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Abstract. We provide a new measure of automation based on patents and study
its employment effects. Classifying all U.S. patents granted between 1976 and
2014 as automation or non-automation patents, we document a rise in the share
of automation patents from 25 percent to 67 percent. We link patents to the
industries of their use and, through local industry structure, to commuting
zones. According to our estimates, advances in national automation technology
have a positive influence on employment in local labor markets. Manufacturing
employment declines, but this is more than compensated by service sector job
growth. Commuting zones with more people working in routine occupations
fare worse.
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1 Introduction

What is the effect of automation technology on employment? The answer to this question
is not obvious: While machines may replace workers, new jobs could also be created. For
example, if self-driving vehicles become widely used, taxi and truck drivers might lose
their jobs. Other sectors such as retail could, however, experience employment growth
through lower transport costs.

To identify the employment effects of automation, this paper introduces a new indicator
of automation technology. The large literature addressing this question has so far relied
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on indirect proxies of automation, such as routine task input (Autor, Katz, and Kearney,
2008, Autor, Levy, and Murnane, 2003, Goos and Manning, 2007, Autor and Dorn, 2013),
investment in computer capital (Beaudry, Doms, and Lewis, 2010; Michaels, Natraj, and
van Reenen, 2014) or investment in robots (Graetz and Michaels, 2015; Acemoglu and
Restrepo, 2017). Many of these papers find evidence for job polarization, but the smaller
literature on aggregate employment changes reports more ambiguous results. This may
be due to difficulties in measuring automation comprehensively.

Our proposed automation indicator relies on patent grant texts. Patents are a natural
candidate for measuring technological progress and frequently serve as proxies of innova-
tion. However, few studies examine the consequences of technological progress through
patents. Also, while patent meta-data such as citation counts or the identity of innovators
is used regularly (Hall, Jaffe, and Trajtenberg, 2001; Acemoglu, Akcigit, and Celik, 2014;
Bell, Chetty, Jaravel, Petkova, and Reenen, 2017), the actual patent texts have not been in
the focus so far. We classify patents as automation patents if their texts describe physical
inventions (such as robots) or immaterial or conceptual inventions (such as software),
which carry out a process independently of human interference.

We extract the texts of all 5 million U.S. patents granted between 1976 and 2014 and train a
machine learning algorithm on a sample of 560 manually classified patents to sort patents
into automation and non-automation innovations. As a result, we document a strong rise
in both the absolute and the relative number of automation patents. As a share of total
patents, automation patents have increased from 25 percent in 1976 to 67 percent in 2014.
Applying a probabilistic matching that is based on Canadian patents, we link patents to
the 956 4-digit SIC industries where they are likely to be used. In this way, we quantify
trends in newly available technology at the industry level.

Next, we compare the indicator to established measures of automation. The number
of automation patents is positively correlated across industries both with investment in
computer capital and with robots shipments. More automation patents have been granted
in industries with a larger share of employment in routine occupations in 1960, a result
that is in line with the literature on routine-biased technological change. Also, industries
with more automation patents were characterized by a rise in non-routine cognitive and
non-routine interactive task input and a fall in routine cognitive and routine manual task
input.

To estimate the labor-market effects of automation, we transfer our industry-level data
to U.S. commuting zones through industry-county employment counts. Commuting
zones approximate local labor markets as workers tend to look for jobs within commuting
distance from where they live. We obtain a panel dataset of new automation technology
across 722 commuting zones over 39 years. Up to the late 1980s, there was a higher density
of automation in the Great Lakes region, but automation technology has become less
geographically concentrated over time.

Our empirical analysis benefits from the fact that we examine local economic outcomes
which are impacted by, but unlikely to affect, the innovation activity of industries at the
national level. Our key assumption is that commuting zone-specific developments in the
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medium-run do not affect automation innovation in industries that operate there. This
is plausible for the following reasons: First, we separate the industries where patents
originate from where they are used. Second, many patents belong to foreigners and
universities who respond to other incentives than local firms. And third, local industries
are small in comparison to national aggregate industries. Our approach thus follows
Bartik (1991).

Our main econometric analysis is a fixed effects panel regression for five-year periods.
Interpreting the automation index as a flow measure of technology, we assess the rela-
tionship between the sum of automation and changes in employment. While we find a
positive effect of automation on total employment, this is driven by job growth in the
service sector, which compensates for a fall in manufacturing employment. This result is
robust to adding a variety of other economic and demographic controls and to weighting
patents by the number of citations they received. We also consider separately patents
belonging to specific groups of assignees: universities and public research institutes, for-
eigners and governments. All three should be less responsive to US labor market trends
than US companies. Our results hold in the regressions for the subgroups of patentees as
well as in an instrumental variable regression. Lastly, we find that automation is associated
with more job creation in commuting zones where the share of routine occupations is low.

All in all, our study thus shows automation to be more beneficial for employment than
some of the previous literature (Autor et al., 2015; Acemoglu and Restrepo, 2017), which
might be due to our broader definition of automation. Our results are in line with
Gregory, Salomons, and Zierahn (2016), who show that the detrimental substitution effect
of automation on routine jobs is more than compensated by a positive labor demand effect
due to larger product demand.

In the final part of our paper, we apply our indicator to replicate two central papers
(Autor and Dorn, 2013 and Autor, Dorn, and Hanson, 2015) that study the influence of
automation on labor markets using the routine task share of jobs. First, we show that
non-college employment rose in commuting zones where more automation patents could
be used and where more people worked in routine occupations. Second, we find that
automation leads to rises in employment levels even when controlling for Chinese import
competition, which stands in contrast to Autor et al. (2015). We provide further evidence
that employment increases were driven to a larger extent by flows into the labor force
than by a fall in unemployment.

There are strengths and weaknesses to our approach to quantifying automation technology.
Text classification is an inherently imprecise activity and we introduce further inaccuracies
through probabilistic matchings of patents to industries and commuting zones. Also, we
make assumptions on the usefulness of patents and the way they are implemented. On
the upside, we have to impose fewer ex-ante assumption on the nature of advances in
automation technology, compared to the literature using routine task shares or computer
and robot investment. Our indicator allows us to closely track the technology frontier,
translating newly granted patents into a fine-grained industry- or commuting zone-level
dataset. With these caveats in mind, we consider our indicator a complement to previous
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measures of automation.

2 New automation index

This section introduces the new automation index. We start by arguing why patents are a
suitable data source for measuring technological progress and then define automation. We
show how we construct the indicator and how the classification algorithm works. Then,
we explain how to link patents to industries in which they are likely to be used. The
resulting indicator traces the technology frontier across 956 industries and 39 years and
displays plausible co-movement with existing indicators of automation such as computer
investment, the number of robots used in production and the share of routine tasks across
industries.

2.1 Patents as indicators of technological progress

The purpose of patents is to encourage innovation and technological progress by offering
a temporary monopoly on an invention. Once granted, no one can re-engineer, create or
sell the same object or idea. In return, the text of the patent is made publicly available.
The language in the patent text is technical and highly standardized. Applicants have
an incentive to provide exact and correct information about their innovation to obtain
full protection of their ideas. Professional patent examiners judge a patent’s claims and
make changes where appropriate. In return for disclosing the content of the innovation
to the public, an intellectual property right is granted for 20 years. To be patentable, an
innovation must be novel, non-obvious and useful. The description must further be exact and
detailed enough to allow for replication and it must name the invention’s most important
application. All these characteristics make patents a valuable data source.

Researchers in economics have made frequent use of patents, often in the form of the
database established by Hall et al. (2001). Griliches (1990) provides an extensive survey of
various issues related to using patents in economics. However, patents are so far usually
interpreted as proxies for innovative activity, not as increments of technological progress
whose effects can be studied (for an overview of the more recent literature, see Nagaoka
et al., 2010). This is related to the fact that existing research almost exclusively uses patents’
metadata, such as the location or affiliation of a patentee or a patent’s importance.1

Magerman, Looy, and Song (2010) note that there is almost no research which uses the
actual texts of the patent document, although this has been recommended as early as
Griliches (1990). An exception is Bessen and Hunt (2007), who identify software patents
by searching patent texts for keywords. Our approach differs as we do not specify a priori
which words to search for, but use a state-of-the-art text classification algorithm. Also, we
apply the derived measure to study the effects of technology on the labor market, whereas
the goal of Bessen and Hunt (2007) is to characterize firms that file software patents.

1Patent citations, in particular, are widely applied as indicators of the value of an invention, for example by
Bell et al. (2017).
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In other areas of economics, text search has become common, with Gentzkow and Shapiro
(2010) and Baker, Bloom, and Davis (2016) being prominent examples of papers that
use newspaper articles. However, patent texts hold several advantages for researchers
over other document collections: The precise technical language with a high degree of
standardization, the incentive to deliver correct information, the additional check through
the patent examiners’ review and the public access to patent grant texts make patents well
suited for text search analysis.

Patent text analysis is common in the private sector for prior art and freedom-to-operate
searches by firms and lawyers. However, none of these providers – to the best of our
knowledge – offers a comparison of technological trends over time, which leads us to
develop our own approach.

2.2 Patent data

We obtain all 5 million utility patent documents granted in the United States from 1976
to 2014 from Google.2 While Europe, Japan and increasingly China are also important
patent legislations, of the roughly 10.9 million patents effective (“in force”) worldwide in
2014, the largest fraction (about one fourth) had been granted in the United States (WIPO,
2016). In addition, the most important innovations are usually patented in all major
patent legislations. These properties make U.S. patents a good proxy for the technological
frontier in the United States and beyond. Also, given that this paper studies the effect of
automation in the United States, U.S. patents are an obvious candidate for how available
technology changes.

We only consider utility patents, which account for around 90 percent of all patents. Utility
patents are “issued for the invention of a new and useful process, machine, manufacture,
or composition of matter, or a new and useful improvement thereof” (USPTO, 2015). Other
patent types are design, plant and reissue patents and do not track technology that we
aim to measure. According to the United States Patent and Trademark Office (USPTO),
in the period 1976-2014, 83 percent of all patents granted were owned by firms – mostly
large multinational corporations. 15 percent of patents were owned by individuals and
less than 2 percent by the U.S. government. About half of all patents are granted to foreign
applicants, a share that has increased over time. During the period of our analysis, IBM,
Canon and Samsung were the corporations with the largest number of patents granted
(USPTO, 2014).

The patent grant document includes the title, patent number, name of the inventor, date,
citations of other patents, legal information, drawings, abstract and a detailed description,
as well as information on the technology class of the invention. Every patent is assigned
one or more technology classification numbers by the patent examiner which describes
technological and functional characteristics of a patent and on which we base our link
from patents to industries. We exclude chemical and pharmaceutical patents from our

2google.com/googlebooks/uspto-patents.html
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classification.3 The overwhelming majority of these patents do not meet our definition of
an automation patent (14 out of 560 manually classified patents were automation patents
from those sectors), but including these patents might distor our classification.

2.3 Definition of automation

We define an automation patent to describe a device that carries out a process independently.4

This broad definition captures technologies such as software, a robot used in a production
or the self-driving vehicle mentioned in the introduction. The “device” can be a physical
machine, a combination of machines, an algorithm or a computer program. The process
it automates may be a production process, but also anything else where an input is
altered to generate an output. An important element of the definition is the notion of
independence: It works without human intervention, except at the start or for supervision.
We require the automation innovation to be a reasonably complete process, product or
machine. In addition, we require it to have an at least remotely-recognizable application.
This excludes inventions that are minor parts of an automation innovation and highly
abstract patents with no obvious application. We make no difference between process and
product innovations, so an automation patent could describe either. Table 1 displays some
examples of automation and non-automation patents.

