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Abstract

We analyze a model of strategic communication where uninformed parties observe verifi-
able inside information, which is disclosed strategically by self-interested parties, as well
as outside information that is beyond insiders’ control. A central application is the design
of financial stress tests (outside information) that are disclosed by financial regulators, and
which interact with banks’ endogenous choice of transparency (inside information). For a
range of parameters, the classic “unraveling” spiral works in reverse, and information be-
comes fragile: Second-order changes in the distribution of outside information can trigger
first-order reductions in inside disclosures. We show that optimal stress tests must satisfy
a minimum standard of transparency. We further show that the importance of outside in-
formation hinges on the shape of insiders’ payoff functions, which leads to new testable
predictions for corporate disclosures.



1 Introduction

An enduring question in economic policy is whether governments should release more infor-
mation to the public. For example, the financial crisis of 2008 triggered calls for more public
transparency in banks, and public disclosures about banks’ health have become a core tool
of financial regulation.2 The effect of public information on welfare is complex, especially
when public signals influence how agents respond to additional private information about
economic conditions. An active literature evaluates the trade-offs involved, focusing mostly
on models where additional private information is dispersed among many agents.3

Another important case has received less attention: Private information is frequently
concentrated in the hands of strategic insiders, who can decide whether or not to disclose
verifiable evidence of what they know to other agents. In this paper, we argue that the
incentive to disclose inside information depends critically on the availability and quality
of public outside information. One of our main results is that outside information leads
to fragility: Small changes in the distribution of outside signals can trigger large declines
in inside disclosures. Because of this strong informational externality, the positive and
normative consequences of better public (outside) information are markedly different in
markets where inside information responds endogenously.

This is particularly salient in the context of financial crises, when financial stability seems
to hinge on information about the health of a few systemically important banks, who can in
principle decide how much inside information they wish to reveal. Recent data suggests that
banks increased the rate and quality of inside disclosures following the 2008 crisis, but that
the Fed’s stress testing regime reduced the transparency of banks’ financial accounting.4 The
growing academic literature on stress testing (e.g. Bouvard et al., 2015; Faria-e-Castro et al.,
2016; Orlov et al., 2017; Goldstein and Leitner, 2017; Inostroza and Pavan, 2017) focuses
mainly on the case where regulatory (outside) disclosures are the only credible source of
information in a crisis. Applying our theory to a model of financial crises, we examine
whether optimal stress tests are robust to the Lucas critique, in the sense that they remain
optimal when banks’ (inside) disclosures respond endogenously. A new insight that emerges

2See Goldstein and Sapra (2014) for a summary of arguments for and against public disclosures about
banks, and Federal Reserve (2017) for an overview of the new regulatory framework.

3To name only a few key papers: Vives (1997) and Amador and Weill (2010) study the ambiguous
relationship between public signals and the information content of prices; Hellwig (2002), Morris and Shin
(2002), Angeletos and Pavan (2007) and Inostroza and Pavan (2017) evaluate the impact of public information
on equilibria in coordination games.

4Bank of England (2013) shows that the quantity and quality of disclosures by international banks
increased sharply in 2008, particularly regarding the valuation of their assets. Shahhosseini (2016) shows
that stress-tested banks made fewer loan charge-offs and more frequently changed the classification of loan
losses.
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is that optimal financial stress tests must satisfy a minimum standard of transparency.
In Section 2, we set up a standard Sender-Receiver model of communication with binary

responses. A short example illustrates our main points. Following our leading application,
consider a large bank (Sender) whose assets are worth a random amount θ. Investors (Re-
ceiver) collectively make a binary choice: They roll over their loans to banks with expected
asset value above a threshold p, and they run on banks worth less than p.5 The bank would
like to convince investors to roll over. Communication works as follows: First, the bank
privately observes θ, and decides whether to verifiably disclose it. Disclosure comes at a
cost,6 but this cost is smaller than the benefit to the bank of avoiding a bank run. Second,
a noisy outside signal s of θ, which we can think of as a stress test result, is observed by
investors. Third, investors decide whether to run on the bank.7

Suppose that we are in a financial crisis: The expected value of assets is E[θ] < p, and
without any further information, there would be a bank run. If there is no outside infor-
mation, then inside information ‘unravels’, as predicted by the classic literature (Grossman
and Hart, 1980; Grossman, 1981; Milgrom, 1981): Banks with θ ≥ p choose to avoid a run
by disclosing θ. Banks with θ < p stay quiet, but face a run because investors understand
that no news is bad news. As a result, equilibrium outcomes are as if investors had perfect
information.

If public information is sufficiently precise, then incentives change dramatically. Impres-
sive outside signals s ≥ s?, for an endogenous threshold s?, now reveal high quality and entice
investors to roll over, even when the bank does not disclose anything. Consequently, the very
best banks prefer to stay quiet: They are confident that they will obtain an impressive stress
test result s ≥ s? with high probability, so that the marginal benefit of disclosure is small.
Moreover, this reaction sets off a feedback loop. When the best banks stay quiet, no news is
ambiguous news, so that silence is interpreted more favorably by investors. Then, yet more
high-quality banks prefer to stay quiet, silence becomes even better news, and so forth.8

We establish that this feedback loop, which we dub reverse unraveling, generates fragility
5We micro-found this setup in a classical coordination game between depositors as in Diamond and Dybvig

(1983), using a global games refinement (Morris and Shin, 2000). Here, the run threshold p captures the
illiquidity of bank assets. Our main insights do not concern the coordination game among investors; they
are the same in the case where a single investor has incentives to withdraw when she is pessimistic.

6Leuz and Wysocki (2016) survey a large body of research documenting that disclosures are costly, both
for technological reasons and because of concerns about releasing proprietary data to competitors. Our main
results continue to hold in the case where disclosure costs are small, in the sense that they would not matter
in a model without outside information.

7We focus on disclosures that are pre-emptive: When Sender decides whether to disclose θ, he cannot
perfectly predict the realization of s. We discuss the foundations of this assumption in Section 2.

8The first step in this mechanism, i.e. the tendency of the best types to stay quiet, is reminiscent of
the ‘too cool for school’ effect in the literature on signaling games (Feltovich et al., 2002; Daley and Green,
2014), which we discuss in detail below.
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of information. A small improvement in the quality of outside signals can lead to a discon-
tinuous decline in the amount of inside information that is revealed. This fragility is not a
special case: In the model with binary responses, we show that discontinuities must arise
along any continuous path of gradually improving outside signals under natural regularity
conditions. Moreover, while the above intuition implicitly assumes that outside signals do
not have full support (there is an s? which reveals high quality beyond doubt), we show that
the fragility of information extends in a natural sense to the case of full support.

Interestingly, both unraveling and reverse unraveling are driven by the same deeper fea-
ture, namely, that verifiable disclosures exhibit a form of strategic complementarity. If the
best types of Sender are expected to disclose their type, Receiver rationally assumes that
no news is bad news, which generates strong incentives for other types of Sender to also
disclose. In models without outside information, the best are keen to disclose, and the com-
plementarity leads to unraveling. In our model, by contrast, outside information weakens
incentives to disclose among the best types, and the strategic complementarity can work in
favor of opacity, which drives reverse unraveling.

Away from points of discontinuity, the relationship between inside and outside informa-
tion is more nuanced. Better outside information tends to crowd out inside disclosures at
the margin if Receiver’s prior beliefs about θ are pessimistic, but crowd in disclosures if they
are optimistic.

In Section 3, we consider the normative implications of our model. There is an infor-
mational externality: Better outside signals affect inside information in equilibrium. This
externality is powerful due to the fragility of information, and optimal policy must take it
into account.

The objective function for optimal informational policy is context-specific. In some sit-
uations, for example in the market for used cars studied by Akerlof (1970), the first-best
informational outcome is full transparency, and policy-makers should avoid crowding out
inside disclosures. Then, there is a case for releasing very little outside information in
order to encourage an unraveling outcome. In other situations, for example in insurance
markets considered by Hirshleifer (1971), the first-best outcome involves some residual un-
certainty, because uncertainty facilitates efficient risk-sharing. In this case, welfare can often
be improved by releasing more outside information than would be optimal in the absence of
externalities, in order to encourage reverse unraveling.

We show that our application to financial panics falls into the latter case. Intuitively,
opacity by strong banks enhances welfare by generating implicit insurance for weak banks,
who would otherwise face a bank run. An optimal policy in this context must exploit
the informational externality by crowding out disclosures from the strongest banks. This is
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implemented by releasing outside signals, such as stress tests, that meet a minimum standard
of transparency. This result is relevant in the context of a growing literature on stress test
design and information disclosure during financial crises (Bouvard et al., 2015; Faria-e-Castro
et al., 2016; Orlov et al., 2017; Goldstein and Leitner, 2017). Existing work focuses on a
benchmark case where banks cannot make inside disclosures. A common result is that the
optimal design of stress tests must be fine-tuned, and highly sensitive to investors’ prior
beliefs about bank quality. We complement this assessment by showing that, when inside
information responds endogenously, a minimum degree of transparency should be part of
any optimal policy as soon as investors’ prior beliefs deteriorate beyond a certain threshold
(in particular, as soon as E[θ] < p in the above example).

In Section 4, we consider a more general Sender-Receiver model where responses need
not be binary. A new insight that emerges is that the impact of outside information depends
not only on its quality, but also on the shape of Sender’s payoffs. If Sender’s payoffs are
sufficiently concave as a function of his perceived type, then the marginal benefit of being
perceived as the best is relatively low. Thus, the best types of Sender are happy to wait for
outside information, and the reverse unraveling loop gains traction. The resulting equilibrium
is either fully opaque, or features non-monotonic strategies with disclosures made only by
mediocre Senders. If payoffs are sufficiently convex, on the other hand, we obtain monotone
equilibria where only the best types disclose, as in games without outside information.

Our results on convex and concave payoffs deliver further empirical predictions. In an
application to corporate disclosure, we show that high-quality firms are most likely to disclose
when they are financed by equity (a convex claim on returns), but less likely to disclose when
financed by debt (a concave claim). The existing literature emphasizes managers’ desires to
keep stock pries high (Verrecchia, 1983; Acharya et al., 2011) and to enhance market liquidity
(Diamond and Verrecchia, 1991). Our model implies, in addition to these factors, capital
structure and executive compensation play a key role in determining disclosure strategies.

A full characterization of equilibria in the general case is not tractable, but we demon-
strate that similar mechanisms to the binary case come into play. In particular, due to
a logic akin to ‘reverse unraveling’, equilibrium outcomes need not be continuous in the
model’s primitives. For any set of payoffs and prior beliefs, a small improvement in the
quality of outside signals can take us from full disclosure to an opaque equilibrium where
no inside disclosures are made at all. Moreover, for any equilibrium where Sender discloses
with positive probability, more informative outside signals (in the sense of Blackwell, 1953)
can leave Receiver worse informed overall (also in the Blackwell sense).
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Related literature

Our work contributes to the theoretical literature on verifiable communication, as well as
the applied literature on financial crises and stress tests.

Grossman and Hart (1980), Grossman (1981), Milgrom (1981) and Milgrom and Roberts
(1986) point out the existence of full disclosure or unraveling equilibria in verifiable disclosure
games.9 Another strand of work shows that equilibria with limited disclosures arise when
disclosure costs are significant (Jovanovic, 1982; Verrecchia, 1983) or when it is uncertain
whether Sender has any private information (Dye, 1985; Shin, 1994, 2003). We complement
this research by focusing on situations where little or no information is disclosed by insiders,10

in a model where strategic complementarities work in favor of non-disclosure and information
is fragile. Our focus on outside information connects our paper to Acharya et al. (2011),
who study the link between (outside) public announcements and the endogenous timing of
inside disclosures.

Feltovich et al. (2002) and Daley and Green (2014) study signaling games with outside
information and two or three types of Sender. As in the first step of our reverse unraveling
mechanism, the highest-quality Senders have weaker incentives to acquire signals if their
quality is likely to be revealed. Local crowding out effects have also been studied in the case
case of non-verifiable disclosures with outside information, for instance in the accounting
literature by Dye (1983) and Gigler and Hemmer (1998). We complement this work by
deriving the reverse unraveling loop, the fragility of information, and the importance of the
shape of payoffs. We focus on verifiable disclosure, which is a special but more tractable
case of signaling. This focus allows us to derive new insights in a setting with many types
of Sender.

In the applied literature on stress tests, recent work has focused on the optimal design of
regulatory (outside) information disclosure when this is the only signal available to markets.
Goldstein and Leitner (2017) characterize optimal stress tests in a lemons market. Bouvard
et al. (2015) study the credibility of stress testing policy, Faria-e-Castro et al. (2016) analyze
the interaction between bailout policies and stress test regimes, and Orlov et al. (2017) focus
on macro-prudential stress tests that inform on the correlation of risk across banks. Inostroza
and Pavan (2017) characterize the optimal design of information, with applications to stress
tests, in a global game of regime change. We complement this literature by analyzing the
constraints that endogenous inside disclosures place on stress test design.

More generally, we propose a model where asymmetric information in the financial system
9Hagenbach et al. (2014) extend this line of work to a more general class of games with pre-play certifiable

communication.
10Mathios (2000) and Jin and Leslie (2003) provide empirical evidence of incomplete disclosure.
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persists in bad times due to a lack of disclosures, consistently with the stylized fact that
asymmetric information persists during financial crises (Mishkin, 1990; Gorton, 2008). Thus,
in addition to the literature on stress tests, our results complement research which uses
asymmetric information to generate persistent downturns (e.g. Mankiw, 1986; Boissay et al.,
2015; Heider et al., 2015), and which studies optimal policy responses to ‘lemons’ problems
(Philippon and Skreta, 2012; Tirole, 2012).

2 Inside and outside information: Binary actions

We study a game between a Sender (he), who has the opportunity to disclose verifiable
inside information, and a Receiver (she), who decides on a binary action a ∈ {0, 1}, based
on Sender’s disclosures and on outside information.

We invite the reader to think of this abstract setup in terms of our leading example: The
action a can capture the collective decision of investors to run on their bank (a = 1) or not
(a = 0). The bank can disclose verifiable information about the quality of its assets, and
outside outside information is made available by policymakers, for example, in the form of
stress tests. In Section 3, we derive an exact micro-foundation of this interpretation.

Inside information Sender privately observes his ‘type’ θ ∈ [θ, θ̄], which is drawn from
a commonly known prior distribution F (θ), with smooth density f(θ) > 0 for all θ ∈ [θ, θ̄].
Sender can send a message m ∈ {θ, ∅} to Receiver: m = θ verifiably reveals his type and
incurs a utility cost c(θ), while m = ∅ conveys no verifiable information, since it can be
sent by any type, but is costless. This binary message space makes for a particularly clean
exposition of our main ideas. We return to more general message spaces in Section 4 and
Online Appendix F.3.

Outside information In addition to inside information m, Receiver observes an outside
signal s, which has compact, convex support S(θ) and is drawn from a conditional distribu-
tion H(s|θ), with smooth density h(s|θ) > 0 and a bounded first derivative hs(s|θ) for all
s ∈ S(θ). High outside signals are good news in the sense of Milgrom’s (1981) Monotone
Likelihood Ratio Property (MLRP): Regardless of the prior distribution of θ, the conditional
expectation of any increasing function of θ is strictly increasing in s.

Preferences Sender’s utility is a− c(θ)×1m=θ; he enjoys high actions but suffers the cost
of disclosure. Receiver’s utility is a(θ − p), so that she chooses a = 1 if and only if she
believes that E[θ] ≥ p. Here, p parametrizes Receiver’s prior propensity to take the high
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action.11 We focus on the non-trivial case, in which (i) E[θ] < p: the prior is pessimistic
enough so that Receiver would take the low action without further information, and (ii)
c(θ) < 1: disclosure costs are smaller than the benefits to Sender of inducing a high action.
This simple setup nests a much wider class of games with binary responses, subject only to
the standard restrictions that (i) Sender prefers high to low actions, and (ii) Receiver prefers
high actions only if θ is high.12

Game timing and equilibrium definition We consider the following game of commu-
nication:

1. Sender privately observes θ, and chooses a message m.

2. Receiver observes m, as well as the outside signal s.

3. Receiver chooses an action a ∈ {0, 1}.

We consider Perfect Bayesian Equilibria: Sender and Receiver choose messages and actions
to maximize expected payoffs, and the Receiver’s posterior beliefs about θ are derived using
Bayes’ law on the equilibrium path. Off the equilibrium path, we require that Receiver places
zero probability on type θ′ if she observes an outside signal s /∈ S(θ′).13

An key assumption is that Sender commits to a pre-emptive disclosure before he knows
the realization s of outside information. One of our key intuitions will be that the best
types sometimes have weaker incentives to disclose if they anticipate a favorable realization
of s. In an alternative model where verifiable messages can be sent between the realization
of s and Receiver’s action a, the best types would have stronger incentives to make such a
disclosure. However, the case of pre-emptive disclosures is relevant in many applications. In
financial markets, investors respond very quickly to bad news, such as a failed stress test or
credit downgrades, and irreparable damage to firms’ prospects may be done if they wait until

11In our model of bank runs in Section 3, investors’ propensity to run p measures the degree of illiquidity of
the bank’s long-term assets. Intuitively, as p increases, the coordination among investors becomes stronger,
and bank runs are more likely to occur in equilibrium.

12Suppose that Receiver’s utility is v(a, θ), assuming only that the net benefit ∆(θ) = v(1, θ)− v(0, θ) of
the high action is increasing in θ. Without loss of generality, we can re-define Sender’s type as θ̃ = ∆(θ)− p,
yielding a game that is equivalent to our setup. Furthermore, suppose that Sender’s utility is u(a, θ), assuming
only that B(θ) = u(1, θ)−u(0, θ) > 0. Our arguments below imply that equilibrium play is fully determined
by Sender’s benefit-cost ratio B(θ)/c(θ). Thus we can translate Sender’s preferences as ũ(a, θ) = a and
c̃(θ) = c(θ)/B(θ) without loss, consistently with our setup. Seidmann and Winter (1997) and Giovannoni
and Seidmann (2007) study verifiable message games where the above conditions on preferences are relaxed.

