| Overview | Related Literature | Model | Calibration | Model Simulations | Conclusion |
|----------|--------------------|-------|-------------|-------------------|------------|
|          |                    |       |             |                   |            |

## Endogenous Regime Shifts in a New Keynesian Model with a Time-varying Natural Rate of Interest<sup>1</sup>

## Kevin J. Lansing Federal Reserve Bank of San Francisco

January 8, 2017 AEA Session: Monetary Policy

<sup>&</sup>lt;sup>1</sup> Any opinions expressed here do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Board of Governors of the Federal Reserve System.









## Overview Related Literature Model Calibration Model Simulations Conclusion Soo Standard NK model has multiple RE equilibria

- Taylor rule + Fisher Eqn. + ZLB ⇒ Two steady states. (Benhabib, Schmitt-Grohé & Uribe AER, JET 2001a,b).
- r<sup>\*</sup> = "natural rate of interest" (also called "equilibrium" or "neutral" rate). The real rate consistent with full utilization of resources and steady inflation at central bank's target π<sup>\*</sup>. <u>Evidence</u>: r<sup>\*</sup> shifts over time (Laubach & Williams 2003, 2015).
- Two long-run endpoints (steady states): (1) targeted where  $i = r^* + \pi^*$  and (2) deflation where i = 0 and  $\pi = -r^*$ .
- Two local RE solutions: (1) targeted equilibrium is locally unique, and (2) deflation equilibrium allows for sunspot shocks (focus on MSV solution here; no sunspots).



- This paper: NK model with shifting  $r_t^*$ . Agent employs weighted-average of the two local forecast rules. Weights depend on past forecast performance, i.e., *RMSFE*.
- Forecast rules from deflation equilibrium induce more volatility in π<sub>t</sub> and y<sub>t</sub> in response to r<sup>\*</sup><sub>t</sub> shocks.
- <u>Results</u>: Negative  $r_t r_t^* \Rightarrow$  more weight on deflation forecast rules  $\Rightarrow$  deflation can become self-fulfilling. Episode accompanied by severe recession (highly negative output gap) with nominal rate at ZLB. Similar to 2007-09 Great Recession.
- But even in normal times, agent may place nontrivial weight on deflation forecast rules, causing central bank to consistently undershoot  $\pi^*$  (like now:  $\pi_t^{U.S.} < 0.02$  since mid-2012).



- Infrequent but long-lived ZLB episodes in global data Dordal-i-Carreras, Coibion, Gorodnichenko & Wieland (2016)
- Transition between regimes driven by sunpots Aruoba, Cuba-Borda, & Schorfheide (2014, WP) Aruoba & Schorfheide (2015, WP)
- Adaptive learning to select among multiple equilibria Evans & Honkapohja (2005, *RED*), Eusepi (2007, *JME*) Evans, Guse, & Honkapohja (2008, *EER*) Benhabib, Evans & Honkapohja (2014, *JEDC*)
- Optimal monetary policy with shifting natural rate Eggertsson and Woodford (2003, BPEA) Evans, Fisher, Gourio & Krane (2015, BPEA) Hamilton, Harris, Hatzius, & West (2016. IMF Econ. Rev.) Gust, Johannsen, López-Salido (2015, WP) Basu & Bundick (2015, NBER WP 21838)



$$\begin{array}{rcl} & & & & \\ y_t & = & E_t \, y_{t+1} - \alpha \, \overbrace{[i_t - E_t \, \pi_{t+1} - r_t]}^{\text{Fisher relationship}} + v_t, & v_t \sim N \left(0, \, \sigma_v^2\right) \\ \pi_t & = & \beta E_t \, \pi_{t+1} + \kappa y_t + u_t, & u_t \sim N \left(0, \, \sigma_u^2\right) \\ i_t^* & = & \rho i_{t-1}^* + (1 - \rho) \left[ E_t r_t^* + \pi^* + g_\pi \left( \overline{\pi}_t - \pi^* \right) + g_y \left( y_t - y^* \right) \right] \\ \overline{\pi}_t & = & \omega \, \pi_t + (1 - \omega) \, \overline{\pi}_{t-1}, & \overline{\pi}_t \simeq \frac{1}{4} \left( \pi_t + \pi_{t-1} + \pi_{t-2} + \pi_{t-3} \right) \\ i_t & = & \max \left\{ 0, \, i_t^* \right\} \end{array}$$

