vary over time. Importantly,

by tracking the same children over time, we are able to account for prior human-capital

production and provide causal estimates of the effects of the daily temperature distribution

between successive tests on changes in student test performance.

We also estimate a second parsimonious approach with a single temperature cutoff instead

of flexible temperature bins:

Yijdmt = γT (> 23)j,t−1 + f (rainj,t−1)

+ αi + µ1d + µ2m + µ3t + εijdmt (4)

The notation is the same as in equation (3), with the key difference that T (> 23◦C)jt is

a count of the number of days above 23◦C experienced by a student district j between

successive tests. As is common practice in the literature on climate economics, our choice

of 23◦C for the parsimonious approach follows the (approximation of the) nonparametric

analysis (equation 3) that revealed a kink at that level (Hsiang, 2016).

4 Results

We estimate equation (1) and find that an extra 10 days in a year with average daily temper-

ature above 29◦C relative to a day with average daily temperature between 15◦C and 17◦C

reduce math performance by 0.03 standard deviations and reading performance by 0.02 stan-

dard deviations (figure 5, table 1). Using our binned approach, we find that test performance

decreases in temperatures above 17◦C. The results are similar to those estimated with our

parsimonious approach: 10 days above 21◦C reduce math and reading performances by 0.02

and 0.01 standard deviations respectively. These are economically meaningful effects: 40

extra hot days above 29◦C, as is expected in India by the end of the 21st century, would
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eliminate the gains from a median educational intervention.17 Importantly, these are our

most conservative estimates and represent the lower bound.

We find qualitatively similar (though quantitatively larger) effects when we estimate

equations (3) and (4) using the YLS individual panel data set. We find that 10 extra days

between successive tests above 27◦C relative to below 23◦C, reduce math and reading test

scores by 0.07 and 0.10 standard deviations respectively (table 2, figure 6). The YLS data

allows for us to estimate the effects of temperature by controlling for individual fixed effects,

removing any time invariant individual level characteristics correlated with temperature.

With the YLS data, we can also account for prior human capital production. We can also

remove any spurious effects arising from day-of-test temperature that could be correlated

with number of hot days in a year in a given district by controlling for day-of-test temperature

while estimating equations (3) and (4).18 In appendix table B.1, we show that including

day-of-test temperature as a control doesn’t change the effects of year-of-test temperature

on performance.

Additional robustness checks provide the following results. First, we find no effect of

hotter days in the current year or the next year on performance in the current year, and

including these does not appreciably change our primary coefficient of interest (table 3).

Second, our point estimates are quantitatively similar for the limited sample of “on-track”

students who are in the correct school grade-for-age (appendix B.1.2). Third, our results

are robust to a degree-day specification (appendix B.1.3). Fourth, the addition of lags does

not significantly affect our point estimates (appendix B.1.4 ). Fifth, our results remain

unchanged with the inclusion of state-specific linear and quadratic trends (appendix B.1.5).

And, sixth, our results remain unchanged with the inclusion of state-by-year fixed effects

(appendix B.1.6).

4.1 Mechanisms

If higher temperatures have large, negative effects on agricultural income, it is possible that

these effects have consequences for children’s human capital production in the immediate

17See McEwan (2015) for a review of educational interventions. The median intervention has an effect between 0.08-0.15
standard deviations.

18In appendix A, we show that test performance is affected by day-of-test temperature.
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future. We find strong evidence in support of such a pecuniary mechanism underscoring the

effect of temperature on test scores. First, we provide evidence that agricultural yields and

wages respond negatively to higher temperatures. Next, we use the ASER data to provide

two distinct tests to support the agricultural income hypothesis: (a) comparing effects of

hot days across the growing and non-growing seasons of the agricultural calendar (following

Burgess et al. (2017)), and (b) comparing effects of heat on test scores across the geographic

dispersion of heat-resistant crops.19

Temperature, Agricultural Yields, and Rural Wages

To demonstrate that temperature affects human capital production by affecting the liveli-

hoods of the rural poor, we first demonstrate that temperature affects agricultural yields

and rural wages. We find that agricultural yields and rural wages are highly responsive to

higher temperatures (figure 7, table 4). We use two different price-weighted agricultural

yield indices: (a) the six major crops, and (b) the five major monsoon crops.20 We find

that yields respond non-linearly to temperature (figures 8(a), 8(b)). An extra day above

29◦C (relative to a day between 15◦C and 17◦C) decrease yields by 0.5%-0.7%. Rural wages

respond linearly to higher temperatures (figure 8(c)). An extra day above 29◦C (relative to

a day between 15◦C and 17◦C) decreases rural wages by 0.4%.21

Growing Season v. Non-Growing Season

To isolate effects by growing and non-growing seasons, we subdivide each temperature bin

in equation (1) into days in that bin in the growing season and days in that bin in the non-

growing season.22 We find that the effect of temperature on test scores is primarily driven

19While we find strong evidence in favor of an income mechanism, we remain agnostic about why income matters. We take our
cue from the rich body of evidence exploiting experimental and quasi-experimental variations in income to study the impacts
on academic performance and find modest suggestive evidence for nutrition as the relevant margin of adjustment. We discuss
these in appendix C. For comprehensive reviews of the impacts of cash transfer programs, see Fiszbein et al. (2009) and Parker
and Todd (2017).

20The six major crops are rice, wheat, sugarcane, groundnut, sorghum, and maize. Wheat is excluded in the list of major
monsoon crops.

21Our estimates are comparable to those found elsewhere in the literature (Burgess et al., 2017; Carleton, 2017; Taraz, 2017).
Consistent with our finding of extremely cold days reducing performance, cold days also reduce agricultural yields, though to
a lesser extent than hot days.

22We broadly follow Burgess et al. (2017) in partitioning every year’s weather data for each district into growing and non-
growing seasons. However, while Burgess et al. (2017) define the non-growing season as all dates that are within the three-month
window prior to each district’s “typical” monsoon arrival date, and the growing season as every date after the district-specific
date of monsoon arrival till December 31st, we define the non-growing season as lasting from March through May and the
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through higher temperatures in the previous years’ agricultural growing seasons: an extra

hot day above 29◦C in the growing season has an order of magnitude larger effect on test

scores than a corresponding extra hot day above 29◦C in the non-growing season. Specifically,

an extra 10 days above 29◦C in the growing season reduces math scores by 0.102 standard

deviations and reading scores by 0.062 standard deviations, compared to negligible effects

in the non-growing season (table 5). The differences between the effects of temperature on

test scores across growing versus non-growing seasons increase with higher temperatures for

both math and reading scores (figure 8).

Additionally, we test the impact of temperature across the growing and non-growing

seasons on agricultural yields of the six major crops as well as the five major monsoon crops.

Using district level yields data, we find that an extra day above 29◦C in the growing season

reduces yields by three times more than the same type of day in the non-growing season.

In absolute terms, the magnitude is large; an extra day above 29◦C in the growing season

relative to a day between 15◦C and 17◦C reduces yields by 1% (table B.8), with no effect

of temperature on yields in the non-growing season.23 The large impact of temperature on

yields in the growing season but not in the non-growing season is consistent with a model in

which temperature affects test scores through declines in agricultural income.

Heat-Resistant Crops

To further explore the impact of temperature on agricultural yields and test scores, we

analyze the role of heat-resistant crops. We find that the effects of temperature on test

scores are pronounced in districts where the dominant crops are not heat-resistant, with no

economically meaningful effects of temperature on test scores in districts that grow heat-

resistant crops.24 Since we are interested in the interaction term on heat-resistant crops and

temperature, we estimate the parsimonious equation (2) to preserve power. We find that

growing season as lasting from June through December. The southwest monsoon begins to arrive (from the south) on the
Indian subcontinent around the start of June of every year, and covers all of north India by the start of July.

23We are unable to observe differences in the responsiveness of rural wages to temperature because we have annual average
wages but not wages broken down by the growing and non-growing seasons.

24Following Hu and Li (2016), we separate crops into C4 crops and C3 crops. C4 crops extract carbon from carbon dioxide
differently than C3 crops, and are more resistant to high temperatures. For our data, the C4 crops are maize, sorghum, pearl
millet, sugar cane, finger millet and fodder. All the remaining crops are C3 crops. For each district-year, we calculate the
fraction of cultivated area that is planted with C4 crops, and then we calculate a long-run average of this value. Then, we label
a district to be a heat-resistant crop district if its long-run average of the proportion of C4 crops is above the median value,
which is 23%. In appendix figure B.2 we show the geographic distribution of the take-up of heat-resistant crops.
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growing heat-resistant crops erases most of the effect of higher temperatures on test scores.

An extra 10 hot days above 21◦C in districts that grow below-median levels of heat-resistant

crops lowers math scores by 0.022 standard deviations, compared with a near-null effect in

districts that grow above-median levels of heat-resistant crops (table 6).

However, the decision to plant heat-resistant crops is endogenous to, amongst other

factors, long-term average temperature, or the “climate normal.” Therefore, the decision to

grow heat-resistant crops could be a proxy for underlying economic conditions that reflect

adaptation to long-term average temperatures along agricultural (e.g., heat-resistant crops)

and non-agricultural (e.g., fans) margins. To investigate the differences in the effects of

temperature on test scores across different long-term historical climates, we break down the

relationship between temperature and test scores based on long-term average temperature

deciles. We find that districts with higher long-term average temperature plant a larger

fraction of their total cultivated area with heat-resistant crops (figure 11(a)). In the lower

and middle deciles, there is very little take-up of heat-resistant crops but in districts with the

highest long-term average temperatures, more than 30% of the total cultivated area is covered

by heat-resistant crops. Furthermore, the relationship between days with temperature above

29◦C and test scores largely follows the take-up of heat-resistant crops; the effects are present

only in the middle climate deciles, where there are enough hot days to find a discernible effect

but the take-up of heat-resistant crops remains low, for both math (figure 11(b)) and reading

scores (figure 11(c)).25 In the hottest climate deciles, as expected, there is little effect of hot

days in the previous year on test scores with high prevalence of heat-resistant crops.26

4.2 Alternative Explanations

In this section, we rule out alternative channels that could potentially explain the relationship

between temperature and test scores. Specifically, we consider four alternative explanations:

(1) high temperatures during the school year affect learning, which subsequently affects per-

25It is possible that the effects of temperature are limited to the middle terciles for entirely mechanical reasons: cold deciles
don’t have enough hot days and the warmest deciles have only hot days. In appendix table B.9 we report fraction of child-
by-year observations with deviations at least as large as five days over 21◦C for each climate decile, averaged over the years
2006-2014. We have sufficient temperature variation in each decile (relative to the middle deciles) after removing district and
year fixed effects.

26These results are consistent with earlier work that has found crop yields in hot regions are less sensitive to higher temper-
atures, due to agricultural adaptation (Taraz, 2017).
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formance; (2) high temperatures during the growing season affect child labor in agriculture,

which subsequently affects performance; (3) high temperatures increase the cost of atten-

dance for teachers, resulting in teacher absenteeism and lower test performance by students;

and (4) high temperatures increase disease incidence by favoring growth of disease-carrying

pathogens, thereby affecting learning and test performance.

4.2.1 Heat During the School Year

The effect of short-run heat stress on cognitive performance could also manifest physiologi-

cally into reduced learning, as documented in appendix A. If children are repeatedly exposed

to heat stress during school, then the cumulative effect of that heat stress can affect per-

formance as a result of impaired learning. Thus the effect of hot days in the previous year

on performance in the current year could also be the cumulative physiological effect of heat

stress on learning. To rule out this explanation, we first show that only hot days in the

previous calendar year affect performance in the current year, with hot days in the current

year having no effect on test scores (table 3). If the physiological mechanism were driving

the relationship between annual (or longer-run) temperature and test scores, we would see

the effects on performance of hot days in both the current year and the previous year. As

explained in figure 4, only hot days in the previous calendar year should affect test scores in

the current year through the agricultural income channel.

Second, the physiological channel, unlike the agricultural income channel, should not be

contingent on the agricultural calendar. We see strong effects of hot days in the previous

year’s growing season on test score performance but no effect of hot days in the non-growing

season (figure 8). To rule out concerns of overlapping agricultural and schooling calendars,

we further split the growing season by months when the school is in session and when students

are on break.27 Our hypothesis is that the physiological effects of heat on learning should be

limited to hot days in the school year, whereas the agricultural income mechanism should

be in effect during both school and non-school months in the growing season. Consistent

with an agricultural income mechanism, we find that hot days in school and non-school

27Within the growing season that lasts from June through December, June and December typically have summer and winter
holidays, with school in session more or less continuously from July through November.
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months have similar effects on performance (figure 11), suggesting that it is unlikely that

the relationship between higher temperatures in the prior year and test scores is driven by

reduced learning due to heat stress in the classroom.

