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Abstract

This paper studies the effect of short-run weather fluctuations on solar panel adoption in

California. I find that customers whose sign-up for solar panels is followed by bad weather are

more likely to cancel their contract. In contrast, non-residential customers appear unaffected

by short-term weather conditions. These results are consistent with residential customers suf-

fering from projection bias – that is, they rely too heavily on transient conditions when pre-

dicting long-run utility. I show further evidence that this effect is mainly driven by mistaken

predictions about future solar panel performance rather than electricity demand. There is also

suggestive evidence that having more neighbors with solar panels does not mitigate projection

bias, and that marginal customers are more susceptible to it. The results add to the emerg-

ing field evidence on projection bias, particularly by carefully considering the dynamics of the

entire purchase-return cycle. The results also have efficiency implications for current subsidy

programs on solar panel adoption.

Keywords: projection bias, solar adoption, weather.

JEL Classification: D03, D12, D81.

∗University of California, San Diego. Email: yal005@ucsd.edu. I am especially grateful to Mark Jacobsen, Joshua
Graff Zivin, Julie Cullen, and Charles Sprenger for their invaluable advice and support. I also thank Richard Carson,
Tom Chang, Gordon McCord, Sally Sadoff, David Victor, and seminar participants at UCSD for helpful comments. I am
also grateful to the California Solar Initiative (CSI) for making their data publicly available. All errors are my own.

1



1 Introduction

Many important economic decisions require the consumer to estimate future utility. When pur-

chasing a durable good, for example, the consumer needs to trade off her future utility against the

present cost of purchasing it. Standard economic theory assumes that these estimates are made

accurately, but emerging empirical evidence suggests otherwise.1 For instance, people tend to be

overly influenced by the current state when they make predictions of future utility. This effect is

called “projection bias” (Loewenstein et al., 2003). It not only affects small decisions such as shop-

ping for grocery (de Magistris and Gracia, 2016), but could even affect high-stake decisions such

as college choice and car purchase (Busse et al., 2014; Simonsohn, 2010).

In this paper, I investigate whether residential customers exhibit projection bias in solar photo-

voltaic (PV) adoption. If current weather is unusually good for real-time return from solar panels,

a consumer with projection bias would overestimate the lifetime return, while bad weather would

lead to the opposite effect. In particular, the change in valuation due to weather fluctuation is best

captured by cancellations of signed contracts. Therefore, I test for projection bias by examining

how weather fluctuations after signing up for solar affect the probability of the customer canceling

the contract.

There are several advantages to studying projection bias using cancellations of solar contracts.

First, solar panels have a long lifespan. Given that their lifetime typically lasts more than 25 years,

it is extremely difficult for short-run weather fluctuations to affect the return to such investments

and lead to cancellation by a rational customer. Second, since the cancellation decisions are made

prior to installation, cancellations are not likely driven by consumers rationally learning about the

profitability of solar panels. Third, as an outcome of interest, cancellation reflects a real change in

demand that entails substantial economic consequences. Projection bias suggests that on sunny

days, consumers are more likely to purchase solar panels. It is tempting, therefore, to estimate

whether there are more purchases on sunny days. However, such a pattern is also consistent with a

particularly sunny period “harvesting” solar purchases that would have occurred rationally, which

implies no real behavioral change and hence minimal welfare impacts. In contrast, cancellations
1See DellaVigna (2009) for a review.
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reflect permanent behavioral change. It is costly – previous site visits and assessments by the solar

company are wasted; and the household has incurred a hassle cost and a penalty for breaching the

contract. Due to this costly nature, a household is not likely to enter into another solar contract

anytime soon after they cancel the last one.

Using transaction-level administrative data from the California Solar Initiative (CSI), I find that

residential customers are more likely to cancel their solar contract when they experience worse

weather after signing up. Specifically, a one-standard-deviation decrease in solar radiation is asso-

ciated with 8% increase in cancellations, which in turn account for 12.06% of all CSI applications.

This effect is identified using variations within season by controlling for quarterly fixed effects

and other potentially confounding economic factors at the monthly level. It is also robust across

a variety of specifications. This result is not consistent with the behavior of fully rational or even

present-biased economic agents, unless discount rates are implausibly large and weather shocks

are extremely persistent. Moreover, I also find evidence that non-residential customers are much

less affected by current weather. This suggests that they are less susceptible to the psychological

mechanism that affects residential customers, possibly because they usually go through formal

investment calculations when deciding whether to go solar.

To understand how weather information is incorporated into the household’s valuation of solar

panels, I model this decision when the household is subject to projection bias. The model shows

that the effects of weather can be broken down into a solar production channel and an energy

demand channel. I construct an index to represent each channel using engineering models and

weather variables, and estimate the effects of these indices jointly. The result suggests that the

changes in cancellations are primarily driven by concerns over solar panel performance. I also

show evidence that negative update in weather conditions relative to the pre-contract period plays

an important role, and the responses are particularly strong for households who sign up following

a period of above-average good weather. All of these lend further support to the mechanism of

projection bias.

Lastly, I explore heterogeneous responses along various dimensions. I find evidence of peer

effects, namely that customers in areas with high market penetration are less likely to cancel their
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contracts. This is consistent with the mechanism found in Bollinger and Gillingham (2012). Such

peer effects, however, do not appear to alleviate responses to short-run weather. In addition, I find

that some types of customers are more susceptible to projection bias than others. The effects are

stronger for customers with third-party ownership, those who might be rushed into the contract

by imminent incentive rate decrease, and who live in more urban neighborhoods.

These findings not only advance our understanding of projection bias, but also open up new

avenue for cost-effective public policy on the solar industry. Currently, there are strong policy

interests in promoting solar power, given its clear environmental advantage over traditional elec-

tricity generation. In the U.S., there are various tax credits and subsidies offered at the federal,

state, and local levels. However, prior studies on such programs have found that they are not cost-

effective.2 Exploiting behavioral patterns such as projection bias could be an easier and cheaper

way to increase solar panel uptake.

This paper is closely related to a growing literature in behavioral economics that documents

“smoking gun” evidence of projection bias in the field (Busse et al., 2014; Chang et al., 2016; Conlin

et al., 2007; Simonsohn, 2010). Most of them focus on how consumers are induced into purchase

by favorable conditions on the purchase date. This paper instead highlights the importance of

weather updates, especially negative ones, in changing the customers’ minds. Furthermore, most

previous studies do not distinguish between mistaken utility and mistaken beliefs. That is, it is not

clear in their contexts whether the consumer is mistaken about her utility in a future state, or how

likely today’s weather will occur in the future. This paper provides a clear interpretation that the

latter is the case, which allows interventions to be better targeted.

This paper also contributes to a broader literature that focuses on understanding consumer

behaviors regarding energy efficiency investments.3 As the real-time profitability of these invest-

ments also depends on current weather conditions, this paper suggests that their customers might

be subject to similar behavioral mechanisms.
2Hughes and Podolefsky (2015) find program-induced behavioral change does not justify the cost of CSI because

many claimants are inframarginal. Bollinger and Gillingham (2014) find that non-appropriable learning-by-doing in
the solar industry similarly do not justify the cost. Furthermore, Borenstein and Davis (2015) notes the distribution of
benefits of such programs are highly regressive.

3See Allcott and Wozny (2014) for a recent review.
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2 Weather in the Decision to Go Solar

2.1 Projection Bias

Projection bias refers to the tendency for people to exaggerate the degree to which the future state

will resemble current state. A simple theory and suggestive evidence is first laid out by Loewen-

stein et al. (2003). The theory is later adapted to the purchase of durable good by Conlin et al.

(2007) and Busse et al. (2014). This framework distinguishes between actual utility u(G, s1) from

using good G in period 1 (with state s1) and the projection of the same utility from current period

(with state s0), denoted ũ(G, s1|s0). A simple representation of over-influence by current state is

ũ(G, s1|s0) = (1− α)u(G, s1) + αu(G, s0), (1)

where α is between 0 and 1. When α is nonzero, the projected utility is different from the actual

utility and biased towards the period 0 utility. At period 0, the projected total utility from purchas-

ing a good in period 1 and using it through period T is given by

Ũ(G|s0) ≡
T∑

τ=1

δτ ũ(G, sτ |s0)

= (1− α)U(G) + αδ
(1− δT

1− δ

)
u(G, s0),

(2)

where the second equality follows from Equation (1). The total projected utility is also biased by

current utility with some multipliers due to discounting.

In the context of solar adoption, I consider states as different weather conditions. Households

decide whether to go solar by weighing the projected total utility against a fixed cost. Therefore,

although current weather does not affect the true utility U(G) at all, it affects the projected utility

and hence the decision of marginal customers.

2.2 Channels: Solar Production vs. Energy Demand

The benefit from a solar PV system in each period depend on the total electricity bill savings in

that period, which in turn depends on how much power it generates as well as how expensive the

5



Figure 1: Benefit from Solar PV System
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displaced electricity is.4 I assume that the current period utility equals to the bill savings under

net metering, which takes the following form:

u(G, s0) =

∫ D(s0)

D(s0)−E(s0)
P (v)dv. (3)

D(s0) is gross electricity demand, E(s0) is solar power production, and D(s0) − E(s0) is the net

demand that eventually enters into the price schedule. P (·) is the marginal price schedule of elec-

tricity and is weakly increasing in electricity usage due to increasing-block pricing scheme in Cal-

ifornia.5 As illustrated in Figure 1, Equation (3) is essentially measuring the shaded area for given

electricity demand D and solar power production E.

