Abstract. We design, field and exploit novel survey data, from a representative sample of the French population in December 2014 and May 2015 to provide insights on whether social interactions are informative for households’ financial decisions. In particular, we examine the extent to which peers with whom respondents discuss financial matters are themselves informed about or participate in the stock market, and whether they encourage mindless imitation of perceived stock market participation. We provide a model in which purely informative social interactions influence both subjective expectations of future stock market returns and directly demand for investing in stocks, and find strong support for the presence of informative social interactions. How much a respondent’s financial circle is informed about or participates in stockholding appears to influence perceptions of recent stock returns and, through them, expectations of future returns. Controlling for subjective expectations, both stock market participation and the conditional portfolio share are positively influenced by the extent to which the financial circle of a respondent is informed about or participating in the stock market. Alongside the informative social interactions of respondents with their financial circle, we also find some evidence of mindless imitation of stock market participation via their outer social circle. Our findings suggest that informative social interactions are significant and create a social multiplier for financial education and information, even though the potential for mindless imitation is also present.

Keywords: Information networks; Social interactions; Subjective expectations; Peer effects; Portfolio choice.

JEL Codes: D12, D83, D84, G11, C42.

*We are grateful to the Keynes Fund, the Authorité pour les Marchés Financiers (AMF, France), the Cambridge Endowment for Research in Finance (CERF), the Fondation Institut Europlace de Finance project ANR 11-LABX-0019, the CEPREMAP Foundation and the German Research Foundation (DFG) for their generous funding of this research project. We also thank Debopam Bhattacharya, Antonio Cabrales, Vasco Carvalho, Jagjit Chadha, Arun Chandrasekhar, Pierre Dubois, George Evans, Stephane Gallon, Corrado Giulietti, Sanjeev Goyal, Hamish Low, Charles Manski, Brendon McConnell, Stephen Morris, Kaivan Munshi, Matthew Oleichers, Xisco Oliver, Johannes Stroebel, Jean-Marc Tallon, Artur Van Soest, Nora Wegner and Yves Zenou for helpful discussions and suggestions, and seminar audiences at the Authorité pour les Marchés Financiers Scientific and Regulatory Council, Birbeck College, University of Cambridge, UIB, Banque de France Research Foundation, NIESR, PSE Behavioural Seminar, Applications of Behavioural Economics, and Multiple Equilibrium Models to Macroeconomic Policy joint ESRC-NIESR-Warwick-Bank of England workshop, Institut Louis Bachelier 10th Financial Risks International Forum and 2017 EEA, 2016 ESEM, 2017 RES and 2016 SED meetings. Finally we are grateful to Joel Flynn, Sandeep Vijayakumar and Johannes Wohlfart for excellent research assistance.

†Paris School of Economics. E-mail: arrondel@pse.ens.fr
‡Economics Department and CPC, FSHMS, University of Southampton. E-mail: calvo@soton.ac.uk.
§Faculty of Economics, University of Cambridge and CEPR. E-mail: cg349@cam.ac.uk.
¶Goethe University, CEPR and NETSPAR. E-mail: haliassos@wiwi.uni-frankfurt.de.
1. Introduction

In recent times, financially developed economies experienced dramatic events such as the fast spread of stock market participation in the 1990s leading up to the burst of the dot-com bubble, and the spread of excessive borrowing against home equity leading to the recent global financial crisis. In the face of such large scale and systemically important events, it is natural to ask, what is the role of social interactions and peer effects for the spread of financial behavior in the general population? In this paper, we focus on how social interactions and peer effects affect individuals’ decisions to rationally invest in the stock market.1

Recent literature broadly identifies two channels via which social interactions may generally affect financial decisions such as investing in the stock market: (i) information peer effects, which arise solely from directly communicating and disseminating information to and from friends and acquaintances, and (ii) imitation or endorsement peer effects, also referred to as those driven by social utility motives, broadly understood as comprising of social norm effects in preferences (conformity) or complementarities in production. Information peer effects obtain from agents learning socially, but are distinct from observational learning. Observational learning happens when agents infer the information of their peers only from observing peers’ decisions.2 We will call observational learning mindful imitation below, in order to distinguish it from mindless imitation. Both peers’ decisions and peers’ information should augment individual information sets. Imitation peer effects (mindless imitation) obtain instead when peers’ decisions are adopted without augmenting individual information sets.

Although a rigorous derivation of the equilibrium underpinnings of endorsement effects has recently been advanced for the linear-in-means workhorse econometric specification of social interactions models (Blume, Brock, Durlauf and Jayaraman, 2015), no such a microfoundation exists for information effects. The starting point of our analysis is therefore to model direct communication social learning within a competitive financial market. Agents are privately informed and have access to an information network, gathering private information from peers, friends and acquaintances (information network) as well as publicly, from equilibrium asset prices. Since more risk tolerant individuals have higher willingnesses to pay for information (Cabrales, Gossner and Serrano, 2013, 2017), we extend Ozsoylev and Walden (2011) to accommodate heterogeneity in risk preferences and more general information network structures. A key prediction of the model is that individuals with higher risk-adjusted ‘connectedness’, i.e. with more and/or more informative social interactions, invest more in risky assets. This is because well-connected individuals pool more and/or more precise privately received signals by individuals they are acquainted with, increasing the precision of their conditional stock market return expectations and thereby, the share of their wealth invested in risky assets.

With this prediction in mind, we design, field and exploit novel survey data that provide measures of stock market participation and of the risky portfolio share, connectedness within the network of peers, as well as of subjective expectations and perceptions of stock market

1See for example Campbell (2016), for a normative motivation in understanding the rationality behind household financial choices.
returns via probabilistic elicitation techniques. Our empirical analysis looks for evidence of informative social interactions, in the form of either information sharing or mindful imitation of peers with whom the respondent discusses financial matters, possibly in conjunction with signs of mindless imitation of the other members of the social circle.

We exploit cross-sectional variation for a representative sample by age, asset classes and wealth of the population of France, collected in two stages, in December 2014 and May 2015. In addition to the aforementioned variables, the questionnaire contains an unusually rich set of co-variates for socioeconomic and demographic controls, preferences, constraints and access and frequency of consultation of information sources, typically absent from social network empirical studies. Crucially, it also contains specific questions designed to obtain quantitative measures of relevant network characteristics that enable identification of information network effects on financial decisions from individual answers, in the spirit of the classic work by Katz and Lazarsfeld (1955).

There are four key advantages of using our survey data: (i) the actual mechanism whereby social interactions matter for financial decisions can be empirically identified from respondents’ answers to questions on beliefs and perceptions of stock market returns, when combined with data on measures of access and frequency of consultation of both publicly and privately available information sources (see Blume et al. 2015); (ii) we can sidestep the ‘reflection problem’ that arises when social interactions are identified empirically from linear-in-means econometric specifications (see Blume, Brock, Durlauf and Ioannides, 2011), because we exploit variation in respondents’ perceptions about peers’ behavior (and characteristics) instead of the actual behavior of their peers; (iii) our main identification strategy for disentangling ‘informed holdings’ from ‘uninformed holdings’ of risky assets relies on exploiting within-respondent variation in peer groups, i.e. we separately ask respondents’ perceptions about peers’ holdings and peers’ information for the financial circle (with whom they discuss financial matters) from the rest of their social circle (with whom they do not discuss finances), as well as from the overall population, and (iv) the survey is done over a representative sample of a population of a financially developed country (France), with a mature stock market and abundantly publicly available information. Given the nature of impersonal stockholding and stock trading, our analysis is not limited by the fact that we cannot trace the actual network structure, neither at the individual level, nor for the whole stock market (De Paula, 2016); this is an inherent feature of the stock market rather than a limitation of our empirical approach. We are able to focus on perceptions that respondents have and on the basis of which they make stockholding choices, even though we cannot observe the extent to which individual perceptions about peer information or behavior correspond to their objective counterparts.

Our empirical analysis suggests the presence of information effects from social interactions, first on perceptions of past stock returns and, only through them, on expectations of future stock market returns; and second, on whether and how much respondents invest in the stock market, controlling for subjective stock market expectations of returns.

Our theoretical framework suggests that aside from the usual social circle of friends and acquaintances of an individual, we can also identify a subset of it which we call the financial circle,
i.e. members of the respondent’s social circle with whom the individual specifically interacts on financial matters, e.g. investments. Implicit in this distinction is the fact that members of the financial circle have been specifically selected to discuss financial matters, because they are more knowledgeable and the respondent trusts their views. This is captured in the theoretical model by assuming that members of the financial circle have more precise, informative signals. In the survey, we ask respondents to report directly on their perceptions of their financial and of their overall social circle. Using these responses, we can control empirically for respondent perceptions both of their financial circle and of their outer circle, i.e., all those remaining members of their social circles with whom respondents do not discuss financial matters. We also ask respondents to report on their perceptions about aggregate activity within the market, such as the proportion of the overall population who are stockholders. These last survey questions strengthen our identification strategy, acting as observable controls for correlated effects.

With this novelty in place, we provide empirical support for our main conclusion of a significant information effect in social interactions regarding stockholding. Specifically, we find that respondent perceptions about the shares of their financial circle being informed about the stock market or actively participating in it are systematically related to respondent perceptions about past stock returns, expected future stock returns, the probability of stock market participation, and the risky portfolio share conditional on participation. Indeed, financial circles that are perceived to be more informed or more widely participating in the stock market are significantly related to perceptions of past returns that are closer to the truth. This is in contrast to the statistical insignificance of respondent perceptions regarding how informed their outer social circle is regarding the stock market.

While our results prove robust to placebo tests for the relevance of unobserved heterogeneity, and to explicit consideration of the formation of the financial circle as part of the decision process, we do find some traces of mindless imitation in stockholding behavior. By mindless imitation we mean that respondents follow the financial behavior of others in their circle, due to e.g. peer pressure, conformity or a fad effect, without experiencing a change in their own expectations or perceptions about returns. Specifically, we find that the perceived share of the outer circle participating in stock bears some relationship (albeit at low significance levels) with the probability of stock market participation and the conditional portfolio share, controlling for expected stock returns. Expected stock returns and perceptions of past returns are not significantly related to perceived participation in the outer circle, suggesting that mindless imitation, where present, does not permeate as many layers of the stockholding decision as informative interactions and mindful imitation of informed peers do. Indeed, we can think of the transfer of information signals as directly informative social interactions, and observational learning (mindful imitation) as indirectly informative. With the advent of modern technology, the spread of social media, and the establishment of online investment and lending platforms, one can expect informative social interactions to grow in importance, but it is not possible to rule out that mindless imitation of the expanded circle of peers also gains importance.

3See also Grinblatt, Kerlohaju and Ikäheimo (2009).
An additional advantage of our approach of splitting the social circle of respondents into financial and outer circles is that it helps us tackle the issue of unobserved heterogeneity. If indeed respondents and their social circles all follow and/or invest in the stock market (or not) because people tend in general to socialize with those that are similar to them and face common unobserved factors, then we would expect to see positive and significant effects of the knowledge and participation of both the financial and outer circles on perceptions, expectations, participation, and conditional portfolio share of respondents, but this is not something we find. Placebo tests, where perceptions regarding the financial and outer circles are reshuffled among respondents of the same age, education, and region of residence, further support the claim that our results are not the product of unobserved heterogeneity. Finally, to address the possibility of selection bias, we also allow for respondents to select friends and acquaintances with whom to exchange on their own financial matters jointly with whether to invest in stocks or not, but fail to find any evidence in support of correlated unobserved factors in these two decisions.

Our work relates to different strands of literature, on financial literacy and on social interactions and networks. Within the financial literacy literature (e.g. Lusardi, Michaud and Mitchell, 2016; Campbell, 2016), our work is related to a budding literature examining peer effects on asset and debt behavior of households; like Dufo and Saez (2002, 2003), Hong, Kubik and Stein (2004), Kaustia and Knüpfer (2012), Georgarakos, Haliassos and Pasini (2014), Beshears, Choi, Laibson, Madrian and Milkman (2015), Girshina, Mathae and Ziegelmeyer (2017), Haliassos, Jansson and Karabulut (2017) or Ouimet and Tate (2017). It also belongs to a more voluminous literature that examines the effect of subjective expectations on individual economic and financial behavior, summarized by Hurd (2009) or more recently, by Greenwood and Schleifer (2014), and its consequences in the aggregate, as in e.g. Carroll (2003). Last, it is also closely related to the literature on the effects of social imitation and influence on financial behavior in competitive markets within the larger literature on social and information networks, see e.g. Jackson (2008).

Most related to our work is Bursztyn, Ederer, Ferman and Yuchtman (2014), who conduct a field experiment in collaboration with a Brazilian brokerage firm in order to disentangle endorsement from information peer effects on the willingness to invest in a brand new financial product. For such a product, they conclude that both motives are important in individual financial decision making and that the social learning channel is relatively more important than the social utility channel amongst more sophisticated investors. Also related is the experimental work by Banerjee, Chandrasekhar, Duflo and Jackson (2013) who study a newly introduced micro-finance program in rural India and conclude that most of peer effects on the take-up rates of the program are due to an information channel.\footnote{Empirical work by Ozsoylev, Walden, Yavuz and Bildik (2014) exploits stock market transactions data to identify an empirical investor network from the time proximity between individual transactions.} The main difference with these papers is our focus on a well-known, mature financial product (stocks) available to the general population of a financially developed country without restrictions on information flows. The similarities and differences with these papers are further evaluated, in light of our findings, in Section 4.
2. **The Model**

Ozsoylev and Walden (2011) provide a microfoundation for an information network effect within a rational model of equilibrium asset pricing where prices and private signals about asset returns transmit information. We extend their model to guide our survey design and empirical strategy. In what follows, we present a brief overview of the model, the generalization of their theorem and explain how the derived individual asset demand function will be used as a guide for identifying information peer effects.

There are two assets, one risky (stock) and one risk free (bond). The payoff of the risk free asset is 1. The payoff of the risky asset follows a normal distribution $X \sim N(\bar{X}, \sigma^2)$ and its price is p. The supply of stocks is random and is given by $Z_n = nZ$, where $Z \sim N(\bar{Z}, \Delta^2)$ and $\bar{Z} > 0$. The final wealth of the agent is

$$\omega_i = \omega_{0i} + D_i (X - p), \quad (1)$$

where ω_{0i} is the initial wealth of agent i. Agent i chooses D_i units of the risky asset to maximize expected utility from final wealth, conditional on his information set I_i. We assume constant absolute risk aversion (CARA) preferences

$$u(\omega_i) = -e^{-\rho_i \omega_i},$$

where ρ_i is the absolute risk aversion of agent i. Agent i thus solves the problem

$$\max_{D_i} \mathbb{E} [u(\omega_i) \mid I_i] = \max_{D_i} \mathbb{E} \{ -\exp [-\rho_i (\omega_{0i} + D_i (X - p))] \mid I_i \}. \quad (2)$$

Therefore,

$$D_i^* = \frac{\mathbb{E}[(X - p) \mid I_i]}{\rho_i \text{Var}[X \mid I_i]}. \quad (3)$$

Every agent i receives a primary (agent specific) piece of information in the form of a signal on the risky asset payoff $y_i = X + \epsilon_i$, $\epsilon_i \sim N(0, \sigma_i^2)$. We allow heterogeneity across the variance of the signals of the agents, to reflect the fact that agents may have more or less precise information about the risky asset for exogenous reasons.