4.2.2 Heat Exposure on the Field

In addition to the income mechanism, the combination of large effects of heat in the growing

season, paired with the negligible effects of heat during the non-growing season, could also

be explained by heat exposure of agricultural workers from working in the field. If these

workers are the same children being tested, then the growing season heat effects could be

physiological effects on the human body, rather than those driven through an agricultural

income mechanism. However, we find two pieces of evidence inconsistent with this hypoth-

esis. First, heat stress during the concurrent year as the test has no effect on test scores

(table 3). India’s main agricultural season lasts from June through November. Since ASER

tests are conducted from late September to early November, physiological exposure to heat,

for children contributing labor to agriculture, would have transpired by the time of the test.

Thus, we would expect to see effects of heat exposure in the concurrent year. Importantly,

we see no effect of heat stress on the time spent by children working outdoors (appendix table

C.5). Furthermore, if the agricultural labor-heat-exposure explanation were true, we would

expect larger effects on older male children, who plausibly spend more time on agricultural

activities. In contrast, we find that the effects of temperature on test scores are largest for

younger children (figure 12), with no discernible differences between the effects of heat on

test scores of boys and girls (figure B.1).

4.2.3 Teacher Attendance

Quality of instruction is a central component of virtually all proposals to raise school quality

(Hanushek and Rivkin, 2012). Teaching quality has been linked to student test scores, as

well as to later-life outcomes (Chetty, Friedman and Rockoff, 2014a,b). High temperatures

can increase the cost of effort required to attend school and lead to teacher absenteeism, and
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consequently impact human capital production.28 We find two pieces of evidence that are

inconsistent with such a hypothesis. First, if teachers were skipping school or expending less

effort in classrooms in response to heat stress, we would see the effects on performance of

only hot days during the school year (figure 11). The near-identical effects of heat during the

school and non-school parts of the year suggest that teacher effort and attendance cannot

explain our results.

Second, we explicitly test the effect of hot days on teacher attendance using the teacher

attendance module of the ASER data. We find that hot days in the previous year and

the current year do not affect teacher attendance (appendix table B.10). This is consistent

across different formulations of teacher attendance (binary or continuous) and across differ-

ent specifications (linear or tobit). Therefore, it is unlikely that teacher attendance is the

operational channel of impact linking hotter days to reduced test score performance.

4.2.4 Disease Prevalence

An alternative explanation to the temperature-test score relationship could be through in-

creased disease incidence (Patz et al., 2005). To the extent that health affects performance,

temperature could affect test scores through an increase in the population of disease-carrying

pathogens, particularly those carrying malaria. Some of the rainiest months of the year are

during the growing season, and since rainfall and humidity favor Anopheles growth, our

growing season versus non-growing season estimates cannot rule out the malaria channel.

We consider this disease-prevalence mechanism to be distinct from the disease susceptibility

effects that may occur via the agricultural income channel (the latter occurring when reduced

household income affects health status, including disease vulnerability, through channels such

as nutrition). Although we control for rainfall and humidity in our main specification (table

1), and our results remain robust to the inclusion of state-by-year fixed effects, insofar as

higher temperatures independently increase the incidence of disease variably within a given

state-year, our results might be a function of such a mechanism.

However, because of the life cycle of disease pathogens we would expect more recent higher

28This problem is notable in India. Using unannounced visits to measure attendance, a nationally representative survey found
that 24% of teachers in India were absent during school hours (Chaudhury et al., 2006). Duflo, Hanna and Ryan (2012) use a
randomized control trial in India that incentivized teachers’ attendance and find that teacher absenteeism fell and test scores
of children in the treatment group increased.

19



temperatures to have a larger effect on health, and therefore performance, than similar days

in the previous calendar year. Malaria, for example, is transferred through the Anopheles

mosquito, which typically has a life cycle of two to four weeks, so if malarial incidence were

driving our result, we should see an impact of hot days in the current year as well. In table

3, we show that temperature in the current year has no effect on test score performance.29

Prima facie, this suggests that the disease ecology of malaria is not driving the temperature-

test score relationship. Additionally, we follow Shah and Steinberg (2017) and exploit the

geographic differences in prevalence of malaria across India and show that the effects of

temperature don’t vary with malaria prevalence. In figure B.3 we compare all other states

against these malaria-prone states. Importantly, we show that during the growing season,

there is no meaningful difference in the effects of temperature on test scores across malaria-

prone and other states, suggesting that malaria is unlikely to be the driving factor behind

the negative relationship between higher temperatures and test scores.30

5 Role of Social Protection Programs

The results so far have established that temperature likely affects human capital through

an agricultural income channel. The immediate implication of this finding is that social

protection programs designed to offset fluctuations in agricultural income could ameliorate

the effects of hot days on test scores. To test this hypothesis, we consider the largest workfare

program in the history of the world – the National Rural Employment Guarantee Act of 2005

– which guarantees every person in rural India 100 days of paid employment. The majority of

such work is manual labor on rural infrastructure projects, making NREGA a self-targeting

conditional cash transfer program that has an income-stabilizing effect in the event of shocks

to agricultural income.

29Hotter days in the current year have been associated with higher prevalence of malaria (Patz et al., 2005).
30The malaria-prone states are Chhatisgarh, Jharkhand, Orissa, Karnataka, and West Bengal.
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5.1 Research Design

Our hypothesis is that insults to agricultural income adversely affect human capital produc-

tion. If NREGA modulates this relationship, hotter days might increase NREGA take-up

and attenuate the relationship between temperature and test scores, by compensating (at

least partially) for heat-induced agricultural income losses. We test this hypothesis in an

event study framework, by exploiting the staggered district-level roll-out of NREGA. To do

so, we estimate the marginal effect of an extra hot day above 29◦C (relative to between

15◦C-17◦C) for the same district before and after the introduction of NREGA. We estimate

the following equation:

Yiajqt =
10∑
k=1

γkTMEANk
jq,t−1 +

τ=2∑
τ=−3,τ 6=−1

θτNREGA(t− T ∗j = τ)jq,t−τ ∗ TMEAN10
jq,t−1

+
τ=2∑

τ=−3,τ 6=−1

βτNREGA(t− T ∗j = τ)jq,t−τ + χa

+ f(rainjq,t−1) + g(humidityjq,t−1) + αj + µt + εiajqt (5)

The equation is identical to equation (1) with an additional term, NREGA(t − T ∗j =

τ)jq,t−τ ∗ TMEAN10
jq,t−1, which captures the interaction of the roll-out of NREGA with the

number of days in the hottest temperature bin. Specifically, we estimate separate coefficients

on the hottest temperature bin for the periods before and after the introduction of NREGA

in district j in state q. For the NREGA interaction terms, the omitted period is the year

before NREGA is introduced in a district, and we interpret the coefficient of interest θτ

relative to that period. In our baseline specification, we include district (αj) and year (µt)

fixed effects. Our specification compares the effect of a hot day on test scores before and after

a district received NREGA, relative to the effect of that hot day in other districts that didn’t

receive NREGA in the same year. Furthermore, to account for the potential endogeneity of

the age-for-grade or “on track” status (Shah and Steinberg, 2015) we show that our results

are robust when limiting the sample to children who are “on track” (appendix D.4). NREGA

was introduced in 2006 and, because all districts had received NREGA by 2008, we restrict
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the ASER sample to include only survey-rounds between 2006-2009.

5.2 Results

The main coefficient of interest is the interaction between NREGA and the number of days

above 29◦C. Consistent with an income mechanism, we find that NREGA attenuates the

effect of an extra hot day above 29◦C in the prior calendar year on math and reading scores

by more than 50% (table 7).31 Figure 13 pictorially depicts the event study and shows that

the introduction of NREGA attenuates the effect of those extra 10 hot days above 29◦C

on test scores by 0.01 standard deviations on both math and reading.32 We note that the

effects of NREGA represent intent-to-treat (ITT) estimates, since not all households in a

district will respond by taking up NREGA.33 Our results are robust to a parsimonious model

similar to equation (2), with an upper threshold of 21◦C and a lower threshold of 15◦C. Our

coefficient of interest is the interaction of NREGA roll-out with number of days above 21◦C

(appendix figure D.1, appendix table D.2). Finally, our results are robust when limiting the

sample to “on track” students, reducing the likelihood that the endogeneity of NREGA and

age-for-grade status is confounding our results (appendix D.4).

Since workfare requires individuals to sign up for work, it would be reasonable to expect

NREGA take-up to respond contemporaneously to higher temperatures to offset declines in

agricultural incomes. Indeed, we find that NREGA take-up responds to higher temperatures.

We obtain annual NREGA district level take-up and expenditure data from 2006-2016 and

show that hotter days in the current year drive NREGA take-up and expenditures (figure

14, appendix table D.6). Specifically, an extra hot day with average temperature above

29◦C in a district (relative to a day between 15◦C and 17◦C) increases NREGA take-up by

nearly 1.3%. For the same extra hot day in a year, households are 3.4% more likely to use

all 100 days of eligibility in the program. For each extra day above 29◦C, district NREGA

31We show that prior to NREGA roll-out in a district, an extra 10 days above 29◦C (relative to between 15◦C and 17◦C)
reduces math and reading scores by 0.02 and 0.01 standard deviations, respectively, although because we use only data from
2006-2009 we are relatively underpowered.

32We find that NREGA exposure has a negative level effect on math and reading scores, and this effect is statistically
significant (table 7). These are the opportunity cost effects shown in Shah and Steinberg (2015).

33We also employ a triple-differences design (comparing the effects of a hot versus a cold day in districts with and without
NREGA, before and after they receive NREGA) to estimate the effect of NREGA on the marginal effect of an extra hot day
in the previous calendar year and find comparable estimates (appendix table D.1).
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expenditure increases by 2% on labor and nearly 3% on materials. These results suggest

that households use NREGA to stabilize damage to agricultural income in hotter years.

The remarkable effect of NREGA in attenuating the relationship between temperature

and test scores is of considerable importance. First, the result reinforces the underlying

income mechanism linking higher temperatures to lower test score performance. Not only

do higher temperatures lower test performance by adversely affecting household agricultural

income, but income-stabilizing social protection programs can attenuate the negative effects

of higher temperatures. The implication is that in poor countries, where large parts of the

population are dependent on agriculture, social protection programs can play a central role

in shielding the poor from weather and facilitating adaptation to climate change.

Second, while there is considerable work on the benefits of conditional cash transfers

and similar social protection programs, we know relatively little about the role of such

programs in combating vulnerability.34 If the susceptibility of cognitive performance (or

another measure of productivity) to temperature can be characterized as vulnerability, social

protection programs can have not only direct effects, but also indirect benefits in reducing

vulnerability. Simultaneously, as governments around the world prepare to tackle climate

change, any reasonable strategy should account for the increased dependence of the poor on

social protection programs as they face aggregate shocks that informal risk-sharing practices

are unable to mitigate.

6 Conclusion

As weather, in the age of climate change, becomes more pronounced, it is likely to dramat-

ically impact the poor by limiting pathways out of poverty that depend on human capi-

tal production. We find that day-of-test “short-run” temperature affects test performance

through a physiological effect. However, temperature in the calendar year prior to the test, or

“longer-run” temperature, affects human capital production through an agricultural income

mechanism. The separation of the pathways through which temperature affects human cap-

ital over different time horizons has important implications for both climate change research

34See Fiszbein et al. (2009) and Parker and Todd (2017) for reviews on the impacts of cash transfer programs.
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and policy.

First, the different structural relationships connecting short- and longer-run temperature

to economic outcomes highlights the limitations of existing approaches in quantifying ex-post

adaptation by comparing the effects of short- and longer-run temperatures. This is especially

likely to be the case when considering low- and middle-income countries, where the majority

of the world’s population lives, and where the propagation of defensive investments (e.g., air

conditioners) is limited and livelihoods remain climate-exposed. The existence of multiple

structural relationships implies that modeling and projecting the impact of climate change

in poor countries will require not only understanding how these existing relationships will

change over time through adaptation, but also how new structural relationships between

temperature and economic outcomes will emerge over the next century.

Second, the presence of multiple pathways linking heat stress and a single economic out-

come suggests adaptation to higher temperatures will be required along multiple margins.

Effects of short-run temperature, driven by physiology, can likely be corrected through de-

fensive investments such as air conditioners, or by changing the test calendar. For instance,

India’s main board for primary and secondary education has decided to move the important

school-leaving exams that are often the sole criterion in college admissions from March and

April, when the average temperatures in India are 22◦C and 26◦C respectively, to Febru-

ary, when average temperatures are 17◦C (Gohain, 2017). While this change is not being

made explicitly as a response to heat stress, it provides an opportunity to understand how

adjustments to the testing calendar can alter the effects of short-run temperature.