For simplicity, assume the scaler s0 is a sufficient statistic that summarizes the state-of-the-

world in period 0. It is straightforward to see that s0 affects projected total utility through both
4While some solar customers have green preference in reality, it is ignored here for simplicity. The model assumes

that projection bias mainly takes the form of mistaken beliefs about future weather patterns, rather than mistaken utility.
5See Ito (2014) for more details of electricity pricing in California. Note that we can easily use P (·) to denote any

perceived price schedule if it differs from the actual marginal price schedule. It does not affect the result below.
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D(s0) and E(s0). More formally, we can derive

dŨ(G|s0)
ds0

= κ
[
P |D(s0)−E(s0) · E

′(s0)︸ ︷︷ ︸
Solar Production Channel

+
(
P |D(s0) − P |D(s0)−E(s0)

)
·D′(s0)︸ ︷︷ ︸

Energy Demand Channel

]
. (4)

Equation (4) highlight the two channels through which weather might affect the decision to go

solar. The first term represent the solar production channel. That is, when the weather does not

favor solar power production, customers might estimate worse overall performance of solar panel.

The second term represent the energy demand channel. During periods of greater energy demand

(particularly hot or cold days), customers might think they have greater future energy demand and

hence higher utility from the solar PV system. These two channels do not necessarily go in the same

direction. For example, heat reduces solar panel productivity, but increases electricity demand for

cooling.

Equation (4) also reveals that the production channel will shut down when the solar panels

generate sufficient power to cover all electricity consumption; and the demand channel will stop

working when solar generation is not enough to move to a lower price tier. Both conditions are rare

in reality. And because customers often respond to average rather than marginal price (Ito, 2014),

both channels are likely to be at work.

3 Policy Background and Data

3.1 The California Solar Initiative (CSI)

The CSI is a solar rebate program in California for the customers of the three investor-owned util-

ities (IOUs), covering most of California. It funds solar on existing homes, commercial, agricul-

tural, government and non-profit buildings. Overseen by the California Public Utilities Commis-

sion (CPUC), the program has a total budget of $2.167 billion between 2007 and 2016 and a goal

to install approximately 1,940 MW of new solar generation capacity. Over these years, Califor-

nia continues to be the leading solar market in the United States, accounting for about half of the

nationwide installed capacity.
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Figure 2: Timeline of a CSI application
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An important feature of the CSI program is that the rebate rate is designed to decrease auto-

matically based on the total volume of solar megawatts (MWs) with confirmed project reservations

(see Figure A1 in the Appendix). This design is intended “to transform the market for solar energy

by reducing the cost of solar” through learning-by-doing. Indeed, average cost has been rapidly

decreasing, which was partially attributed to learning-by-doing by prior studies (Bollinger and

Gillingham, 2014).

In this paper, I use the administrative dataset from CSI as a main data source, which contains

the universe of CSI applications, regardless of whether they are eventually completed. They rep-

resent about 80% of solar projects in California before 2012, and much less afterwards as the in-

centive weakens. For each rebate application, the dataset provides detailed information on system

characteristics such as the CSI rating (size), total cost, incentive amount, whether the system is

third-party-owned (TPO), and the sectors for the host and owner.6 More importantly, it identifies

the zip code and relevant dates for each application, which can be matched to meteorological data

at a fine geographical scale.

Figure 2 shows the typical time line for a CSI application, where unobservable activities are

plotted above the line and observed ones below. The process begins with the households spending

an unknown amount of time considering about solar investment. Once they are in contact with
6The host refers to where the system is physically located, or the customer. For systems with third-party ownership

(TPO), the host is different from the owner, the latter being the solar company.
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a solar company, the latter typically conducts a site inspection and provides detailed information

on estimated bill savings, design options and quotes, etc. These procedures lengthen the process,

especially when households shop around for the best offer. When they make up their minds, the

household signs a contract with the solar company, the date of which is unobserved. However,

the CSI dataset provides the date when a rebate application is submitted to CSI, at which point a

signed contract is required by program rules. The time between the contract and the submission

date is likely to be short, because customers have an incentive to submit as soon as possible due to

uncertainties in when the incentive rate jumps to a lower step. It is also confirmed by CSI staff that

the submission date is the best proxy for the contract date.

After submission, a rebate is reserved for the household at the current incentive level. The

household is given a year to complete the installation and submit proof to claim the rebate. While

installation date is unobserved, the submission of proof is. The period between application and

proof submission is referred to as “completion duration” henceforth. About 12.06% of the appli-

cants in the dataset, however, eventually cancel their projects. For these applications we observe a

cancellation date, but with a major complication: about two thirds of the cancellations are recorded

beyond the one-year deadline. This might be because they canceled the contract without reporting

to the CSI administrator and went undiscovered until the deadline. In the left panel of Figure 3,

I plot the distribution of complete duration, which is what we would expect if most dates are re-

ported accurately. There is mild bunching around one year, which might be driven by administra-

tor checking with applicants that have not reported back. In the right panel, I plot the distribution

of cancellation duration, censored at one year, because dates beyond that are uninformative and

entirely driven by administrative procedure. The density of reported cancellations have an earlier

peak than completed ones, and quickly flattens out to a low level after a month or two. It is, how-

ever, impossible to know what the counter-factual distribution would look like, had all canceled

projects been reported without delay.

In the data, we observe two outcomes that might be affected by short-run weather fluctua-

tions: the purchase itself and return/cancellation conditional on purchase. I choose the latter as

the outcome of interest for two main reasons. First, the consideration period for purchase is unob-

9



Figure 3: Distribution of Completion and Cancellation Duration

served and may vary widely, but under projection bias the estimated utility from solar PV system

can change according to weather in each new day. This distinguishes solar purchase from car or

college choices examined in prior studies, where mainly weather on the day of test drive or col-

lege visit matters. Second and more importantly, cancellation of signed contract represent a real

change in demand that entails substantial economic consequences. California state law requires a

three-day cool-down period for customers to freely cancel their solar contracts, but cancellations

afterwards can legally be subject to penalty. A costly cancellation thus reflects a change in valua-

tion for the solar panels, and it also implies that a household is not likely to enter into another solar

contract anytime soon afterwards. In contrast, a pattern of more purchase on sunny days might

simply reflect short-run postponement with minimal welfare implication.

I assume that the cancellation decision is made within the same time frame as completion:

as discussed above, the recorded cancellation duration is uninformative. This assumption is rea-

sonable given that solar companies should follow the same schedule routine with all customers.

Specifically, I consider weather in a post-contract period of 113 days as relevant for every project,

as 113 days is the median duration for completed projects.

However, this assumption of a fixed period length is almost surely inaccurate, and measure-

ment errors are inevitable. This has three implications. First, the estimates in this paper are likely

to be lower bounds of the true effect of weather on people’s decision to cancel solar contracts. Sec-

ond, we would expect the estimates based on any period length within a reasonable range to be
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similar because moving within this range reduces measurement errors for some applications while

exacerbates those for others. Third, the estimate should get seriously attenuated when it is based

on a period that is either too long or too short, and be even more so when we move further away. In

short, due to unknown and potentially heterogeneous lengths of the relevant period, we expect the

estimates to display an inverse U-shape with respect the the length of periods that they are based

on, and the peak estimates might still be lower bounds of the true effects. In the empirical analysis,

I provide evidence consistent with these testable implications in a series of robustness checks.

Another concern of using cancellations conditional on purchase is that some unnecessary con-

tracts might be selected into the sample as the result of good weather before sign-up. In that case,

mean-reversing weather trends might introduce mechanical correlation between the probability

of cancellation and post-contract weather. Note that this is still a phenomenon consistent with

projection bias, but the interpretation is more complicated. This is difficult to test due to greater

uncertainties in the pre-period length. In the empirical section, I shed light on this issue by analyz-

ing whether favorable pre-period weather induces customers into solar contracts, or is associated

with larger system size. I also explore how the dynamics of pre- and post-period weather affect

cancellations.

3.2 Solar and Weather Data

The weather data in this paper comes from two main sources. Station-level data on daily maxi-

mum temperature, wind speed, and precipitation are taken from the Global Surface Summary of

the Day (GSOD) dataset at NOAA, a common data source used in numerous other studies. I ex-

clude weather stations with elevation above 1,500 meters, which leaves 191 stations operating in

the sample period to be matched with 1,428 zip codes. Based on the center coordinates of each zip

code, I find all the weather stations within 100 kilometers (62 miles), and calculate the mean of ob-

servations from these stations, weighted by inverse distance. Since there are a much larger number

of zip codes than weather stations, a natural concern is that the measures are not very precise for

each application, adding to the attenuation bias. Among the main variables, temperature is more

smoothly distributed across space and less problematic, while precipitation and wind speed can
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be highly localized and hence suffer from more severe measurement errors.

Another main variable is surface solar radiation, which is the feature commonly associated

with solar panels. I extract daily solar insolation by zip code coordinates from the Prediction of

Worldwide Energy Resource (POWER) Project at NASA.7 This measure is constructed based on

satellite data at a 1◦ latitude by 1◦ longitude resolution.

I then aggregate the daily observations over a 113-day post-contract period. A simple-minded

measure would be the mean for all variables. However, for the decision to cancel a solar project,

the distribution of certain weather features might be more important than the average level. For

example, consecutive days of drizzle is more damaging than one day of heavy rain that consumes

all the clouds in the sky. Moreover, human response to temperature is found to be nonlinear in

other settings (Baylis, 2015; Graff Zivin and Neidell, 2014). Here, both the energy production and

demand channels predict a nonlinear relationship between temperature and the probability of can-

cellation especially at the two ends, translated from nonlinearities in solar panel productivity or

air conditioner use. Due to these concerns, I represent solar insolation and wind speed in means,

precipitation in number of rainy days, and daily maximum temperature in both mean and a set of

variables representing number of days in a given temperature bin (e.g. below 40◦F, 40-60◦F, etc.).

