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We estimate the causal influence of air quality in explaining pro-cyclical mortality 
across the United States in a dataset spanning nearly 300 cities over the period 1979-
2013. Prior research has documented that accounting for air pollution attenuates the 
elasticity of mortality with respect to unemployment rates by up to 30% (Heutel and 
Ruhm, 2013). To isolate the causal influence of air pollution, we construct an 
instrumental variable (IV) based on atmospheric phenomena known as thermal 
inversions which induce non-anthropogenic variation in ground-level air pollution 
levels. Our identification strategy relies on comparing mortality rates across counties 
that experienced similar business cycles, but were subject to a different intensity and 
frequency of inversions. This allows us to disentangle the air-pollution mechanism 
from other forces which may link business cycles and health.  
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I. Introduction 

An established literature, beginning with Ruhm (2000; 2003), documents that mortality rates 

rise and fall with the tide of the economy. Why this occurs is less well understood. Studies have 

focused on two broad mechanisms to explain procyclical mortality: changes in individual behavior 

such as diet and exercise, and changes in aggregate externalities generated by economic conditions 

such as variation in traffic fatalities, staffing, and air pollution.1 Recent findings suggest that the 

relative importance of behavioral changes in explaining mortality fluctuations may be limited as a 

large share of the mortality increase occurs among individuals that are not directly experiencing the 

boost in employment, raising the possibility that external factors may drive mortality over the 

business cycle. Moreover, large shares of these deaths correspond to cardiovascular and respiratory 

diseases, which have been linked to air pollution (Sullivan and Wachter 2007; Miller et al. 2009; 

Stevens et al., 2015; Ruhm, 2015).  

Previous studies provide supporting evidence that air pollution is a likely contributor to the 

procyclical nature of mortality. The specific mechanism we consider is akin to that of Chay and 

Greenstone (2003), who demonstrate that the 1980-1982 recession reduced infant mortality in 

industrial areas hard hit by the downturn, where air pollution declined the most severely. As periods 

of economic expansion have been shown to induce higher levels of air pollution, together these 

fluctuations generate countercyclical emissions which may contribute to procyclical mortality. 

Focusing on this possibility, Heutel and Ruhm (2013) find that directly accounting for air pollution 

attenuates estimates of the elasticity of mortality with respect to the unemployment rate by as much 

as 30%. However, they do not establish a causal link because existing instrumental variable (IV) 

strategies used in the literature do not provide adequate power for this purpose.2 

There are several challenges for isolating the role of air pollution in the relationship between 

economic cycles and mortality. The first and most important one is that there are likely omitted 

determinants of mortality that are correlated with both unemployment and air pollution. This may 

be true even when controlling for location-specific fixed effects, such as county fixed effects. 3 The 

second challenge is that average air pollution readings are noisy proxies for air pollution exposure at 

the county level. Measurement error in pollution estimates can lead to underestimation of the share 

                                                           
1 Ruhm (2013) provides a review of the literature. 
2 The authors undertake the Chay and Greenstone (2005) IV strategy of using Clean Air Act county attainment status, 
but note that this yields a weak first stage and insignificant second stage estimates (Heutel and Ruhm, 2013, p23).  
3 For instance, local environmental policy changes may generate simultaneous changes in economic outcomes and 
pollution, while behaviors such as changes to commuting habits may occur cyclically and affect both health and 
pollution. 



 
 

of variance in mortality that is explained by air pollution. Although this should not bias estimation of 

unemployment coefficient conditional on air pollution, the presence of measurement error on the air 

pollution variable is akin to measurement error in the left-hand-side variable and will increase 

standard errors in the estimation. 

We extend this literature by measuring the causal influence of air quality on procyclical 

mortality. To address endogeneity concerns, we construct an IV based on atmospheric phenomena 

known as thermal inversions -- a strategy employed by Arceo et al. (2015) to examine the impact of 

air pollution on infant mortality in Mexico City. Typically, atmospheric temperature declines with 

increasing altitude. An inversion occurs when a warm layer of elevated air rests on top of a cooler 

layer of air below, inhibiting vertical air flow and facilitating the accumulation of pollutants in the 

lower atmosphere. While inversions vary widely in frequency and intensity across locations, strong 

inversions are associated with some of the worst pollution events in recorded history (Iacobellis et 

al., 2009; Malek et al., 2006; Bailey et al., 2011).  

