General Equilibrium Dampened (i) from Micro to Macro (ii) Forward Guidance

George-Marios Angeletos Chen Lian

ESEM @ Edinburgh December 31, 2016

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation

• GE effects key to macroeconomics (and elsewhere)

- upend partial-equilibrium (PE) intuitions
- limit usefulness of micro-based evidence a la Mian-Sufi
- drive interpretations of phenomena + policy implications

• But: GE effects hinge on

- common knowledge (CK) of structure and state of economy
- immense coordination in beliefs and behavior

 \star all hardwired in solution concept + info assumptions

Motivation

• GE effects key to macroeconomics (and elsewhere)

- upend partial-equilibrium (PE) intuitions
- limit usefulness of micro-based evidence a la Mian-Sufi
- drive interpretations of phenomena + policy implications
- But: GE effects hinge on
 - common knowledge (CK) of structure and state of economy
 - immense coordination in beliefs and behavior

★ all hardwired in solution concept + info assumptions

This talk, Part I: Dampening GE

Formalize notion

"GE Adjustment Takes Times"

- Framework: abstract but flexible "supply and demand"
- Main result: Equivalence between
 - ► relax solution concept → Tattonment ("off equilibrium")
 - relax info / CK \rightarrow imperfect coordination ("on equilibrium")
- Broader lessons/implications:
 - ▶ lack of CK = relaxation of RE solution concept = dampen GE

- resuscitate PE intuitions in GE settings
- enhance value of empirical work a la Mian-Sufi

This talk, Part I: Dampening GE

Formalize notion

"GE Adjustment Takes Times"

- Framework: abstract but flexible "supply and demand"
- Main result: Equivalence between
 - ▶ relax solution concept → Tattonment ("off equilibrium")
 - relax info / CK \rightarrow imperfect coordination ("on equilibrium")
- Broader lessons/implications:
 - ► lack of CK = relaxation of RE solution concept = dampen GE

- resuscitate PE intuitions in GE settings
- enhance value of empirical work a la Mian-Sufi

This talk, Part II: Application to Forward Guidance

- Context: A New-Keynesian economy during a liquidity trap
- Question: Ability to stimulate economy my promising low interest rates after ZLB has ceased to bind
- Puzzling prediction: Ability is large and increases with horizon at which forward guidance operates

• Our contribution:

- puzzle driven solely by GE effects
- lack of $\mathsf{CK} \to \mathsf{anchors}$ expectations of income and inflation
 - \rightarrow attenuates relevant GE effects \rightarrow reduces power of forward guidance

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

additional results: paradox of flexibility, discounted Euler/NKPC..

This talk, Part II: Application to Forward Guidance

- Context: A New-Keynesian economy during a liquidity trap
- Question: Ability to stimulate economy my promising low interest rates after ZLB has ceased to bind
- Puzzling prediction: Ability is large and increases with horizon at which forward guidance operates
- Our contribution:
 - puzzle driven solely by GE effects
 - lack of $CK \rightarrow$ anchors expectations of income and inflation
 - \rightarrow attenuates relevant GE effects \rightarrow reduces power of forward guidance
 - additional results: paradox of flexibility, discounted Euler/NKPC...

Related Literature

- Part I: Higher-order uncertainty in macroeconomics
 - Morris and Shin (1998, 2000, 2002), Woodford (2003), Angeletos and Pavan (2007), Angeletos and La'O (2009), Nimark (2011), etc
 - Angeletos and Lian (2016): chapter in Handbook of Macroeconomics

- Part II: Forward guidance
 - Wiederholt (2016), Farhi and Werning (2016)
 - McKay, Nakamura and Steinsson (2016a,b), Gabaix (2016)
 - Garcia-Schmidt and Woodford (2015)

First paper: Angeletos and Lian (2016a)

Dampening General Equilibrium: Macro is Micro in the Short Run

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Framework

• Minimal framework for studying PE vs GE, and micro vs macro

- many locations, competitive firms and households
- idiosyncratic and aggregate shocks
- two (relative) prices \rightarrow three goods

= numeraire + another tradable + one non-tradable per location

• What's next?