By contrast, the effects of longer-run temperature are driven by damage to livelihoods

that, in agrarian poor settings, are vulnerable to weather. Importantly, these effects of

longer-run temperature reduce human capital production by adversely affecting agricultural

income, and therefore may require social protection programs that can protect the livelihoods

of the poor from weather and climate. Consequently, governments and policy makers should

expect the dependence on their social protection programs to increase in the face of climate

change. Governments around the world will have to carefully allocate scarce resources in

adapting to different margins of damage from climate change. Given the central role of

human capital production as a pathway out of poverty in poor countries (Barrett, Garg and
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McBride, 2016), climate change will not only affect the livelihoods of the rural poor but also,

absent social protection programs, likely perpetuate persistent poverty.
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Figures

Figure 1: Historical and Projected Distribution of Daily Average Temperatures in India

Notes: The figure shows the study period (2006-2014) distribution of days in the respective temperature windows alongside projections from the
Hadley CM3 model under business as usual A1F1 scenario.
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Figure 2: Average Daily Temperature by District

Figure 3: Distribution of Daily Temperatures for India and Andhra Pradesh
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Figure 4: Timeline of Effects of Longer-Run Temperature and Average Temperatures by Month and Season

(a) Timeline of Effects of Longer-run Temperature

(b) Average Temperatures By Month and Season

Notes: Figure (a) demonstrates the timeline over which the effects of temperature manifest. Figure (b) shows the average temperature by month over the 2006-2014 time period along with average total
rainfall in each month. The non-growing season is characterized by low rainfall whereas the growing season is characterized by high rainfall.
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Figure 5: Long-Run Temperature and Test Scores (ASER)

(a) Math Scores

(b) Reading Scores

Notes: The figure shows the effect of longer-run temperature (defined as number of days in the previous calendar year - see figure 5(a)) on
math and reading performance. The effect of days between 15◦C-17◦C is normalized to zero and all other coefficients are interpreted relative to
15◦C-17◦C. The regressions include district and year fixed effects. We control flexibly for precipitation and humidity. Standard errors are in
parentheses, clustered by district level.
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Figure 6: Temperature and Test Scores (YLS)

(a) Math Scores

(b) Reading Scores

Notes: The figure shows the effect of temperature (defined as number of days in a given bin between successive tests) on math and reading
performance. The effect of days below 23◦C is normalized to zero and all other coefficients are interpreted relative to below 23◦C. The regressions
include individual, day of week, month, and survey round fixed effects. We control for precipitation. The sample includes only those children who
were tested thrice in both math and PPVT. Standard errors are in parentheses, clustered by district-week.
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Figure 7: Effect of Temperature on Agricultural Yields and Rural Wages

(a) Temperature and Yields (6 Major Crops) (b) Temperature and Yields (Main Monsoon Crops)

(c) Temperature and Rural Wages

Notes: The figure shows the effect of temperature (defined as number of days in the previous calendar year - see figure 5(a)) on agricultural yields
and rural wages from 1980—2014. The effect of days between 15◦C-17◦C is normalized to zero and all other coefficients are interpreted relative
to 15◦C-17◦C. The regressions include district and year fixed effects. We control flexibly for precipitation and humidity. Standard errors are in
parentheses, clustered by district level.
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Figure 8: Growing Season v. Non-Growing Season: Temperature and Test Scores (ASER)

(a) Math Scores

(b) Reading Scores

Notes: The figure shows the effect of longer-run temperature (defined as number of days in the previous calendar year - see figure 5(a)) on math
and reading performance divided amongst the growing season (June—Dec) and the non-growing season (March—May). The effect of days between
15◦C-17◦C is normalized to zero and all other coefficients are interpreted relative to 15◦C-17◦C. The regressions include district and year fixed
effects. We control flexibly for precipitation and humidity. Standard errors are in parentheses, clustered by district level.
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Figure 9: Growing v. Non-Growing Season: Current Year Temperature and Yields

(a) 6 Major Crops

(b) 5 Major Monsoon Crops

Notes: The figure shows the effect of longer-run temperature (defined as number of days in the previous calendar year - see figure 5(a)) on
agricultural yields from 1979—2014 divided amongst the growing season (June—Dec) and the non-growing season (March—May). The effect of
days between 15◦C-17◦C is normalized to zero and all other coefficients are interpreted relative to 15◦C-17◦C. The regressions include district
and year fixed effects. We control flexibly for precipitation and humidity. Standard errors are in parentheses, clustered by district level.
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Figure 10: Heat-Resistant Crops and Effect of Temperature on Test Scores by Average
Temperature Deciles (ASER)

(a) Heat-Resistant Crop Area as a Fraction of Total Cultivated
Area

(b) Math Scores (c) Reading Scores

Notes: Figure (a) shows the average proportion of area within each district that is used to grow heat-resistant crops by deciles of average long-term
temperature or the climate normal. Figures (b) and (c) show the the marginal effects of an additional hot day in the previous calendar year above
21◦C on math and reading performance respectively by deciles of average long-term temperature, or the climate normal. The regressions include
district and year fixed effects. We control flexibly for precipitation and humidity. Standard errors are in parentheses, clustered by district level.
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Figure 11: Temperature and Test Scores: School Year v. Non-School Year (ASER)

(a) Math Scores

(b) Reading Scores

Notes: The figure shows the effect of longer-run temperature (defined as number of days in the previous calendar year - see figure 5(a)) on math
and reading performance divided amongst the school year (July—November) and the non-school year (June, December) within the growing season
(June—December). The effect of days between 15◦C-17◦C is normalized to zero and all other coefficients are interpreted relative to 15◦C-17◦C.
The regressions include district and year fixed effects. We control flexibly for precipitation and humidity. Standard errors are in parentheses,
clustered by district level.
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Figure 12: Effect of Temperature on Test Scores by Age (ASER)

(a) Math Scores

(b) Reading Scores

Notes: The figure shows the marginal effect of an additional hot day in the previous calendar year above 29◦C relative to 15◦C-17◦C on math and
reading performance by age. The regressions include district and year fixed effects. We control flexibly for precipitation and humidity. Standard
errors are in parentheses, clustered by district level.
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Figure 13: Event Study: Long-Run Temperature, NREGA, and Test Scores

(a) Math Scores

(b) Reading Scores

Notes: The figure shows the marginal effect of an additional hot day in the previous calendar year above 29◦C relative to 15◦C-17◦C on math
and reading performance in an event study around the introduction of NREGA. The omitted variable is the days above 29◦C in the year prior to
the introduction of NREGA (τ = −1). The regressions include district and year fixed effects. We control flexibly for precipitation and humidity.
Standard errors are in parentheses, clustered by district level.
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Figure 14: Effect of Temperature on NREGA Take-Up

(a) Person Days (b) HH’s Completed All 100 Days

(c) Labor Expenditure (d) Material Expenditure

Notes: The figure shows the effect of an extra hot day on NREGA take-up, completion, and program expenditures using data from 2006-2016. The
effect of days between 15◦C-17◦C is normalized to zero and all other coefficients are interpreted relative to 15◦C-17◦C. The regressions include
district and year fixed effects. We control flexibly for precipitation and humidity. Standard errors are in parentheses, clustered by district level.
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Tables

Table 1: Temperature and Test Scores (ASER)

(1) (2) (3) (4)
Math Score (in SD) Math Score (in SD) Read Score (in SD) Read Score (in SD)

β / SE β / SE β / SE β / SE

Days <15C -0.0024*** -0.0019***
(0.0006) (0.0006)

Days >21C -0.0016*** -0.0007*
(0.0005) (0.0004)

PY Days <13C -0.0034*** -0.0025***
(0.0009) (0.0008)

PY Days 13-15C -0.0031*** -0.0021***
(0.0009) (0.0008)

PY Days 17-19C -0.0021** -0.0012
(0.0009) (0.0008)

PY Days 19-21C -0.0008 0.0000
(0.0007) (0.0006)

PY Days 21-23C -0.0027*** -0.0009
(0.0008) (0.0007)

PY Days 23-25C -0.0030*** -0.0014**
(0.0008) (0.0007)

PY Days 25-27C -0.0023*** -0.0011
(0.0008) (0.0007)

PY Days 27-29C -0.0024*** -0.0010
(0.0009) (0.0008)

PY Days >29C -0.0030*** -0.0018**
(0.0009) (0.0008)

Observations 4581616 4581616 4581616 4581616
R2 0.084 0.084 0.068 0.068

Notes: This table presents the impact of temperature in the previous year (captured via temperature bins) on test scores in
the current year for children between the ages of 5 and 16 for 2006-2014. All specifications include district, year, and age fixed
effects. We control for precipitation and humidity in all specifications. The sample includes children aged 5-16. Standard
errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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Table 2: Temperature and Test Scores (YLS)

(1) (2) (3) (4)
Math Score (in SD) Math Score (in SD) PPVT Score (in SD) PPVT Score (in SD)

β / SE β / SE β / SE β / SE

Days >23C -0.004*** -0.005***
(0.001) (0.001)

Days 23-25C -0.007*** 0.002
(0.001) (0.002)

Days 25-27C -0.002** -0.007***
(0.001) (0.001)

Days >27C -0.007*** -0.010***
(0.001) (0.002)

Observations 2604 2604 2541 2541
R2 0.048 0.058 0.057 0.077

Notes: Includes individual, day of week, month, and survey round fixed effects. We control for precipitation and humidity in
all specifications. The sample includes only those children who were tested thrice in both math and PPVT. Standard errors
are in parentheses, clustered by district-week.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.

Table 3: Falsification Test: Temperature and Test Scores (ASER)

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

PY Days <15C -0.0030*** -0.0027***
(0.0007) (0.0006)

PY Days >21C -0.0020*** -0.0008*
(0.0005) (0.0005)

CY Days <15C -0.0004 -0.0008
(0.0007) (0.0006)

CY Days >21C 0.0012* 0.0002
(0.0006) (0.0005)

NY Days <15C -0.0006 -0.0017***
(0.0007) (0.0006)

NY Days >21C 0.0007 0.0001
(0.0006) (0.0005)

Observations 4182681 4182681
R2 0.088 0.071

Notes: This table presents the impact of temperature in the previous year and current year (captured via temperature bins)
on test scores in the current year for children between the ages of 5 and 16 for 2006-2014. All specifications include district
and age fixed effects. We control for precipitation and humidity in all specifications. The sample includes children aged 5-16.
Standard errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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Table 4: Current Year Temperature, Agricultural Yields, and Rural Wages

(1) (2) (3)
Log Yield: Top 6 Crops Log Yield: Top 5 Monsoon Crops Log Wage Rate

β / SE β / SE β / SE

Days <13C -0.0014** -0.0022** -0.0001
(0.0006) (0.0009) (0.0006)

Days 13-15C -0.0009 0.0002 -0.0015*
(0.0006) (0.0008) (0.0008)

Days 17-19C -0.0010* -0.0020** -0.0014**
(0.0005) (0.0009) (0.0006)

Days 19-21C -0.0020*** -0.0022*** -0.0019***
(0.0005) (0.0007) (0.0006)

Days 21-23C -0.0013** -0.0020** -0.0032***
(0.0006) (0.0008) (0.0006)

Days 23-25C -0.0012* -0.0021*** -0.0035***
(0.0006) (0.0008) (0.0007)

Days 25-27C -0.0015** -0.0015* -0.0037***
(0.0007) (0.0009) (0.0007)

Days 27-29C -0.0023*** -0.0017* -0.0045***
(0.0008) (0.0010) (0.0007)

Days >29C -0.0051*** -0.0069*** -0.0040***
(0.0009) (0.0011) (0.0007)

Observations 9479 9475 5516
R2 0.882 0.875 0.959

Notes: This table presents the impact of temperature in the current year (captured via temperature bins) on agriculture yields and rural wages in
the current year for 1980-2011. All specifications include district and year fixed effects. We control for precipitation in all specifications. Standard
errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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Table 5: Growing v. Non-Growing Season: Temperature and Test Scores (ASER)

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

GS Days <13C -0.0009 -0.0011
(0.0012) (0.0011)

GS Days 13-15C -0.0032*** -0.0021**
(0.0011) (0.0010)

GS Days 17-19C -0.0040*** -0.0026***
(0.0010) (0.0009)

GS Days 19-21C -0.0039*** -0.0023***
(0.0009) (0.0008)

GS Days 21-23C -0.0058*** -0.0033***
(0.0011) (0.0009)

GS Days 23-25C -0.0073*** -0.0044***
(0.0011) (0.0009)

GS Days 25-27C -0.0068*** -0.0042***
(0.0011) (0.0010)

GS Days 27-29C -0.0083*** -0.0050***
(0.0013) (0.0012)

GS Days >29C -0.0097*** -0.0064***
(0.0015) (0.0013)

NGS Days <13C -0.0055* -0.0019
(0.0031) (0.0032)

NGS Days 13-15C -0.0030 -0.0008
(0.0030) (0.0028)

NGS Days 17-19C -0.0002 -0.0003
(0.0022) (0.0020)

NGS Days 19-21C 0.0026 0.0008
(0.0018) (0.0018)

NGS Days 21-23C -0.0014 -0.0013
(0.0020) (0.0019)

NGS Days 23-25C 0.0019 0.0014
(0.0021) (0.0019)

NGS Days 25-27C -0.0008 -0.0009
(0.0021) (0.0019)

NGS Days 27-29C 0.0017 0.0006
(0.0022) (0.0020)

NGS Days >29C 0.0023 0.0009
(0.0023) (0.0021)

Observations 4581616 4581616

R2 0.085 0.069

Notes: This table presents the impact of temperature in the previous year (captured via temperature bins) on test scores in the current year for
children between the ages of 5 and 16 for 2006-2014. All specifications include district, year, and age fixed effects. We control for precipitation
and humidity in all specifications. The sample includes children aged 5-16. Standard errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.