13The latter refinement is natural, and common in the applied literature (e.g. Angeletos et al., 2006).
Moreover, it is inconsequential when outside signals full support (i.e. S(θ) = S for all θ). When full support
fails, the refinement allows for a clean characterization of equilibria. We will see that our main results remain
valid in the case of full support, and therefore do not hinge on this refinement.
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after the event to prove their quality. This is especially relevant where verifiable information
takes time to prepare and circulate, for example due to delays in preparation and external
auditing. More generally, if economic agents have limited capacity for processing information
as in Sims (2003), Receiver may be unable to (or rationally choose not to) process further
communications by Sender once the outside signal s has resolved a significant portion of the
uncertainty.14

Regularity condition In this Section, we impose a mild regularity condition. For any
given realization s of the outside signal, we assume that the function

J(θ) = H(s|θ)− c(θ) (1)

crosses zero at most once. If it crosses once, then it must cross from above. The function
J(θ) compares two terms. The first term the probability of receiving a public signal s in
the left tail, given that the true state is θ. This is strictly decreasing in θ, since high types
are likely to receive good news by MLRP. The second term measures the ratio of the cost of
disclosure to the benefit of obtaining the high action. This is not necessarily monotonic in
θ, but it is always less than one. The single crossing property holds when disclosure costs
do not decrease too quickly with θ. In particular, it is guaranteed to hold when disclosure
costs are fixed or increasing in θ, and when outside information s is precise enough.15

2.1 Fragility of information

It is helpful to begin with a well-known benchmark. Suppose Receiver had access to no
outside information, and therefore had to rely exclusively on Sender’s disclosures. Given our
assumptions about prior quality, it is easy to see that in any equilibrium the best type θ̄ must
disclose (m = θ). Moreover, the classic unraveling argument (Grossman, 1981) applies to
all θ ≥ p, and therefore the unique equilibrium of the game is one in which Sender discloses
whenever θ ≥ p. Meanwhile, types θ < p have a dominant strategy to stay quiet, but in
equilibrium, their silence reveals that θ < p. Receiver therefore takes the high action if and

14A potential variation on our model is a setting where the verifiable report m = θ takes time to prepare,
but where Sender can prepare it in advance and decide whether to release it once s has been observed. In
this environment, Sender has stronger incentives to prepare the report than in our model, because he retains
the option to keep it to himself in case s turns out to be better news than the truth. However, similar
arguments to our main results go through: The best types of Sender have a relatively weak incentive to
prepare a verifiable report, because they anticipate that the outside signal s will be good enough to secure
a favorable action. Therefore, the effects we emphasize will continue to arise.

15For example, in the ‘truth plus noise’ case where s = θ + kε, with k small enough, the distribution
H(s|θ) is close to one for types θ < s and close to zero for types θ > s. Since the disclosure cost satisfies
0 < c(θ) < 1, the difference between this probability can only have one crossing with zero.
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only if θ ≥ p, as she would under full information. Throughout this Section, we will refer to
an equilibrium where all types θ ≥ p disclose as an unraveling equilibrium.

To illustrate our main point on the fragility of disclosures in the starkest manner, we first
focus on outside signal distributions for which full support fails – in this case, there exist
signals which distinguish high and low types of Sender beyond doubt. Of course, if outside
signals have full support, so that S(θ) = S for all θ, an unraveling equilibrium can always
be sustained. Indeed, if disclosure by all θ ≥ p is expected, then Receiver interprets silence
as evidence that θ < p, and no realization of s can convince her otherwise. We nonetheless
show below that our results on the fragility of information extend to the full support case in
a natural sense.

Fragile information: Reverse unraveling with bounded support

Suppose outside signals do not have full support: that is, S (θ) is not the same for all types.
Let ŝ = sup∪θ<pS(θ) denote the largest outside signal that any type θ < p can draw. Now
any outside signal s > ŝ reveals without doubt that θ > p, and therefore guarantees that
Receiver chooses the high action a = 1. Hence, even if Receiver expects transparency, the
best type θ̄ has an incentive to deviate to silence if

H(ŝ|θ̄) < c(θ̄), (2)

Here, the potential cost to type θ of drawing an unimpressive signal s ≤ ŝ, and therefore
triggering the low action a = 0 in the absence of inside information, is smaller than the cost
of disclosure.

If condition (2) holds, then there must be some interval of highest types, θ ∈ (θ0, θ̄],
who have a dominant strategy to stay quiet in equilibrium. Figure 1a illustrates this effect.
Crucially however, when types in [0, p)∪ (θ0, θ̄] are expected to stay quiet, the left-hand side
of (2) actually overestimates the marginal benefit of disclosure: If Receiver believes that
types in [0, p) ∪ (θ0, θ̄] stay quiet, the critical outside signal that guarantees the high action
falls to some s0 < ŝ, which solves

E[θ|s0, θ /∈ [p, θ0)] = p.

Staying quiet now becomes more attractive. As a result, a wider set of high quality types
θ ∈ (θ1, θ0] now have an (iterated) dominant strategy to stay quiet – see Figure 1b.

Indeed, in contrast to classic unraveling, there are now strategic complementarities in non-
disclosures. Since Receiver’s posterior expectations at critical signal s0 are exactly p, the
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s
θ0 θŝ

H(ŝ|θ0) = c(θ0)

(a) Deviations from full disclosure

s
θ0 θŝs0

H(s0|θ1) = c(θ1)

(b) Amplification

Figure 1: Reverse unraveling. The blue (solid) curve in panel (a) is the density of outside signals drawn
by the best type of Sender θ̄. The blue shaded area is the left-hand side of (2). We draw the case where
(2) holds, so that type θ̄ would deviate from full disclosure. The red (dashed) curve is the density of signals
for the critical type θ0 for whom (2) holds with equality. All types above θ0 have a dominant strategy to
stay quiet. When it is common knowledge that types θ > θ0 stay quiet, the critical signal that ensures a
high action falls to s0. The probability that type θ0 draws a signal below s0 (the red shaded area) is now
less than the cost disclosure. The thick black curve in panel (b) is the scaled density of signals for the new
critical type θ1 < θ0 who is indifferent between disclosure and staying quiet.

decision by more good types θ ∈ (θ1, θ0] > p to stay quiet further improves the interpretation
of outside signals. This strategic complementarity continues to amplify silence. In response
to types above θ1 staying quiet the critical signal falls further, additional types θ ∈ (θ2, θ1]
prefer to stay quiet, silence becomes better news still, and so forth. We call this process
reverse unraveling. Letting θn be the highest type who still discloses at the nth iteration,
we can see that no type above θ̃ = limn→∞ θn discloses in any equilibrium. Below, we prove
formally that θ̃ is bounded away from the best type θ̄: a discrete set of high-quality types
must stay quiet in equilibrium whenever the best type stays quiet.

This logic leads to fragile information, as captured by a discontinuity in equilibrium
outcomes. Intuitively, consider a situation where the quality of outside signals gradually
increases, starting from pure noise. Then, when the quality of outside signals crosses a critical
threshold, (2) is guaranteed to hold. As we cross this threshold, we move discontinuously
from a situation where full transparency is an equilibrium, to a situation where no type
above θ̃ makes any disclosure. We now show this more rigorously, and also consider the case
where outside signals have full support.
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Fragile information: The general case

Of course, when signals have full support, then we have H(ŝ|θ) = 1 for all θ, and condition
(2) cannot hold unless outside signals are perfectly revealing. At first glance, it therefore
appears that the fragility of information in our model relies on a violation of full support (or
indeed on the refinement that Receiver does not attach positive weight to types who cannot
draw the outside signal she observes). However, the general effects of outside information are
subtle. In particular, due to the strategic complementarity we have highlighted, our model
admits multiple equilibria. We now establish that both the unraveling equilibrium that we
have studied so far, and less informative equilibria that exist alongside it, exhibit fragility.
The latter case remains relevant even in the case of full support.

Before proceeding, we establish a useful property of equilibria, namely, that Sender and
Receiver must both follow forms of threshold strategy. Indeed, by the MLRP property on
outside signals s, if Receiver observes non-disclosure by Sender she will play a = 1 only if the
outside signal exceeds some threshold s?, where s? is endogenously determined by Receiver’s
conjecture about Sender’s strategy (whatever form this may take). This property makes
the search for Sender’s best response much simpler. Of course, if θ < p, then Sender has
a dominant strategy to stay quiet. But if θ ≥ p, then Sender prefers to stay quiet if and
only if H(s?|θ) ≤ c(θ) – when the costs of disclosure exceed the probability of drawing a
bad enough outside signal to warrant the low response (a = 0) when Sender remains quiet.
Under our regularity condition, we can then show the following:

Lemma 1. In any equilibrium, there exists a threshold, θ?, which summarizes equilibrium
play as follows:

• Sender discloses if θ ∈ (p, θ?) and stays quiet if θ < p or θ > θ?.

• Receiver chooses a = 1 if Sender discloses, or if Sender stays quiet and the outside
signal is s > s?(θ?), defined as the lowest outside signal s satisfying E[θ|θ /∈ (p, θ?), s] ≥
p. If no such s exists, then s?(θ?) =∞.

We can now describe equilibria of our game with a single parameter θ?, which denotes
the highest good type θ > p that chooses to disclose. Figure 2 shows a simple diagram
with which we can illustrate equilibria. Let the ‘best response function’ BR(θ?) denote the
highest type of Sender who prefers to disclose when Receiver expects disclosures from types
θ ∈ [p, θ?].16 Formally, we define

BR(θ?) = sup{θ ≥ p : H(s?(θ?)|θ) ≥ c(θ)} (3)
16Without loss of generality, we focus on equilibria where Sender chooses m = θ if indifferent, and Receiver

takes a = 1 if indifferent.
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Best response BR(θ?)

0
θ?

p

p

θ̄

θ̄

C

B

A

D

Figure 2: Best response functions and equilibria. The blue (upper) curve shows the best response
when outside signals are imprecise; the unique equilibrium is unraveling at point A. The black (middle)
curve is drawn for intermediate signal precision; there are multiple equilibria at A, B and C due to strategic
complements. The red (lower) curve is drawn for low signal precision; the only equilibrium in this case is
full opacity at D.

and we set BR(θ?) = c ifH(s?(θ?)|θ) < c(θ) for all θ. The cutoff θ? constitutes an equilibrium
if and only if it solves the fixed point equation BR(θ?) = θ?.

The best-response mapping is upward-sloping due to the strategic complementarities we
have discussed. As θ? rises, fewer high-quality Senders are expected to stay quiet, silence
becomes better news, and as a result high-quality senders have a stronger incentive to dis-
close. A key feature of our model is that this complementarity becomes very strong when
only a small set of high-quality types stay quiet:

Lemma 2. If the best response function BR(θ?) satisfies BR(θ?) ∈ (p, θ̄) in a neighborhood
of the best type θ̄, then it is continuously differentiable in this neighborhood, and moreover,
it becomes infinitely steep:

lim
θ?↑θ̄

BR(θ?) =∞. (4)

Lemma 2 represents the analytical equivalent of the intuitive ‘reverse unraveling’ argu-
ment that we presented above. It shows that strategic complementarities can be infinitely
strong in a neighborhood of an unraveling equilibrium where θ? ' θ. Indeed, suppose
we begin in an unraveling equilibrium, and reduce transparency at the margin so that
types θ ∈ (θ̄ − ε, θ̄] stay quiet. Equation (4) implies that, if BR (θ) < θ near θ, then
BR(θ − ε) < θ − ε. Thus, a conjecture by Receivers that some small set of high types do
not disclose can incentivize an even larger set of types not to disclose, thus becoming a self-
fulfilling prophecy. Intuitively, this captures the essence of reverse unraveling and implies
that any other equilibrium threshold must be strictly bounded away from θ.
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Given the strategic complementarities we identify in non-disclosures, our model can admit
multiple equilibria (see Figure 2). Intuitively, disclosures by high-quality types of Sender can
be self-fulfilling because they imply that no news is bad news. We focus in particular on the
most transparent equilibrium, associated with the highest equilibrium disclosure threshold
θ?max = sup{θ ≥ p : BR(θ) = θ}, and on the least transparent equilibrium, associated with
θ?min = inf{θ ≥ p : BR(θ) = θ}; both exist by Tarski’s fixed point theorem We have loosely
argued that the most transparent equilibrium is fragile: Full transparency is an equilibrium
(θ?max = θ̄) unless the best type has an incentive to deviate from it in the sense of Equation
(2); as soon as he does, BR is interior and there is a discrete shift in incentives due to reverse
unraveling. This does not apply when outside signals have full support, since in this case
full transparency is always an equilibrium.

We find that the least transparent equilibrium is also fragile, and that this fragility
survives even when signals have full support. To make these statements rigorous, we refer to
a revealing path as a smooth sequence of outside signals st, indexed by a parameter t ∈ [0, 1],
such that s0 is pure noise and s1 perfectly reveals Sender’s type θ.17

Proposition 1. For any revealing path st, there exist two thresholds t0 ∈ (0, 1) and t1 ∈
(0, 1], such that t1 > t0, and:

• The least transparent equilibrium is discontinuous around t0: θ?min = θ̄ for all t < t0,
and θ?min < θ̄ for t = t0.

• The most transparent equilibrium is discontinuous around t1: θ?max = θ̄ for all t ≤ t1;
and if t1 < 1, then θ?max ≤ θ1 for t ∈ (t1, t1 + δ), where θ1 < θ̄ and δ > 0.

Figure 3 illustrates the result. Along a revealing path, when t ' 0, outside signals are
almost pure noise, and as in the classical case without outside information, the unique equi-
librium is unraveling so that θ?min = θ?max = θ̄. First, as outside signals improve,18 we arrive
at a threshold t0 at which a less transparent equilibrium exists. This transition is not gradual:
The Proposition shows that θ?min jumps strictly below θ. Second, as outside signals improve
further, we may arrive at a second threshold t1 beyond which the unraveling equilibrium no
longer exist. This is precisely the point beyond which (2) holds and the best type would
deviate from an unraveling outcome. Again, the transition around t1 is discontinuous, and

17Formally, we assume that the densities h(s|θ; t) satisfy our assumptions above, are continuous in t, and
that (i) h(s|θ; 0) = h0(s) for all θ; and (ii) limt→1 h(s|θ; t) = δ(θ) for all θ, where δ is the Dirac delta.
Smoothness here means that h is continuously differentiable in t.

18While thinking of increasing t as an improvement in outside signals helps to guide the intuition, we do
not formally require that signals continuously improve along a revealing path. Since Proposition 1 holds for
any revealing path, it is trivially also true for paths along which st′ is more informative (e.g. in a Blackwell
sense) than st whenever t′ > t.
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(a) Outside signals without full support
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(b) Outside signals with full support

Figure 3: Fragility of information. Panel (a) shows a revealing path along which outside signals do
not always have full support. Both the most transparent equilibrium, associated with disclosures by types
θ ∈ [p, θ?max], and the least transparent equilibrium associated with disclosures by θ ∈ [p, θ?min], are fragile.
Panel (b) shows the case of full support. Here, the most transparent equilibrium is always unraveling, with
disclosures by all θ ≥ p. The least transparent equilibrium remains fragile around t = t0.

when the unraveling equilibrium breaks down, the most informative equilibrium θ?max has a
downward jump. As we have argued above, the former case (t0) is more general than the
latter (t1) since it arises for all possible revealing paths, even those where st has full support
throughout. By contrast, an interior t1 exists only if full support fails. The two panels in
Figure 3a and 3b highlight the difference between the two cases.19

Intuitively, the second result in the Proposition, where unraveling breaks down at t1,
mirrors exactly the reverse unraveling mechanism we have discussed. The first result is more
nuanced, but the economics are similar. As the quality of outside information improves to
the point t0, a less transparent equilibrium than unraveling becomes sustainable. One might
expect this transition to be smooth, with the new equilibrium involving non-disclosure only
by a small set of the best types. However, this leads to a contradiction: If only a small set of
the best types prefer to stay quiet, then by Lemma 2, a discrete set of worse types must wish
to join in. Following this logic, we find that any new equilibrium must involve a discrete set
of types that stay quiet, which establishes the discontinuity around t0.

19Our exposition is based on the case where Sender’s type is drawn from a bounded interval [θ, θ̄]. Similar
intuitions apply in the case where θ ∈ R is unbounded, as we discuss in Online Appendix D.1. In this case,
an unraveling scenario with θ? =∞ is also the unique equilibrium for all t ≤ t0 along a revealing path, but
at t = t0 there exists an alternative equilibrium in which only a finite interval of types θ ∈ [p, θ?min] discloses.
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2.2 Selecting an equilibrium

We have established the fragility of information, in the sense that the least transparent
and most transparent equilibria of our game both become discontinuously less informative
along any revealing path of outside signals. However, Proposition 1 does not provide unique
predictions. We now show that standard equilibrium refinements tend to select the least
transparent equilibrium. They therefore yield the lower path in Figure 3, which involves
fragility of information regardless of the structure of outside signals, as the unique prediction.

First, we note that the least transparent equilibrium is Pareto-dominant from Sender’s
perspective. This follows from simple revealed preference and the nature of externalities
across Sender types. In the least transparent equilibrium, an interval of good types (θ?min, θ̄]
prefer to stay quiet, thereby earning at least as much as they could by disclosing. Moreover,
disclosures by types above p unambiguously imposes negative externalities on other non-
disclosing types of Sender.20 Thus, the least transparent equilibrium improves payoffs for all
Sender types. The Sender-preferred equilibrium would be selected, for example, if Sender
were able to act as a mechanism designer and commit to an (incentive-compatible) disclosure
strategy before the game begins.21

Second, we show that the least transparent equilibrium is the unique neologism-proof
equilibrium, introduced in the context of cheap-talk games by Farrell (1993). We adapt this
criterion to verifiable disclosure games, following Bertomeu and Cianciaruso (2015). Since
the full support case is the one with which we are most concerned and allows the cleanest
application of the refinement, we assume here outside signals s have full support. Given an
equilibrium disclosure strategy described by a threshold θ?, we refer to a self-signaling set
as a set of Sender’s types S ⊂

[
θ, θ̄

]
for which:

• All types θ ∈ S have strictly lower expected utility in equilibrium than a situation in
which Receiver (i) believes that θ ∈ S, (ii) observes outside information s, drawn from
h(s|θ), and (iii) acts according to her best response given this belief and information;
and

• All types θ /∈ S have weakly higher expected utility in equilibrium than in the above
situation.

An equilibrium θ? is neologism-proof if there are no self-signaling sets. Intuitively, if there
is a self-signaling set, then all types of Sender θ ∈ S can gain, relative to the equilibrium

20By continuity of Sender’s utility, all types in the interior of the interval strictly prefer their current
equilibrium outcome.

21For related reasons, the literature on Bayesian Persuasion (Kamenica and Gentzkow, 2011) focuses on
Sender-preferred equilibria.
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outcome, by using a ‘new’ message (a neologism) to announce that θ ∈ S, and moreover, no
other types would have an incentive to mimic this announcement, thus making it credible
information.

The least transparent equilibrium is the unique survivor of this refinement:

Proposition 2. The unique neologism-proof equilibrium is the least transparent one, with
θ? = θ?min.

This is intuitive. The fact that more transparent equilibrium θ? > θ?min cannot survive the
refinement follows immediately from our revealed preference argument above. Indeed, if θ?

were played, then all types outside the set [p, θ?min] would be strictly better off if equilibrium
switched to θ?min. All types inside [p, θ?min], by contrast, are indifferent to this change because
they fully disclose in both situations. Thus, the types θ /∈ [p, θ?min] form a self-signaling set.
The proof of Proposition 2 further establishes existence, i.e., that the least transparent
equilibrium allows no self-signaling.

To complement these refinements, we show in Online Appendix D.2 that unraveling
equilibria are often unstable, in a sense that has a natural definition, which again suggests
the selection of less transparent outcomes even when neologism-proofness is not required.

To summarize, several natural refinements to our equilibrium context predict that the
least transparent equilibrium, with the lowest disclosure threshold θ?min, is selected.22 In this
case, the relevant fragility of information is the discontinuity around t0 in Proposition 1 and
Figure 3. Moreover, when we apply these refinements, information is fragile regardless of
whether outside signals have full support.