- micro-foundations, demand and supply
- review standard predictions
- ▶ two variants: (i) Tatonnment and (ii) Incomplete Info/Lack of CK

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Framework

• Minimal framework for studying PE vs GE, and micro vs macro

- many locations, competitive firms and households
- idiosyncratic and aggregate shocks
- two (relative) prices \rightarrow three goods

= numeraire + another tradable + one non-tradable per location

- What's next?
 - micro-foundations, demand and supply
 - review standard predictions
 - ▶ two variants: (i) Tatonnment and (ii) Incomplete Info/Lack of CK

- Representative competitive firm at each location $i \in [0, 1]$.
- Technology (production possibilities set):

 $F(q_i, q_i^*, q_i^Z; a_i) \leq 0$

- ► q_i, q_i^*, q_i^Z = production of non-tradables, tradables, numeraire
- ▶ a_i = technology shock = "supply shock"

Supply

• Firm's problem

$$\max \left\{ p_i q_i + p^* q_i^* + q_i^Z \right\}$$

s.t. $F(q_i, q_i^*, q_i^Z; a_i) \le 0$

• $p_i, p^* =$ price of non-tradables, tradables

• Supply of local non-tradable

$$q_i = S(p_i, p^*, a_i)$$

• Supply of tradable and numeraire:

$$q_i^* = S^*(...)$$
 $q_i^Z = S^Z(...)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Demand

- Representative competitive household at each location $i \in [0, 1]$.
- Preferences:

$$u_i = U(c_i, c_i^*, c_i^Z; \xi_i)$$

•
$$\xi_i$$
 = preference shock = "demand shock"

• Budget constraint:

$$p_i c_i + p^* c_i^* + c_i^Z = y_i$$

▲□▶ ▲□▶ ★ □▶ ★ □▶ = ● ● ●

• $y_i = \text{income} = p_i q_i + p^* q_i^* + q_i^Z$

Demand

• Demand for local non-tradable:

$$c_i = D(p_i, p^*, \xi_i, y_i)$$

• Demand for tradable and numeraire

$$c_i^* = D^*(...)$$
 $c_i^Z = D^Z(...)$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Partial Equilibrium

- Partial equilibrium \equiv
 - market clearing for non-tradable, but arbitrary p*
 - i.e., momentarily allow market for tradable to be off equilibrium

• Let $\theta_i = (a_i, \xi_i)$. Quantity and price of non-tradable

$$c_i = q_i = Q(p^*, \theta_i)$$
 and $p_i = P(p^*, \theta_i)$

• Net (excess) demand for tradable

$$n_i \equiv c_i^* - q_i^* = N^*(p^*, \theta_i)$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

General Equilibrium

• Market clearing for tradable: p^* solves

$$\int N^*\left(p^*,\theta_i\right)di=0$$

GE imposes

$$p^* = P^*(\bar{\theta})$$

- Assumptions
 - $\frac{\partial}{\partial p^*} \int N^* di < 0$ (stable equilibrium)
 - ▶ $\frac{\partial}{\partial \bar{\theta}} \int N^* di \neq 0$, or equivalently $\frac{\partial}{\partial \bar{\theta}} P^* \neq 0$ (non-zero GE effects)

Macro Effect of an Aggregate Shock

- How does the economy respond to a shock that moves θ_i for all *i*?
 - demand shock: housing wealth, consumer deleveraging...
 - supply shock: productivity, payroll taxes...
- To simplify, work with log-linearized conditions
 - all variables in log-deviations from "steady state"
- To be concrete, focus on expenditure on non-tradable
 - Iocal expenditure on non-tradable:

$$x_i \equiv q_i + p_i = X(p^*, \theta_i)$$

corresponding aggregate:

$$\bar{x} \equiv \int x_i di = X(p^*, \bar{\theta})$$

Macro Effect of an Aggregate Shock

- How does the economy respond to a shock that moves θ_i for all *i*?
 - demand shock: housing wealth, consumer deleveraging...
 - supply shock: productivity, payroll taxes...
- To simplify, work with log-linearized conditions
 - all variables in log-deviations from "steady state"
- To be concrete, focus on expenditure on non-tradable
 - local expenditure on non-tradable:

$$x_i \equiv q_i + p_i = X(p^*, \theta_i)$$

corresponding aggregate:

$$\bar{x} \equiv \int x_i di = X(p^*, \bar{\theta})$$

Micro vs Macro

• Micro elasticity, or PE effect

at local level

$$\left. \varepsilon_{i}^{micro} \equiv \left. rac{dx_{i}}{d \, heta_{i}} \right|_{p^{*} \, \mathrm{constant}}$$

aggregate counterpart

$$\varepsilon^{micro} \equiv \int \varepsilon_i^{micro} di = \left. \frac{d\bar{x}}{d\bar{\theta}} \right|_{p^* \text{ constant}} = \left. \frac{\partial X}{\partial \theta} \right|_{p^* \text{ constant}}$$

• Macro effect

$$\varepsilon^{\text{Macro}} \equiv \left. \frac{d\bar{x}}{d\bar{\theta}} \right|_{p^* \text{adjusts in GE}} = \left. \underbrace{\frac{\partial X}{\partial \theta}}_{PE} + \underbrace{\frac{\partial X}{\partial p^*} \frac{\partial P^*}{\partial \theta}}_{CE} \neq \varepsilon^{\text{micro}} \right.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

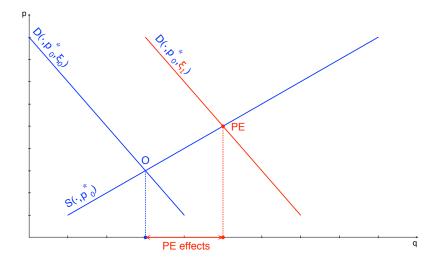
Micro vs Macro

• Micro elasticity, or PE effect

at local level

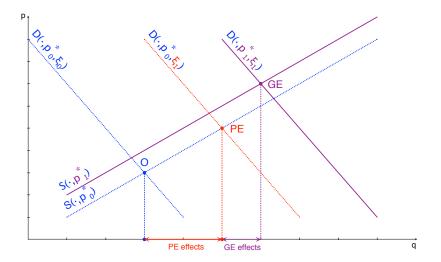
$$\left. \varepsilon_{i}^{micro} \equiv \left. rac{dx_{i}}{d \, heta_{i}} \right|_{p^{*} \, \mathrm{constant}}$$

aggregate counterpart

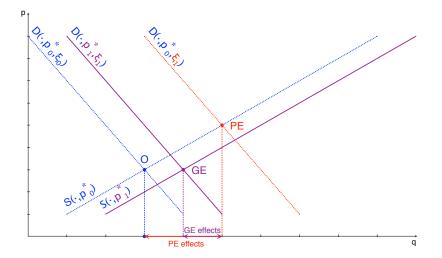

$$\varepsilon^{micro} \equiv \int \varepsilon_i^{micro} di = \left. \frac{d\bar{x}}{d\bar{\theta}} \right|_{p^* \text{ constant}} = \left. \frac{\partial X}{\partial \theta} \right|_{p^* \text{ constant}}$$

Macro effect

$$\varepsilon^{\text{Macro}} \equiv \frac{d\bar{x}}{d\bar{\theta}}\Big|_{p^* \text{adjusts in GE}} = \underbrace{\frac{\partial X}{\partial \theta}}_{PE} + \underbrace{\frac{\partial X}{\partial p^*} \frac{\partial P^*}{\partial \theta}}_{GE} \neq \varepsilon^{\text{micro}}$$


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

PE effect


<□> <圖> < E> < E> E のQ@

GE amplifies PE

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

GE attenuates PE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Connection to Empirical Work