3.3 Summary Measures for Solar Production and Energy Demand

To understand whether the response to current weather is due to projection bias over solar pro-

duction or energy demand, we need summary measures for each channel.

The estimated energy demand is relatively straightforward to represent. Weather mainly affects

energy demand through the need to turn on heat/air conditoner in cold/hot days. Such weather-

driven energy demand are conventionally represented by heating and cooling degree days (HDD

and CDD), defined as

HDD = 1{Temp < 65} · (65− Temp) and CDD = 1{Temp > 65} · (Temp− 65).

7Solar insolation is the amount of electromagnetic energy (solar radiation) incident on the surface of the earth, mea-
sured in MJ/m2 per day. See Stackhouse Jr et al. (2015) for methodology and accuracy of this measure.
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I also define a total degree days (TDD) measure:

TDD = CDD +HDD = |Temp− 65|.

These measures are constructed at the daily level and aggregated into means over the relevant

period.

CDD is a reliable measure of hot weather on electricity use because air conditioners and fans

run on electricity, but it provides no information on cold seasons. Another common measure is

HDD, but in California it is not a useful representation of electricity use. This is because electricity

only accounts for 8.5% of energy use for heating in California homes (EIA, 2016), and winter heat-

ing is not needed in many parts of Southern California. This is clearly illustrated by year-round

dynamics of the monthly peak demand in the California ISO system (see Figure A2 in the Ap-

pendix). The peak demand is much higher in the summer months than the rest of the year, and

although there is a small spike around January in some years, the scale is trivial compared to the

summer. Nevertheless, I also show results using TDD to account for the small spike in winter.

Solar power production, on the other hand, is a complicated process. The primary factor is in-

tensity of solar radiation, but solar panel efficiency is also affected by heat negatively and by wind

positively in a nonlinear relationship. To capture this process, I employ a power conversion model

developed by Kleissl (2013), a project funded by CSI RD&D. This model generates predictions of

solar panel output for given inputs of weather and system characteristics, and its performance is

comparable to the PVWATTS model, the standard calculator of PV performance in the industry.

For each CSI application, I generate a series of daily indices by plugging in daily solar insolation,

maximum temperature, and wind speed, and then aggregate them over the entire relevant period.

Since I keep all other characteristics the same across applications, the variations in the index are

entirely driven by how favorable the particular combination of weather variables is to solar pro-

duction.
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3.4 Economic Controls and Demographic Characteristics

Variations in weather are usually considered to be orthogonal to most other variables, but it is less

certain in this study since summary of weather in a period is used. Therefore, I also control for

economic factors that might drive cancellations, which might or might not be correlated with the

weather variables. For this purpose, I collected the following monthly economic variables for the

entire California from the FRED database: leading index,8 unemployment rate, and prime interest

rate. Furthermore, I have also obtained the monthly index of consumer sentiment and buying

conditions for the West region from the Survey of Consumers.

I have also collected zip-code-level demographics. These variables include race, education,

income, housing cost, household size, etc. They are either from the 2010 Decennial Census or 5-

year estimates from the 2011 American Community Survey (ACS). I match them to the applications

to analyze whether responses to weather are heterogeneous along these dimensions.

4 Econometric Framework

As discussed in Section 2.2, the main implication we test in this paper is whether weather fluctua-

tions in the post-contract period affect the probability of cancellation. LetCancelizt be an indicator

of whether the project is eventually canceled. The main estimating equation is essentially a linear

probability model relating the probability of cancellation with weather:

Cancelizt = βSolarzt + γWeatherzt + ηXit + δz + λcτ + εizt. (5)

i denotes individual application and z zip code. There are two notations of time: t denotes the

application date, or the post-contract period uniquely identified by the application date; and τ is

a generic notation for time units. The main variable of interest is Solarzt, solar insolation at zip

code z in the corresponding post-contract period. Weatherzt is a vector of weather variables that

households might also respond to, which might be correlated with solar insolation. The coefficients
8The leading index for each state predicts the six-month growth rate of the state’s coincident index, which in turn

measures the current state of economic activity.
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on these variables are of interest as well. Xit is a vector of controls including system characteristics

and economic conditions.9 λcτ is a set of county-by-time and time fixed effects (FEs), which will

be discussed in more details below. δz denotes zip code fixed effects. Xt and δz are included in all

regressions.

There are a few major choices regarding specification. One is related to the weather variables.

With aggregation over time, the correlation between certain weather variables becomes too strong

to be included in the regression simultaneously. Solar insolation, for instance, is highly correlated

with number of rainy days and temperature. Therefore, for the main regressions on solar insola-

tion, I only control for wind speed and extreme temperature bins. A related and common concern

is that correlations between the weather variables might lead to spurious significance. To address

these issues, I provide robustness checks with alternative specifications, as detailed in Section 5.

The choice of λcτ critically determines the nature of variations used for identification. The main

purpose of the FEs is to control for non-weather drivers of cancellation rate that might be correlated

with weather. In particular, two concerns of such confounding factors are particularly plausible.

One is seasonal employment cycles – suppose people are more likely to be fired at the end of the

year, leading them to cancel their solar contracts, it will be incorrectly attributed to lower solar

insolation level in winter. Another would be business cycle interacting with climatic ones, such

as the El Niño Southern Oscillation. In light of these concerns, the preferred specifications in this

study use within-year and within-quarter variations.

It should be noted, however, that the benefit of ruling out confounders comes at a cost of leaving

out meaningful variations. This trade-off is important because it is unclear as to which dimension

of weather fluctuations the households might respond. If they are generally more hesitant about

their contracts in the winter but does not distinguish between winters that are more or less sunny,

then seasonal fixed effects would eliminate most of the meaningful variations. Moreover, another

difficulty arises because this is a decision made over a period and the weather variables are sum-

mary statistics of the period. Therefore, a larger portion of variations in the weather variables

would be absorbed by the fixed effects than in other contexts. Lastly, it should also be noted that
9System characteristics include CSI rating (size), third-party ownership, average out-of-pocket cost. Economic con-

trols are as discussed in Section 3.4.
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the fixed effects might exacerbate the attenuation bias due to measurement errors in the weather

variables.

To examine this trade-off in a transparent manner, I use six different specifications for λcτ in

the main regressions, going from zip code FEs only to including year FEs, to also controlling for

quarters. In two specifications I allow for quarter or year FEs to differ across counties. It should

be noted that, when comparing across these specifications, we would expect the estimates to vary

although the qualitative pattern should be similar. This is because they use different sources of

variations to capture a possibly nonlinear relationship.

In my preferred specification, seasonal economic dynamics specific to the county are controlled

for by quarter-by-county FEs, and any trends in solar panel installations or common economic and

policy shocks to the entire state are controlled for by year FEs. In another specification, I control for

shocks to specific counties in a specific year using county-by-year FEs, in addition to controlling

for seasonal factors using quarter FEs. Since it would be too demanding to control for county-by-

quarter-of-sample FEs, a potential confounder would be differential policy or economic shocks to

specific counties in a specific quarter-year. But in order for that to work, these shocks must also be

correlated with the weather deviations from local climate normal in a certain way, which is highly

unlikely.

The later sections of the empirical analysis focus on discerning the solar production channel

and the energy demand channel, examining more closely selection into contracts due to pre-period

weather, as well as exploring whether there are any interesting heterogeneous responses. These

analyses are based on different outcome variables and regressors from above, but the threats to

identifications are more or less the same. Therefore, similar FE specifications are used in these

analyses.

Lastly, since there are overlaps in the weather stations matched with different zip codes, I show

standard errors clustered at two levels, zip code and county, for the main results on weather. The

number of clusters are 1,428 and 54, respectively. The rest of the results are shown with standard

errors clustered at the county level.
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5 Results and Discussions

Table 1 presents the summary statistics. For the main analysis, I exclude applications whose host

(customer) sector is non-residential, whose CSI rating is above 100, and whose application sub-

mission starts after September 1, 2015. After cleaning, there are a total of 154,655 residential appli-

cations, of which 18,653 (12.6%) were eventually canceled. The average system cost is $35,377.04,

which is substantial compared to most home appliances. The average incentive amount is about

one tenth of system cost.

Canceled projects are larger and more expensive than completed ones, but the difference is

small. They are slightly more likely to be third-party-owned (TPO). That is, the system is hosted

by the customer but owned by the solar company. The mean of contract year is similar, which

suggests that the majority of cancellations are not concentrated in a short period or driven by, for

example, a special event or policy change at a certain point in time. The simple mean of weather

variables are quite close for the two groups as well, but the formal analysis makes use of finer

variations than this simple comparison. Canceled projects also appear to be located in zip codes

with slightly smaller fraction of whites and college graduates, and with lower median income. But

the differences are very small and insignificant.