Table 6: Heat-Resistant Crops: Temperature and Test Scores (ASER)

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

Days <15C -0.0026*** -0.0020***
(0.0007) (0.0006)

Days >21C -0.0030*** -0.0015***
(0.0006) (0.0005)

Days >21C * HRC 0.0021*** 0.0009
(0.0007) (0.0006)

Observations 4403838 4403838
R2 0.083 0.069

Notes: This table presents the impact of temperature in the previous year (captured via temperature bins) on test scores in
the current year for children between the ages of 5 and 16 for 2006-2014. All specifications include district, year, and age fixed
effects. We control for precipitation and humidity in all specifications. The sample only includes on-track children aged 5-16.
Standard errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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Table 7: Event Study: Temperature, NREGA and Test Scores

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

NREGA: T = -3 -0.0269 0.0068
(0.0373) (0.0338)

NREGA: T = -2 -0.0216 -0.0255
(0.0342) (0.0316)

NREGA: T = 0 -0.0841*** -0.0585**
(0.0257) (0.0239)

NREGA: T = 1 -0.1385*** -0.1187***
(0.0342) (0.0325)

NREGA: T = 2 -0.1278** -0.1379**
(0.0600) (0.0553)

Days <13C -0.0031** -0.0014
(0.0015) (0.0013)

Days 13-15C -0.0009 -0.0013
(0.0017) (0.0015)

Days 17-19C 0.0028* 0.0024
(0.0016) (0.0015)

Days 19-21C 0.0027** 0.0021*
(0.0014) (0.0013)

Days 21-23C 0.0020 0.0014
(0.0014) (0.0012)

Days 23-25C 0.0015 0.0012
(0.0014) (0.0012)

Days 25-27C -0.0001 -0.0001
(0.0015) (0.0013)

Days 27-29C -0.0002 -0.0001
(0.0016) (0.0014)

Days >29C -0.0017 -0.0012
(0.0017) (0.0015)

NREGA: T = -3 * Days >29C 0.0009* 0.0003
(0.0005) (0.0005)

NREGA: T = -2 * Days >29C 0.0006 0.0006
(0.0004) (0.0004)

NREGA: T = 0 * Days >29C 0.0004 0.0002
(0.0004) (0.0003)

NREGA: T = 1 * Days >29C 0.0010** 0.0010**
(0.0005) (0.0004)

NREGA: T = 2 * Days >29C 0.0009 0.0014*
(0.0009) (0.0009)

Observations 1866623 1866623
R2 0.177 0.168

Notes: This table tests if the impacts of last year’s temperature were attenuated by NREGA roll-out in that year. To capture these effects, we
have interacted the number of days in the previous year when the temperature was over 29◦C (bin 10) with the event time of NREGA roll-out.
t=0 indicates if NREGA was implemented last year in that district. Because we are testing the effects of last year’s temperature on current year’s
test scores, we interact previous year’s NREGA roll-out with previous year’s temperature, to capture attenuation. The reference temperature bin
is 15◦C-17◦C, and the omitted event time dummy is -1 (one year before NREGA was rolled out in the previous year). The sample includes test
scores in the current year for children between the ages of 5 and 16 for 2006-2009. All specifications include district, year and age fixed effects.
We control for precipitation terciles and relative humidity in all specifications. The sample includes children aged 5-16. Standard errors are in
parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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A Appendix (Online Only): Effects of Temperature on

Day of Test

Ambient temperature affects brain temperature. The brain’s chemistry, electrical properties,
and function are all temperature sensitive (Bowler and Tirri, 1974; Schiff and Somjen, 1985;
Hocking et al., 2001; Deboer, 1998; Yablonskiy, Ackerman and Raichle, 2000), and both
warm environmental temperatures and cognitive demands can elevate brain temperature.35

We perform our analysis on data from the Young Lives Survey, which provides the date of
the cognitive test.36 Since the YLS is an individual panel, we exploit within-child variation
in exposure to temperature on the day of test on different waves of the survey. Given that
the timing of the test is generally pre-arranged and invariant to short-run fluctuations in
weather—an assumption we formally test—we can identify the causal effect of short-run
temperature on test score performance. To estimate the effect on test scores of day-of-test
temperatures, we use two specifications. First, we construct a binary indicator for average
day-of-test temperature being above 23◦C to estimate the following equation. We selected
23◦C as the cutoff because it represents the 25th percentile of the average daily temperatures
in the state of Andhra Pradesh.

Yijdmt = β(> 23◦C)jdmt + rainjdmt + αi + µ1d + µ2m + µ3t + εijdmt (A.6)

Yijdmt is the math or reading test score of child i in district j on day-of-week d in month-
of-year m in survey round t, standardized by year-age. Our parameter of interest is β, which
is the marginal effect of the average day-of-test temperature being above 23◦C relative to
a day with average temperature below 23◦C. We control for rainfall on the day-of-test and
include fixed effects for child (αi), day-of-week (µ1d), month-of-year (µ2m) and year of survey
(µ3t). We cluster standard errors at the district-week level to allow for arbitrary correlation
in test scores within a district in a week and for conservative inference when multiple children
are assigned the same temperature observation.

The specification in equation (A.6) imposes the key assumption that the marginal effect
of the day-of-test temperature on performance is constant above and below 23◦C. We relax
this assumption and employ a second, more flexible specification that relaxes the constant
marginal effect assumption over smaller temperature bins. The choice of temperature bins is
motivated by 23◦C and 27◦C representing the 25th and 75th percentiles of daily temperature

35There exists a vast body of empirical evidence linking cognitive impairment to high temperatures as a result of heat stress.
For instance, military research has shown that soldiers executing complex tasks in hot environments make more errors than
soldiers in cooler conditions (Fine and Kobrick, 1978; Froom et al., 1993). Further, LED lighting, which emits less heat than
conventional bulbs, decreases indoor temperature, and has been shown to raise productivity of workers in garment factories in
India, particularly on hot days (Adhvaryu, Kala and Nyshadham, 2015). Exposure to heat has also been shown to diminish
attention, memory, information retention and processing, and the performance of psycho-perceptual tasks (Hyde et al., 1997;
Vasmatzidis, Schlegel and Hancock, 2002).

36We were unable to obtain information on the date of test for cognitive tests conducted as part of ASER and therefore were
unable to identify the date-of-test effects for the ASER data.
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distribution with equally spaced bins in between.

Yijdmt = β2(23◦C − 25)jdmt + β3(25◦C − 27◦C)jdmt + β4(> 27◦C)jdmt

+ rainjdmt + αi + µ1d + µ2m + µ3t + εijdmt (A.7)

The omitted bin is (< 23C). Therefore, for example, β4 is the effect on performance of the
day-of-test temperature being above 27◦C relative to below 23◦C.

A.1 Results

We report the effects of day-of-test temperature on test scores in table A.1 and illustrate
the results graphically in figure A.1. Columns (1) and (2) report the effect of temperature
on math scores for equations (A.6) and (A.7) respectively. Consistent with the neuroscience
literature and recent work in economics on the impacts of temperature on cognitive per-
formance, we find strong evidence for the presence of a physiological channel connecting
temperatures to test scores in the short run (Bowler and Tirri, 1974; Schiff and Somjen,
1985; Hocking et al., 2001). Specifically, we find that a 1◦C increase in average day-of-
test temperature above 23◦C reduces within-cohort math test performance by 0.17 standard
deviations. The magnitudes of our estimates are comparable to those found in developed
countries. Graff-Zivin, Hsiang and Neidell (2015) find marginal effects of 0.2 standard devi-
ations for every degree centigrade above 21◦C, and Park (2017) finds a marginal effect of 0.1
standard deviations for every degree centigrade above 23◦C. To allow for non-linearity in the
marginal effects of temperature, we estimate our preferred specification is equation (A.7),
as illustrated in figure 2(a). To the extent that other mechanisms, such as income effects
and cumulative learning, manifest over a duration longer than a single day, the effects of
short-run or day-of-test temperature is likely a physiological effect of temperature on math
test scores. We rule out same-day behavioral channels (e.g., heat-driven distraction during
the test, time spent on other activities, surveyors changing time of day when test is con-
ducted) using two additional pieces of evidence: (1) we show that the effect of temperature
on performance is subject-specific, and (2) there are negligible effects of temperature on the
timing of test and time taken to complete the test. These results are described below.

Math v. Reading Performance

Different portions of the brain perform different cognitive functions. For instance, the pre-
frontal cortex, which is responsible for providing the “working memory” needed for perform-
ing mathematical problems, is more temperature sensitive than the portions of the brain
responsible for reading functions (Hocking et al., 2001). Consequently, while we observe
substantial effects of higher temperatures on math score performance, we don’t find any dis-
cernible or meaningful relationship between higher temperatures and reading comprehension
(columns (3) and (4), table A.1, figure 2(b)). Our results are consistent with those in prior
work in developed countries (Graff-Zivin, Hsiang and Neidell, 2015). The subject-specific
effect of day-of-test temperature on performance suggests that the underlying mechanism is
likely physiological rather than behavioral.
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Timing of the Test

Since these tests are conducted at home, one concern is that temperature may directly affect
the time of the day when the test takes place. If heat affects the time of day when the test
takes place, enumerators may choose the hottest times of the day, when kids are at home
(and not playing outside, for example), or may choose to go in the evenings to reduce their
own heat exposure, resulting in biased estimates of the immediate effect of temperature on
test scores. To overcome this potential source of endogeneity, we directly test the effect
of day-of-test temperature on the time of day when the test takes place and show that
temperature does not alter the time of day when the test takes place (table A.2).37

Persistence

We test whether temperature can have persistent impacts; a hot day today could continue
to affect performance in the future if the human body is unable to internally self-regulate to
higher ambient temperatures.38 We directly examine this possibility by testing for lags on
the effects of short-run temperature. We find no evidence for the persistence of the effects
of short-run temperature on test scores: over the four days prior to the test, heat stress
has no effect on test performance (figure A.2). This pattern largely holds for at least up to
four weeks of leads and lags (figure A.3). The large day-of-test effect and the null week-of-
test effect are consistent with a model of internal self-regulation in which the human body
self-regulates higher temperatures, making the direct effects of temperature on cognitive
performance temporary (Taylor, 2006).

37Furthermore, the YLS records not only cognitive performance in math and reading tests, but also the duration of time
taken to complete both tests as well as the time of day when the test is held. We find that on days above 27◦C, students spend
marginally more time on tests (two minutes on math and one minute on reading tests respectively) than on days below 23◦C
(table A.3). Since these are low-stakes examinations that are of no consequence to the children, the nominally extra time spent
on tests is inconsistent with a model in which heat-driven changes in test takers’ effort or behavior are driving the relationship
between short-run temperature and performance.

38Temperature on day-of-test can affect performance on high-stakes exams and translate into lower human capital production
due to the structure of the education system, typically in the form of arbitrary cutoffs for passing or placing into high-
achievement programs (Park, 2017). In our study, however, we evaluate the effects of temperature on low-stakes cognitive tests
and abstract away from this pathway. While we acknowledge the possibility of this pathway, we will demonstrate that this is
not the mechanism for the effects of longer-run temperature that we discuss in section 4.1.
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Figures

Figure A.1: Day-of-Test Temperature and Test Scores (YLS)

(a) Math Scores

(b) Reading Scores

Notes: The figure shows the effect of day-of-test temperature on math and reading performance. The effect of temperature below 23◦C is
normalized to zero and all other coefficients are interpreted relative to below 23◦C. The regressions include day of individual, week, month, and
survey round fixed effects. We control for precipitation. The sample includes only those children who were tested thrice in both math and PPVT.
Standard errors are in parentheses, clustered by district-week.
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Figure A.2: Leads and Lags in Days: Day-of-Test Temperature and Math Scores

Notes: The figure presents the impact of short-run temperature from four weeks before test day to four weeks after the test. Temperature is
captured as 1 if temperature is > 23 on the day of the test for “Test Day”, 0 otherwise. Includes individual, day of week, month, and survey
round fixed effects. We control for precipitation in all periods. The sample includes only those children who were tested thrice in both math and
PPVT. Standard errors are in parentheses, clustered by district-week.