2.3 Crowding in or crowding out?

Our results so far emphasize a strong ‘crowding out’ effect of outside information on inside
information: As outside signals improve along a revealing path, equilibrium play jumps
from a very informative outcome (unraveling) to a discretely less informative one. We now
evaluate whether improvements in outside information also crowd out inside disclosures
locally, around equilibria with intermediate levels of disclosure θ? ∈ (p, θ̄). Generally, it
turns out that local effects are ambiguous; better outside information can crowd out or
crowd in inside disclosures at the margin.

22Note that the Cho and Kreps (1987) intuitive criterion, or indeed the D1 criterion due to the same
authors, do not provide such discipline in our environment, since there are no messages off the equilibrium
path that might dominate the equilibrium outcome from Sender’s perspective. Bertomeu and Cianciaruso
(2015) give a more rigorous exposition of this point.
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The intuition is cleanest if we step slightly outside our baseline framework and assume
that types and outside signals are normally distributed.23 Let θ ∼ N (µ, σ2), and suppose
that outside signals take the form s = θ + kε, where ε ∼ N (0, 1) and the parameter k ≥ 0
captures noise in outside information. For ease of exposition, we make disclosure costs
constant in the Normal case: c(θ) = c. We characterize the response of an equilibrium cutoff
θ? to a change in the noise parameter k. We restrict attention to local changes around a
stable equilibrium θ?, where the best response function BR(θ) crosses the 45-degree line
from above.24

Lemma 3. Suppose θ, s are jointly Normal and consider a stable interior equilibrium θ? ∈
(p, θ̄). More precise outside information crowds out inside disclosures (dθ?

dk
> 0) if µ < p

and c ≤ 1
2 . Conversely, there exists a function c (µ) and parameter µ such that more precise

outside information crowds in disclosures (dθ?

dk
> 0) whenever µ > µ and c = c (µ).

Loosely speaking, crowding out (where more precise public information reduces equilib-
rium disclosure) is more likely to happen in bad times (where the common prior mean µ of
θ is low) while crowding in is more likely to be a feature when µ is high.

To see why, we first consider the low-µ case. Under Normality, Receiver’s posterior
expectations given only the public signal can be expressed E[θ|s] = αµ + (1 − α)s, where
the weight α on the prior is increasing in k. When public signals become more informative
(↓ k), Receiver places more weight on the outside signal. When µ is low, this shift increases
expectations and the marginal Receiver must become more willing to take the high action
when Sender stays quiet. Therefore, the critical signal s?(θ?) falls. Turning to Sender’s
incentives, if c ≤ 1

2 , type θ
? believes that the risk of drawing an outside signal s < s?(θ?),

which would trigger the low action, is a left-tail event (otherwise, he would strictly prefer
to disclose given that the cost is low). In this scenario, an increase in signal precision
additionally makes type θ? more confident that s > s?(θ?). Receiver now interprets silence
more favorably and Sender becomes unambiguously more confident in silence. Both effects
imply that equilibrium disclosures must decrease and we obtain crowding out.

The converse intuition applies when the prior µ is high relative to the cost of disclosure;
Receiver shifts weight away from her optimistic prior and interprets silence less favorably,
while Sender becomes less confident. Strictly, this heuristic argument does not take into ac-
count that in such situations, s∗(θ?) is likely to fall below θ?. In this case, more precise public
information induces an offsetting benefit to staying quiet by reducing the probability of the

23This is outside the baseline model because types and signals have unbounded support; this case is
analyzed formally in Online Appendix D.1.

24For a formal definition of stability, see Online Appendix D.2.
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tail event s < s∗(θ?). The Proof of Lemma 3 deals with this complication by simultaneously
reducing the cost of disclosure to keep θ? unchanged.

3 Financial crises and stress test design

In Section 2, we motivated our analysis as a model of bank disclosures during financial crises.
We now make this link more explicit by micro-founding investors’ incentives, and address
the policy question that motivates our main application: How much information should a
policymaker such as the Fed release into a potentially panicked banking system?

Consider a bank (Sender) interacting with a continuum of short-term risk-neutral in-
vestors (Receivers) and a policymaker. Everybody is risk-neutral, and there are three dates
t ∈ {0, 1, 2}. At date 0, each investor is endowed with one unit of cash. Investors lend their
cash endowment to the bank. The bank invests this cash in a long-term project, which yields
a stochastic gross return r at date 2.

However, projects are illiquid: if a proportion l ∈ [0, 1] of the long-term investment is
withdrawn at time 1, then the return on the remaining projects is reduced to r− 2pl (when
they eventually mature at time 2). The parameter p > 0 measures the degree of asset
illiquidity. Investors who withdraw at date 1 are each entitled to an immediate payment of
one unit of cash. Investors who wait to withdraw at date 2 are residual claimants on the
bank’s assets at time 2. Thus, each investor who withdraws receives a certain payoff of 1,
while each investor who rolls over receives a stochastic payoff r − 2pl. We have followed
the approach of Morris and Shin (2000), who make the analysis of investor’s incentives
particularly tractable by assuming that the liquidation technology is linear in the return r
and the proportion of withdrawals l. Moreover the structure of assets and contracts with
investors are taken as given. Both assumptions can be relaxed using the techniques of
Goldstein and Pauzner (2005) without affecting the qualitative insights below.

The gross return on assets at date 2 is

r = 1 + θ + η.

At date 1, the bank privately observes the first return component θ ∈ [0, θ̄], which measures
asset quality and is drawn from a smooth distribution with density f(θ) > 0, while investors
observe only an outside signal s = θ + kε, where ε is a random variable with smooth, log-
concave density h(ε). For concreteness, we will interpret s as the publicly observable result
of a regulatory stress test. The parameter k ≥ 0 measures noise contained in this test; when
k = 0 the stress test perfectly reveals θ, while k =∞ corresponds to pure noise. At date 1,
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the bank can further send investors inside information denoted m ∈ {∅, θ}. As before, m = θ

credibly reveals asset quality and costs c(θ), while m = ∅ reveals no verifiable information
but is costless.

The second return component η ∼ N(0, σ2
η) is independent of θ and observed by neither

the bank nor investors directly. However, each investor i ∈ [0, 1] receives a private signal
ti = η + ζ i, where ζ i ∼ N(0, σ2

ζ ) is independent of θ, η and ζj, j 6= i. Introducing η al-
lows us to simultaneously model (i) aggregate uncertainty over returns (and hence value to
communication), and (ii) small deviations from common knowledge, which induce a unique
equilibrium in the coordination game among investors.25 By assuming that η and θ are inde-
pendent, we retain tractability, but abstract from issues of multiplicity in the coordination
‘subgame’ among investors.26 We will consider the standard noiseless limit where both η

and ti collapse to zero.
We emphasize that our results are not about global games; rather, we choose this canon-

ical tool in order to speak to the existing literature. The same qualitative insights obtain
in a model where there is no coordination motive, as long as investors have a reason (e.g.
concerns about moral hazard in a badly capitalized bank) to withdraw their funds when they
are pessimistic about asset values θ.

Note that in the limiting case η → 0, investors’ joint utility if nobody withdraws is 1 + θ,
while in a bank run scenario where everybody withdraws it is 1. By assuming that θ ≥ 0, we
therefore restrict attention to banks that are solvent – continuation dominates a run in terms
of aggregate utility – but potentially illiquid when individual investors decide to withdraw.
In Online Appendix E.2, we extend the model to allow for insolvent banks.

We analyze strategic communication between bank and investors as before. In addition,
to address our policy question, we consider the information design decision of a policy-maker,
who chooses the noise parameter k. A low value of k can be interpreted as a more revealing
stress test scenario. For parsimony, we assume that reducing the noise in outside signals
is not costly for the policymaker, but this is not crucial; our main results below remain
qualitatively similar when we allow stress testing to be costly. The timing of the game is
then as follows:

• Date 0: The policymaker chooses k and commits to this choice.
25The additive-independent return specification follows Bouvard et al. (2015).
26For instance, if agents’ private information were noisy signals of θ, perverse equilibria can emerge involv-

ing runs against high types, and no runs against low types. Since we are focused on the informational effects
of disclosure, we abstract from these kind of multiple responses. Interestingly, we nevertheless find multiple
equilibria in our game. In a global game setting without outside information, Angeletos and Pavan (2013)
similarly find that signaling can generate multiplicity. Inostroza and Pavan (2017) analyze the optimal design
of information in global games in detail.
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• Date 1:

1. The bank privately observes θ, and chooses a message m. Each investor i observes
m, the outside signal s, and her private signals ti;

2. Each investor chooses whether to withdraw her investment from the bank.

• Date 2: Returns are realized and claims are settled.

Each investor acts to maximize her expected utility, taking as given the fraction l of other
investors that are withdrawing. The bank acts to maximize the joint utility of all investors,
net of disclosure costs. In the baseline model, we therefore rule out explicit conflicts of
interest between bank managers and investors, to which we return in Online Appendix
E.1. However, the coordination problem among investors introduces an implicit conflict of
interest, because as in Diamond and Dybvig (1983), individual investors will not necessarily
choose efficient actions.

As in Section 2, we impose a mild regularity condition on the costs of disclosure. For a
given realization s of the outside signal, the function

J(θ) = H(s|θ)− c(θ)
θ

crosses zero at most once, and if it crosses once, then it must cross from above. The first
term measures the probability of receiving an outside signal lower than s, which is strictly
decreasing in θ by MLRP. The second term is the ratio of the cost of disclosure c(θ) to the
benefit θ of avoiding a bank run. We require that the cost-benefit ratio does not decrease too
quickly with θ. In the context of banking, this restriction is reasonable because practitioners
commonly think of the costs of disclosure for financial institutions as proprietary, such as the
costs of revealing one’s investment portfolio to competitors. These costs are likely increasing
in portfolio quality θ.

3.1 Equilibrium: Investors’ choices and bank runs

At time 1, all investors observe the same signal s and message from the bank m. Therefore,
they share a common posterior expectation over the first return component, Eµ[θ|m, s]. We
solve for investors’ equilibrium decision, as a function of these beliefs, using a standard global
games argument (see Morris and Shin, 2000). Each investor then uses her private signal ti

to learn about the second component η, and makes her withdrawal decision based on that
assessment and her beliefs about other investors’ behavior. When investors’ signals are
sufficiently noisy relative to the prior distribution of η (that is, as long as the signal-to-noise
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ratio σ2
η/σ

2
ζ is small), there is a unique equilibrium (given Eµ[θ|m, s]) in which investor ti

withdraws if and only if E[η|ti] < η?, where η? is a critical value. The argument is a simple
application of Morris and Shin (2000). Indeed, as shown in Bouvard et al. (2015), in the
unique limiting equilibrium a bank run occurs if and only if

Eµ[θ|m, s] < p. (5)

This condition is intuitive: Investors run whenever they have pessimistic beliefs about fun-
damentals, and they are more likely when bank assets are highly illiquid, i.e. when p is
high.

However, notice that in our setting the quality of information available to investors
responds to the Bank’s equilibrium reporting behavior. Indeed, as we now describe, banks’
endogenous disclosure decisions are both a meaningful driver of bank runs and affect the
incentives of policymakers to design their stress tests.

3.2 Banks’ inside disclosure strategies

Equation (5) implies that investors collectively behave as the binary-action Receiver in Sec-
tion 2. Thus, the analysis of the communication game between the bank and investors
proceeds exactly as in Section 2. In particular, for any given choice k of noise in the stress
test, the bank discloses its type if and only if θ ∈ [p, θ?], where the threshold θ? must be a
fixed point of the best response function BR(θ?; k), defined as in (3) for any given k. Weak
banks with θ < p have a dominant strategy to stay quiet because disclosure would lead to a
certain bank run, while strong banks with θ > θ? stay quiet because they expect a favorable
stress test result.

Of course, the banking model inherits all the conclusions of Section 2. In particular,
bank disclosures exhibit fragility (Proposition 1): Along any revealing path, moving from
pure noise (k = ∞ ) to perfect stress tests (k = 0), both the least and most transparent
equilibrium exhibit discontinuous drops in disclosure due to reverse unraveling. We now
explore the implications of this mechanism for welfare and stress test design.

3.3 Stress test design

We study the policymaker’s optimal choice of outside information, as captured by k. When
there are multiple equilibria to the disclosure game for a given k, we focus our attention
on the least transparent one, that is on the lowest equilibrium disclosure threshold θ?k ≡
inf{θ?|BR(θ?; k) = θ?}. This choice is natural for three reasons. First, as we describe
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below, it is the policymaker’s preferred equilibrium. Second, it is the unique neologism-
proof equilibrium and thus a somewhat focal prediction of behavior. Third, it always exists,
making for well-defined comparative statics.

Given a choice of noise k, ex-ante expected welfare (as measured by aggregate investor
utility) is:

W (θ?k; k) = 1 +
ˆ

θ∈[p,θ?
k
]

(θ − c(θ)) dF (θ) +
ˆ

θ/∈[p,θ?
k
]

Pr [s ≥ s?(θ?k; k)|θ; k] θdF (θ) (6)

where s?(θ?k; k) denotes the critical outside signal below which investors run on a quiet bank
in equilibrium, given that they expect banks θ ∈ [p, θ?k] to disclose. To understand (6),
consider that if a bank chooses to disclose (θ ∈ [p, θ?k]), it avoids a run for certain. The social
value of such banks is θ− c(θ), the value of avoiding the run less the cost of disclosure. The
first integral in (6) captures this value. However, if the bank stays quiet (θ /∈ [p, θ?k]), a run
is avoided if and only if the outside signal satisfies s ≥ s?, in which case it provides investors
with value θ. The second integral represents this contribution.

We have made explicit that welfare depends on k both directly and through the behavioral
impact of k on the equilibrium threshold θ?k. An optimal policy must take both effects into
account.

The direct effect alone makes for a rich analysis, and is the subject of a growing literature
on stress test design which focuses on the case without inside information (e.g. Faria-e-Castro
et al., 2016; Goldstein and Leitner, 2017). We will focus instead on what is new in our model,
namely the behavioral effect, but first we review the key intuitions relating to the direct effect.
We refer the reader to the excellent analysis in existing work (see also Bouvard et al., 2015)
for a formal discussion.

In our model the case without outside information corresponds to fixing θ?k ≡ p, ∀k, and
taking partial derivatives with respect to k in Equation (6) to derive optimal policy. The
key intuitive trade-off in this case is between transparency and insurance: On one hand,
too much noise (k = ∞) would lead to runs on all banks when E[θ] < p, which cannot be
optimal. On the other hand, too much transparency (k ' 0 ) implies that weak banks with
θ < p face a run with probability close to 1. Since depositors have a coordination problem
and run on banks too frequently, this scenario also generates a deadweight loss. This is
reminiscent of an informational Hirshleifer (1971) effect. An optimal (intermediate) level of
noise prevents a systemic crises, but allows weak banks to survive with positive probability,
since they can get lucky and draw a high enough s to prevent a run. In general, the resulting
optimal policy is quite fine-tuned to the parameters of the model, especially to prior beliefs.
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In the remainder of this Section, we characterize the additional effects that a policymaker
must take into account when inside information is endogenous, and potentially responds to
stress test design. In other words, we seek a characterization of stress tests that is robust to
the Lucas critique.

3.4 A minimum standard of transparency

Based on the logic of Proposition 1, a first simple observation is that information becomes
fragile as stress tests improve beyond a critical threshold k0:

Corollary 1. There exists a threshold k0 ∈ (0,∞) such that the least transparent equilibrium
is discontinuous at k0: θ?k = θ̄ for all k > k0, while θ?k0 < θ̄.

To translate this into an implication for optimal policy, note that when outside informa-
tion is noisy (k > k0), all strong banks θ ≥ p disclose, and all weak banks θ < p suffer a
run. When k = k0, by contrast, a discrete set of strong banks stays quiet in equilibrium. By
revealed preference, these strong, quiet banks are weakly better off than under transparency.
Moreover, the silence of the strong strictly improves the utility of the weak, who can now
avoid a run with positive probability (if they obtain a sufficiently impressive s). Therefore
it can never be optimal to introduce noise above the critical level k0 into stress tests:

Proposition 3. Any optimal policy sets k ≤ k0. Moreover, welfare increases discontinuously
when k crosses k0 from above.

The intuition is clear. As a consequence of the Hirshleifer effect, opacity by strong banks
provides implicit insurance for weak ones. Here, some silence at the top of the quality
distribution, which is achieved when k = k0, must improve welfare relative to an unraveling
scenario where all good banks disclose. The discontinuity of welfare around k0 is due to
reverse unraveling, and follows from Proposition 1. Moreover, it is easy to show that under
certain circumstances, for example if the prior belief E[θ] is relatively optimistic and the
costs c(θ) of inside disclosure are low, a policymaker who ignores inside disclosures would
optimally set k > k0. The minimum standard of transparency is therefore new relative to
the literature that treats inside information as exogenous. Once inside information responds,
a ‘naive’ choice k > k0 would trigger unraveling, and disclosures by all strong banks θ ≥ p,
which completely cancel out the insurance benefits of imperfect transparency.

3.5 Optimal transparency with inside information

Despite Proposition 3, it is nonetheless possible that even a policymaker who considers
inside information to be exogenous (or entirely absent) would choose to satisfy the minimum
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standard of transparency, k ≤ k0 (for example, if prior beliefs are sufficiently pessimistic).
In that case, Proposition 3 does not tell us whether stress tests should become more or less
transparent once we acknowledge that inside information responds endogenously.

To study this formally, consider a naive policymaker who takes the bank’s disclosure
threshold θ?n as exogenously given, and maximizes welfare W (θ?n; k), considering only the
partial derivative with respect to k. A sophisticated, fully optimizing policymaker instead
maximizes W (θ?k; k), considering the total derivative. For the most direct comparison, we
endow the naive policymaker with consistent beliefs. That is, at its optimal policy choice k?,
the naive policymaker’s conjectured disclosures are exactly the equilibrium, θ?n = θ?k? .27 When
beliefs are correct, we emphasize the naive objective function by writing Wn (k) ≡ W (θ?k; k).
To aid local arguments, we focus on the (interesting) interior case where θ?k ∈ (p, θ̄).

A naive policymaker takes into account the trade-off between transparency and insurance
discussed above. In addition, a sophisticated policymaker realizes that changes in k will affect
the threshold θ?k and thus trigger a further indirect change in s?k. Our analysis in Section 2
suggests that this effect is ambiguous: An improvement in the quality of stress tests (↓ k) can
either crowd in or crowd out disclosures by strong banks. We now show that this distinction
is crucial for the optimal transparency of stress tests:

Proposition 4. At the naive policymaker’s optimal choice k = k?, the marginal effect on
welfare of lowering k is positive if there is crowding out (∂θ

?
k

∂k
> 0) and negative if there is

crowding in (∂θ
?
k

∂k
< 0).

