Examining the Changes in Health Investment Behavior After Retirement

Hiroyuki Motegi Yoshinori Nishimura^{*} Masato Oikawa

Abstract

This study examines the effects of retirement on health investment behaviors. We conduct a large-scale international comparison of the change in health investment behaviors after retirement among 13 developed countries, using harmonized datasets. We find that the changes in most of health investment behaviors are heterogenous across countries.

JEL Classification Numbers: I00, I100, I120 Keywords: retirement, health investment behaviors, global aging data

^{*}Graduate School of Economics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Email: nishimura.yy@gmail.com

1 Introduction

Retirement-related policies, such as a reform of the pension system, have become important in developed countries to sustain the social security system. When policymakers evaluate the effect of these reforms, health is a key factor. Since an active work life is beneficial for the health of the elderly, it would lead to reduction of medical expenses, and to medical expense increases otherwise. Health status may change unintentionally owing to the introduction of these policies, which should take account of the changes in medical cost required.

Along with the growing interest in examining the effect of the policies that delay the retirement of the elderly, a number of studies have investigated the relationship between retirement and health over the last two decades, since Kerkhofs and Lindeboom (1997).¹ There are, however, no unified views on the impact of retirement on various health indexes. In the light of this statement, we need to discuss why these studies report different estimated results and understand the relationship between retirement and health.

Attempts to analyze the mechanism behind the effect of retirement on health have begun recently. Eibich (2015) is the first study to clearly point out and investigate the mechanism by using Germany data. Eibich (2015) considered the heterogeneity of the effect of retirement on health investment behaviors with respect to the age, education, gender, and so on. However, Eibich (2015) solely focused on the case of Germany, and thus, the findings cannot be generalized. This study extends Eibich (2015) and attempts to explain the heterogeneity in the results of retirement effect on health in the related literatures. We analyze and compare the mechanism behind the effect of retirement on health by examining the change in health investment behaviors after retirement in 13 developed countries, including Germany. Analyzing external validity is a key to discuss why the effects of retirement on health differ across countries. This is because the heterogeneity of health investment behaviors behind the relationship between retirement and health may explain the difference of the effect of retirement on health in the related literature.

We analyze and compare the latest longitudinal data set from the United States, England, other European countries, Japan, and Korea. Our results suggest that the changes in health investment behaviors after retirement are heterogeneous across countries.

2 Data

This study uses the Health and Retirement Study (HRS) and other sister datasets, ² which constitute panel surveys of elderly people in developed countries. We consider three definitions of retirement: "not working for pay," "self-reported retired," and "completely retired." "Not working for pay" implies that a respondent is not working for pay in the survey year. "Self-reported retired" implies that a respondent reports his employment status as not employed/active in the labor market, for example, "retired, disabled, or homemaker." We define a respondent who is "not working for pay" and reports his employment status "self-reported retired" as "completely retired." This definition enables us to exclude a job seeker from the retired population. This definition is close to that of Eibich (2015).

In this study, we analyze some health investment behaviors such as alcohol consumption, smoking, physical activities, food habits, social participation, and doctor visit. The scales of each measure

¹ Johnston and Lee (2009) and Rohwedder and Willis (2010) are representative papers.

 $^{^2}$ We explain this point in detail in the supplementary material.

for health investment behaviors are adjusted for international comparison because each dataset applies different measures. The measures used for each behavior are represented in Table 1.

We include all the observations in the age group 50-85 for the main analysis and exclude those who have not worked in survey period. It is true that Eibich (2015) restricted the sample to those aged 55-70. However, the age range considered in our study is more suitable for international comparison. Eibich (2015) showed that the probability of retirement increases sharply at 60 and 65 years in Germany. Other countries, however, do not exhibit the same phenomenon depending on the pensionable ages. In the supplementary material, we explain the details of the dataset, the definition of retirement, the scales of health investment behavior, and the sample restriction method.

3 Estimation Method

We follow the same estimation procedures by Motegi et al. (2016). We estimate the equation as follows: 3 ⁴:

$$y_{it} = \beta_0 + \beta_1 N W_{it} + X'_{1it} \delta_1 + \theta_i + \eta_t + \epsilon_{1it} \tag{1}$$

$$NW_{it} = \alpha_0 + \alpha_1 NP_{it} + \alpha_2 NP_{it} \cdot age_{it} + \alpha_3 EP_{it} + X'_{1it}\delta_2 + \xi_i + p_t + \epsilon_{2it}$$
(2)

where *i* represents an index of an individual and *t* denotes an index of time. X_{1it} represents a set of exogenous control variables that include age, age squared, marital status, the number of children, income, wealth, house ownership, job stress, physical stress, residence variables and wave variables. Controlling job stress is important and Eibich (2015) does not include any controls. The dependent variable y_{it} represents health investment behaviors. The binary variable NW_{it} equals one if the elderly is retired, according to the detailed definitions provided in Section 6.2. ϵ_{1it} in equation (1) is an unobserved error term. θ_i , ξ_i represent unobserved individual fixed effects, and η_t , p_t denote unobserved time effects. The coefficients that we are interested in is β_1 . Standard OLS estimates cannot generate consistent results due to the endogeneity problem about NW_{it} .

 NP_{it} and EP_{it} are two types of instrumental variables: normal pension eligibility age and early pension eligibility age. NP_{it} (EP_{it}) is a dummy variable that equals one when individual *i* has already attained his or her normal (early) pension eligibility age at period *t*. ² Since, there is no early pension eligibility age in some countries, we use NP_{it} and $NP_{it} \cdot age_{it}$ as IVs. Both of the pension eligibility ages are determined by individual characteristics such as birth year and not by individual decisions. In addition, the pension eligibility age has recently changed due to the reform of the pension system in many countries. We implement Durbin-Wu-Hausman (DWH) test after IV estimation and check the endogeneity of NW_{it} excluding θ_i and η_t . Either fixed effects with time effects instrumental variable or fixed effects with time effects is applied depending on the results of the DWH test.

³Motegi et al. (2016) explain why this equation is estimated.

⁴For Korea and Japan, we use $EP_{it} \cdot age_{it}$ instead of $NP_{it} \cdot age_{it}$ in the equation (2).

Y/N	whether drinking		
Freq.	frequency of drinking in a week		
Amount	the number of drinking per day		
Smoking	whether smoking		
Vigorous	frequency of vigorous activities		
Moderate	frequency of moderate activities		
Social	whether participating social events		
Doctor	frequency of doctor visit		
Food	logged expenditure of food consumption		
Eat out	logged expenditure of eating out consumption		
	Freq. Amount Smoking Vigorous Moderate Social Doctor Food		

Table 1: Variable definition of each health investment behavior

4 Results

We focus only on the coefficients of retirement variable for each country.⁵ In addition, we cannot discuss it when the coefficients of pensionable age dummy variables for the first stage are not significant. The results are demonstrated in Table 2. ² We show the results that are not discussed in the paper (e.g., the amount of smoking, sleep, and frequency of contact with children) in the supplementary material.

- Alcohol Consumption and Smoking: In the U.S., Germany, and Czech, the amount of alcohol consumption per day decreases after retirement (Amount). In the U.S., Czech and Japan, the frequency of alcohol consumption decreases after retirement (Freq.). In Germany, Czech, Estonia, South Korea and Japan, the probability of alcohol consumption decreases after retirement (Y/N). With respect to smoking, the probability of smoking decreases after retirement in the U.S., France, South Korea, and Spain.
- Physical Activity, Social Participation, and Doctor Visit: There is a heterogeneity in the change in the frequency of physical activity (Vigorous, Moderate) after retirement among the 13 countries. With respect to Vigorous activity, only in England, South Korea, Spain and Japan, people increase the frequency after retirement. Furthermore, only in England and Germany, people increase social participation after retirement. With respect to doctor visit, in the U.S. and Spain, people sharply decrease the number of doctor visits after retirement.
- Food Habits: In some countries (France, Switzerland), the expenditure on eating out decreases after retirement. However, in many countries, the expenditure on eating out does not decrease. Furthermore, the food expenditure does not decreases after retirement in many countries.

According to our results, the changes in most of health investment behaviors after retirement are heterogeneous across countries. It is difficult to explain the results in all countries by using the same settings of the model by Grossman (1972). It is possible that there are some differences among different countries in preference to health stock or the production function of health stock.

5 Conclusion

This study examined the effects of retirement on health investment behaviors and compared the result across countries. Analyzing the change in health investment behaviors after retirement in 13 developed countries, including Germany, the goal of this study was to extend Eibich (2015). We find that the changes in most of health investment behaviors are heterogenous among the 13

⁵The full results, including control variables, are available on request.

	Drinking			Physical activity				Diets		ets
	Y/N	Freq.	Amount	Smoking	Vigorous	Moderate	Social	Doctor	Food	Eat out
U.S.	0.485^{***}	0.293^{**}	-0.050***	0.170	0.558^{*}	0.698^{**}	0.395^{*}	-4.822*	-0.002**	-0.001
England	-0.010	0.011	-0.060	-0.048	0.069^{*}	0.878^{***}	0.013		-0.000	-0.000
Germany	-0.025	0.130^{*}	-4.540^{**}	0.169^{**}	-0.119	0.022	0.030	0.903	0.000	0.002
France	0.031	0.126^{*}	0.138	-0.001	-0.110	0.087	0.016	-0.158	0.002	-0.002*
Denmark	0.029**	0.088	-0.101	0.072	0.181^{*}	0.447^{**}	-0.017	-0.267	0.003	-0.002**
Switzerland	0.037	-0.002	-0.447	-0.010	0.909	-0.021	0.004	0.393	0.027	-0.001
Czech Republic	-0.057*	-0.225**	-1.171**	-0.010	-0.010	-0.047	-0.041	0.017	0.001	-0.001*
Estonia	0.002	0.011	-0.028	0.000	-0.263**	-0.085	0.004	0.433		0.000
Japan	-0.101***	-0.359***	-0.225**				1.084^{*}			0.001
SouthKorea	1.248^{**}	3.773^{**}	-0.126	-0.046	6.811^{*}		-0.001	74.981^{*}		
China	-0.051	-0.211**	0.076							
Sweden	0.014	0.357^{**}	-1.184	0.045	1.337^{***}	0.017	-0.002	1.113^{***}	0.001	-0.000
Spain	-0.044	-0.273***	-0.359	-0.180***	-0.040	1.568^{***}	0.010	1.691^{**}	0.001	-0.001
Poland	0.097^{*}	-0.008	0.892		-0.264	-0.250**	0.007	-0.115		-0.001
Slovenia	0.016	-0.178	0.270	0.223**	1.406	-0.209	0.581	8.167	0.000	0.004

Table 2: Main results

* p < .1, ** p < .05, *** p < .01

The red (blue) character indicates the positive (negative) impact.

countries. For example, changes in social participation and physical activity are heterogenous, although retired people have sufficient time to participate in these activities. Thus, the results of Eibich (2015) cannot be generalized to other countries.