- Recent empirical macro:
 - exploits cross-sectional variation
 - provides estimate of ε^{micro}
 - Mian-Sufi, Nakamura-Steinsson, etc
- Tension between
 - what is estimated (ε^{micro})
 - what is of interest (ε^{Macro})
- Key problem:
 - GE effect partialed out as time fixed effect in regressions
- Our contribution: lessens the problem (at least in the short run)

Preview

- Standard paradigm:
 - adjustment in p* is instantaneous
 - perfect coordination
- What we are after:
 - slow adjustment in p*
- How?
 - relax solution concept: Tâtonnement
 - relax info assumption: remove common knowledge

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Tâtonnement

- Let t index round of iteration in Tatonnement process
 - soon to reinterpret t as time
- $\forall i, t$, local market for non-tradables clears with given perception \hat{p}_t^*
 - ▶ gives PE outcomes with $p^* = \hat{p}_t^*$ to reinterpret *t* as time
- "Walrasian auctioneer" adjusts \hat{p}^* slowly from old GE level to new one

p̂* solves the following ODE

$$\frac{d\hat{p}_{t}^{*}}{dt} = -b_{t} \cdot \left[N^{*}\left(\hat{p}_{t}^{*}, \bar{\theta}_{new}\right)\right]$$

with initial condition

$$\hat{p}_0^* = P^*(\bar{\theta}_{old})$$

ション ふゆ く 山 マ チャット しょうくしゃ

• and for some exogenous $\{b_t\}$ with $b_t \ge \underline{b} > 0 \ \forall t$.

Tâtonnement

- Let t index round of iteration in Tatonnement process
 - soon to reinterpret t as time
- $\forall i, t$, local market for non-tradables clears with given perception \hat{p}_t^*
 - ▶ gives PE outcomes with $p^* = \hat{p}_t^*$ to reinterpret t as time
- "Walrasian auctioneer" adjusts \hat{p}^* slowly from old GE level to new one
 - \hat{p}^* solves the following ODE

$$\frac{d\hat{p}_{t}^{*}}{dt} = -b_{t} \cdot \left[N^{*}\left(\hat{p}_{t}^{*}, \bar{\theta}_{new}\right)\right]$$

with initial condition

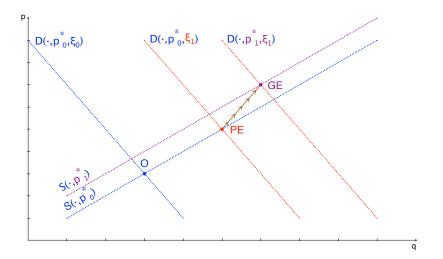
$$\hat{p}_0^* = P^*(\bar{\theta}_{old})$$

ション ふゆ アメリア メリア しょうくの

• and for some exogenous $\{b_t\}$ with $b_t \geq \underline{b} > 0 \ \forall t$.

Tâtonnement: micro vs macro

• Macro effect at t:


$$\varepsilon_{T\hat{a}t}(t) = \varepsilon^{micro} + \underbrace{w(t) \cdot \left(\varepsilon^{Macro} - \varepsilon^{micro}\right)}_{\text{GE at } t}$$

ション ふゆ アメリア メリア しょうくの

where w(t) is increasing in t, with w(0) = 0 and $w(\infty) = 1$

- PE same as in benchmark
 - because of local market clearing
- GE is dampened by factor w
 - because of erroneous perceptions of p^*

Tâtonnement: micro vs macro

Corollary. $\varepsilon_{T\hat{a}t}$ is monotone and continuous in t, with

$$arepsilon_{\mathcal{T}\hat{a}t}(0) = arepsilon^{micro}$$
 and $arepsilon_{\mathcal{T}\hat{a}t}(\infty) = arepsilon^{Macro}$

• That is, we can span the gap between the micro and the macro by varying the round *t* in Tâtonnement

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Incomplete Information

- Goal: translate from "off equilibrium" to "on equilibrium"
- Same payoff environment
- Non-tradable decisions in the "morning" under incomplete information