In the rest of this section, I first establish that residential customers indeed respond to weather

fluctuations in the post-contract period, by showing a set of results and robustness checks on vari-

ous weather variables. Second, I show results that the solar production channel is the main mech-

anism while energy demand is less of a concern. Next, making further use of the solar production

index, I examine in more details the dynamics of purchase and cancellation in response to weather

shocks in the pre- and post-contract periods. I also use this index to explore potential heteroge-

neous responses from residential vs. non-residential systems, as well as across a variety of different

system and neighborhood characteristics. Last but not least, I discuss implications of the empirical

evidence.
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Table 1: Summary Statistics

All Completed Canceled

Variables Mean SD Min Max Mean Mean

A. Application Characteristics
N 154,655 136,002 18,653
CSI rating 4.86 3.02 .14 99.44 4.82 5.22
cost (USD) 35,377.04 23,829.66 0 1,726,706 35,090.3 37,467.7
incentive (USD) 3,551.24 4,838.65 51 176,442 3,526.86 3,729.01
TPO .500 .500 0 1 .495 .541
year 2011.11 1.83 2007 2015 2011.09 2011.27

B. Weather
solar insolation 18.96 5.85 7.05 29.36 18.98 18.81
max temp (F) 74.50 9.40 48.63 107.68 74.53 74.24
#(max ≤ 40) .0160 .214 0 25 .0157 .0177
#(max ∈ (40, 60]) 13.87 19.90 0 111 13.79 14.48
#(max ∈ (60, 80]) 63.39 27.62 0 113 63.39 63.43
#(max ∈ (80, 100]) 32.47 28.34 0 112 32.55 31.93
#(max > 100) 3.24 9.50 0 112 3.26 3.14
wind speed (knots) 4.99 1.48 1.47 13.86 5.00 4.93
#(precipitation> 0) 23.43 17.46 0 112 23.43 23.45
production index 98.51 31.45 13.81 153.89 98.63 97.66
CDD 2.81 3.94 0 28.70 2.82 2.76
HDD 5.92 4.74 0 28.60 5.91 5.97
TDD 8.73 3.79 1.48 28.70 8.73 8.73

C. Economic Controls
leading index 1.41 1.42 –3.69 3.04 1.39 1.55
unemployment 10.02 1.78 5 12.2 10.01 10.15
prime interest rate 3.56 1.04 3.25 8.25 3.57 3.46
buying condition 128.07 13.12 88 160 128.07 128.17

D. NEM Interconnection Data
(zip code level)
current installed base 435.66 491.10 1 3241 – –
installed penetration .049 .040 .000 .314 – –

E. Demographics (Zipcode Aggregate)
white (%) 67.30 15.88 5.5 100 67.53 65.65
bachelor degree (%) 36.15 17.87 0 100 36.29 35.12
median income 79,414.95 27,052.83 2500 240,833 79,617.02 77,940.58
monthly housing cost 2,170.04 655.63 131 4,000 2,172.93 2,148.93
mean household size 2.86 .460 0 5.18 2.85 2.88
urban (%) .915 .187 0 1 .915 .917
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5.1 Do Cancellations Respond to Weather?

In this subsection, I examine whether solar customers respond to any weather pattern by regressing

the probability of contract cancellation on a set of weather variables. Among them, the primary

variable of interest is solar insolation, or the amount of electromagnetic energy (solar radiation)

incident on the surface of the earth. Solar insolation is the most important factor for solar power

generation from an engineering perspective. Moreover, because it can be directly experienced by

people, it is more likely that they will respond to it. The other weather variables in the analysis are:

wind speed, number of days with maximum temperature below 40◦F and the same for above 100◦F.

These other variables are included to control for confounding weather patterns (Auffhammer et al.,

2013), as they are also theoretically relevant for solar power generation and electricity demand.

Nevertheless, I also assess whether the results on solar insolation is robust with alternative sets of

weather controls.

Table 2 shows the main results based on separate weather variables, six fixed effects specifica-

tions, and two level of clustered standard errors. The coefficients on solar insolation are negative

and statistically significant across the board. This implies that a residential customer exposed to

less sunshine in the post-contract period is more likely to cancel the contract. Wind speed is gen-

erally positively correlated with cancellation, but the effects are not stable across specifications. It

might be because marginal effect of wind is different across seasons and other weather patterns.

Extremely cold days also appear to be positively associated with cancellations, with large and sta-

tistically significant scales. However, this result should be interpreted with the caveat that it is

identified from a small number of observations with nonzero values. Extremely hot days, on the

other hand, does not appear to affect cancellation significantly, although the estimate is negative

throughout.

Examining the scales more closely, column (1) has the smallest estimate on solar insolation,

where none of the temporal fixed effects are controlled for and the effect is identified using devia-

tions from the year-round mean solar insolation at each zip code. This is also the specification most

prone to confounding factors and misspecification. In column (2), using within-year variations in-

creases the scale slightly, which is more likely due to controlling for statewide confounding factors
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Table 2: Cancellation and Solar Insolation within 113 Days

Cancel = 1 (1) (2) (3) (4) (5) (6)

solar insolation –.092 –.106 –.146 –.112 –.203 –.110
(.027)*** (.029)*** (.043)*** (.044)** (.045)*** (.044)**
[.029]*** [.037]*** [.055]** [.060]* [.045]*** [.051]**

wind speed .464 .411 .262 .225 .799 –.065
(.153)*** (.155)*** (.167) (.172) (.206)*** (.172)
[.242]* [.247] [.241] [.254] [.271]*** [.205]

#days(tmax < 40) 1.034 .998 1.055 1.133 1.406 .658
(.480)** (.477)** (.476)** (.473)** (.495)*** (.518)
[.369]*** [.374]** [.383]*** [.422]*** [.521]*** [.349]*

#days(tmax≥100) –.036 –.032 –.020 –.018 –.024 –.019
(.014)*** (.014)** (.014) (.014) (.016) (.015)
[.021]* [.022] [.023] [.023] [.021] [.024]

cancellation rate 12.06 12.06 12.06 12.06 12.06 12.06
R2 (within zip code) .033 .034 .034 .035 .036 .043
N 154,655 154,655 154,655 154,655 154,655 154,655

Fixed Effects
Quarter-of-year Yes Yes
Quarter-by-year Yes
County-by-quarter Yes
County-by-year Yes
Year Yes Yes Yes
Zip Code Yes Yes Yes Yes Yes Yes

Notes: All coefficients are multiplied by 100 for legibility. Standard errors in parenthesis are clus-
tered by zip code, and the ones in squared brackets by county. System characteristics and county-
level economic conditions are always controlled for. * p < 0.10; ** p < 0.05; *** p < 0.01.

that vary over the years. Column (3) further controls for quarterly fixed effects, which gets rid of

seasonal economic fluctuations while alleviating misspecification. This results in a substantially

larger point estimate. While column (1) and (2) provide useful baselines for comparison, column

(3) presents a much more reliable estimate by using sufficiently fine variations. Columns (4)-(6)

are further refinements of specification (3) in different directions. Column (4) allows the quarterly

fixed effects to differ across years, (5) allows the quarterly fixed effects to differ across counties,

and (6) allows for county-specific year fixed effects while controlling for common quarterly fixed

effects. The results moves around the estimate in column (3), but are all negative and statistically

significant. This suggests that confounders are unlikely and the estimated negative relationship

represents real responses to weather. The estimates in column (3)-(6) suggest that one standard

deviation decrease in solar insolation is associate with 5.2-9.3% increase in cancellations, while the
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Table 3: Robustness Checks: Varying Controls

Cancel = 1 (1) (2) (3) (4) (5) (6)

solar insolation –.129 –.129 –.160 –.219 –.115 –.115
[.045]*** [.041]*** [.051]*** [.044]*** [.050]** [.045]**

wind speed .262 .797
[.227] [.259]***

#days(tmax < 40) 1.086 1.460
[.392]*** [.551]**

#days(tmax ≥ 100) –.019 –.021
[.023] [.020]

cancellation rate 12.06 12.06 12.06 12.06 12.6 12.06
R2 (within zip code) .034 .036 .034 .036 .034 .036
N 154,655 154,655 154,655 154,655 154,655 154,655

Fixed Effects
Quarter-of-year Yes Yes Yes
County-by-quarter Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes Yes Yes

Notes: All coefficients are multiplied by 100 for legibility. Standard errors are clustered by county.
System characteristics and county-level economic conditions are always controlled for.
* p < 0.10; ** p < 0.05; *** p < 0.01.

baseline cancellation rate is 12.6% of all applications.

When multiple weather variables are included in a regression, a common concern is that the

estimates are driven by specific correlations between these variables. To investigate this issue, I

run a variety of robustness checks. First, Table 3 shows results excluding either wind speed or

temperature bins from specifications (3) and (5) in Table 2. All the estimates are comparable to

before. Second, I run a placebo test by assigning randomly drawn contract dates to the applications

and replicate Table 2 (see Table A1 in the Appendix). The coefficients for all variables are much

smaller and statistically insignificant, suggesting that correlations among the regressors are not a

serious concern.

As a further support, I run a similar analysis based on a different set of weather variables,

where solar insolation is dropped, while adding more maximum temperature bins and number of

days with positive precipitation (see A2 in the Appendix). The estimates on all the overlapping

variables are similar as before. While not included due to multicollinearity problem previously,

precipitation is associated with a higher probability of cancellation in a statistically significant and

21



robust pattern. This is consistent with the intuition that customers tend to have lower valuations

of solar panels when they experience less favorable weather shocks.

I also check that the estimates on solar insolation and wind speed are robust when the pe-

riod length is changed to 70 or 90 days (see Table A3 in Appendix). This is consistent with the

discussions in Section 3.1, that the estimates are expected to be similar for a range of reasonable

period lengths and attenuated for much shorter or longer periods due to increasing measurement

errors. In Subsection 5.2 when weather is summarized by a single index, I further test whether the

evolution of the estimate along period length indeed follows an inverse U-shape.