6 Appendix

6.1 Pension Eligibility Age

In this section, we will explain how to calculate the pensionable age. We use the information from the Bureau of Labor Statistics in each country. However, information about the pension eligibility age for some countries are unavailable. In such cases, we contact with the Bureau of Labor Statistics or Bureau of Statistics directly, and attempt to retrieve the information if possible. If we cannot find any information in the previous step, we use the OECD pension at a glance, social security programs throughout the world (Europe, Asia and the Pacific, and The Americas), and The EUs Mutual Information System in Social Protection (MISSOC) as data sources. We cannot get the detailed pension eligibility age for many countries. Finally, we get the details of the correct pension eligibility ages for the following countries: the U.S., England, Germany, France, Denmark, Switzerland, Czech, Estonia, Japan, China⁶, and Korea. With respect to these countries, we can directly obtain the correspondence table between birth cohort and pensionable age. With respect to the information about Sweden, Spain, Poland, and Slovenia, we construct the correspondence table between birth cohort and pensionable age based on the OECD pension at a glance, social security programs throughout the world (Europe, Asia and the Pacific, and The Americas), The EUs Mutual Information System in Social Protection (MISSOC), and information from governmental institutions. ⁷ We do not analyze the countries where the detail information about the pension

⁶ Pension eligibility age depends on hukou status and the type of employer according to the China Labour Bulletin. When generating IVs for China, we use the hukou status variable "r@hukou" in the harmonized CHARLS, and the type of employer (current job: "fd002", last job: "fl014") and civil servant status (current job: "fd006", last job: "fl015") in the original CHARLS.

⁷ We are unable to get the direct information about the correspondence between pensionable age and birth cohort for these countries. Thus we construct the correspondence from the OECD pension at a glance, social security programs throughout the world (Europe, Asia and the Pacific, and The Americas), and The EUs Mutual Information System in Social Protection (MISSOC).

eligibility age cannot be available. We show all pensionable ages in all countries which we analyze in the following tables.

	PEA: US
Birth cohort	PEA
Early PEA	
	62y0m
Normal PEA	
~ 1937.12	65y0m
$1938.1 \ \ 1938.12$	65y2m
1939.1 ~ 1939.12	65y4m
1940.1 ~ 1940.12	65y6m
1941.1 ~ 1941.12	65y8m
1942.1 ~ 1942.12	65y10m
1943.1 ~ 1943.12	66y0m
1944.1~~1944.12	66y0m
1945.1 ~ 1945.12	66y0m
1946.1 ~ 1946.12	66y0m
1947.1 $$ 1947.12	66y0m
1948.1~~1948.12	66y0m
1949.1 ~ 1949.12	66y0m
1950.1~~1950.12	66y0m
1951.1 \degree 1951.12	66y0m
1952.1 ~ 1952.12	66y0m
1953.1 \degree 1953.12	66y0m
1954.1 $$ 1954.12	66y0m
1955.1 \degree 1955.12	66y2m
1956.1 $$ 1956.12	66y4m
1957.1 ~ 1957.12	66y6m
1958.1 ~ 1958.12	66y8m
1959.1 $$ 1959.12	66y10m
1960.1 ~ 1960.12	67y0m

Table 5	: PEA: UK
Birth cohort	PEA
Normal PEA:	Male
~ 1953.12	65y0m
1954.1 ~ 1954.12	66y0m
1955.1 ~ 1959.12	66y0m
1960.1 ~ 1960.12	67y0m
1961.1 ~	67y0m
Normal PEA:	Female
~ 1949.12	60y0m
1950.1 ~ 1950.12	61y0m
1951.1 ~ 1951.12	62y0m
1952.1 ~ 1952.12	63y0m
1953.1 ~	65y0m

Table 6: PEA: Germany						
Birth cohort PEA						
Early PEA: Ma	le					
~ 1952.12	63y0m					
1953.1 ~ 1953.12	63y2m					
1954.1 ~ 1954.12	63y4m					
1955.1 ~ 1955.12	63y6m					
$1956.1 \ \ \tilde{1}956.12$	63y8m					
1957.1 $$ 1957.12	63y10m					
1958.1 $$ 1958.12	64y0m					
1959.1 $$ 1959.12	64y2m					
$1960.1 \ \tilde{\ } \ 1960.12$	64y4m					
1961.1 ~ 1961.12	64y6m					
$1962.1 \ \tilde{\ } 1962.12$	64y8m					
1963.1 ~ 1963.12	64y10m					
1964.1 $$ 1964.12	65y0m					
Early PEA: Fer						
~ 1951.12	60y0m					
Normal PEA						
~ 1946.12	65y0m					
1947.1 ~ 1947.12	65y1m					
$1948.1 \ \tilde{\ } \ 1948.12$	65y2m					
1949.1 $$ 1949.12	65y3m					
$1950.1 \ \ \ 1950.12$	65y4m					
1951.1 ~ 1951.12	65y5m					
1952.1 ~ 1952.12	65y6m					
1953.1 ~ 1953.12	65y7m					
$1954.1 \ \tilde{\ } \ 1954.12$	65y8m					
1955.1 ~ 1955.12	65y9m					
1956.1 $$ 1956.12	65y10m					
1957.1 $$ 1957.12	65y11m					
1958.1 $$ 1958.12	66y0m					
1959.1 ~ 1959.12	66y2m					
$1960.1 \ \ \ 1960.12$	66y4m					
1961.1 ~ 1961.12	66y6m					
1962.1 ~ 1962.12	66y8m					
$1963.1 \ \ \ 1963.12$	66y10m					
1964.1 ~ 1964.12	67y0m					

EA: France
PEA
60y0m
60y4m
60y9m
61y2m
61y7m
62y0m
62y0m
65y0m
65y4m
65y9m
66y2m
66y7m
67y0m
67y0m

Table 9: PF	Yable 9: PEA: Denmark Table 10: PEA: Switzer					
Birth cohort	PEA	Birth cohort	PEA			
Early PEA		Early PEA: Ma	le			
~ 1953.12	60y0m	~ 1924.12	63y0m			
1954.1 ~ 1954.6	60y6m	1925.1 ~ 1950.12	63y0m			
1954.7 ~ 1954.12	61y0m	Early PEA: Fen	nale			
1955.1 ~ 1955.6	61y6m	~ 1937.12	60y0m			
1955.7 ~ 1955.12	62y0m	1938.1 ~ 1940.12	61y0m			
1956.1 ~ 1956.6	62y6m	1941.1 ~	62y0m			
1956.7 $$ 1958.12	63y0m	Normal PEA: N	/Iale			
1959.1 ~ 1959.6	63y6m	~ 1924.12	65y0m			
1959.7 ~ 1964.6	64y0m	1925.1 ~ 1950.12	65y0m			
1964.7 ~	64y0m	Normal PEA: F	'emale			
Normal PEA		~ 1937.12	62y0m			
~ 1953.12	65y0m	1938.1 ~ 1940.12	63y0m			
1954.1 $$ 1954.6	65y6m	1941.1 ~	64y0m			
1954.7 $$ 1954.12	66y0m					
1955.1 ~ 1955.6	66y6m					
1955.7 ~ 1955.12	67y0m					
1956.1 ~ 1956.6	67y0m					
$1956.7 \ \ 1958.12$	67y0m					
1959.1 ~ 1959.6	67y0m					
1959.7 ~ 1964.6	67y0m					
1964.7 ~	67y0m					

Table 8:	Pension eligibility age (Der	nmark, Switzerland,	Estonia, Japan)
<u>EA: Denm</u> ark	Table 10: PEA: Switzerland	Table 11: PEA: Estonia	Table 12: P
PEA	Birth cohort PEA	Birth cohort PEA	Birth cohort
	Early PEA: Male	Early PEA: Male	Normal PEA: M

Table 11: PEA: Estonia	Table 12: PEA: Japa
Birth cohort PEA	Birth cohort PEA
Early PEA: Male	Normal PEA: Male
60y0m	~1941.4.1 60y0m
Early PEA: Female	1941.4.2~1943.4.1 61y0m
~ 1943.12 57y0m	1943.4.2~1945.4.1 62y0m
1944.1 ~ 1944.12 57y6m	1945.4.2~1947.4.1 63y0m
1945.1 ~ 1945.12 57y6m	1947.4.2~1949.4.1 64y0m
1946.1 ~ 1946.12 57y6m	1949.4.2~1953.4.1 65y0m
1947.1 ~ 1947.12 57y6m	1953.4.2~1955.4.1 65y0m
1948.1 ~ 1948.12 57y6m	1955.4.2~1957.4.1 65y0m
1949.1 ~ 1949.12 58y0m	1957.4.2~1959.4.1 65y0m
1950.1 $$ 1950.12 58y6m	1959.4.2~1961.4.1 65y0m
1951.1 ~ 1951.12 59y0m	1961.4.2~ 65y0m
1952.1 ~ 1952.12 59y6m	Normal PEA: Female
1953.1 ~ 1953.12 60y0m	~1932.4.1 55y0m
Normal PEA: Male	1932.4.2~1934.4.1 56y0m
~ 1953.12 63y0m	1934.4.2~1936.4.1 57y0m
1954.1 ~ 1954.12 63y3m	1936.4.2~1937.4.1 58y0m
1955.1 ~ 1955.12 63y6m	1937.4.2~1938.4.1 58y0m
1956.1 ~ 1956.12 63y9m	1938.4.2~1940.4.1 59y0m
1957.1 ~ 1957.12 64y0m	$1940.4.2^{-1946.4.1}$ 60y0m
1958.1 ~ 1958.12 64y3m	1946.4.2~1948.4.1 61y0m
1959.1 ~ 1959.12 64y6m	1948.4.2~1950.4.1 62y0m
1960.1 ~ 1960.12 64y9m	1950.4.2~1952.4.1 63y0m
1961.1 ~ 1961.12 65y0m	1952.4.2~1954.4.1 64y0m
Normal PEA: Female	1954.4.2~1958.4.1 65y0m
~ 1947.12 60y0m	1958.4.2~1960.4.1 65y0m
1948.1 $$ 1948.12 60y6m	1960.4.2~1962.4.1 65y0m
1949.1 ~ 1949.12 61y0m	1962.4.2~1964.4.1 65y0m
1950.1 ~ 1950.12 61y6m	1964.4.2~1965.4.1 65y0m
1951.1 ~ 1951.12 62y0m	1965.4.2~ 65y0m
1952.1 ~ 1952.12 62y6m	
1953.1 ~ 1953.12 63y0m	
1954.1 ~ 1954.12 63y3m	
1955.1 ~ 1955.12 63y6m	
1956.1 ~ 1956.12 63y9m	
1957.1 ~ 1957.12 64y0m	
1958.1 ~ 1958.12 64y3m	
1959.1 ~ 1959.12 64y6m	
1960.1 ~ 1960.12 64y9m	
1961.1 ~ 1961.12 65y0m	