- perfect knowledge of local conditions (θ_i, q_i, p_i)
- ▶ lack common knowledge (CK) of global conditions $(\bar{\theta}, p^*)$
- private signal about the latter: $s_i = \bar{\theta} + v_i$
- Tradable decisions in the "afternoon"
 - ▶ global conditions $(\bar{\theta}, p^*)$ become common knowledge

Equilibrium

- Rational-Expectations Equil with inco info (similar to PBE)
- Morning: local markets for non-tradable clear, giving

$$q_i = Q(E_i[p^*], \theta_i)$$
 $p_i = P(E_i[p^*], \theta_i)$

where $E_i[p^*]$ is the rational expectation of p^* conditional on s_i

• Afternoon: p^* clears global market for tradable, giving

$$p^* = P^q(\bar{q}, \bar{\theta})$$

where \bar{q} is the realized agg quantity of non-tradable

Characterization

• Lemma. Equilibrium outcomes satisfy

 $q_i = \alpha E_i[\bar{q}] + \eta E_i[\bar{\theta}] + \zeta \theta_i$

- Isomorphic to a "beauty contest"
 - GE effect akin to strategic interaction in games
 - $\alpha < 1$: degree of strategic complementarity/substitutability

• Corollary. Rational expectation of $p^* =$ hierarchy of beliefs about $\bar{\theta}$

$$\bar{E}\left[p^*\right] = \Omega \cdot \sum_{h=1}^{\infty} \alpha^{h-1} \bar{E}^h\left[\bar{\theta}\right]$$

GE effects = HOB

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ 今 へ ?

Characterization

• Lemma. Equilibrium outcomes satisfy

 $q_i = \alpha E_i[\bar{q}] + \eta E_i[\bar{\theta}] + \zeta \theta_i$

- Isomorphic to a "beauty contest"
 - GE effect akin to strategic interaction in games
 - $\alpha < 1$: degree of strategic complementarity/substitutability

• Corollary. Rational expectation of p^* = hierarchy of beliefs about $\bar{\theta}$

$$\bar{E}\left[p^*\right] = \Omega \cdot \sum_{h=1}^{\infty} \alpha^{h-1} \bar{E}^h\left[\bar{\theta}\right]$$

ション ふゆ く 山 マ ふ し マ うくの

▶ GE effects = HOB

Lack of CK = Anchored Expectations

- Beliefs
 - first-order beliefs:

$$ar{E}^1ar{ heta}\equiv\int E_iar{ heta}\,di=\lambdaar{ heta}$$

where $\lambda\equiv\frac{\kappa}{\kappa+\sigma_{\theta}^{-2}}\in(0,1)$ captures deviation of common knowledge

higher-order beliefs (HOB):

$$\bar{E}^{h}\bar{\theta}\equiv\bar{E}\left[\bar{E}^{h-1}[\bar{\theta}]\right]=\lambda^{h}\bar{\theta}$$

HOB vary less than lower-order beliefs

 \Rightarrow expectations of p^* are anchored

• GE is stronger \Rightarrow HOB more important

 \Rightarrow the stronger the GE effect, the stronger its own attenuation

Micro vs Macro

- PE as in benchmark
 - due to perfect knowledge of local conditions
- GE dampened
 - due to lack of common knowledge of global conditions
- Macro effect revisited:

$$\varepsilon_{Inc}(\lambda) \equiv \frac{d\bar{x}}{d\bar{\theta}} = \varepsilon^{micro} + \underbrace{\frac{g(\lambda) \cdot \left(\varepsilon^{Macro} - \varepsilon^{micro}\right)}_{\text{GE effect parameterized by }\lambda}}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $g(\lambda)$ is monotone in λ , with g(0) = 0 and g(1) = 1
- $g(\lambda)$ decreases with α
 - * tends to be closer to zero when GE effect is larger

Equivalence Result

Proposition. For any $\{b_t\}$ and any t, there exists a λ such that

- rational expectations $\overline{E}[p^*]$ in inco-info economy same as ad hoc perceptions \hat{p}_t^* in Tâtonnement economy
- 2 outcomes in inco-info economy same as in Tâtonnement economy
- equal GE attenuation

 $\varepsilon_{T \hat{a} t}(t) = \varepsilon_{Inc}(\lambda)$

The converse is also true.