Table 1: Examples of automation and non-automation patents

Patent title Patent number Automation patent?

“Automatic taco machine” 5531156 Yes

“Color measuring method and device” 6362849 Yes

“Coinfusion apparatus” 8857476 Yes

“Hair dye applicator ” 6357449 Yes

“Hand-held scanner having adjustable light path” 5552597 No

“Bicycle frame with device cavity” 7878521 No

“Process for making pyridinethione salts” 4323683 No

“Golf ball” 4173345 No

Note: Authors’ classifications according to manual coding guidelines. Click on the patent number
for the weblink to the patent document.

2.4 Classification of patents

Based on the definition above, all patents can be classified as either automation or non-
automation patents. We use an automated approach. To train a classification algorithm,
we need reliable and objective classifications on which we can base the comparison. To
this end, we manually classify 560 randomly drawn patents according to rules laid out in

3Excluded USPC technology numbers: 127, 252, 423, 424, 435, 436, 502, 510-585, 800, 930, 987.
4This is a standard definition that can be found in encyclopedias. For example, the Encyclopedia Britannica
defines automata as “any of various mechanical objects that are relatively self-operating after they have
been set in motion” and adds that “the term automaton is also applied to a class of electromechanical
devices—either theoretical or real—that transform information from one form into another on the basis of
predetermined instructions or procedures” (Encyclopædia Britannica, 2015).
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manual coding guidelines.5 Baker et al. (2016) proceed similarly when they manually clas-
sify newspaper articles to check the performance of their dictionary-based classification.
We aim to minimize coding mistakes and biases by providing a structured classification
process, by classifying patents in random order and by reviewing every classification by a
second person.

The language in patent texts might have changed over time. But patents from the 1970s
read very similar to those from the 2000s and important technological classes such as
computers and robots are developed and patented throughout the sample period. The
technical nature of the documents and the fact that legal terms change more slowly than
other language also makes it less likely that there are short-lived trends that could pose a
problem for a classification based on specific terms.

From our sample of patents, we extract word stems, called tokens, with the Porter2 stem-
ming algorithm. This shortens “automation”, “automated”, “automatically”, “automat-
able” to “automat”. Table 2 summarizes these tokens. A typical title contains about 5
tokens, a typical abstract about 36 and the rest of the patent (the “body”) about 500 to 600.

Table 2: Tokens in 560 manually classified patents

Part All tokens Unique tokens Mean Median

Title 2796 1301 4.99 5
Abstract 20781 3971 37.11 36
Body 339366 31499 606.01 506.5

Source: USPTO, Google and own calculations.

In principle, one could now record for all 5 million patents whether they contain one of
the roughly 32,000 tokens that we can assign probabilities to. But to keep the computation-
intensive data collection feasible and to remove noise features, we use the mutual informa-
tion criterion to extract those tokens which are most informative about which class a patent
belongs to. This is an established statistic for feature selection which prefers tokens that
appear significantly more often in one of the classes and punishes tokens that appear
rarely overall (Manning et al., 2009). We then pick the highest ranked (according to the
mutual information criterion) 50 title tokens, 200 abstract tokens and 500 patent body
tokens. The final search dictionary consists of 623 tokens.

Figure 1 visualizes the 150 tokens with the highest mutual information criterion. The
most important token is unsurprisingly “automat”. After that come “output”, “execut”,
“inform”, “input” and “detect”. Some tokens are indicative of software, such as “micro-
processor”, “database”, “comput”, “program” or “transmiss”. Others are more likely to
appear in descriptions of physical machines, such as “motor”, “move”, “metal” or “appar-
atus”. The last discernible group of tokens are action verbs that appear in descriptions
of a wide range of independently operating devices, such as “distinguish”, “command”,
“respons” or “perform”.

5See: http://lukaspuettmann.com/assets/pdf/manual coding guidelines.pdf
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Figure 1: Words that indicate an automation patent

Note: Token size is proportional to the value of the mutual information criterion in
sample 560 classified patents. We show only the 150 highest ranked tokens excluding
chemical and pharmaceutical words.
Source: USPTO, Google and own calculations.

Our algorithm emulates how a human being would have classified each patent. We
apply the Naive Bayes algorithm which is a supervised learning method which is easy to
interpret and which computationally scales well with large amounts of data. The “naive”
assumption the probability of a token to appear in a document is independent from the
appearance of other tokens. Despite its simplicity it has been shown to perform quite well
(Domingos and Pazzani, 1997).6 One reason for this that the low number of parameters it
estimates make it unlikely to overfit (Murphy, 2012).

Manning et al. (2009) explain how this algorithm picks the class c for every document
d with maximum a posteriori probability P(c | d). In our analysis, the documents d
correspond to patent grant texts and the two different classes are automation patents and
non-automation patents. In the Bernoulli Naive Bayes that we use, every document d is
represented by a vector e, where entry ei (i = 1, . . . , M) is 1 if token i appears at least
once in the document and 0 if it does not. Patent texts contain matter-of-fact language,
where words are often repeated. So the occurrence of a word is more important than
the frequency of its appearance and we therefore ignore how often a word appears in a
document.

According to this language model, in any document in class c the token ei occurs with
conditional probability P(ei | c). Therefore, the probability of a document d to show up in
class c is

P(d | c) = ∏
1≤i≤M

P(ei | c), (1)

6Gentzkow et al. (2017) also recommend this algorithm if the number of observed features (tokens) is much
larger than the size of the training sample, as is the case in our analysis. Antweiler and Frank (2004) proceed
similarly, as they manually classify 1000 messages and then use the Naive Bayes algorithm to generalize to
over 1.5 million other messages.
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and the conditional probability of document d to belong to class c is according to Bayes’
rule7

P(c | d) ∝ P(c) ∏
1≤i≤M

P(ei | c). (2)

We estimate the prior P̂(c) as the relative frequency of documents in class c in the training
set. This is P̂(autom) = 147

483 = 0.304, as about a third of eligible patents (i.e., after removing
chemical and pharmaceutical patents) were manually labeled as automation patents. We
then estimate the conditional probabilities of a certain token to occur in class c, P̂(ei | c) as

P̂(ei | c) = P̂(i | c)ei + (1− P̂(i | c))(1− ei), (3)

where P̂(i | c) is the share of documents with token i in class c. In this way, we calculate
posterior probabilities for all 5 million patents to belong to either class and assign each
patent to the class with the higher posterior probability.

Table 3: Contingency table

Computerized
No Yes

M
an

ua
l No 323 88 411

Yes 25 124 149
348 212 560

“No”: not automation patent

Table 3 shows how human examiners and how the computer algorithm classified the set of
manually investigated patents. Both the manual coding and the algorithmic classification
judged around a quarter of patents to be automation patents. In 80 percent of cases
(= 323+124

560 ) both approaches agreed. The probability of a false positive (type I error) is 21
percent (= 88

411 ). The probability of a false negative (type II error) is 17 percent (= 25
149 ).

While some share of misclassified patents remains, as long as there is no underlying
bias in the classication this should only add noise to our indicator series as we only aim
to approximate trends in technology over time. Any noise should therefore push our
empirical results towards zero, making it harder to detect an effect of automation.

A more precise classification might be possible when including patents’ other observable
characteristics such as their technological class (USPC and IPC numbers), grant years, the
origins of inventors or the sector of firms. But we keep the classification into automation
and non-automation separate from these observables to allow comparing automation
trends across time and industries, without making these associations automatic.
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Figure 2: Patents, 1976-2014
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Note: See text for classification of automation patents and assignment of patents to
categories.

Source: USPTO, Google, Hall, Jaffe, and Trajtenberg (2001) and own calculations.

2.5 Aggregate properties of the indicator

Figure 2 is a graphical representation of all 5 million patents granted in the United States
between 1976 and 2014. We show patents by when they were granted, not when applied
for, as inventions are unlikely to be shared before they are protected by a patent.

There has been a steady increase from 70,000 granted patents in 1976 to more than 300,000
patents in 2014. Over the whole period, we classify 2.2 million of these as automation
patents. The red-shaded parts of the bars show the patents which we classified as automa-
tion patents and blue colors signal all other patents. We observe a sharp upward trend in
automation patents from 16,000 in 1976 to 180,000 in 2014. The share of patents related to
automation also increased, from 25 percent of patents in 1976 to 67 percent of patents in
2014. Table A1 in the Appendix provides the yearly numbers.

Figure 2 further shows broad categories of patents based on an aggregation method
by Hall et al. (2001) which relies on the technological classification (USPC number) of
patents.8 Patents in the sub-category computers and communication have become much
more frequent over the sample period and we mostly classify them as automation. Many
of these are likely software patents. Electrical, electronic and mechanical patents also

7P(c | d) = P(c)P(d|c)
P(d) ∝ P(c)P(d | c).

8Note that this is a different classification than the one we will employ to match patents to the industries they
are likely to be used in. See section 2.6.
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contribute significantly to the stock of automation patents. Robots, for example, fall in
this category. By design, most chemical and pharmaceutical patents are not classified as
automation patents, but they make up a large portion of the non-automation patents.

The rise in the total number of patents granted is a potential concern for the interpretation
of the time-dimension of patent texts. If the nature of patents had changed in parallel
with the number, so if the increase in patents is due to something else than an increase
in research productivity, the data might not be comparable across time. An increase
in the number of automation patents would then not be interpretable as an increase in
automation technology. Kortum and Lerner (1999) evaluate different possible explanations
for why the number of patent grants has changed: increased patent protection due to
patentee-friendly court rulings, regulatory capture by large firms that patent eagerly,
new technology fields producing patentable inventions (e.g., information technology,
biotechnology and financial intermediation) and more applied research. The authors
refute all hypotheses except for the increase in research productivity. This result is in line
with an OECD survey (OECD, 2004) in which 94 percent of surveyed firms responded
that an increase in the number of inventions was an important or very important driver
of their increased patenting activity (66 percent very important). In contrast, changes in
patentability played only a minor role. We therefore conclude that the quality of patents
granted has not changed over time and that we do not need to worry about any distortive
effects of a change in grant numbers. As an additional check, we compute a deflated
version of our indicator, for which we divide the number of automation patents in each
industry and year by the total number of patents granted in that specific year relative to
the number of patents granted in 1990. The resulting measure is an automation count in
units of 1990 patents, which takes higher values for earlier years and lower values for later
years than the original measure. Our empirical results in section 4 are insensitive to the
time deflation.

2.6 From patents to industries

Various researchers have proposed matchings of patents to industries. Hall et al. (2001)
identify firms filing for patents and Lybbert and Zolas (2014) propose an automated ap-
proach that compares descriptions of industries with descriptions of patents’ technological
classes. The OECD (2011) reviews these techniques in more detail and Griliches (1990)
describes the difficulties in matching patents to industries.