Figure A.3: Leads and Lags in Weeks: Day-of-Test Temperature and Math Scores

Notes: The figure presents the impact of short-run temperature from four weeks before test day to four weeks after the test. Temperature is
captured as the number of days when the temperature is >23◦C during a week for “No. Week”, and if temperature is > 23 on the day of the test
for “Test Day”. Includes individual, day of week, month, and survey round fixed effects. We control for precipitation in all periods. The sample
includes only those children who were tested thrice in both Math and PPVT. Standard errors are in parentheses, clustered by district-week.
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Tables

Table A.1: Day-of-Test Temperature and Test Scores (YLS)

(1) (2) (3) (4)
Math Score (in SD) Math Score (in SD) PPVT Score (in SD) PPVT Score (in SD)

β / SE β / SE β / SE β / SE

Day >23C -0.168*** -0.012
(0.046) (0.058)

Day 23-25C -0.154*** -0.030
(0.046) (0.059)

Day 25-27C -0.259*** 0.060
(0.057) (0.076)

Day >27C -0.303*** 0.147
(0.077) (0.094)

Observations 2604 2604 2541 2541
R2 0.023 0.027 0.009 0.012

Notes: Includes individual, day of week, month, and survey round fixed effects. We control for precipitation in all specifications.
The sample includes only those children who were tested thrice in both math and PPVT. Standard errors are in parentheses,
clustered by district-week.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.

Table A.2: Day-of-Test Temperature and Test Timing

(1) (2)
Math Start Time PPVT Start Time

β / SE β / SE

Day 23-25C 0.187 -0.029
(0.372) (0.202)

Day 25-27C 0.211 -0.488
(0.381) (0.316)

Day >27C 0.449 -0.558
(0.588) (0.349)

Observations 2604 1694
R2 0.595 0.034

Notes: Includes individual, day of week, month, and survey round fixed effects. We control for precipitation in all specifications. The sample
includes only those children who were tested thrice in both math and PPVT. Standard errors are in parentheses, clustered by district-week.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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Table A.3: Day-of-Test Temperature and Test Duration

(1) (2)
Duration Math Test Duration PPVT Test

β / SE β / SE

Day 23-25C 0.927 -2.331***
(0.626) (0.710)

Day 25-27C 0.657 -1.420
(0.781) (0.868)

Day >27C 2.068** 0.930
(1.040) (1.123)

Observations 2590 2528
R2 0.783 0.245

Notes: Includes individual, day of week, month, and survey round fixed effects. We control for precipitation in all specifications. The sample
includes only those children who were tested thrice in both math and PPVT. Standard errors are in parentheses, clustered by district-week.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B Appendix (Online Only): Additional Results

B.1 Robustness Checks for Effects of Longer-Run Temperature

B.1.1 Short- and Longer-Run Temperature and Test Scores

Table B.1: Short- and Longer-Run Temperature and Test Scores

(1) (2) (3) (4)
Math Score (in SD) Math Score (in SD) PPVT Score (in SD) PPVT Score (in SD)

β / SE β / SE β / SE β / SE

Day >23C -0.112*** 0.030
(0.042) (0.058)

Days >23C -0.004*** -0.005***
(0.001) (0.001)

Day 23-25C -0.096** -0.005
(0.044) (0.056)

Day 25-27C -0.175*** 0.139*
(0.056) (0.075)

Day >27C -0.161** 0.253***
(0.073) (0.097)

Days 23-25C -0.007*** 0.001
(0.001) (0.002)

Days 25-27C -0.002** -0.007***
(0.001) (0.001)

Days >27C -0.007*** -0.009***
(0.001) (0.001)

Observations 2604 2604 2541 2541
R2 0.054 0.069 0.060 0.084

Notes: Includes individual, day of week, month, and survey round fixed effects. We control for precipitation in all specifications.
The sample includes only those children who were tested thrice in both math and PPVT. Standard errors are in parentheses,
clustered by district-week.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B.1.2 ASER Results: On-Track Students Only

Table B.2: On-Track Children: Temperature and Test Scores

(1) (2) (3) (4)
Math Score (in SD) Math Score (in SD) Read Score (in SD) Read Score (in SD)

β / SE β / SE β / SE β / SE

Days <15C -0.0027*** -0.0021***
(0.0006) (0.0005)

Days >21C -0.0016*** -0.0007*
(0.0005) (0.0004)

PY Days <13C -0.0041*** -0.0031***
(0.0009) (0.0007)

PY Days 13-15C -0.0029*** -0.0018**
(0.0008) (0.0007)

PY Days 17-19C -0.0017** -0.0009
(0.0009) (0.0007)

PY Days 19-21C -0.0010 -0.0003
(0.0007) (0.0006)

PY Days 21-23C -0.0027*** -0.0009
(0.0008) (0.0007)

PY Days 23-25C -0.0030*** -0.0014**
(0.0008) (0.0006)

PY Days 25-27C -0.0022*** -0.0011*
(0.0008) (0.0006)

PY Days 27-29C -0.0025*** -0.0013*
(0.0008) (0.0007)

PY Days >29C -0.0028*** -0.0018**
(0.0009) (0.0007)

Observations 3501428 3501428 3501428 3501428
R2 0.088 0.088 0.065 0.065

Notes: This table presents the impact of temperature in the previous year (captured via temperature bins) on test scores in
the current year for children between the ages of 5 and 16 for 2006-2014. All specifications include district, year, and age fixed
effects. We control for precipitation and humidity in all specifications. The sample only includes on-track children aged 5-16.
Standard errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B.1.3 ASER Results - Degree Days

Table B.3: Temperature and Test Scores: Complete Sample

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

DD <21C 0.0140* 0.0126*
(0.0080) (0.0073)

DD >21C -0.0082 -0.0116**
(0.0057) (0.0048)

Observations 4581616 4581616
R2 0.084 0.068

Notes: This table presents the impact of temperature in the previous year (captured via degree days) on test scores in the
current year for children between the ages of 5 and 16 for 2006-2014. All specifications include district, year, and age fixed
effects. We control for precipitation and humidity in all specifications. The sample includes children aged 5-16. Standard
errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.

Table B.4: Temperature and Test Scores: On Track Only

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

DD <21C 0.0107 0.0094
(0.0074) (0.0063)

DD >21C -0.0077 -0.0110**
(0.0057) (0.0045)

Observations 3446230 3446230
R2 0.087 0.065

Notes: This table presents the impact of temperature in the previous year (captured via degree days) on test scores in the
current year for children between the ages of 5 and 16 for 2006-2014. All specifications include district, year, and age fixed
effects. We control for precipitation and humidity in all specifications. The sample only includes on-track children aged 5-16.
Standard errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B.1.4 ASER Results: Adding Lags

Table B.5: Temperature and Test Scores (ASER): Adding Lags

(1) (2) (3) (4)
Math Score (in SD) Math Score (in SD) Read Score (in SD) Read Score (in SD)

β / SE β / SE β / SE β / SE

PY Days <15C -0.0025*** -0.0021***
(0.0007) (0.0006)

PY Days >21C -0.0022*** -0.0014***
(0.0006) (0.0005)

PY Days <13C -0.0031*** -0.0030***
(0.0010) (0.0008)

PY Days 13-15C -0.0027*** -0.0020**
(0.0010) (0.0009)

PY Days 17-19C -0.0025*** -0.0018**
(0.0010) (0.0009)

PY Days 19-21C -0.0002 -0.0002
(0.0010) (0.0009)

PY Days 21-23C -0.0027*** -0.0016*
(0.0010) (0.0009)

PY Days 23-25C -0.0033*** -0.0024***
(0.0010) (0.0008)

PY Days 25-27C -0.0032*** -0.0024***
(0.0010) (0.0009)

PY Days 27-29C -0.0034*** -0.0023**
(0.0011) (0.0009)

PY Days >29C -0.0035*** -0.0029***
(0.0010) (0.0009)

L.2-L.5 Controls Yes Yes Yes Yes

Observations 4581616 4581616 4581616 4581616
R2 0.085 0.086 0.069 0.070

Notes: This table presents the impact of temperature in the previous year (captured via temperature bins) on test scores in
the current year for children between the ages of 5 and 16 for 2006-2014. All specifications include district, year, and age fixed
effects. We control for precipitation and humidity in all specifications. Standard errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B.1.5 ASER Results: Adding State-Specific Time Trends

Table B.6: Temperature and Test Scores (ASER): Adding State-Specific Time Trends

(1) (2) (3) (4)
Math Score (in SD) Math Score (in SD) Read Score (in SD) Read Score (in SD)

β / SE β / SE β / SE β / SE

PY Days <15C -0.0032*** -0.0026***
(0.0006) (0.0005)

PY Days >21C -0.0025*** -0.0013***
(0.0004) (0.0004)

PY Days <13C -0.0036*** -0.0029***
(0.0008) (0.0007)

PY Days 13-15C -0.0023*** -0.0018***
(0.0008) (0.0007)

PY Days 17-19C 0.0003 0.0001
(0.0008) (0.0008)

PY Days 19-21C 0.0001 0.0004
(0.0007) (0.0006)

PY Days 21-23C -0.0018** -0.0008
(0.0007) (0.0007)

PY Days 23-25C -0.0024*** -0.0010
(0.0008) (0.0007)

PY Days 25-27C -0.0031*** -0.0017**
(0.0008) (0.0007)

PY Days 27-29C -0.0030*** -0.0014*
(0.0009) (0.0008)

PY Days >29C -0.0032*** -0.0019**
(0.0009) (0.0008)

Observations 4581616 4581616 4581616 4581616
R2 0.097 0.097 0.076 0.076

Notes: This table presents the impact of temperature in the previous year (captured via temperature bins) on test scores in
the current year for children between the ages of 5 and 16 for 2006-2014. All specifications include district, year, and age fixed
effects. We control for precipitation and humidity in all specifications. Standard errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B.1.6 ASER Results: Adding State-Year FE

Table B.7: Temperature and Test Scores (ASER): Adding State-Year FE

(1) (2) (3) (4)
Math Score (in SD) Math Score (in SD) Read Score (in SD) Read Score (in SD)

β / SE β / SE β / SE β / SE

Days <15C -0.0015** -0.0010
(0.0007) (0.0007)

Days >21C -0.0021*** -0.0014**
(0.0006) (0.0006)

PY Days <13C -0.0027*** -0.0021**
(0.0010) (0.0009)

PY Days 13-15C -0.0013 -0.0009
(0.0008) (0.0007)

PY Days 17-19C -0.0008 -0.0009
(0.0009) (0.0008)

PY Days 19-21C -0.0008 -0.0010
(0.0009) (0.0008)

PY Days 21-23C -0.0028*** -0.0022**
(0.0010) (0.0009)

PY Days 23-25C -0.0031*** -0.0025***
(0.0011) (0.0009)

PY Days 25-27C -0.0032*** -0.0026**
(0.0011) (0.0010)

PY Days 27-29C -0.0029** -0.0023**
(0.0013) (0.0011)

PY Days >29C -0.0031** -0.0026**
(0.0014) (0.0012)

Observations 4581616 4581616 4581616 4581616
R2 0.102 0.102 0.079 0.079

Notes: This table presents the impact of temperature in the previous year (captured via temperature bins) on test scores in
the current year for children between the ages of 5 and 16 for 2006-2014. All specifications include district, state-by-year, and
age fixed effects. We control for precipitation and humidity in all specifications. Standard errors are in parentheses, clustered
by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B.2 Robustness Checks: Agricultural Income Mechanism

Table B.8: Current Year Growing Season Temperature and Agriculture Yields

(1) (2)
Log Yield: Top 6 Crops Log Yield: Top 5 Monsoon Crops

β / SE β / SE

GS Days <13C -0.0018** -0.0023**
(0.0008) (0.0011)

GS Days 13-15C 0.0004 0.0029***
(0.0007) (0.0010)

GS Days 17-19C -0.0013** -0.0026**
(0.0006) (0.0011)

GS Days 19-21C -0.0032*** -0.0033***
(0.0007) (0.0009)