Complementary Results and Take-home Lesson

- Similar equivalence results for
 - adaptive expectations
 - reflective equilibrium (Garcia-Schmidt & Woodford, 2015)
 - limited-depth reasoning

• Take-home lesson:

lack of CK = relaxation of solution concept = GE dampened

ション ふゆ アメリア メリア しょうくの

Extension: GE Takes Time

- A dynamic extension
- Essentially repeated version of static economy

$$F(q_{i,t},q_{i,t}^*,q_{i,t}^Z;a_i) \leq 0$$

$$u_{i} = \sum_{t=0}^{\infty} e^{-\rho t} U(c_{i,t}, c_{i,t}^{*}, z_{i,t}; \xi_{i})$$

ション ふゆ アメリア メリア しょうくの

• Slow learning about $bar\theta$ (or, equivalently, about global response)

Learning and GE Adjustment

- To avoid perfect aggregation of information:
 - idiosyncratic "iceberg costs" for tradable good
 - noisy private learning through realized prices

• Lemma. There exists an increasing sequence $\{\lambda_t\}$ such that, $\forall t$,

$$\bar{E}_t^h\left[\bar{\theta}\right] = \lambda_t^h\bar{\theta}$$

$$\bar{E}_t[p^*] = \Omega \sum_{h=1}^{\infty} \alpha^{h-1} \bar{E}_t^h \left[\bar{\theta}\right] = f(\lambda_t) \bar{\theta}$$

• Proposition. Macro elasticity at t

$$arepsilon_{t} = arepsilon_{lnc}(\lambda_{t}) = arepsilon^{micro} + \underbrace{w_{t} \cdot \left(arepsilon^{Macro} - arepsilon^{micro}
ight)}_{GE_{t}}$$

where $w_t = g(\lambda_t)$ is increasing in t, with $w_0 < 1 = w_\infty$

• Similar to static model, except that now λ_t increases with time

Slow GE Adjustment

- Formalization of notion that GE adjustment takes time
 - ▶ in short run, macro effect is close to micro/PE effect
 - but as time passes, it converges to what predicted by standard model
- Speed of convergence?
 - not surprisingly, it depends on quality of learning
 - more interestingly, it depends on magnitude of GE effect
- Prop. For any given {λ_t}, the sequence {w_t} converges to 1 at a rate that is decreasing in α. In this sense,

stronger GE effect \rightarrow slower GE adjustment !

ション ふゆ アメリア メリア しょうくの

Slow GE Adjustment

- Formalization of notion that GE adjustment takes time
 - ▶ in short run, macro effect is close to micro/PE effect
 - but as time passes, it converges to what predicted by standard model
- Speed of convergence?
 - not surprisingly, it depends on quality of learning
 - more interestingly, it depends on magnitude of GE effect
- Prop. For any given {λ_t}, the sequence {w_t} converges to 1 at a rate that is decreasing in α. In this sense,

stronger GE effect \rightarrow slower GE adjustment !

Second paper: Angeletos and Lian (2016b) Forward Guidance without Common Knowledge

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Forward Guidance Puzzle

- Context: an economy during a liquidity trap
 - ▶ zero-lower bound (ZLB) binds for $t \le T 1$
- Forward Guidance = promise at t to keep interest rates low at $t \ge T$
- The Puzzle: standard NK model predicts that the stimulating effect is quantitatively large, increases with T, and explodes as $T \rightarrow \infty$

ション ふゆ アメリア メリア しょうくの

Our contribution

Prelim result: beauty-contest representation of NK model

- disentangle PE and GE effects
- recast GE effects as HOB
- Main result: remove $CK \Rightarrow$
 - \Rightarrow anchor expectations of income and inflation
 - \Rightarrow attenuate relevant GE effects
 - \Rightarrow reduce power of forward guidance
- Complementary results: paradox of flexibility, discounted Euler/NKPC