Agents may know each other socially and these links are captured by an adjacency matrix A, where the typical element a_{ij} can take value 1 or 0, if agents i and j know each other or not, respectively. We allow for loops, i.e. we let $a_{ii} = 1$, for all agents. Since $a_{ij} = a_{ji}$, the matrix A is symmetric. For an investor i, his/her social circle is then defined by his network neighborhood, i.e. all investors j, such that $a_{ij} = 1$.

To describe the financial circle of an investor, we define an additional adjacency matrix G which describes the financial network. Investors determine their demand for the risky asset by pooling their own private information about its return, with private signals of investors with whom they interact socially. An investor combines his/her own signal with those of his/her neighbors to generate a payoff signal x_i, by averaging the signals of his/her social circle, weighted

5See Easley, O’Hara and Yang (2013) for discussion on positive supply of risky assets and liquidity traders.
by their corresponding precisions. In particular, the weight on the signal of investor j used by investor i, is assumed to be the precision of the signal of agent j.\footnote{We can also assume it to be the relative precision of the signal of agent j, i.e. the precision of j’s signal over the precision of i’s signal. This is a more attractive assumption, but complicates unnecessarily the mathematical expressions of the assumptions needed in deriving the optimal demand function, without affecting the formal expression of our econometric specification.} From the perspective of agent i, when pooling all the signals from his/her neighbors, he/she then puts more weight on agents with more precise signals and less weight on those with less precision.\footnote{Proportional weighting as a function of signal precisions typically obtains in models of Bayesian learning from others, eg. Burnside, Eichenbaum and Rebelo (2016).} The typical element of matrix G is then

$$ g_{ij} = \frac{a_{ij}}{s_j^2}, $$

in other words, $G = A\Sigma^{-1}$, where $\Sigma = diag\{s_1^2, ..., s_n^2\}$. We note that G represents a weighted and directed network. The pooled payoff signal x_i for agent i is:

$$ x_i = \sum_{k \in R_i} \frac{a_{ik}}{d_i} y_k = \sum_{k=1}^{n} g_{ik} y_k = X + \sum_{k=1}^{n} g_{ik} \epsilon_k. \quad (4) $$

The assumption that the network is weighted by signal precision captures the fact that investors put more importance on good quality information they receive from the social circle. Given the information network, investors’ information sets are defined by

$$ I_i = \{x_i, p\}, \forall i = 1, ..., n \quad (5) $$

because also asset prices are allowed to transmit information in equilibrium, and investors rationally anticipate it. We also assume that the random variables X, Z and ϵ_i are all jointly independent.

Next, let

$$ k_i = \sum_{k=1}^{n} \frac{a_{ik}}{s_k^2} \quad (6) $$

be the connectedness of investor i. This is a generalization of the well known concept of degree, or strength, which counts the number of links of a network node. Under a set of assumptions on the asymptotic nature of the network structure as the number of investors n grows, we can now extend and generalize Theorem 1 of Ozsoylev and Walden (2011). The set of assumptions and the precise statement of the Theorem can be found in Appendix A. Broadly speaking, the assumptions require that the information network is sparse, i.e. that the strength of connections between agents is of the same order as the number of nodes, and that no agent is informationally superior in the large financial market (as $n \to \infty$). The average connectedness β of the large information network is defined via the assumption that

$$ \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} k_i = \beta + o(1), \quad \beta < \infty $$
which imposes that the average risk-adjusted node strength is finite. Then, we show that there exists a linear noisy rational expectations equilibrium as \(n \to \infty \), such that with probability one the risky asset price converges to

\[
p = \pi^*_0 + \pi^* \bar{X} - \gamma^* \bar{Z},
\]

where

\[
\pi^*_0 = \gamma^* \left(\frac{\bar{X} \Delta^2 + \bar{Z} \beta \sigma^2}{\sigma^2 \bar{\rho} \Delta^2 + \sigma^2 \beta} \right),
\]

\[
\gamma^* = \frac{\sigma^2 \bar{\rho} \Delta^2 + \beta \sigma^2}{\beta \sigma^2 \bar{\rho} \Delta^2 + \Delta^2 + \beta^2 \sigma^2},
\]

\[
\pi^* = \gamma^* \beta.
\]

and \(\bar{\rho} \) denotes the finite harmonic mean of risk aversions of all agents in the population (see Assumption 3, in Appendix A).

In determining their optimal demand for the risky assets, agents form a subjective expectation of the return on the asset, based on the average signal of their social circle. In equilibrium, and as \(n \to \infty \), the expected return for an investor \(i \) is given by

\[
E(X|I_i) = \frac{k^*_i \sigma^2 \Delta^2}{k^*_i \sigma^2 \Delta^2 + \Delta^2 + \sigma^2 \beta^2} x_i + \left(\frac{\sigma^2 \beta^2 + \Delta^2}{k^*_i \sigma^2 \Delta^2 + \Delta^2 + \sigma^2 \beta^2} \right) \bar{X},
\]

where \(k^*_i = \lim_{n \to \infty} k_i \). This suggests that larger connectedness \(k^*_i \) implies that investors expectations react more strongly to their pooled signal. Moreover, in equilibrium, the asymptotic demand for the risky asset by an agent \(i \) can be expressed in the two following ways:

\[
D^*_i \equiv \frac{1}{\rho_i} \left(\frac{1}{\sigma^2} + k^*_i + \frac{\beta^2}{\Delta^2} \right) (E(X|I_i) - p)
\]

or

\[
D^*_i = \frac{\hat{\rho}}{\rho_i} \left(\frac{\bar{X} \Delta^2 + \bar{Z} \beta \sigma^2}{\bar{\rho} \sigma^2 \Delta^2 + \sigma^2 \beta} \right) - \frac{\hat{\rho}}{\rho_i} \left(\frac{\Delta^2}{\sigma^2 (\beta \sigma^2 + \bar{\rho} \Delta^2 + \bar{\beta})} \right) p + \frac{k^*_i}{\rho_i} (x_i - p).
\]

Expressions (8)-(10) will guide our empirical investigation of informative social interactions: Expression (9) suggests that there are two ways in which individual connectedness \(k^*_i \) is important for investor’s demand for the risky asset: first there is an indirect effect via the expected return, since \(k^*_i \) affects \(E(X|I_i) \) in (8), and second, a direct positive effect of risk-adjusted connectedness \(k^*_i / \rho_i \) appearing in the first parenthesis of (9). The former captures the higher relative weight attributed to more/better informed peers when forming the expectation of a stock market return, common in work on Bayesian learning from peers. The latter captures the reduction in agents’ posterior variance of expected returns obtained in equilibrium by agents that are more and/or better connected, adjusted by the agent’s risk aversion. The second expression (10) again decomposes potentially two channels via which individual connectedness can
affect demand: directly, via the positive effect of \(k_i^* / \rho_i \), and indirectly through its effect on the excess return (i.e. within \(x_i \)).

Equilibrium asset prices and optimal demand for risky assets by individuals are parametrized by a range of model characteristics. Here, our main focus is on two of those, namely connectedness of individuals and risk attitudes, which we discuss in turn. First, the model predicts that higher individual connectedness makes agents more willing to invest in risky assets. In addition, higher individual connectedness \(k_i^* \) may be the result of two effects: (i) a larger number of acquaintances (i.e. larger number of agents for which of \(a_{ij} \neq 0 \)) and/or (ii) higher signal precision of the signals that individual \(i \) pools from her/his social interactions. Both effects imply that the more informative one’s social interactions are (i.e. as the precision of an individual’s pooled signals improves), the lower is the posterior variance of returns and hence, the higher the fraction of wealth that the agent is willing to place in the risky asset. This is the information effect from informative social interactions that we seek to empirically identify exploiting our survey data. Second, risk preferences matter for equilibrium demand for information: a given connectedness (which measures how informed an agent is) has more value when the agent’s risk aversion is lower, because less risk averse agents can expect to benefit more from investing in the risky asset, as recently uncovered by Cabrales, Gossner and Serrano (2013, 2017).8

We also highlight here that both the expressions for expected returns (8) and equilibrium individual demands (9) - (10) require that we only know the average connectedness \(\beta \) and the individual connectedness of investors, \(k_i^* \), and not the exact general structure of the network. This is a very important feature of the theoretical framework for the design of our empirical strategy, because it allows us to sidestep known issues that arise from not knowing the exact network structure within a population. For our purposes, when designing the survey, a representative sample from a large population for which we can identify measures for \(k_i^* \) is sufficient to empirically identify an information peer effect and the three expressions (8)-(10) will be the basis of our empirical design and specifications.

3. Survey Design

In this section, we provide a brief description of the survey design and the specifically designed questions we exploit. More detailed information about both is provided in Appendix B. The survey is part of an ongoing survey of the French population administered by Taylor-Nelson Sofres (TNS). We design and exploit data from two linked questionnaires that were fielded in December 2014 and May 2015 respectively. The first questionnaire (2014 wave) contains questions that provide very detailed information on risk attitudes, preferences, expectations and perceptions of stock market returns, in addition to wealth, income and socioeconomic and demographic characteristics for a representative sample of French households by age, wealth

8Heterogeneity in risk preferences is what would drive trade in assets in this model were information homogeneous across investors. Less risk averse investors would also be willing to pay more for informative private signals, as recently shown by Cabrales et al. (2013). As a result, less risk averse agents would be expected to have more/better informed connections, which creates the need to extend Ozsoylev and Walden’s (2011) theorem to heterogeneity in risk aversion before seeking empirical validation of the model’s predictions.
and asset classes. The follow-up questionnaire (2015 wave) contains a variety of questions that specifically aim at gathering information about respondents’ social and financial circles. These include questions on of respondents’ perceptions of how informed their circles are with respect to the stock market and how heavily they participate in it, as well as similar questions regarding their perceptions of overall population behavior, in terms of information about and participation in the stock market. In addition, respondents are asked to report their perceived relative standing vis-à-vis their peers along a number of dimensions.

The 2014 questionnaire was sent to a representative sample of 4,000 individuals, corresponding to an equivalent number of households. Respondents had to fill the questionnaire, and return it by post in exchange for €25 in shopping vouchers (bons-d’achat). Of those, 3,670 individuals returned completed questionnaires, corresponding to a 92% response rate. The follow-up questionnaire in May 2015 was sent to the 2014 wave of 3,670 respondents, out of which we recovered a total of 2,587 completed questionnaires, corresponding to a response rate of 70.5%.

The relevant questions that inform our empirical analysis can be grouped in four sets, which we describe below.

First, we have questions that directly ask respondents to state what is their total financial wealth (excluding housing), and of this wealth, what share they invest in the stock market (directly or indirectly). The latter defines variable $\%FW$ which captures the demand for risky assets conditional on participating in the stock market. From the same question, we generate the variable $\Pr(Stocks > 0)$ which takes value 1 if respondents have a positive share of their financial wealth invested in the stock market and value 0 otherwise.

The second set of questions asks respondents to state their expectations and perceptions about a public non-manipulable event (e.g. the expected return on a buy-and-hold portfolio that tracks the evolution of the stock market index, CAC-40, over a five-year time window). The recent literature on measuring expectations privileges the use of probability questions rather than eliciting point expectations or the traditional qualitative approach of attitudinal research (Manski, 2004). Answers to such questions are then used for understanding whether expectations and outcomes are related, and for evaluating whether individual behavior changes in response to changes in expectations. Crucially, we also include questions that inquire respondents about their perceptions regarding the most recent realization of an analogous measure (e.g. the most recent realized cumulative return on a buy-and-hold portfolio that tracks the evolution of the stock market index over a three-year horizon). The questions in this second set are designed with the following four goals in mind. First, the use of five years as a forecasting horizon helps untie expectational answers from business cycle conditions prevailing at the time of fielding the surveys, to better capture (i) the historic average upward trend of the stock market index, and (ii) inertia in portfolio management (e.g. see Bilias, Georgarakos and Haliassos, 2010). The latter is important, since it remains an open question with what horizon in mind households invest in the stock market. Second, probability densities are elicited on seven points

9Dominitz and Manski (2007) elicit probabilistically individuals’ expectations of stock market returns inquiring about how ‘well’ the respondent thinks the economy will do in the year ahead. They exploit data for a representative sample of the elderly from the 2004 wave of the U.S. Health and Retirement Study (HRS).
of the outcome space, instead of just two points of the cumulative distribution functions, to obtain more precise individual estimates of the relevant moments and of the uncertainty surrounding expectations.¹⁰ Third, we exploit data from a representative sample by age (while for example, Dominitz and Manski, 2007, report results only for the elderly). Fourth, probabilistic elicitation of the most recent cumulative stock market return over a three-year horizon provides a quantitative measure of households’ degree of awareness of stock market developments, to capture differences in information across households as well as the relationship between information and expectations.¹¹ We use responses to questions C39 and C42 (from TNS2014) to generate variables \(\text{Expec}: R \) and \(\text{Perc}: R \) respectively, which in turn are used as proxies for expected conditional returns \(\mathbb{E}(X|Z_i) \) and for perceptions of realized returns (based on signals) \(x_i \).

The questionnaire contains a third set of questions that are designed to identify the social circle of respondents and will be used for the empirical analysis. The aim is generate meaningful proxies for the individual connectedness \(k_i^s \) of each respondent. A main novelty of the survey is to distinguish between a broad circle of social acquaintances of respondents (social circle) and a smaller circle within it, defined as the respondents’ acquaintances with whom the respondents convene about financial matters (financial circle). We separately identify both from responses to the following survey questions respectively:

C1: Approximately how many people are there in your social circle of acquaintances?

D1: With how many people from your social circle (as identified in C1), do you interact with regarding your own financial/investment matters?

Of the 2,587 respondents that returned the TNS2015 questionnaires, about 90% and 87% answered questions C1 and D1 respectively. The average number of people in the respondents social circles and financial circles is 52.5 and 3.1 people respectively. About half of the valid responses for question D1 were zero, so we also report that the average of the remaining half (i.e. not taking into account the zeros) is approximately 5 people. This constitutes evidence in support of our theoretical framework and predictions, which only obtain under the assumption of sufficient network ‘sparsity’ (i.e. ‘not too dense’).

Question C1 is formulated with the network of social acquaintances in mind, as described by adjacency matrix \(A \) in Section 2. For respondent \(i \), the answer to C1 provides an approximation of the respondent’s degree, defined by \(\sum_{j=1}^{n} a_{ij} \). Question D1 defines a subset of the people from the respondent’s social circle, and is formulated in order to generate broadly a proxy for the elements of matrix \(G \), i.e. a statistic of whether information about the stock market is passed on from acquaintance \(j \) to respondent \(i \). Question D1 thus invites respondents to describe a

¹⁰ This follows the methodology of the Survey on Household Income and Wealth (SHIW) conducted by the Bank of Italy, e.g. Guiso, Jappelli and Terlizzese (1996).