If crowding out is ‘persistent’ (θ?k > θ?k?, k > k?), and

Wn (k?) ≥ Wn (k) + (F (θ?k)− F (θ?k?))E [θ (Pr [s ≤ s? (θ?k, k) | θ; k]− c)] , ∀k > k? (7)

then a sophisticated policymaker chooses k < k?. Conversely, if crowding in is persistent,
in the sense that θ?k? < θ?k for all k > k? and (7) holds for k < k?, then a sophisticated
policymaker chooses k > k?.

Proposition 4 first considers the marginal effect on welfare of changing the noise k con-
tained in stress tests relative to the naive policymaker’s optimum k?. It states that welfare
can be improved by making stress tests marginally more precise (↓ k) if and only if this
change crowds out disclosures by strong banks (↓ θ?k). To understand this result, suppose
that there is crowding out. While this change has only a second-order effect on the payoffs

27This can be formalized by changing the game to have the policymaker and banks choose simultaneously.
Then, the naive policymaker’s optimum is simply a Bayes Nash equilibrium of the reduced-form game between
policymaker and banks, in which investor’s behavior is described by the threshold function s?(θ?k; k).
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of those banks at the margin (they are indifferent), it has important consequences for the
signal extraction problem of investors. As more strong banks with θ > p switch to staying
quiet, silence becomes better news. This lowers the critical signal s? required to avoid a run
on a quiet bank. Therefore, the behavioral effect of lowering k in this case is to reduce the
probability with which quiet banks experience a run, thereby increasing welfare. Conversely,
if there is crowding in, welfare can be improved by making stress tests marginally less precise
(↑ k).

In general even the naive policymaker’s problem is not typically concave in k, so that local
arguments are insufficient for comparing the global solutions to the naive and sophisticated
problems.28 The second part of Proposition 4 provides simple sufficient conditions under
which this marginal analysis carries through to determine the optimal choice of stress test.
Suppose that crowding out effects are persistent, and consider a sophisticated policymaker
who sets k > k?. The welfare effects of such a policy can be decomposed as follows: First, the
policymaker would understand the direct effects of the policy change (i.e. in the absence of
any response in equilibrium disclosures). But this is just Wn(k)−W (k?), the naive cost. In
addition, the sophisticated policymaker understands there will be two further welfare effects
of such a policy. First, types in [θ?k? , θ?k] switch to disclosure, thereby minimizing the welfare
cost to which they would otherwise be exposed. The second right-hand side term in (7)
captures this effect. Second, the crowding out effect imposes a strict negative externality on
all non-disclosing banks. Since this final externality is unambiguously negative, a sufficient
condition for k > k? to be suboptimal is that the naive costs are large enough even when
intermediate types protect themselves via disclosure. Reversing the argument, persistent
enough crowding in effects can push a policymaker towards noisier stress tests.

As indicated by Lemma 3, persistent crowding out is common when in periods of crisis.
For example, when θ, s are jointly normally distributed, persistent crowding out is guaranteed
whenever E [θ] < p and disclosure costs are not too large. Moreover, under these conditions,
(7) is likely to hold: by the Envelope Theorem, it is easy to show that (7) is satisfied locally
around k?. Moreover, it continues to hold at large k. For instance, if k is large enough to
ensure full disclosure is the unique equilibrium, the right-hand side of (7) would simply be
the full disclosure payoff. But this is strictly worse for the naive policymaker than setting
k = 0, which is in turn revealed worse than setting k = k?.

Therefore, in severe financial crises it is likely that a sophisticated policymaker will choose
a more transparent stress test than a naive one who ignores the endogenous response of inside

28For example, since Wn limits to a constant (full disclosure) payoff as k → ∞, and Wn (0) >
limk→∞Wn (k), Wn cannot be concave. At best Wn may still be quasiconcave, though this depends highly
on parameters.

25



information. The Lucas critique implies a case for greater transparency in financial policy.

4 A general Sender-Receiver model

We now show that the main insights of Section 2 continue to be present in more general
Sender-Receiver games with outside information. In particular, we show how our results
on fragility of disclosures to outside information can be extended. Additionally, we provide
new insights regarding the role of payoffs in predicting when equilibria will feature reverse
unraveling, and when they will feature traditional unraveling.

Consider a game between a Sender (he), who has the opportunity to disclose verifiable
inside information, and a Receiver (she), who chooses an action a ∈ A ⊂ R based on these
disclosures and outside information. Payoffs depend on this action and on the state of the
world θ ∈ Θ = {θ1, ..., θN} ⊂ R, where θN > θN−1 > ... > θ1. We focus on finite types in
this Section to ensure the existence of equilibrium.

Sender’s payoff, v(a), depends only on the action taken and is strictly increasing in a.
Receiver’s payoff u(a, θ) is log-supermodular in a and θ, so that she optimally chooses higher
actions when optimistic about θ.29 We assume that, when Receiver knows θ with certainty,
she has a unique best response denoted a?(θ) = arg maxa∈A u(a, θ).

Sender privately observes the state θ, which we refer to as his type, and sends a message
m ∈ {θ, ∅}. The message m = θ is available only to type θ, and therefore amounts to full
and verifiable disclosure of θ, but it reduces Sender’s utility by c > 0. The null message
m = ∅, which we refer to as staying quiet, is costless but reveals no verifiable information.

Again, we focus on this simple message space for clarity of exposition. In Online Appendix
F.3, we show that similar results obtain in more general message spaces for m, or when costs
depend on θ, as long as verifiable messages are more costly than cheap talk, and the cost of
sending such messages is not too steep as a function of their informativeness.

In addition to m, Receiver observes an outside signal s drawn from a finite set S ⊂ R.
We write µ0(θ) for the prior distribution of θ and π(s|θ) for the conditional distribution of
s given θ, which are common knowledge. We assume that µ0(θ) > 0 for all θ.

The timing is as before:

1. Sender privately observes θ, and chooses send a message m.

2. Receiver observes m, as well as the outside signal s.
29More precisely, Receiver’s optimal action increases whenever her beliefs about θ become more optimistic

in the sense of the monotone likelihood ratios (Milgrom, 1981; Athey, 2002).
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3. Receiver chooses an action a ∈ {0, 1}.30

We consider Perfect Bayesian Equilibria in which off the equilibrium path, Receiver places
zero probability on type θ′ if she observes a signal such that π(s|θ′) = 0. We call an
equilibrium monotone (increasing) if the probability of disclosure Pr[m = θ|θ] is increasing
in the type θ, and strictly increasing for some pair of types. We call an equilibrium opaque
if nobody discloses and Pr[m = θ|θ] = 0. Finally, we call an equilibrium non-monotone if
Pr[m = θ|θ] is strictly increasing for some pair of types and strictly decreasing for another.
The fact that the worst type θ1 has a dominant strategy to stay quiet guarantees that these
are the only possibilities. Finally, an unraveling equilibrium is a special case of monotone
equilibrium in which all θ > θ1 disclose with probability 1.

4.1 Fragile information

An important feature of the reverse unraveling mechanism is amplification: Due to strategic
complementarities, second-order changes in the environment can trigger first-order responses
in Sender’s equilibrium communication strategy. As before refer to a revealing path as a con-
tinuous sequence of outside signals st, indexed by a parameter t ∈ [0, 1] and with associated
conditional distributions π(s|θ; t), such that s0 is pure noise and s1 perfectly reveals Sender’s
type θ. We show that, regardless of the primitives of the model, there is always a revealing
path that induces fragility of information:

Proposition 5. For any payoffs {u, v} and any prior µ0, assume that c is sufficiently small
to ensure that there is an unraveling equilibrium when public signals are pure noise. Then
there exists a revealing path and a critical point t0 such that there is an unraveling equilibrium
when Receiver observes st for t ≤ t1, while full opacity is the unique equilibrium when she
observes st for t > t1.

In contrast to our full characterization in the binary response case, this is an existence
result, and we have not shown that discontinuities arise along every revealing path. However,
we have significant degrees of freedom when choosing the path of signal structures Π(t). In
particular, we show in Online Appendix F.1 that the results continue to go through on an
appropriately defined open set of revealing paths. One caveat is that the revealing path
must have a violation of full support around t = t1. With full support, there is always an
unraveling equilibrium, as discussed in Section 2. In other words, we have no equivalent of
the first part of Proposition 1, which states that less transparent equilibria are also fragile

30This action is not contractible: Sender and Receiver cannot pre-specify a as a function of m and s. Hart
et al. (2017) derive a class of verifiable message games in which equilibria with and without commitment are
identical.
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with full support, in the general case, although we expect that similar results could be
recovered by imposing more structure on preferences and distributions.

The basic intuition of the result is that of reverse unraveling. The path we identify
has the property that, at time t? + ε and beyond, the highest type of Sender, θN , prefers
not to disclose in any equilibrium. While the other types would prefer disclosure if all but
the lowest type were expected to do so, their marginal preference for disclosure at t? + ε is
small. Indeed, once θN prefers not to disclose in any equilibrium, we show that this infects
the optimal disclosure decision of type θN−1, and subsequently type θN−2, and so on, until
iterated elimination of nonequilibrium strategies yields full opacity as the unique equilibrium
at all times beyond t?.

4.2 Outside information and equilibrium informativeness

In addition to establishing the fragility of information, we consider how access to better out-
side information affects the quality of the information that Receiver observes in equilibrium.
We use the Blackwell (1953) order to rank information structures. A general signal τ ′ ∈ T ′ is
said to be more informative about θ than another signal τ ∈ T if τ a ‘garbled’ version of τ ′.31

In the context of our model, we can use Blackwell’s criterion to rank the informativeness of
two outside signals s and s′. We can also rank the informativeness of Receiver’s equilibrium
information set {m, s} across different scenarios.32

We show that more informative signals can always leave Receiver worse informed in
equilibrium:

Proposition 6. Suppose that, when outside information is s, there is an equilibrium E in
which Sender makes a disclosure m = θ with strictly positive probability. Then there exists
an outside signal s′ such that

• s′ is more informative than s in the sense of Blackwell, and
31Formally, Nature first draws the clean signal τ ′ and then randomly converts it to the garbled signal τ ,

so that we can write
Pr[τ |θ] =

∑
τ ′∈T ′

Pr[τ ′|θ]g(τ |τ ′)

for some conditional distribution g(τ |τ ′). Blackwell’s theorem shows that this notion of informativeness is
equivalent to requiring that every Bayesian decision-maker weakly prefers to observe realizations of τ ′ instead
of τ .

32In any equilibrium E , Receiver observes the signal τ = {s,m}, which contains both outside and inside in-
formation and has conditional distribution Pr[τ |θ] = π(s|θ)×Pr[m|θ], where the second factor is determined
endogenously by Sender’s equilibrium strategy. We consider situations where outside information changes
to s′ and Sender changes his equilibrium disclosure strategy. The resulting new equilibrium E ′ induces an
appropriately defined signal τ ′ = {s′,m′}. Receiver is less informed in the new equilibrium in the sense of
Blackwell if we can write τ ′ as a garbling of τ
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• In the game where outside information is s′, there is an equilibrium E ′ in which Receiver
is less informed than in E in the sense of Blackwell.

Proposition 6 follows from the interaction between outside signals and insiders’ incen-
tives to disclose. When outside signals become more informative, they crowd out incentives
for voluntary disclosures by Sender. Since Sender is better informed than Receiver, this
crowding-out can unambiguously reduce information sharing in the economy. Intuitively,
considering a type θi of Sender that makes a disclosure with positive probability, we can al-
low Receiver to observe a compound lottery between s and a signal that reveals θi perfectly.
If the probability of revelation is large enough, type θi strictly stays quiet in a new equilib-
rium of the game. Receiver now observes garbled information about θi in equilibrium, while
she observed θi perfectly (via m) in the old equilibrium. By carefully choosing the distri-
bution of auxiliary signals, the proof ensures that Receiver’s information about other types
θj, j 6= i, also becomes (weakly) worse, so that we obtain an overall Blackwell-deterioration
in Receiver’s information. For this Proposition, we do not require full support of signals, as
discussed in Online Appendix F.2.

4.3 Disclosures and the shape of payoffs

So far, we have shown that specific distributions of outside information have a strong ten-
dency to crowd out inside disclosures. Key to these effects was the fact that incentives to
disclose are weakened by precise outside information, particularly for strong types of Sender.
We now conduct a complementary exercise. For a given distribution of outside information,
we study whether strong types of Sender have an incentive to stay quiet in equilibrium, thus
giving rise to the effects we have emphasized. As we noted above, the best types of Sender
always have the strongest incentive to disclose in the absence of outside information. In the
presence of outside information, we show that the shape of Sender’s payoff plays a crucial
role.

Concavity and convexity in a model with ‘virtual types’

Consider the common special case where Receiver’s optimal action takes the form

arg maxEµ[u(a, θ)] = Eµ [X (θ)] ,

for some increasing function X(θ), and where Sender’s utility is simply v (a) = a. Such
preferences are natural in standard seller-buyer interactions where a denotes the willingness-
to-pay of a buyer (or indeed of a mass of buyers in a competitive market) for an indivisible
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item that gives her utility X(θ), or in settings with quadratic Receiver utility. This case
permits a useful re-interpretation of payoffs in terms of virtual types. If Sender stays quiet
and has true type θ = θi, his expected payoff is

∑
s∈S

π(s|θi)E[X(θ)|s,m = ∅] =
N∑
j=1

qijX(θj),

where qij = E[Pr[θj|s,m = ∅]|θi] is the expected probability mass that Receiver places on
type θj. Payoffs in the absence of disclosure are therefore equivalent to a game in which
Sender draws a virtual type θj according to the conditional distribution qij. Note that qij is
indeed a probability distribution since ∑j qij = 1 for all i. We write Qij = ∑

k≤j qik for the
cumulative distribution of virtual types.

We assume that outside signals satisfy the strict Monotone Likelihood Ratio Property
(MLRP; defined as in Milgrom, 1981): For θ′ > θ and s′ > s, we impose that

π(s′|θ′)π(s|θ) > π(s′|θ)π(s|θ′).

We further assume that neighboring types share signals: For each i, there is an s such that
π(s|θi) > 0 and π(s|θi−1) > 0 (clearly, any signal distribution with full support satisfies this
restriction).

We write ∆Xi = X(θi+1)−X(θi) for the increment in Receiver’s action if she learns that
Sender’s type increases from θi to the next-best type θi+1, and let

N (θ) ≡ X(θ)−
∑
s∈S

π(s|θi)E[X(θ)|s,m = ∅]

be type θ’s marginal payoff from disclosure (net of costs). Integrating by parts, we can
re-write this net payoff as:

N (θi) =
i−1∑
j=1

∆XjQij −
N−1∑
j=i

∆Xj(1−Qij). (8)

Equation (8) expresses the net payoff from disclosure as the sum of two components. The
first term is the downside risk that Sender takes by staying quiet; with probability Qij his
virtual type is below θj for j < i, and the associated incremental loss is ∆Xj. The second
term is the upside risk; with probability 1−Qij, Sender’s virtual type is above θj for j > i,
and the associated incremental gain is again ∆Xj. If the downside exceeds the upside by
more than c, Sender prefers to disclose. Virtual types are useful because they inherit the
ordering of signals: In the Proof of Proposition 7 below, we show that type θi+1 draws better
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virtual types – in the sense of first-order stochastic dominance – than type θi. Thus, the
probability weights Qij on downside risk decrease as Sender’s true type i improves, while the
weights 1−Qij on upside risk increase.

To assess the relevance of the shape of the payoff function X (θ) to disclosures, we define
the following measures of concavity and convexity:

Concavity ≡ min
i

∆Xi

∆Xi+1

Convexity ≡ min
i

∆Xi+1

∆Xi

When Concavity > 1, payoffs are concave in the sense that the marginal value of being
perceived as a better type diminishes as Sender’s type improves. Similarly, when Convexity >
1, the marginal value of being perceived as a better type increases as Sender’s type improves,
and payoffs are convex. We can relate these parameters to disclosure strategies in equilibrium:

Proposition 7. If the Concavity of payoffs is sufficiently large, then if disclosure costs are
not too small, all equilibria are non-monotone or fully opaque. Conversely, if Convexity is
sufficiently large, then there are no non-monotone equilibria.

In other words, when payoffs are concave enough, the strongest types of Sender must
stay quiet in any equilibrium, whenever disclosure costs c exceed a threshold c0 (chosen to
rule out an equilibrium in which only type θ1 stays quiet).33 Conversely, when payoffs are
convex enough, the strongest types of Sender always disclose in equilibrium (unless costs are
prohibitive so that nobody wants to disclose). The result uses our characterization (8) of the
net benefit of disclosure: When payoffs are sufficiently concave, incentives to disclose come
mainly from the downside increments ∆X1, ...,∆Xi−1. Since the probability weights on these
increments fall as Sender’s true type improves, strong types have weak incentives to disclose.
Then, the logic of reverse unraveling leads to a non-monotone or fully opaque equilibrium,
as in the binary example of Section 2. When payoffs are sufficiently convex, by contrast,
we can rule out non-monotone equilibria as follows: Let θn be the highest quiet type in a
non-monotone equilibrium, and θd < θn a disclosing type below him. We show that type θn
has strictly stronger incentives to disclose than θd because of the large, convex, utility he
gains by raising his virtual type to θn. The proof constructs uniform bounds on Concavity
and Convexity that ensure these properties for all possible (pure or mixed) strategy profiles;
the bounds depend on the prior signal distribution, but not on equilibrium play.

33Note, however, that this threshold c0 is larger than it would be in the absence of outside information.
Hence, we can focus on the case where c > c0, but still assume that costs are ‘small’ in the sense unraveling
is an equilibrium outcome in the absence of outside information.
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A simple example clarifies the logic of Proposition 7.

Example. Consider the ‘virtual type’ case with three types θ ∈ {θ1, θ2, θ3}, five outside
signals s ∈ {s0, ..., s4}, and a uniform prior µ0(θi) = 1/3. Each type draws the outside signal
to the left of his type with probability π(si−1|θi) = p, that to the right with probability
π(si+1|θi) = r, and the signal matching his type with the remaining probability π(si|θi) =
q = 1− p− r .

We have Concavity = ∆X1
∆X2

. Define the maximal punishment for silenceM(θ) as Sender’s
net payoff from disclosure when Receiver adopts the most pessimistic feasible beliefs following
m = ∅ (see Appendix F). We haveM(θ2) = ∆X1(p + q) for the middle type andM(θ3) =
∆X1p + ∆X2(p + q) for the top type. We haveM(θ3) <M(θ2) when Concavity > 1 + p

q
,

that is, when the concavity of payoffs is large relative to the likelihood ratio of left-tail
outside signals to intermediate ones. Under this condition, the high type θ3 has the strongest
incentives to deviate from an unraveling equilibrium, and it is easy to see that such an
equilibrium exists if and only if c ≤ M(θ3) ≡ c0. Whenever c > c0, the top type must
therefore stay quiet, and since the bottom type also has a dominant strategy to stay quiet,
resulting equilibria must be non-monotonic of fully opaque, in line with the first part of
Proposition 7.