ション ふゆ く 山 マ チャット しょうくしゃ

Differences from Earlier Abstract Framework

- Concrete context, precise micro-foundations, policy focus
- Truly dynamic environment
 - forward-looking expectations
 - dynamic beauty contest
- Specific novel insights
 - GE effects tied to expectations of future income and future inflation
 - Ionger horizons map to beliefs of higher order
 - dampening increases with $\mathcal{T} \rightarrow$ lessen forward-guidance puzzle
 - dampening increases with price flexibility \rightarrow lessen paradox of flexibility

Textbook NK Model

• demand block: Euler condition (aka IS curve)

$$y_t = \mathbb{E}_t \left[y_{t+1} - (R_t - \pi_{t+1}) \right]$$

• supply block: NK Philips Curve

$$\pi_t = \beta \mathbb{E}_t \left[\pi_{t+1} \right] + \kappa y_t$$

Monetary Policy: ZLB and forward guidance

$$R_t = 0 \ \forall t \leq T - 1$$

- R_T free \rightarrow forward guidance moves $\mathbb{E}_0[R_T]$
- $y_t = \pi_t = 0 \ \forall t \ge T + 1 \rightarrow \text{ex post optimal}$

• The puzzle: $\left| \frac{\partial y_0}{\partial \mathbb{E}_0[R_T]} \right|$ increases with T and explodes as $T \to \infty$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Textbook NK Model

• demand block: Euler condition (aka IS curve)

$$y_t = \mathbb{E}_t \left[y_{t+1} - (R_t - \pi_{t+1}) \right]$$

supply block: NK Philips Curve

$$\pi_t = \beta \mathbb{E}_t \left[\pi_{t+1} \right] + \kappa y_t$$

- Monetary Policy: ZLB and forward guidance
 - $R_t = 0 \ \forall t \leq T 1$
 - R_T free \rightarrow forward guidance moves $\mathbb{E}_0[R_T]$
 - $y_t = \pi_t = 0 \,\,\forall t \geq T + 1 \rightarrow \text{ex post optimal}$

• The puzzle: $\left| \frac{\partial y_0}{\partial \mathbb{E}_0[R_T]} \right|$ increases with T and explodes as $T \to \infty$

(日) (伊) (日) (日) (日) (0) (0)

NK as Multi-Layer Beauty Contest

- Remove CK (of policy and/or of responses of others)
- Euler condition \rightarrow dynamic BC among consumers
 - feedback from future spending to future income to current spending
- NKPC \rightarrow dynamic BC among firms
 - feedback from future inflation to future MCs to current inflation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Equilibrium: higher-layer BC between consumers and firms
 - feedback from future inflation to current spending

NK as Multi-Layer Beauty Contest

• Euler condition \rightarrow dynamic BC among consumers

$$y_{t} = \int c_{it} di$$

$$c_{it} = f(\text{expected PV of income}) = f(\mathbb{E}_{it}[y_{t+k}]) \implies$$

$$y_{t} = -\sum_{k=1}^{+\infty} \beta^{k-1} \left\{ \bar{E}_{t}[R_{t+k-1}] - \bar{E}_{t}[\pi_{t+k}] \right\} + (1-\beta) \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_{t}[y_{t+k}] \right\}$$

 $\bullet~{\rm NKPC} \rightarrow {\rm dynamic}~{\rm BC}~{\rm among}~{\rm firms}$

$$p_{t} = \theta p_{t-1} + (1-\theta) \int p_{it}^{*} di$$

$$p_{it}^{*} = f(\text{expected PV of nominal MC}) = f(\mathbb{E}_{it}[p_{t+k}]) \} \Longrightarrow$$

$$\pi_{t}^{*} = \kappa y_{t} + \kappa \sum_{k=1}^{+\infty} (\beta \theta)^{k} \bar{E}_{t}^{f}[y_{t+k}] + \frac{1-\theta}{\theta} \sum_{k=1}^{+\infty} (\beta \theta)^{k} \bar{E}_{t}^{f}[\pi_{t+k}] + \kappa \mu_{t}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