Natural rate of interest (exogenous):

$$\begin{split} r_{t} &\equiv -\log \underbrace{\left[\beta \exp\left(v_{t}\right)\right]}_{\text{Discount factor}} + \underbrace{E_{t}\Delta\bar{y}_{t+1}}_{\text{Expected potential output growth}} \\ r_{t} &= \rho_{r} r_{t-1} + (1-\rho_{r}) r_{t}^{*} + \varepsilon_{t}, \quad \varepsilon_{t} \sim N\left(0, \sigma_{\varepsilon}^{2}\right) \\ r_{t}^{*} &= r_{t-1}^{*} + \eta_{t}, \qquad \eta_{t} \sim N\left(0, \sigma_{\eta}^{2}\right) \end{split}$$



$$\begin{array}{ll} \hline \text{Targeted Endpoint} & & \hline \text{Deflation Endpoint} \\ \hline \pi_t = \pi^* & & \hline \pi_t = -r_t^* \\ y_t = y^* \equiv \pi^* \left(1 - \beta\right) / \kappa & & y_t = -r_t^* \left(1 - \beta\right) / \kappa \\ i_t^* = r_t^* + \pi^* & & i_t^* = \left(r_t^* + \pi^*\right) \left[1 - g_\pi - \frac{g_y(1 - \beta)}{\kappa}\right] \\ i_t = i_t^* & & i_t = 0 \end{array}$$

Shifting Endpoint Time Series Model (Kozick-Tinsley, JMCB 2012)

$$E_t r_t^* = \lambda \left[ \frac{r_t - \rho_r r_{t-1}}{1 - \rho_r} \right] + (1 - \lambda) E_{t-1} r_{t-1}^*$$

$$\begin{array}{ll} {}^{\mathsf{Kalman}}_{\mathsf{gain}} & \lambda \ = \ \frac{-(1-\rho_r)^2 \, \phi + (1-\rho_r) \sqrt{(1-\rho_r)^2 \phi^2 + 4\phi}}{2}, \qquad \phi \equiv \frac{\sigma_\eta^2}{\sigma_\varepsilon^2} \end{array}$$

$$E_t (r_{t+k} - r_{t+k}^*) = (\rho_r)^k (r_t - E_t r_t^*), \qquad \rho_r = 0.857$$

~

## Overview coop Related Literature coop Model coop Calibration coop Model Simulations coopcocococococo Conclusion coopcococococococo Two local RE equilibria

$$\begin{array}{l} \begin{array}{l} \mbox{Targeted Equilibrium (Unique) assumes } i_t^* = i_t > 0 \\ \hline \pi_t = \hdots + {\bf A}_{11} \left( r_t - E_t r_t^* \right) + {\bf A}_{12} \left( \overline{\pi}_{t-1} - \pi^* \right) + {\bf A}_{13} u_t + {\bf A}_{14} v_t \\ \hline y_t = \hdots + {\bf A}_{21} \left( r_t - E_t r_t^* \right) + {\bf A}_{22} \left( \overline{\pi}_{t-1} - \pi^* \right) + {\bf A}_{23} u_t + {\bf A}_{24} v_t \\ i_t^* = \hdots + {\bf A}_{31} \left( r_t - E_t r_t^* \right) + {\bf A}_{32} \left( \overline{\pi}_{t-1} - \pi^* \right) + {\bf A}_{33} u_t + {\bf A}_{34} v_t \end{array}$$