However, we are interested in how automation technology affects labor markets. Therefore,
we aim to find the industries where automation patents are used, not where they originate.
These two need not be the same, so that the industry of the patentee is not necessarily the
industry we want to assign the patent to. As an example, IBM owns many patents that are
not used in the computer industry, but by companies in the manufacturing or in the retail
sector. These patents are either sold or licensed out. Attributing them to the computer
industry would overstate the automation intensity there, while understating it in the other
sectors.
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Table 4: Automation patents across industries of use

Industries Manufac- Automation Share SICs
turing patents (1000s) (1987)

Computers 3 499 88% 357
Other electronics 3 250 46% 36*

Measuring instruments; watches 3 193 60% 38
Telephones and telegraphs 3 185 68% 3661

Machines 3 183 40% 35*
Hospitals 137 46% 8062

Househ. audio and video equip. 3 104 69% 3651
Other services 118 47% 70-89*

Transportation equipment 3 115 39% 37
Chemicals, rubber, plastics, oil 3 101 18% 28, 30, 29

Utilities (transport, gas, sanitary) 57 44% E
Fabricated metal products 3 51 33% 34

Medical laboratories 37 64% 8071
Construction 34 24% C

Printing publishing; paper 3 34 32% 26, 27
Metal, stone, clay, glass, concrete 3 29 22% 32, 33

Retail and wholesale trade 26 32% G, F
Agriculture, forestry and fishing 24 33% A

R&D, management 3 23 64% 87
Miscellaneous manufacturing 3 20 38% 39
Public administration; finance 20 47% J, H

Food, tobacco 3 19 24% 20, 21
Mining 16 37% B

Apparel, wood, furniture 3 15 17% 22-25, 31

total 2,290 46%

Note: Patents are counted if they can be used in an industry, as described in text. Numbers
are sums of patents 1976-2014. Shares are calculated by dividing automation patents
by all patents in industry. An asterisk * indicates that some subindustries are shown
separately.
Source: USPTO, Google, Silverman (2002) and own calculations.

Linking patents to the industries of their use is difficult. If we wanted to measure the
actual usage of a specific patent in a certain industry, we would need data on out-licensing.
But this information is not available, as firms and research institutions have incentives to
keep their licensing agreements private. Interpreting patents more indirectly as a proxy
for automation technology rather than a direct measure, we can use information about the
areas in which patents can potentially be applied. There have been attempts by Schmookler
(1966) and Scherer (1984) to manually classify patents and link them to industries of use,
but this would not be feasible for a large number of patents. Patent offices themselves
usually do not provide information on the link of patents to industries. However, we
benefit from an exception to this rule by the Canadian patent office. Between 1978 and 1993,
Canadian patent officers assigned industries of use for all granted patents. Based on this
information, Kortum and Putnam (1997) assembled the “Yale Technology Concordance”,
a way to link patents through their technological classification to the industries in which
they are likely to be used. This is based on the assumption that the pattern linking patents’
technological class to industries of use should be similar in Canada and the United States.
We use the files provided by Silverman (2002), who calculates empirical frequencies for

12



cross-overs from patent technology classes (IPCs) to 1987 SIC industries using 148,000
patents granted between 1990 and 1993.9

This allows for a probabilistic matching. We connect a patent to an industry with the
probability of being used in that industry. So if patent A is used in two industries X and Y,
then half the patent count is assigned to industry X and half to Y. However, patents are
often assigned several IPC technology classifications. In that case, we divide each value
for that patent by the number of its IPCs. So if patent A now is assigned another IPC
number, then only a quarter of its value will now be attributed to industries X and Y each
and the rest to industries in the new IPC. This fractional counting of patents ensures that
more general patents that are assigned to several IPCs do not have get more weight than
more specialized patents that are assigned to fewer IPCs.10

As a result, we obtain an annual dataset of new patents and new automation patents that
can be used in 956 industries and over 39 years. Table 4 displays all automation patents by
industries of use over the whole time period 1976-2014. (The totals differ slightly from
Appendix Table A1 due to rounding errors and the probabilistic conversion to patent
equivalents as described before.)

Out of a total of 2.3 million automation patents, 1.8 million (79 percent) are used in the
manufacturing sector (division D in SIC 1987). Half a million automation patents could
be used in the production of computers (SIC 357) which includes personal computers,
mainframes, storage devices, terminals, billing machines, automatic teller machines and
peripheral equipment such as printers, scanners, office equipments or typewriters. The
production of electronic devices, sensors and communication equipment also received
a large number of automation patents. Outside of the manufacturing sector, hospitals,
utilities and medical laboratories were assigned a large number of automation patents. In
large parts of the economy – such as agriculture, mining, public administration, finance or
retail – only few automation patents were granted. We also calculate the share of patents
used in an industry that we classify as automation. This ratio is high for the computer
industry or communication-related industries and is low for the chemical industry or
“Apparel, wood, furniture”.

In our following empirical analysis, we interpret these indices as worker intensities by
fully assigning all new (automation) patents in an industry to each person employed in
that industry and year. This is equivalent to assuming that patents assigned to an industry
will potentially be used by everyone working in that industry. If we considered our
indicator narrowly as an exact measure of the use of patents in the production process, this
would not be a realistic assumption. But to us, a patent is just one part of an innovation
process that will produce many types of outputs. Being a measurable outcome of this
process, patents serve as a proxy for it.In our regressions we will use the total number

9http://www-2.rotman.utoronto.ca/~/silverman/ipcsic/documentation IPC-SIC concordance.htm,
accessed 25.10.2015. The fact that we use only data for 1990–1993 means that the matching should be most
precise during this period, while becoming less exact the further away we move from this period. It helps
that this periodis in the middle of our sample, but the fact that patents grow much more near in the later
years is some cause for concern.
10This also enables us to interpret the resulting indicator as full patent equivalents which we will still refer to
simply as “patents” in the remainder of the paper.
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Figure 3: Comparison with other indicators of automation
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(b) Computer investment (ASM), 2002-2014
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Note: NIPA computer investment is the mean of 1976-2001 in millions of 1996 U.S. dollars, ASM
computer investment is the mean of 2002-2014 in thousands of 2009 U.S. dollars. Robots is the
mean number of robot shipments in the U.S. over 2003-2014 (U.S. data for 2003-2010 are imputed
from North America data). Automation patents are counted for the same time period as the
respective comparison data. All three figures show binscatters of log values.
Source: USPTO, Google, Silverman (2002), NIPA, ASM and IRF (2014).

of automation patents as our main explanatory variable, but we will also control for the
amount of all other patents that can be used in an industry.

3 Comparison with previous automation proxies

Next, we analyze how our new industry measure of automation technology is related
to established automation indicators. Previous proxies of automation differ from ours
along two lines. First, they are indicators of realized automation in the production process,
not indicators of automation technology. Second, most capture only one specific facet of
automation technology, such as computers or robots, while our indicator incorporates
both and even allows delineating it from other kinds of technological progress.

As a measure of computerization, studies use survey data of computer use at the workplace
(Autor et al., 2003, Beaudry et al., 2010) or industry-level investment in computer capital
(Autor et al., 2003, Michaels et al., 2014). Frey and Osborne (2017) manually assess
the probability of computerization of a number of occupations. Akerman et al. (2015)
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Table 5: Relationship between automation patents and other automation proxies

contemp. 1st lag of 2nd lag of 3rd lag of
automation automation automation automation

A. Time fixed effects

computer invt 0.391*** 0.393*** 0.395*** 0.398***
(ASM) (0.0568) (0.0572) (0.0576) (0.0582)

computer invt 0.194** 0.193** 0.191* 0.189*
(NIPA) (0.0948) (0.0953) (0.0958) (0.0963)

robot ship- 0.0846 0.121 0.167 0.220
ments (IRF) (0.308) (0.323) (0.342) (0.365)

B. Time and industry fixed effects

computer invt 0.247** 0.250** 0.257** 0.259**
(ASM) (0.125) (0.125) (0.124) (0.128)

computer invt 0.336 0.322 0.272 0.250
(NIPA) (0.252) (0.243) (0.231) (0.220)

robot ship- 0.350*** 0.335*** 0.465*** 3.095**
ments (IRF) (0.120) (0.107) (0.156) (1.440)

Note: ASM: N = 2,524 (14-3 years with max 465 industries); NIPA: N = 1,380 (26-3 years
with max 71 industries); IFR: N = 186 (11-3 years with max 24 industries). The table
shows results of regressions of various automation proxies on the log of (one plus) the
automation measure at the contemporaneous level and various lags. Each coefficient
estimate represents a separate regression. Data are annual; industry fixed effects are
at the most disaggregate level of industries, but at maximum at the 3-digit SIC level.
Regressions include a constant. Industry-clustered standard errors in parenthesis. *** p
< 0.01, ** p < 0.05, * p < 0.1.

exploit a natural experiment, the introduction of broadband internet in Norway, to study
employment effects of automation.

As a proxy for physical automation innovations, Graetz and Michaels (2015), Acemoglu
and Restrepo (2017) and Dauth et al. (2017) count the number of robots used in pro-
duction, a dataset assembled by the International Federation of Robotics. Lewis (2011)
applies a more general understanding of automation by looking at adoption rates for new
automation technologies, but with limited coverage of industries.

To show how our index relates to some of these measures, Figure 3 correlates automation
patents with investment in computer capital and shipments of robots. We use two different
data sources for investment in computer capital: The National Income and Product Ac-
counts (NIPA), which provides annual data until 2001 for 71 2- and 3-digit SIC industries
and the Annual Survey of Manufactures (ASM), which is available annually from 2002
onwards and for 465 4-digit SIC industries, the majority of them being manufacturing
industries. As a measure of robots, we use the dataset on robot shipments by the In-
ternational Federation of Robotics, which is provided at an annual frequency for North
America starting from 2004 for 24 SIC industries. All correlations are highly positive,
which indicates that our automation measure captures both advances in robotics and in
software, which are then translated into production and trade of computers and robots.

This positive relationship holds even in a panel regression that controls for time- and/or
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Table 6: Automation and industry task input

Outcome: Within-industry change in task input

1970-1980 1980-1990 1990-98

∆ Non-routine analytic Auto Technology -0.012 0.033*** 0.011
(0.011) (0.005) (0.014)

Constant 0.068*** 0.110*** 0.139***
(0.011) (0.014) (0.019)

R2 0.004 0.019 0.001

∆ Non-routine interactive Auto Technology 0.017* 0.062*** 0.007
(0.010) (0.008) (0.018)

Constant 0.131*** 0.206*** 0.279***
(0.017) (0.030) (0.036)

R2 0.004 0.016 0.000

∆ Routine cognitive Auto Technology -0.032** -0.066*** -0.031***
(0.016) (0.011) (0.011)

Constant -0.081*** -0.185*** -0.254***
(0.022) (0.024) (0.038)

R2 0.008 0.027 0.003

∆ Routine manual Auto Technology -0.010*** -0.022*** -0.003
(0.003) (0.004) (0.004)

Constant 0.002 -0.058*** -0.095***
(0.007) (0.009) (0.011)

R2 0.008 0.021 0.000

Note: The table presents separate OLS regressions for the subperiods 1970-1980, 1980-
1990 and 1990-1998, always using as explanatory variable the average change of new
automation patents between 1976 and 1998 (divided by 1000). The dependent variable
is the change in industry-level task input as calculated by Autor et al. (2003). Standard
errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

industry-specific effects. Table 5 shows further that the correlations are significant at
various lags of automation, accounting for the fact that it may take some time to translate
a patented innovation into the actual production of this technology. Although the results
across the three variables are not directly comparable due to different time periods and
industries covered, the link with computer investment might be slightly stronger than
that with robot shipments.

Another way to contextualize our indicator is to evaluate how it relates to the nature
of jobs. A large strand of literature, pioneered by Autor et al. (2003), analyzes the labor
market effects of automation based on the assumption that automated machines are good
at carrying out repeated tasks and fail at complex intellectual or manual tasks. For each
occupation, they calculate what share of a job comprises routine (manual or cognitive)
tasks. The resulting routine-task index thus measures the outcome of automation given
specific – theory- and data-supported – assumptions. Weighing the index by occupation-
specific employment, Autor et al. (2003) further create a routine task intensity measure
across 140 industries from 1960 to 1998, based on which they show that changes in routine-
task intensity are predicted by investment in computer capital: The share of non-routine
tasks increases, whereas that of routine tasks decreases as a result of computer investment.