Table 13: Pension eligibility age (South Korea)

Table 14:	PEA: Korea
Birth cohort	PEA
Early PEA	
~ 1952.12	55y0m
1953.1 ~ 1956.12	56y0m
1957.1 $$ 1960.12	57y0m
$1961.1 \ \ \ 1964.12$	58y0m
$1965.1 \ \ \ 1968.12$	59y0m
1969.1 ~ .	60y0m
Normal PEA	
~ 1952.12	60y0m
$1953.1 \ \ \ 1956.12$	61y0m
1957.1 ~ 1960.12	62y0m
1961.1 ~ 1964.12	63y0m
$1965.1 \ \ \ 1968.12$	64y0m
1969.1 ~ .	65y0m

				Female ^{*1}	· /	
Birth cohort	Male	0	1	2	3-4	5-
1936.1~1936.12	60y2m	57y0m	56y0m	55y0m	54y0m	53y0m
1937.1~1937.12	60y4m	57y0m	56y0m	55y0m	54y0m	53y0m
1938.1~1938.12	60y6m	57y0m	56y0m	55y0m	54y0m	53y0m
1939.1~1939.12	60y8m	57y4m	56y0m	55y0m	54y0m	53y0m
1940.1~1940.12	60y10m	57y8m	56y4m	55y0m	54y0m	53y0m
1941.1~1941.12	61y0m	58y0m	56y8m	55y4m	54y0m	53y0m
1942.1~1942.12	61y2m	58y4m	57y0m	55y8m	54y4m	53y0m
1943.1~1943.12	61y4m	58y8m	57y4m	56y0m	54y8m	53y4m
1944.1~1944.12	61y6m	59y0m	57y8m	56y4m	55y0m	53y8m
1945.1~1945.12	61y8m	59y4m	58y0m	56y8m	55y4m	54y0m
1946.1~1946.12	61y10m	59y8m	58y4m	57y0m	55y8m	54y4m
1947.1~1947.12	62y0m	60y0m	58y8m	57y4m	56y0m	54y8m
1948.1~1948.12	62y2m	60y4m	59y0m	57y8m	56y4m	55y0m
1949.1~1949.12	62y4m	60y8m	59y4m	58y0m	56y8m	55y4m
1950.1~1950.12	62y6m	61y0m	59y8m	58y4m	57y0m	55y8m
1951.1~1951.12	62y8m	61y4m	60y0m	58y8m	57y4m	56y0m
1952.1~1952.12	62y10m	61y8m	60y4m	59y0m	57y8m	56y4m
1953.1~1953.12	63y0m	62y0m	60y8m	59y4m	58y0m	56y8m
1954.1~1954.12	63y2m	62y4m	61y0m	59y8m	58y4m	57y0m
1955.1~1955.12	63y4m	62y8m	61y4m	60y0m	58y8m	57y4m
1956.1~1956.12	63y6m	63y0m	61y8m	60y4m	59y0m	57y8m
$1950.1^{\circ}1950.12$ $1957.1^{\circ}1957.12$	63y8m	63y4m	62y2m	60y4m	59y4m	58y0m
1958.1~1958.12	63y10m	63y8m	62y2m 62y8m	61y2m	59y8m	58y4m
1959.1~1959.12	64y0m	64y0m	63y2m	61y2m 61y8m	60y2m	58y8m
$1960.1^{-}1960.12$	64y2m	64y2m	63y8m	62y2m	60y2m	59y2m
1961.1~1961.12	64y4m	64y4m	64y2m	62y2m 62y8m	61y2m	59y8m
$1962.1^{\sim}1962.12$	64y6m	64y6m	64y6m	63y2m	61y8m	60y2m
1963.1~1963.12	64y8m	64y8m	64y8m	63y8m	62y2m	60y8m
$1964.1^{-1964.12}$	64y10m	64y10m	64y10m	64y2m	62y8m	61y2m
$1965.1^{\circ}1965.12$	65y0m	65y0m	65y0m	64y8m	63y2m	61y8m
$1966.1^{-}1966.12$	65y2m	65y2m	65y2m	65y2m	63y8m	62y2m
$1967.1^{\circ}1967.12$	65y4m	65y4m	65y4m	65y4m	64y2m	62y8m
1968.1~1968.12	65y6m	65y6m	65y6m	65y6m	64y8m	63y2m
$1969.1^{\circ}1969.12$	65y8m	65y8m	65y8m	65y8m	65y2m	63y8m
$1909.1^{\circ}1909.12$ $1970.1^{\circ}1970.12$	65y10m	65y10m	65y10m	65y10m	65y8m	64y2m
1970.1 1970.12 1971.1~1971.12	66y0m	66y0m	66y0m	66y0m	66y0m	64y8m
$1971.1^{-}1971.12$ $1972.1^{-}1972.12$	66y2m	66y2m	66y2m	66y2m	66y2m	65y2m
$1973.1^{\circ}1973.12$	66y4m	66y4m	66y4m	66y4m	66y4m	65y8m
1973.1 1975.12 1974.1~1974.12	66y6m	66y6m	66y6m	66y6m	66y6m	66y2m
$1974.1 \ 1974.12$ $1975.1^{\sim}1975.12$	66y8m	66y8m	66y8m	66y8m	66y8m	66y8m
$1975.1^{-}1975.12$ $1976.1^{-}1976.12$	66y10m	66y10m	66y10m	66y10m	66y10m	66y10m
1970.1 1970.12 1977.1~1977.12	67y0m	67y0m	67y0m	67y0m	67y0m	67y0m
1977.1 1977.12 1978.1~1978.12	67y0m 67y2m	67y0m 67y2m	67 y0m 67 y2m	67 y0m 67 y2m	67 y0m 67 y2m	67y0m 67y2m
1978.1 1978.12 1979.1~1979.12	67y2m 67y4m	67y2m 67y4m	67y4m	67y2m 67y4m	67y4m	67y2m 67y4m
1979.1 1979.12 1980.1~1980.12	67y4m 67y6m	67y4m 67y6m	67y6m	67y4m 67y6m	67y6m	67y4m 67y6m
1980.1 1980.12 1981.1~1981.12	67y8m	67y8m	67 y 8 m	67 y 8 m	67 y 67	67y8m
1981.1 1981.12 1982.1~1982.12	67y10m	67y10m	67y10m	67y10m	67y10m	67y10m
$1982.1 \ 1982.12$ $1983.1^{-}1983.12$	68y0m	68y0m	68y0m	68y0m	68y0m	68y0m
1985.1 1985.12	ooyom	08y0m	ooyom	08y0m	0090111	ooyum

Table 15: Pension eligibility age (Czech)

^{*1}: Pensionable ages for female are different by the number of children.

Table 16: Pension eligibility age (Sweden, Spain, Poland, Slovenia)

	Ea	arly	Normal			
	Male	Female	Male	Female		
Sweden	61y0m	61y0m	65y0m	65y0m		
Spain	61y0m	61y0m	65y0m	65y0m		
Poland	60y0m	55y0m	65y0m	60y0m		
Slovenia	58y0m	58y0m	63y0m	61y0m		

Gender	Hukou type	Occupation	Normal PEA							
Male			60y0m							
Agric	Agricultural Hukou		60y0m							
Female	Non-agricultural Hukou	Civil servants	55y0m							
1	Non-agricultural Hukou	Enterprises	50y0m							

Table 17: Pension eligibility age (China)

6.2 Data and Institutional Setting

6.2.1 Global Aging Data

This study uses the Health and Retirement Study (HRS) ⁸ and other sister datasets such as the China Health and Retirement Longitudinal Study (CHARLS), the English Longitudinal Study on Aging (ELSA), the Korean Longitudinal Study of Ageing (KLoSA), the Survey on Health, Aging, and Retirement in Europe (SHARE), and the Japanese Study of Aging and Retirement (JSTAR). These datasets constitute panel surveys of elderly people. Furthermore, these family datasets are constructed so that the questions of the HRS are reproduced in those of other studies as much as possible. They include a rich variety of variables to capture living aspects in terms of economic status, health status, family background, as well as social and work status. We primarily use the harmonized datasets. ⁹ However, when variables are not available in the harmonized datasets, we use the variables of the original datasets.

6.2.2 Definition of Retirement

In this study, we use three retirement definitions: "not working for pay," "self-reported retired," and "completely retired." "Not working for pay" implies that a respondent is not working for wages or other type of payment. "Self-reported retired" implies that a respondent self-reports his employment status as retired: for this definition, we use the "r@lbrf" variable in each harmonized data (e.g., Harmonized SHARE, Harmonized ELSA), which are constructed based on the RAND HRS data. In the HRS, "r@lbrf" takes seven values, and we define a respondent as "self-reported retired" if "r@lbrf" indicates "partly retired," "retired," "disabled," or "not in labor force." In other words, the difference between "not working for pay" and "self-reported retired" is whether unemployed respondents are included or excluded. ¹⁰ Numerous related studies (e.g. ?, ?) use the two similar definitions of retirement.

We also define "completely retired" when a respondent is both "not working for pay" and "self-reported retired." This definition enable us to exclude a job seeker from the retired population and is close to that of Eibich (2015). In this study, we mainly use the "completely retired" definition and the results with other retirement definitions are discussed in Section 6.3 of this material.

6.2.3 The Variables of Health Investment Behaviors

In this study, we analyze health investment behaviors such as alcohol consumption, smoking, physical activities, sleeping time, eating habits, social participation, contact with children, and doctor visit. In this subsection, we explain the variables of the behaviors and show the summary

⁸ See the website (http://hrsonline.isr.umich.edu) for detailed information of the HRS.

⁹ The Gateway to Global Aging Data (http://gateway.usc.edu) provides harmonized versions of data from the international ageing and retirement studies (e.g. HRS, ELSA, SHARE, KLoSA, CHARLS). All variables of each dataset aimed to have the same items and follow the same naming conventions. The harmonized datasets enable researchers to conduct cross-national comparative studies. The program code to generate the harmonized datasets from the original datasets is provided by the Center for Global Ageing Research, USC Davis School of Gerontology, and the Center for Economic and Social Research (CESR). Some variables, such as measures of assets and income, are imputed by this code.