To briefly sum up, the results in this subsection show that customers respond to short-run

weather fluctuations when deciding whether to cancel their solar contracts. Specifically, intensity

of solar radiation in the short-run is significantly associated with the probability of cancellation: the

weaker the solar insolation, the more likely the cancellation. This relationship is robust to different

sets of fixed effects, controls, and post-period lengths. I also find suggestive evidence that increase

in other weather variables, such as wind speed, precipitation, and extreme cold, is also associated

with more cancellations.

5.2 Production or Demand Channel?

The above results show that households are responding to the intensity of solar radiation, which

is consistent with households being concerned about solar panel profitability. However, it is not

straightforward to interpret the estimated coefficients, due to three reasons. First, electricity gen-

eration from solar power is a nonlinear and complicated function of several weather variables,

which is not likely to be correctly specified in a linear model as above. Second, the marginal effect

of some variables, such as wind speed, might depend on other variables and varies a lot across sea-

sons. Third and most importantly, the simple theory in Section 2 highlights two potential channels

that projection bias might be at work. In reality, the households might have other concerns such as

the possibility for strong wind to do damage to the solar panel and the roof. The estimates above

capture the combined effects of the two potential channels and these other concerns.

This section is devoted to disentangle the two main channels outlined in the theory in Section
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Table 4: Channel: Solar Production vs. Energy Demand

Cancel = 1 (1) (2) (3) (4) (5) (6)

ProductionIndex –.761 –.792 –.650 –.687 –.830 –.793
[.264]*** [.259]*** [.323]** [.362]* [.247]*** [.252]***

CDD –.260 –.223
[.297] [.341]

TDD(= CDD +HDD) –.126 –.003
[.279] [.314]

cancellation rate 12.06 12.06 12.06 12.06 12.06 12.06
R2 (within zip code) .034 .036 .034 .036 .034 .036
N 154,655 154,655 154,655 154,655 154,655 154,655

Fixed Effects
Quarter-of-year Yes Yes Yes
County-by-quarter Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes Yes Yes

Notes: All indices are normalized. All coefficients are multiplied by 100 for legibility. Standard er-
rors are clustered by county. System characteristics and county-level economic conditions are always
controlled for. * p < 0.10; ** p < 0.05; *** p < 0.01.

2.2, assuming that the other unobservable concerns are orthogonal to them. Specifically, I estimate

the responses to summary indices for the two channels simultaneously, following the logic of an

encompassing test Davidson et al. (1993). Construction of the two indices are detailed in Section 3.3.

The index for solar production channel is generated from an engineering model, and the energy

demand channel is represented by “degree days” measures: CDD or TDD (sum of HDD and CDD).

Both indices are normalized in the results below so that the interpretation of the estimates become

“percentage point change in cancellation associated with one standard deviation increase in the

index”.

Table 4 reports the results on the two channels, using FE specifications (3) and (5) in Table

2. In the first two columns, I regress the cancellation dummy on the production index only, and

the estimates are again negative and statistically significant. The scale translates into around 6.4%

increase in cancellation probability for one standard deviation decrease in the production index.

CDD was added into the regressions in columns (3)-(4). The results are slightly smaller, but as the

standard errors increase, the significance level decreases. The increase in standard error is likely

due to multicollinearity problem, because the variations in production index and CDD are strongly
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driven by solar insolation and temperature, respectively, and the latter two are highly correlated.

The coefficient on CDD is negative as expected, but highly insignificant and economically small.

The last two columns switch to TDD to represent energy demand. The coefficient on TDD is much

smaller, while the scale and statistical significance of the production index is at similar levels as

before. Therefore, these estimates suggest that the solar production aspect plays a greater role

than the energy demand channel in the households’ decisions.

There are several potential explanations of why people are not responding to energy demand as

strongly as to solar production. The theory predicts that the energy demand channel would be at

work only if the marginal electricity price is quite different with and without the solar generation.

For some households, it might be the case that their solar system is not large enough to move the

marginal price to a lower tier. For some others, it might be because they were not at the highest

tier to begin with, and hence the difference between two lower tiers is small. Moreover, since

households appear to respond to average rather than marginal price, this also tends to attenuate

the value of electricity displaced (Ito, 2014). Lastly, it could be that households derive large non-

pecuniary utility from solar panels on sunny days, which amplifies the solar production channel.

For example, some people might feel more proud of going solar when the weather is more favorable

to production. Note that although this in itself can be perfectly rational preference, it is also a form

of projection bias if the household uses the current weather to estimate the total non-pecuniary

utility they would derive from the solar system.

One important takeaway from the above results is that the solar production index alone is a

useful summary of relevant characteristics of the current period weather. In Figure A3 in the Ap-

pendix, I show the non-parametric relationship between the probability of cancellation and this

index using two methods, and both strongly support a linear relationship. Therefore, I can use this

index to perform further analysis without getting into complications of interpreting the reduced-

form estimates on multiple weather variables.

For example, I examine whether current period weather can predict average weather in the near

future (See Table A4). For each application, I calculate the average production index in an one-year

period starting right after the end of the 113-day post-contract period, as a measure of production
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Table 5: Pre-period Weather and Purchase

(Zip Code-by-Month) Number of Applications log(Number of Applications)

(1) (2) (3) (4) (5) (6)
Pre-period Length 1Mo 2Mo 3Mo 1Mo 2Mo 3Mo

Indexpre .569 .714 .570 .102 .132 .107
[.085]*** [.106]*** [.096]*** [.008]*** [.009]*** [.009]***

R2 (within zip code) .407 .409 .408 .480 .481 .480
N 46,018 46,001 45,911 46,018 46,001 45,911

Fixed Effects
Quarter-of-year Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes Yes Yes

Notes: The dependent variable for columns (1)-(3) is the number of applications by zip code by month, and for
(4)-(6) is its log level. The third row indicates the length of the pre-period used to calculate Indexpre. Standard
errors are clustered by county. * p < 0.10; ** p < 0.05; *** p < 0.01.

potential. Regressing this measure on the post-period index using the preferred specifications

show small and insignificant coefficients.

For another example, I examine the first half of the conjectured inverted U-shape based on the

index (See Table A5 in the Appendix). Six estimates are presented, which are based on 10, 30, 50,

70, 90, and 113-day post-contract periods respectively. The scale of the estimates are increasing

in the length of period, and all other estimates are statistically different from the main 113-day

estimate except for the 90-day one. These are all clearly consistent with the previous conjecture.

5.3 Selection into Contract

In this subsection, I test another implication of projection bias, that purchase itself might also be

affected by short-run weather conditions prior to it. Conlin et al. (2007) find that cold weather

(favorable in their case) on the purchase day is associated with higher probability of cancellation

later. Their interpretation is that some unnecessary purchases are induced by weather. Busse et al.

(2014) and Simonsohn (2010) find direct evidence on purchase, but are less able to infer change

of valuation because returns in their contexts are rare and unobservable. The first goal of this

subsection is to provide evidence on purchase in a similar spirit to these two papers.

Most previous tests of projection bias, including my analysis above, are based on weather in

just one period. However, this “single-period” approach might have only painted a partial picture,
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because the customers might not be responding to just weather conditions in the pre-contract,

or the post-period, but the comparison of the two. Suppose one customer experiences above-

average weather in the pre-period, and even better weather afterwards, theory of projection bias

predicts that she should have lower probability of cancellation than those who experience the av-

erage weather throughout. Suppose another customer experiences the same weather in the pre-

period, and worse weather afterwards, she should have higher probability to cancel instead. The

single-period approach essentially pulls these two types together. However, distinguishing be-

tween them can better shed light on how customers are processing information about weather at

different points in time. This is the second goal of this subsection.

For solar panels, the relevant pre-periods for considering purchase are more heterogeneous

and harder to infer than the relevant post-period. Therefore, I show results assuming different

pre-period lengths. Still, it is imperfect, which is a major caveat for interpreting the results in this

subsection.

Table 5 presents results of whether solar production index in the pre-period is correlated with

the number of applications, after controlling for quarterly, year and zip code FEs.10 Columns (1)-

(3) use number of applications at a given zipcode in a given month as the dependent variable,

while (4)-(6) use the log of number of applications. Three estimates are shown for each dependent

variable, assuming the relevant pre-period as 1, 2, and 3 months, respectively. The estimates are all

positive and statistically significant for both level and log. The level estimates range from 0.57 to

0.71 additional application for one standard deviation increase in the index, and the log estimate

range from 10.2% to 13.2% increase. Therefore, the evidence generally suggest that the number

of applications are responding to the solar radiation in the prior period. Note, however, that part

of this might be attributable to short-run shifting of purchase timing by one or two months. In

contrast to the extensive margin, there does not appear to be systematic selection on the intensive

margin, namely the system size (see A7 in the Appendix).