Moreover, we have Convexity = 1
Concavity = ∆X2

∆X1
. Consider a non-monotone equilibrium

in pure strategies, where only the middle type θ2 discloses. In this equilibrium, Receiver is
certain that θ = θ1 when the outside signal is s ≤ s1, and equally certain that θ = θ3 when
s ≥ s3. When s = s2, she places probability r

p+r on type θ1 and complementary probability
p
p+r on type θ3. The implied distribution of virtual types has Q21 = p + q r

p+r = Q22 and
Q31 = p r

p+r = Q32. For optimality, the middle type must prefer to disclose and the top
type must prefer to stay quiet: N (θ2) ≥ c ≥ N (θ3). Thus a non-monotone equilibrium
exists for some c if and only if N (θ2) ≥ N (θ3) . Substituting into (8) and rearranging, this
is equivalent to Convexity ≤ λ

1−λ , where λ = Q21 − Q31 is the downside risk perceived by
the top type relative to the middle type. Conversely, when Convexity > λ

1−λ , there is no
non-monotone equilibrium.�

The example further helps us to understand disclosures when parameters fall between the
bounds we have established in Proposition 7, that is, when payoffs are neither very convex
nor very concave. It turns out that the skewness of outside information becomes critical in
this case. For instance, when payoffs are linear (Concavity = 1), non-monotone equilibria
exist in the example if and only if λ = p(1− r

p+r )+q r
p+r ≥

1
2 . With a symmetric outside signal

distribution (p = r) this is impossible unless signals are perfectly revealing. When outside
signals are precise with q > 1

2 , we have a non-monotone equilibrium if and only if outside
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information is right-skewed, with r
p
sufficiently large. Intuitively, a right skew increases the

advantage of top types over mediocre types, since the outside signals drawn by mediocre
types are now interpreted chiefly as having come from low types. As a result, payoffs must
now be strictly convex to rule out non-monotone disclosures.

4.4 An Application: Disclosures when issuing debt and equity

We now model corporate disclosures by a firm wishing to raise funds from investors. We
consider two modes of finance: issuing bonds and issuing shares. Since bonds give investors a
concave claim and shares give a convex one, Proposition 7 suggests that incentives to disclose
will differ between the two scenarios.

Consider a firm whose profits are θ ∼ U [0, 1]. The firm wishes to maximize the amount
of money it raises by selling a given security to risk-neutral financial investors. As usual,
the firm privately observes θ and can verifiably disclose it (m = θ) at a cost c. Investors
subsequently observe an outside signal s = θ + kε, where ε ∼ U [−1, 1]. For simplicity,
we assume that the noise parameter k > 1/2, so that any two types have some signals in
common.

If the firm sells shares, then the payoff to buyers of shares is the convex claim max{θ −
d, 0}, where d denotes the face value of any existing debt. The firm’s payoff is the market
price of shares, which is given by investors’ willingness to pay given inside and outside
information:

p(m, s) = E[max{θ − d, 0}|m, s].

Low-quality firms with θ ≤ d have a dominant strategy to stay quiet, since disclosing θ

would yield p = 0. For firms with θ > d, the net payoff from disclosure is the expected gain
in share prices

N (θ) = (θ − d)− 1
2k

θ+kˆ

θ−k

p(∅, s)ds.

This net payoff is strictly increasing in θ: The first term (the payoff from full disclosure)
increases with θ at rate 1. The second term increases at rate

1
2k [p(∅, θ + k)− p(∅, θ − k)]

since increasing θ shifts probability mass from low signals around θ−k to high signals around
θ + k. Under the assumption that signals are not too precise (k > 1/2), this rate is always
less than one. Since the net payoff from disclosure is increasing in θ, all equilibria must have
a cutoff property, where only firms with high quality θ ≥ θ? make disclosures, with θ? > d.
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If the firm sells bonds, by contrast, the payoff to buyers is the concave claim min{d, θ}.
The firm’s payoff is the market price of bonds

q(m, s) = E[min{d, θ}|m, s].

The net payoff from disclosure is now

N (θ) = min{d, θ} − 1
2k

θ+kˆ

θ−k

q(∅, s)ds.

It is easy to see that incentives to disclose are strongest at the kink of the payoff function
where θ = d. For lower-quality firms with θ < d, the first term increases at rate 1, while the
second term increases at rate 1

2k [q(∅, θ + k)− q(∅, θ − k)] < 1. For high-quality firms with
θ > d, the first term is fixed, while the second term is still increasing. Therefore, the net
payoff from disclosure has a peak at θ = d. It follows that all equilibria must have interval
strategies, where only firms with intermediate quality θ ∈ (θ?L, θ?H ] make disclosures, with
θ?L ≤ d ≤ θ?H .34

The empirical predictions of this model are that disclosures come mainly from high-
quality firms if they are selling shares, and mainly from intermediate-quality firms if they are
selling bonds. Moreover, since firm quality and outside information are positively correlated,
we predict that disclosures come mainly from firms with favorable subsequent realizations of
outside information (e.g. optimistic analyst opinions) if selling shares, and mainly from firms
with intermediate signals (e.g. mediocre credit ratings) if selling bonds. These predictions
need to be qualified by allowing for sample selection: We have assumed that the security
sold by the firm is exogenously determined and independent of its quality θ. In the classic
‘pecking order’ theory of Myers and Majluf (1984), debt is selected by high-quality firms as
a signal. Daley et al. (2017) study a related model to ours, where debt issuance serves as an
(inside) signal of quality in a model with (outside) credit ratings and two possible realizations
of firm quality. Our model complements this literature by showing that – conditional on
selecting debt, or in situations where debt is unambiguously more attractive (e.g. due to tax
advantages) – disclosures tend to be made by firms of intermediate quality.

34For both bonds and shares, it is straightforward to show that the relevant thresholds exist, although
they may not be unique, and are interior for a range of parameters.
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5 Conclusion

In this paper, we have studied the determinants of a privately informed Sender’s incentives
to produce and disclose verifiable evidence to a decision-maker, who also has access to other
outside sources of information. Motivated by our leading example of bank disclosures in
financial markets, we also address the policy question of how much information (in the form
of a stress test) a policymaker should provide to markets, when banks can also voluntarily
disclose information about their asset quality.

Our main finding is that the presence of outside information can drastically alter insiders’
incentives to disclose. Indeed, we show that the presence of outside information generates
a stark contrast in predictions compared with the classic literature on verifiable disclosures.
In contrast to the usual unraveling results, we show that the presence of outside information
can generate reverse unraveling, where silence by ‘high quality’ Senders becomes contagious
and incentivizes yet more silence by those with lower quality. Indeed, in a binary action
setting, when outside information is sufficiently precise all equilibria must take this form.
An important consequence is that, as outside information becomes precise enough to ad-
mit reverse unraveling, there is a discontinuous contraction in equilibrium disclosures. We
identify this as a fragility of disclosures to outside information. Away from this threshold,
the interaction between inside and outside information is more subtle – they may be local
substitutes or complements.

In a model of financial crises, we consider the implications of our results for information
policy. We identify an informational externality for which policymakers should account
when conducting stress testing policy: Stress tests affect banks’ equilibrium disclosures. Our
results make a new case for more informative stress-testing during periods of financial crisis.
In the context of the recent literature on stress-testing, which identifies the benefits of pooling
information about banks in a crisis, this finding may seem counter-intuitive. However, when
bank disclosures are voluntary, we argue that this same reasoning implies a need for greater
transparency: by increasing the informativeness of stress tests, policymakers minimizes the
costs of separation by disincentivizing high quality banks from disclosing.

An analysis of a more general model highlights that the effect of outside on inside in-
formation depends on the shape of Sender’s payoffs. Reverse unraveling can gain traction,
and disclosure tend to come only from mediocre types, when Sender’s utility is concave in
his perceived quality. By contrast, when utility is convex, only a set of the best types make
disclosures, and the impact of outside on inside information is muted. An interesting ap-
plication is to corporate disclosures: If a firm finances itself with debt, which is a concave
claim, disclosure strategies are non-monotone in firm profitability; if it is equity-financed,
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they are monotone and disclosures come from the most profitable firms.
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A Proofs for Section 2

Throughout this Appendix, we write σ(θ) = Pr[m = θ|θ] for (potentially mixed) disclosure
strategies, and σ = {σ(θ)}θ∈[θ,θ̄] for strategy profiles.

Lemma 1

We first show that in any equilibrium, Receiver’s best response takes a threshold form so
that Receiver plays a = 1 if m = ∅ and s > s?, and a = 0 if m = ∅ and s < s?.

Indeed, take any equilibrium with disclosure strategy σ. We can define the intermediate
belief

F∅(θ′) = Prσ[θ ≤ θ′|m = ∅]

which denotes the distribution of θ given the null message alone. Consider Receiver’s response
in the event {m = ∅, s}. Recall that ŝ = sup∪θ<pS(θ). If s > ŝ then Receiver strictly prefers
a = 1. If s ≤ ŝ, then s ∈ S(θ) for some θ < p, and the event {m = ∅, s} is on the equilibrium
path because θ < p have a strictly dominant strategy to play m = ∅. Since m and s are
independent conditional on θ, Receiver’s posterior beliefs given {m = ∅, s} are formed by
updating the prior F∅ using the outside signal s and Bayes’ rule. By MLRP and Proposition
1 of Milgrom (1981), the expected value E[θ|m = ∅, s] is strictly increasing in s. Now we can
define the desired s? as the lowest s ≤ ŝ satisfying E[θ|m = ∅, s] ≥ p, or if this is impossible,
as s? = ŝ.

Finally, we show that Sender plays a threshold strategy. Take any equilibrium with
disclosure strategy σ with associated critical signal s? defined in the previous paragraph.
Let θ? be the lowest θ ≥ p such that H (s? | θ)− c (θ) ≥ 0, or if this is impossible, let θ? = p.
Given our single crossing condition (1), we now have three cases, each of which satisfies the
claim in the Lemma: First, if θ? ∈ (p, θ̄) then by continuity, H (s? | θ?) − c (θ?) = 0, and
Sender strictly prefers to stay quiet for θ ∈ (p, θ?) and strictly prefers to disclose for θ > θ?.
Second, if θ? = p then Sender strictly prefers to disclose for all θ > p. Third, if θ? = θ̄ then
Sender strictly prefers to stay quiet for all θ > p.

Lemma 2

Suppose that BR(θ?) ∈ (p, θ̄) for θ? ∈ (θ̄ − δ, θ̄). Then by continuity of Sender’s expected
utility, it satisfies Sender’s indifference condition H(s?(θ?)|θ)− c(θ)|θ=BR(θ?) = 0. Moreover,
since c(θ) ∈ (0, 1), we know that s?(θ?) ∈ int(S(θ)) for θ = BR(θ?), implying that it satisfies
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Receiver’s indifference condition E[θ|θ /∈ (p, θ?), s?] = p, or equivalently
ˆ

θ/∈(p,θ?)

(p− θ)h(s?|θ)dF = 0

We can apply the implicit function theorem to both indifference conditions to get

dBR

dθ?
= h(s?|θ)
c′(θ)−Hθ(s?|θ)

∣∣∣∣∣
θ=BR(θ?)

× ds?

dθ?
(9)

ds?

dθ?
= (θ? − p)h(s?|θ?)f(θ?)´

θ/∈(p,θ?)(p− θ)hs(s?|θ)dF + (p− θ(s?))h(s?|θ(s?))f(θ(s?))dθ(s?)
ds

(10)

where θ(s) = inf{θ|s ∈ S(θ)}. Our single crossing condition (1) implies that c′(θ) > Hθ(s|θ)
at the crossing point θ = BR(θ?). Moreover, h(s?|BR(θ?)) > 0, so that the first term in (9)
is a positive constant. We still need to show that limθ?↑θ̄

ds?

dθ? = +∞. All limits in the rest of
the proof are taken as θ? ↑ θ̄.

Let B̄R = limBR(θ?). We know that c(B̄R) = H(ŝ|B̄R), which implies 1 > H(ŝ|B̄R) ≥
H(ŝ|θ̄), where the second inequality follows from first-order stochastic dominance (implied
by MLRP). Thus we know that h(ŝ|θ̄) > 0, and therefore the numerator in (10) converges
to a positive constant. We finish by showing that the denominator converges to zero.

We know that lim s? = ŝ = sup∪θ<pS(θ). To see this, note that if lim s? < ŝ, then Re-
ceiver would place strictly positive probability mass on types θ < p conditional on observing
s?, but near-zero mass on θ ≥ p, thus violating Receiver’s indifference condition. Moreover,
if lim s? > ŝ, then Receiver would strictly prefer a = 1, again violating indifference. As
a result, lim s? = ŝ, which directly implies that lim θ(s?) = p. The second term in the
denominator of (10) therefore converges to zero. The integral in the denominator is

pˆ

θ(s)

(p− θ)hs(s?|θ)dF +
θ̄ˆ

θ?

(p− θ)hs(s?|θ)dF

and also converges to zero given that the derivative hs is bounded, which completes the
proof.

Proposition 1

Take any revealing path, write BRt(θ) for the best response function in (3) induced by
outside signal st, and θtmin, θtmax for the least and most transparent equilibria given st. For
this proof we say that BRt is flat at the top if ∃Bt < θ̄ such that BRt(θ) = θ̄ ∀θ ≥ Bt.
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Let t0 = inf{t : θtmin < θ̄} and t1 = inf{t : θtmax < θ̄}. We know that θ̄ is the unique
equilibrium in a neighborhood around t = 0, so that t0, t1 > 0. Moreover, since an equilib-
rium without any disclosure (θ? = p) exists for t = 1, we know by continuity of BRt(θ?) that
t0 < 1. (We can have t1 = 1, however, for example in the case with full support.)

To establish the (left-)discontinuity at t0 we argue that θt0min < θ̄ by contrapositive.
Suppose that θt0min = θ̄, so that BRt0(θ) > θ for all θ ∈ [p, θ̄). If BRt0 is flat at the top,
then BRt0+ε is also flat at the top for small ε. It follows by continuity that BRt0+ε(θ) > θ

for all θ < θ̄, implying θt0+ε
min = θ̄, contradicting the definition of t0 as an infimum. If BRt0

is not flat at the top, then it is interior in a neighborhood of θ̄, and so by Lemma 2, we can
find a b < θ̄ such that BRt0(θ) < θ ∀θ ≥ b. For small ε, BRt0−ε(θ) < b, and since the best
response is non-decreasing, BRt0−ε(θ) ∈ [p, b] for all θ ∈ [p, b]. Then by Brouwer’s fixed point
theorem, there exists an equilibrium θ? < θ̄ so that θt0−εmin < θ̄ for small ε, again contradicting
the definition of t0.

To establish the (right-) discontinuity at t1 when t1 < 1, note for small ε, BRt1+ε(θ) ∈
(p, θ̄) in a neighborhood of θ̄ (otherwise, an unraveling equilibrium exists at t1 + ε, a con-
tradiction). Now defining L(x, y) = BRt1+y(θ̄ − x) − (θ̄ − x), we know that since BR is
interior, L(x, y) is continuously differentiable for small x, y > 0. Moreover, we can see
that (i) L(0, 0) = 0; since otherwise an unraveling equilibrium does not exist for t1 − ε,
(ii) Ly(0, 0) < 0; since otherwise an unraveling equilibrium exists for t1 + ε, and (iii)
Lx(0, 0) < 0; by Lemma 2. By continuity of L, Lx and Ly, we can find ε and δ such
that for all |x| < ε, |y| < δ,

L(x, y) = L(0, 0) +
xˆ

0

Lx(u, 0)du+
yˆ

0

Ly(x, u)du < 0

It follows that for all t ∈ (t1, t1 +δ), and all θ ≥ θ̄− ε
2 , BR

t(θ) < θ, so that θtmax ≤ θ̄− ε
2 ≡ θ1,

as required.

Proposition 2

Consider an equilibrium threshold θ? which is strictly larger than the smallest equilibrium
threshold, θ?min. Then, the set [θ, p] ∪

[
θ?min, θ

]
is self-signaling. Recalling that s? (θ) is

increasing in θ, we have

θ (1−H (s? (θ?min) | θ)) > θ (1−H (s? (θ?) | θ)) .
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Thus, all types in [θ, p]∪
[
θ?min, θ

]
prefer to switch to a cheap talk message understood to be

sent by members of [θ, p] ∪
[
θ?min, θ

]
. Moreover, types in (p, θ?min) would not wish to switch

to this message – by definition of θ?min as an equilibrium threshold.
We now show that θ?min is a neologism proof equilibrium. From the above argument, it

is therefore also unique. Suppose not, and for an arbitrary set C, let s? (C) be the Receiver
threshold identified in Lemma 1. Then there must exist a subset of non-disclosing types
C ′ ⊂ [θ, p] ∪

[
θ?min, θ

]
for whom

θ (1−H (s? (C) | θ)) > θ (1−H (s? (θ?min) | θ))

if and only if θ ∈ C. Therefore, s? (C) > s? (θ?min), and moreover (given full support), we
must have [θ, p] ∪

[
θ?min, θ

]
⊂ C. Given our regularity condition on Sender payoffs, we must

have C = [θ, p] ∪
[
θ′, θ

]
for some θ′ < θ?min. But since θ?min is the smallest equilibrium

threshold, it is easy to show that we must have B (θ′) > θ′. Thus, there exists a subset of
C ∩ (p, θ?min), [θ′, B (θ′)] for whom

θ (1−H (s? (C) | θ)) < θ − c,

and therefore prefer their equilibrium message to deviating with members of C – a contra-
diction to C being a self-signaling set.

Lemma 3

With normal distributions, an interior equilibrium (θ?, s? (θ?)) solves the system

Φ
(
s? (θ?)− θ?

k

)
= c (11)

E [θ|s? (θ?) , θ /∈ [p, θ∗]] = p (12)

Letting µs = αµ + (1− α) s − p, σs = k2σ2

k2+σ2 , with α = k2

k2+σ2 , denote the conditional mean
and variance of θ− p on observing s, we can use the standard formula for truncated normal
distributions to write (12) as

µs?

σs?

=
φ
(
−µs?

σs?

)
− φ

(
θ?−µs?

σs?

)
1− Φ

(
θ?−µs?

σs?

)
+ Φ

(
−µs?

σs?

)
or, defining x = θ?

σs?
, y (x) = µs?

σs?
(recall that s∗, and therefore µs∗ are functions of θ?), we

can write
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y (x) = φ (−y (x))− φ (x− y (x))
1− Φ (x− y (x)) + Φ (−y (x)) (13)

Rewriting (12), we have

s∗ (θ?) = 1
1− α(µs? + p− αµ) = 1

1− α. (σs
?y (x) + p− αµ),

Differentiating system (11) - (12), after some algebra we find that in any stable equilibrium:

dθ?

dk

sign= 2k
k2 + σ2 s

?(θ?) + 1
1− α

[(
y

(
θ?

σs?

)
−
(
θ?

σs?

)
y′
(
θ?

σs?

))
σ

2
√
α
− µ

]
dα

dk

−Φ−1 (c) . (14)

When µ < 0 then we have s?(θ?) > 0 so that the first term is positive. Letting θ?/σs? = x,
the second term is guaranteed to be positive as long as y(x) > xy′(x), or equivalently if the
slope of a ray from the origin to the point (x, y(x)) is greater than y′(x). It is tedious but
straightforward to show that each ray from the origin crosses the implicit function y(x) once
from above, which establishes that it must be steeper than y(x) at the point of crossing (a
proof was presented in an earlier working paper and is available on request). Finally, the
third term is negative by assumption since Φ−1(c) < 0 for all c < 1/2.