GS Days 21-23C -0.0027*** -0.0033***
(0.0007) (0.0010)

GS Days 23-25C -0.0033*** -0.0040***
(0.0008) (0.0010)

GS Days 25-27C -0.0042*** -0.0038***
(0.0008) (0.0010)

GS Days 27-29C -0.0055*** -0.0042***
(0.0010) (0.0013)

GS Days >29C -0.0096*** -0.0116***
(0.0012) (0.0015)

NGS Days <13C 0.0021 0.0004
(0.0017) (0.0017)

NGS Days 13-15C -0.0023 0.0003
(0.0021) (0.0023)

NGS Days 17-19C -0.0035* -0.0042**
(0.0019) (0.0019)

NGS Days 19-21C -0.0029** -0.0028**
(0.0012) (0.0014)

NGS Days 21-23C -0.0021* -0.0016
(0.0012) (0.0013)

NGS Days 23-25C -0.0009 -0.0012
(0.0013) (0.0014)

NGS Days 25-27C -0.0015 -0.0021
(0.0015) (0.0016)

NGS Days 27-29C -0.0010 -0.0018
(0.0015) (0.0016)

NGS Days >29C -0.0018 -0.0028*
(0.0015) (0.0017)

Observations 9479 9475
R2 0.885 0.877

Notes: This table presents the impact of temperature in the current growing season (captured via temperature bins) on agriculture yields in the
current year for 1980-2011. All specifications include district and year fixed effects. We control for precipitation in all specifications. Standard
errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B.2.1 Heterogeneity — Gender

(a)
Girls(Math)

(b)
Boys(Math)

(c)
Girls(Read)

(d)
Boys(Read)

Figure B.1: Temperature and Test Scores (ASER): By Gender
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Figure B.2: Average Take-Up of Heat Resistant Crops by District
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B.2.2 Geographic Take-Up of Heat-Resistant Crops

B.2.3 Temperature Variation by Climate Deciles

Table B.9: Temperature Variation by Climate Deciles

Removed District and Year FE
% HHs

Decile 1: GS Days >21C below/above 5 0.24

Decile 2: GS Days >21C below/above 5 0.10

Decile 3: GS Days >21C below/above 5 0.21

Decile 4: GS Days >21C below/above 5 0.18

Decile 5: GS Days >21C below/above 5 0.19

Decile 6: GS Days >21C below/above 5 0.15

Decile 7: GS Days >21C below/above 5 0.31

Decile 8: GS Days >21C below/above 5 0.36

Decile 9: GS Days >21C below/above 5 0.38

Decile 10: GS Days >21C below/above 5 0.27

Notes: This table shows the proportion of observations in each climate decile with deviations larger than five days, over 21◦C,
after removing district and year fixed effects.

B.3 Alternative Explanations

B.3.1 Teacher Attendance

Table B.10: Previous Year Temperature and Teacher Attendance

(1) (2) (3)
Tch. Attend Proportion Tch. Attend Proportion Reg. Tch. Attend =100%

β / SE β / SE β / SE

PY NGS Days <15C -0.0010* -0.0028* -0.0019
(0.0006) (0.0016) (0.0013)

PY NGS Days >21C 0.0003 0.0008 0.0007
(0.0003) (0.0010) (0.0009)

PY GS Days <15C 0.0006** 0.0016** 0.0013**
(0.0003) (0.0007) (0.0006)

PY GS Days >21C 0.0001 0.0009* 0.0010**
(0.0002) (0.0005) (0.0004)

Observations 75328 75328 75328
R2 0.053 0.073

Notes: All specifications include district and year fixed effects. Standard errors are in parentheses, clustered by district.
Specification (2) estimates a tobit model.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B.3.2 Long-Run Temperature and Dropouts, Grade Progression

Table B.11: Long-Run Temperature and Dropouts, Grade Progression

(1) (2) (3) (4)
Dropout Dropout On-Track On-Track
β / SE β / SE β / SE β / SE

Days <15C -0.0000 0.0000
(0.0000) (0.0002)

Days >21C -0.0001 0.0001
(0.0000) (0.0001)

PY Days <13C 0.0000 -0.0001
(0.0001) (0.0003)

PY Days 13-15C -0.0001* 0.0001
(0.0001) (0.0003)

PY Days 17-19C 0.0000 -0.0002
(0.0001) (0.0003)

PY Days 19-21C -0.0001 0.0003
(0.0001) (0.0002)

PY Days 21-23C -0.0001 0.0002
(0.0001) (0.0003)

PY Days 23-25C -0.0001 0.0004
(0.0001) (0.0003)

PY Days 25-27C -0.0001 0.0001
(0.0001) (0.0003)

PY Days 27-29C -0.0001* 0.0002
(0.0001) (0.0003)

PY Days >29C -0.0001 0.0002
(0.0001) (0.0003)

Observations 4581616 4581616 4581616 4581616
R2 0.061 0.061 0.133 0.133

Notes: This table presents the impact of temperature in the previous year (captured via temperature bins) on probability of
dropout and on-track status in the current year for children between the ages of 5 and 16 for 2006-2014. All specifications
include district, year, and age fixed effects. We control for precipitation and humidity in all specifications. Standard errors are
in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B.3.3 Temperature, Rainfall, and Test Scores

Table B.12: Temperature, Rainfall, and Test Scores

(1) (2) (3) (4)
Math Score (in SD) Math Score (in SD) Read Score (in SD) Read Score (in SD)

β / SE β / SE β / SE β / SE

PY Days <15C -0.0020*** -0.0015* -0.0017*** -0.0010
(0.0006) (0.0007) (0.0006) (0.0007)

PY Days >21C -0.0021*** -0.0021*** -0.0011** -0.0014**
(0.0005) (0.0006) (0.0004) (0.0006)

CY Days <15C -0.0001 0.0000 -0.0006 -0.0006
(0.0007) (0.0008) (0.0006) (0.0007)

CY Days >21C 0.0018*** -0.0002 0.0004 -0.0000
(0.0005) (0.0006) (0.0004) (0.0005)

PY Rain Bottom Terc. 0.0078 -0.0006 0.0108 0.0015
(0.0111) (0.0106) (0.0100) (0.0099)

PY Rain Top Terc. -0.0258*** -0.0016 -0.0186** 0.0001
(0.0091) (0.0096) (0.0078) (0.0086)

CY Rain Bottom Terc. 0.0230** -0.0024 0.0142 -0.0022
(0.0099) (0.0111) (0.0089) (0.0096)

CY Rain Top Terc. -0.0512*** -0.0067 -0.0296*** -0.0012
(0.0101) (0.0104) (0.0084) (0.0094)

Year Dummies Yes No Yes No
State-by-Year Dummies No Yes No Yes

Observations 4581616 4581616 4581616 4581616
R2 0.085 0.102 0.069 0.079

Notes: This table presents the impact of temperature in the previous year, current year and next year (captured via
temperature bins) on test scores in the current year for children between the ages of 5 and 16 for 2006-2014. Specifications 1
and 3 include district, year, and age fixed effects, while specifications 2 and 4 include district, state-by-year, and age fixed
effects. We control for precipitation and humidity in all specifications. The sample includes children aged 5-16. Standard
errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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B.3.4 ASER Results: Results by Malaria-Prone States

(a)
Malaria-
Prone
States

(b)
Other
States

(c)
Malaria
Prone
States

(d)
Other
States

Figure B.3: Temperature and Test Scores (ASER) By Malaria-Prone States
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Table B.13: Long-Run Temperature and Test Scores (ASER): Malaria-Prone States

(1) (2) (3) (4)
Math Score (in SD) Math Score (in SD) Read Score (in SD) Read Score (in SD)

Other States Malaria Prone Other Malaria Prone

GS Days <13C -0.0011 -0.0047 -0.0009 -0.0074**
(0.0013) (0.0046) (0.0012) (0.0035)

GS Days 13-15C -0.0037*** 0.0026 -0.0025** -0.0003
(0.0011) (0.0039) (0.0011) (0.0029)

GS Days 17-19C -0.0048*** 0.0031 -0.0028*** -0.0014
(0.0010) (0.0029) (0.0010) (0.0024)

GS Days 19-21C -0.0039*** -0.0039 -0.0019** -0.0055**
(0.0010) (0.0025) (0.0008) (0.0022)

GS Days 21-23C -0.0078*** -0.0004 -0.0042*** -0.0034
(0.0012) (0.0029) (0.0010) (0.0025)

GS Days 23-25C -0.0085*** -0.0032 -0.0047*** -0.0055**
(0.0012) (0.0035) (0.0010) (0.0028)

GS Days 25-27C -0.0071*** -0.0075** -0.0038*** -0.0085***
(0.0012) (0.0036) (0.0011) (0.0029)

GS Days 27-29C -0.0091*** -0.0065 -0.0050*** -0.0065*
(0.0015) (0.0043) (0.0012) (0.0034)

GS Days >29C -0.0103*** -0.0100* -0.0062*** -0.0109**
(0.0016) (0.0059) (0.0014) (0.0046)

NGS Days <13C -0.0061* 0.0056 -0.0022 0.0059
(0.0032) (0.0089) (0.0033) (0.0068)

NGS Days 13-15C -0.0044 0.0200** -0.0013 0.0091
(0.0031) (0.0085) (0.0029) (0.0071)

NGS Days 17-19C -0.0014 0.0085 -0.0010 0.0048
(0.0022) (0.0085) (0.0021) (0.0073)

NGS Days 19-21C 0.0015 0.0163*** 0.0001 0.0080**
(0.0019) (0.0062) (0.0018) (0.0034)

NGS Days 21-23C -0.0029 0.0219*** -0.0026 0.0183***
(0.0021) (0.0061) (0.0020) (0.0043)

NGS Days 23-25C 0.0003 0.0206*** -0.0001 0.0157***
(0.0022) (0.0054) (0.0021) (0.0036)

NGS Days 25-27C -0.0037* 0.0246*** -0.0030 0.0187***
(0.0022) (0.0062) (0.0020) (0.0042)

NGS Days 27-29C 0.0006 0.0218*** -0.0003 0.0164***
(0.0023) (0.0061) (0.0021) (0.0044)

NGS Days >29C 0.0000 0.0246*** -0.0012 0.0197***
(0.0025) (0.0064) (0.0023) (0.0047)

Observations 3787102 794514 3787102 794514
R2 0.089 0.065 0.071 0.060

Notes: This table presents the impact of temperature in the previous year (captured via temperature bins) on test scores in
the current year for children between the ages of 5 and 16 for 2006-2014. All specifications include district, year, and age
fixed effects. We control for precipitation and humidity in all specifications. Standard errors are in parentheses, clustered by
district. The malaria prone states are Orissa, Chattisgarh, West Bengal, Jharkhand, and Karnataka.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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C Appendix (Online Only): Why Does Income Mat-

ter?

Having found evidence that longer-run temperature affects test scores through heat-induced
agricultural income losses, we present some suggestive evidence on the potential channels
through which income losses might affect human capital production. In theory, there are at
least two possible channels. First, temperature affects yields and consequently nutritional
intake amongst households.39 Lower nutritional intake can reduce learning through incidence
of illness, particularly in resource-constrained households. Second, the effects of temperature
on agricultural yields can change time-use in households: lower yields may end up requiring
parents to spend more time on income-generating activities, resulting in kids spending more
time with household chores and less time in school. We find some evidence for both these
channels.

C.1 Additional Data Set

For this appendix, in addition to the data sets mentioned in the main paper, we also make
use of the India Human Development Survey (IHDS), which is a nationally representative,
multi-topic survey conducted across urban and rural areas. There are currently two waves
of IHDS (2004-05 and 2011-12), both of which we obtained from the survey’s public portal.
We primarily use IHDS to corroborate our results from other surveys, and in particular focus
on information on health, nutritional intake, and health-related expenditures. The survey
covers both children and adults.

C.2 Health and Nutrition

Nutritional intake is an important component of human capital development, and poor
nutritional intake can affect test performance. We examine the effects of hot days in the
previous year on nutritional consumption and health outcomes. We exploit the panel nature
of the Young Lives Survey (YLS) and find that temperature extremes affect own-grown
nutritional intake, leading to increased sickness and, consequently, absence from school.
We report three important findings. First, a hot day above 27◦C in the year of test reduces
consumption (measured in value, not quantity) of own-grown crops and own animal products
by 1.6% and 0.5% respectively (table C.2, columns 4-6). Consequently, each additional hot
day reduces value of household overall (home and market) consumption of grains by 0.6%
(table C.2, column 1), although the coefficient is not statistically significant.

Second, we show that hot days in the previous year lower children’s BMI. An extra 10 hot
days above 27◦C in the previous year reduces BMI by 0.04 age-specific standard deviations,
which is comparable to the effect of temperature on test scores for both math and reading.