¹⁰ See the codebook of the Rand HRS data fore details about the variable "r@lbrf" which we use. http://hrson-line.isr.umich.edu/modules/meta/rand/randhrsm/randhrsM.pdf. They explain how they construct the variable "r@lbrf" in p.1033. We use the variable "r@lbrf" in all harmonized data sets.

statistics.¹¹

- Alcohol consumption: Table 18 shows the summary statistics of alcohol consumption measures around 2010. "Alcohol consumption: yes/no" indicates whether respondents consume alcohol or not in the survey year, and takes 1 if respondents drink. "Alcohol consumption: Freq." is a categorical variable and measures the alcohol consumption frequency in a week. The value ranges from zero to four. ¹² "Alcohol consumption: Amount" measures the number of drinks per day in HRS, SHARE, JSTAR, KLoSA, and CHARLS ¹³ and per week in ELSA. Table 18 shows that the ratio of Western people who drink alcohol is larger than tat of Asian people.
- Smoking: Table 19 shows the summary of smoking measures. "Smoking: yes/no" takes one if a respondent smokes at the interview. "Smoking: Amount" measures the number of cigarettes consumed per day in HRS, JSTAR, KLoSA, and CHARLS, and those of grams of cigarettes on a weekday and holiday in ELSA. In SHARE wave 1 and wave 2, we can use three types of smoking amount variables, number of cigarettes, number of pipe, and number of cigars or cigarillos, and define the smoking amount variable as the number of cigarettes.
- Physical activities: Table 20 shows the summary of physical activities measures. "Vigorous Physical Activity: Freq.," "Moderate Physical Activity: Freq.," and "Light Physical Activity: Freq." measure the frequency of physical activities. These measures are the categorical variables in HRS, ELSA, SHARE, and JSTAR. The scales of the measures are different among datasets. ¹⁴ In KLoSA and CHARLS, these indicate the frequency per week. We construct the dummy variable which takes one when doing activities at least once in a week. We can also use the measure of walking in HRS, JSTAR, and CHARLS and the that of exercising time in the JSTAR. ¹⁵
- Sleeping: "Sleeping: Hours" in Table 21 measures the sleeping duration. The JSTAR database contains the information about the sleeping duration for weekdays and holidays separately. The SHARE and The KLoSA datasets do not contain the information about sleeping time. There is little difference in sleeping duration between each country.
- Food habits: Table 22 shows the summary of eating habit measures. "Food Expenditure" measure the monthly expenditure on food in HRS, ELSA, SHARE, JSTAR, and KLoSA and weekly expenditure in CHARLS. Similarly, "Eat out Expenditure" is the measure of eat out expenditure. These variables are adjusted in ten 10,000 nominal US dollar.

 $^{^{11}\}mathrm{We}$ calculate the results using 2010 data for HRS, ELSA, SHARE and KLoSA, 2009 data for JSTAR, and 2011 data for CHARLS.

 $^{^{12}}$ It takes "0" if not drinking in a week; "1" if drinking once or twice a week; "2" if three or four times; "3" if five or six times; and "4" if every day.

¹³ We can use three types of drinking amount variables such as beer, wine, and liquor. In CHARLS, we define the number of drinks as the sum of these three variables.

¹⁴ In HRS and JSTAR, the variables are in a range from one to five: "1": hardly ever or never; "2": from once to three times a month; "3": once a week; "4": more than once a week; and "5": every day. In ELSA and SHARE, the variables are in a range from one to four: "1": hardly ever or never; "2": from once to three times a month; "3": once a week; and "4": more than once a week.

¹⁵ In JSTAR, the measure is a categorical variable in a range from one to five: "1": hardly ever or never; "2":less than 30 minutes; "3": 30 to 60 minutes; "4": 60 to 90 minutes; and "5": more than 90 minutes. In CHARLS, the measure is a categorical variable in a range from one to five: "1": less than 10 minutes; "2": from 10 to 30 minutes; "3": from 30 to 120 minutes; "4": from 120 to 240 minutes; and "5": more than 240 minutes.

• Other behaviors: Finally, Table 23 shows the summary statistics of other behaviors. "Social Participation: yes/no" indicates whether a respondent attends the social activities or not. "Contact with Children: Freq." is a categorical variables and measures the frequency of contact with children living apart from respondents. The scales of the measure are different among datasets. ¹⁶ "Doctor Visit: Freq." measures the frequency of doctor visit per two years in HRS and KLoSA, per twelve months in SHARE, and per month in the JSTAR and the CHARLS. The number of visiting doctors is used as a health investment behavior variable in our study; however, is used for measuring the health status in some studies, such as Eibich (2015).

6.2.4 Sample Restrictions

We use waves from 3 to 11 for the HRS. This is because the waves 1 and 2 of the HRS are the same as the Study of Assets and Health Dynamics (AHEAD). We cannot connect these datasets due to a difference in the content of the questions. The ELSA does not contain information about job stress and physical stress in waves 1 and 3, and thus, we use waves 2, 4, 5, and 6 for the ELSA.

We include all observations for the age group 50-85 for the main analysis. We omit the samples who have not worked. Restricting this range is desirable for analyzing the retirement effects. While Eibich (2015) restricted the sample to the age group 55-70, the age range used in our study is ideal for international comparison. Eibich (2015) showed that retirement increases sharply between 60 and 65 years in Germany. However, we observe that the retirement age varies across countries. The analyzed samples include individuals with disability, civil servants, and self-employed individuals. The pension system for them is slightly different, but we set an equal pensionable age for simplicity. The sample also includes individuals who were not employed prior to retirement. We include "age variables" and "squared age/100" to control age effects.

¹⁶ In HRS and ELSA, the measure ranges from one to six: "1": once a year; "2": once or twice a year; "3": Every few month; "4": once or twice a month; "5": once or twice a week; and "6": more than twice a week.

In SHARE, the measure ranges from one to seven: "1": Never; "2": less than once a month; "3": about once a month; "4": about every two weeks; "5": about once a week; "6": several times a week; and "7": daily.

In KLoSA, the measure ranges from one to ten: "1": never; "2": almost never a year; "3": once or twice a year; "4": three or four times a year; "5": five or six times a year; "6": once a month; "7": twice a month; "8": once a week; "9": twice or three times a week; and "10": almost every day.

In CHARLS, the measure ranges from one to nine: "1": almost never; "2": once a year; "3": once every 6 months; "4": once every 3 months; "5": once a month; "6": every 2 weeks; "7": once a week; "8": 2-3 times a week; and "9": almost every day.

	Obs.	Mean	S.D.	Min	Max
HRS					
Alcohol consumption: yes/no	21037	0.55	0.50	0	1
Alcohol consumption: Freq.	20994	0.69	1.14	0	4
Alcohol consumption Amount	20991	0.82	1.59	0	40
ELSA					
Alcohol consumption: yes/no	8724	0.88	0.33	0	1
Alcohol consumption: Freq.	8627	1.39	1.37	0	4
Alcohol consumption Amount	8670	5.62	8.90	0	294
SHARE*1*2					
Alcohol consumption: yes/no	34968	0.75	0.43	0	1
Alcohol consumption: Freq.	34955	1.44	1.50	0	4
Alcohol consumption Amount	30860	1.94	4.70	0	70
JSTAR					
Alcohol consumption: yes/no	1296	0.38	0.49	0	1
Alcohol consumption: Freq.	1296	1.06	1.53	0	4
Alcohol consumption Amount	1249	0.76	1.36	0	15
KLoSA					
Alcohol consumption: yes/no	7649	0.35	0.48	0	1
Alcohol consumption: Freq.	7649	0.56	0.96	0	4
Alcohol consumption Amount	7382	1.75	3.17	0	50
CHARLS					
Alcohol consumption: yes/no	13537	0.40	0.49	0	1
Alcohol consumption: Freq.	12615	0.59	1.32	0	4
Alcohol consumption Amount	17105	0.55	6.29	0	602

Table 18: Summary Statistics of Alcohol Consumption Habits (Around 2010)

*1: We calculate results using person-level analysis weight.
 *2: We calculate results with SHARE countries used in this paper.

	Obs.	Mean	S.D.	Min	Max
HRS					
Smoking: yes/no	20949	0.15	0.36	0	1
Smoking: Amount	20941	1.95	6.06	0	140
ELSA					
Smoking: yes/no	9808	0.13	0.34	0	1
Smoking(WD): Amount	8880	0.63	8.83	0	709
Smoking(HD): Amount	8877	0.42	3.25	0	150
SHARE*1*2					
Smoking: yes/no	34973	0.20	0.40	0	1
Smoking; Amount(N of cigarettes) *3	11477	2.92	7.34	0	80
JSTAR					
Smoking: yes/no	4096	0.20	0.40	0	1
Smoking: Amount	4069	3.77	8.74	0	100
KLoSA					
Smoking: yes/no	7649	0.17	0.38	0	1
Smoking: Amount	7649	2.60	6.33	0	50
CHARLS					
Smoking: yes/no	13068	0.30	0.46	0	1
Smoking: Amount	11944	4.15	9.24	0	80

Table 19: Summary Statistics of Smoking Habits (Around 2010)

*1: We calculate results using person-level analysis weight.

*2: We calculate results with SHARE countries used in this paper.

*³: Using 2006 data.

Table 20: Summary Statistics of Physical Activities (Around 2010)

	Obs.	Mean	S.D.	Min	Max
HRS					
Vigorous Physical Activity: Freq.	20991	2.03	1.32	1	5
Moderate Physical Activity: Freq.	21007	2.93	1.33	1	5
Light Physical Activity: Freq.	21015	3.25	1.16	1	5
Walking: Hours	6113	0.95	1.64	0	24
ELSA					
Vigorous Physical Activity: Freq.	10085	1.86	1.20	1	4
Moderate Physical Activity: Freq.	10087	3.12	1.19	1	4
Light Physical Activity: Freq.	10087	3.52	0.98	1	4
\mathbf{SHARE}^{*1*2}					
Vigorous Physical Activity: Freq.	34955	2.32	1.34	1	4
Moderate Physical Activity: Freq.	34964	3.35	1.07	1	4
JSTAR					
Vigorous Physical Activity: Freq.	2796	1.29	0.83	1	5
Light Physical Activity: Freq.	2805	2.46	1.61	1	5
Exercise(WD): Hours.	1605	0.81	0.76	0	3
Exercise(HD): Hours.	2347	1.24	1.04	0	4
Walking: Freq.	4133	3.33	1.21	1	5
KLoSA					
Vigorous Physical Activity: Freq.	7649	1.53	2.46	0	25
CHARLS					
Vigorous Physical Activity: Freq.	5344	1.85	2.90	0	7
Moderate Physical Activity: Freq.	5336	3.34	3.30	0	7
Light Physical Activity: Freq.	5313	5.24	2.88	0	7
Walking: Freq.	5318	2.87	1.27	1	5

*1: We calculate results using person-level analysis weight.

 $^{\ast 2}:$ We calculate results with SHARE countries used in this paper.