Figure 4 plots the routine task share of industries in 1960 against new automation techno-
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Figure 4: Automation patents and routine labor
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(b) Per decade

Correlation

1976-1985 0.35
1986-1995 0.34
1996-2005 0.32
2006-2014 0.28

Note: Binscatter of log of total number of automation patents in industries against
routine task input share in 1960 across 258 SIC 3-digit industries, 1976-2014.
Source: Autor et al. (2003) and see text.

logy patented between 1976 and 2014.11 The relationship between automation patents and
the routine-task index is positive: The larger the routine task share of an industry in 1960,
the more automation technology was subsequently invented, patented and potentially
used in that industry in the following decades. Our indicator thus seems to be capturing
the same phenomenon as described by the literature on routine-biased technological
change. The correlation is strongest in the 1970s to 1980s and declines over time. We
interpret this as a sign that the nature of automation technology may have changed: While
in the 1970s until 1990s, automation technology mostly replaced routine tasks, it nowadays
spreads into other tasks. This could be because many routine jobs have already been
replaced by automation, so that additional research in this area is less demanded and
less profitable. Another possible explanation is that recent advances in the automation
technology frontier affect non-routine workers by being able to replace more complex
intellectual or manual tasks. (The self-driving vehicle comes to mind.)

To explore this finding further, we examine the effects of technological change separately
for routine manual, routine cognitive, non-routine analytic and non-routine interactive
tasks. We regress changes in industry task input within each decade on our measure of
new automation technology. This is a replication of a regression analysis by Autor et al.
(2003), but we replace investment in computer capital with our index. To stay as close
to the analysis of Autor et al. (2003) as possible we calculate the left-hand side variable
separately for 1970-1980, 1980-1990 and 1990-1998 whereas on the right-hand side, we use
the mean of new automation patents over the whole time period from 1976 to 1998.12

Table 6 shows that more automation patents were granted in industries where routine

11Data on routine-task intensities at the industry level is obtained from David Autor’s website
economics.mit.edu/faculty/dautor (accessed 14.07.2015). Their dataset is for U.S. Census industries
which we translate into SIC industries using a concordance scheme of the U.S. Census Bureau.
12Results are very similar when we use the whole period that our indicator covers, 1976-2014. Alternatively,
we can count only automation patents of the decade for which the change in task input is calculated. The
results stay qualitatively the same. Regression outputs are available from the authors upon request.
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cognitive and routine manual task inputs declined and where the share of non-routine
analytic and non-routine interactive tasks increased. It is noteworthy that for all four task
inputs the effect is strongest in 1980-1990. This differs from Autor et al. (2003) who found
that for routine tasks the effect had monotonically increased over time.

4 Labor market effects of automation technology

In this section, we first motivate our unit of analysis, local labor markets, before explaining
how we translate our index from industries to U.S. commuting zones. We show graphically
how automation across commuting zones changed over time. Then, we apply the derived
measure in our econometric analysis of employment effects. In the regression set-up,
we rely on fixed effects five-year overlapping time periods, which we explain in detail
before discussing the results. We run regressions for the full sample and separately for
manufacturing and non-manufacturing employment.

4.1 Commuting zones as level of analysis

We study the effects of automation on employment at the level of U.S. commuting zones.
Tolbert and Sizer (1996) have grouped all counties of the U.S. mainland into 722 commuting
zones which each exhibit strong commuting ties within, but weak commuting ties between
one another. These regions are meant to approximate local labor markets. In response
to a shock to labor demand, most adjustments in the short- and medium-run will take
place within the local labor market (Blanchard and Katz, 1992, Moretti, 2011). Workers,
when laid off, usually first look for a new job within the same commuting zone. This is
particularly true for low-skill workers, who are likely to be affected the most by automation
(Notowidigdo, 2011). Therefore, studying the effects of automation on employment on
the level of commuting zones gives us a more complete picture of the employment effects
of automation than an industry-level analysis, which would neglect worker flows from
one industry to another. This is of particular relevance because of the substantial shift of
employment from manufacturing to services in the sample period.

We use employment data by the County Business Patterns (CBP) to convert patents per
industry to worker patent automation intensities on a commuting zone level.13 To create
the commuting zone measure of automation, we first take (one plus) the natural logar-
ithm of industry-level automation patents in order to account for the different levels of
patenting across industries: In some industries the pace of technological progress is too
fast for patents to be a feasible way to protect innovations, while in others, inventors have
strategic reasons not to file for a patent. We then divide the employment-weighted sum of

13In this dataset, employment numbers are reported by county and 4-digit SIC (6-digit NAICS) industry. In
contrast to Census data, which is sometimes used for commuting zone analysis, CBP provides annual data for
the whole period of analysis. Agriculture (SIC < 1000) and public administration (SIC > 9000) are excluded
from CBP. To avoid imprecision due to SIC-NAICS correspondences and missing CBP employment data for
some particular industries, we aggregate employment and the automation index on the 3-digit SIC level
before matching.
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automation patents by total employment in the commuting zone. The resulting measure
is

autointc,t︸ ︷︷ ︸
automation intensity

=
∑i ln(1 + automation patentsi,t)Li,c,t

Lc,t
, (4)

where L is employment, i stands for industry, c for commuting zone and t for time period.

Figure 5 shows the number of automation patents per worker across U.S. commuting zones
in four subperiods: 1976-85, 1986-95, 1996-2005 and 2006-14. The colors represent four
quartiles of the distribution of automation intensity (in levels) in these subperiods: dark
red color signals the 25 percent of commuting zones with the most patents, white color
signals the 25 percent with the least patents. The map thus indicates which commuting
zones have a high or low share of patents relative to the rest of the United States in the
specific sub-period.14

There are pronounced regional patterns in the dispersion of available automation techno-
logy. Between 1976 and 1995, the region around the Great Lakes had a large automation
patent intensity relative to the rest of the United States. This stems from the conjunction of
both a high number of patents in manufacturing industries and a large share of industrial
employment in this area. Starting in the mid-1990s, many commuting zones in this region
move to a lower quartile as the number of manufacturing employees decreased relative
to the number of employees in sectors with fewer patents. But our map of automation
density is not simply a reflection of the manufacturing share. In a particular the Southern
United States

The commuting zones with the highest automation intensities are more dispersed in the
1990s and 2000s. Commuting zones in Montana, North and South Dakota and Nebraska at-
tract many automation patents per employee. The Rocky Mountain region has a low share
of patents throughout the whole sample period. The map therefore reveals substantial
geographic variation over time, which we exploit in the regression analysis.

14As the legend shows, the absolute number of patents has increased across all quartiles. An individual
commuting zone may thus have had its absolute number of patents increase constantly over time, but change
from dark red to white because the index increased relatively more slowly than in other commuting zones.
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Figure 5: Intensity of automation patents across commuting zones, 1976-2014

(a) 1976-1985 (b) 1986-1995

(c) 1996-2005 (d) 2006-2014

Note: Shows averages of the number of national automation patents that can be used by a single worker.
Source: USPTO, Google, Silverman (2002), CBP and own calculations.
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4.2 Empirical strategy

Our dependent variable is the five-year change in the employment-to-population ratio
Lc/popc in commuting zone c:

∆
Lc,t

popc,t
=

Lc,t

popc,t
− Lc,t−5

popc,t−5
,

where in contrast to automation, we observe employment directly at the commuting-zone
level. We choose a medium term period as new patents might start to be used by firms
only with some lags.15 This also holds the additional benefit of smoothing out business
cycle effects.

The main explanatory variable is the five-year sum of the automation intensity in a
commuting zone: ∑4

s=0 autointc,t−s. By using sums, we interpret patents as a flow measure
of technology and therefore, the five-year sum of new patents is the five-year difference in
the stock of patents.

In our econometric analysis we ask the following question: What is the impact of newly
available nationwide automation technology on changes in the employment structure at
the local level? In order to answer this question causally, we need to argue convincingly
that our automation measure is exogenous to employment changes. The main potential
source of endogeneity is that in their research activity, firms may be reacting to local devel-
opments, for example changes in labor costs, regulations or demand, thus introducing a
reverse causality bias. There are several reasons why this is less of a concern for us:

Automation by industry of use: Assigning patents to the industries where they are likely
to be used, not filed, weakens the danger of reverse causality: The research effort of a
firm in one industry is less directly linked to employment trends in another industry than,
for example, data on actual investment in automation technology. Additionally, many
patents are granted to universities, research institutes or individuals that might follow
other objectives than profit maximization, for example intellectual curiosity or an interest
in advancing science. These sources of innovation are of relevance, as in year 2000 about
7000 patent licenses to firms were issued by U.S. universities and U.S. public research
institutions (OECD, 2003). Further, around half of the patents granted by the USPTO are
filed by foreign applicants. This reduces the potential for a feedback from industry wage
structure to innovative activity, as a patent from, for example, a manufacturer in Japan
is less likely to respond to employment conditions in the manufacturing industry in the
United States.

National innovation, local effects: We measure innovations at the level of national indus-
tries, whereas we observe employment changes locally. Our constructed commuting zone
automation measure is thus a proxy for unobserved locally applicable innovation in the
spirit of Bartik (1991), as recently explained by Goldsmith-Pinkham, Sorkin, and Swift
(2017). A national industry is unlikely to react to local employment trends in its research

15Results are robust to changing the length of a period.
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activity unless the following conditions hold: First, the specific commuting zone is of key
importance to the industry (by hosting a large share of industry employment) and second,
the industry is represented strongly in the commuting zone, so that industry trends will
translate directly into commuting zone employment trends. These conditions do not
drive our findings: In our sample, only two commuting zones are above the 25 percent
double threshold (CZ 35002 in Arizona and CZ 37601 in Nevada, in both of which mining
is dominant) and only 34 commuting zones are above the 10 percent double threshold.
Excluding these does not significantly change the results.

Fixed industry structure: We fix the employment structure in equation (4) to the beginning
of each five-year period. This means that in the following five years we assign all patents to
a commuting zone according to the initial employment share of relevant industries in this
commuting zone. Our indicator thus does not pick up employment changes that happen
within the five-year period. A downside of keeping the employment structure fixed is that
we potentially do not count all those patents which workers in a commuting zone can use,
but might over-represent declining and under-represent growing industries.16

Additionally, in Secion 4.6 we exploit information on the owners of patents in order to
identify innovations that more likely result from research effort that is unrelated to trends
in US labor markets. We show that our baseline regression results hold when focusing only
on patents held by foreigners, governments or universities and public research institutes,
or when using these as instruments for the patents held by US companies.