Inversions induce non-anthropogenic variation in ground-level air pollution, allowing for the 

estimation of the causal impact of pollution on mortality. Thus, our identification strategy relies on 

comparing mortality rates across counties that experienced similar business cycles, but were subject 

to different intensity and frequency of thermal inversions. This allows us to disentangle the air-

pollution mechanism from other mechanisms that may link business cycles and health.  

To implement this strategy, we construct a dataset linking ambient air pollution readings 

from the Environmental Protection Agency (EPA), atmospheric and weather data from the North 

American Regional Reanalysis (NARR) model, and vital statistics data from the Center for Disease 

Control (CDC) in a dataset spanning nearly 300 cities over the period 1980-2004.4 Our approach 

allows us to estimate pollution’s role in driving procyclical mortality both across population 

subgroups and to examine heterogeneity in the strength of this relationship over time.  

This paper proceeds as follows. Section II discusses the data. Section III describes existing 

research and details evidence on procyclical mortality in the U.S. Section IV discusses the 

relationship between thermal inversions and concentrations of atmospheric pollutants. Section V 

details our empirical strategy, while Section VI presents results. Section VII concludes.  

 

                                                           
4 While previous research relies on atmospheric soundings to identify inversions, reanalysis data allows for identification 
of both the presence and characteristics of thermal inversions across very widespread areas and over long time periods. 
In this case we are able to derive estimates of thermal inversions for all of North America, making availability of 
pollution and mortality data the constraining factors. 



 
 

II. Data Discussion 

The data used in our analysis come from four primary sources. We obtain readings of air 

quality from the Environmental Protection Agency’s (EPA) Air Quality System (AQS) for the 

period 1990 onward and directly from the EPA for the period spanning 1980-1990 (EPA, 2014). 

This includes information on four criteria pollutants known to have adverse health impacts at 

sufficient levels of exposure and for which a reasonable set of historical readings are available. 

Specifically, we examine carbon monoxide (CO), ozone (03), nitrogen dioxide (NO2), and 

concentrations of particulate matter 10 microns in diameter or less (PM10).  

Panel 1 of Table 1 presents summary statistics on these pollutants at the county month level. 

The estimated means disguise significant temporal variation, with air pollution trending down 

strongly over the sample period for all four measures. Coverage for CO is the most comprehensive, 

particularly in the earlier period where air pollution is the highest. This is one of the reasons why our 

primary analysis focuses on the sample of cities and periods for which CO data is available. In 

addition to this, a number of papers within economics have already established a critical role of CO 

in driving mortality (Currie and Neidell, 2005; Currie et al., 2009; Heutel and Ruhm, 2013; Arceo et 

al., 2015), and the relationship between CO and our instrument has been well documented in the 

atmospheric science literature (we discuss this in detail in Section IV). It is important to keep in 

mind that pollutants are generally correlated. Thus our measure of CO should be interpreted as an 

indicator of air quality in general (Arceo et al., 2015). 5 

Monthly statistics on unemployment at the county level are taken from the Bureau of Labor 

Statistics’ (BLS) Local Area Unemployment Statistics (LAUS) database. Although disaggregated 

labor force characteristics at this level of frequency are likely to be subject to a degree of 

measurement error, particularly in the early period of the sample, two things work in our favor.6 The 

first is that some of this error may be captured by the inclusion of fixed effects. Specifically, year 

fixed effects should account for some forms of error which vary temporally but not across county, 

such as changes to sampling techniques or data construction over time. County fixed effects may 

absorb some spatial heterogeneity in data quality. Second, to the extent that measurement error 

exists in the labor market data, our baseline estimate of cyclicality in mortality may be attenuated. 

                                                           
5 Air pollutants such as Ozone (O3), Fine Particulate Matter (PM10 and PM2.5), and Carbon Monoxide (CO) are known 
in the public health literature to reduce lung function, aggravate respiratory disease, raise blood pressure, and damage 
cardiopulmonary health (Parrish and Zhu, 2009; Chang et al., 2014). Section IV further discusses our current emphasis 
on carbon monoxide in this draft. 
6 Indeed, the pre-1990 statistics are generally not considered by the BLS to be consistent with later estimates. 



 
 

But so should our estimate of the role that pollution plays in driving this mechanism. Regardless, we 

still observe procyclical mortality in the data consistent with a number of previous analyses. The 

second panel of Table 1 contains summary statistics on unemployment for the full sample. 