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Deflation Equilibrium (MSV) assumes } i_{t}^{*} \leq 0, \ i_{t} = 0 \\ \hline \pi_{t} = \ \ldots \ + \ \mathbf{B}_{11} \left( r_{t} - E_{t} r_{t}^{*} \right) \ + \ u_{t} \ + \ \kappa v_{t} \end{array} \\ \begin{array}{l} y_{t} = \ \ldots \ + \ \mathbf{B}_{21} \left( r_{t} - E_{t} r_{t}^{*} \right) \ + \ v_{t} \\ \hline i_{t}^{*} = \ \ldots \ + \ \mathbf{B}_{31} \left( r_{t} - E_{t} r_{t}^{*} \right) \ + \ \mathbf{B}_{32} \left( \overline{\pi}_{t-1} - \pi^{*} \right) \ + \ \mathbf{B}_{33} u_{t} \ + \ \mathbf{B}_{34} v_{t} \end{array} \end{array}$ 

Solution coefficients when  $\beta$ ,  $\omega \rightarrow 1$  and  $g_y \rightarrow 0$ :

$$\frac{\mathbf{B}_{11}}{\mathbf{A}_{11}} = \frac{\mathbf{B}_{21}}{\mathbf{A}_{21}} = \frac{\mathbf{B}_{31}}{\mathbf{A}_{31}} = 1 + \underbrace{\frac{(1-\rho)g_{\pi}}{(\rho_r - \rho)} \frac{\rho_r \alpha \kappa}{[(1-\rho_r)^2 - \rho_r \alpha \kappa]}}_{>> 1}$$

 $\Rightarrow$  Deflation equilibrium exhibits much more volatility.

| Model parameter values |                    |       |             |                   |            |  |  |
|------------------------|--------------------|-------|-------------|-------------------|------------|--|--|
| 0000                   | 0                  | 000   | 0           | 0000000000000     | 0          |  |  |
| Overview               | Related Literature | Model | Calibration | Model Simulations | Conclusion |  |  |

| Parameter              | Value  | Description/Target                                           |  |  |  |  |  |
|------------------------|--------|--------------------------------------------------------------|--|--|--|--|--|
| α                      | 0.2    | Interest rate coefficient in Euler equation.                 |  |  |  |  |  |
| β                      | 0.995  | Discount factor in Phillips curve.                           |  |  |  |  |  |
| к                      | 0.025  | Output gap coefficient in Phillips curve.                    |  |  |  |  |  |
| $\pi^*$                | 0.02   | Central bank inflation target.                               |  |  |  |  |  |
| ω                      | 0.684  | $\overline{\pi}_t \simeq$ 4-quarter inflation rate.          |  |  |  |  |  |
| $g_{\pi}$              | 1.5    | Policy rule response to inflation.                           |  |  |  |  |  |
| <i>gy</i>              | 0.5    | Policy rule response to output gap.                          |  |  |  |  |  |
| $\rho$                 | 0.80   | Interest rate smoothing parameter.                           |  |  |  |  |  |
| $\rho_r$               | 0.857  | Persistence parameter for natural rate.                      |  |  |  |  |  |
| $\sigma_{\varepsilon}$ | 0.0099 | Std. dev. temporary shock to natural rate.                   |  |  |  |  |  |
| $\sigma_\eta$          | 0.0016 | Std. dev. permanent shock to natural rate.                   |  |  |  |  |  |
| $\lambda^{'}$          | 0.0226 | Optimal Kalman gain for <i>E<sub>t</sub>r</i> <sup>*</sup> . |  |  |  |  |  |
| $\sigma_{v}$           | 0.008  | Std. dev. of aggregate demand shock.                         |  |  |  |  |  |
| $\sigma_u$             | 0.016  | Std. dev. of cost push shock.                                |  |  |  |  |  |
|                        |        |                                                              |  |  |  |  |  |