In Table 6, I examine whether the customers are responding to the change in post-period weather

relative to the pre-period (“weather update” henceforth). I assume a 30-day pre-period, and use
10Results under alternative FE specification are very similar and available upon request.
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Table 6: Responses to Weather Updates

Updates Interactions

Cancel = 1 (1) (2) (3) (4) (5)

Indexpre .253 –.472 –.055
[.235] [.313] [.288]

Update –.802 –.124 –.257 .368
[.269]*** [.601] [.203] [.444]

Dummy =
1(Update < 0) –.020

[.004]***
1(Indexpre > Indexz) –.004

[.007]
1(Indexpost < Indexz) .004

[.004]
Update×Dummy –1.746 –.556 –.976

[.556]*** [.314]* [.335]***

cancellation rate 12.06 12.06 12.06 12.06 12.06
N 154,655 154,655 154,655 154,655 154,655

Fixed Effects
Quarter-of-year Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes Yes

Notes: Indexpre is the normalized average production index for a 30-day pre-contract
period. Update is the average post-period index minus the pre-period one. 1(Update < 0)
indicates whetherUpdate is negative. 1(Indexpre > Indexz) is an indicator of whether the
pre-period index is higher than zipcode average, and 1(Indexpost < Indexz) is whether
the post-period one is lower. All coefficients are multiplied by 100 for legibility. Dummy
in the interaction term in the last rows refers to the dummy variable that is included in
the same regression. Standard errors are clustered by county. System characteristics and
county-level economic conditions are always controlled for.
* p < 0.10; ** p < 0.05; *** p < 0.01.

the same FE specifications as in Table 5.11 Column (1) estimates the relationship between cancel-

lation and the pre-period production index. The coefficient is positive but insignificant. When

weather update is added to the regression (Col (2)), the coefficient on it is negative and statistically

significant, while the coefficient on pre-period index switches signs but is still insignificant.

Next, I test for differential effects of the update by including an interaction term of Update and

a category indicator. In Column (3), I test whether negative updates have a larger effect on can-

cellations than positive one. The idea is, a positive update might not be informative given that

these customers have already self-selected into a contract. Indeed, the interaction term, which sep-
11Using a 60-day pre-period yields qualitatively similar results (see A6 in the Appendix). Results under alternative

FE specifications are also very similar and available upon request.
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arates out the negative updates, completely absorbs the effect of the Update variable and becomes

twice as large. This provides strong support for different information contents between positive

and negative updates. Column (4) shows that the update has a larger impact on customers who

were exposed to above-average weather before signing up, and (5) shows even greater impacts on

those exposed to below-average weather in the post-period. 12 These effects suggest that the cus-

tomers fail to recognize that deviations from the mean weather are transient. Instead, they make

a long-lasting decision based on these deviations.

5.4 Heterogeneous Effects

This subsection explores whether responses are heterogeneous across various dimensions. For

ease of interpretation, I again focus on the production index and use Col (1)-(2) in Table 4 as the

baseline estimates for comparison. I interact the index with different characteristics that might

affect the cancellation decision as well as the extent to which people rely on current weather in

their decisions. The interaction term is the variables of interest throughout because it captures the

differential responses by customers with the specific characteristic.

For testing behavioral bias, one informative dimension of heterogeneity is residential vs. non-

residential customers. The latter group, including small businesses, government agencies, and

NGOs, are also eligible for rebate under CSI. There are much fewer of them – the clean data contains

only 8,730 non-residential applications. The decision process of these customers is fundamentally

different from residential ones, as they are more likely to employ formal calculations of discounted

investment returns to guide the decision. The program rules are also different. They follow a three-

step procedure and are not required to have a signed contract in order to reserve the rebate. Hence,

it is unclear to what extent the cancellations of non-residential systems are costly. Nevertheless, I

view the analysis below as useful evidence that sheds light on the behavioral mechanism.

Table 7 reports results on the cancellations of these non-residential applications. The first two

columns are exact counterparts of the columns (1)-(2) in Table 4. The estimates are still negative,

but the scales are substantially smaller and insignificant. However, the lack of statistical power
12“Above-average” here means having an index level greater than the year-round average at the given zip code.
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Table 7: Cancellations of Non-residential Applications

Cancel = 1 (1) (2) (3) (4)
Non-residential Only Pooled

Indexpost –.427 –.427 –.802 –.843
[1.004] [.992] [.260]*** [.257]***

1(non-residential) –.114 –.120
[.255] [.253]

Indexpost × 1(non-residential) .893 1.050
[.138]*** [.109]***

F-stat: β1 + β3 = 0 0.08 0.94
N 8,730 8,730 163,385 163,385

Fixed Effects
Quarter-of-year Yes Yes
County-by-quarter Yes Yes
Year Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes

Notes: The production index is normalized, and all coefficients are multiplied by 100 for legibility.
Standard errors are clustered by county. System characteristics and county-level economic conditions
are always controlled for. * p < 0.10; ** p < 0.05; *** p < 0.01.

constrains our ability to conclude that this represents a null effect.

To enhance power, I pool the non-residential applications with the large residential sample used

above, and add an indicator for non-residential system as well as an interaction term of this indi-

cator with the production index. The results are shown in Columns (3)-(4) in Table 7, and display

a striking reversal pattern. The coefficient on Index captures the effect of weather on residential

customers, and is similar to the baseline (Table 4, Col(1)-(2)). On the other hand, the one on the

interaction term goes the opposite direction and more than compensates the negative scale by a

small margin. Captured by the sum of the two coefficients, the effect of weather on non-residential

customers is very small in scale. The F-statistic of a formal test is insignificant.

However, there is no guarantee that the fixed effects are similar for the two types of customers.

It is unclear whether the seasonal and location specific economic confounders are similar for house-

holds and these non-residential entities. The coefficient on the interaction term will be biased when

the omitted differences are correlated with weather. For example, a problem would arise if 2009 has

particularly unfavorable weather for solar production, while the financial crisis in that year makes

businesses more time-inconsistent than households in terms of their solar purchase decisions. If
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Table 8: Peer Effects in Cancellations and Response to Weather

Cancel = 1 (1) (2) (3) (4)
Current Installed Base Installed Base > 1 Year

Indexpost –.702 –.716 –.758 –.751
[.374]* [.368]* [.351]** [.352]**

Penetration –.859 –.863 –1.110 –1.093
[.285]*** [.273]*** [.471]** [.460]**

Indexpost × Penetration 1.829 .702 6.839 3.978
[12.643] [13.155] [15.437] [17.418]

N 151,043 151,043 151,043 151,043

Fixed Effects
Quarter-of-year Yes Yes
County-by-quarter Yes Yes
Year Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes

Notes: The production index is normalized. The first and third coefficients are multiplied by 100 for
better display. Standard errors clustered by county. System characteristics and county-level economic
conditions are always controlled for. * p < 0.10; ** p < 0.05; *** p < 0.01.

these are true, the latter effect would be incorrectly attributed to the former. Such confounders

are not likely to be a main driver of the reversal result we are seeing, though, especially when

the outcome is cancellation conditional on applying. Therefore, I view these results as suggestive

that non-residential customers do not respond to weather, potentially because they have formal

decision-making process and thus are less vulnerable to behavioral bias in their decisions.

Next, I explore heterogeneous responses among residential applications in locations with dif-

ferent solar market penetration. Peer effects are found to play a role in the adoption of solar panels

(Bollinger and Gillingham, 2012), and it might also affect cancellations and responses to weather.

For instance, households with more neighbors having solar PV systems might be more determined

and less likely to cancel. If the neighbor has the system for over a year, he might be able to share

his experience with the year-round fluctuation of solar power production. Therefore, households

living near neighbors with older systems might be less vulnerable to projection bias. These con-

jectures are tested below.

Identification of peer effects in (Bollinger and Gillingham, 2012) uses the fact that installation

typically occur with some delay after the purchase decision. This means the increase in current

installed base is predetermined and uncorrelated with other contemporaneous shocks to the peer
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group. The logic of the following analysis is similar, that the increase in interconnected systems

is predetermined and would only affect current decisions through peer effects. I construct two

measures of solar market penetration in a zip code using the net energy metering (NEM) inter-

connection dataset. This dataset contains all interconnected project with information on zip code

and relevant dates, which allows me to calculate the current installed base in a zip code for a given

month. I also calculate the number of systems that are at least one year old, because these neighbors

might be more helpful in alleviating projection using current weather. Each variable is divided by

the total number of households in the zip code to obtain a measure of market penetration.

Table 8 presents results of regressing cancellation on the production index, penetration, and

their interaction. The penetration measure in Columns (1)-(2) is based on the current installed base,

while (3)-(4) are for those older than one year. The coefficient on the production index is similar

as before. Higher market penetration is associated with less cancellation, and the relationship is

significant. This is consistent with the previous studies – peer effects not only make the households

more likely to sign up, but also prevent them from canceling the contract. However, there is no

support for the conjecture that neighbors with older systems might provide useful information

against the over-reliance on current weather. The estimates are indeed of opposite sign of the main

effect, larger for the older base, but statistically insignificant throughout.

I also explore whether responses differ with individual system and application characteristics.

Table 9 reports these results. Columns (1) and (2) shows that systems with larger sizes or lower

average cost are more likely to be canceled, but their response to weather does not differ system-

atically.

Column (3) examines how third-party ownership (TPO) affects reponses to weather. TPO is a

common option to finance solar system, which allows the household to acquire the system without

paying a large up-front cost. Under this scheme, the solar company owns the system, and either

signs a power-purchase agreement (PPA) or a lease with the household.13 In the earlier years, most

systems are self-owned. Later, TPO was introduced to tap into a broader customer base and has

since become the most popular option. In the dataset, about half of all applications are under TPO.
13PPA allows the household to pay a low fixed rate for the electricity generated from the system, while the lease is

similar to a loan which the household need to pay back.
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Table 9: Heterogeneous Effects by System Characteristics

Cancel = 1 (1) (2) (3) (4)
System Size Average Cost Third-Party Near Incentive

Above Median Above Median Ownership Step Change

Indexpost –.753 –.787 –.449 –.595
[.309]** [.275]*** [.251]* [.280]**

1(Characteristic) 1.723 –1.221 .837 1.863
[.383]*** [.615]* [.522] [.580]***

Indexpost × 1(Characteristic) .007 .081 –.638 –.251
[.270] [.210] [.292]** [.334]

N 154,655 154,657 154,655 154,655

Fixed Effects
Quarter-of-year Yes Yes Yes Yes
Year Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes

Notes: The production index is normalized. All coefficients are multiplied by 100 for better display. Standard
errors are clustered by county. Other system characteristics and county-level economic conditions are always
controlled for. * p < 0.10; ** p < 0.05; *** p < 0.01.