We match these statistics to information on mortality from the Center for Disease Control’s 

(CDC) Multiple Cause of Death Mortality Files for the period 1980 to 2004. We calculate overall 

and age-specific mortality rates by combining these records with population counts obtained from 

the U.S. Census. Miller et al., (2009) highlights enormous variation across age-groups in terms of the 

pro-cyclicality of mortality. For this reason, we focus on mortality for the groups with the most 

pronounced procyclical mortality: newborns, infants in the first year of life, and the elderly. These 

are also groups generally considered to be vulnerable to environmental factors like air pollution. We 

compare all of these groups to the overall mortality outcomes for the remainder of the population 

aged 2-59. 

Table 2 presents mortality rates disaggregated by broad cause of death and by age group. As 

expected, mortality rates are high early in life, decrease during childhood and middle age, and again 

rise among the elderly. The statistics presented should be interpreted as means across the set of 

counties for which we have both CO data and publicly available mortality data. This generates an 

unbalanced panel and implies that areas with better and earlier data coverage will therefore be over-

represented in the sample. On average, counties included in the sample will be larger and more 

urban, than those for the entire United States. 

 Our meteorological data is extracted from the National Center for Environmental 

Prediction’s (NCEP) North American Regional Reanalysis (NARR) model. The NARR is an 

established data assimilation scheme designed to provide a consistent long-term series of high 

resolution climate data, covering most of North America. The reanalysis model aggregates, models, 

and extrapolates from a wide range of observational data sources including but not limited to 

rawinsondes (balloon launched radio-soundings) and dropsondes (airplane dropped soundings) 

collecting temperature, wind, and moisture readings, pibals (pilot balloons) collecting wind readings, 

aircraft measures of temperature and wind, surface temperature pressure measurements, satellite 

readings of cloud cover and wind, as well as readings from rain gauges, the military, ships, and buoys 

(Mesinger et al., 2006).  

The NARR provides 8 daily readings (a 3 hour frequency) at the level of a 32-km 

topographical grid spanning multiple layers of atmospheric resolution for the period 1979 to the 

present. From the NARR, we extract information on surface and atmospheric temperature, 



 
 

humidity, cloud cover, precipitation, and wind speed, as well as construct measures of thermal 

inversions. Summary statistics for these variables are presented in Table 1. We include daily max and 

min temperature, as well as monthly averages for all meteorological covariates during both the 

morning and afternoon hours. As we document in Section IV, which discusses the measurement 

and analysis of inversions, we find the most consistent relationship between ambient pollution and 

inversions during these two times of day.  

 

III. Patterns of Mortality in the United States 

Through the application of fixed effect, panel analysis, Ruhm (2000) and a subsequent 

literature has documented the presence of procyclical mortality in the United States. The magnitude 

of this elasticity is estimated to be relatively large with estimates for a one percentage point increase 

in the unemployment rate being associated with a 0.3 to 0.5% reduction in mortality (Heutel and 

Ruhm, 2013). To get a sense for the magnitude of this effect, Miller et al., (2009) show that a one 

point increase in unemployment is associated with nearly 12,000 fewer deaths.  

Disaggregation of mortality by age groups show that procyclical fluctuations in mortality are 

largely composed of changes in the mortality rates of infants and elderly (Miller et al., 2009; Stevens 

et al., 2015). These are groups not directly involved in the labor force, which suggests that some of 

the underlying mechanism may be unrelated to behavioral changes in time use and factors like travel 

to work. These are however, groups known to be vulnerable to environmental influences on their 

health. 

 A chief candidate among these is pollution. Indeed, Heutel and Ruhm (2013) demonstrate 

that ambient concentrations of pollutants such as CO, PM10, and 03 exhibit procyclical variation.7 

Specifically, they document that a one percentage point increase in unemployment yields a 0.1 

standard deviation fall in PM10 and a 0.067 standard deviation fall in CO and O3. They then show 

that the addition of pollution controls into the analysis of procyclical mortality attenuates the overall 

unemployment-mortality relationship by nearly 30%. These effects appear to be driven again by 

infants and elderly, and are largest for respiratory causes, lending credence to variation in pollution 

over the economic cycle as a potentially important determinant of mortality. 