¹¹ As an example of the former, Armantier, Nelson, Topa, Van der Klaauw and Zafar (2016) document substantial differences across households regarding the most recent US inflation rate. As an example of the latter, Afruzi, Cobion, Gorodnichenko and Kumar, (2016) examine the relationship between inflation expectations and perceptions of inflation in a sample of CE/FOs of New Zealand firms.
possibly smaller ‘inner’ circle of peers with whom they discuss financial matters (the financial circle), and to distinguish them from the outer circle of peers with whom they interact socially without necessarily discussing finances. It leaves open the possibility that the respondent does not have such an inner circle, and this choice is modelled explicitly in the later part of our empirical analysis.

With reference to the theoretical model, respondents may be able to extract information (signals) about the stock market from the members of their financial circle, i.e. we assume that (with normalized precision), if an acquaintance belongs in the respondent’s financial circle, then \(g_{ij} = a_{ij} \). On the other hand, other acquaintances are excluded from the financial circle, if their signal precision is 0, i.e. when respondents state that they do not interact with them regarding financial matters, and in that case \(g_{ij} = 0 \). Characteristics of the social circle excluding the financial circle, namely the outer circle, can then be inferred (up to an allowable margin of error) from responses regarding the overall social circle and the inner financial circle.

Having defined the various peer circles, we elicit respondents’ point perceptions about how many of their friends and acquaintances in the overall social circle and in the financial circle, are informed about the stock market, as well as their corresponding perceptions about peers investing in the stock market.\(^{12}\) The exact wording of the questions is:

C7i/D16i: In your opinion, what is the proportion of people in your social/financial circle that invests in the stock market? (as a %)

C7ii/D16ii: In your opinion, what is the proportion of people in your social/financial circle that follows the stock market? (as a %)

Of the 2,587 respondents that send back the TNS2015 questionnaires, about 96% and 88% of respondents provided valid answers for questions C7 and D16 respectively.\(^{13}\) The cross-sectional average point estimates for the perceived percentage of the social and financial circle that invests in the stock market is 10.7% and 18.9% respectively. Also, the cross-sectional average point estimates for the perceived percentages of the social and the financial circles that follows the stock market are 12.6% and 20.5% respectively. These questions define directly variables \(%SC\ Particip, %FC\ Particip, %SC\ Inform\) and \(%FC\ Inform\). The perceived percentage of the outer circle of a respondent that invests in or is informed about the stock

\(^{12}\)A similar question format has been successfully exploited by researchers at the Dutch National Bank and at the University of Tilburg (CentER Panel) when identifying social interactions on individual outcomes, since it helps in overcoming the reflection problem identified by Manski (1993). The reflection problem refers to the impossibility of separately identifying the effect of peers’ choices (endogenous or peer effects) from the effect of peers’ characteristics (contextual effects) on individual outcomes, when individual and peers’ choices are made simultaneously and as a function of common contextual factors. Here, instead of considering peers’ actual choices, we exploit the variation in individual perceptions about peers’ choices (e.g. stockholding status), which when combined with individual perceptions about peers’ characteristics (e.g. peers’ information or respondents’ relative standing in terms of education, wealth or professional status), enables identification. See Blume et al. (2011, 2015) for additional details.

\(^{13}\)In answering each of the questions, the respondent was also given the option to tick the box ‘I do not know’. About 64% and 61% chose this option for questions C7i and D16i respectively. About 61% and 58% reported this option for questions C7ii and D16ii, respectively.
market is obtained from

\[\%OC\text{ Particip.} \equiv \frac{C1 \times C7i - D1 \times D16i}{C1 - D1}, \]

(11)

\[\%OC\text{ Inform.} \equiv \frac{C1 \times C7ii - D1 \times D16ii}{C1 - D1}. \]

(12)

Additionally, questions C6i and C6ii ask respondents about the proportion of the French population that invest and are informed about the stock market, respectively.14 Surprisingly, the cross-sectional average point estimate for the proportion of the French population investing in the stock market is remarkably close to the cross-sectional mean participation rate in our representative sample: 19.4 percent versus 21.7 percent, respectively.

The final set of questions ask respondents to place themselves relative to others in their circles, both social and financial. With these, respondents state how the see themselves in terms of wealth, education and professional standing relative to their peers (for details see Appendix B4).

For notational convenience we use the abbreviations SC, FC, OC for the social circle (defined by C1), financial circle (defined by D1) and outer circle (defined as answer to C1 - answer to D1) respectively. Other abbreviations used throughout the paper are summarized in Table 1. Definitions, exact question statements and detailed explanations on the variables and the survey questions can be found later in the paper and in Appendix B. Table 5 provides summary statistics for the variables we use in the analysis.

4. Empirical analysis

Consistent with our theoretical analysis, in which equilibrium depends on the connectedness, \(k_i^* \), rather than on the precise identity of interacting agents, we employ measures of such connectedness in our empirical analysis. Specifically, we focus on whether and how expectations, perceptions, and behavior are influenced by the share of the relevant peer circle that the respondent considers informed about or participating in the stock market.

4.1. Putting the social and financial circles into context. Our assumption in the theoretical model is that respondents meet their peers and weight the information they obtain from them according to how reliable they perceive their peers to be. In real life, it is natural to think of respondents as forming a financial circle, in the sense of a subset of their overall social circle with whom they feel confident to discuss financial matters. Respondents are indeed asked whether they have such a financial circle, as well as their perceptions regarding attributes of their social circle and their financial circle, and they report their perceptions as to the shares of both circles that are (i) informed about the stock market and (ii) participating in the stock market. It is important to stress that our data do not record actual shares of informed or participating peers, which may or may not be known to respondents, but shares as they are

14In answering each of the questions, the respondent was also given the option to tick the box ‘I do not know,’ (DK). About 54% and 52% chose this option for questions C6i and C6ii respectively. About 3.1% chose not to answer these questions, and are accordingly coded as ‘non-responses,’ (NR).
perceived by respondents who form expectations and decide on own stock market participation and exposure.

For respondents who declare having formed a financial circle, we use expressions (11) and (12) to compute their implied perceptions regarding members of their social circle with whom they do not discuss finances. The distinction between a financial and an outer circle is very useful for checking whether our results might be caused by unobserved heterogeneity rather than peer influences; and in distinguishing between exchange of information and mindless imitation of stockholding behavior. Specifically, it is possible that there are unobserved factors influencing the respondent’s stock market expectations, perceptions or behavior, as well as whether their peers are informed about, or participating in the stock market. These unobserved factors might induce a correlation between responses and peer attributes without implying any effect from peers on respondents. If respondent stock market expectations, perceptions, or behavior reflect simply unobserved dimensions along which respondents are similar to their peers, we would expect correlations to be present, whether we consider the financial circle or the outer social circle not privy to financial matters. If, however, only the financial circle, but not the outer circle matters for subjective expectations, perceptions, or behavior related to stockholding, then this is evidence against unobserved heterogeneity creating the empirically observed relationship. Furthermore, the within-respondent variation in peer groups that we exploit is conditional on variation across respondents in market outcomes, to guard against the possibility of correlated effects driving our peer effect results, within a highly volatile, efficient and competitive market environment.

The split between a financial and an outer circle can also shed some light on whether social interactions take the form of mindless imitation or exchange of information and possibly mindful imitation of peers perceived as knowledgeable about the stock market. As an example, we would not expect the behavior of the outer circle, with whom respondents do not discuss financial matters, to influence respondents’ stockholding behavior directly unless there is pure imitation without the exchange of information. On the other hand, interactions with the financial circle can be informative and contribute to a revision of perceptions about the past performance of the stock market, expectations about the future, or choices regarding stockholding.

We also note here that the survey questions elicit the shares of informed and participating peers in the financial and overall social circles only. We use these two responses to construct the corresponding share of peers in the outer circle, i.e., the complement of the financial circle to the overall social circle. As our approach is indirect, it can sometimes lead to outer-circle shares that fall below zero or exceed 100%. When this happens, we adopt a conservative approach to potential inconsistency: we set both the direct response on the financial circle and the implied for the outer circle to ‘missing observation’, and we introduce an inconsistency dummy variable (IC) to flag such observations. All reported estimates on the two circles explicitly control for observed inconsistencies in responses.

15 Exception is made of those inconsistencies that are attributed to ‘rounding’, because of low numbers reported to question D1. With this criterion in place, a total of 19 observations are excluded from the IC category.
4.2. Expectations and perceptions. Existing empirical studies of peer effects on financial behavior focus on outcomes, such as stockholding, retirement saving, or debt outstanding. We begin our analysis by investigating the role of social interactions for the formation of subjective return expectations about the future, as well as of perceptions regarding past stock market performance. As established, expectations are an important determinant of the demand for risky assets, this analysis is interesting both in its own right and as a component of the link to stockholding behavior.16

To investigate the empirical relevance of perceptions regarding interacting peers for subjective expectations of stock market returns over the next five-year period, we consider an approximate linear version of expression (8), which suggests two empirical specifications:

\[
\text{Expec. } R_i = \kappa_0 + \kappa_1 k_i + \tau_i \kappa + e_i
\]
(13)

and

\[
\text{Expec. } R_i = \kappa_0 + \kappa_1 D_i + \tau_i \kappa + e_i
\]
(14)

where \(k_i\) is an indicator of connectedness to the peer circle, \(D_i\) is an indicator of ‘expected’ or perceived peer behavior (participation in the stock market), \(\tau_i\) is a vector of individual characteristics which includes individual perceptions about peer characteristics and population behavior, \(e_i\) is an individual zero-mean error term distributed normally conditional on covariates, and the same coefficient symbols are used for notational economy but not to imply equality of coefficients.17

Implementing either specification might raise concerns regarding the role of unobserved heterogeneity. Unobserved factors affecting all peers, including the respondent, could be creating a tendency for peers to be perceived as informed about the stock market (or as participating in the stock market), and simultaneously for the respondent to be having higher or lower expectations about future stock market returns. This could induce a relationship between the share of the social circle being informed and the reported subjective expectation without any causal implication running from perceived peer information (participation) to respondent expectations.

As a first approach to handling this problem, we distinguish perceptions about the two peer circles: the inner, financial circle with whom respondents report that they discuss financial matters; and the rest of their social circle with whom they report that they do not discuss such matters. Moreover, we also control for individual perceptions of market-wide characteristics unrelated to peer behavior, but that might be driving asset prices, like an increase in the

16 Standard models of financial choice under uncertainty predict that decisions should be based on expectations of future aggregate market outcomes, and not on publicly available information about recent market outcomes, since the latter should be incorporated into respondents’ expectations upon conditioning (Brandt, 2010). Indeed, a recent strand of empirical literature finds that subjective expectations are significantly related to financial decisions (e.g. Dominitz and Manski, 2007; Kezdi and Willis, 2009; Hurd et al., 2011).

17 To control for endorsement peer effects that can rationalize mindless imitation (e.g. due to a preference to conform), we include measures of the respondent’s perceived relative standing in terms of average peer education, average total wealth and professional status with respect to the social and financial circles.
proportion of the overall population investing in or being informed about the stock market.

We then investigate whether either share is significantly related to the respondent’s subjective expectation about future stock market returns, after controlling for a range of observable respondent characteristics. By splitting the social circle into a financial circle and an outer circle, we are able to apply a ‘double ring’ methodology to identification. Additionally, including in the controls respondents’ perceptions about population-level behavior, we are able to explicitly control for the possibility of correlated (normally unobserved) effects.18 If unobserved heterogeneity is an important problem, then it should affect both the financial circle and the outer social circle. Thus, finding different results for the inner and the outer circles, conditioning on population behavior suggests that the difference is not due to unobserved heterogeneity, because such heterogeneity would necessarily have a significant effect on both circles. The empirically implemented specifications are:

\begin{equation}
\text{Expec. } R_i = \kappa_0 + \kappa_{1,FC}k_{i,FC} + \kappa_{2,OC}k_{i,OC} + \tau_i\kappa + e_i,
\end{equation}

and

\begin{equation}
\text{Expec. } R_i = \kappa_0 + \kappa_{1,FC}D_{i,FC} + \kappa_{2,OC}D_{i,OC} + \tau_i\kappa + e_i.
\end{equation}

We are able to control for a wide range of characteristics and attitudes of the household head. These include individual perceptions about population behavior and the respondent’s relative standing in terms of peer characteristics (professional status, education and total wealth), demographic characteristics (age, gender, marital status, number of children), elicited risk preferences (coefficient of absolute risk aversion), a proxy for individual information (self-reported individual perception of the most recent realized stock market cumulative return), proxies for resources and constraints (educational attainment, employment status, assets, income, perceived borrowing constraints, and achieved liquid saving over the past year), and region of residence.19 In all specifications, we also include dummies for item non-response and inconsistent responses, especially to the questions about perceived peer and population behavior.20

Despite the fact that all respondents were asked about the same stock market, there is considerable heterogeneity in responses, in both perceptions about its evolution prior to the data collection and subjective expectations regarding future stock returns. Figure 1 shows historical monthly data of the French stock market index CAC-40, from March 1990 to June 2016. The index dropped by nearly 25\% at the time of the sovereign-debt crisis during the second half of 2011. After that and as we get closer to the time that the two parts of the survey were fielded, the stock market index was steadily recovering. Both in late December 2014 and May 2015, the index was still below its dot-com and the Lehman brothers peaks.

18Alternatively, one can also interpret our empirical strategy as a ‘triple-ring’ methodology, that separately identifies the effects of the inner, the outer, and the population-minus-social circles. The necessity of this approach arises from our interest in peer behavior within a competitive market environment.

19Detailed variable definitions are to be found in Appendix B.

20Controlling for item non response to those questions hardly affects the sign, size, and significance of the main coefficients of interest, namely on perceptions regarding peers. A similar robustness exercise in the presence of missing data can be found in Dimmock, et. al. (2016).
but had already recovered relative to the sovereign-debt crisis. Given the substantial turmoil experienced by the stock market index over the period prior to data collection, respondents are likely to have been exposed to considerable news coverage of the stock market evolution, and this makes the observed variation in perceptions and expectations all the more striking.

The actual stock market return over the three-year period in question (Dec 2011 - Dec 2014) was actually $+34.57\%$, but the cross-sectional average perception of respondents regarding returns over the same period is equal to $+3.6\%$. The average cross-sectional subjective expectation of respondents regarding future returns is equal to $+1.6\%$. Positive deviations of perceptions from the low cross-sectional mean and optimism that is greater than the average observed among respondents of given characteristics in the sample seem consistent with the respondent having more informed perceptions and expectations more in line with available historical evidence.\footnote{Dimson, Marsh and Staunton (2008) report a historical (arithmetic) mean excess return (risk premium) in France for 1900-2005 of around 6\% (per annum, p.a.), but that figure was revised downwards by Le Bris and Hautcoeur (2010) to 2\% p.a. when examining a longer time window (1870-2007), correctly weighting for stock market capitalization and adjusting for survivorship bias. Since we are asking respondents about the expected return over a five-year horizon, to be consistent with the estimate by Le Bris and Hautcoeur (2010) the cross-sectional mean should be 2\% p.a. times 5 years, or around 10\% which is almost an order of magnitude larger than the cross-sectional mean expected return of 1.6\%.}

Table 2 reports estimates from these two specifications for subjective expected returns. The regression specification in column (1) includes, in addition to the usual household controls, respondent perceptions regarding how informed members of the two peer circles are. It can be seen that the share of the financial circle that the respondent regards as informed about the stock market is positively and significantly related to the respondent’s subjective expectation of future return. The relationship is quantitatively significant: a one-standard-deviation increase of 17.2 percent in the mean share of a respondent’s financial circle that is informed about the
stock market increases the mean expected return by approximately +0.5 percentage points (or about a 30% increase relative to the unconditional mean expected return of +1.6 percentage points). By contrast, the corresponding share of the outer circle is found to be statistically insignificant. Similarly, for the share of the population informed. This difference in results suggests that the observed significant correlation is not simply due to unobserved heterogeneity and creates a presumption in favor of a causal effect from the financial circle that we will subject to further scrutiny below.