Third, we do find hot days increase school absence modestly, and much of this is driven
by increased sickness (table C.4). However, these effects are not a result of the direct
physiological exposure to heat. We find that, consistent with the agricultural income channel,

39There is a vast literature documenting the role of adequate nutritional intake in human capital production. A non-exhaustive
list of papers includes Victora et al. (2008); Strauss and Thomas (1998); Thomas and Strauss (1997); Strauss (1986).
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only temperature during the growing season of the previous year affects student absence in
the current year (C.3).

We further corroborate this evidence from an additional survery with coverage for all of
India—the India Human Development Survey. We find that under extreme temperatures,
overall grain consumption decreases (table C.7), sickness increases (table C.8) and medical
expenditures increase (table C.9).

Time-Use

We find modest evidence to support the time-use hypothesis. We find that households adjust
their time use in response to higher temperatures (tables C.5, C.6). We find that an extra
hot day above 23◦C increases time spent by children in caring for infants by 5% (table C.5,
column 2) and a 7% increase in household chores (table C.5, column 3). Simultaneously, we
observe a corresponding drop in self-study time by 4% (table C.6, column 2). Importantly,
however, we don’t see any reduction in time spent in school (table C.6, column 1). We verify
this using drop-out data from ASER and show that there is no change in drop-out rates as
a result of higher temperatures (table B.11).

Table C.1: PY Temperature and BMI

(1) (2)
BMI BMI-for-Age Z-Score
β / SE β / SE

PY Days 23-25C -0.006** -0.003
(0.003) (0.002)

PY Days 25-27C -0.008*** -0.005***
(0.003) (0.002)

PY Days >27C -0.006 -0.004*
(0.003) (0.003)

Observations 3460 3460
R2 0.332 0.066

Notes: Includes individual, month, and survey round fixed effects. We control for precipitation in all specifications. The sample
includes only those children who were tested thrice in both math and PPVT. Standard errors are in parentheses, clustered by
district-week.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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Table C.2: Temperature and Log Value of Food Consumption

(1) (2) (3) (4) (5) (6)
Crops Animals Veg-Fruits Own Crops Own Animals Own Veg-Fruits
β / SE β / SE β / SE β / SE β / SE β / SE

PY Days 23-25C -0.002 0.005*** -0.002 -0.002 -0.001 0.002
(0.003) (0.002) (0.001) (0.004) (0.002) (0.002)

PY Days 25-27C -0.009* 0.014*** 0.006** 0.010 -0.001 0.004
(0.005) (0.004) (0.002) (0.008) (0.005) (0.004)

PY Days >27C -0.006 0.013*** 0.005** -0.016** -0.005 -0.000
(0.006) (0.004) (0.003) (0.007) (0.005) (0.004)

Observations 2604 2604 2604 2604 2604 2604
R2 0.028 0.153 0.370 0.036 0.019 0.045

Notes: Includes individual, month, and survey round fixed effects. We control for precipitation in all specifications. The sample
includes only those children who were tested thrice in both math and PPVT. Standard errors are in parentheses, clustered by
district-week.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.

C.3 ASER: School Attendance

Table C.3: Previous Year Temperature and Student Attendance

(1) (2) (3)
Stu. Attend Proportion Stu. Attend Proportion Stu. Attend Prop. > p50

β / SE β / SE β / SE

PY NGS Days <15C 0.0002 0.0001 0.0021*
(0.0005) (0.0005) (0.0011)

PY NGS Days >21C 0.0002 0.0002 0.0001
(0.0004) (0.0004) (0.0008)

PY GS Days <15C -0.0006*** -0.0006** -0.0013**
(0.0002) (0.0002) (0.0005)

PY GS Days >21C -0.0004** -0.0004** -0.0004
(0.0002) (0.0002) (0.0004)

Observations 93432 93432 93432
R2 0.428 0.368

Notes: All specifications include district and year fixed effects. Standard errors are in parentheses, clustered by district.
Specification (2) estimates a tobit model.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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Table C.4: Temperature and Student Health and Absenteeism

(1) (2)
School Absence Reason: Illness

β / SE β / SE

PY Days 23-25C 0.001 0.004**
(0.002) (0.002)

PY Days 25-27C -0.001 -0.002*
(0.002) (0.001)

PY Days >27C 0.002 0.004***
(0.002) (0.002)

Observations 1736 1736
R2 0.012 0.025

Notes: Includes individual, month, and survey round fixed effects. We control for precipitation in all specifications. The sample
includes only those children who were tested thrice in both math and PPVT. Standard errors are in parentheses, clustered by
district-week.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.

C.4 Time Use

Table C.5: Temperature and Child’s Time Use (Work and Rest)

(1) (2) (3) (4)
Ln Sleep Ln Child Care Ln HH Chores Ln Non-Pay Work
β / SE β / SE β / SE β / SE

Days >23C 0.003 0.055** 0.077* -0.006
(0.002) (0.024) (0.042) (0.010)

Observations 1736 1736 1736 1736
R2 0.051 0.030 0.319 0.029

Notes: Includes individual, month, and survey round fixed effects. We control for precipitation in all specifications. The
sample includes only those children who were tested thrice in both math and PPVT. Time use variables are winsorized at the
1% level. Standard errors are in parentheses, clustered by district-week.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.

Table C.6: Temperature and Child’s Time Use (Schooling)

(1) (2) (3)
Ln School Ln Study Ln Play
β / SE β / SE β / SE

Days >23C 0.002 -0.041* -0.012
(0.002) (0.022) (0.009)

Observations 1736 1736 1736
R2 0.237 0.027 0.153

Notes: Includes individual, month, and survey round fixed effects. We control for precipitation in all specifications. The
sample includes only those children who were tested thrice in both math and PPVT. Time use variables are winsorized at the
1% level. Standard errors are in parentheses, clustered by district-week.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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C.5 IHDS

Table C.7: Previous Year Temperature and Food Consumption

(1) (2) (3)
Log Grains Exp Log Ani Prd Exp Log Fruit Exp

β / SE β / SE β / SE

Days <15C 0.0007 -0.0031 -0.0208**
(0.0016) (0.0073) (0.0093)

Days >21C -0.0020* 0.0036 -0.0073
(0.0010) (0.0040) (0.0056)

Observations 16659 16659 16655
R2 0.264 0.348 0.225

Notes: This table presents the impact of temperature in the previous year on food consumption for households with children
between the ages of 8 and 11. All specifications include district and round fixed effects. We control for precipitation in all
specifications. Sample is restricted to only rural households. Standard errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.

Table C.8: Previous Year Temperature and Illness

(1) (2)
Sick 0/1 Log Days Sick
β / SE β / SE

Days <15C 0.0006 0.0002
(0.0013) (0.0021)

Days >21C 0.0021*** 0.0023
(0.0008) (0.0014)

Observations 16656 16656
R2 0.060 0.057

Notes: This table presents the impact of temperature in the previous year on illness for children between the ages of 8 and 11.
All specifications include district and round fixed effects. We control for precipitation in all specifications. Sample is restricted
to only rural households. Standard errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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Table C.9: Previous Year Temperature and Health Expenditure

(1) (2)
Log OutPatient Exp Log InPatient Exp

β / SE β / SE

Days <15C -0.0088 0.0051
(0.0126) (0.0135)

Days >21C 0.0208*** -0.0003
(0.0064) (0.0072)

Observations 16655 16655
R2 0.123 0.148

Notes: This table presents the impact of temperature in the previous year on health expenditure for households with children
between the ages of 8 and 11. All specifications include district and round fixed effects. We control for precipitation in all
specifications. Sample is restricted to only rural households. Standard errors are in parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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D Appendix (Online Only): NREGA

D.1 Triple Differences

Table D.1: Triple Differences: Long-Run Temperature, NREGA ,and Test Scores

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

Days >21C -0.0009 -0.0006
(0.0009) (0.0007)

NREGA PY -0.2001*** -0.1391**
(0.0614) (0.0580)

NREGA PY*Days >21C 0.0005*** 0.0004**
(0.0002) (0.0002)

Observations 1866623 1866623
R2 0.177 0.167

Notes: This table tests if the impacts of last year’s temperature were attenuated by NREGA roll-out in that year. All
specifications include district, year and age fixed effects. We control for precipitation in all specifications. The sample includes
children between the ages of 5 and 16. Standard errors are in parentheses, clustered by district.
*Significant at 10%. **Significant at 5%. ***Significant at 1%.
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D.2 Temperature, NREGA, and Test Scores: Parsimonious Model

Figure D.1: Event Study: Long-Run Temperature, NREGA, and Test Scores

(a) Math Scores

(b) Reading Scores

Notes: The figure shows the marginal effect of an additional hot day in the previous calendar year above 21◦C relative to 15◦C-21◦C on math
and reading performance in an event study around the introduction of NREGA. The omitted variable is the days above 21◦C in the year prior to
the introduction of NREGA (τ = −1). The regressions include district and year fixed effects. We control flexibly for precipitation and humidity.
Standard errors are in parentheses, clustered by district level.
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Table D.2: Event Study: Temperature, NREGA, and Test Scores

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

NREGA: T = -3 0.3636*** 0.2357**
(0.0940) (0.0950)

NREGA: T = -2 -0.0369 -0.0771
(0.0955) (0.0882)

NREGA: T = 0 -0.1192* -0.1044
(0.0688) (0.0669)

NREGA: T = 1 -0.1948** -0.1390*
(0.0884) (0.0817)

NREGA: T = 2 -0.1680 -0.0966
(0.1343) (0.1269)

Days <15C -0.0051*** -0.0041***
(0.0012) (0.0012)

Days >21C -0.0011 -0.0008
(0.0009) (0.0008)

NREGA: T = -3 * Days >21C -0.0012*** -0.0008**
(0.0003) (0.0003)

NREGA: T = -2 * Days >21C 0.0001 0.0003
(0.0003) (0.0003)

NREGA: T = 0 * Days >21C 0.0003 0.0003
(0.0002) (0.0002)

NREGA: T = 1 * Days >21C 0.0006* 0.0004
(0.0003) (0.0003)

NREGA: T = 2 * Days >21C 0.0006 0.0003
(0.0005) (0.0004)

Observations 1866623 1866623
R2 0.098 0.081

Notes: This table tests if the impacts of last year’s temperature were attenuated by NREGA roll-out in that year. To capture these effects, we
have interacted the number of days in the previous year when the temperature was over 21◦C with the event time of NREGA roll-out. t = 0
indicates if NREGA was implemented last year in that district. Because we are testing the effects of last year’s temperature on current year’s
test scores, we interact previous year’s NREGA roll-out with previous year’s temperature, to capture attenuation. The reference temperature bin
is 15-21◦C, and the omitted event time dummy is -1 (one year before NREGA was rolled out in the previous year). The sample includes test
scores in the current year for children between the ages of 5 and 16 for 2006-2009. All specifications include district, year, and age fixed effects.
We control for precipitation terciles and relative humidity in all specifications. The sample includes children aged 5-16. Standard errors are in
parentheses, clustered by district.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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D.3 Robustness: On-Track Only

Table D.3: Event Study—On-Track Children: Long-Run Temperature, NREGA, and Test
Scores

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

NREGA: T = -3 -0.0269 0.0068
(0.0373) (0.0338)

NREGA: T = -2 -0.0216 -0.0255
(0.0342) (0.0316)

NREGA: T = 0 -0.0841*** -0.0585**
(0.0257) (0.0239)

NREGA: T = 1 -0.1385*** -0.1187***
(0.0342) (0.0325)

NREGA: T = 2 -0.1278** -0.1379**
(0.0600) (0.0553)

Days <13C -0.0031** -0.0014
(0.0015) (0.0013)

Days 13-15C -0.0009 -0.0013
(0.0017) (0.0015)

Days 17-19C 0.0028* 0.0024
(0.0016) (0.0015)

Days 19-21C 0.0027** 0.0021*
(0.0014) (0.0013)

Days 21-23C 0.0020 0.0014
(0.0014) (0.0012)

Days 23-25C 0.0015 0.0012
(0.0014) (0.0012)

Days 25-27C -0.0001 -0.0001
(0.0015) (0.0013)

Days 27-29C -0.0002 -0.0001
(0.0016) (0.0014)

Days >29C -0.0017 -0.0012
(0.0017) (0.0015)

NREGA: T = -3 * Days >29C 0.0009* 0.0003
(0.0005) (0.0005)

NREGA: T = -2 * Days >29C 0.0006 0.0006
(0.0004) (0.0004)

NREGA: T = 0 * Days >29C 0.0004 0.0002
(0.0004) (0.0003)