4.3 Regression set-up

We consider changes in overlapping five-year time periods and the sample therefore
comprises 34 consecutive five-year periods across 722 commuting zones.17

The estimation equation takes the form

∆
Lc,t

popc,t
= αk + γt + β1

4

∑
s=0

autointc,t−s + β2

4

∑
s=0

non-autointc,t−s + β3routinec,t−5+

β4

(
4

∑
s=0

autointc,t−s × routinec,t−5

)
+ X′c,t−5 β5 + εc,t,t−5 ,

(5)

where γt are time fixed effects and αk are state fixed effects. Xc,t−5 are additional control
variables. The main variable of interest autoint is automation intensity, non-autoint is the
intensity of any non-automation patents and routine is the routine task share which we
describe below. To construct the left-hand side variable, we take county level population
data from the Census Population and Housing Unit Estimates and county-level employment

16The results are however robust to using an adaptive industry structure.
17The overlapping data structure generates serial correlation. We correct the standard errors by using the
Driscoll and Kraay (1998) estimator, which corrects both for serial and spacial correlation. An alternative
would be to use non-overlapping time periods. But not only would this mean losing a considerable amount
of observations (and thus precision), but it would also require us to choose cut-off points for the five-year
intervals, which would always be to some extent arbitrary. As shown in the appendix, all main results go
through using this more standard estimation procedure instead.
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Table 7: Summary statistics of main variables in baseline regression

Variable Mean Overall Between Within Min Max
Std. Dev. Std. Dev. Std. Dev.

∆ emp/pop 1.19 2.71 0.710 2.62 -9.40 13.2
∆ manu emp/pop -0.342 1.08 0.457 0.977 -5.35 4.33
∆ non-manu emp/pop 1.53 2.19 0.542 2.12 -8.63 12.9

autoint 16.4 3.02 1.23 2.76 7.63 28.6
non-autoint 18.8 1.89 1.38 1.29 8.88 26.7
routine 34.4 5.32 4.25 3.20 8.51 56.3

Note: Variables are as defined in the text.

data from CBP. Because the CBP omits employment in some SIC industries for certain
years, there are a few large jumps in the outcome variable, which we exclude from the
analysis by dropping data below the 1th and beyond the 99th percentile in each year.18

In addition to commuting zone intensities of automation patents, we include intensities of
non-automation patents (non-autoint) in the regression, computed analogously to equation
(4). This variable controls for the effect of technological change other than in automation
technology. Given that some industries generally patent more, it is likely that the number
of automation patents and non-automation patents granted annually are correlated across
industries and commuting zones. At the same time, non-automation inventions may also
have an independent effect on employment. In particular, they may be interpreted as an
indicator for local growth potential, which we might otherwise suspect to be accountable
for correlations between automation and employment: If growing industries increase their
workforce as well as invest more in R&D, this should be reflected by the coefficient on
non-autoint.

As described in Section 3, an often-used measure of susceptibility to automation is the
routine-task index by Autor et al. (2003). The different construction of this measure from
ours creates the opportunity to explore how the effects of these two are related and to ask
the question: How does the effect of automation depend on the routine task share of a
commuting zone? We therefore include the initial (t− 5) routine task share (routine) in
the regression as well as an interaction term between this measure and the variable for
automation intensity.

We further include the initial share of manufacturing employment in total employment
(CBP) to capture structural change in the economy. Automation patents occur to a larger
extent in the manufacturing sector than in the service sector, so an increase in the automa-
tion index may parallel a decline in the manufacturing industry for other reasons, such
as the cheap import of manufactured goods from abroad or changes in the demand for
goods. If not included as a control, any effect stemming from non-automation-related
structural change might be attributed to automation technology.

18For details, see census.gov/program-surveys/cbp/technical-documentation. The number of commut-
ing zones in each year falls to 708.
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Similar to Acemoglu and Restrepo (2017), our set-up also includes the log of initial
commuting zone population because employment in larger and smaller commuting zones
– in particular when interpreting this as a proxy for urban vs. rural areas – might react
differently to automation. We also control for the share of non-white citizens in the
commuting zone population and for the (log of) per capita level of personal income. Data
on the demographic variables are taken from the Census Population and Housing Unit
Estimates, data on income come from the Bureau of Economic Analysis’ Regional Economic
Information System (REIS), which exploits county-level data from administrative records
and censuses.

Table 7 summarizes the main variables of interest. Employment per population grew on
average over the sample period.19 Employment changes were negative on average for the
manufacturing sector and positive for the non-manufacturing sector with more within
and across variation for the latter.20 Our automation intensity measure autoint takes the
value 16.4 on average across years and commuting zones. This value is equivalent to a
commuting zone with a flat industry structure (i.e., all 377 SIC 3-digit industries having
the same employment share) where 25 new automation patents are granted every year in
all industries. Because patents are skewed across industries, this number will be larger for
most industries.

4.4 Estimation results: Total employment

Table 8 presents the baseline results. Throughout almost all specifications, autoint has a
significantly positive coefficient in the range of around 0.10 to 0.23 percentage points. So
new automation technology per worker is significantly related to employment gains in
the same commuting zone. This result is robust to controlling for several economic and
demographic variables.

Column (1) shows the positive association between automation and employment when
no further controls but time and industry fixed effects are included. The relationship
becomes more pronounced when we control for other non-automation patents in column
(2). Columns (3) shows our preferred regression specification. The coefficient on autoint in
column (3) can be interpreted such that a one-unit increase in the automation intensity
leads to a 0.178 percentage point increase in the employment-to-population ratio. As
laid out in Table 7, this is about one sixth of the average five-year increase across all
observations. The within-year interquartile range of autoint lies between 1.23 and 2.15,
so a one-unit increase is well within the range of variation of the sample. In terms of the
actual number of new patents that this implies, a one-unit increase in autoint around its
mean is equivalent to the number of new automation patents in a commuting zone with a

19This is mainly driven by increases in female labor market participation, which rose from 47 percent in 1976
to 57 percent in 2014, peaking at 60 percent in 1999. (See the BLS series LNS11300000, LNS11300001 and
LNS11300002.) Male participation rates fell quite monotonously from 78 percent in 1976 to 69 percent in 2014.
We take care of these structural long-run changes in the labor market not related to automation through time
fixed effects.

20We will use “non-manufacturing” and “services” interchangeably, but “non-manufacturing” also includes
mining and construction.
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Table 8: Labor market effects of automation, five-year overlapping time periods

Outcome: Employment-to-population

(1) (2) (3) (4) (5)

autoint 0.105*** 0.222*** 0.178** 0.144 0.563**
(0.0363) (0.0783) (0.0853) (0.0886) (0.214)

non-autoint -0.120 -0.0245 0.0249 -0.0170
(0.0997) (0.0931) (0.0920) (0.0989)

manufacturing -1.782* -1.211 -1.177
(1.016) (1.082) (1.121)

population 0.0875 0.0745 0.0525
(0.114) (0.108) (0.102)

income -1.319*** -1.284*** -1.232***
(0.351) (0.347) (0.338)

non-white -1.222*** -1.256*** -1.383***
(0.259) (0.273) (0.283)

routine -0.0257 0.143*
(0.0161) (0.0787)

autoint × routine -0.0109**
(0.00468)

Observations 24,064 24,064 24,064 24,064 24,064

R2 0.42 0.42 0.43 0.43 0.43

Note: The table presents fixed effects regressions using five-year changes
in employment as percent of commuting zone population as the dependent
variable. autoint and non-autoint are five-year sums of new automation and
non-automation technology. routine is the initial percentage of routine tasks
in commuting zone employment. The initial manufacturing share, the log of
initial commuting zone population, the log of initial per capita income and the
initial share of non-white citizens in the population are further controls . All
regressions include state and year fixed effects and a constant. Driscoll-Kraay
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

flat industry structure rising from 23 to 29 per year.

A particularly interesting result is how automation technology interacts with the routine
task share. In the setup with both variables in column (4), the coefficients on automation
and on routine-intensity become insignificant. This is likely due to the fact that the
variables measure overlapping concepts, as argued in Section 3. However, both coefficients
are significant when we include the interaction between the two variables. The negative
coefficient on the interaction shows that the magnitude of the effect of automation on
employment varies with the level of the routine task share: In commuting zones with
more routine labor, automation technology has a less positive effect. The total effect of
automation in column (5) turns negative for commuting zones with a routine task share
larger or equal to 54.5 percent. The mean of routine is 34.4 and in only 0.1 percent of all
observations it exceeds 54.5 percent. So, the total effect of automation is positive in the
overwhelming majority of commuting zones.

Non-automation patents are not associated with changes in employment. This might be
driven by the nature of these innovations. Many non-automation patents are chemical
or pharmaceutical and some are patents without any clear applications. In contrast,
automation patents are required by our definition to have at least a distantly recognizable
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application.

The initial manufacturing share has a mildly significant negative coefficient in our baseline
setup of column (3), which might capture the part of the secular trend from manufacturing
to services that takes place in the five-year periods we study. The population size is
not significantly related to employment changes. A higher per capita income negatively
predicts employment changes across all specifications. The employment level is generally
higher in commuting zones with a higher per capita income. This could be a sign of
convergence in employment shares across commuting zones, but could also reflect a
reversely causal effect: as personal income is composed to a large extent of labor income,
there could be slower employment growth in commuting zones with a higher wage level,
because it is more costly to create jobs. A higher share of the non-white population is
negatively associated with employment changes.

Our findings thus paint a more positive picture of the net employment effects of auto-
mation than Autor et al. (2015), Graetz and Michaels (2015) and Acemoglu and Restrepo
(2017), who found negative or insignificant effects of automation on jobs.21 It is, however,
in line with the findings by Gregory et al. (2016), who show that next to a substitution
effect on routine-task jobs, automation lower the production costs. Declining goods prices
boost product demand, and so new (non-routine) jobs are created. The positive product
demand effect trumps the negative substitution effect. Both the positive level effect of
automation and the negative coefficient on the interaction term with the routine task share
in our regressions support this explanation. By using a broader measure of automation,
we can thus extend the knowledge on its employment effects beyond the findings of a
literature that focuses on specific types of automation.

4.5 Estimation results: Sectoral employment

We further study the effect of automation on different types of employment separately.
Table 9 shows pointedly different effects of automation technology on manufacturing and
non-manufacturing employment.

Panel A consistently shows that manufacturing employment falls when the automation
intensity increases. The effect is significant in our preferred specification (3) and when
adding the routine task share in column (4). In contrast to the total US population, the
group of manufacturing workers experiences job losses - even when controlling for the
initial manufacturing share, which itself has a significantly negative effect. The negative
employment effect of automation is more pronounced in commuting zones with a higher
routine task share, as the interaction term shows. It turns positive only for commuting
zones with a routine task share below 20.9 percent. This is only the case for 115 out of 24,058
observations. Panel B paints a very different picture. In non-manufacturing industries,
automation has a very robust job-creating effect. The coefficients are twice as large as in
Table 8. Non-manufacturing occupations are clear beneficiaries from automation in terms
of employment numbers. In contrast to Panel A, the routine task share in the commuting

21Section 4.5 sheds light on why this is the case.
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Table 9: Labor market effects of automation for manufacturing and non-manufacturing
employment, fixed employment structure

(1) (2) (3) (4) (5)

A. Outcome: Manufacturing employment-to-population

autoint -0.0169 -0.0480 -0.173*** -0.200*** 0.144
(0.0176) (0.0665) (0.0300) (0.0300) (0.0911)

non-autoint 0.0317 0.235*** 0.275*** 0.240***
(0.0747) (0.0299) (0.0296) (0.0218)

manufacturing -2.581*** -2.142*** -2.127***
(0.587) (0.617) (0.656)

population -0.0335** -0.0437*** -0.0608***
(0.0133) (0.0128) (0.0149)

income -0.739*** -0.712*** -0.668***
(0.206) (0.206) (0.201)

non-white -0.122 -0.150 -0.259
(0.238) (0.232) (0.214)

routine -0.0200*** 0.119**
(0.00247) (0.0437)

autoint × routine -0.00898***
(0.00243)

Observations 24,058 24,058 24,058 24,058 24,058

R2 0.21 0.21 0.25 0.25 0.26

B. Outcome: Non-manufacturing employment-to-population

autoint 0.113*** 0.278*** 0.372*** 0.370*** 0.420***
(0.0344) (0.0984) (0.0768) (0.0799) (0.147)

non-autoint -0.169 -0.293*** -0.290*** -0.296***
(0.112) (0.0870) (0.0840) (0.0894)

manufacturing 0.852 0.883 0.887
(0.728) (0.719) (0.726)

population 0.118 0.117 0.115
(0.109) (0.103) (0.101)

income -0.612** -0.610** -0.604*
(0.291) (0.299) (0.298)

non-white -1.105*** -1.107*** -1.122***
(0.178) (0.188) (0.194)

routine -0.00136 0.0186
(0.0173) (0.0384)

autoint × routine -0.00129
(0.00256)

Observations 24,067 24,067 24,067 24,067 24,067

R2 0.38 0.39 0.39 0.39 0.39

Note: The table presents fixed effects regressions for five-year changes in man-
ufacturing employment-to-population and non-manufacturing employment-to-
population. The control variables are defined as in Table 8. All regressions include
state and year fixed effects and a constant. Driscoll-Kraay standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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zone does not play a significant role for the size of the automation effect.