For the second part, consider any equilibrium with cutoff θ?, and a simultaneous change
in µ and c which ensures that θ? remains an equilibrium cutoff. It is more convenient to
represent the change in c by a change in Ψ ≡ Φ−1 (c). Equilibrium requires that s?(θ?)−θ? =
kΨ and so we must have

dΨ
dµ

= 1
k

ds?(θ?)
dµ

.

Note further that ds?(θ?)
dµ

= −α
1−α . We now consider the right-hand side of (14), which changes

in proportion to dµ by

d

dµ

{
2k

k2 + σ2 [s?(θ?)− µ]−Ψ
}

= 2k
k2 + σ2

[
ds?(θ?)
dµ

− 1
]
− 1
k

ds?(θ?)
dµ

.

= −2k
k2 + σ2

1
1− α + 1

k

α

1− α

= −2k
σ2 + 1

k

k2

σ2 = − k

σ2 < 0.

Thus the right-hand side of (14) changes linearly with dµ and is guaranteed to be negative
whenever dµ is large enough, which completes the proof.
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B Proofs for Section 3

Proposition 4

Define the naive policymaker’s payoff function, given disclosure interval [p, θ′], by

Wn (k, θ′) := 1 +
θ′ˆ
p

(θ − c(θ)) dF (θ) +
ˆ

θ∈[θ,p]∪[θ′,θ]

Pr [s ≥ s?k|θ; k] θdF (θ).

Using the equivalenceW (k) ≡ Wn (k, θ?k), we can calculate the derivative of the sophisticated
welfare function as

∂W

∂k
= ∂Wn

∂k
+ ∂Wn

∂θ′
∂θ?k
∂k

. (15)

At an interior optimum of the naive policymaker’s problem, we have ∂Wn

∂k
(k?, θ?k?) = 0.

Moreover, it is easy to see that

∂Wn

∂θ′
= − ∂s?k

∂θ′
·
ˆ

θ/∈[p,θ′]

h

(
s?k − θ
k

)
θdF (θ)

= −∂s
?
k

∂θ′
· E [θ | θ /∈ [p, θ′] , s?k]

ˆ

θ/∈[p,θ′]

h

(
s?k − θ
k

)
dF (θ)

= −∂s
?
k

∂θ′
p

ˆ

θ/∈[p,θ′]

h

(
s?k − θ
k

)
f(θ)dθ

Since h
(
s?

k−θ
k

)
f (θ) > 0, so too is the integral above. Moreover, ∂s

?
k

∂θ′
follows from the MLRP

property on signals. Thus, ∂W
∂k

takes the sign of −∂θ?
k

∂k
.

Let k?? := arg maxW (k). We now show that when (7) and θ?k ≥ θ?k? holds, for all k ≥ k?

then k?? < k?. Since the argument is analogous, we omit the proof for the crowding in case.
Calculating W (k?)−W (k) for k < k? we have

W (k?)−W (k) = Wn (k?, θ?k?)−W (k)

= Wn (k?, θ?k?)−Wn (k, θ?k)

≥ Wn (k?, θ?k?)−

Wn (k?, θ?k?) +
θ?

kˆ

θ?
k?

(Pr [s ≤ s? (θ?k, k) |θ; k]− c)θdF (θ)


where the last inequality follows from equation (15) and s? (θ?k, k) ≥ s? (θ?k? , k), for θ?k? > θ?k.
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From this, the Proposition follows immediately.35

C Proofs for Section 4

In this Appendix, we write Receiver’s beliefs interchangeably as functions of realizations of
θ, as in µ(θi), or with superscripts, as in µi. We write V (θ) = v(a?(θ)) for Sender’s payoff
when he is taken to be type θ for certain. When Sender stays quiet and outside information
is s, let

α(s) ∈ arg maxEµ[u(a, θ)|s,m = ∅]

represent Receiver’s (potentially random) best response. We then define the net payoff from
a verifiable disclosure as

N (θ) ≡ V (θ)− E[v(α(s))|θ], (16)

so that Sender prefers to disclose if N (θ) ≥ c. As pointed out by Milgrom and Roberts
(1986) and others, it is often useful to consider ‘skeptical’ beliefs, where Receiver assumes
that Sender is of the worst type θ(s) = min{θ|π(s|θ) > 0} consistent with her outside
information s. We define the maximal punishment that Sender can suffer by staying quiet as
the difference between the payoff he obtains under full disclosure, and the payoff he obtains
by staying quiet and facing a skeptical Receiver:

M(θ) = V (θ)− E[V (θ(s))|θ].

Proposition 5

Proof. We construct a simple path of signals Π (t) that satisfies the claim of the Proposition.
Let pi : [0, 1] → [0, 1] be a C2, strictly increasing function with pi (0) = 0, pi (1) = 1 and
whose derivative is equicontinuous, for i = 1, . . . , N . Iteratively define the following class of
outside signals: let Π̂ (t) be an N ×N matrix whose elements are

π̂ (s | θi; t) =


(1− pi (t)) π̂ (s | θi−1; t) , s < i

pi (t) , for s = i

0, for s > i.

35The right-hand side integral is always weakly positive, since from the regularity condition (1) and the
equilibrium condition, we have Pr [s ≤ s? (θ?k, k) |θ; k] ≥ c, for all θ ∈ [p, θ?k], and moreover θ ≥ θ?k? ≥ p > 0.
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Π̂ (t) satisfies MLRP for all t. We show first that

M (θi; t) =
i−1∑
s=1

π̂ (s | θi; t) (V (θi)− V (θs))

is decreasing in t, withM (θi; 0) > c,M (θi; 1) = 0, ∀i > 1.

M (θi; t) = (1− pk (t))M (θi−1; t) + pk (t) (V (θi)− V (θk))

We argue inductively: If M (θi−1; t) is increasing in t then clearly so too is M (θi; t),
since pk (t) is increasing in t and V (θi) − V (θs) is strictly decreasing in s. Observing that
M (θ2; t) = (1− p2 (t)) (V (θ2)− V (θ1)) is decreasing establishes monotonicity. Thus for
each θi, there is a unique t′i at whichM (θi; t) = c. Moreover, we can find a Π (t) such that
t′i = t′j = t?, ∀i, j. To do this, we iteratively adjust Π̂ (t): suppose a matrix Π′k (t) induces
M (θi; t?k) = M (θj; t?k), ∀i, j ≤ k. Construct Π′k+1 (t) as follows: if t′k+1 > t?k, replace row
k of Π′k (t) with the functions

(
π′
(
s | θk; t

′

t?
k
t
))n

s=1
. Otherwise, replace each row i < k with(

π′
(
s | θi; t

?
k

t′
t
))n

s=1
. Applying this process to Π̂ (t) clearly yields the required matrix Π (t)

after N iterations.36

For outside signal Π (t), transparency is trivially an equilibrium for t ≤ t?. Finally, we
show there exists a δ > 0 such that if at t?, c ≤ M (θi; t?) ≤ c + δ, withM (θk; t?) = c for
at least some k, then for all t > t?, full opacity is the unique equilibrium of the disclosure
game. At any t > t?, we haveM (θk; t) < c. Thus, for any equilibrium strategy profile, θk’s
net payoff from disclosure is

k−1∑
s=1

π (s | θk; t) (V (θk)− v (α(s))) ≤M (θk; t) < c

since for any log-supermodular u and increasing v, v (α(s)) ≥ V (θs). Thus, in any equi-
librium m (θk) = ∅, ∀t > t?. Given any signal s < k, define the vector of beliefs µs =
(Pr[θ|s, ∅])θ∈Θ, and define ν (µs) as Sender’s utility when Receiver has these beliefs. We can
bound µs ≥ κts1k + (1− κts) 1s > 1s, where κts > 0 satisfies

κts = min{σ|σ(θk)=0} Pr[θk | s,m = ∅] = Pr[s,m = ∅ | θk]µ0(θk)
Pr[s,m = ∅]

≥ π(s|θk)µ0(θk)
Pr[s] > 0

for any t < 1, which follows since Pr[m = ∅ | θk] = 1 in equilibrium and Pr[s,m = ∅] ≤
36It is simple to re-parameterize Π (t) to ensure that pi (t) < 1 for t < 1.
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Pr (s). Since α(s) is strictly increasing in the LR order, ν (µs) > ν (1s) = V (θs). Define
δ = mini[1 − π (s | θi; t)][ν

(
µt

?

s

)
− ν (1s)], where µt

?

s
= κt

?

s 1k +
(
1− κt?s

)
1s. Then in any

equilibrium the net payoff to disclosure for type θi satisfies

N (θi; t) ≤M (θi; t)−
∑
s<k

π (s | θi; t) [ν(µt?
s

)− ν(1s)] ≤M (θi; t)− δ

WhenM (θi; t) ≤ c+ δ, ∀i, all types strictly prefer to set m (θi) = ∅ in any equilibrium.

Proposition 6

Proof. Fix (S,Π) and a corresponding equilibrium strategy profile σ?, actions {α(s)}s∈S and
Receiver posterior beliefs (µs)s∈S. Suppose further that σ(θi) > 0 for some θi. Partition Θ
as follows: θ ∈ Q ⇐⇒ N ? (θ) < c, θ ∈ D otherwise. Now consider the following modified
signal structure, (S ∪Θ,Π′) which satisfies

π′ (s | θi) =



π (s | θi) , θi ∈ Q, s ∈ S

0, θi ∈ Q, s ∈ Θ

(1− zi) π (s | θi) , θi ∈ D, s ∈ S

zi, θi ∈ D, s = θi ∈ Θ

.

where zi ≤ σ (θi). For each θi, ∃zi < σ (θi) such that, for all zi < zi and θi ∈ D:

∑
s∈S∪Θ

π′ (s | θi) (V (θi)− v (α(s))) = (1− zi)
∑

s∈S∪Θ
π (s | θi) (V (θi)− v (α(s))) < c.

Fix zi ≤ zi ≤ σ (θi). Let σ′ (θ) = 0. Given strategy profile ζ ′, and outside signals (S ∪Θ,Π′),
Receiver’s posterior beliefs (µ̂is)

N
i=1 given s ∈ S can be written

µ̂is
µ̂js

= µ0(θi) (1− zi) π (s | θi)
µ0(θj) (1− zj) π (s | θj)

As zi → σ (θi), µ̂
i
s

µ̂j
s
→ µi

s

µj
s
. Thus, µ̂s → µs. Given finiteness of Θ, S, for any ε > 0 there exists

bounds (zi)Ni=1 such that |µ̂s − µs| < ε whenever zi < zi < σ (θi), ∀i. If α(s) is continuous
in µ (which holds because Receiver has a unique best response), then given strict preference
for nondisclosure of all types under action profile {α(s)}Ns=1, and outside signals (S ∪Θ,Π′),
we can therefore find a ε > 0 such that opacity is an equilibrium of this game.

Finally, the opaque equilibrium with outside signals (S ∪Θ,Π′) is a Blackwell gar-
bling of equilibrium information structure with σ? and (S,Π). To see this, note that
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one can construct the equilibrium signal Receiver observes under the former equilibrium
by the garbling the Sender’s disclosures in the latter equilibrium as follows: given mes-
sage m = ∅ and signal s, use the ‘truthful’ garbling Pr (s | s,m = ∅) = 1; given message
m = θ, garble to signal s ∈ S ∪ Θ with probabilities Pr (s = θ | m = θ) = zi

σ?(θi) for s = θ,
Pr (s | m = θ) =

(
1− zi

σ?(θi)

)
π (s | θi) for s ∈ S.

Proposition 7

Proof. We write Concavity = χ and Convexity = ξ. We split the proof into two parts.
First, we show that sufficiently concave payoffs imply that all equilibria are non-monotone
or opaque. Second, we show that sufficiently convex payoffs imply that there are no non-
monotone equilibria.

Part 1: Concave payoffs

Let Σm ⊂ [0, 1]N be the space of monotone increasing disclosure strategies. For any σ ∈ Σm,
define d(σ) = min{i|σi > 0} as the lowest disclosing type, and q(σ) = d(σ) − 1 the highest
type who stays quiet with probability 1. We first derive a bound on the weights that these
two types attach to being perceived as type q(σ)−1 or worse, assuming that this type exists
(i.e., that q(σ) > 1). For all j < q(σ), Receiver’s beliefs if Sender stays quiet are interior
with Pr[θ ≤ θj|∅] ∈ (0, 1). For any pair of signals (s′, s), where s′ > s and at least one
of them is drawn by type j or worse with positive probability, the strict MLRP of signals
implies strict first-order stochastic dominance (see Milgrom 1981, Theorem 1):

Pr[θ ≤ θj|∅, s′] < Pr[θ ≤ θj|∅, s] for all s′ > s.

The cumulative distribution of virtual types Qσ
ij = Es[Pr[θ ≤ θj|s, ∅]|θi] is therefore the

expectation of an decreasing function of s, where the superscript σ is introduced to highlight
the dependence of Receiver’s beliefs on equilibrium play. Using the MLRP again, we find
that Qσ

ij is strictly decreasing in i for j < q(σ). Thus for all feasible σ,

Qσ
d(σ),q(σ)−1 −Qσ

q(σ),q(σ)−1 < 0,

Define
Qm = max

{σ∈Σm|q(σ)>1}
Qσ
d(σ),q(σ)−1 −Qσ

q(σ),q(σ)−1.

It is easy to see that the constraint set is compact, so that the maximum is achieved and
satisfies Qm < 0. Note that we can repeat the stochastic dominance argument above for
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j ≥ q(σ): In this case we may have Qσ
ij = 0 for a range of i (for example, if only types

below j stay quiet with positive probability), but a parallel argument establishes that Qσ
ij is

non-increasing in i.
Next, suppose that σ ∈ Σm is a monotone increasing strategy played in equilibrium, and

assume that c > c0, where c0 satisfies

c0 = min
θ>θ1
M(θ).

By definition, when c > c0 there must exist a type θj = arg mini≥2M(θi) who has a
dominant strategy to stay quiet, so that σj = 0. By monotonicity, we have σi = 0 for
all i ≤ j, and it follows that the highest quiet type q(σ) > 1. Optimality requires that
this type prefers to stay quiet and the lowest discloser d(σ) prefers to disclose. We obtain
N (θd(σ)) ≥ c ≥ N (θq(σ)), implying

0 ≤ N (θd(σ))−N (θd(σ)−1)

= ∆Xd(σ)−1 +
N−1∑
i=1

∆Xi(Qσ
d(σ),i −Qσ

d(σ)−1,i)

≤ ∆Xd(σ)−1 + ∆Xd(σ)−2(Qσ
d(σ),i −Qσ

d(σ)−1,i)

≤ ∆Xd(σ)−1 + ∆Xd(σ)−2Qm.

where the second inequality follows by first-order stochastic dominance, and the third im-
poses the bound derived above. Dividing by ∆Xd(σ) and using Qm < 0, we obtain

∆Xd(σ)−2

∆Xd(σ)−1
≤ 1
|Qm|

.

This further implies that the concavity parameter χ ≤ 1
|Qm| . We have now shown that the

existence of a monotone increasing equilibrium with c > c0 implies that χis bounded above.
By contrapositive, if χ is sufficiently large, then there is no monotone equilibrium for the
range of disclosure costs c > c0, as required.

Part 2: Convex payoffs

Let Σnm ⊂ [0, 1]N be the space of non-monotones strategy profiles. For σ ∈ Σnm, we can
define q(σ) = max{i|σi < 1} as the highest type who stays quiet with positive probability,
and d(σ) = max{i < q(σ)|σi > 0} as the highest discloser below q(σ). Since type θ1 has a
dominant strategy, we have d(σ) > 1 and q(σ) > 2. We first derive a bound on the weights
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that these two types attach to being perceived as type q(σ)− 1 or worse. Let

Qnm = inf
σ∈Σnm

{Qσ
q(σ),q(σ)−1 −Qσ

d(σ),q(σ)−1}.

Since the cumulative probabilities Qσ
ij ∈ [0, 1], we have Qnm ≥ −1. We show that this

inequality is strict. Suppose, for a contradiction, that Qnm = −1. Then for every ε we
can find strategies σ ∈ Σnm such that Qσ

q(σ),q(σ)−1 − Qσ
d(σ),q(σ)−1 < −1 + ε. This implies

two requirements: Qσ
q(σ),q(σ)−1 < ε and Qσ

d(σ),q(σ)−1 > 1 − ε, that is, type q(σ) almost never
draws a virtual type worse than himself, while type d(σ) almost never draws a better virtual
type than q(σ) − 1. Since neighboring types share signals, we can find a realization s = s′

that is drawn with positive probability by both q(σ) and q(σ) − 1. Our first requirement
implies that Receiver’s posterior belief, after observing m = ∅ and s = s′, satisfies Pr[θ ≤
θq(σ)−1|∅, s′] ≤ δ(ε), where δ(ε) → 0 as ε → 0. For small enough ε, this is only possible if
type q(σ)− 1 discloses with positive probability (otherwise Receiver would place a discrete
probability mass on this type when she observes m = ∅). Therefore, we know that the
highest discloser below q(σ) is his neighbor: d(σ) = q(σ)− 1. Our second requirement now
implies that Receiver’s posterior belief satisfies Pr[θ > θq(σ)−1|∅, s′] ≤ δ̂(ε), where δ̂(ε) → 0
as ε→ 0. We can write

1 = Pr[θ ≤ θq(σ)−1|∅, s′] + Pr[θ > θq(σ)−1|∅, s′] ≤ δ(ε) + δ̂(ε),

and taking limits as ε→ 0, we get a contradiction. Therefore, Qnm > −1.
Next, suppose that σ ∈ Σnm is a non-monotone strategy played in equilibrium. Optimal-

ity requires that N (θd(σ)) ≥ c ≥ N (θq(σ)), implying

0 ≥ N (θq(σ))−N (θd(σ))

=
q(σ)−1∑
i=d(σ)

∆Xi +
N−1∑
i=1

∆Xi(Qσ
q(σ),i −Qσ

d(σ),i).