Table 21: Summary Statistics of Sleeping Habits (Around 2010)

	Obs.	Mean	S.D.	Min	Max
HRS					
Sleeping: Hours	6139	6.64	2.75	0	24
JSTAR					
Sleeping(WD): Hours	2705	6.92	1.28	0	15
Sleeping(HD): Hours	3326	7.36	1.42	0	18
CHARLS					
Sleeping: Hours	12467	6.28	1.94	0	15

Table 22: Summary Statistics of Food Habits (Around 2010)

	Obs.	Mean	S.D.	Min	Max
\mathbf{HRS}^{*3}					
Food Expenditure	4034	330.58	400.25	0	16500
Eat out Expenditure	4056	121.45	200.43	0	4800
\mathbf{ELSA}^{*3}					
Food Expenditure	9952	117.96	84.07	0	1314
Eat out Expenditure	10026	18.85	26.04	0	357
SHARE*1*2*3					
Food Expenditure	20923	517.70	336.14	0	3179
Eat out Expenditure	22853	72.65	126.45	0	1073
\mathbf{JSTAR}^{*3}					
Food Expenditure	3100	443.80	430.90	0	2672
Eat out Expenditure	2067	117.44	178.25	0	1710
$KLoSA^{*3}$					
Food Expenditure	4523	318.62	206.78	9	1731
Eat out Expenditure	4543	62.92	75.73	0	865
CHARLS*3					
Food Expenditure	12847	101.98	119.78	0	3095
Eat out Expenditure	13397	5.73	63.88	0	4334

*¹: We calculate results using person-level analysis weight.
*²: We calculate results with SHARE countries used in this paper.

 $^{\ast 3}:$ Nominal 10000 US \$

	Obs.	Mean	S.D.	Min	Max
HRS					
Social Participation: yes/no	7953	0.75	0.43	0	1
Contact with Children: Freq.	6969	5.19	1.09	1	6
Doctor Visit: Freq.	19867	11.15	24.93	0	900
ELSA					
Social Participation: yes/no	7946	0.33	0.47	0	1
Contact with Children: Freq.	7303	5.29	0.90	1	6
SHARE*1*2					
Social Participation: yes/no	34940	0.84	0.36	0	1
Contact with Children: Freq.	21240	6.12	1.25	1	7
Doctor Visit: Freq.	34865	7.30	9.46	0	98
JSTAR					
Social Participation: yes/no	3977	0.41	0.49	0	1
Doctor Visit: Freq.	4147	1.03	2.34	0	30
KLoSA					
Social Participation: yes/no	7649	0.73	0.45	0	1
Contact with Children: Freq.	6494	6.64	1.97	1	10
Doctor Visit: Freq.	7631	13.38	28.69	0	700
CHARLS					
Social Participation: yes/no	12575	0.49	0.50	0	1
Contact with Children: Freq.	11285	7.59	1.66	1	9
Doctor Visit: Freq.	13382	0.45	1.47	0	30

Table 23: Summary Statistics of Other Habits (Around 2010)

*1: We calculate results using person-level analysis weight.

 $^{\ast 2}:$ We calculate results with SHARE countries used in this paper.

6.3 Result

Tables 24, 25, 26, 27, and 28 shows the detailed estimated results that we discuss in our paper. ¹⁷ We implement the Durbin-Wu-Hausman test after IV estimation, and thereafter, apply either fixed effects with time effects instrumental variable (FE-TE-IV) or fixed effects with time effects (FE-TE) depending on the results of the test. Therefore, the tables show the applied method (FE or FE-IV) in the "Method" column. ¹⁸ The results in "completely retired" columns are discussed in the paper and those of other retirement definitions are also shown in the tables. We do not discuss any insignificant first stage results. In addition, the tables show other results (e.g., smoking amount, sleep, and frequency of contact with children) that are not discussed in the paper. Since, in China, we cannot obtain the significant first stage results for all estimations, we do not discuss the results of China in the original paper

¹⁷ All models are estimated via the STATA module xtivreg2 (see ?)

¹⁸ Full estimation results including the results of control variables are available on request.

				hol consum	ption b	enavio	ors			
	Not Work			Self-Repo	rted Retir	e	Complet	etely Retire		
Drinking:Y/N	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Method Obs.	
US	$0.356^{***}(0.088)$	FE-IV	65368	$0.203^{***}(0.042)$	FE-IV	59178	$0.333^{***}(0.076)$	FE-IV	66665	
England	-0.006(0.006)	FE	13970	-0.002(0.005)	FE	13241	-0.009(0.006)	FE	14217	
Germany	$-0.526^{**}(0.217)$	FE-IV	1839	$-0.318^{***}(0.110)$	FE-IV	1687	$-0.304^{**}(0.123)$	FE-IV	1970	
France	0.013(0.020)	\mathbf{FE}	2316	0.015(0.023)	\mathbf{FE}	2350	0.017(0.020)	\mathbf{FE}	2532	
Denmark	0.021(0.014)	\mathbf{FE}	2407	-0.010(0.015)	\mathbf{FE}	2191	0.006(0.014)	\mathbf{FE}	2433	
Switzerland	0.007(0.027)	FE	1427	$0.058^{**}(0.029)$	FE	1126	0.015(0.028)	\mathbf{FE}	1423	
Czech	$-0.125^{***}(0.041)$	\mathbf{FE}	1343	-0.075(0.047)	FE^{*1}	1045	$-0.117^{***}(0.038)$	FE	1416	
Estonia	-0.085(0.072)	FE^{*1}	614	$-0.106^{**}(0.053)$	FE	734	$-0.086^{*}(0.052)$	FE	784	
Japan	$-0.072^{*}(0.041)$	FE^{*1}	1545	$-0.089^{**}(0.043)$	\mathbf{FE}	1523	$-0.089^{**}(0.043)$	\mathbf{FE}	1523	
South Korea	-0.032(0.022)	FE^{*1}	3983	$-0.038^{**}(0.019)$	FE	4224	$-0.038^{**}(0.019)$	\mathbf{FE}	4235	
China	-0.049(0.036)	FE^{*1}	2990	-0.048(0.037)	FE^{*1}	2996	-0.048(0.037)	FE^{*1}	2996	
Sweden	-0.010(0.018)	FE^{*1}	2822	-0.007(0.019)	FE^{*1}	2397	-0.014(0.018)	FE^{*1}	2837	
Spain	$-0.092^{**}(0.046)$	FE	1229	-0.035(0.042)	FE^{*1}	1347	-0.067(0.042)	FE	1446	
Poland	0.080(0.066)	FE^{*1}	560	-0.026(0.071)	FE^{*1}	514	0.036(0.062)	FE^{*1}	610	
Slovenia	0.297(0.262)	FE^{*1}	82	-0.084(0.125)	FE^{*1}	146	-0.089(0.119)	FE^{*1}	162	
				0.001(0.120)		110	0.000(0.110)		102	
Drinking:Freq.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	
US	$-0.033^{**}(0.013)$	FE	65187	-0.015(0.012)	FE	59007	$-0.041^{***}(0.013)$	FE	66475	
England	0.029(0.027)	FE	13826	0.025(0.025)	FE	13108	0.036(0.026)	FE	14070	
Germany	0.107(0.088)	FE	1839	0.025(0.090)	FE	1687	0.126(0.084)	FE	1970	
France	$0.753^{**}(0.292)$	FE-IV	2316	0.064(0.090)	FE	2350	$0.593^{**}(0.236)$	FE-IV	2532	
Denmark	$0.134^{*}(0.074)$	\mathbf{FE}	2407	0.000(0.082)	\mathbf{FE}	2191	0.092(0.077)	\mathbf{FE}	2433	
Switzerland	0.030(0.085)	\mathbf{FE}	1427	-0.104(0.101)	\mathbf{FE}	1126	0.015(0.083)	\mathbf{FE}	1423	
Czech	$-0.198^{*}(0.114)$	\mathbf{FE}	1343	0.092(0.129)	FE^{*1}	1045	$-0.186^{*}(0.104)$	FE	1416	
Estonia	0.051(0.152)	FE^{*1}	614	-0.056(0.117)	\mathbf{FE}	734	-0.029(0.112)	FE	784	
Japan	-0.221*(0.115)	FE^{*1}	1545	$-0.269^{**}(0.117)$	\mathbf{FE}	1523	$-0.269^{**}(0.117)$	\mathbf{FE}	1523	
South Korea	-0.097*(0.058)	FE^{*1}	3983	$2.426^{**}(1.029)$	FE-IV	4224	$2.490^{**}(1.024)$	FE-IV	4235	
China	-0.214**(0.098)	FE^{*1}	2610	$-0.217^{**}(0.098)$	FE^{*1}	2616	$-0.217^{**}(0.098)$	FE^{*1}	2616	
Sweden	0.030(0.053)	FE^{*1}	2822	0.018(0.066)	FE^{*1}	2397	0.028(0.053)	FE^{*1}	2837	
Spain	-0.093(0.153)	FE	1229	-0.037(0.110)	FE^{*1}	1347	-0.169(0.117)	\mathbf{FE}	1446	
Poland	0.086(0.134)	FE^{*1}	560	-0.071(0.133)	FE^{*1}	514	-0.025(0.118)	FE^{*1}	610	
Slovenia	0.100(0.534)	FE^{*1}	82	-0.428(0.301)	FE^{*1}	146	-0.395(0.289)	FE^{*1}	162	
	0.200(0.002)			0.120(0.001)			0.000(0.200)			
Drinking:Amount	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	
US	$-0.047^{***}(0.016)$	FE	65147	-0.005(0.016)	FE	58961	$-0.055^{***}(0.016)$	FE	66433	
England	$3.561^{**}(1.532)$	FE-IV	11221	$2.298^{**}(1.073)$	FE-IV	10665	$2.689^{**}(1.275)$	FE-IV	11407	
Germany	0.133(0.559)	FE^{*1}	1062	$-2.997^{*}(1.538)$	FE-IV	952	$-3.343^{**}(1.645)$	FE-IV	1122	
France	0.636(0.495)	FE	1504	$0.646^{**}(0.310)$	FE	1516	0.554(0.392)	FE	1646	
Denmark	-0.066(0.152)	FE	1747	0.024(0.165)	\mathbf{FE}	1581	-0.046(0.145)	\mathbf{FE}	1755	
Switzerland	0.024(0.526)	FE	1027	$1.284^{*}(0.751)$	FE^{*1}	793	-0.225(0.551)	\mathbf{FE}	1028	
Czech	$-1.639^{**}(0.638)$	\mathbf{FE}	1185	0.490(0.842)	FE^{*1}	931	-2.042***(0.697)	\mathbf{FE}	1247	
Estonia	1.108(0.879)	FE^{*1}	500	-0.094(0.462)	FE	598	0.125(0.506)	\mathbf{FE}	642	
	-0.281*(0.144)	FE^{*1}	1276	-0.166(0.141)	FE	1269	-0.166(0.141)	FE	1269	
Japan	-0.255(0.288)	FE^{*1}	3630	-0.151(0.236)	FE	3853	-0.157(0.236)	\mathbf{FE}	3863	
Japan South Korea	-0.200(0.200)				FE^{*1}	2996	0.063(0.416)	FE^{*1}	2996	
	-0.235(0.288) 0.089(0.412)	FE^{*1}	2990	0.063(0.416)	F L					
South Korea China	0.089(0.412)			()			()			
South Korea China Sweden	$\begin{array}{c} 0.089(0.412) \\ -1.150(0.895) \end{array}$	FE	1508	-0.612(0.863)	FE^{*1}	1243	-1.256(0.932)	FE^{*1}	1507	
South Korea China	0.089(0.412)			()			()			