This is also the narrative that Chay and Greenstone (2003) provide for the specific case of 

infant mortality in the US. Using geographic variation in the size of the 1980-1982 economic 

downturn, they find that a 1-μg/m3 decrease in total suspended particulates (TSP) resulted in 4-7 
                                                           
7 We confirm this finding for our sample in appendix table A1. Importantly, CO exhibits significant procyclicality. 



 
 

fewer deaths per 100,000 live births, predominantly reflecting a decline in deaths within 24 hours of 

birth.  

To the extent that infant mortality exhibits procyclical mortality, it should also be noted that 

existing research has documented countercyclical selection effects in fertility outcomes. Specifically, 

Dehejia and Lleras-Muney (2004) find that health outcomes improve for babies conceived during 

recessions, attributed this outcome to changes in the composition of mothers over the economic 

cycle. To the extent that selection in maternal timing oscillates with the economic cycle, these forces 

could also influence cyclicality in mortality.  

 A set of recent analyses have demonstrated that the extent of pro-cyclical mortality appears 

to be declining over time in the U.S. (McInerney et al., 2012; Stevens et al., 2012; Ruhm 2015). Such 

an observation would be consistent with a role for a pollution mechanism in pro-cyclical mortality 

given that average air concentrations of pollutants have trended down over the period as well. Also 

consistent with an air pollution mechanism, mortality specifically attributable to cardio-respiratory 

causes has declined, but remains significantly pro-cyclical (Ruhm, 2015). 

Because we employ an identification strategy relying on atmospheric phenomena, it is 

essential that we account for other channels through which weather outcomes may influence health. 

These concerns take two general forms. First, a primary issue is that contemporaneous weather 

outcomes may be correlated with the presence of inversions and may influence health outcomes 

independently from the pollution concentration mechanism of the inversions. The most obvious of 

these factors is temperature (Basu and Samut, 2002; Deschênes and Greenstone 2007; Barreca et al., 

2013). Extreme temperature, both hot and cold has been associated with elevated mortality in the 

United States. Importantly, Deschênes and Greenstone (2011, p156) note that “our review of the 

literature suggests that the full mortality impacts of cold and hot days are likely to be concentrated 

within 30 days of the exposure.” As our analysis is at the month level, temperature is likely to be 

both correlated with the presence of inversions and to play a role in driving mortality. We thus 

include a very flexible set of controls for temperature including monthly means for morning and 

afternoon temperatures up to a fourth degree polynomial as well as mean daily max and min 

temperatures. 

Several additional weather concerns are precipitation, cloud cover, humidity, and wind 

speeds, which we control for in this analysis. Heutel and Ruhm (2013) document that high levels of 

precipitation are correlated with lower levels of ambient air pollution. Similarly, cloud cover may 

reduce formation of ozone at the ground level. Humidity on the other hand, may have an 



 
 

independent impact on mortality. Specifically, it can play a role in driving mortality through two 

channels. First, humidity may directly influence mortality by inhibiting sweat and aggravate the 

impact of heat or by promoting the spread of factors known to damage respiratory health such as 

bacteria and fungi. Second it may indirectly cause fatalities by facilitating the spread of airborne 

diseases like influenza (Barecca, 2012; Barecca and Shimshack, 2012). Finally, because wind patterns 

may help transport and disperse pollutants, we include controls for morning and afternoon wind 

speeds.   

Second, because many important features of weather, including inversions, exhibit some 

seasonal variation, a range of correlated seasonal forces may otherwise contaminate the estimation 

For example, Buckles and Hungerman (2013) demonstrate that season of birth is associated with 

well-being later in life, suggesting that maternal choices may influence birth outcomes. It is also 

possible that maternal characteristics which correlated with seasonality may influence mortality 

outcomes. Similarly, Barreca et al., (2015) demonstrate that days above 80°F decrease birth rates 8-10 

months later, with a rebound later suggesting that weather patterns should not be entirely divorced 

from timing of birth. To address these concerns, we include we include either month or season fixed 

effects and discuss our approach to seasonality further in Section V.   

 

IV. Thermal Inversion and Pollution 

Thermal inversions are a common meteorological phenomenon in many regions of the 

world. Normally, temperature in the troposphere falls with altitude at about 6.5 degrees Celsius per 

kilometer. Thermal inversions refer to episodes where this normal gradient is reversed, resulting in a 

mass of hot air on top of a mass of cold air. This may occur for a number of reasons: radiation of 

heat from the earth on cold nights (radiation inversions), sinking motions associated with high 

pressure systems (subsidence inversions), and advection of warm air over a cooler air mass 

(advection inversions).  