It is unclear whether customers with TPO systems should be more or less sensitive to weather.

On one hand, TPO typically reduces the risk from weather by compensating the customer when

production is particularly low. On the other hand, it is well known that TPO create restrictions

for selling the house within the 20-year term. The customer might therefore place more value on

whether the system “pays off” sooner and hence make their decision more reliant on projected

performance. Furthermore, selection into TPO is not random – the option is created to appeal to

customers who are more liquidity-constrained or risk averse. The results suggest that they are

much more sensitive to weather. The effect of weather on their cancellations is more than two

times larger than that for self-owned systems. A likely reason is that many of them are marginal

customers who can easily change their minds.

The last application characteristic I investigate is whether it is submitted near the next incentive

step change. Step changes occur at times when the total solar capacity reserved in the program

exceeds certain thresholds. Although the exact timing of the change is unknown, applicants still

respond to imminent step change.14 One possibility is that more marginal customers might be

rushed into a contract for the option value of getting the higher rebates. Therefore, they not only
14According to a CSI staff, “... there was always a flurry of reservations and overall activity around step changes”.
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have a higher propensity to cancel, but also are more likely to cancel due to weather fluctuations.

Based on the realized schedule for incentive step change,15 I calculate the duration to the next

step change for each application. The sample is split by whether this duration is less than 47 days,

the 25th percentile of this variable (see Figure A4 in the Appendix for the distribution of days to

next step change).16 Column (4) suggests that these customers indeed have a substantially higher

probability of cancellation, and they are slightly more sensitive to weather.

Lastly, I examine whether there are heterogeneous responses based on zip code characteristics

(see Table A8 in the Appendix). These characteristics include median income, fraction of white

people, fraction with a bachelor degree, average household size, fraction of urban households,

housing cost, whether the zip code is in Norther California, and whether it is in non-coastal coun-

ties. The only significant finding is that the responses to weather are entirely driven by zip codes

that have more urban households than rural ones. The rest of the zip code characteristics do not

seem to split the sample in meaningful ways. It might be because solar customers in any zip code

are a highly selected group (Harding and Rapson, 2013; Borenstein and Davis, 2015), and hence

the aggregate characteristics are not very informative.

5.5 Interpretation and Alternative Mechanisms

The empirical analysis shows that better weather is associated with more solar panel contracts,

and worse weather in the post-contract period is associated with higher probability of cancellation.

The evidence is also consistent with customers changing their valuation of solar panels when they

experience a change in weather patterns after signing up relative to before. In contrast, there is

suggestive evidence that non-residential customers are not affected.

I interpret these findings as consequences of consumers suffering from projection bias. That

is, they rely too much on current conditions to predict future utility, and are making long-lasting

decisions based on transient conditions. Here I use the term “projection bias” in a broad sense, to
15Source: https://www.californiasolarstatistics.ca.gov/reports/budget forecast/#Step.
16There is no special reason to use the 25th percentile. The results are robust to other thresholds in a similar range.

However, if the threshold is too low, the result will be driven by a small number of observations. If the threshold is too
high, it fails to capture the notion of being close to the imminent change.
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include both mistaken utility and mistaken beliefs about weather.17 Mistaken utility means that the

consumer incorrectly predicts that her future utility will be more like today, and mistaken belief

means that she instead thinks that today’s weather condition is more likely to arise in the future.

Both are psychological biases, predict similar behaviors, and are usually hard to tell apart. How-

ever, because solar panel are highly instrumental and not something the customers can directly

enjoy, I interpret the effects as mainly driven by mistaken beliefs.

There are several competing mechanisms that can explain some of the findings. The most plau-

sible one is rational learning. That is, the customers are in fact extracting useful information from

weather fluctuations to guide their choice. There are a few things that the customers can be learn-

ing about.

One possibility is that the current weather can help predict future weather. It is certainly true

that short-run weather has predictive power cross-sectionally: while Los Angeles is hotter than

San Francisco in December, it is also hotter around the year. However, zip code fixed effects are

included in all specifications, absorbing most of the cross-sectional correlations. Within the same

location, weather conditions are not persistent in the relatively short run. As has been discussed

before, Table A4 shows that current weather is not predictive of that in the near future (1 year). It

is more unlikely that current weather can predict weather into the distant future.

Does current weather help the consumer infer something about climate change? Researchers

find that recent outdoor temperatures might indeed affect belief in climate change (Li et al., 2011).

However, this kind of learning, if present, is also not likely to be rational here given the nature of

weather variations used for identification. The preferred specifications include year fixed effects

and another specification has county-specific year fixed effects. Under these specifications, gradual

changes in climate are largely absorbed, but I still find significant effects of solar insolation on

cancellation.

Yet another possibility is that the consumer is learning something about the profitability to go

solar. Learning can be rational if the consumer is previously inattentive. For example, hot and

sunny weather might lead an inattentive consumer to be correctly aware about (i) her electricity
17Some might instead prefer to use the term narrowly for mistaken utility only.

34



needs, (ii) solar panel productivity. This explains why more contracts are signed following good

weather. However, (i) appears not to be important according to Table 4. For (ii), it is unclear what

can be meaningfully learned before the solar panels are installed. Furthermore, both stories are

hard to reconcile with the results on cancellation: if the learning is complete, why would a customer

be more likely to cancel a contract when the weather turns bad later?

There might be other types of learning that can explain some of the findings. However, it is

hard to think of anything useful that the household can learn from short-run weather, that has

additional value over the estimates provided by the solar company. Furthermore, the results on

cancellations also pose a general challenge to stories of rational learning.

Another alternative explanation is that current weather affects productivity of the solar com-

panies, which then affect purchase and cancellation. This can arise because: first, solar salesmen

and installers primarily work outdoor, and therefore are more productive in good weather; second,

some solar companies are aware that it is easier to make a successful sales pitch in the summer than

winter, as suggested by anecdotal evidence. However, the second is evidence of solar companies

taking advantage of customers’ projection bias, and hence need not be separated out. As for the

first, we would expect the effect to be mainly driven by extreme weather and is not consistent with

the linear relationship in Figure A3. Additionally, heat is found to lower human productivity, but

it is in fact associated with lower probability of cancellation.

To sum up, none of the proposed alternative mechanisms can satisfactorily explain all the main

findings. The most plausible mechanism is a psychological bias that leads the consumers to rely

too much on transient conditions when making a long-lasting decision.

6 Conclusion

This paper studies how weather fluctuations affect the decision to go solar and also the decision

to cancel a signed solar contract. The main result shows that customers whose sign-up for solar

panels is followed by bad weather are more likely to cancel their contract. Furthermore, consumers

are more likely to cancel when they experience worse weather after signing up relative to before,

suggesting that the negative update changes their valuation of solar panels. This effect is mainly
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driven by their concerns over future solar panel productivity. I also find suggestive evidence that

non-residential customers do not respond to weather, and marginal residential customers respond

more. The most plausible mechanism consistent with all these results is projection bias driven

by mistaken beliefs. That is, the customers rely too heavily on current weather to predict future

weather.

These results suggest that projection bias can substantially affect demand for a big-ticket item

like solar panel, and might also be at work for other energy-related investments. Such investments

are different from other goods studied before, in that they are under-adopted socially and often

heavily subsidized. Therefore, policymakers can benefit from learning and using these behavioral

patterns to better target subsidies to marginal customers and reduce wasteful cancellations.

Finally, there are several limitations in this paper, each representing a potential extension for

future work. The first limitation is not knowing the exact pre- and post-period, leading to under-

estimation due to attenuation bias. It would be helpful to study such intertemporal biases in other

contexts where projections are also continually updated, but with more clearly defined pre- and

post-periods. Second, without individual characteristics of the solar customers, this paper can-

not reach a solid conclusion on what type of consumers are more susceptible to such bias. Third,

this paper finds that information provided by the solar companies or peer effects by neighbors do

not eliminate such bias. Future studies can explore better strategies to “de-bias” the customers.