The specification in column (2) focuses on the shares of the financial and of the outer circle that the respondent perceives as participating in the stock market. Again, we find that the share of stockholders in the financial circle has a positive, quantitatively and statistically significant effect on subjective expected stock market returns, while the corresponding share in the outer circle (or of the population) does not: a one standard deviation increase in the mean share of the respondent’s financial circle that invests in the stock market increases the mean expected return by approximately +0.4 of a percentage point, representing about a 24% increase relative to the unconditional mean expected return.

Beyond their econometric motivation, the different findings for the two circles also have implications for the likely role of information, rather than mindless imitation, in the interactions among peers. First, and in both specifications, it is perceptions about the financial and not the outer circle that are related to subjective expectations. This is the circle with which respondents discuss financial matters and with which information exchange rather than mere observation of behavior is most likely to occur. Second, both perceived attributes of the financial circle that were found to be significant are likely to generate information for the respondent: the share of the financial circle being informed and the share holding stocks and thus knowledgeable about them. The information and participation patterns of the outer social circle, not deemed reliable for discussion of financial matters, are not related to stock market expectations of respondents.

Columns (3) to (5) of Table 2 introduce subjective perceptions of recent stock price growth (over the past three years) in the regression of subjective expectations about the future of the stock market.\footnote{Measuring individual information sets is difficult even in experimental settings, but some progress has been made by extending Manski’s (2004) probabilistic elicitation techniques to facts (as opposed to events), as in Arrondel, Calvo-Pardo and Tas (2014) or Afrouzi, Coibion, Gorodnichenko and Kumar (2016).} Answers to question C42 in our survey enable probabilistic elicitation of respondents’ perceptions about the most recent realized cumulative stock market return over a three-year period.\footnote{The exact wording of the question, details about the construction of the variable as well as summary statistics can be found in Appendix B.} We focus on the mean of each respondent’s subjective probability distribution over the size of the realized three-year stock market return. For brevity, we will be referring to this as the respondent’s perceived return, with the previously introduced notation \(\text{Perc.R}\). We see that perceived returns are strongly statistically significant in the subjective expectations regressions, controlling for respondent characteristics and perceptions about peer characteristics, regardless of whether peer variables are included in the regression or not. Strikingly, neither the share of informed peers nor the share of stockholders in the peer circle retain their statistical significance in the presence of subjective perceptions regarding the recent past
return. This finding suggests that respondent perceptions regarding how informed their financial circle is or how extensively its members participate in the stock market influence subjective expectations of future returns only to the extent that they influence perceptions of recent past returns.

Next, we examine empirically how perceived returns R_i^t are associated with perceptions about peer information, $k_{i,s}^*$, or group stockholding behavior, $D_{i,c}^*$, as follows:24

$$R_i^t = \text{Perc. } R = \eta_0 + \eta_{1, FC} k_{i, FC}^* + \eta_{1, OC} k_{i, OC}^* + \nu_i \eta + \epsilon_i;$$

or

$$R_i^t = \text{Perc. } R = \eta_0 + \eta_{1, FC} D_{i, FC}^* + \eta_{1, OC} D_{i, OC}^* + \nu_i \eta + \epsilon_i;$$

where ϵ_i is an individual zero-mean error term distributed normally conditional on co-variates, ν_i is a vector of individual characteristics, including individual perceptions about population behavior, as well as about the respondent’s relative standing in terms of peer characteristics (professional status, education and total wealth), and we use the same symbols for coefficients only for economy of notation and not to indicate equality across specifications. We report estimates in columns (6) and (7) of Table 2. Interestingly, we find that perceived past returns are related to the perceived share of financial circle peers who are informed or who participate in the stock market, but not to the corresponding features of the outer circle. Quantitatively, a one standard deviation increase in the mean share of the respondent’s financial circle informed increases the mean perceived return by around 1.0 percentage point, representing about a 27% increase relative to the unconditional mean. The respective numbers for participating in the stock market are 0.8 percentage points, representing approximately a 23% increase relative to the unconditional mean. This is consistent with our findings in the expectations regressions that did not control for perceived returns and with the introduction of such controls rendering the peer circles insignificant.

All in all, results in Table 2 paint a consistent picture: any influence of peers on subjective return expectations operates through altering perceptions of past returns. The finding that only the financial and not the outer social circle are related to perceptions of past returns also suggests that the observed relationship is unlikely to arise from unobserved heterogeneity, a conclusion that we will return to in what follows. The identified effects are conditional on relative standing measures of peer characteristics, none of which are statistically significant. This is consistent with the view that mindless imitation does not affect expectations of returns.

This first set of results is strongly consistent with the presence of an information channel in peer influences running only through the financial circle and only through perceptions of what happened in the recent past. It also points to a novel role for friends and acquaintances in enabling respondents to process factual information about past stock market outcomes beyond findings in the literature on the importance of own cognitive ability for financial behavior.25

24 This is also in the spirit of Banerjee et al. (2013) or Bursztyn et al. (2014).

25 See, for example, Christelis, Jappeli and Padula (2010), Grinblatt, Keloharju and Ikäheimo (2011) or Hurd,
4.3. Stockholding. Our preceding analysis of subjective stock market expectations above has confirmed our model’s prediction (common to models of Bayesian learning from peers) that connectedness to people more knowledgeable about the stock market receives a higher weight when forming expectations about stock market returns. In addition, more knowledgeable connections raise the reported mean expected return, bringing it closer to available long-run historical estimates (e.g. Dimson et al., 2008; Le-Bris and Hautcoeur, 2010). Since expected returns are positively related to desired portfolio exposure to stocks, this alone would suffice to create a role for social interactions in stockholding decisions. In this section, however, we examine our second prediction, i.e. whether social interactions and connectedness influence the prevalence of stockholding and the degree of exposure to stockholding risk beyond its indirect effect through stock market expectations.

Our starting point is the demand for investing in the stock market in expressions (9) and (10). Reorganizing this indicates that the risk-adjusted individual demands depend on a term that is common to all agents and a term that is individual-specific. Since we are exploiting empirically the variation across agents, a linear approximation of (9) suggests the following econometric specification for agent i’s share of financial wealth invested in the stock market:

$$D_i = \%FW_i = \max\{0, \lambda_0 + \lambda_1 k_i^+ + \lambda_2 \text{Expec } R_i + \lambda_3 p_i + \tau_i + u_i\},$$ \quad (17)

where u_i is an individual-specific error term. The vector τ_i contains individual characteristics for respondent i, like age, gender, marital status, number of children, geographical region of residence, employment status, assets, income, borrowing or liquid savings. It also includes individual perceptions about the respondent’s relative standing in terms of peer characteristics for both the respondent’s social (professional status) and financial circles (professional status, education and total wealth) to capture conformity-driven peer effects on financial behavior.\(^{26}\)

In addition, individual perceptions about population behavior/information are also included as observable controls for correlated effects that may be present due to aggregate events such as a ‘news shock’ or a ‘market trend’. The signs under the constant coefficients indicate the theoretically predicted signs: more/better informed connections reduce the equilibrium posterior variance of expected returns (coefficient λ_1), a higher expected net excess return (coefficient λ_2) and lower risk aversion (coefficient λ_3) increase the desired fraction of financial wealth to be invested in the stock market, controlling for individual characteristics.

The zero term within the specification allows for the observed prevalence of non-stockholders in the population. The empirical literature on stockholding has dealt with stock market non-participation in two ways. One way is discrete choice estimation (typically probit and less frequently logit regressions) of the decision whether to hold stocks or not. Non-participation arises when the expected benefit from participation, which is a function of desired stockholding and the expected equity premium, does not exceed the participation cost. A second type of empirical approach invokes tobit estimation of the risky portfolio share. This is typically

\(^{26}\)The detailed definitions of these can be found in Appendix B.
linked to the portfolio model by considering that an agent can have a desired portfolio share that is positive or negative, but the latter is restricted to zero through a constraint preventing short sales of stock. This offers a possibility to examine the household’s degree of exposure to stockholding risk, as opposed to focusing only on its presence.27 Note that, in both cases, portfolio demand, stock market expectations, and stock market perceptions play a potentially important role.

By analogy to our analysis of expectations and perceptions above, we also consider another specification involving behavior among peers. This takes the form:

$$D_i = \%FW = \max\{0, \ z_0 + z_1 D_i^f + \ (+) z_2 \text{Expec } R_i + \ (\cdot) z_3 \rho_i + \ (\cdot) \tau_i \zeta_i + w_i \}, \quad (18)$$

where D_i^f represents a feature of the respondent’s social circle, in this case the extent of peer participation in the stock market, as perceived by the respondent. Consistent with our approach in the previous section, we split the respondent’s social circle into the financial circle and the outer circle, and we use the respondent’s perceptions about both. In specification (17) we focus on the respondent’s perceptions about how informed the two circles are with regard to the stock market; and in (18) we use their perceptions regarding stock market participation of the two circles, which are identified relative to the overall population participation rate in the stock market as perceived by the individual.

Stock Market Participation. Column (1) of Table 3 presents results for a participation probit that employs responses on how informed the two circles are. We confirm that subjective expected returns are positively and significantly related to participation, consistent with existing portfolio models, even after controlling for a number of household characteristics and for its declared willingness to take risks, formulated as absolute risk aversion. Interestingly, however, we find that a one standard deviation increase in the mean share of a respondent’s financial circle that is informed about the stock market increases the probability of investing in stocks by 7.4 percentage points, representing about a 34% increase in the unconditional probability. This provides empirical support to our second prediction, i.e. that having more/better informed connections reduces the equilibrium posterior variance of stock returns. Furthermore, the same is not true for the outer circle.

Column (2) repeats the exercise but now uses respondent perceptions as to the prevalence of stock market participation in the financial and in the outer circle. Here the potential for imitation of stock market participation among peers is clearly present. Imitation of a person whom the respondent considers worthy of discussing financial matters is likely to be mindful imitation. It might even not be imitation at all, if the respondent is not influenced by the mere fact that the members of the financial circle participate in the stock market, but by the information they are able to provide because they do participate.

However, we also find that stock market participation among the outer circle has a positive

27This standard approach should be interpreted with some caution, as it reduces stock market non-participants to frustrated short-sellers of stock. Nevertheless, it is consistent with the use of an estimator for censored data such as tobit and opens up possibilities for studying the extensive margin.
and statistically significant relationship to the respondent’s own decision to hold stocks. Further, from comparing both, we find that a one-standard-deviation increase in the mean share of the respondent’s financial circle investing in the stock market, increases the probability to invest in stocks by around 6.3 percentage points, representing about a 30% increase relative to the sample mean proportion of stockholders of 21.7%; for the outer circle, the respective numbers are an increase in the probability to invest in stocks by 4 percentage points, representing a 19.5% increase relative to the sample mean proportion of stockholders. As respondents do not discuss financial matters with these members of their social circle, being influenced positively by the share of participants in that outer circle suggests imitation. The finding that respondents are influenced by the participation of people in their social circle with whom they do not discuss financial matters indicates that a tendency for conformism and mindless imitation as regards stock market participation cannot be ruled out. This tendency appears to stand side by side with a considerable tendency of respondents to be influenced only by their financial circle when it comes to forming perceptions about past returns, expectations about future returns, and decisions based on the informative value of social interactions.

Columns (3) and (4) pursue further the econometric problem of potential unobserved heterogeneity creating the observed correlations. In both cases, it is possible that the observed relationships arise from unobserved factors that influence both the respondent and the respondent’s peers. Splitting the social circle into financial and outer circles already provides evidence against unobserved heterogeneity, but now we have in column (2) a case in which we observe the joint significance of both circles. In columns (3) and (4), we reshuffle the responses regarding how informed the two circles are and how heavily they participate in the stock market, respectively. Ideally, we would like to do this reshuffling among the actual peers of each respondent. As the identity of the peers is unknown to us and the peers are most likely not included in the data set, we reshuffle responses among members of the same age and education group and living in the same region as the original respondent, on the assumption that these are key criteria for determining the social circle. We find that, when each respondent is matched not with his or her own responses regarding the financial and outer circles, but with those of a random person in the same age and education group and living in the same area, the coefficients on both circles are no longer statistically significant. This shows that the observed correlations in columns (1) and (2) do not arise from unobserved factors that affect all members of the same age and education group who reside in the same area, including the respondent.

Conditional portfolio shares. Columns (5) and (6) of Table 3 adopt a tobit specification in order to test for peer influences on the size of the exposure to stockholding risk in the portfolio. Symmetrically to columns (1) and (2), columns (5) and (6) examine the role of perceptions regarding how informed the two circles are and to what extent they participate in the stock market. Here, the result is the same, regardless of which feature of the peer circle we consider: higher shares of informed or participating members of the financial circle are related to greater exposure to stockholding risk, providing support for the main theoretical prediction. But so does the share of the outer circle investing in the stock market, which now accounts for
about a half of the overall peer effect on the share of wealth invested in the stockmarket: a one-standard-deviation increase in the mean share of the respondent’s financial circle investing in the stock market, is related to a higher conditional share of financial wealth invested in the stock market by around 1 percentage point, representing about a 4.3% increase relative to the sample mean share of 21.41% amongst stockholders. For the outer circle, the corresponding figures are higher conditional share invested by 1.4 percentage points, representative a 6.4% increase relative to the sample mean. Columns (7) and (8) confirm that the effects identified on the intensive stockholding margin are not due to unobserved heterogeneity, by repeating the analogue exercise as reported under columns (3) and (4) for the participation decision. We also note that the effects on the conditional share are net of the effect of subjective expectations. The latter are also determined by the effect of perceptions of peer information and behavior on perceptions of returns reported in subsection 4.2.

All in all, the results in Table 4 suggest that exchange of useful information and possibly mindful imitation are strongly related to whether individuals participate in the stock market and to the share of financial wealth invested in the stock market, conditional on participating; yet, we also find some evidence of mindless imitation of the outer circle.

Robustness. So far, we have subjected our findings of a relationship between peer information/peer participation and respondent behavior to the scrutiny of distinguishing between the inner (financial) circle and the outer social circle, as well as of running placebo tests as ways to handle unobserved heterogeneity. Here we examine robustness of our findings to recognizing that respondents have a choice of whether to form a financial circle or not, and that this choice may be taken jointly with the decision regarding stockholding. Specifically, it may be that people have some unobserved reason to hold stocks and this factor also pushes them to form a financial circle with whom they can discuss stockholding and other financial matters. This joint decision could induce the observed correlation between stockholding and financial sector attributes without any implication of causality from the financial circle to the respondent’s stockholding behavior.