RE solution coefficients:  $B_{11}/A_{11} \simeq B_{21}/A_{21} \simeq B_{31}/A_{31} \simeq 5.1$ 



Bounds for simulations:  $0.002 \le r_t^* \le 0.0298$  (1988.Q1 to 2015.Q4).













$$\begin{split} \widehat{E}_{t} y_{t+1} &= \mu_{t} E_{t}^{\text{targ}} y_{t+1} + (1 - \mu_{t}) E_{t}^{\text{defl}} y_{t+1} \\ \widehat{E}_{t} \pi_{t+1} &= \mu_{t} E_{t}^{\text{targ}} \pi_{t+1} + (1 - \mu_{t}) E_{t}^{\text{defl}} \pi_{t+1} \\ \widehat{E}_{t} i_{t+1}^{*} &= \mu_{t} E_{t}^{\text{targ}} i_{t+1}^{*} + (1 - \mu_{t}) E_{t}^{\text{defl}} i_{t+1}^{*} \\ \mu_{t} &= \frac{\exp\left[\psi\left(RMSFE_{t-1}^{\text{defl}} - RMSFE_{t-1}^{\text{targ}}\right)\right]}{1 + \exp\left[\psi\left(RMSFE_{t-1}^{\text{defl}} - RMSFE_{t-1}^{\text{targ}}\right)\right]} \quad \psi = 75 \\ \text{``Intensity of choice''} \end{split}$$

Forecast fitness measure for 
$$i = targ$$
, defl:

$$RMSE_{t-1}^{i} = \frac{1}{8} \sum_{i=1}^{8} \left[ \left( y_{t-j} - E_{t-j-1}^{i} y_{t-j} \right)^{2} + \left( \pi_{t-j} - E_{t-j-1}^{i} \pi_{t-j} \right)^{2} + \left( i_{t-j}^{*} + E_{t-j-1}^{i} i_{t-j}^{*} \right)^{2} \right]^{0.5}$$



$$i_{t}^{*} = \frac{1}{\rho} \left\{ \widehat{E}_{t} i_{t+1}^{*} - (1-\rho) \left[ E_{t} r_{t+1}^{*} + \pi^{*} + g_{\pi} \omega \left( \widehat{E}_{t} \pi_{t+1} - \pi^{*} \right) + (1-\omega) g_{\pi} \left( \overline{\pi}_{t} - \pi^{*} \right) + g_{y} \left( \widehat{E}_{t} y_{t+1} - y^{*} \right) \right] \right\}$$

$$i_t = \max\left\{0, i_t^*\right\}$$

$$y_t = \widehat{E}_t y_{t+1} - \alpha \left[ i_t - \widehat{E}_t \pi_{t+1} - r_t \right] + v_t$$

$$\pi_t \quad = \quad \beta \widehat{E}_t \, \pi_{t+1} + \kappa y_t \, + \, u_t$$

$$\overline{\pi}_t = \omega \pi_t + (1-\omega) \overline{\pi}_{t-1}$$































| Overview                | Related Literature | Model | Calibration | Model Simulations | Conclusion |  |  |
|-------------------------|--------------------|-------|-------------|-------------------|------------|--|--|
| 0000                    | O                  | 000   | 00          |                   | O          |  |  |
| Quantitative Comparison |                    |       |             |                   |            |  |  |