Table 24: Alcohol consumption behaviors

	Not Work	ing for Pa	y	Self-Repo	rted Retir	e	Complet	ely Retire	
Smoking:Y/N	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.
US	$-0.031^{***}(0.011)$	FE	19697	$-0.028^{***}(0.010)$	FE	18718	$-0.037^{***}(0.010)$	FE	20339
England	$-0.057^{*}(0.031)$	\mathbf{FE}	2888	-0.043(0.027)	\mathbf{FE}	2859	-0.042(0.028)	FE	2998
Germany	0.131(0.083)	FE^{*1}	606	0.071(0.081)	\mathbf{FE}	597	$0.138^{*}(0.078)$	\mathbf{FE}	671
France	$-0.454^{*}(0.237)$	FE-IV	574	0.009(0.066)	\mathbf{FE}	611	$-0.399^{*}(0.232)$	FE-IV	658
Denmark	0.019(0.061)	FE^{*1}	744	0.048(0.065)	\mathbf{FE}	708	0.025(0.066)	FE^{*1}	767
Switzerland	-0.026(0.084)	FE^{*1}	505	0.305(0.197)	FE-IV	398	-0.022(0.083)	FE^{*1}	514
Czech	0.008(0.082)	FE^{*1}	504	-0.002(0.087)	\mathbf{FE}	438	0.005(0.065)	FE	554
Estonia	-0.159(0.176)	\mathbf{FE}	186	-0.046(0.078)	\mathbf{FE}	280	0.017(0.075)	FE	292
Japan	0.001(0.044)	\mathbf{FE}	1144	-0.007(0.051)	\mathbf{FE}	1144	-0.007(0.051)	FE	1144
South Korea	-0.033(0.034)	\mathbf{FE}	2225	$-0.654^{**}(0.318)$	FE-IV	2350	$-0.643^{**}(0.319)$	FE-IV	2356
China	-0.056(0.047)	FE^{*1}	818	-0.059(0.049)	FE^{*1}	818	-0.059(0.049)	FE^{*1}	818
Sweden	0.049(0.071)	FE^{*1}	683	-0.034(0.086)	FE^{*1}	629	0.051(0.066)	FE^{*1}	693
Spain	-0.087(0.097)	\mathbf{FE}	471	$-0.215^{***}(0.066)$	\mathbf{FE}	545	$-0.189^{***}(0.067)$	FE	572
Poland	-0.053(0.098)	FE^{*1}	246	-0.045(0.084)	FE^{*1}	242	-0.143(0.095)	FE^{*1}	268
Slovenia	$0.502^{**}(0.179)$	FE	24	0.161(0.147)	FE^{*1}	64	$0.230^{*}(0.128)$	FE^{*1}	68
	a (a. 5.)		~			~			~
Smoking:Amount	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.
US	-0.448*(0.259)	FE	19585	-0.261(0.226)	FE	18619	-0.643***(0.240)	FE	20223
England(WD)	0.364(1.563)	FE	1307	-0.577(1.558)	FE	1288	-0.435(1.566)	FE	1353
England(HD)	0.290(0.967)	FE	1305	0.523(1.260)	\mathbf{FE}	1286	0.779(1.235)	FE	1351
Germany	$4.307^{**}(2.155)$	FE^{*1}	378	0.643(1.390)	\mathbf{FE}	377	$3.219^{*}(1.850)$	FE	419
France	-0.309(1.469)	FE^{*1}	265	-1.280(1.275)	FE	272	-0.419(1.288)	FE^{*1}	288
Denmark	1.508(1.768)	\mathbf{FE}	361	-0.837(1.782)	FE^{*1}	348	0.943(2.198)	FE^{*1}	371
Switzerland	-0.986(2.221)	FE	220	-2.157(1.823)	FE^{*1}	175	-1.308(2.291)	FE	219
Czech	-1.330(2.329)	FE^{*1}	104	$-5.293^{*}(2.698)$	FE	79	-1.685(2.405)	FE^{*1}	104
Japan	$-1.990^{*}(1.163)$	FE	1003	$-2.154^{*}(1.188)$	FE	1000	$-2.154^{*}(1.188)$	FE	1000
South Korea	$-1.473^{**}(0.688)$	\mathbf{FE}	2225	$-11.427^{*}(6.162)$	FE-IV	2350	$-1.119^{*}(0.626)$	FE	2356
China	-1.016(1.199)	FE^{*1}	538	-1.066(1.248)	FE^{*1}	538	-1.066(1.248)	FE^{*1}	538
Sweden	1.155(0.967)	FE^{*1}	487	0.883(1.122)	FE^{*1}	458	0.599(0.854)	FE^{*1}	497
Spain	-2.844(1.963)	FE^{*1}	286	$-3.800^{**}(1.645)$	FE^{*1}	301	$-3.313^{*}(1.785)$	FE^{*1}	317
Poland	$9.536^{***}(2.404)$	FE^{*1}	32	$-8.720^{**}(3.508)$	\mathbf{FE}	26	$6.069^{**}(2.709)$	FE^{*1}	36

Table 25: Smoking behaviors

Standard errors in parentheses (2.101) p < 1, p < 0.5, p < 0.5, p < 0.01*1: IVs are insignificant in 1st stage estimation.

Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.		
$0.018^{**}(0.008)$	FE	53849	$0.029^{***}(0.007)$	FE	49926	0.011(0.007)	FE	55130		
$0.041^{***}(0.014)$	\mathbf{FE}	15124	$0.038^{***}(0.013)$	\mathbf{FE}	14376	$0.038^{***}(0.013)$	\mathbf{FE}	15475		
-0.044(0.039)	FE	1890	-0.020(0.039)	\mathbf{FE}	1731	-0.047(0.036)	\mathbf{FE}	2027		
-0.056(0.039)	\mathbf{FE}	2408	$-0.064^{*}(0.037)$	\mathbf{FE}	2461	-0.053(0.036)	\mathbf{FE}	2649		
0.052(0.043)	FE	2418	0.044(0.044)	\mathbf{FE}	2209	0.044(0.042)	\mathbf{FE}	2451		
-0.047(0.045)	\mathbf{FE}	1466	-0.001(0.046)	\mathbf{FE}	1162	-0.047(0.044)	\mathbf{FE}	1463		
$-0.096^{*}(0.050)$	\mathbf{FE}	1390	0.054(0.051)	FE^{*1}	1086	-0.041(0.047)	\mathbf{FE}	1475		
$-0.175^{**}(0.074)$	FE^{*1}	646	-0.080(0.065)	\mathbf{FE}	762	-0.100(0.066)	\mathbf{FE}	814		
$0.676^{*}(0.353)$	FE-IV	1499	$0.051^{**}(0.024)$	FE	1489	$0.051^{**}(0.024)$	FE	1489		
$0.136^{***}(0.021)$	FE^{*1}	7157	$0.082^{***}(0.018)$	\mathbf{FE}	7589	$0.082^{***}(0.018)$	\mathbf{FE}	7648		
$-0.169^{***}(0.036)$	FE^{*1}	1980	$-0.170^{***}(0.035)$	FE^{*1}	1982	$-0.170^{***}(0.035)$	FE^{*1}	1982		
-0.025(0.036)	FE^{*1}	2897	$0.095^{**}(0.041)$	FE^{*1}	2456	-0.019(0.036)	FE^{*1}	2911		
0.348(0.252)	FE-IV	1313	-0.023(0.047)	FE^{*1}	1467	$0.307^{*}(0.184)$	FE-IV	1575		
0.013(0.087)	FE^{*1}	582	-0.024(0.084)	FE^{*1}	538	-0.014(0.073)	FE^{*1}	638		
0.134(0.170)	FE^{*1}	90	-0.305*** (0.092)	FE^{*1}	170	0.225(0.276)	FE-IV	186		
Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.		
								55170		
	FE-IV			FE-IV			FE-IV	15476		
-0.008(0.024)	\mathbf{FE}	1890	0.006(0.025)	\mathbf{FE}	1731	-0.012(0.024)	\mathbf{FE}	2027		
-0.008(0.024)	\mathbf{FE}	2410	0.020(0.026)	\mathbf{FE}	2461	-0.003(0.024)	\mathbf{FE}	2649		
								2450		
-0.009(0.028)	FE	1466	-0.035(0.037)	\mathbf{FE}	1162	-0.012(0.028)	FE	1463		
-0.056(0.038)	\mathbf{FE}	1390	0.048(0.042)	FE^{*1}	1086	-0.039(0.036)	\mathbf{FE}	1475		
	FE^{*1}						FE	814		
	FE^{*1}			FE^{*1}			FE^{*1}	1974		
-0.009(0.016)	FE^{*1}	2898	-0.000(0.021)	FE^{*1}	2457	-0.011(0.016)	FE^{*1}	2912		
$0.534^{***}(0.192)$	FE-IV	1313	0.005(0.033)	FE^{*1}	1467	$0.418^{***}(0.135)$	FE-IV	1575		
-0.023(0.062)	FE^{*1}	584	$-0.162^{**}(0.065)$	FE^{*1}	540	-0.073(0.058)	FE^{*1}	640		
-0.051(0.063)	FE^{*1}	90	-0.107(0.073)	FE^{*1}	170	-0.522*** (0.184)	FE-IV	186		
Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.		
	FE			FE-IV		$0.154^{*}(0.084)$	FE-IV	55177		
$0.125^{**}(0.057)$	FE-IV		$0.102^{**}(0.043)$	FE-IV	14377	$0.085^{*}(0.046)$	FE-IV	15476		
	FE^{*1}			FE		-0.006(0.046)	FE	1492		
-0.087**(0.037)	FE^{*1}	1964	-0.088**(0.037)	FE^{*1}	1966	-0.088**(0.037)	FE^{*1}	1966		
Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.		
								20016		
$-0.172^{***}(0.065)$	FE	4135	$-0.186^{***}(0.063)$	FE	4162	$-0.186^{***}(0.063)$	\mathbf{FE}	4162		
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccc} \hline {\bf Coeff.(S.E.)} & {\bf Method} \\ \hline {\bf 0.018}^{**}(0.008) & {\bf FE} \\ \hline {\bf 0.014}^{**}(0.014) & {\bf FE} \\ \hline {\bf 0.044}(0.039) & {\bf FE} \\ \hline {\bf 0.052}(0.043) & {\bf FE} \\ \hline {\bf 0.052}(0.043) & {\bf FE} \\ \hline {\bf 0.052}(0.043) & {\bf FE} \\ \hline {\bf 0.066}(0.039) & {\bf FE} \\ \hline {\bf 0.052}(0.043) & {\bf FE} \\ \hline {\bf 0.047}(0.045) & {\bf FE} \\ \hline {\bf 0.074}(0.045) & {\bf FE} \\ \hline {\bf 0.175^{**}}(0.074) & {\bf FE^{*1}} \\ \hline {\bf 0.676^{*}}(0.353) & {\bf FE-IV} \\ \hline {\bf 0.136^{***}}(0.021) & {\bf FE^{*1}} \\ \hline {\bf 0.025}(0.036) & {\bf FE^{*1}} \\ \hline {\bf 0.025}(0.036) & {\bf FE^{*1}} \\ \hline {\bf 0.025}(0.036) & {\bf FE^{*1}} \\ \hline {\bf 0.034}(0.252) & {\bf FE-IV} \\ \hline {\bf 0.013}(0.087) & {\bf FE^{*1}} \\ \hline {\bf 0.134}(0.170) & {\bf FE^{*1}} \\ \hline \hline {\bf 0.207^{*}}(0.124) & {\bf FE-IV} \\ \hline {\bf 0.208^{**}}(0.095) & {\bf FE} \\ \hline {\bf 0.246^{***}}(0.109) & {\bf FE-IV} \\ \hline {\bf 0.009}(0.028) & {\bf FE} \\ \hline {\bf 0.009}(0.028) & {\bf FE} \\ \hline {\bf 0.009}(0.028) & {\bf FE^{*1}} \\ \hline {\bf 0.009}(0.028) & {\bf FE^{*1}} \\ \hline {\bf 0.009}(0.028) & {\bf FE^{*1}} \\ \hline {\bf 0.009}(0.060) & {\bf FE^{*1}} \\ \hline {\bf 0.034^{***}}(0.192) & {\bf FE^{*1}} \\ \hline {\bf 0.003}(0.062) & {\bf FE^{*1}} \\ \hline {\bf 0.003}(0.062) & {\bf FE^{*1}} \\ \hline {\bf 0.003}(0.062) & {\bf FE^{*1}} \\ \hline {\bf 0.004}(0.006) & {\bf FE} \\ \hline \hline \hline {\bf 0.125^{**}}(0.057) & {\bf FE-IV} \\ \hline {\bf 0.003}(0.063) & {\bf FE^{*1}} \\ \hline \hline {\bf 0.003^{**}}(0.037) & {\bf FE^{*1}} \\ \hline \hline \hline {\bf 0.003^{**}}(0.037) & {\bf FE^{*1}} \\ \hline \hline$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccc} \hline \textbf{Coeff.(S.E.)} & \textbf{Method} & \textbf{Obs.} \\ \hline \textbf{0.018}^{**}(0.008) & FE & 53849 \\ 0.029^{***}(0.007) & FE & 49926 \\ 0.038^{***}(0.013) & FE & 14376 \\ 0.055(0.039) & FE & 1890 \\ -0.020(0.039) & FE & 14376 \\ 0.055(0.039) & FE & 2408 \\ -0.064^{*}(0.037) & FE & 2461 \\ -0.057(0.045) & FE & 1466 \\ -0.001(0.046) & FE & 1162 \\ -0.047(0.044) \\ -0.096^{*}(0.050) & FE & 1390 \\ 0.054(0.051) & FE^{*1} & 1086 \\ -0.080(0.065) & FE & 762 \\ -0.047(0.044) \\ -0.076^{*}(0.353) & FE-1V & 1499 \\ 0.054^{*}(0.035) & FE & 7789 \\ -0.066^{*}(0.353) & FE+V & 1499 \\ 0.054^{*}(0.021) & FE^{*1} & 1757 \\ -0.082^{**}(0.018) & FE & 7589 \\ -0.022(0.036) & FE^{*1} & 1980 \\ -0.176^{**}(0.035) & FE^{*1} & 1980 \\ -0.176^{**}(0.035) & FE^{*1} & 1982 \\ -0.023(0.047) & FE^{*1} & 1467 \\ -0.376^{*}(0.035) \\ -0.025(0.036) & FE^{*1} & 1980 \\ -0.136^{**}(0.021) & FE^{*1} & 582 \\ -0.024(0.084) & FE^{*1} & 1982 \\ -0.014(0.073) \\ -0.348(0.252) & FE^{*1} & 1513 \\ -0.023(0.047) & FE^{*1} & 1467 \\ -0.307^{*}(0.124) & FE^{*1} & 5382 \\ 0.133^{**}(0.063) & FE^{*1} & 170 \\ -0.225(0.276) \\ \hline \begin{array}{c} \textbf{Coeff.(S.E.)} & \textbf{Method} & \textbf{Obs.} \\ 0.207^{*}(0.024) & FE & 1890 \\ -0.008(0.024) & FE & 1890 \\ -0.006(0.025) & FE & 1731 \\ -0.012(0.024) \\ -0.008(0.024) & FE & 1310 \\ -0.008(0.024) & FE & 1410 \\ -0.008(0.024) & FE & 1466 \\ -0.032(0.036) & FE^{*1} & 1086 \\ -0.033^{*}(0.036) \\ -0.14^{**}(0.050) & FE^{*1} & 133 \\ -0.022^{**}(0.043) & FE^{*1} & 1086 \\ -0.033^{*}(0.036) \\ -0.048^{**}(0.05) & FE^{*1} & 1313 \\ -0.022(0.026) & FE & 1466 \\ -0.072^{*}(0.040) & FE & 762 \\ -0.033^{*}(0.053) \\ -0.038(0.024) & FE^{*1} & 1390 \\ -0.048(0.042) & FE^{*1} & 1086 \\ -0.039^{*}(0.036) \\ -0.038^{**}(0.057) & FE^{*1} & 1313 \\ -0.022^{**}(0.045) & FE^{*1} & 174 \\ -0.229^{**}(0.045) \\ -0.038^{**}(0.050) & FE^{*1} & 1666 \\ -0.038^{*}(0.033) & FE^{*1} & 1667 \\ -0.039^{*}(0.045) \\ -0.038^{*}(0.057) & FE^{*1} & 1313 \\ -0.022^{**}(0.045) & FE^{*1} & 177 \\ -0.058^{**}(0.057) \\ -0.004(0.006) & F$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Table 26: Physical activities

Standard errors in parentheses * p < .1, ** p < .05, *** p < .01*1: IVs are insignificant in 1st stage estimation.

	Not Wor	king for Pa	ay	Self-Repo	rted Retir	e	Completely Retire			
Sleeping	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	(S.E.) Method C		
US	1.874**(0.835)	FE-IV	19734	0.057(0.058)	FE	17846	$1.613^{**}(0.770)$	FE-IV	20143	
Japan(WD)	0.133(0.202)	FE^{*1}	1648	0.062(0.144)	FE^{*1}	1641	0.062(0.144)	FE^{*1}	1641	
Japan(HD)	$-0.191^{*}(0.113)$	FE^{*1}	1752	$-0.205^{*}(0.111)$	FE^{*1}	1767	$-0.205^{*}(0.111)$	FE^{*1}	1767	
China	0.092(0.097)	FE^{*1}	4898	0.088(0.097)	FE^{*1}	4904	0.088(0.097)	FE^{*1}	4904	
Logged Food Expenditure	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	
US	-0.002*(0.001)	\mathbf{FE}	13693	-0.003***(0.001)	\mathbf{FE}	12352	-0.002**(0.001)	\mathbf{FE}	13989	
England	-0.000(0.000)	\mathbf{FE}	15059	-0.000(0.000)	FE	14309	-0.000(0.000)	FE	15405	
Germany	-0.000(0.003)	\mathbf{FE}	935	$0.006^{**}(0.003)$	\mathbf{FE}	871	0.001(0.003)	\mathbf{FE}	1007	
France	0.000(0.003)	\mathbf{FE}	1057	-0.001(0.003)	FE	1062	0.002(0.003)	FE	1168	
Denmark	$0.005^{**}(0.002)$	FE^{*1}	1234	0.003(0.003)	\mathbf{FE}	1128	0.004(0.002)	\mathbf{FE}	1256	
Switzerland	0.000(0.004)	\mathbf{FE}	791	0.004(0.005)	\mathbf{FE}	620	-0.002(0.004)	\mathbf{FE}	788	
Czech	-0.003(0.006)	FE^{*1}	650	-0.007(0.007)	FE^{*1}	486	-0.002(0.005)	FE^{*1}	691	
Estonia	$-0.008^{**}(0.004)$	FE^{*1}	276	0.011(0.009)	FE^{*1}	338	0.009(0.008)	\mathbf{FE}	364	
Japan	-0.002(0.003)	\mathbf{FE}	2850	-0.000(0.003)	FE^{*1}	2896	-0.000(0.003)	FE^{*1}	2896	
South Korea	$0.002^{**}(0.001)$	\mathbf{FE}	2672	0.001(0.001)	FE^{*1}	2880	0.001(0.001)	FE^{*1}	2900	
China	0.000(0.000)	FE^{*1}	4916	0.000(0.000)	FE^{*1}	4922	0.000(0.000)	FE^{*1}	4922	
Sweden	0.001(0.002)	FE^{*1}	1624	-0.004(0.003)	FE-IV	1372	0.001(0.002)	FE^{*1}	1629	
Spain	0.004(0.004)	\mathbf{FE}	613	0.004(0.003)	FE^{*1}	685	0.001(0.003)	\mathbf{FE}	724	
Poland	$-0.006^{*}(0.003)$	FE^{*1}	264	-0.000(0.003)	FE^{*1}	240	-0.003(0.003)	FE^{*1}	288	
Slovenia	0.002(0.007)	FE	44	0.000(0.007)	FE^{*1}	78	-0.001(0.006)	FE	86	
Logged Eat Out Expenditure	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	
US	-0.001(0.001)	FE	13747	0.000(0.001)	FE	12388	-0.001(0.001)	FE	14046	
England	-0.000*(0.000)	FE	15080	-0.000(0.000)	FE	14331	-0.000(0.000)	FE	15428	
Germany	0.000(0.001)	FE	1006	0.001(0.001)	FE	936	$0.002^{*}(0.001)$	FE	1083	
France	$-0.004^{**}(0.002)$	FE	1068	$-0.004^{**}(0.002)$	FE	1082	$-0.003^{*}(0.002)$	FE	1188	
Denmark	-0.001(0.001)	FE	1382	$-0.002^{**}(0.001)$	\mathbf{FE}	1268	-0.002(0.001)	\mathbf{FE}	1407	
Switzerland	$-0.017^{*}(0.009)$	FE-IV	855	$-0.005^{**}(0.002)$	FE	675	$-0.017^{*}(0.009)$	FE-IV	855	
Czech	-0.001(0.001)	FE^{*1}	712	-0.002(0.001)	FE^{*1}	529	-0.002(0.001)	FE	757	
Estonia	-0.002(0.001)	FE^{*1}	352	-0.000(0.001)	\mathbf{FE}	434	-0.000(0.001)	\mathbf{FE}	460	
Japan	0.018(0.019)	FE^{*1}	2225	0.020(0.021)	FE^{*1}	2240	0.020(0.021)	FE^{*1}	2240	
South Korea	-0.000(0.000)	FE	2675	-0.000(0.000)	FE^{*1}	2883	-0.000(0.000)	FE^{*1}	2903	
China	-0.000(0.000)	FE^{*1}	5176	-0.000(0.000)	FE^{*1}	5182	-0.000(0.000)	FE^{*1}	5182	
Sweden	-0.001(0.001)	FE^{*1}	1712	-0.000(0.001)	FE^{*1}	1439	-0.000(0.001)	FE^{*1}	1714	
Spain	0.001(0.002)	FE	723	-0.001(0.002)	FE^{*1}	787	-0.001(0.002)	FE	842	
Poland	$-0.002^{*}(0.001)$	FE^{*1}	292	-0.001(0.001)	FE^{*1}	270	-0.001(0.001)	\mathbf{FE}	322	

Table 27: Sleeping & Food habits

Standard errors in parentheses * p < .1, ** p < .05, *** p < .01

*1: IVs are insignificant in 1st stage estimation.