Related to this, the coefficient on the routine task share also reveals strong differences
between manufacturing and non-manufacturing employment. Commuting zones with
a lot of routine labor lose more manufacturing jobs, but this is not the case for non-
manufacturing employment. This is likely due to the larger share of routine tasks in the
manufacturing than in the service sector. These findings may explain why Acemoglu
and Restrepo (2017), in their analysis of the impact of robot use on employment, found
automation to be harmful for employment and why Graetz and Michaels (2015), using the
same dataset, found evidence for skill polarizing effects of robots: Robots are mainly used
in the manufacturing sector and indeed 19 out of the 24 industries covered by IRF robot
data are manufacturing industries. Other types of automation innovations, in particular
those that can be used in the non-manufacturing sector, may have a more positive effect
on employment than industrial robots. Indeed, Acemoglu and Restrepo (2017) show that
the effect of robots is less negative or even positive in non-manufacturing industries. They
also find that computer usage tends to increase the demand for labor.

We add to the existing literature by documenting different effects of automation on
manufacturing and non-manufacturing employment: Next to a polarization in skills
and tasks, automation has lead to a sectoral shift. Manufacturing sector jobs win, while
non-manufacturing jobs lose from automation.

The results presented in this and the previous section are robust to weighing patents by
how often they have been cited. Patent citations are sometimes used as an indicator of the
value of an invention and therefore, giving stronger weight to highly cited patents might
paint a more realistic picture of the degree to which a patent is used in the production
process. In Tables A4 and A5 we replicate the regressions presented in Tables 8 and 9 using
a citations-weighted measure of automation, which we explain further in the Appendix.
While our sample is thus shortened by several years, we still find a mildly positive effect
of automation for total employment and a pronounced disparity between manufacturing
and non-manufacturing.

4.6 Effects of automation by assignees

Patents contain information on who owns (or “is assigned”) a patent. This information
is valuable, because it hints on how closely a patentee’s research activities are linked
to developments in US labor markets. Innovation activity by entities that do not have
business interests in US markets is less likely to be influenced by developments on US
labor markets. By focusing on new automation technologies that are originating from
such groups, we therefore get a cleaner identification.

To classify the patents, we use data by Lai, D’Amour, Yu, Sun, Doolin, and Fleming (2011),
who extract the names of assignees from 1976 until 2012 and provide a host of other
information about patents and their owners. We focus on patents held by three groups
of assignees, who we believe to be less directly responsive to US labor market trends
than US companies: foreigners (these can be companies, individuals or public entities),
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government bodies (US or foreign) and universities and public research institutes.22

Research by foreigners can be assumed to respond to developments in their home coun-
try rather than in the United States, as long as the following two conditions are met:
The company does not operate on a large scale in the United States, and the domestic
labor market trends are not linked to US trends. We do not observe if these conditions
hold, so the group of foreigners is the most endogenous of the three. Universities and
public research institutes conduct more basic research than corporations, so for them,
the immediate applicability or profit maximization might only be a distant motivation.
Government patents are also unlikely to be motivated by labor market developments, but
should rather respond to military buildups, the needs of certain ministries or cycles in
budgetary planning.

Table 10: Assignee summary statistics, 1976-2012

Assignee Patents Automat Share Cit. Cit. Excl. Length
(1000s) (1000s) (weighted)

US firm 1875.7 948.3 51% 12.2 1.24 14% 1012.3
foreigners 1827.8 777.1 43% 7.1 0.78 12% 831.5
universities 115.1 67.0 58% 10.4 1.02 41% 1435.8
governments 44.8 19.1 43% 8.6 0.74 17% 700.8
missing 609.9 187.5 31% 9.7 0.91 9% 653.8

Note: “Automat” are automation patents as described in text. “Cit.” are the average number of
citations, “Cit. (weighted)” are the number of citations after removing time-subclassification
(HJT) means, where subgroups correspond to those of Table A2. “Excl.” is the share of excluded
patents due to being pharmaceutical and chemical patents. “Length” is the average number of
lines in a patent document.
Source: Lai et al. (2011) and own calculations.

Table 10 shows summary statistics for patents by the different groups of assignees. US
firms are the largest group with around 1.9 million patents. The second largest group are
foreigners, who hold 1.8 million patents. Based on the classification by Lai et al. (2011),
we identify 45 thousand patents that are assigned to governments. The most important
assignees in this category are the US Navy with 10,922 patents, the US Army with 6,217
patents, the US Department of Energy with 4,416 patents, the US Air Force with 3448
patents and NASA with 2,823 patents. The largest foreign government institutions owning
US patents are French nuclear energy and aviation commissions and the British and
Canadian defense ministries. To identify patents assigned to universities, we inspected
the 10,000 assignees with the most patents and determined whether they are an university
or a public research institute. There are 581 such entities holding a total of 115 thousand
patents. The most productive are the University of California (5,400 patents), the Industrial
Research Institute of Taiwan (4,289 patents), the Massachusetts Institute of Technology
(3897 patents), the Electronics and Telecommunications Research Institute from South
Korea (3,606 patents) and the French Institute of Petroleum (2,471 patents). For the
remaining 610 thousand patents, we do not know the assignee, as this information is
missing in Lai et al. (2011). A casual inspection of these patents suggests that most of these
also belong to US firms or individuals.

22These groups are mostly mutually exclusive, but we count foreign governments (a small group) in both the
“foreign” and the “governments” category and foreign universities also show up in the foreigners category.
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Table 11: SIC-level correlation of patents in assignee subcategories with US companies

Assignee Patents Automation
year year & SIC year year & SIC

foreigners 0.33 0.33 0.94 0.95
universities 0.35 0.36 0.88 0.88
governments -0.45 -0.43 0.02 0.04

Note: Numbers show correlations of subcategories with the
categories of US firms and missing assignees. ”year” indicates
that year trends are taken out, ”year & SIC” indicates that year
and industry trends are taken out.

The automation patents assigned to foreigners, universities or governments may be of a
different nature than those held by US firms – not just for their less direct link to economic
developments in the United States, but for reasons related to their applicability. We might
see different effects of automation on employment if they were not representative of the
technology frontier in automation. Table 10 shows that patents held by US firms are
characterized by a larger share of automation patents and are more widely cited than
those held by other patentees. However, automation patents are highly correlated across
groups at the industry level, as Table 11 shows. Automation innovations by governmental,
foreign and university patentees seem to be applicable in similar industries as automation
innovations patented by US firms or individuals. This is not the case when considering
all patents. So while it is reasonable to assume that patented automation technology is
similar across assignee groups, this is not the case for technology in general.

Indeed, the types of patented innovations differ across technology subgroups. As Table A2
shows, US firms hold a particularly high share of “Communication & Computer” patents,
which contain a large number of automation patents. Foreigners hold fewer pharmaceut-
ical patents, but many mechanical patents and their patents are cited least often. The
column “Cit. (weighted)” in Table 10 shows that this holds even after controlling for
time and subgroup fixed effects. Universities hold many chemical and pharmaceutical
patents and few in the “Communication & Computer” category. These patents are also
particularly lengthy. In contrast, governments hold many patents on electric and elec-
tronic innovations, and the corresponding patent texts are shorter than those from other
assignees.

We replicate our empirical analysis from the previous section in two ways. First, we repeat
the panel data regressions of Table 8 and Table 9, but for autoint and non-autoint we use the
intensities computed from either only university patents, foreign patents or government
patents. Second, we use all three automation sub-indicators as instrumental variables for
possibly more endogenous category of US companies and non-identified assignees. The
purpose of this exercise is to extract only the component of automation that is unrelated to
US labor market developments. As we only have assignee data until 2012, we limit our
analysis to the period 1976 to 2012.

For university patents, we document positive net effects of automation on employment.
The same holds when using all three groups of automation patents as instruments in
column (4). It is striking that again none of the effects of automation on total employment
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Table 12: Labor market effects of automation, various assignee groups

Outcome: Employment-to-population

(1) (2) (3) (4)
university foreign gov’t IV

autoint 0.410* 0.153 -0.108 0.128*
(0.217) (0.128) (0.223) (0.0717)

non-autoint -0.332 0.0145 0.379 0.0344
(0.238) (0.144) (0.252) (0.0756)

manufacturing -0.769 -2.017 -2.061* -1.961***
(1.217) (1.203) (1.058) (0.377)

population 0.121 0.110 0.113 0.119***
(0.114) (0.112) (0.116) (0.0232)

income -1.225*** -1.393*** -1.358*** -1.358***
(0.342) (0.369) (0.370) (0.192)

non-white -1.277*** -1.256*** -1.301*** -1.255***
(0.233) (0.256) (0.250) (0.255)

Observations 22,648 22,648 22,648 22,648

R2 0.41 0.42 0.42 0.42

Note: All columns replicate column (3) of Table 8. In columns (1) - (3),
the full automation measure is replaced by automation by universities,
foreigners and governments, respectively. The non-automation measure
is constructed accordingly. The last column represents an IV regression,
where university, foreign and government (automation) patents are
used as instruments for the remaining (automation) patents. Standard
errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

is negative. The size of the coefficient in Table 8 lies in the middle of the new estimates.
Table 13 reports separate results for manufacturing and non-manufacturing employment.
We find negative effects of automation on manufacturing employment for all assignee
groups apart from university patents. All types of patented automation technology lead a
rise in non-manufacturing employment. The magnitude of the coefficients again frame the
previous estimates. The findings strongly support the results from our baseline analysis
and thus show that the earlier findings were likely not biased by endogeneity of the
regressors.