Answering these questions are important for both economic modeling and policy design.
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Appendix

Figure A1: CSI Incentive Step Design

Source: http://www.gosolarcalifornia.ca.gov/csi/rebates.php
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Figure A2: Monthly Peak Demand in California, 2006-2011

Source: California ISO (2012)
Notes: This graph shows the actual monthly peak demand for southern California (SP26), northern California (NP26),
and the entire California ISO system over the years 2006-2011.
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Figure A3: Support for Linear Specification

Notes: These graphs verify the linear specification between the probability of cancellation and solar production index
using two approaches. The upper panel fits the relationship with a flexible local polynomial, and the lower one uses a
binned scatter plot by dividing the observations into twenty bins.
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Figure A4: Density of Days to Next Incentive Step Change

Notes: This graph plots the distribution of days to next incentive step change. The vertical dashed red line represents
43 days, the cutoff used in the heterogeneity analysis.
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Table A1: Placebo Replication of Main Results on Solar Insolation

Cancel = 1 (1) (2) (3) (4) (5) (6)

solar insolation –.030 –.028 –.020 –.027 –.004 –.026
(.024) (.025) (.037) (.037) (.039) (.037)
[.017] [.019] [.032] [.029] [.034] [.032]

wind speed .206 .196 .174 .231 .240 .136
(.135) (.136) (.142) (.143) (.169) (.153)
[.126] [.124] [.126] [.127]* [.165] [.129]

#days(tmax < 40) .065 .079 .070 .078 .100 .368
(.312) (.315) (.314) (.318) (.395) (.504)
[.214] [.219] [.216] [.221] [.227] [.381]

#days(tmax ≥ 100) –.002 –.002 –.002 –.003 –.008 .000
(.012) (.012) (.013) (.012) (.014) (.013)
[.011] [.011] [.011] [.011] [.012] [.011]

cancellation rate 12.06 12.06 12.06 12.06 12.06 12.06
R2 .032 .032 .032 .032 .033 .034
N 154,684 154,684 154,684 154,684 154,684 154,684

Fixed Effects
Quarter-of-year Yes Yes
Quarter-by-year Yes
County-by-quarter Yes
County-by-year Yes
Year Yes Yes Yes
Zip Code Yes Yes Yes Yes Yes Yes

Notes: All coefficients are multiplied by 100 for legibility. Standard errors in parenthesis are
clustered by zip code, and the ones in squared brackets by county. System characteristics and
county-level economic conditions are always controlled for. * p < 0.10; ** p < 0.05; *** p < 0.01.
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Table A2: Cancellation and Other Weather Variables

Cancel = 1 (1) (2) (3) (4) (5) (6)

#days(tmax ≤ 40) .971 .999 1.023 1.158 1.361 .490
(.480)** (.478)** (.482)** (.481)** (.503)*** (.526)
[.378]** [.395]** [.407]** [.442]** [.508]*** [.333]

#days(40 < tmax ≤ 60) .006 –.001 .005 .004 .018 .018
(.009) (.010) (.010) (.011) (.013) (.010)*
[.011] [.013] [.013] [.016] [.021] [.012]

#days(80 < tmax ≤ 100) –.010 –.014 –.015 –.006 –.016 –.013
(.006)* (.006)** (.007)** (.007) (.007)** (.007)**
[.006] [.006]** [.008]* [.010] [.009]* [.007]*

#days(tmax > 100) –.030 –.028 –.026 –.023 –.035 –.022
(.014)** (.014)* (.015)* (.015) (.016)** (.015)
[.026] [.027] [.026] [.024] [.022] [.027]

wind speed .393 .239 .195 .188 .580 –.089
(.115)*** (.122)** (.149) (.158) (.176)*** (.150)
[.177]** [.187] [.228] [.252] [.261]** [.186]

#days(precipitation>0) .030 .024 .024 .032 .022 –.000
(.010)*** (.010)** (.010)** (.011)*** (.011)** (.010)
[.011]*** [.011]** [.013]* [.012]** [.016] [.014]

cancellation rate 12.06 12.06 12.06 12.06 12.06 12.06
R2 (within zip code) .033 .034 .034 .035 .036 .043
N 154,655 154,655 154,655 154,655 154,655 154,655

Fixed Effects
Quarter-of-year FE Yes Yes
Quarter-by-year FE Yes
County-by-quarter FE Yes
County-by-year FE Yes
Year FE Yes Yes Yes Yes
Zip Code FE Yes Yes Yes Yes Yes Yes

Notes: All coefficients are multiplied by 100 for legibility. Standard errors in parenthesis are clustered
by zip code, and the ones in squared brackets by county. System characteristics and county-level
economic conditions are always controlled for. * p < 0.10; ** p < 0.05; *** p < 0.01.
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Table A3: Robustness Checks: Varying Period Length

Cancel = 1 (1) (2) (3) (4) (5) (6)
Period length 70 days 70 days 90 days 90 days 113 days 113 days

solar insolation –.147 –.185 –.157 –.206 –.146 –.203
[.045]*** [.043]*** [.048]*** [.043]*** [.055]** [.045]***

wind speed .319 .652 .317 .751 .262 .799
[.210] [.248]** [.220] [.249]*** [.241] [.271]***

#days(tmax < 40) .358 .511 .379 .569 1.055 1.406
[.351] [.400] [.352] [.421] [.383]*** [.521]***

#days(tmax ≥ 100) –.042 –.052 –.030 –.036 –.020 –.024
[.024]* [.022]** [.025] [.023] [.023] [.021]

cancellation rate 12.06 12.06 12.06 12.06 12.06 12.06
R2 (within zip code) .032 .033 .032 .033 .032 .033
N 154,655 154,655 154,655 154,655 154,655 154,655

Fixed Effects
Quarter-of-year Yes Yes Yes
County-by-quarter Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes Yes Yes

Notes: All coefficients are multiplied by 100 for better display. Standard errors are clustered by
county. System characteristics and county-level economic conditions are always controlled for.
* p < 0.10; ** p < 0.05; *** p < 0.01.
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Table A4: Does Current Weather Predict the Near Future?

Future Index (1) (2) (3)

ProductionIndex –.001 –.008 .033
[.026] [.025] [.027]

N 154,242 154,242 154,242

Fixed Effects
Quarter-of-year Yes
County-by-quarter Yes
Year Yes Yes
Zip Code Yes Yes Yes

Notes: The dependent variable is mean daily production index in a one-year
period starting right after the 113-day post-period.
* p < 0.10; ** p < 0.05; *** p < 0.01.

Table A5: Attenuation Bias with Different Period Lengths

System Size (1) (2) (3) (4) (5) (6)
10 days 30 days 50 days 70 days 90 days 113 days

ProductionIndex .057 –.249 –.443 –.542 –.692 –.761
[.141] [.141]* [.144]*** [.154]*** [.172]*** [.191]***

Test: Equality of Coefficients
χ2 : β(i) = β(6) 25.38*** 13.70*** 6.90*** 5.00** 1.89 –

N 154,655 154,655 154,655 154,655 154,655 154,655

Fixed Effects
Quarter-of-year Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes Yes Yes

Notes: The second row indicates the length of the post-contract period used to calculate the pro-
duction index. Standard errors are clustered at county level. System characteristics and county-
level economic conditions are always controlled for. * p < 0.10; ** p < 0.05; *** p < 0.01.
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Table A6: Responses to Weather Updates

Updates Interactions

Cancel = 1 (1) (2) (3) (4) (5)

Indexpre –.039 –.854 –.591
[.246] [.374]** [.354]

Update –.769 1.170 .472 .588
[.264]*** [.653]* [.252]* [.352]

Dummy =
1(Update < 0) –.000

[.005]
1(Indexpre > Indexz) –.014

[.004]***
1(Indexpost < Indexz) .006

[.004]
Update×Dummy –2.779 –1.705 –1.053

[.600]*** [.332]*** [.280]***

cancellation rate 12.06 12.06 12.06 12.06 12.06
N 154,655 154,655 154,655 154,655 154,655

Fixed Effects
Quarter-of-year Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes Yes

Notes: Indexpre is the normalized average production index for a 30-day pre-contract pe-
riod. Update is the average post-period index minus the pre-period one. 1(Update < 0)
indicates whether Update is negative. 1(Indexpre > Indexz) is an indicator of whether the
pre-period index is higher than zipcode average, and 1(Indexpost < Indexz) is whether
the post-period one is lower. All coefficients are multiplied by 100 for legibility. Dummy
in the interaction term in the last rows refers to the dummy variable that is included in
the same regression. Standard errors are clustered by county. System characteristics and
county-level economic conditions are always controlled for.
* p < 0.10; ** p < 0.05; *** p < 0.01.
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Table A7: Potential Selection by Pre-contract Weather (System Size)

System Size (1) (2) (3) (4)
1 month 1 month 2 months 2 months

Indexpre .024 .020 .006 .004
[.014]* [.014] [.013] [.012]

Mean 4.69 4.69 4.69 4.69
R2 (within zip code) .204 .206 .204 .206
N 153,108 153,108 153,108 153,108

Fixed Effects
Quarter-of-year Yes Yes
County-by-quarter Yes Yes
Year Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes

Notes: Standard errors are clustered by county. Other system characteristics and
county-level economic conditions are always controlled for.
* p < 0.10; ** p < 0.05; *** p < 0.01.
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Table A8: Heterogeneous Effects by Area Characteristics

Panel A. Local Demographics

Cancel = 1 (1) (2) (3) (4)
Median Income % White % College Household Size
Above Median Above Median Above Median Above Median

Indexpost –.664 –.802 –.715 –.731
[.386]* [.292]*** [.321]** [.337]**

Indexpost × 1(Characteristic) –.125 .079 –.064 –.045
[.283] [.231] [.239] [.247]

Panel B. Housing and Geographic Characteristics

Cancel = 1 (5) (6) (7) (8)
% Urban > 0.5 Housing Cost Northern Non-coastal

Above Median California Counties

Indexpost .381 –.575 –.875 –.840
[.442] [.335]* [.313]*** [.261]***

Indexpost × 1(Characteristic) –1.211 –.249 .177 .314
[.362]*** [.233] [.211] [.260]

Fixed Effects
Quarter-of-year Yes Yes Yes Yes
Year Yes Yes Yes Yes
Zip Code Yes Yes Yes Yes

Notes: The production index is normalized. All coefficients are multiplied by 100 for better display. Standard errors
are clustered by county. Other system characteristics and county-level economic conditions are always controlled for.
* p < 0.10; ** p < 0.05; *** p < 0.01.
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