To deal with this issue, we follow Blume et al. (2011) and we treat group choice and behavior within a group as a set of joint outcomes. Specifically, we consider a bivariate probit model for the choice to participate in the stock market and the choice to form a financial circle, allowing for correlated unobserved factors influencing the two choices. We estimate the following bivariate

28 The standard approach in the literature has been to instrument peer financial behavior; e.g. Brown, Ivkovic, Smith and Weisbenner (2008) use the one-year-lagged average equity ownership of nonnative community members’ birth states for equity ownership within the community, when exploiting the variation across Metropolitan Statistical Areas which define communities. Here, we take the view by Blume et al. (2011) according to which self-selection contains information about the respondent’s preferences, "which will depend on the social interactions that occur in groups over which he is choosing". (p.880)

29 Note that a two-step process, with financial circle formation as the first step, would run into the difficulty that having a financial circle is not a prerequisite for holding stocks. Indeed, our data include stockholders who do not declare having a financial circle.
probit econometric specification:

\[
\begin{align*}
\Pr(\text{Stocks}_i > 0) &= \Phi(\lambda_0 + \lambda_1 k^*_i FC + \lambda_2 k^*_i OC + \lambda_3 \text{Expec } R_i + \lambda_4 \rho_i + \tau_i \lambda) \\
\Pr(FC_i > 0) &= \Phi(v_1 k^*_i SC + v_2 \text{Expec } R_i + v_3 \rho_i + \tau_i \nu')
\end{align*}
\]

(19)

and the corresponding one for peer participation in stockholding as opposed to the share of informed peers, where we replace \(k^* \) with \(D^e \). The stockholding participation probit is modeled as in previous sections. For the probit describing whether the respondent decides to form a financial circle as a subset of the social circle, we postulate a set of explanatory variables that include the respondent’s observable characteristics, the elicited degree of absolute risk aversion, subjective expectations regarding stock market returns, subjective perceptions about the relative standing of the respondent’s professional status relative to the mean professional status of the overall circle, and subjective perceptions about the share of members of the overall social circle that is informed about the stock market and the share that is participating in the stock market.

In principle, perceptions about the social circle could have ambiguous effects on the decision to form a financial circle. Perceiving more social contacts as informed or participating (or both) could encourage the respondent to discuss financial matters with some of them or could lead the respondent to avoid restricting communication about financial matters to a subset of the social circle. However, the more being in the financial circle and discussing financial matters with the respondent has to do with exchanging information rather than engaging in mindless imitation, the more likely it is that we will observe a particular pattern. Specifically, in the case of informative social interactions rather than mindless imitation, we would expect to find that respondents are more likely to form a financial circle when they perceive their social circle to have a larger share of informed peers; and that they are not influenced in this decision by the share of people they perceive as candidates for imitation.

Table 4 presents four bivariate probits. Odd-numbered columns correspond to the stock market participation branches of the corresponding bivariate probits, while even-numbered columns are the branches depicting the choice of whether to form a financial circle or not. In regressions (1) and (3), the share of the social circle participating enters the regression for whether the respondent has a financial circle or not, while the share of the financial circle participating enters the second leg of the stock market participation decision. In regressions (2) and (4), the share of the social circle perceived to be informed about the stock market plays this role, with the corresponding share of the financial circle participating entering the stock market participation leg.

The stock market participation results under columns (1) and (3) confirm the results we obtained earlier, even when we now also allow for a unobserved correlation in the two decisions: subjective expected returns are positively correlated with stock market participation, and so are the perceived shares of informed members in the financial circle, as well as of the participating members in the financial or outer circles. This shows robustness of our earlier results to the choice of a financial circle. The estimates for the corresponding second branches, though,
provide additional support for the presence of informative social interactions: the share of informed members of the social circle is statistically significant for the choice to form a financial circle, but the mere share of participating members is not.

Moreover, Table 4 sheds light on the main concern leading to the bivariate probit specification, namely that respondents who intend to invest in the stock market, choose within their social circles, the peers with whom to discuss their own financial matters. In that case, the error terms u_i and ν_{iFC} would be highly correlated such that $u_i = \phi \nu_{iFC} + \nu_i$, and the results reported in previous tables would be biased due to selection. The last three rows in Table 4 report such correlations ϕ and the Wald test statistics and associated p-values for different specifications of (19) considered, and in no case can we reject the null of independence, $H_0 : \phi = 0$. In addition, estimated coefficients on the peer variables and on other co-variates under columns (1) and (3) tend to be similar to those in Table 3.

The robustness of our findings to explicit consideration of the joint decision to have a financial circle and to hold stocks may admit an intuitive interpretation, also in light of Blume et al. (2011, 2015): by conditioning on the share of peers informed or participating with whom the respondent does not exchange on own financial matters (i.e. on the outer social circle information or behavior), we are implicitly controlling for the possibility of selection into the financial circle in specifications considered in previous sections.30

All in all, bivariate probit analysis provides a useful robustness check for our earlier findings and some additional support for the hypothesis that social interactions regarding stockholding have an important information, rather than mere imitation, content.

4.4. Comparison to experimental evidence. Banerjee et al. (2013) and Bursztyn et al. (2014) adopt experimental methods to disentangle information from imitation effects of the social circle. Banerjee et al. (2013) consider a novel microfinance program and replace the unconditional individual probability of participation by the individual probability of participation conditional on individual information sourced from friends. Once informed, they find that an agent’s decision to participate in the program is not significantly influenced by the fraction of her friends participating, concluding that the influence of peer participation is mainly an information effect.31 It is possible to construct an extreme interpretation of their findings that would be in conflict with ours. Under such an interpretation, if people are generally aware of the existence of stocks, they should no longer be influenced by the share of their peers participating in them. Such an interpretation would be in contrast to our findings.

We opt for a different interpretation, which stresses the nature of the underlying financial product. The particular microfinance product may have a much higher probability of participation conditional on awareness than stocks do. To take an extreme, if practically all people who know about the microfinance product choose to use it, the value of social links is in transmitting

30This is supported by the results reported under columns (5) and (7) where the peer effects from the outer circle are (mistakenly) excluded, resulting in an increase in the correlation in the error terms of the group selection and the behavior within a group equations.

31Their work relies heavily both on the identification of the actual network structure and on control over the information spreading through it.
otherwise inaccessible information and providing more information has no further effects. Yet we know that stock market participation is quite limited even among the many people aware of stocks in developed economies. Thus, there is room for further information beyond the existence of stocks to deliver effects on stock market participation and on the degree of exposure to stockholding risk.

Bursztyn et al. (2014) adopt a different experimental strategy and find empirical support for both information and imitation channels. They design a field experiment amongst socially paired investors of a Brazilian brokerage firm, and through sequential randomization, they separate the effect of a social peer actually purchasing a new financial product from being informed about it. This is accomplished by randomly informing peers about products, but also controlling whether they are able to invest in them or not. They are thus able to decompose the total effect of observing a peer hold a product into one that comes from the information that the product exists and one that comes from the information that a known product has been purchased by the socially connected peer. Naturally, being able to measure these effects requires focusing on products that are completely unknown to respondents at the start of the experiment and having full control of information flows and acquisition possibilities.

In our analysis, we deal with a well-known, yet information-intensive product in a developed economy, namely stocks in France. Our econometric results, based on newly designed and produced survey data, point to an information role for social interactions, as effects are obtained only through interactions with the financial but not with the outer circle. However, we have also found that stock market participation (as opposed to the degree of exposure) is also subject to imitation of the outer circle, with whom no discussion of financial matters takes place. The more limited role for mindless imitation in the context of a widely known and mature product such as stocks is quite intuitive: not much information is added by learning that an extra person holds it, compared to learning this about a completely novel product.

Mature financial products for which there is limited participation and uncontrolled access to information by potential investors abound in developed economies. Population-wide surveys of behavior relating to such products can provide useful additional insights to the interesting findings of tightly managed experiments with new or artificial financial products.

5. Conclusions

We provide a model where purely informative social interactions influence subjective expectations of future stock market returns as well as the demand for investing in stocks, within a competitive market environment. The model shows that, conditional on investing, an agent collects more information from better informed peers, and through the posterior variance reduction it enables, she demands more stocks in equilibrium. By designing, collecting, and exploiting novel survey data for a representative sample of the French population by age, wealth and asset classes, collected in December 2014 and May 2015, we find strong support for the presence of informative social interactions, as well as some evidence for the presence of mindless imitation of perceived participation behavior in the outer social circle with whom respondents do not discuss finances.
Based on our findings, the extent to which the respondent perceived the financial circle to be informed about, or participating in the stock market, tends to influence perceptions of recent returns and only through them, expectations of future returns. Stock market participation and the degree of exposure to stocks conditional on participation are positively influenced by stock market expectations. However, this is not the only channel through which peers influence stockholding behavior. Even controlling for subjective expectations, stock market participation and the conditional portfolio share are additionally positively influenced by the extent to which the financial circle is informed or participating, both of which reduce the posterior variance of expected returns. We did not find evidence that the corresponding attributes of the outer social circle, with whom the respondent does not discuss finances, influence perceptions of past stock returns or expectations of future returns. These findings are consistent with the notion that social interactions tend to be, at least in part, informative in relation to stockholding. However, we did find some evidence for the presence of imitation of stock market participation observed in the outer social circle. Unlike what happens with the financial circle, respondents do not discuss financial matters with members of this outer circle, and this creates a presumption for the presence of mindless imitation in the participation decision alongside informative social interactions.

We have followed a three-pronged approach to dealing with unobserved heterogeneity being the source of these results. First, we distinguish between attributes of the financial and of the outer circle: unobserved heterogeneity would tend to make both relevant rather than only one, as is observed in several of our results. Since those results are also conditional on corresponding population attributes, correlated effects should also be less of a concern. Second, we perform placebo tests, where respondents’ perceptions regarding the financial and the outer circle are reshuffled across respondents of the same age, education, and region (département). We find that such reshuffling eliminates the estimated effects. Third, we adopt a bivariate probit specification which recognizes the possibly joint nature of the decision to hold stocks and to form a financial circle. When we treat group choice and behavior within a group as a set of joint outcomes, the null of independence among the two choices cannot be rejected in our sample, and our estimates tend to be similar regardless of whether we allow for a joint decision or consider stockholding choices separately. As a further robustness exercise, we use four questions from the TNS2015 questionnaire (questions C5, D6, D7 and D8) that ask respondents to report how they perceive themselves relative to those in their social and financial circles, in terms of professional standing, value of their financial assets and qualifications. For all these questions, respondents answered that less than half of their acquaintances were similar to them in terms of qualifications and professional standing, or had more or less the same assets as them. This cross check provides some evidence against strong homophily, thus lending more support to our model-backed interpretation of the estimated effects.

Informative social interactions imply a potentially powerful channel through which financial information and financial literacy can permeate through the economy, even if the original information or financial education content reaches a relatively small segment of the population. They point to a social multiplier in financial education or financial information even in countries
with advanced financial development and in products that are mature and widely known, as is the case of stockholding in France. They provide a (partial or superior) substitute for financial advice, if ill-conceived, poorly incentivized, or hardly trusted. Finally, they are likely to grow in importance, as use of social media and the potential to reach more people with new information spread rapidly. Yet the data also indicate the presence of some mindless imitation in stockholding. This, along with the inequities involved in having to rely on second-hand information, suggest caution in relying exclusively on social interactions for the spread of useful information and best financial practices.
References

APPENDICES

A. Noisy Rational Expectations Equilibrium

We conjecture that the risky asset price has the form

\[p = \pi_0 + \sum_{j=1}^{n} \pi_j x_j - \gamma Z_n, \]

(20)

and imposing market clearing we have that

\[\sum_i D_i^t = Z_n. \]

Let \(r_{ij} = g_{ij} / \sum_{k=1}^{n} g_{ik} \) be the intensity of the link between nodes \(i \) and \(j \), which defines the intensity matrix \(R = [r_{ij}] \). Then, we can define

\[S \equiv Cov (Re) = R\Sigma R^T, \]

so that

\[R = K^{-1} G = K^{-1} A \Sigma^{-1}, \]

where \(K \) is a diagonal matrix with diagonal elements the sums of the rows of \(G \), i.e. the strengths of the nodes, \(K = diag [k_1, ..., k_n] \), and therefore

\[S \equiv K^{-1} W K^{-1}. \]

where the matrix \(W \) is defined by \(W = G \Sigma G^T = A \Sigma^{-1} A \). We note that because \(A \) is symmetric and \(a_{ij} \in \{0, 1\} \), it is trivially true that

\[W_{ii} = k_i = \sum_{j=1}^{n} a_{ij} / s_j^2. \]

Finally we make the following assumptions:

A1. \(\|W\|_\infty = o(n) \), i.e.

\[\lim_{n \to \infty} \frac{\|W\|_\infty}{n} = 0 \]

(21)

A2. \(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{k_i}{\hat{\rho}_i} = \beta + o(1) \). This is slightly modified version of the assumption made by Ozsoylev and Walden (2011). It is written in terms of \(k_i \), i.e. the strength of links, \textit{weighted by the risk aversions}, but has the same interpretation as in Ozsoylev and Walden (2011), i.e. that the average strength of nodes weighted by risk aversion (average risk-adjusted connectedness) is \(\beta \), and is finite.

A3. The risk aversion coefficients come from a distribution such that the harmonic mean is finite as \(n \to \infty \), i.e.

\[\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\hat{\rho}_i} = \hat{\rho} < \infty. \]
A4. The limit

$$\lim_{n \to \infty} k_i = k_i^* < \infty$$

exists and is finite. The interpretation of this assumption is that no investor can be a node with very large strength as the network becomes larger. In other words, no agent can have too many connections that have very precise signals. This excludes scenarios of an informationally superior elite in the network.

Under these assumptions can extend Ozsoylev and Walden’s results to the following:

Theorem 1. Under Assumptions A1-A4, with probability 1, the equilibrium asset price converges to

$$p = \pi_0^* + \pi_i^* \bar{X} - \gamma^* \bar{Z}$$

where

$$A = \frac{\beta}{\dot{\rho} \Delta^2}$$

$$\pi_0^* = \gamma^* \left(\frac{X \Delta^2 + Z \beta \sigma^2}{\sigma^2 \dot{\rho} \Delta^2 + \sigma^2 \beta} \right)$$

$$\gamma^* = \frac{\beta \sigma^2 \dot{\rho} \Delta^2 + \Delta^2 + \beta^2 \sigma^2}{\beta \sigma^2 \dot{\rho} \Delta^2}$$

$$\pi_i^* = \gamma^* \beta$$

and the optimal demand for the risky asset for an investor i is

$$D_i^* \equiv D_i^* (x, p) = \frac{\dot{\rho}}{\rho_i} \left(\frac{X \Delta^2 + Z \beta \sigma^2}{\sigma^2 \dot{\rho} \Delta^2 + \sigma^2 \beta} \right) - \frac{\dot{\rho}}{\rho_i} \left(\frac{\Delta^2}{\sigma^2 (\dot{\rho} \Delta^2 + \beta)} \right) p + \frac{k_i^*}{\rho_i} (x_i - p)$$

The proof follows the same steps as in Ozsoylev and Walden with some suitable modifications. The strategy of the proof is to follow the ‘guess-and-verify’ approach, and the main steps are:

1. Conjecture a functional (linear) form for the price, with unknown coefficients.
2. Derive beliefs for the agents as a function of the price coefficients (using Bayesian updating).
3. Derive the optimal demands for the agents given their endogenous beliefs.
4. Impose market clearing and solve for the stock price.
5. Impose rational expectations (i.e. equalize coefficients) and confirm that the corresponding system of equation generates a solution, which will then provide solutions for the price coefficients.
6. Check, with asymptotic arguments that conditions required to ensure that the coefficients exist (i.e. the system has solution) as $n \to \infty$, are satisfied given the assumptions A1-A4.