Note that Qij = 1 for all i and j ≥ q(σ), since Receiver attaches probability Pr[θj|∅] = 0
to types j > q(σ) when Sender stays quiet. Moreover, a parallel argument to Part 1 of this
proof establishes that the distribution of virtual types given θ = q(σ) first-order stochastically
dominates that given the lower type θ = d(σ), so that Qσ

q(σ),i − Qσ
d(σ),i ≤ 0. Dividing the
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above inequality by ∆Xq(σ)−1 and combining these observations,

0 ≥ 1 +Qσ
q(σ),q(σ)−1 −Qσ

d(σ),q(σ)−1 +
q(σ)−1∑
i=1

(
∆Xi

∆Xq(σ)−1

)
(1i≥d(σ) +Qσ

q(σ),i −Qσ
d(σ),i)

≥ 1 +Qσ
q(σ),q(σ)−1 −Qσ

d(σ),q(σ)−1 +
q(σ)−2∑
i=1

ξ−[q(σ)−1−i](1i≥d(σ) +Qσ
q(σ),i −Qσ

d(σ),i)

≥ (1 +Qnm)− sup
σ∈Σnm

q(σ)−2∑
i=1

ξ−[q(σ)−1−i],

where the last line follow noting that 1i≥d(σ) + Qσ
q(σ),i − Qσ

d(σ),i ≥ −1 and then taking the
infimum. We know that the first term 1 +Qnm > 0. Thus the second term must be smaller
than − (1 +Qnm). However, it is easy to see that the limit of this term as ξ → ∞ is
zero, so that the above series of inequalities gives us ξ ≤ ξ0 for some finite ξ0. We have
now shown that the existence of a non-monotone equilibrium implies an upper bound on ξ.
By contrapositive, if ξ is sufficiently large, then there is no non-monotone equilibrium, as
required.
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Online Appendix

D Online Appendix: Additional results for Section 2

D.1 Unbounded types

The results of Section 2 refer to the case where Sender’s type θ is drawn from a bounded
interval [θ, θ̄]. We now consider the case where the distribution F (θ) of θ has full support
on the real line. It is easy to see that the threshold properties of equilibria (see Lemma 1)
go through in the unbounded case. Also, a similar result to Proposition 1 applies:

Proposition 8. For any revealing path st, there exists a threshold t0 ∈ (0, 1) such that
θ?min =∞ for all t < t0 and θ?min < θ̄ for t = t0.

Proof. We adopt the same notation (BRt, θtmin) as in the Proof of Proposition 1. Let
t0 = inf{t : θtmin < ∞} We know that unraveling (θ? = ∞) is the unique equilibrium in
a neighborhood around t = 0, so that t0 > 0. Moreover, since an equilibrium without
any disclosure (θ? = p) exists for t = 1, we know by continuity of BRt(θ?) that t0 < 1.
Furthermore, we must have θtmin <∞; otherwise we can find a small ε such that BRt0−ε(θ) >
θ for all θ, contradicting the definition of t0.

D.2 Instability of unraveling equilibrium

Next, we derive an alternative equilibrium selection criterion based on the stability of equi-
libria in population games as in Schelling (1978). We allow for either bounded or unbounded
types (θ ∈ [θ, θ̄], with θ̄ <∞ or θ̄ =∞ respectively).

Definition 1. An equilibrium with disclosure threshold θ? ∈ [p,∞] is unstable if BR(θ)− θ
has the same sign as θ − θ? for all θ in some neighborhood of θ?.

An unstable interior equilibrium is one for which the best response function in Figure 2
crosses the 45-degree line from below. Then, small mistakes in Sender’s disclosure strategy
lead to divergence of equilibrium play from θ? under best response dynamics. By analogy, an
unstable unraveling equilibrium in the case of unbounded types is one where BR(∞) = ∞
but BR(θ)− θ < 0 for all θ ≥ B for some B, so that the best response function approaches
the 45-degree line from below in the limit. In this case, a deviation by any set θ ≥ B′, no
matter how large B′ is, leads to divergence from unraveling under best response dynamics. In
an earlier working paper, we provided a formal proof that the above definition is equivalent
to a definition in terms of best response dynamics, which is available on request.
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With full support (as we have assumed), the unraveling equilibrium θ? = θ̄ always exists.
However, we can find a condition under which it is unstable. We focus here on the case
where s = θ + kε, where ε is a random variable with smooth distribution G(ε).

Proposition 9. Unraveling (θ? =∞) is an unstable equilibrium for all disclosure costs c > 0
if and only if for any K ∈ R, ∃θ̃′ such that ∀θ? ≥ θ̃′:

−Pr (θ ≥ θ?|s = θ? +K) . E [θ|θ ≥ θ?, s = θ? +K]
Pr (θ ≤ p | s = θ? +K) . E [θ|θ ≤ p, s = θ? +K] > 1 (17)

A proof is below. We establish Proposition 9 by considering a small deviation from
unraveling. Instead of expecting every type θ ≥ p to disclose, the Receiver mistakenly
expects an small portion of high quality types [θ1,∞) to stay quiet. This implies that very
high signals have the potential to convince the Receiver to take the high action, even if the
Sender stays quiet. If signals are precise enough in the sense of condition (17), then the
Receiver’s mistake becomes self-fulfilling, since types θ ≥ θ1 are confident to receive a high
public signal and prefer to stay quiet given the new set of beliefs. As a result, the small
deviation is followed by the familiar reverse unraveling mechanism: When types above θ1

stay quiet, then yet more types stay quiet because silence has become better news, and so
forth until convergence.

When θ and ε are jointly Normally distributed with θ ∼ N (µ, σ2) and ε ∼ N (0, 1),
condition (17) has a particularly natural interpretation. In this case, (17) holds if and
only if the signal-to-noise ratio is greater than one, σ > k. Intuitively, when the signal-to-
noise ratio is greater than 1, the Receiver puts a lot of weight on her signals, s. In such
circumstances, observing a high signal more than offsets the Receiver’s concern that the
‘quiet’ signal gets worse as θ1 increases. Since the Receiver does not require large increases
in signal to compensate for higher θ1, then for sufficiently high θ1, the cost of staying quiet
becomes small and reverse unraveling is bound to occur.

Proof of Proposition 9

Proof. We prove sufficiency by arguing the contrapositive: if unraveling is stable, then there
must exist a K̃ ∈ R that violates (17). Thus, suppose that transparency is a stable equilib-
rium. Then we can find a B such that ∀θ? ≥ B

BR(θ?)− θ? > 0 (18)
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Now by definition BR(θ?) is the best response of S to a disclosure strategy of θ?, when R
plays her best response s∗ (θ?). Therefore, it satisfies

c = G

(
s∗ (θ?)−BR(θ?)

k

)

or
BR(θ?) = s∗ (θ?)− kG−1 (c) (19)

Substituting (19) into (18) yields a lower bound on s∗ (θ?) as a function of θ? for any unrav-
eling equilibrium:

s∗ (θ?) > θ? + kG−1 (c) (20)

Further, recall that s∗ (θ?) satisfies

E [θ|s∗ (θ?) , θ /∈ [p, θ?]] = p

or

Pr (θ ≤ p | s∗ (θ?)) .E [θ|θ ≤ p, s∗ (θ?)] + Pr (θ ≥ θ?|s∗ (θ?)) .E [θ|θ ≥ θ?, s∗ (θ?)] = p (21)

Now consider the left hand side of Equation (17) evaluated at K̃ = kG−1 (c). By (20),
s∗ (θ?) > θ? + K̃. Then, it follows immediately from (21) and the MLRP assumption on
signals s that

Pr
(
θ /∈ [p, θ?] | s = θ? + K̃

)
.E
[
θ|s = θ? + K̃, θ /∈ [p, θ?]

]
= Pr

(
θ ≤ p | s = θ? + K̃

)
.E
[
θ|θ ≤ p, s = θ? + K̃

]
+ Pr

(
θ ≥ θ?|s = θ? + K̃

)
.E
[
θ|θ ≥ θ?, s = θ? + K̃

]
< p

Rearranging this expression yields, for any θ? ∈ R:

−

Pr
(
θ ≥ θ?|s = θ? + K̃

)
.E
[
θ|θ ≥ θ?, s = θ? + K̃

]
Pr
(
θ ≤ p | s = θ? + K̃

)
.E
[
θ|θ ≤ p, s = θ? + K̃

]
 < 1 (22)

This final inequality shows our contrapositive claim that if transparency is a stable equilib-
rium then for K ≤ K̃ = kG−1 (c), (17) is violated.37

(Necessity) We prove the argument by contradiction, in each of two cases. Suppose then
that (17) does not hold, but that the unraveling equilibrium is stable for all choices of c > 0.

37MLRP implies that if (22) holds for K̃, then it also holds for all K ≤ K̃.
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Then there exists some K̃, θ̃′ ∈ R such that38

−
Pr
(
θ ≥ θ?|s = θ? + K̃

)
.E
[
θ|θ ≥ θ?, s = θ? + K̃

]
Pr
(
θ ≤ p | s = θ? + K̃

)
.E
[
θ|θ ≤ p, s = θ? + K̃

] ≤ 1 (23)

∀θ? ≥ θ̃′. Note that (23) holds everywhere, not just in the limit, since the infimum is a
non-decreasing function. Denoting for simplicity,

Pwer
(
θ?, K̃

)
= −

Pr
(
θ ≥ θ?|s = θ? + K̃

)
.E
[
θ|θ ≥ θ?, s = θ? + K̃

]
Pr
(
θ ≤ p | s = θ? + K̃

)
.E
[
θ|θ ≤ p, s = θ? + K̃

]
we now consider the following two exhaustive cases:

1. ∃θ̃′ ∈ R such that Pwer
(
θ?, K̃

)
< 1, ∀θ? ≥ θ̃′;

2. lim supθ?→∞ Pwer
(
θ?, K̃

)
≥ 1

Case 1.
We argue that, under condition (23), ∃ρ̄ > 0 such that transparency is a stable outcome

for all c < ρ̄. Specifically, for all θ? ≥ θ̃′, we know that

Pwer
(
θ?, K̃

)
< 1

which can be equivalently expressed as

p > Pr
(
θ ≤ p | s = θ? + K̃

)
.E
[
θ|θ ≤ p, s = θ? + K̃

]
+ Pr

(
θ ≥ θ?|s = θ? + K̃

)
.E
[
θ|θ ≥ θ?, s = θ? + K̃

]
or

E
[
θ|θ /∈ [p, θ?] , s = θ? + K̃

]
< p (24)

Therefore, since s satisfies the MLRP condition, (24) implies that s∗ (θ?) > θ? + K̃ for all
θ? ≥ θ̃′ or

s∗ (θ?)− θ? > K̃ (25)

Now, choose ρ̄ that solves K̃ = kG−1 (ρ̄).But, for any c ≤ ρ̄, BR(θ?) must satisfy

s∗ (θ?)−BR(θ?) = kG−1 (c) ≥ K̃ (26)
38Note by MLRP that if (23) holds for K̃, then it also holds for all K ≤ K̃.
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Comparing (25) and (26) establishes that for all θ? ≥ θ̃′, BR(θ?) > θ? - a contradiction to
the assumed instability of the unraveling equilibrium.

Case 2.
We argue that under condition (23), ∃ρ̄ > 0 (defined as above) such that transparency is a

neutrally stable outcome for all c ≤ ρ̄: there exists θ̃′ such that for any sequence {θ′n}
∞
n=1 →

∞, θn > θ̃′, ∀n, there is a sequence of equilibria {θ∗n}
∞
n=1 such that (i) starting from a

perturbation θ′n, best response dynamics converge to equilibrium θ∗n; and (ii) limn→∞ θ
∗
n =∞.

First, given K̃ from (23), we can find always find a sequence of values
{
θ̃′n
}∞
n=1
→ ∞

such that
Pwer

(
θ̃′n, K̃

)
≤ 1

∀n. Likewise, we can find a similar sequence
{
θ̃′′n
}∞
n=1
→∞ such that

Pwer
(
θ̃′n, K̃

)
≥ 1

Given these sequences, it is also always possible to construct sub-sequences
{
θ̃′q
}∞
q=1
⊂{

θ̃′n
}∞
n=1

and
{
θ̃′′q
}∞
q=1
⊂
{
θ̃′′n
}∞
n=1

such that θ̃′q ≤ θ̃′′q ≤ θ̃′q+1. Now, the increasing sequence

{
θ′q : θ′q = θ̃′q if q/2 ∈ Z; θ′q = θ̃′′q otherwise

}∞
q=1
→∞

defines intervals
[
θ′q, θ

′
q+1

]
. By the assumed continuity of E [θ | s, θ /∈ [p, θ′]] in s, θ′, there

must exist at least one θ∗q ∈
[
θ′q, θ

′
q+1

]
such that Pwer

(
θ∗q , K̃

)
= 1, ∀q. In other words,

E
[
θ|θ∗q + K̃, θ /∈

[
p, θ∗q

]]
= p

or s∗
(
θ∗q
)

= θ∗q +K̃. Setting ρ̄ to solve K̃ = kG−1 (ρ̄) establishes that these values of
{
θ∗q
}∞
q=1

are equilibria when c = ρ̄.
From the proof of Lemma ??, we have established that for any θn ∈

[
θ′q, θ

′
q+1

]
, best

response dynamics imply convergence from θn to an equilibrium θ∗n ∈
[
θ∗q−1, θ

∗
q+1

]
. Since

lim θ′q = lim θ∗q = ∞, any sequence θn → ∞ defines a sequence of equilibria θ∗n → ∞ which
satisfy the conditions required.

Finally, since Pwer
(
θ̃, K

)
is decreasing in K, then for any K < K̃ we are either in case 1.

or case 2. The same arguments can then be made to show that the unraveling equilibrium is
at least neutrally stable for all c < ρ̄. This contradicts out assumption that the unraveling
equilibrium was unstable.
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E Online Appendix: Additional results for Section 3

E.1 Managerial incentive problems

We now relax the assumption that bank managers have the right incentives, but maintain
the assumption that there are no insolvent banks until Section E.2. In particular, managers
have a contract with investors which implies that managers’ private benefit of avoiding a run
is B(θ) and their private cost of disclosure is D(θ), while the true social costs and benefits
are c(θ) and θ respectively, as before.

As before, we consider the effect of increasing k beyond the naive policymaker’s optimal
choice. The local effects we described in Proposition 4 are unchanged: Crowding out disclo-
sures by liquid banks is still welfare-improving because it enhances the insurance provided to
illiquid ones. Moreover, there is an additional effect which depends on managerial incentives.

Proposition 10. At the naive policymaker’s optimal choice k?, the marginal effect of further
increasing k on welfare is the sum of the effect described in Proposition 4, and a term which
has the same sign as

∂θ?k
∂k
×
[
D(θ?k)
B(θ?k)

− δ(θ?k)
θ?k

]
(27)

If better stress tests (↓ k) crowd out disclosures, then ∂θ?k/∂k > 0. Proposition 10 shows
that in this case, the additional welfare effect has the sign of the difference between the
private relative cost of disclosure and the social relative cost. Intuitively, when managers
underestimate the social cost of disclosure, then they privately decide to disclose too little at
the margin, and any policy that increases disclosures in equilibrium further improves welfare.

This specification can capture a variety of situations. First, managers may not internalize
the entire benefit of avoiding a run when they have limited liability, so that they would
overstate the relative cost of disclosure and disclose too little. In a financial crisis, where
more precise public information tends to crowd out disclosure (as suggested by Lemma 3),
this means that optimal stress tests ought to be made less precise in order to encourage
more disclosure. Second, managers may overstate the benefit of avoiding a run if they wish
to preserve their reputation or to take advantage of long-term compensation arrangements.
Finally, managers may overstate the cost of disclosure if this is mainly the proprietary
cost of revealing sensitive information to competitors, since the profits lost from increased
competition constitute only a welfare-neutral transfer from a social perspective. In this case,
stress tests ought to be more precise in order to reduce disclosures which are made purely
to ensure the survival of managers or preserve rents.
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E.2 Insolvent banks and resolution policy

In this final Subsection, we allow the bank’s Net Present Value θ to be drawn from an
interval [θ, θ] ⊂ R, where θ<0. There are now insolvent banks with θ < 0 for whom the
welfare-maximizing policy is to liquidate all assets at date 1. If the incentives of managers
and investors are aligned, then managers who find out that their bank is insolvent will
voluntarily liquidate assets. Assuming that this liquidation is observed by everybody, welfare
is the same as in Section 3, since insolvent banks effectively leave the market.

We obtain more interesting results by introducing insolvent banks in the model of man-
agerial incentive problems from Subsection E.1. In particular, managers have incentives
which imply that the benefit of avoiding a run to a manager is B(θ) and the cost of disclo-
sure is D(θ). We assume that B(θ) > D(θ) ≥ 0 for all θ, so that even managers of insolvent
banks prefer to avoid a run.

Equilibrium disclosure strategies are as before: Insolvent banks join the pool of illiquid
banks who stay quiet, and free-ride on the reputation of liquid banks. Among liquid banks,
the best ones are confident and stay quiet, while mediocre ones with θ ∈ [p, θ?] are anxious
and disclose.

Perhaps surprisingly, the basic welfare analysis is also unchanged. Crowding out dis-
closure has a positive (albeit quantitatively smaller) effect on welfare, as demonstrated in
Proposition 4, since it strengthens the insurance provided by liquid banks who stay quiet to
illiquid banks. This remains true despite the fact that liquid banks now also insure their in-
solvent peers. To see why that is the case, recall that the insurance effect works through the
impact of disclosure strategies on the critical public signal s? below which investors run on
their bank. In particular, less disclosure by liquid banks decreases the critical signal, which
insures ‘marginal banks’ who receive signals close tos? against a run. However, the critical
signal is defined such that investors who observe s? consider the bank to be worth exactly c.
Thus, ‘marginal banks’ are worth approximately c > 0 from an ex ante perspective. Insuring
them always yields an average welfare improvement which is proportional to c, even though
the increase in insurance also benefits insolvent banks in some states of the world.

Although the cost-benefit trade-off regarding the precision of stress tests is not affected
by the presence of insolvent banks, there is value in introducing any resolution policy which
serves to remove insolvent banks from the market. For example, one could allow policymakers
to scrutinize banks’ assets at date 1 and force banks with θ < 0 into resolution, which would
unambiguously improve welfare.
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F Online Appendix: Additional results for Section 4

F.1 Robustness of Proposition 5 to Perturbations

Let O be the set of all N × N outside signals Π (t) that are continuous in t ∈ [0, 1], lower
triangular and obey MLRP.39 Note that O is a non-empty set - indeed, the signal constructed
in the proof of Proposition 1 is in O.

Here we show that the conclusions of Proposition 1 are robust on open subsets of O -
in particular, the nature of the discontinuity implies that ‘small perturbations’ of outside
signals are still consistent with collapses in equilibrium disclosures – even when full disclosure
is a strict equilibrium for most types of Sender at t?. In particular, Proposition 1 can be
generalized to the following:

Proposition. (A1)Suppose v (α(s)) is increasing in the MLRP order, and c ≤ V (θ2) −
V (θ1). For any ε > 0, there exists an open set Oε ⊂ O the following properties:

• Π(0) is pure noise, while Π(1) is fully revealing,

• There exists critical points t?1 ≤ t?2 ∈ (0, 1) such that, when Receiver observes the signal
induced by Π(t), full disclosure is an equilibrium for t ≤ t?1 and is a strict equilibrium
at t?2, while full opacity is the unique equilibrium for t > t?2.

Moreover, as ε→ 0, t?1 → t?2.