While having roughly the same effects on employment, we can detect slight differences
between the patent assignee categories. Automation technology patented by universities
and public research institutes has the most strongly positive effects on employment and
even the manufacturing sector does not lose from this type of technology. The negative
employment effects of automation on the manufacturing sector are strongest when we
consider only government patents. Why could this be the case? Universities hold many
chemical and pharmaceutical patents, while governments patent many electrical and
mechanical patents (Table A2). But as explained before, we exclude most chemical and
pharmaceutical patents and the classification algorithm further extracts only a relevant
subset of patents. As Table A3 shows, the makeup of the final automation patents does
not differ much between those two groups of assignees. Pharmaceutical patents make for
4 percent of university automation patents and 1 percent of government university patent.
A more likely explanation is that the innovations by universities and governments differ
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Table 13: Labor market effects of automation for manufacturing and non-manufacturing
employment, various assignee groups

(1) (2) (3) (4)
university foreign gov’t IV

A. Outcome: Manufacturing employment-to-population

autoint -0.120 -0.208*** -0.435*** -0.216***
(0.114) (0.0314) (0.128) (0.0329)

non-autoint 0.157 0.286*** 0.518*** 0.303***
(0.145) (0.0375) (0.169) (0.0331)

manufacturing -1.796** -2.827*** -2.441*** -2.807***
(0.672) (0.652) (0.693) (0.171)

population -0.0399*** -0.0429*** -0.0419*** -0.0321***
(0.0137) (0.0138) (0.0140) (0.00941)

income -0.807*** -0.793*** -0.862*** -0.724***
(0.213) (0.234) (0.213) (0.0746)

non-white -0.287 -0.130 -0.310 -0.0937
(0.264) (0.257) (0.270) (0.125)

Observations 22,642 22,642 22,642 22,642

R2 0.24 0.25 0.25 0.25

B. Outcome: Non-manufacturing employment-to-population

autoint 0.518*** 0.380*** 0.354*** 0.374***
(0.170) (0.112) (0.125) (0.0598)

non-autoint -0.479** -0.304** -0.175 -0.314***
(0.204) (0.135) (0.148) (0.0637)

manufacturing 0.912 0.897 0.337 0.963***
(0.849) (0.842) (0.605) (0.310)

population 0.157 0.150 0.150 0.147***
(0.108) (0.108) (0.110) (0.0200)

income -0.431 -0.611* -0.506 -0.661***
(0.304) (0.311) (0.314) (0.167)

non-white -0.989*** -1.143*** -0.978*** -1.188***
(0.138) (0.131) (0.146) (0.207)

Observations 22,650 22,650 22,650 22,650

R2 0.37 0.37 0.37 0.37

Note: All columns replicate column (3) of Table 9. In columns (1) - (3),
the full automation measure is replaced by automation by universities,
foreigners and governments, respectively. The non-automation measure
is constructed accordingly. The last column represents an IV regression,
where university, foreign and government (automation) patents are jointly
used as instruments for the remaining (automation) patents. Standard
errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

along other dimensions that we do not measure.
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5 Reassessing the literature

With our new dataset we revisit findings from two important papers of the literature
on the local labor market effects of automation. We investigate whether our measure
of automation predicts different effects for the growth of non-college service sector jobs
(Autor and Dorn, 2013) and how the effects of automation compare with those from China
import competition (Autor et al., 2015).23 Apart from gaining additional insights through
our new indicator, this allows comparing our results to the findings from the literature
using the established routine-share measure.

5.1 Revisiting Autor and Dorn (2013): The non-college service sector and em-
ployment polarization

Autor and Dorn (2013) address the issue why there has been an increasing polarization
in both employment and wages in 1980-2005. They focus on non-college service sector
jobs (e.g., cleaners or security guards), which have grown more rapidly than other less-
educated and low-paying occupations (such as factory work) and which have experienced
wage increases. The authors hypothesize that this is due, among other things, to an
increase in automation technology: Automation has reduced the demand for routine
manual tasks, while increasing the demand for non-routine manual tasks, thus benefiting
non-college service sector jobs at the expense of non-college production jobs.

In their empirical analysis, Autor and Dorn (2013) use the routine-task share as a proxy
for automation and show that in commuting zones where initially more people worked in
routine occupations, there was a larger increase in non-college service employment. In
Table 14, column (1), we reproduce their finding to the letter.

Table 14: Automation and non-college service employment, 1980-2005

Outcome: 10 × annual change in share of non-college
employment in service occupations

(1) (2) (3) (4)

routine 0.105*** 0.105*** -0.336
(0.0320) (0.0284) (0.230)

autoint -0.00100 -0.000990 -0.00533**
(0.000688) (0.000645) (0.00227)

routine × autoint 0.0139*
(0.00695)

Constant -0.00632 0.0568*** 0.0241 0.161**
(0.0104) (0.0210) (0.0202) (0.0740)

R2 0.179 0.171 0.185 0.188

Note: 2,166 observations (3 time periods × 722 commuting zones); robust
standard errors in parentheses; all models include state fixed-effects and
period fixed effects and are weighted by start of period commuting zone share
of national population.
*** p<0.01, ** p<0.05, * p<0.1
Source: Own calculations following Autor and Dorn (2013), Table 5.

23Data and replication files for both papers are from David Dorn’s website, ddorn.net/data (accessed
10.02.2017).
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We then add autoint, our new automation intensity measure. The interaction term in
column (4) between autoint and routine is positive and significant: Non-college service
jobs rise in commuting zones with a high routine-task share initially and where many
new automation patents could be used. This is consistent with the model presented by
Autor and Dorn (2013) and highlights an important piece of evidence: the presence of
those routine jobs that can be easily automated is necessary for the shift of low-skilled
employment into the service sector, not the availability of automation technology by itself.

However, the total effect of automation changes from negative to positive only at a routine-
task share of 0.38, a number reached by just 2 out of 2,166 observations and the coefficient
on autoint in columns (2) and (3) is insignificant. So although we found in Section 4.5 that
automation creates non-manufacturing jobs, the rise in non-college service jobs depends
crucially on the mix between automation and the existence of routine jobs.

5.2 Revisiting Autor, Dorn, and Hanson (2015): Employment effects and rela-
tion to exposure to Chinese trade competition

Since the 1990’s, there has been a strong rise in trade between the United States and
China. A number of papers, such as Autor et al. (2013), Acemoglu et al. (2016) and Pierce
and Schott (2016), argue that Chinese import competition is responsible for employment
losses in those regions where firms reside that are most exposed to it. Autor et al. (2015)
investigate whether this “China shock” or automation has a larger impact on U.S. labor
markets. They find that while import competition reduces employment in local labor
markets, automation – as measured by the routine task share – is not related to employment
changes.

We revisit this finding with our dataset. Table 15 replicates the baseline analysis of
Autor et al. (2015), Table 1, in which the authors regress 10-year equivalent changes
in the employment-to-population ratio, unemployment-to-population ratio and non-
participation rate among working age adults. The two main variables of interest are the
contemporaneous change in Chinese import exposure per worker and the start-of-decade
employment share in routine occupations, both of which are being instrumented.24

Columns (1) and (4) of Table 15 are exact replications of columns (1) and (3) of Autor
et al. (2015), one containing only the initial routine share, the other one both the routine
share and the China shock as explanatory variables. In columns (2) and (5), we replace
the routine share by our commuting zone automation intensity. While the coefficient
on the routine share is always insignificant, our automation measure has a significantly
positive effect on the employment share and a significantly negative effects on both share
of unemployed workers and the share of workers that are not in the labor force. This even
holds when including both autoint and the routine task share. Automation patents have
positive effects by reducing the unemployment rate and the number of people outside of

24The instrument for the trade variable is imports from China to other advanced economies. For the initial
routine task share, Autor et al. (2015) use its 1950 value in all states but the one that contains the commuting
zone, weighted by 1950 employment shares. They argue that in this way, they can isolate the stable, long-run
differences in the production structure across commuting zones.
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Table 15: Labor market effects of automation patents, routine employment share and
exposure to Chinese import competition, 1990-2007

(1) (2) (3) (4) (5) (6)

A. Outcome: Share of employed in workage population

routine -0.0481 -0.0369 -0.207 -0.185
(0.224) (0.233) (0.254) (0.260)

autoint 0.215*** 0.206*** 0.331*** 0.297***
(0.0670) (0.0748) (0.0757) (0.0792)

∆ (Imports from China -0.831*** -0.832*** -0.942***
to US)/Worker (0.215) (0.181) (0.221)

B. Outcome: Share of unemployed in workage population

routine -0.0144 -0.0247 -0.00513 -0.0104
(0.0616) (0.0653) (0.0702) (0.0728)

autoint -0.0579** -0.0645** -0.0926*** -0.0914***
(0.0255) (0.0282) (0.0222) (0.0285)

∆ (Imports from China 0.186*** 0.249*** 0.221***
to US)/Worker (0.0527) (0.0676) (0.0612)

C. Outcome: Share of not in labor force in workage population

routine 0.0624 0.0616 0.213 0.195
(0.172) (0.178) (0.194) (0.197)

autoint -0.158*** -0.141** -0.239*** -0.206***
(0.0538) (0.0608) (0.0667) (0.0672)

∆ (Imports from China 0.645*** 0.583*** 0.721***
to US)/Worker (0.188) (0.155) (0.190)

Note: The table is based on Autor et al. (2015), Table 1, juxtaposing the effect of Chinese import
competition and routine biased technological change on 10-year equivalent changes in the employ-
ment status of the working-age population. N = 1444 (2 time periods 1990-2000, 2000-2007, 722
commuting zones). All regressions control for the start of period levels of share of employment in
manufacturing, share of population that is college educated, share of population that is foreign
born, employment rate among females and Census division dummies. Robust standard errors in
parentheses are clustered on state. Models are weighted by start of period commuting zone share
of national population. *** p < 0.01, ** p < 0.05, * p < 0.1.

the labor force, with a larger effect on the latter group.

An additional finding is that while the effect of the routine task share stays insignificant
when including the China shock in column (5), the estimates become even more strongly
positive when using our automation indicator. The coefficient on the China shock change
little when using autoint (column (5)) instead of the routine (column (4)). This lends further
support to the findings of Autor et al. (2015) on the detrimental effect of Chinese import
competition, while automation is playing a more positive role now.

6 Conclusion

This paper makes two contributions: First, it provides a new indicator of automation by
applying a text classification algorithm to the universe of U.S. patents granted since 1976.
Linking patents to their industry of use and, ultimately, to commuting zones, we construct
geographical intensities of newly available automation technology. The second contribu-
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tion is a fresh assessment of the labor market effects of automation. In an econometric
analysis, we show that in commuting zones where more newly-invented automation
technology becomes available, the employment-to-population ratio increases. At the same
time, there is a shift from routine manufacturing jobs towards non-routine service sector
jobs. These results hold when we study only patents by universities, governments or
foreigners, which are likely less responsive to developments in US labor markets than
domestic firms.

While rising employment ratios in response to automation technology are good news, the
benefits of automation may be unevenly distributed. We hope that future research will
provide more insights in this respect. A more general contribution of this paper is that
it pioneers a way of extracting trends in innovation which can also be used to study the
effects of other technologies on the economy.
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A Additional tables

Table A1: Yearly automation and non-automation patents

#A #P #A #P #A #P

1976 16279 70194 (25%) 1989 27928 95565 (35%) 2002 77267 167400 (54%)

1977 15433 65215 (26%) 1990 25925 90421 (34%) 2003 82017 169077 (56%)

1978 15412 66087 (26%) 1991 28037 96561 (35%) 2004 84372 164384 (58%)

1979 11721 48840 (28%) 1992 29165 97472 (36%) 2005 69602 143891 (54%)

1980 14937 61815 (28%) 1993 30439 98385 (38%) 2006 91201 173822 (59%)

1981 15885 65770 (28%) 1994 33699 101695 (39%) 2007 83196 157331 (60%)

1982 15092 57877 (31%) 1995 35135 101431 (41%) 2008 86705 157788 (62%)

1983 14546 56863 (31%) 1996 40411 109654 (44%) 2009 92843 167463 (62%)

1984 17665 67212 (31%) 1997 40217 112019 (44%) 2010 121163 219835 (62%)

1985 19415 71668 (32%) 1998 57293 147577 (46%) 2011 126328 224871 (63%)

1986 19515 70867 (32%) 1999 58464 153591 (45%) 2012 147550 253633 (65%)

1987 24359 82963 (34%) 2000 61273 157595 (45%) 2013 163112 278507 (66%)

1988 22006 77938 (33%) 2001 64796 166158 (46%) 2014 178422 301643 (67%)

total 2158825 4971078 (43%)

Note: #A: number of automation patents as classified by own algorithm; the patent totals #P are reported
as counted by us in the patent files. The USPTO reports slightly different numbers for total patent counts
on its website, but the difference is below 0.5% in all years.
Source: USPTO, Google and own calculations.