The detailed steps of the proof are available upon request.
B. Definitions of Variables

Table 5 reports summary sample statistics for all the variables we have used for the analysis, and compares them to similar measures (when available) in the 2014-2015 *Patrimoine* INSEE Survey, collected by the French National Institute of Statistics (INSEE). This is a French Household Wealth Survey, which targets around 20,000 households randomly selected through a process that ensures representativeness of social categories at the national level. Respondents are interviewed face-to-face, and are asked to report households’ real-estate, financial and professional assets and liabilities in France. It oversamples the rich (just as most national wealth surveys do, like the US PSID or the Italian SHIW), and has been fielded in 1986, 1991-1992 (*Actifs financiers*), 1997-1998, 2003-2004, 2009-2010 and 2014-2015 (*Patrimoine*) without a longitudinal dimension. Since 2017, and in partnership with the Banque de France, it inputs the French part of the Household Finance and Consumption Survey (HFCS), a harmonized system of wealth surveys supervised by the European Central Bank (ECB). From 2014, the French Household Wealth Survey takes place every three years, and contains a subsample with a longitudinal dimension. The new panel establishes, complementary to the face-to-face surveys, a short self-administered follow-up survey (internet/paper) between waves to reduce attrition. In addition to describing the distribution of assets and liabilities and their evolution, the surveys also contain comprehensive information on factors accounting for wealth accumulation: family and professional biography, inheritances and gifts, income and financial situation.

B.1. Expec. R. and Perc. R.: Subjective Mean Expectations and Mean Perceptions of Stock Market Returns. To measure expectations, we elicited probabilistically respondents’ beliefs about the cumulative stock market (CAC-40 index) return over a five-year horizon, P_{t+5}, relative to December 2014, P_t, from the following question (translated wording):

C39: ‘In five years from now, do you think that the stock market... ’ (For each category write down how likely the occurrence is by assigning a value between 0 and 100. The sum of all your answers must be equal to 100):

- ... will have increased by more than 25%
- ... will have increased by 10 to 25%
- ... will have increased by less than 10%
- ... will be the same
- ... will have decreased by less than 10%
- ... will have decreased by 10 to 25%
- ... will have decreased by more than 25%

Question C39 inquires respondent i about the subjective relative likelihood of occurrence, $p_{i,t+1,k}$, of each of the seven alternative scenarios, $k = 1, ..., 7$. Each scenario represents a possible
outcomes range for the index percentage change between \(t \) and \(t+5 \), \(R_{t+1}(5) \equiv \frac{P_{t+5}}{P_t} - 1 \). \(^{32}\)

Questions C40 and C41 provide subjective upper and lower bounds for the percentage change, \(R_{i\text{max}}^i \) and \(R_{i\text{min}}^i \) respectively. The corresponding outcome ranges are:

\[
R_{t+1} \in \left\{ \left[-R_{i\text{min}}^i, -25 \right], \left[-25, -10 \right], \left(-10, 0 \right], \{0 \}, \{0, 10 \}, \{10, 25 \], \{25, R_{i\text{max}}^i \} \right\}
\]

and respondents’ subjective likelihoods are accordingly:

\[
p^i_{t+1,k} \equiv \Pr \left(R_{t+1} \in k \right) = \Pr \left(\frac{P_{t+5}}{P_t} - 1 \in k \right), \forall i
\]

and zero elsewhere, i.e. \(R_{t+1} \in (-\infty, -R_{i\text{min}}^i) \cup (R_{i\text{max}}^i, +\infty) \). Table 5 reports summary sample statistics for respondents’ answers regarding expectations about stock market returns, imposing a uniform distribution within the different outcome ranges. On average, households appear more pessimistic and uncertain than the historical record would predict.

To quantitatively assess how factually informed respondents are, we elicit probabilistically respondents’ perceptions about the most recent cumulative stock market return (CAC-40 index) over the three years, \(P_{t-3} \), immediately prior to fielding the survey (December 2014), \(P_t \), as follows (translated wording):

C42: ‘Over the last three years, do you think that the stock market... (For each category write down how likely the occurrence is by assigning a value between 0 and 100. The sum of all your answers must be equal to 100):

- ... has increased by more than 25%
- ... has increased by 10 to 25%
- ... has increased by less than 10%
- ... has remained the same
- ... has decreased by less than 10%
- ... has decreased by 10 to 25%

\(^{32}\)We follow the standard convention in finance for long-horizon returns, and let \(1 + R_{t+1}(s) \) denote the stock market index gross return over \(s \) periods ahead (hence the subindex \(t+1 \)), which is equal to the product of the \(s \) single-period (or yearly) returns:

\[
1 + R_{t+1}(s) = \prod_{f=0}^{s-1} \left(1 + R_{t+1+f} \right) = \prod_{f=0}^{s-1} \left(\frac{I_{t+1+f}}{I_{t+f}} \right)
\]

Similarly, we let \(1 + R_t(s) \) denote the stock market index gross return over the most recent \(s \) periods from date \(t-s \) to date \(t \) (hence the subindex \(t \)):

\[
1 + R_t(s) = \prod_{b=0}^{s-1} \left(1 + R_{t-b} \right) = \prod_{b=0}^{s-1} \left(\frac{I_{t-b}}{I_{t-1-b}} \right)
\]

See Campbell et al. (1997) for details.
... has decreased by more than 25%

Similarly to Question C39, Question C42 asks household \(i\) about the subjective relative likelihood of occurrence, \(p_{t,k}^i\), of each of the seven alternative scenarios, \(k = 1, ..., 7\). Each scenario represents a possible outcome range for the percentage change in the index between \(t - 3\) and \(t\), \(R_t(3) = \frac{P_t}{P_{t-3}} - 1\). Probabilistic elicitation of realized outcomes thus enables us to measure how uncertain they are when conveying their answers. Since ranges \(k = 1\) and \(k = 7\) are unbounded, we set \((R_{\text{max}}, R_{\text{min}})\) to match observed values. The outcome ranges for \(R_t\) are identical to those of question C39. Accordingly, households’ subjective likelihoods are given by:

\[
p_{t,k}^i \equiv \Pr_i^k (R_t \in k) = \Pr_i^k \left(\frac{P_t}{P_{t-3}} - 1 \in k \right), \forall i
\]

Three years prior to the time when the survey was conducted (December 2011), the stock market index was only slightly above the floors reached after the dot-com and Lehman Brothers busts. But, between late December 2011 (CAC 40 = 3159.81) and late December 2014 (CAC 40 = 4252.29), the index had increased an overall 34.57%. Figure 1 in the main text shows the time window chosen within the wanderings of the CAC-40 index between 1990 and 2016. Table 5 reports summary sample statistics for respondents’ answers regarding perceptions and beliefs about stock market returns, imposing a uniform distribution within the different outcome ranges. A striking finding is that households are on average also pessimistic regarding the most recently realized three-year cumulative stock market return (Dec. 2011-Dec. 2014). Although this might be due to imperfect memory given the unusually long horizon, it might also be related to the 2007 Lehman Brothers’ bust being overweighted on respondents’ memory (Hurd et al., 2011), even if outside the question’s time window. The big spread around the realized three-year cumulative stock market perceived return came as no surprise, and it captures factual ambiguity. In addition, it is remarkable that it remains smaller than the spread around the expected five-year ahead cumulative stock market return.

Figures B1a and B1b below report the histograms of respondents’ answers to the subjective expectations and perceptions questions, C39 and C42 respectively, for both the mean (left panel) and the standard deviation of mean responses (right panel). Figure B1a (right panel) conveys that around 34% of respondents reported a zero standard deviation of subjective mean expected returns for the five-year ahead stock market cumulative return, in clear dissonance with available historical evidence. This misperception of stock market risk motivates the definition of a categorical variable ‘Certain Expec. R.’, which takes value 1 if the respondent reports a zero standard deviation of mean expected returns, and takes value 0 otherwise.
Arrondel et al. (2014) report that categorical answers to frequency, variety and access specialized media, advice from professionals, as well as the number of stock market transactions carried over the last year, increase the likelihood of being factually informed. Interestingly, parents’ stock ownership status (‘cultural transmission’), parents’ educational attainment or family background do not increase the odds of being factually informed, and actually significantly decreases them for those who follow family advice. Since those who follow friends’ advice are more likely to be informed, they interpret the evidence as being consistent with social interactions being instrumental in gathering information (as in Hong et al., 2004). On the other hand, a measure of optimism (‘being lucky in life’) has a negative impact on being informed, indicating that an ‘overconfidence bias’ is not present once gender is conditioned upon: although males appear better informed, supporting more optimistic forward looking expectations, optimists appear consistently worse informed. On the basis of that finding, they argue that the findings of Bilias, Georgarakos and Haliassos (2010), consistent with inertia in households’ portfolios,
can be reconciled with Guiso and Jappelli’s (2005) findings, consistent with excess trading even amongst the general population. Importantly, they do not find evidence of temporal or risk preferences determining information sets, in line with Van Nieuwerburgh and Veldkamp (2010). In addition, and although total wealth does not increase the odds of being informed, income does, in line with a costly information acquisition interpretation (Peress, 2004). Finally, they report that optimists and low income/income constrained respondents are less likely to be informed, consistent with rational inattention theory (Sims, 2003). Overall, those findings support probabilistically elicited perceptions as a sensible measure of factual information.

B.2. %FW: *Share of financial wealth invested in the stock market.* Respondents report their total financial wealth and the share of their total financial wealth invested in the stock market, in questions C16 and C19 respectively (TNS2014). Question C16 asks respondents to report their total financial wealth (excluding housing and own businesses) within given brackets (see below for further details). The translated wording for question C19 is:

C19: Approximately what percentage of your total financial wealth have you invested in listed or unlisted shares, directly or in unit trusts, in a personal equity plan or a mutual fund (yourself or a member of your household)? If you don’t have any, please answer 0%.

We have a total of 2,891 observations for these questions. Out of 3,780 survey respondents, about 76% responded meaningfully. The mean percentage of financial wealth invested in the stock market is 5.32%, and the standard deviation is 14.52%.

B.3. Population, social and financial interactions. These variables are described in detail in section 3. Summary statistics for questions C1, D1, C6, C7 and D16 are presented in Table 5.

B.4. Measures of social relative standing. The survey contains four measures of the respondent’s relative standing in terms of social circle and financial circle outcomes:

SC Rel. Stand. Profes.: In the survey (question C5), the respondent is asked about the percentage shares of people in the respondent’s social circle that have a professional status above, similar, or below the respondent’s, labelled ‘SC Rel. Stand. Profes. +’, ‘SC Rel. Stand. Profes. =’, or ‘SC Rel. Stand. Profes. −’ respectively. Since answers are asked to add up to 100, the reference category is ‘SC Rel. Stand. Profes. =’. About 47% of respondents chose the option to tick the box conveying ‘I do not know’, which informs the corresponding ‘DK(SC Rel. Stand. Profes.)’ dummy variable in Table 5. Non-respondents account for 33%, and are coded as ‘NR(SC Rel. Stand. Profes.)’.

FC Rel. Stand. Profes.: In the survey (question D6), the respondent is asked about the percentage share of people in the respondent’s financial circle that have a professional status above/similar/below the respondent’s, labelled ‘FC Rel. Stand. Profes. +’, ‘FC Rel. Stand. Profes. =’, or ‘FC Rel. Stand. Profes. −’ respectively. Since answers are
asked to add up to 100, the reference category is ’FC Rel. Stand. Profes. =’. About 51% of respondents chose the option to tick the box conveying ‘I do not know’, which informs the corresponding ‘DK(FC Rel. Stand. Profes.)’ dummy variable in Table 5. Non-respondents account for 35%, and are coded as ‘NR(FC Rel. Stand. Profes.)’

FC Rel.Stand. +Wealth: In the survey (question D7), the respondent is asked about her/his relative standing in terms of wealth relative to the average wealth of the respondent’s financial circle, and is given three options: ‘below the average’, ‘approximately at the average’, or ‘above the average’. Responses were coded as ordered categories in increasing order from 1 to 3. About 38% chose not to respond, and are coded as ‘NR(FC Rel.Stand. +Wealth)’ in Table 5.

FC Rel.Stand. +Edu.: In the survey (question D8), the respondent is asked about her/his relative standing in terms of educational attainment relative to the average educational attainment of the respondent’s financial circle, and is given three options: ‘below the average’, ‘approximately at the average’ or ‘above the average’. Responses were coded as ordered categories in increasing order from 1 (below) to 3 (above). Around 38% are non-responses, which are coded as ‘NR(FC Rel.Stand. +Edu.)’ in Table 5.

B.5. Demographics and other control Variables.

Endowments.

Total wealth: In the survey (question C29), the respondent is asked which of the ten predefined available brackets corresponds to the household’s non-human wealth, including housing, estates and professional assets (without excluding debt):

- ‘Less than 8,000’,
- ‘between 8,000 and 14,999’,
- ‘between 15,000 and 39,999’,
- ‘between 40,000 and 74,999’,
- ‘between 75,000 and 149,999’,
- ‘between 150,000 and 224,999’,
- ‘between 225,000 and 299,999’,
- ‘between 300,000 and 449,999’,
- ‘between 450,000 and 749,999’ and
- ‘750,000 or more’. Total wealth is given in Euros. From the empirical distribution we obtain total wealth quartiles, the bounds of which are given by ‘74,999’, ‘224,999’ and ‘449,999’. The reference category is the first quartile, ‘less than 74,999’.

Total financial wealth: In the survey (question C16), the respondent is asked which of the ten predefined available brackets corresponds to the household’s financial wealth (excluding housing, estates and professional assets), including cash and positive balances on checking accounts:

- ‘Less than 500’,
- ‘between 1,500 and 2,999’,
- ‘between 3,000 and 7,999’,
- ‘between 8,000 and 14,999’,
- ‘between 15,000 and 29,999’,
- ‘between 30,000 and 44,999’,
- ‘between 33

If we were interested in a continuous measure, we would implement the method of simulated residuals (Gourieroux et al. 1987). We would then regress an ordered probit of the respondents’ total wealth (bracket) on demographic and socio-economic household characteristics. Once we would have the estimated total wealth, a normally distributed error would be added. We would then check if the value falls inside the bracket originally chosen by the individual. If not, another normal error would be added and so on until we the true interval is correctly predicted. Doing so would allow us to overcome the non-response problem for some households. Would there be a missing value, the predicted value plus a normal error would be directly used.
45,000 and 74,999', ‘between 75,000 and 149,999', ‘between 150,000 and 249,999' and ‘250,000 or more'. Total financial wealth is given in Euros.