NK as Multi-Layer Beauty Contest

• Euler condition \rightarrow dynamic BC among consumers

$$y_{t} = \int c_{it} di$$

$$c_{it} = f(\text{expected PV of income}) = f(\mathbb{E}_{it}[y_{t+k}]) \implies$$

$$y_{t} = -\sum_{k=1}^{+\infty} \beta^{k-1} \left\{ \bar{E}_{t}[R_{t+k-1}] - \bar{E}_{t}[\pi_{t+k}] \right\} + (1-\beta) \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_{t}[y_{t+k}] \right\}$$

• NKPC \rightarrow dynamic BC among firms

$$p_{t} = \theta p_{t-1} + (1-\theta) \int p_{it}^{*} di$$

$$p_{it}^{*} = f(\text{expected PV of nominal MC}) = f(\mathbb{E}_{it}[p_{t+k}]) \} \Longrightarrow$$

$$\pi_{t}^{*} = \kappa y_{t} + \kappa \sum_{k=1}^{+\infty} (\beta \theta)^{k} \bar{E}_{t}^{f}[y_{t+k}] + \frac{1-\theta}{\theta} \sum_{k=1}^{+\infty} (\beta \theta)^{k} \bar{E}_{t}^{f}[\pi_{t+k}] + \kappa \mu_{t}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

GE Attenuation

- three GE mechanisms = three types of strategic complementary
 - within demand block: income multiplier
 - within supply block: pricing complementarity
 - between two blocks: inflationary/deflationary spiral

• key insight: lack of CK attenuates all three at once!

ション ふゆ アメリア メリア しょうくの

Forward Guidance Dampened

Proposition. With non-vanishing lack of CK,

$$\frac{\frac{\partial y_0}{\partial \overline{\mathbb{E}}_0 R_T}\Big|_{variant}}{\frac{\partial y_0}{\partial \overline{\mathbb{E}}_0 R_T}\Big|_{standard}} \to 0 \quad \text{as } T \to \infty$$

Proposition. When lack of CK is sufficiently large,

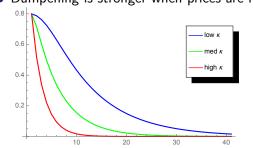
$$\left. rac{\partial y_0}{\partial ar{\mathbb{E}}_0 R_T} \right|_{variant}
ightarrow 0 \quad \text{as } T
ightarrow \infty$$

whereas
$$\frac{\partial y_0}{\partial \mathbb{E}_0 R_T}\Big|_{standard} \to \infty$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Forward Guidance Dampened

Proposition. With non-vanishing lack of CK,


$$\frac{\frac{\partial y_0}{\partial \mathbb{E}_0 R_T}}{\frac{\partial y_0}{\partial \mathbb{E}_0 R_T}} \to 0 \quad \text{as } T \to \infty$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Proposition. When lack of CK is sufficiently large,

$$\frac{\partial y_0}{\partial \overline{\mathbb{E}}_0 R_T} \bigg|_{variant} \to 0 \quad \text{as } T \to \infty,$$

whereas $\frac{\partial y_0}{\partial \overline{\mathbb{E}}_0 R_T} \bigg|_{standard} \to \infty.$

Paradox of Flexibility, Discounting, and More

• Dampening is stronger when prices are more flexible

- Lack of CK manifests as discounting of future expectations in Euler and NKPC of isomporphic representative-agent model
- Insights relevant also for
 - shocks at ZLB, deflationary spirals, paradox of flexibility, eq. selection, neo-Fisherian predictions...

Conclusion

• Worth revisiting solution concept and GE effects in macro

- even if we maintain individual rationality and PE effects
- Lack of CK = relaxation of solution concept = GE dampened

- formalization of "GE takes time"
- ▶ in short run, "Macro is (close) to Micro"
- Topical application: Forward Guidance
- Other applications...
 - aggregate demand and Keynesian multipliers
 - Ricardian equivalence, fiscal stimuli