Table A2: Assignee’s patents across technological categories, 1976-2012

Assignee Patents Chem- Comm., Drugs, Electr., Mech- Miss- Oth-
(1000s) ical Comput. Med. Electron. anical ing ers

US firm 1875.7 17% 22% 11% 15% 13% 10% 12%
foreigners 1827.8 16% 20% 7% 19% 18% 10% 9%
universities 115.1 23% 12% 31% 17% 6% 6% 5%
governments 44.8 21% 14% 11% 21% 14% 11% 8%
missing 609.9 11% 7% 11% 9% 21% 11% 29%

Note: Technological classifications are based on USPC numbers and aggregated using the scheme by Hall
et al. (2001).
Source: Lai et al. (2011), Hall et al. (2001) and own calculations.
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Table A3: Share of automation patents after excluding patents

Assignee Patents Chem- Comm., Drugs, Electr., Mech- Miss- Oth-
(1000s) ical Comput. Med. Electron. anical ing ers

US firm 1875.7 2% 21% 2% 8% 5% 6% 3%
foreigners 1827.8 1% 17% 1% 7% 7% 6% 2%
universities 115.1 2% 11% 4% 10% 2% 4% 2%
governments 44.8 2% 11% 1% 10% 4% 6% 2%
missing 609.9 1% 6% 2% 4% 6% 4% 5%

Note: Technological classifications are based on USPC numbers and aggregated using the scheme by Hall
et al. (2001). This table excludes all patents based on the selected pharmaceutical and chemical industries
as explained in text.
Source: Lai et al. (2011), Hall et al. (2001) and own calculations.

B Further robustness checks

B.1 Patent citations

Not all patents are of the same importance. Scherer and Harhoff (2000) show that the
returns on innovation are highly concentrated, with the 10 percent most valuable patents
accounting for around 80 percent of realized value. While Griliches (1990) argues that
using a large number of patents partly addresses this concern, we can count how often a
patent was cited by other patents as an indicator of its value. We use the patent citations
files by Lai et al. (2011) until 2009. The number of citations per patents follow a well-known
hump-shape, as newer patents are cited less frequently, but the propensity to cite has
risen. Also, some industries (such as pharmaceutical and chemical patents) cite many
more patents than others (such as electronics). To control for this, we demean citations
across years and the broad technology classes defined by Hall et al. (2001). This is the
“fixed effect” method proposed by Hall et al. (2001).

We then weight patents by how often they were cited and replicate our analysis. The
analysis shows similar results: Manufacturing employment falls and service employment
rises when more (citation-weighted) automation patents become available. The baseline
effect on all employment becomes insignificant in this specification, but the interaction
between automation and routine task share is still significant.
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Table A4: Labor market effects of automation of citations-weighted patents

Outcome: Employment-to-population

(1) (2) (3) (4) (5)

autoint 0.0896** 0.177* 0.0337 -0.0226 0.456**
(0.0339) (0.0990) (0.0748) (0.0834) (0.212)

non-autoint -0.0917 0.104 0.182* 0.106
(0.124) (0.0885) (0.0949) (0.107)

manufacturing -2.391** -1.458 -1.264
(0.887) (1.080) (1.171)

population 0.192** 0.171** 0.146*
(0.0846) (0.0800) (0.0771)

income -1.337*** -1.285*** -1.222***
(0.389) (0.380) (0.378)

non-white -1.374*** -1.420*** -1.559***
(0.129) (0.136) (0.123)

routine -0.0417** 0.142*
(0.0152) (0.0772)

autoint × routine -0.0117**
(0.00424)

Observations 20,524 20,524 20,524 20,524 20,524

R2 0.32 0.32 0.34 0.34 0.34

Note: The table replicates the regressions of Table 8 but using citations-
weighted five-year sums of new automation and non-automation technology.
We only include observations until 2009. Citations are adjusted with the Hall
et al. (2001) fixed effect method. Driscoll-Kraay standard errors in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A5: Labor market effects of citations-weighted automation patents for manufacturing
and non-manufacturing employment

(1) (2) (3) (4) (5)

A. Outcome: Manufacturing employment-to-population

autoint -0.0198 -0.110 -0.262*** -0.292*** 0.0443
(0.0186) (0.0762) (0.0373) (0.0425) (0.136)

non-autoint 0.0948 0.332*** 0.375*** 0.323***
(0.0884) (0.0418) (0.0490) (0.0488)

manufacturing -2.880*** -2.374*** -2.237***
(0.536) (0.590) (0.613)

population -0.0310** -0.0425*** -0.0595***
(0.0151) (0.0146) (0.0169)

income -0.792*** -0.765*** -0.721***
(0.169) (0.162) (0.169)

non-white -0.167 -0.192 -0.287
(0.224) (0.216) (0.175)

routine -0.0228*** 0.106*
(0.00440) (0.0592)

autoint × routine -0.00826**
(0.00320)

Observations 20,520 20,520 20,520 20,520 20,520

R2 0.19 0.19 0.24 0.24 0.26

B. Outcome: Non-manufacturing employment-to-population

autoint 0.103*** 0.295*** 0.315*** 0.297*** 0.405**
(0.0313) (0.0722) (0.0615) (0.0705) (0.157)

non-autoint -0.202** -0.258*** -0.233*** -0.250***
(0.0832) (0.0741) (0.0799) (0.0882)

manufacturing 0.519 0.818 0.861
(0.673) (0.776) (0.829)

population 0.218** 0.211** 0.205**
(0.0832) (0.0782) (0.0757)

income -0.580* -0.563 -0.549
(0.332) (0.334) (0.336)

non-white -1.275*** -1.289*** -1.321***
(0.110) (0.105) (0.0997)

routine -0.0132 0.0281
(0.0169) (0.0413)

autoint × routine -0.00263
(0.00296)

Observations 20,529 20,529 20,529 20,529 20,529

R2 0.26 0.26 0.28 0.28 0.28

Note: The table presents fixed effects regressions for five-year changes in manu-
facturing employment-to-population and non-manufacturing employment-to-
population. Automation and non-automation are citations-weighted. We only
include observations until 2009. Citations are adjusted with the Hall et al. (2001)
fixed effect method. The other control variables are defined as in Table 9. All
regressions include state and year fixed effects and a constant. Driscoll-Kraay
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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B.2 Non-overlapping five-year periods

Table A6: Labor market effects of automation, five-year non-overlapping time periods

Outcome: Employment-to-population

(1) (2) (3) (4) (5)

autoint 0.154*** 0.324*** 0.258** 0.246* 0.611***
(0.0334) (0.0892) (0.126) (0.134) (0.162)

non-autoint -0.173** -0.0776 -0.0610 -0.0825
(0.0740) (0.125) (0.137) (0.133)

manufacturing -1.191* -1.031* -0.886
(0.616) (0.601) (0.595)

population 0.107*** 0.102*** 0.0908***
(0.0256) (0.0236) (0.0241)

income -0.644*** -0.627*** -0.601***
(0.228) (0.224) (0.223)

non-white -1.215*** -1.232*** -1.281***
(0.447) (0.444) (0.427)

routine -0.00751 0.132**
(0.0136) (0.0507)

autoint*routine -0.00969***
(0.00356)

Observations 5,663 5,663 5,663 5,663 5,663

R2 0.40 0.40 0.41 0.41 0.41

Note: The table presents fixed effects panel data regressions using non-
overlapping five-year equivalent changes in employment as percent of com-
muting zone population as the dependent variable. autoint and non-autoint are
five-year sums of new automation technology and non-automation techno-
logy, as defined in the text. routine is the initial percentage of routine tasks in
commuting zone employment. Further controls are the initial manufacturing
employment share, the log of the initial commuting zone employment, the log
of initial per capita income and the initial share of non-white citizens in the
population. All regressions include state and year fixed effects and a constant.
Standard errors clustered at the state level in parentheses. *** p < 0.01, ** p <
0.05, * p < 0.1.

As an alternative to the five-year overlapping regressions presented in the main part of
the paper, we show regression results for non-overlapping periods. These are 1977-1981,
1982-1986, 1987-1991, 1992-1996, 1997-2001, 2002-2006, 2007-2011 and 2012-2014, for which
we compute five-year equivalents for the last period that covers only three years. The
panel therefore comprises 8 time periods and 708 commuting zones. The results are similar
to those presented in the main text. The coefficients in Table A6 are slightly larger and
more significant than those presented in Table 8. The effects of automation for the two
employment groups of Table A7 are also each slightly more positive than those of Table 9,
but the finding of the contrary effect of automation is strongly supported.
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Table A7: Labor market effects of automation for manufacturing and non-manufacturing
employment

(1) (2) (3) (4) (5)

A. Outcome: Manufacturing employment-to-population

autoint 0.00382 -0.0365* -0.110*** -0.137*** 0.255***
(0.0102) (0.0216) (0.0269) (0.0297) (0.0653)

non-autoint 0.0409** 0.164*** 0.205*** 0.179***
(0.0187) (0.0285) (0.0328) (0.0390)

manufacturing -1.588*** -1.209*** -1.055***
(0.222) (0.223) (0.231)

population -0.00100 -0.0118 -0.0239*
(0.0117) (0.0128) (0.0125)

income -0.710*** -0.666*** -0.645***
(0.139) (0.143) (0.140)

non-white -0.149 -0.191 -0.237
(0.198) (0.208) (0.190)

routine -0.0181*** 0.133***
(0.00402) (0.0262)

auto*routine -0.0104***
(0.00184)

Observations 5,660 5,660 5,660 5,660 5,660

R2 0.21 0.21 0.23 0.24 0.26

B. Outcome: Non-manufacturing employment-to-population

autoint 0.137*** 0.363*** 0.368*** 0.382*** 0.260
(0.0317) (0.0778) (0.113) (0.124) (0.160)

non-autoint -0.230*** -0.253** -0.274** -0.267**
(0.0612) (0.104) (0.121) (0.123)

manufacturing 0.321 0.115 0.0700
(0.425) (0.419) (0.424)

population 0.105*** 0.111*** 0.114***
(0.0246) (0.0207) (0.0210)

routine 0.00957 -0.0371
(0.0138) (0.0390)

autoint*routine 0.00324
(0.00239)

income 0.0393 0.0176 0.0101
(0.172) (0.178) (0.176)

non-white -1.032*** -1.013*** -0.992***
(0.229) (0.219) (0.219)

Observations 5,662 5,662 5,662 5,662 5,662

R2 0.36 0.36 0.37 0.37 0.37

Note: The table presents fixed effects panel data regressions for non-
overlapping five-year equivalent changes in manufacturing employment-to-
population and non-manufacturing employment-to-population. See Table 8
for variable definitions. All regressions include state and year fixed effects and
a constant. Standard errors clustered at the state level in parentheses. *** p <
0.01, ** p < 0.05, * p < 0.1.
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