		Ta	<u>ble 28:</u>	<u>: Ohter beh</u>					
	Not Working for Pay			Self-Reported Retire			Completely Retire		
Social Participation	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.
US	0.008(0.016)	\mathbf{FE}	14332	$0.034^{**}(0.016)$	\mathbf{FE}	13015	-0.002(0.016)	FE	14533
England	0.019(0.013)	\mathbf{FE}	13039	$0.023^{*}(0.013)$	\mathbf{FE}	12382	$0.027^{**}(0.013)$	FE	13276
Germany	$0.063^{*}(0.036)$	FE	1881	0.042(0.038)	FE	1724	$0.060^{*}(0.034)$	FE	2018
France	0.033(0.033)	FE	2378	0.018(0.032)	\mathbf{FE}	2426	0.019(0.031)	FE	2612
Denmark	0.005(0.030)	FE	2414	-0.004(0.034)	FE	2207	0.004(0.032)	FE	2446
Switzerland	-0.003(0.035)	FE	1466	0.029(0.042)	FE	1162	0.009(0.035)	FE	1463
Czech	-0.021(0.039)	\mathbf{FE}	1387	0.015(0.041)	FE^{*1}	1084	-0.019(0.035)	FE	1472
Estonia	-0.036(0.030)	FE^{*1}	640	-0.035(0.036)	\mathbf{FE}	752	-0.035(0.035)	\mathbf{FE}	804
Japan	0.024(0.029)	\mathbf{FE}	4001	-0.020(0.029)	FE	4022	-0.020(0.029)	FE	4022
South Korea	0.013(0.017)	FE^{*1}	7157	-0.002(0.015)	\mathbf{FE}	7589	-0.002(0.015)	\mathbf{FE}	7648
China	-0.020(0.026)	FE^{*1}	4970	-0.022(0.026)	FE^{*1}	4976	-0.022(0.026)	FE^{*1}	4976
Sweden	0.016(0.028)	FE^{*1}	2895	0.034(0.033)	FE^{*1}	2454	0.034(0.029)	FE^{*1}	2909
Spain	0.015(0.045)	\mathbf{FE}	1305	0.049(0.041)	FE^{*1}	1459	0.021(0.040)	FE	1567
Poland	0.008(0.072)	FE^{*1}	584	-0.018(0.063)	FE^{*1}	540	0.053(0.062)	FE^{*1}	640
Slovenia	0.068(0.064)	FE^{*1}	90	-0.160(0.113)	FE^{*1}	170	-0.122(0.111)	FE	186
Contact with Children	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.
US	-0.005(0.029)	FE	12755	0.037(0.031)	FE	11540	-0.009(0.030)	FE	12928
England	0.038(0.024)	FE	11665	$0.047^{**}(0.023)$	FE	10919	0.031(0.024)	\mathbf{FE}	11824
Germany	0.154(0.135)	FE^{*1}	732	$-1.671^{***}(0.587)$	FE-IV	659	$-1.413^{**}(0.548)$	FE-IV	789
France	0.063(0.125)	FE	1041	0.097(0.124)	FE	1038	0.005(0.121)	FE	1153
Denmark	0.096(0.100)	FE	1157	0.099(0.105)	FE	1046	0.111(0.099)	FE	1172
Switzerland	-0.009(0.112)	FE	697	-0.091(0.135)	FE	532	0.040(0.111)	FE	693
Czech	0.037(0.177)	FE^{*1}	635	-0.002(0.243)	FE^{*1}	451	0.045(0.111) 0.085(0.178)	FE^{*1}	680
Estonia	-0.147(0.149)	FE^{*1}	328	-0.134(0.161)	FE^{*1}	384	$1.764^{*}(0.932)$	FE-IV	408
South Korea	$-0.164^{*}(0.092)$	FE^{*1}	5280	0.019(0.084)	FE	5584	0.021(0.084)	FE	5642
China	0.007(0.101)	FE	2498	0.013(0.097)	FE	2500	0.013(0.097)	FE	2500
Sweden	0.076(0.081)	FE^{*1}	1563	0.074(0.086)	FE^{*1}	1308	0.051(0.080)	FE^{*1}	1567
Spain	$1.256^{*}(0.650)$	FE-IV	470	-0.008(0.121)	FE	517	$0.739^{*}(0.447)$	FE-IV	567
Poland	0.303(0.269)	FE^{*1}	226	0.377(0.264)	FE^{*1}	188	$0.474^{**}(0.232)$	FE^{*1}	242
Slovenia	0.283(0.297)	FE	56	$1.084^{**}(0.508)$	FE-IV	102	0.165(0.152)	FE	110
Sioveina	0.285(0.297)	T L	50	1.084 (0.508)	112-11	102	0.105(0.152)	F E	110
Doctor Visit	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.	Coeff.(S.E.)	Method	Obs.
US	$-8.016^{**}(3.447)$	FE-IV	85408	$-4.311^{***}(1.512)$	FE-IV	77176	$-7.970^{***}(2.998)$	FE-IV	87245
Germany	$1.236^{*}(0.670)$	FE	1886	0.624(0.611)	FE	1728	0.759(0.652)	FE	2024
France	-0.477(0.448)	FE	2406	$1.049^{*}(0.598)$	FE	2457	0.113(0.506)	FE	2645
Denmark	0.494(0.518)	FE	2414	-0.833(0.623)	FE	2204	-0.637(0.536)	FE	2446
Switzerland	0.467(0.607)	FE	1465	$-5.180^{*}(2.697)$	FE-IV	1161	0.083(0.717)	FE	1462
Czech	0.386(0.707)	FE	1385	0.888(0.833)	FE^{*1}	1082	-0.158(0.691)	FE	1470
Estonia	1.720(1.560)	FE^{*1}	638	-0.041(0.628)	FE	754	1.270(1.366)	FE.	806
Japan	0.317(0.277)	FE^{*1}	1890	0.394(0.328)	FE^{*1}	1862	0.394(0.328)	FE^{*1}	1862
South Korea	$1.016^{**}(0.508)$	FE^{*1}	5450	$0.945^{*}(0.508)$	FE	5768	$0.951^{*}(0.508)$	FE	5812
China	$0.272^{**}(0.110)$	FE^{*1}	5128	$0.280^{**}(0.110)$	FE^{*1}	5134	$0.280^{**}(0.110)$	FE^{*1}	5134
Sweden	$1.037^{***}(0.365)$	FE^{*1}	2892	$1.479^{***}(0.506)$	FE^{*1}	2453	$1.308^{***}(0.408)$	FE^{*1}	2906
Spain	0.824(1.003)	FE^{*1}	1301	1.243(0.927)	FE^{*1}	1459	$-7.389^{**}(3.616)$	FE-IV	1565
Poland	0.620(1.062)	FE^{*1}	584	1.042(1.046)	FE^{*1}	540	0.203(0.953)	FE^{*1}	640
Slovenia	$-4.127^{*}(2.125)$	FE^{*1}	90	-1.121(1.847)	FE^{*1}	170	-1.538(1.850)	FE	186

Table 28. Ohter behaviors

 Standard errors in parentheses

 * p < .1, ** p < .05, *** p < .01

 *1: IVs are insignificant in 1st stage estimation.

Acknowledgement

We would like to thank Peter Eibich, Michael Hurd, Hidehiko Ichimura, Yasushi Iwamoto, Daiji Kawaguchi, Salar Jahedi and participants at the conference on Comparative International Research Based on the HRS Family of Data and Tokyo Labor Economics Conference at Hitotsubashi University for helpful comments. We are responsible for all errors and interpretations. The earlier title is "An International Comparative Study of Health Investment Behaviors After Retirement". We have received a huge amount of support from Kazuyuki Terada. This research is partially supported by the Grants-in-Aid for Scientific Research [Research project number: 13J09809] for the Japan Society for the Promotion of Science (JSPS) Fellows by the Ministry of Education, Science and Culture in Japan.

The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and is conducted by the University of Michigan.

The ELSA (English Longitudinal Study of Ageing) is funded by the US National Institute on Ageing and a consortium of UK government departments coordinated by the Office for National Statistics.

This paper uses data from SHARE Waves 1, 2, 3 (SHARELIFE), 4 and 5 (DOIs: 10.6103/SHARE.w1.260, 10.6103/SHARE.w2.260, 10.6103/SHARE.w3.100, 10.6103/SHARE.w4.111, 10.6103/SHARE.w5.100), see Börsch-Supan et al. (2013) for methodological details. The SHARE data collection has been primarily funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005

-028857, SHARELIFE: CIT4-CT-2006-028812) and FP7 (SHARE-PREP: N211909, SHARE-LEAP: N227822, SHARE M4: N261982). Additional funding from the

German Ministry of Education and Research, the U.S. National Institute on Aging (U01_AG09740-13S2, P01_AG00

5842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064\$) and from various national funding sources is gratefully acknowledged (see www.share-project.org).

The Japanese Study of Aging and Retirement (JSTAR) was conducted by the Research Institute of Economy, Trade and Industry (RIETI), Hitotsubashi University, and the University of Tokyo.

References

- Eibich, P. (2015). Understanding the Effect of Retirement on Health: Mechanisms and Heterogeneity. *Journal* of Health Economics, 43:1–12.
- Grossman, M. (1972). On the Concept of Health Capital and the Demand for Health. *Journal of Political Economy*, 80(2):223–255.
- Johnston, D. W. and Lee, W.-S. (2009). Retiring to the good life? The short-term effects of retirement on health. *Economics Letters*, 103(1):8–11.
- Kerkhofs, M. and Lindeboom, M. (1997). Age related health dynamics and changes in labour market status. *Health economics*, 6(4):407–423.
- Motegi, H., Nishimura, Y., and Terada, K. (2016). Does Retirement Change Lifestyle Habits? Japanese Economic Review, 67(2):169–191.

Rohwedder, S. and Willis, R. J. (2010). Mental Retirement. Journal of Economic Perspectives, 24(1):119–138.