|                               | U.S. Data       | Model Simulations |           | ions      |
|-------------------------------|-----------------|-------------------|-----------|-----------|
| Statistic                     | 1988.Q1-2015.Q4 | Targeted          | Deflation | Switching |
| Mean $\pi_{t-3  ightarrow t}$ | 2.20%           | 1.99%             | -1.60%    | 1.21%     |
| Std. Dev.                     | 1.09%           | 0.81%             | 1.27%     | 1.08%     |
| Corr. Lag 1                   | 0.89            | 0.75              | 0.90      | 0.86      |
| Mean <mark>y</mark> t         | -1.51%          | 0.40%             | -0.32%    | 0.24%     |
| Std. Dev.                     | 2.02%           | 0.97%             | 2.83%     | 1.34%     |
| Corr. Lag 1                   | 0.96            | 0.27              | 0.78      | 0.55      |
| Mean <mark>i</mark> *         | 3.45%           | 3.59%             | -2.15%    | 2.42%     |
| Std. Dev.                     | 2.84%           | 1.84%             | 6.35%     | 3.46%     |
| Corr. Lag 1                   | 0.99            | 0.88              | 0.85      | 0.89      |
| % periods $i_t = 0$           | 25.9%           | 2.59%             | 63.3%     | 17.5%     |
| Mean ZLB duration             | 29 qtrs.        | 2.2 qtrs.         | 7.6 qtrs. | 4.0 qtrs. |
| Max. ZLB duration             | 29 qtrs.        | 20 qtrs.          | 96 qtrs.  | 67 qtrs.  |

Notes: ZLB in U.S. data: 2008.Q4 through 2015.Q4. Model results computed from a 300,000 period simulation.

| Overview<br>0000                       | r Related Literature<br>O           | Model<br>000  | Calibration<br>00 | Model Simulations | Conclusion<br>O |  |  |
|----------------------------------------|-------------------------------------|---------------|-------------------|-------------------|-----------------|--|--|
| Effect of Raising the Inflation Target |                                     |               |                   |                   |                 |  |  |
|                                        |                                     |               | Switchi           | ng Model          |                 |  |  |
|                                        | Statistic                           | $\pi^*=$ 0.02 | $\pi^*=$ 0.03     | $\pi^*=$ 0.04     | $\pi^*=$ 0.05   |  |  |
| _                                      | Std. Dev. $\pi_{t-3 \rightarrow t}$ | 1.08%         | 1.04%             | 0.91%             | 0.83%           |  |  |
|                                        | Std. Dev. <u>y</u> t                | 1.34%         | 1.12%             | 1.01%             | 0.98%           |  |  |
|                                        | Std. Dev. $i_t^*$                   | 3.46%         | 2.72%             | 2.14%             | 1.92%           |  |  |
| _                                      | % periods $i_t = 0$                 | 17.5%         | 5.72%             | 0.99%             | 0.11%           |  |  |
|                                        | Mean ZLB duration                   | 4.0 qtrs.     | 3.3 qtrs.         | 2.9 qtrs.         | 3.1 qtrs        |  |  |
|                                        | Max. ZLB duration                   | 67 qtrs.      | 55 qtrs.          | 38 qtrs.          | 32 qtrs         |  |  |

Note: Model results computed from a 300,000 period simulation.

- Higher  $\pi^*$  can prevent switching to volatile deflation equilibrium where recessions are more severe.
- Numerous papers examine benefits of higher π<sup>\*</sup> using models that ignore deflation equilibrium. This methodology likely understates the benefits of a higher π<sup>\*</sup>.

| Overview | Related Literature | Model | Calibration | Model Simulations | Conclusion |
|----------|--------------------|-------|-------------|-------------------|------------|
| 0000     | O                  | 000   | 00          |                   | •          |
| Conclusi | on                 |       |             |                   |            |

- Standard NK model with shifting  $r_t^*$  and occasionally binding ZLB. Two RE equilibria. Endogenous forecast rule switching based on past *RMSFE* performance.
- Model can produce Great Recessions when  $r_t E_t r_t^*$  is negative, causing agent to place significant weight on deflation forecast rules. Escape from ZLB occurs endogenously when  $r_t - E_t r_t^*$  eventually starts rising.
- In normal times, non-trivial weight on deflation forecast rules may cause central bank to undershoot π<sup>\*</sup> (like today?).
- When  $\pi^* = 0.04$ , probability of ZLB episode is small  $\simeq 1\%$ and average duration of ZLB episode is only 3 quarters.