Income: For the income of the household, the survey (question A12) asks the respondent which of the nine predefined available brackets better corresponds to her situation: ‘Less than 8,000', ‘between 8,000 and 11,999', ‘between 12,000 and 15,999', ‘between 16,000 and 19,999', ‘between 20,000 and 29,999', ‘between 30,000 and 39,999', ‘between 40,000 and 59,999', ‘60,000 or more' and ‘No income’. Income refers to the respondent’s annual income (earnings, pensions, bonuses, etc.) in Euros, net of social contributions but before personal income taxes. In addition, TNS reports also the net gross monthly income of the household, in Euros. From the empirical distribution, we obtain the income quartiles the bounds of which are given by '11,999', '19,999' and '29,999'. The reference category is the first quartile, 'less than 11,999'.

Occupational status: (of the household head) the TNS 2014 survey asks respondents about their occupation, grouped into five categories: ‘inactive', ‘unemployed', ‘employed' which includes ‘white-collar' (liberal and managerial employees) and ‘blue-collar' workers (employees, clerical and manual workers); ‘self-employed' which includes farmers, artisans and shop and business owners, and ‘retired’. Finally, we group the first two categories into one, the reference category.

Preferences.

Absolute risk aversion: The following question is asked to the respondent: ‘If someone suggests that you make an investment, \(\tilde{S}_i \), whereby you have one chance out of two win 5000 euros and one chance out of two of losing the capital invested, how much (as a maximum) will you invest?’ The question aims at eliciting the taste for risk from each respondent \(i \), with preferences \(u^i(\cdot) \), from the following equality:

\[
u^i(w_i) = \frac{1}{2} u^i(w_i + 5,000) + \frac{1}{2} u^i(w_i - Z_i) \equiv Eu^i(w_i + \tilde{S}_i)
\]

The coefficient of absolute risk aversion can be then obtained from a second order Taylor expansion, as \(A_i(w_i) = 2(5000 - Z_i)/(5000^2 + Z_i^2) \), where \(Z_i \) is the amount that the respondent declares to be willing to invest. Those who declare \(Z_i < 5000 \) are risk-averse \(Z_i = 5000 \), are risk-neutral and \(Z_i > 5000 \) are risk-lovers. The outcome range for the coefficient of absolute risk aversion \(A_i(w_i) \) is \([0, 40]\). A total of 3,335 respondents answered the question, with a mean response of 38.40 and a median value of 39.92. Fig. 2 displays the histogram of responses, which is very skewed to the left but remains within the range responses found in the literature. Further details regarding the measure of absolute risk aversion can be found in Guiso and Paiella’s (2008) work.

34In France, income is not taxed at the source.
Demographics.

Age: it is a continuous variable equal to the age of the household head. Respondents’ age range is in between 19 and 94. We group respondents into four categories: ‘younger than 35’, ‘between 35 and 49 years old’, ‘between 50 and 64 years old’ or ‘older than 65’. Depending on the age bracket within which respondents’ age falls, it takes value 1 within it and zero otherwise.

Gender: it is a dummy variable equal to 1 if the household head is a male, and is equal to 0, if a female.

Marital status: Marital status is based on current legal marital status. Respondents who are married or/and living with a partner are coded as 1, and 0 otherwise.

Children at home: it is a dummy variable coded as 1 if the respondent replies that there is (a positive number of) children living at home with their parent(s), and is coded as 0 otherwise.

Constraints.

Liquidity and borrowing constrained: Respondents are asked if they held an outstanding (negative) debt balance, and if not, why. We then constructed a dummy variable that takes value 1 if the respondent answers the question in the categories ‘because my debt application was turned down’ or ‘because I did not submit an application for fear of being turned down’, and value 0 otherwise.

Saving: Question C73 in the TNS 2014 survey asks the respondent about total net household saving over the last 12 months. Six brackets are provided, in Euros, of which the first is
zero (‘we have not saved’). Around 31% of respondents report no savings over the last 12 months. From the empirical distribution, we obtain the saving quartiles the bounds of which are given by ‘0’, ‘999’ and ‘4,999’. The reference category is the first quartile.

Region of residence is a categorical variable, with nine possible categories representing the respondent’s region of residence: ‘reg 1’ is Paris, ‘reg 2’ is ‘Nord’, ‘reg 3’ is ‘Est’, ‘reg 4’ is ‘BP Est’, ‘reg 5’ is ‘BP Ouest’, ‘reg 6’ is ‘Ouest’, ‘reg 7’ is ‘Sud Ouest’, ‘reg 8’ is ‘Sud Est’ and ‘reg 9’ is ‘Méditerranée’.

Information.

Education is captured by a single categorical variable which takes value 1 if the respondent completed college or a diploma above (BAs, BScs, MScs, MBAs, professional certifications, PhDs and postdoctoral students), and takes value zero otherwise, i.e. High school or less (primary and secondary) and if the respondent failed to complete college education (technical degrees beyond high school but below college, including professional and vocational degrees).

C. Tables

Full tables with all the demographic and socio-economic controls are available from the authors upon request.
TABLE 1: Abbreviations and notation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Stands for</th>
<th>Questions</th>
<th>From</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>Social circle</td>
<td>C1</td>
<td>TNS2015</td>
</tr>
<tr>
<td>FC</td>
<td>Financial circle</td>
<td>D1</td>
<td>TNS2015</td>
</tr>
<tr>
<td>OC</td>
<td>Outer circle</td>
<td>C1, D1</td>
<td>TNS2015</td>
</tr>
<tr>
<td>%SC Inform.</td>
<td>Perceived share of SC members informed about stock market</td>
<td>C7ii</td>
<td>TNS2015</td>
</tr>
<tr>
<td>%SC Particip.</td>
<td>Perceived share of SC members investing the stock market</td>
<td>C7i</td>
<td>TNS2015</td>
</tr>
<tr>
<td>%FC Inform.</td>
<td>Perceived share of FC members informed about stock market</td>
<td>D16ii</td>
<td>TNS2015</td>
</tr>
<tr>
<td>%FC Particip.</td>
<td>Perceived share of FC members investing in stock market</td>
<td>D16i</td>
<td>TNS2015</td>
</tr>
<tr>
<td>%OC Inform.</td>
<td>Perceived share of OC members informed about stock market</td>
<td>C1, D1, C7ii/D16ii</td>
<td>TNS2015</td>
</tr>
<tr>
<td>%OC Particip.</td>
<td>Perceived share of OC members investing in stock market</td>
<td>C1, D1, C7i/D16i</td>
<td>TNS2015</td>
</tr>
<tr>
<td>% Pop. Inform.</td>
<td>Perceived proportion of the French population informed about stock market</td>
<td>C6ii</td>
<td>TNS2015</td>
</tr>
<tr>
<td>% Pop. Particip.</td>
<td>Perceived proportion of the French population investing in stock market</td>
<td>C6i</td>
<td>TNS2015</td>
</tr>
<tr>
<td>SC Rel.Stand. Prof.+</td>
<td>Perceived share of SC members performing better professionally</td>
<td>C5a</td>
<td>TNS2015</td>
</tr>
<tr>
<td>SC Rel.Stand. Prof.-</td>
<td>Perceived share of SC members performing worse professionally</td>
<td>C5c</td>
<td>TNS2015</td>
</tr>
<tr>
<td>FC Rel.Stand. Prof.+</td>
<td>Perceived share of FC members performing better professionally</td>
<td>D6a</td>
<td>TNS2015</td>
</tr>
<tr>
<td>FC Rel.Stand. Prof.-</td>
<td>Perceived share of FC members performing worse professionally</td>
<td>D6c</td>
<td>TNS2015</td>
</tr>
<tr>
<td>FC Rel.Stand. Wealth+</td>
<td>Respondent’s relative standing in terms of FC members’ educational attainment</td>
<td>D7</td>
<td>TNS2015</td>
</tr>
<tr>
<td>SC Rel.Stand. Edu.+</td>
<td>Respondent’s relative standing in terms of FC members’ total wealth</td>
<td>D8</td>
<td>TNS2015</td>
</tr>
<tr>
<td>%FW</td>
<td>Share of financial wealth invested in the stock market</td>
<td>C19</td>
<td>TNS2014</td>
</tr>
<tr>
<td>Pr(stocks>0)</td>
<td>Probability of holding stocks (directly and/or indirectly)</td>
<td>C19, C3</td>
<td>TNS2014</td>
</tr>
<tr>
<td>Perc. R</td>
<td>Perceived mean realized stock market returns</td>
<td>C42</td>
<td>TNS2014</td>
</tr>
<tr>
<td>Expec. R</td>
<td>Subjective mean expected stock market returns</td>
<td>C39</td>
<td>TNS2014</td>
</tr>
<tr>
<td>VARIABLES</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>%FC Inform.</td>
<td>0.0283**</td>
<td>0.0135</td>
<td>0.0554***</td>
</tr>
<tr>
<td>%OC Inform.</td>
<td>-0.00501</td>
<td>-0.0065</td>
<td>0.0088</td>
</tr>
<tr>
<td>%Pop. Inform.</td>
<td>-0.0039</td>
<td>-0.0043</td>
<td>-0.00177</td>
</tr>
<tr>
<td>%FC Particip.</td>
<td>0.00236*</td>
<td>0.0102</td>
<td>0.0491**</td>
</tr>
<tr>
<td>%OC Particip.</td>
<td>0.00453</td>
<td>0.0056</td>
<td>0.0494</td>
</tr>
<tr>
<td>%Pop. Particip.</td>
<td>-0.0014</td>
<td>0.0051</td>
<td>0.0027</td>
</tr>
<tr>
<td>SC Rel.Stand. Prof.+</td>
<td>0.0115</td>
<td>0.0110</td>
<td>0.0043</td>
</tr>
<tr>
<td>SC Rel.Stand. Prof.-</td>
<td>0.0222</td>
<td>0.0230</td>
<td>0.0194</td>
</tr>
<tr>
<td>FC Rel.Stand. Prof.+</td>
<td>-0.0105</td>
<td>-0.00977</td>
<td>-0.0136</td>
</tr>
<tr>
<td>FC Rel.Stand. Prof.-</td>
<td>0.0009</td>
<td>0.00101</td>
<td>-0.0104</td>
</tr>
<tr>
<td>FC Rel.Stand. Wealth+</td>
<td>0.196</td>
<td>0.224</td>
<td>0.208</td>
</tr>
<tr>
<td>FC Rel.Stand. Edu.+</td>
<td>0.0481</td>
<td>0.0531</td>
<td>0.0469</td>
</tr>
<tr>
<td>Perc. R</td>
<td>0.282***</td>
<td>0.282***</td>
<td>0.283***</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>-0.0584</td>
<td>-0.0600</td>
<td>-0.0276</td>
</tr>
<tr>
<td>Constant</td>
<td>3.920*</td>
<td>3.756*</td>
<td>3.115</td>
</tr>
<tr>
<td>Controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>2,535</td>
<td>2,535</td>
<td>2,535</td>
</tr>
<tr>
<td>F</td>
<td>2.325</td>
<td>2.3869</td>
<td>4.391</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0457</td>
<td>0.0458</td>
<td>0.157</td>
</tr>
</tbody>
</table>

Notes: Regressions on share of financial and outer circles informed about or participating in the stock market. In all regressions we control for household characteristics (age, gender, marital status, number of children, education, region of residence, employment, total wealth, income, savings). Dummies for item non-responses (NR), ‘don’t know’ (DK) are included in all specifications. Inconsistent answers (IC) are included if due to ‘rounding’ and discarded otherwise. Robust standard errors are reported in parentheses, and statistical significance at the 10, 5, and 1 percent levels is indicated by *, **, and ***, respectively.

Source: Author computations using data from merged TNS2014 and TNS2015 surveys in France.
TABLE 3: Stockholdings