NREGA: T = 1 * Days >29C 0.0010** 0.0010**
(0.0005) (0.0004)

NREGA: T = 2 * Days >29C 0.0009 0.0014*
(0.0009) (0.0009)

Observations 1866623 1866623
R2 0.177 0.168

Notes: This table tests if the impact of last year’s temperature were attenuated by NREGA roll-out in that year. To capture these effects, we have
interacted the number of days in the previous year when the temperature was over 29◦C with the event time of NREGA roll-out. t=0 indicates if
NREGA was implemented last year in that district. Because we are testing the effects of last year’s temperature on current year’s test scores, we
interact previous year’s NREGA roll-out with previous year’s temperature, to capture attenuation. The reference temperature bin is 15◦C-17◦C,
and the omitted event time dummy is -1 (one year before NREGA was rolled-out in the previous year). The sample includes test scores in the
current year for children between the ages of 5 and 16 for 2006-2009. All specifications include district, year and age fixed effects. We control for
precipitation and humidity in all specifications. The sample includes children aged 5-16. Standard errors are in parentheses, clustered by district.
*Significant at 10%. **Significant at 5%. ***Significant at 1%.
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Figure D.2: Event Study—On-Track Children: Long-Run Temperature, NREGA, and
Math Scores

Figure D.3: Event Study—On-Track Children: Long-Run Temperature, NREGA, and
Reading Scores
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Table D.4: Event Study—On-Track Children: Long Run Temperature, NREGA, and Test
Scores

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

NREGA: T = -3 0.3797*** 0.2525***
(0.0915) (0.0902)

NREGA: T = -2 0.0052 -0.0331
(0.0996) (0.0914)

NREGA: T = 0 -0.1073 -0.0920
(0.0676) (0.0654)

NREGA: T = 1 -0.2285*** -0.1742**
(0.0834) (0.0768)

NREGA: T = 2 -0.2840** -0.2178*
(0.1266) (0.1190)

Days <15C -0.0047*** -0.0037***
(0.0011) (0.0010)

Days >21C -0.0011 -0.0008
(0.0008) (0.0007)

NREGA: T = -3 * Days >21C -0.0013*** -0.0008***
(0.0003) (0.0003)

NREGA: T = -2 * Days >21C -0.0000 0.0001
(0.0003) (0.0003)

NREGA: T = 0 * Days >21C 0.0002 0.0002
(0.0002) (0.0002)

NREGA: T = 1 * Days >21C 0.0006** 0.0005*
(0.0003) (0.0003)

NREGA: T = 2 * Days >21C 0.0009** 0.0007
(0.0004) (0.0004)

Observations 1866623 1866623
R2 0.177 0.167

Notes: This table tests if the impacts of last year’s temperature were attenuated by NREGA roll-out in that year. To capture these effects, we have
interacted the number of days in the previous year when the temperature was over 21◦C with the event time of NREGA roll-out. t = 0 indicates
if NREGA was implemented last year in that district. Because we are testing the effects of last year’s temperature on current year’s test scores,
we interact previous year’s NREGA roll-out with previous year’s temperature, to capture attenuation. The reference temperature bin is 15-21◦C,
and the omitted event time dummy is -1 (one year before NREGA was rolled out in the previous year). The sample includes test scores in the
current year for children between the ages of 5 and 16 for 2006-2009. All specifications include district, year, and age fixed effects. We control for
precipitation and humidity in all specifications. The sample includes children aged 5-16. Standard errors are in parentheses, clustered by district.
*Significant at 10%. **Significant at 5%. ***Significant at 1%.
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Figure D.4: Event Study—On-Track Children: Long-Run Temperature, NREGA, and
Math Scores

Figure D.5: Event Study—On-Track Children: Long-Run Temperature, NREGA, and
Reading Scores
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Table D.5: Difference in Difference—On-Track Children: Long-Run Temperature, NREGA,
and Test Scores

(1) (2)
Math Score (in SD) Read Score (in SD)

β / SE β / SE

Days >21C -0.0010 -0.0006
(0.0008) (0.0007)

NREGA PY -0.2066*** -0.1502***
(0.0526) (0.0494)

NREGA PY*Days >21C 0.0005*** 0.0004**
(0.0002) (0.0002)

Observations 1430205 1430205
R2 0.114 0.089

Notes: This table tests if the impact of last year’s temperature were attenuated by NREGA roll-out in that year. All specifica-
tions include district, year, and age fixed effects. We control for precipitation in all specifications. The sample includes children
between the ages of 5 and 16. Standard errors are in parentheses, clustered by district.
*Significant at 10%. **Significant at 5%. ***Significant at 1%.

D.4 Temperature and take-up of NREGA

Table D.6: NREGA Take-Up and Temperature

(1) (2) (3) (4)
Log Person Days Log HHs 100 Days Exp. Labor Exp. Material

β / SE β / SE β / SE β / SE

Days <13C -0.0101*** -0.0202*** -0.0098*** -0.0192***
(0.0023) (0.0064) (0.0024) (0.0038)

Days 13-15C -0.0012 0.0016 -0.0001 -0.0040
(0.0019) (0.0055) (0.0020) (0.0027)

Days 17-19C 0.0008 0.0121** 0.0056** 0.0098***
(0.0020) (0.0053) (0.0023) (0.0034)

Days 19-21C 0.0082*** 0.0235*** 0.0126*** 0.0212***
(0.0023) (0.0048) (0.0024) (0.0037)

Days 21-23C 0.0092*** 0.0231*** 0.0120*** 0.0208***
(0.0025) (0.0063) (0.0028) (0.0046)

Days 23-25C 0.0108*** 0.0188*** 0.0143*** 0.0246***
(0.0022) (0.0051) (0.0024) (0.0044)

Days 25-27C 0.0124*** 0.0309*** 0.0185*** 0.0256***
(0.0023) (0.0057) (0.0027) (0.0044)

Days 27-29C 0.0125*** 0.0315*** 0.0179*** 0.0201***
(0.0025) (0.0064) (0.0030) (0.0050)

Days >29C 0.0131*** 0.0338*** 0.0193*** 0.0285***
(0.0026) (0.0063) (0.0030) (0.0053)

Observations 3519 3519 3519 3519
R2 0.948 0.644 0.796 0.658

Notes: This table presents the impact of temperature in the current and previous year (captured via temperature bins) on
NREGA take-up in the current year for 2006-2016. All specifications include district and year fixed effects. We control for
precipitation and humidity in all specifications. Standard errors are in parentheses, clustered by district. This table uses
annual data on NREGA take-up and expenditures.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
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E Appendix (Online Only): Data

E.1 ASER Math and Reading Scores

Table E.1: Summary Statistics: Mean Math and Reading Scores 2006-2009

All 2006 2007 2008 2009

Read 2.66 2.70 2.74 2.73 2.76
(1.44) (1.44) (1.38) (1.41) (1.37)

Math 2.37 1.84 2.59 2.54 2.61
(1.33) (1.13) (1.33) (1.35) (1.33)

Observations 4581616 601342 594552 587080 550228

Notes: Standard deviations are in parentheses. In 2006, three math questions were asked, not four as in all other rounds.

Table E.2: Summary Statistics: Mean Math and Reading Scores 2010-2014

2010 2011 2012 2013 2014

Read 2.74 2.64 2.53 2.52 2.51
(1.39) (1.44) (1.50) (1.51) (1.54)

Math 2.57 2.40 2.27 2.24 2.22
(1.34) (1.34) (1.34) (1.33) (1.33)

Observations 516238 488503 435948 408790 398935

Notes: Standard deviations are in parentheses.
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E.2 Weather Data

Table E.3: Summary Statistics: Yearly Temperature Bins 2006-2010 (Mean no. of days)

All 2006 2007 2008 2009

PY Days >21C 250.49 249.75 257.84 245.86 247.68
(87.46) (83.67) (88.98) (89.34) (91.98)

PY Days <13C 32.40 30.47 27.98 34.53 33.28
(66.61) (66.87) (68.11) (68.12) (70.30)

PY Days 13-15C 16.48 18.39 15.12 16.94 17.29
(15.14) (15.81) (15.37) (15.65) (15.73)

PY Days 15-17C 19.30 18.46 16.44 18.23 19.38
(15.82) (13.64) (14.12) (15.47) (16.07)

PY Days 17-19C 21.22 22.96 20.03 23.35 21.44
(14.31) (14.79) (14.27) (15.89) (14.82)

PY Days 19-21C 25.32 24.98 27.58 26.08 26.93
(16.60) (16.52) (16.66) (17.06) (19.14)

PY Days 21-23C 42.87 39.58 45.81 43.98 47.54
(39.03) (35.31) (34.81) (39.47) (44.44)

PY Days 23-25C 60.30 56.48 59.98 60.63 67.36
(44.20) (40.39) (43.76) (47.83) (50.07)

PY Days 25-27C 61.43 60.97 60.51 57.59 66.55
(35.77) (31.17) (35.36) (37.54) (42.17)

PY Days 27-29C 38.59 40.44 44.34 39.67 31.87
(27.97) (26.35) (30.09) (30.51) (26.94)

PY Days >29C 47.30 52.28 47.20 43.99 34.35
(38.38) (37.69) (39.34) (38.60) (31.32)

Notes: Standard deviations are in parentheses.
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Table E.4: Summary Statistics: Yearly Temperature Bins 2011-2014 (Mean no. of days)

2010 2011 2012 2013 2014

PY Days >21C 259.09 254.12 248.89 246.54 244.75
(84.50) (89.84) (88.67) (81.46) (87.12)

PY Days <13C 23.54 34.45 37.28 34.82 35.25
(58.18) (68.93) (67.21) (61.96) (68.00)

PY Days 13-15C 14.68 18.29 14.36 17.41 15.93
(15.45) (15.42) (13.80) (14.06) (14.29)

PY Days 15-17C 21.67 17.83 17.54 20.10 24.04
(18.16) (13.68) (15.37) (14.47) (19.06)

PY Days 17-19C 21.23 17.82 20.72 21.16 22.24
(14.91) (12.36) (14.27) (11.87) (14.34)

PY Days 19-21C 24.79 22.49 26.22 25.97 22.79
(16.58) (15.72) (16.71) (13.71) (16.05)

PY Days 21-23C 42.36 41.44 42.99 38.95 42.88
(36.68) (40.27) (41.21) (36.64) (40.64)

PY Days 23-25C 57.49 56.00 64.73 57.75 61.87
(41.00) (41.56) (46.61) (40.65) (43.42)

PY Days 25-27C 59.68 58.92 66.19 59.31 62.98
(33.42) (33.65) (37.75) (31.86) (36.40)

PY Days 27-29C 42.17 38.99 37.30 35.28 37.34
(27.23) (27.52) (27.60) (24.55) (28.47)

PY Days >29C 57.39 58.77 37.67 55.24 39.68
(42.69) (42.00) (32.50) (38.43) (32.87)

Notes: Standard deviations are in parentheses.
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(a) Andhra Pradesh

(b) All India

(c) All India (continued)

Figure E.1: Long-Run Temperature Variation
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E.3 NREGA Take-Up and Expenditure

Table E.5: Summary Statistics: Mean NREGA Take-Up and Expenditure 2006-2009

All 2006 2007 2008 2009

HHs 100 Days 9031.10 15123.10 14760.87 13549.61 12368.24
(18909.74) (29223.31) (26968.78) (28657.80) (21613.68)

Person Days 1801790.61 116557.60 113062.26 80121.31 90172.27
(3431231.29) (87513.16) (82931.66) (75922.57) (79773.20)

Exp. Labor 4008.01 3347.02 3694.70 3485.44 4447.65
(4338.61) (2628.18) (3245.35) (4423.44) (4861.09)

Exp. Material 1636.23 1453.60 1516.93 1502.36 1997.71
(1716.39) (1254.00) (1560.48) (2033.38) (2064.93)

Notes: Standard deviations are in parentheses.

Table E.6: Summary Statistics: Mean NREGA Take-Up and Expenditure 2010-2014

2010 2011 2012 2013 2014

HHs 100 Days 7778.25 6584.39 7984.97 7570.24 4004.05
(12528.15) (12402.45) (17201.92) (15052.13) (8122.02)

Person Days 88952.69 3468616.01 3543158.49 3476210.45 2647656.55
(83611.26) (3838386.60) (4669091.27) (4495789.94) (3428936.26)

Exp. Labor 4130.66 3953.48 4224.49 4211.79 3881.26
(3844.14) (3966.64) (4867.16) (4757.21) (4296.47)

Exp. Material 1941.27 1774.65 1570.54 1410.36 1381.73
(1889.50) (1630.99) (1499.61) (1451.68) (1479.16)

Notes: Standard deviations are in parentheses.
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