Proof. We first construct a generalization of the signal path in Proposition 1 which is in the
interior of O. Let pi : [0, 1] → [0, 1] be a C2, strictly increasing function with pi (0) = 0,
pi (1) = 1 and whose derivative is equicontinuous, for i = 1, . . . , N . Iteratively define the
following class of outside signals: let Π̃ω (t) be an N ×N matrix whose elements are

π̃ω (s | θi; t) =


(1− pi (t)) π̃ω(s|θi−1;t)ωi−s−1

Ωi(t) , s < i

pi (t) , for s = i

0, for s > i

for some ω < 1, where Ωi (t) is chosen so that ∑i
s=1 π̃ (s | θi; t) = 1, ∀i. In particular,

note that Π̃ (t) is everywhere lower-triangular and satisfies MLRP with everywhere strict
inequality.

39The restriction to MLRP signals is not necessary for our results. We impose the restriction only to
highlight that the result goes through for this common class of signals.
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First, we show that as ω → 1, Mω
t (θi) converges uniformly to the decreasing function

Mt (θi). Consider

E [V (θi)− V (θs) | s < k] = (1− ρk (t)) (E [V (θi)− V (θs) | s < k − 1])+ρk (t) (V (θi)− V (θk))

where ρk (t) = pk(t)
pk(t)+

∑
i≤k

yi(t)
, yi (t) = ω1/2(k−i)(k−i+1)pi (t)

∏
j>i (1− pj (t)). Notice that, by

continuity of pk (t), ∀t ∈ [0, 1], E [V (θi)− V (θs) | s < k] is continuous in t on [0, 1]. Since
ρk (t) is decreasing in ω, for all t, an inductive argument analogous to the proof of Proposition
1 shows that E [V (θi)− V (θs) | s < k] is increasing in ω, for all k ∈ {1, . . . , i}, t ∈ [0, 1].
But

Mω
t (θi) = E [V (θi)− V (θs) | s < k]

Thus,Mω
t (θi) is continuous on the bounded domain t ∈ [0, 1] and everywhere monotone in

ω. By Dini’s Theorem,Mω
t (θi) converges uniformly to its pointwise limitMt (θi) as ω → 1.

Thus, for any ε
2 , ∃ωε < 1 such that sup |Mω

t (θi)−Mt (θi)| for all ωε ≤ ω ≤ 1.
Given Π̃ω (t), consider the set of all continuous, lower-triangular Π (t) s.t. sup

∣∣∣Π− Π̃ω

∣∣∣ <
δ, for some δ > 0. For any ω < 1, ∃δω, all such Π ∈ O for all

∣∣∣Π− Π̃ω

∣∣∣ < δω. To show this,
we need only establish that for such δω, MLRP holds for all Π and t ∈ [tl, th]. For any s, θi
such that s > i, the relation continues to hold trivially. For all s ≤ i, θi ∈ Θ, π (s | θi; t) is
continuous in t for any such Π, and bounded away from 0. Thus, the same holds true for
any likelihood ratio

rti (s′, s) = π (s′ | θi; t)
π (s | θi; t)

where s, s′ ≤ i and in particular for Π (t) = Π̃ω the minimum

min
t,i>j,s′>s

∣∣∣r̃ti (s′, s)− r̃tj (s′, s)
∣∣∣ = b

exists and is bounded strictly above 0. Moreover, there exists δω such that for all δ ≤ δω,
r := π̃ω(s′|θi;t)+δ

π̃ω(s|θi;t)−δ and r := π̃ω(s′|θi;t)−δ
π̃ω(s|θi;t)+δ can be everywhere bounded such that40

sup |r − r̃i| ≤
b

3

For any such δ ≤ δω, the order of all likelihood ratios must therefore remain the same as
under Π̃ω for any Π such that

∣∣∣Π− Π̃ω

∣∣∣ < δω.

40For instance, setting δω = min k · π̃ω (s | θi; t) for some k. We can make sure that all the fractions differ
by no more than

∣∣∣( 1+δω

1−δω

)
− 1
∣∣∣max rti (s′, s), which can be bounded uniformly below b by taking k → 0.
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Now consider the maximal punishment for some outside signal Π,M′
t (θi):

M′
t (θi) =

i−1∑
s=1

π (s | θ, t) (V (θi)− V (θs))

SinceM′
t (θi) is an average of bounded values, for any ε > 0, there exists a 0 < δ? ≤ δω such

that
|M′

t (θi)−Mω
t (θi)| ≤

ε

2

Thus, ∀ωε ≤ ω ≤ 1 and Π such that
∣∣∣Π− Π̃ω

∣∣∣ < δ?, we have Π ∈ O and (by the triangle
inequality) |M′

t (θi)−Mt (θi)| ≤ ε.
Given the above, it is easy to verify that for all ε > 0 sufficiently small the steps in the

proof of Proposition 1 can be applied to establish the claims in Proposition A.F.1 for any
correspondingM′

t (θi), where t?2 is the smallest t′ at whichM′
t (θi) ≤ 0 for all t ≥ t′ for some

θi ∈ Θ.

F.2 Extending Proposition 6 to Outside Signals with Full Support

Here we explain when the proof of Proposition 2 can be extended to signal distributions
that have full support. The key requirement for the proof of Proposition 2 to extend to full
support signals is that the Receiver’s optimal action be continuous in posterior beliefs (as
defined below).

Consider the induced posteriors from outside signal (S,Π) (not conditioned on equilib-
rium disclosures), which generates posterior µ̂s := Pr (θ | s) ∈ ∆Θ with probability τ̂s ∈ [0, 1]
and satisfies ∑

s

τ̂sµ̂s = µ0.

Similarly, (S ∪Θ,Π′) generates a lottery (τ ′s)s∈S∪Θ over some posterior distributions µ′s ∈ ∆Θ
which satisfies µ′θ = 1θ for any s ∈ Θ,

∑
t∈S∪Θ

τ ′sµ
′
t = µ0.

Moreover, because of the two-stage signal structure of (S ∪Θ,Π′), it induces a mean-
preserving spread over beliefs induced by (S,Π): that is each posterior µ̂s can be expressed
as

τ ssµ
′
s +

∑
t∈Θ

τ st 1t = µ̂s,

for some (τ st )t∈{s}∪Θ satisfying∑t∈{s}∪Θ τ
s
t = 1, τ st ≥ 0, ∀t. For each s ∈ S, let

∑
t∈Θ τs

t 1t

1−τs
s

:= φs
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and notice that φs ∈ ∆Θ.
Consider now an alternative collection of posterior beliefs

{
µ′s, {β (α1t + (1− α)φs) + (1− β) (1− α)µ′s}t∈Θ

}
s∈S

for 0 ≤ α, β ≤ 1. Notice that this collection of posteriors can be written as a MPS of (S,Π)
– for each s, letting γs + (1− γs) (1− β) = τs

s +β−1
β

, we can use the conditional weights

γsµ
′
s +

∑
t∈Θ

(1− γs) τ st
1− τ ss

[β (α1t + (1− α)φs) + (1− β) (1− α)µ′s] =

[γs + (1− γs) (1− β)]µ′s + β (1− γs)
∑
t∈Θ

τ st
1− τ ss

(α1t + (1− α)φs) =

[γs + (1− γs) (1− β)]µ′s + β (1− γs)φs = µ̂s

For β close enough to 1, γs ∈ (0, 1) such that these weights are indeed feasible for all
s ∈ S. Integrating back from µ̂s using τ̂ establishes that a lottery τ ′′ ∈ ∆∆Θ over{
µ′s, {β (α1t + (1− α)φs) + (1− β) (1− α)µ′s}t∈Θ

}
s∈S

exists when the prior is µ0.
Therefore, from Proposition 1 in Kamenica and Gentzkow (2011) there exists a signal

structure (S ∪Θ,Π′′) that generates posterior lottery τ ′′. Moreover, as we established above
(S ∪Θ,Π′′) induces beliefs that constitute a MPS of those induced by signal structure (S,Π).
Therefore, (S ∪Θ,Π′′) is strictly more informative than (S,Π) (Blackwell (1953)). Finally,
the new signal structure has full support whenever (S,Π) has full support (since µ′s must
put strictly positive weight on all θ ∈ Θ).

Now, if α(s) is continuous in µ, then as α, β → 1 the net payoffs to disclosure in an
opaque strategy with outside signals (S ∪Θ,Π′′) must limit to their value under outside
signal (S ∪Θ,Π′). Since all agents have a strict incentive to play m = ∅ in this limit, there
must exist α, β < 1 such that opacity is an equilibrium with outside signals (S ∪Θ,Π′′) for
all α ≤ α ≤ 1, β ≤ β ≤ 1.

Finally, we need to show that the opaque equilibrium outcome with outside signals
(S ∪Θ,Π′′) is less informative than the initial equilibrium under (S,Π). In fact, it is sim-
pler to compare equilibrium informativeness under (S ∪Θ,Π′′) and (S ∪Θ,Π′) respectively.
Since both signals induce opaque equilibria, we need only compare the informativeness of
the signals directly. It is simple to verify from the above that the posterior beliefs follow-
ing signal (S ∪Θ,Π′) form a MPS over those induced by (S ∪Θ,Π′′) Reapplying Blackwell
(1953), (S ∪Θ,Π′′) is strictly less informative than (S ∪Θ,Π′). Appealing to the proof of
Proposition 2, it is therefore also less informative than the equilibrium ζ? with information
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structure (S,Π).

F.3 On Robustness to Broader Message Spaces

In this section, we briefly describe how the results in the main text can be extended to
broader classes of verifiable message spaces, so long as the marginal costs of finer disclosures
are not too large.

Suppose that we adapt the model of Section 3 as follows: given type θi, Sender may now
choose a message m from a (finite) set M (θ), with the properties that for each i, ∅ ∈M (θ)
and moreover there exists a non-empty subset Mi ⊂ M (θi) such that M (θj) ∩ Mi = ∅,
∀j < i. The first assumption ensures the existence of at least one unverifiable message, i.e.
one that can be sent by all types. Call this set of messages Mc. We write M := ∪θ∈ΘM (θ)
The second assumption ensures that verifiable disclosures are possible – in particular, any
type θi can always prove that his type is at least θi. This message structure allows for among
others, the all-or-nothing disclosures in the main text, message structures that form nested
intervals, Mi ( Mj, for all i < j, i, j ∈ {1, . . . , N} as well as the classic true assertions
disclosure strategies of Milgrom and Roberts (1986) in which types can send any subset
Ai ∈ 2Θ satisfying θi ∈ Ai. For the sake of brevity, we assume here that all types θi, θj share
at least one outside signal with positive probability.41

To each message mi ∈ Mi, we assign a disclosure cost ci (mi) ≥ 0, which type θi pays if
he chooses to send mi. To capture the idea that finer disclosures are costly at the margin,
we assume that the cost function is weakly decreasing in the number of types for whom
the signal is available, |Θmi

|, where Θmi
:= {θj : mi ∈Mj, j = 1, . . . , N}. Notice that this

implies unverifiable messages are ‘cheap talk’ – m = ∅ is the cheapest message available to
any type. For the sake of notational ease, normalize ci (∅) = 0, ∀i.

For any m ∈ Mi, we can now define an m-dependent maximal punishment (including
disclosure costs as) as

M (θ,m) :=
∑

π(s|θ) [V (θ)− V (θ(s,m))]

where θ(s,m) := min
{
θ̃ : s ∈ S

(
θ̃
)
∩M

(
θ̃
)}

. This extends the maximal punishment from

41This was true in all the main constructions we made to prove Propositions 1 and 2, so does not come
at much incremental cost. In any case, the arguments that follow here continue to go through without this
assumption under MLRP, at the cost of additional notation. Essentially, one must redefine Mi to include
messages that might be sent any lower type θj for which S (θi) ∩ S (θj) = ∅. Type i can reasonably select
some such message in equilibrium, saving on costs and still facing the ‘maximal punishment’ θi. Moreover,
for such messages the expected posteriors θj faces after such messages are as if θi could did not choose a
message in M (θj). MLRP ensures higher types’ expected payoffs from such messages do not lie above the
maximal punishment.
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the main text to reflect the worst case inference Receiver can make on observing (m, s)
which can involve less skepticism than following the pair (∅, s). Notice that for each θi and
message m ∈ Mj ∩M (θi), j < i, the maximal punishment, M (θi,m), depends only on θi
and θj. Thus, with some abuse of notation we can simply write maximal punishments as
M (θi, θj) a function of the Sender’s type and the minimal θj consistent with message m.
Similarly, across all messages m ∈ Mj ∩M (θi), we can define the least costly one to θi as
ci (θj) := minm∈Mj∩M(θi) ci (m).

More broadly, we now explicitly extend Receiver’s best response given equilibrium dis-
closure m, and signal s, as function α (s,m), which is understood to depend implicitly on
equilibrium disclosure strategies, where given a strategy profile σ ∈ ×i∆M (θi), α (s,m) ∈
arg maxa∈A Eσ [u (a, θ) | m, s].

Finally, since several of the results in the main text refer to (non)-monotonicity of dis-
closure strategies, we need an appropriate definition of monotonicity in this broader setting
that captures the tendency of types to produce some evidence:

Definition. (A1) Sender’s message strategy is: (i) monotone (increasing) if Pr (m /∈Mc | θ)
is an increasing function of θ; (iii) non-monotone if Pr (m /∈Mc | θ) is non-monotone in θ;
and (iii) opaque if Pr (m /∈Mc | θ) otherwise.

With this structure in hand, the analysis of Section 3 and 4 extends straightforwardly
so long as disclosure costs are not ‘too steep’ across verifiable disclosures. For any θi, and
θh > θl > θ1 suppose the cost function satisfies

ci (θh)− ci (θl) <M (θi, θl)−M (θi, θh) . (28)

Equation (28) states that the incremental cost of a disclosure that identifies Sender as at least
θh (rather than θl) is always smaller than the associated reduction in maximal punishment.
Notice that, under this condition, any equilibrium of the game in Section 3 remains an
equilibrium with more general messages. Indeed it is easy to verify that for any equilibrium
in a type plays m = θi with positive probability in the model of Section 3, there is an
equilibrium of the broader game in which θi sends some message m ∈Mi with corresponding
probability (and m = ∅ otherwise) and all off-path messages are sustained by skeptical
beliefs. Therefore:

Corollary. (A1) Propositions 1 and 2 extend immediately under (28) and Definition A1.42

42Equation (28) is also necessary for the equilibria in the text to go through unchanged. For instance, if
it does not hold for two types θi, θj , i > j, there is no equilibrium in which i ever plays a message in Mi.
Instead, he would always prefer to take an action in Mj/Mi. In this case, equilibria will be semi-pooling, in
the sense that some disclosing types will be happy to ‘pool’ on verifiable messages available to them both.
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The statement of Proposition 1 in the text makes the stronger claim that there is a signal
path Π (t) such that after some time t? < 1, the opaque strategy is the unique equilibrium of
the game. However, with the wider message space available above we introduce the possibility
of new equilibria. For example, type θN might be happy to send some m ∈ MN−1 ∩M (θN)
and be ‘pooled’ with type θN−1. As t increases, we might therefore find that types prefer
to move from making full disclosures to cheaper, semi-pooling verifiable messages. Because
these intermediate disclosures cannot be copied by all types, in general the discontinuity
result of Proposition 1 may be less stark.

However, so long as verifiable disclosures involve high fixed costs and low marginal costs,
it turns out that the same strong discontinuity result of Proposition 1 continues to hold in
the more general setting:

Lemma. (A1) There exists ε > 0 such that if ci (θh) − ci (θh−1) < ε, ∀i ∈ {3, . . . , N},
3 ≤ h ≤ i, then the conclusions of Proposition 1 hold in the extended game with message
spaces, M (θ), θ ∈ Θ.

Proof. We argue here that the signal Π (t) we constructed in Proposition 1 uniquely induces
an opaque equilibrium at t? + dt, for all dt sufficiently small. Suppose not. Then at time t?

there is an equilibrium in which some type θi, i ∈ {1, 2, . . . , N} optimally chooses a message
m′ ∈Mk, for some k ∈ {2, . . . , N}. For ε sufficiently small, it is easy to see that in any such
equilibrium there is some such i and some type θh, k ≤ h ≤ i, who prefers to choose m′ over
any alternative in M (θh). Otherwise, net payoffs would satisfy

E [V (α (s,m′)) | θh]− ci (θk) = V (θh) +
∑

s∈S(θh)∩S(θl)
π (s | θh) (V (θi)− V (θh))− ci (θk)

≥ V (θh)− ci (θk)−Nε

≥ E [V (α (s,m)) | θh]− ci (θk)

for all m ∈ M (θh). Recalling that any two types share signals with strictly positive proba-
bility at t?, we can clearly find such an ε (S, Θ are finite).

But since α is strictly increasing in the MLR order, θh’s payoffs in such an equilibrium
strictly exceed V (θh) − ci (θh). Therefore, type θh never plays a separating message in
equilibrium. That is, ∀m ∈ supp σ (θh), there exists at least one θj, j ∈ {1, . . . , N} such that
m ∈ supp σ (θj). For each m ∈ supp σ, denote the lowest type who sends such a message
in equilibrium by θ (m). Now, for all ∀m ∈ supp σ (θh), θ (m) ≤ θh. If θ (m) = θk < θh

for any such m, then by the same argument as above, θk must never play a separating
message in equilibrium. Iterating the process, we find some θl, l ≥ 2, for which either (i) all
m ∈ supp σ (θl) are pooling with other types and θl = θ (m), for all m ∈ supp σ (θl), with
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supp σ (θl)∩Mc = ∅, or (ii) θl = θ (m), for all m ∈ supp σ (θl) /Mc and supp σ (θl)∩Mc 6= ∅.
In case (i), there must exist some message m ∈ supp σ (θl) for which Pr (m = m | θl) ≥ 1

|M|

and Pr (m = m | θp) for some θ (m) ≥ θl, where θ (m) = max {θ : m ∈ supp σ (θ) , θ ∈ Θ}.
For such a message and a signal s ∈ S (θl) ∩ S

(
θ (m)

)
, we must have

µls
µs
≥ π (s | θl, t?)
π
(
s | θ (m) , t?

) µl0
µ0

1
|M|

> 0.

Since S, Θ are finite, any two types share a signal with strictly positive probability at t? and
the prior takes full support on Θ, the above inequality can be uniformly bounded away from
0 by

min
i,j,s∈S(θi)∩S(θj)

π (s | θi)
π
(
s | θ (m)

) min
i,j

µi0
µj0

1
|M|

> 0

Thus, since V is strictly increasing in the MLR order, the (direct) expected pooling cost
to type θ (m) is bounded away from 0 by some η > 0:

V
(
θ (m)

)
− E [V (α (s,m)) | θh] > η.

Therefore, for Nε < η, there can be no such equilibrium, since θ (m) = θi would always
prefer to deviate from playing m to some m ∈Mi.

Alternatively, in case (ii), a similar argument establishes that θl either plays some m ∈
supp σ (θl) /Mc or some m′ ∈Mc with probability at least 1

|M| . If this is true for m, then the
same argument above rules out any other equilibrium. If on the other hand, type θl plays
some m′ ∈ Mc, then one can apply the same argument made in the proof of Proposition
to show that the payoff to cheap talk messages strictly increases for all players. With the
appropriate choice of Π, we can find δ small enough that this change induces a dominant
strategy for type θN to play messages in Mc, for ε small enough. All types can then be shown
to have an iterated dominant strategy to play m ∈Mc.
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