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pr(Stocks>0)</td>
<td>Pr(Stocks>0)</td>
<td>Pr(Stocks>0)</td>
<td>Pr(Stocks>0)</td>
<td>E(%FW>0)</td>
<td>E(%FW>0)</td>
<td>E(%FW>0)</td>
<td>E(%FW>0)</td>
</tr>
<tr>
<td>%FC Inform.</td>
<td>0.00267***</td>
<td>0.00093</td>
<td>0.0289</td>
<td>0.0200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000588)</td>
<td>(0.00666)</td>
<td>(0.0197)</td>
<td>(0.0210)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%OC Inform.</td>
<td>0.000234</td>
<td>0.000922</td>
<td>0.0409</td>
<td>-0.0092</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00132)</td>
<td>(0.00120)</td>
<td>(0.01419)</td>
<td>(0.0372)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Pop. Inform.</td>
<td>-0.000528</td>
<td>8.78e-0.5</td>
<td>-0.037</td>
<td>-0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00887)</td>
<td>(0.00893)</td>
<td>(0.0309)</td>
<td>(0.0249)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%FC Particip.</td>
<td>0.00217***</td>
<td>0.000855</td>
<td>0.0325*</td>
<td>0.0169</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000649)</td>
<td>(0.00696)</td>
<td>(0.0192)</td>
<td>(0.0209)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%OC Particip.</td>
<td>0.00246*</td>
<td>0.000694</td>
<td>0.0791**</td>
<td>-0.0358</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00127)</td>
<td>(0.00129)</td>
<td>(0.0402)</td>
<td>(0.0401)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Pop. Particip.</td>
<td>-0.000175</td>
<td>0.000697</td>
<td>-0.022</td>
<td>0.00274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00097)</td>
<td>(0.00937)</td>
<td>(0.0364)</td>
<td>(0.0277)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Rel.Std. Prof.+</td>
<td>1.65e-06</td>
<td>-0.000132</td>
<td>4.15e-05</td>
<td>-0.0158</td>
<td>-0.0178</td>
<td>-0.0143</td>
<td>-0.0160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000712)</td>
<td>(0.000699)</td>
<td>(0.00728)</td>
<td>(0.0266)</td>
<td>(0.0275)</td>
<td>(0.0232)</td>
<td>(0.0226)</td>
<td></td>
</tr>
<tr>
<td>SC Rel.Std. Prof.-</td>
<td>-0.000216</td>
<td>2.63e-05</td>
<td>0.000173</td>
<td>0.00610</td>
<td>0.0130</td>
<td>0.0067</td>
<td>0.0079</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000771)</td>
<td>(0.000753)</td>
<td>(0.00787)</td>
<td>(0.00795)</td>
<td>(0.0242)</td>
<td>(0.0257)</td>
<td>(0.0238)</td>
<td></td>
</tr>
<tr>
<td>FC Rel.Std. Prof.+</td>
<td>0.000312</td>
<td>0.000235</td>
<td>0.000657</td>
<td>0.0083</td>
<td>0.0032</td>
<td>0.0143</td>
<td>0.0124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000666)</td>
<td>(0.000649)</td>
<td>(0.00666)</td>
<td>(0.0231)</td>
<td>(0.0239)</td>
<td>(0.0198)</td>
<td>(0.0193)</td>
<td></td>
</tr>
<tr>
<td>FC Rel.Std. Prof.-</td>
<td>0.00015</td>
<td>0.00018</td>
<td>-0.000125</td>
<td>-0.00136</td>
<td>-0.0235</td>
<td>-0.0251</td>
<td>-0.0214</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00084)</td>
<td>(0.000835)</td>
<td>(0.00819)</td>
<td>(0.00827)</td>
<td>(0.0257)</td>
<td>(0.0272)</td>
<td>(0.0244)</td>
<td></td>
</tr>
<tr>
<td>FC Rel.Std. Wealth+</td>
<td>-0.00110</td>
<td>0.00767</td>
<td>-0.00607</td>
<td>-0.00544</td>
<td>0.345</td>
<td>0.404</td>
<td>0.321</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td>(0.0190)</td>
<td>(0.0184)</td>
<td>(0.0182)</td>
<td>(0.0184)</td>
<td>(0.616)</td>
<td>(0.644)</td>
<td>(0.565)</td>
<td>(0.549)</td>
</tr>
<tr>
<td>FC Rel.Std. Edu.+</td>
<td>0.00439</td>
<td>0.00526</td>
<td>0.00328</td>
<td>0.00420</td>
<td>0.856</td>
<td>0.879</td>
<td>0.579</td>
<td>0.591</td>
</tr>
<tr>
<td></td>
<td>(0.0186)</td>
<td>(0.0182)</td>
<td>(0.0182)</td>
<td>(0.0184)</td>
<td>(0.635)</td>
<td>(0.665)</td>
<td>(0.569)</td>
<td>(0.554)</td>
</tr>
<tr>
<td>Expec. R</td>
<td>0.00201***</td>
<td>0.00195**</td>
<td>0.00224**</td>
<td>0.00223**</td>
<td>0.104***</td>
<td>0.106***</td>
<td>0.0975***</td>
<td>0.0931***</td>
</tr>
<tr>
<td></td>
<td>(0.00958)</td>
<td>(0.00934)</td>
<td>(0.00102)</td>
<td>(0.00102)</td>
<td>(0.0352)</td>
<td>(0.0368)</td>
<td>(0.0329)</td>
<td>(0.0320)</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>-0.00415**</td>
<td>-0.00396**</td>
<td>-0.00418**</td>
<td>-0.00403**</td>
<td>-0.108*</td>
<td>-0.107*</td>
<td>-0.0921*</td>
<td>-0.0840</td>
</tr>
<tr>
<td></td>
<td>(0.00187)</td>
<td>(0.00180)</td>
<td>(0.00181)</td>
<td>(0.00183)</td>
<td>(0.0600)</td>
<td>(0.0634)</td>
<td>(0.0543)</td>
<td>(0.0529)</td>
</tr>
<tr>
<td>Controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>2,525</td>
<td>2,525</td>
<td>2,506</td>
<td>2,506</td>
<td>2,294</td>
<td>2,294</td>
<td>2,277</td>
<td>2,277</td>
</tr>
</tbody>
</table>

Notes: Marginal effects from probits of stock market participation (columns 1-4) and tobits of share of financial wealth invested in the stock market (direct or indirect), conditional on investing (columns 5-8), on share of financial and outer circles informed about or participating in the stock market. In all cases we control for household characteristics (age, gender, marital status, number of children, education, region of residence, employment, total wealth, income, savings). Dummies for item non-responsive (NR), 'don't know' (DK) are included in all specifications. Inconsistent answers (IC) are included if due to 'rounding' and discarded otherwise. Marginal effects are calculated excluding NR, DK and IC observations. Robust standard errors are reported in parentheses, and statistical significance at the 10, 5, and 1 percent levels is indicated by *, **, and ***, respectively. Source: Author computations using data from merged TNS2014 and TNS2015 surveys in France.
TABLE 4: Bivariate probits

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%FC Inform.</td>
<td>0.00260***</td>
<td>0.00253***</td>
<td>0.00340**</td>
<td>0.00335**</td>
<td>0.00343**</td>
<td>0.00337**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%OC Inform.</td>
<td>0.00390</td>
<td>(0.00131)</td>
<td>0.00340**</td>
<td>0.00335**</td>
<td>0.00343**</td>
<td>0.00337**</td>
<td>0.00222***</td>
<td>0.00279***</td>
</tr>
<tr>
<td>%SC Inform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Pop. Inform.</td>
<td>-0.000495</td>
<td>-0.00148</td>
<td>-0.00146</td>
<td>-0.000405</td>
<td>-0.00149</td>
<td>-0.00147</td>
<td>-0.000495</td>
<td>-0.00148</td>
</tr>
<tr>
<td>%FC Particip.</td>
<td></td>
<td>0.00222***</td>
<td></td>
<td>0.00222***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%OC Particip.</td>
<td></td>
<td></td>
<td>0.00263**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%SC Particip.</td>
<td>-0.000711</td>
<td>-0.000677</td>
<td>-0.000745</td>
<td>-0.000713</td>
<td>-0.000262</td>
<td>-0.000219</td>
<td>-0.000711</td>
<td>-0.000677</td>
</tr>
<tr>
<td>%Pop. Particip.</td>
<td>-0.000125</td>
<td>-0.000226</td>
<td>-0.000219</td>
<td>-0.000199</td>
<td>-0.000199</td>
<td>-0.000113</td>
<td>-0.000125</td>
<td>-0.000226</td>
</tr>
<tr>
<td>SC Rel.Stand. Prof.+</td>
<td>-0.000396</td>
<td>0.000121</td>
<td>-0.000428</td>
<td>-0.000428</td>
<td>0.000118</td>
<td>-0.000428</td>
<td>0.000203</td>
<td>0.000624</td>
</tr>
<tr>
<td>SC Rel.Stand. Prof.-</td>
<td>-0.000203</td>
<td>0.000624</td>
<td>9.29e-05</td>
<td>0.000624</td>
<td>-0.000203</td>
<td>0.000624</td>
<td>-0.000711</td>
<td>-0.000262</td>
</tr>
<tr>
<td>FC Rel.Stand. Prof.+</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>FC Rel.Stand. Prof.-</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>FC Rel.Stand. Wealth+</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>FC Rel.Stand. Edu.+</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>Expec.R</td>
<td>0.00242**</td>
<td>0.000337</td>
<td>0.000332</td>
<td>0.000340</td>
<td>0.000340</td>
<td>0.000247**</td>
<td>0.000247**</td>
<td>0.000336</td>
</tr>
<tr>
<td>Risk Aversion</td>
<td>-0.00419*</td>
<td>-0.00426*</td>
<td>-0.00391*</td>
<td>-0.00421*</td>
<td>-0.00435*</td>
<td>-0.00429*</td>
<td>-0.00435*</td>
<td>-0.00429*</td>
</tr>
<tr>
<td>Controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Marginal effects from bivariate probits of (i) stock market participation (odd numbered columns) and (ii) formation of financial circle (even numbered columns). In all cases we control for household characteristics (age, gender, marital status, number of children, education, area, employment, total wealth, income, savings). Dummies for item non-responses (NR), ‘don’t know’ (DK) are included in all specifications. Inconsistent answers (IC) are included if due to ‘rounding’ and discarded otherwise. Marginal effects are calculated excluding NR, DK and IC observations. Robust standard errors reported in parentheses. Statistical significance at the 10, 5, and 1 percent levels is indicated by *, **, and ***, respectively. Source: Author computations from merged TNS2014 and TNS2015 waves in France.
TABLE 5: Summary statistics

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Patrimoine INSEE 2014-15</th>
<th>TNS 2014 & 2015 merged</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Pr(Stocks>0)</td>
<td>0.129</td>
<td>0.217</td>
</tr>
<tr>
<td>%FW</td>
<td>15</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>(5.324)</td>
<td>(14.53)</td>
</tr>
<tr>
<td>N in Social Circle</td>
<td>n/a</td>
<td>52.56</td>
</tr>
<tr>
<td>N in Financial Circle</td>
<td>n/a</td>
<td>3.160</td>
</tr>
<tr>
<td>% SC Particip.</td>
<td>n/a</td>
<td>10.74</td>
</tr>
<tr>
<td>% SC Informed</td>
<td>n/a</td>
<td>12.57</td>
</tr>
<tr>
<td>% FC Particip.</td>
<td>n/a</td>
<td>18.93</td>
</tr>
<tr>
<td>% FC Informed</td>
<td>n/a</td>
<td>20.50</td>
</tr>
<tr>
<td>% OC Particip.</td>
<td>n/a</td>
<td>13.43</td>
</tr>
<tr>
<td>% OC Informed</td>
<td>n/a</td>
<td>11.56</td>
</tr>
<tr>
<td>% Population Particip.</td>
<td>n/a</td>
<td>19.39</td>
</tr>
<tr>
<td>% Population Informed</td>
<td>n/a</td>
<td>22.88</td>
</tr>
<tr>
<td>SC Rel. Stand. Prof. +</td>
<td>n/a</td>
<td>29.34</td>
</tr>
<tr>
<td>SC Rel. Stand. Prof. -</td>
<td>n/a</td>
<td>23.76</td>
</tr>
<tr>
<td>FC Rel. Stand. Prof. +</td>
<td>n/a</td>
<td>36.88</td>
</tr>
<tr>
<td>FC Rel. Stand. Prof. -</td>
<td>n/a</td>
<td>18.73</td>
</tr>
<tr>
<td>FC Rel. Stand. Wealth +</td>
<td>n/a</td>
<td>1.775</td>
</tr>
<tr>
<td>FC Rel. Stand. Edu. +</td>
<td>n/a</td>
<td>1.916</td>
</tr>
<tr>
<td>Expec. R</td>
<td>n/a</td>
<td>1.62</td>
</tr>
<tr>
<td>St. dev. Expec. R</td>
<td>n/a</td>
<td>6.699</td>
</tr>
<tr>
<td>D(StDev.ER=0)</td>
<td>n/a</td>
<td>0.343</td>
</tr>
<tr>
<td>Perc. R</td>
<td>n/a</td>
<td>3.607</td>
</tr>
<tr>
<td>St. dev. Perc. R.</td>
<td>n/a</td>
<td>6.649</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>n/a</td>
<td>34.90</td>
</tr>
<tr>
<td>Borrowing & Liq.Constr.</td>
<td>n/a</td>
<td>0.0292</td>
</tr>
<tr>
<td>Age<35</td>
<td>0.177</td>
<td>0.170</td>
</tr>
<tr>
<td>35<Age<50</td>
<td>0.264</td>
<td>0.244</td>
</tr>
<tr>
<td>50<Age<65</td>
<td>0.276</td>
<td>0.275</td>
</tr>
<tr>
<td>Age>65</td>
<td>0.283</td>
<td>0.311</td>
</tr>
<tr>
<td>Male</td>
<td>0.604</td>
<td>0.464</td>
</tr>
<tr>
<td>Married</td>
<td>0.732</td>
<td>0.602</td>
</tr>
<tr>
<td>Children at Home>0</td>
<td>0.372</td>
<td>0.241</td>
</tr>
<tr>
<td>College or more</td>
<td>0.363</td>
<td>0.376</td>
</tr>
</tbody>
</table>
TABLE 5: Summary statistics (continued)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Patrimoine INSEE 2014</th>
<th>TNS 2014 & 2015 merged</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>(continues from previous page)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reg1</td>
<td>0.175</td>
<td>0.168</td>
</tr>
<tr>
<td>reg2</td>
<td>0.060</td>
<td>0.0635</td>
</tr>
<tr>
<td>reg3</td>
<td>0.083</td>
<td>0.0817</td>
</tr>
<tr>
<td>reg4</td>
<td>+</td>
<td>0.0826</td>
</tr>
<tr>
<td>reg5</td>
<td>0.166</td>
<td>0.0959</td>
</tr>
<tr>
<td>reg6</td>
<td>0.135</td>
<td>0.142</td>
</tr>
<tr>
<td>reg7</td>
<td>0.111</td>
<td>0.115</td>
</tr>
<tr>
<td>reg8</td>
<td>0.122</td>
<td>0.123</td>
</tr>
<tr>
<td>reg9</td>
<td>0.122</td>
<td>0.128</td>
</tr>
<tr>
<td>Employed</td>
<td>0.545</td>
<td>0.518</td>
</tr>
<tr>
<td>Self-employed</td>
<td>0.053</td>
<td>0.0349</td>
</tr>
<tr>
<td>Retired</td>
<td>0.359</td>
<td>0.311</td>
</tr>
<tr>
<td>Assets<74999</td>
<td>0.376</td>
<td>0.275</td>
</tr>
<tr>
<td>75000<Assets<224999</td>
<td>0.242</td>
<td>0.319</td>
</tr>
<tr>
<td>224500<Assets<449999</td>
<td>0.231</td>
<td>0.279</td>
</tr>
<tr>
<td>450000<Assets</td>
<td>0.150</td>
<td>0.127</td>
</tr>
<tr>
<td>Income<11999</td>
<td>0.395</td>
<td>0.305</td>
</tr>
<tr>
<td>12000<Income<19999</td>
<td>0.195</td>
<td>0.279</td>
</tr>
<tr>
<td>20000<Income<29999</td>
<td>0.201</td>
<td>0.274</td>
</tr>
<tr>
<td>Income>30000</td>
<td>0.209</td>
<td>0.142</td>
</tr>
<tr>
<td>Saving=0</td>
<td>n/a</td>
<td>0.324</td>
</tr>
<tr>
<td>0<Saving<999</td>
<td>n/a</td>
<td>0.293</td>
</tr>
<tr>
<td>1000<Saving<4999</td>
<td>n/a</td>
<td>0.280</td>
</tr>
<tr>
<td>Saving>5000</td>
<td>n/a</td>
<td>0.103</td>
</tr>
<tr>
<td>NR(Assets)</td>
<td>n/a</td>
<td>0.159</td>
</tr>
<tr>
<td>NR(Income)</td>
<td>n/a</td>
<td>0.022</td>
</tr>
<tr>
<td>NR(Saving)</td>
<td>n/a</td>
<td>0.041</td>
</tr>
<tr>
<td>NR(SC Rel. Stand. Prof.)</td>
<td>n/a</td>
<td>0.332</td>
</tr>
<tr>
<td>DK(SC Rel. Stand. Prof.)</td>
<td>n/a</td>
<td>0.469</td>
</tr>
<tr>
<td>NR(FC Rel. Stand. Prof.)</td>
<td>n/a</td>
<td>0.352</td>
</tr>
<tr>
<td>DK(FC Rel. Stand. Prof.)</td>
<td>n/a</td>
<td>0.507</td>
</tr>
<tr>
<td>NR(FC Rel. Stand. Wealth)</td>
<td>n/a</td>
<td>0.384</td>
</tr>
<tr>
<td>NR(FC Rel. Stand. Edu.)</td>
<td>n/a</td>
<td>0.380</td>
</tr>
</tbody>
</table>