Whichever its source, thermal inversions generally impede vertical circulation of air, resulting 

in trapped pollutants near the ground. The relationship between thermal inversions and air pollution 

has been well documented in the atmospheric science literature (Bailey et al., 2011, Iacobellis 2009, 

Finardi 2001). This literature has found that some pollutants are more responsive to thermal 

inversions than others. For example, Finardi (2001) finds that carbon monoxide (CO) responds 

quickly to inversions, while other pollutants such as particulate matter of less than 10 µm (PM10) 

and nitrogen oxides (NOx) show more complex responses. 



 
 

In order to maximize the coverage of our instrument, we use data from the NARR reanalysis 

model described in Section II, that interpolates information from atmospheric and weather stations 

to produce thermal inversion information for every three-hour interval and every 322 km quadrant 

of the United States between the years of 1980 and 2004. In order to aggregate this data at the 

county-month level, we proceed in several steps. First, we generate a measure of inversion strength 

(the lapse rate, or temperature difference between the upper and lower boundary layers divided by 

distance between these layers) for every three-hour interval and every quadrant where a pollution 

station can be found.  Through experimentation, we found that the relationship between thermal 

inversion strength and pollution is non-linear and that pollution responds differently to morning 

thermal inversions than to afternoon thermal inversions. Thus, we constructed average strength in 

the morning and the afternoon for each day and generated indicator variables for three levels of 

strength: low strength (lapse rate between 0 and 10), medium strength (lapse rate between 10 and 

30) and high strength (lapse rate above 30). We then aggregated each of these six indicators (three 

for morning inversions and three for afternoon inversions) at the month-station level and we 

averaged them across stations within a county. The six resulting variables can be roughly interpreted 

as the number of days in a given month with a morning or afternoon inversion that fell within each 

of the three levels of strength. Summary statistics for these six measures are presented in Table 3. 

As we discuss later in this section, we restrict the variation of thermal inversions to that over 

time within a county (net of weather controls, year, and season fixed effects). This is important for 

identification, as it eliminates potential selection effects that can generate spurious cross-sectional 

correlation between pollution and mortality. However, it is important to verify that our results are 

not driven by a few counties that experience thermal inversions and that the phenomenon is 

widespread in our sample. Appendix Figure 1 characterizes the time variation within counties as a 

function of the average number of thermal inversions (in each of our six categories) a county has. 

The vertical lines connect the average 25th and 75th percentiles of inversion counts for each decile of 

mean inversion counts by county. The top three panels correspond to the three strength levels of 

morning inversions, while the bottom three panels correspond to the three strength levels of 

afternoon inversions. Note that for most of our inversion indicators, counties with the lowest 

average counts have plenty of months with an elevated number of inversions. And even when we 

focus on the inversions that are rare in most counties (like the medium and high strength afternoon 

inversions), we find that about half of the counties have experienced at least one of them.  

 



 
 

Thermal inversions tend to follow seasonal patterns and are correlated with weather 

variables. However, these patterns are not constant across regions or time of the day. Figure 1 shows 

the average number of inversions in each strength category across months of the year and times of 

the day. On average, morning inversions tend to be more frequent in the summer months while 

afternoon inversions are more frequent in the winter months. Because weather and seasons may 

have independent effects on mortality, our research design uses the residual variation in the 

occurrence of thermal inversions after controlling for flexible functions of weather and seasonal 

effects as well as county and year fixed effects. This residual variation is likely to meet the exclusion 

restriction when used as an instrument for air pollution in the estimation of a dose-response 

function. The seasonal nature of thermal inversions poses a challenge for estimation. Much of the 

variation in their occurrence is lost whenever we aggregate over weeks, or months.  

Although for most of the analysis we will restrict our pollution measure to CO, it is 

important to document the relationship that thermal inversions may have with other pollutants as 

the estimated marginal effects of CO on health will carry the impacts of these other pollutants. 8 

Table 4 presents the results of our basic first stage. Each column shows the OLS estimates of the 

coefficients on thermal inversion indicators, ,6,...,1ˆ =KKγ  as well as their standard errors in the 

following specification: 

( ) ctcttct

6

1k
kctk0ct gSCYIP µ+++++γ+γ= ∑

=

W  (1) 

where Pct are measures of pollution, in county c at time t. Cc and Yt denote county and year fixed 

effects and St denotes either month fixed effects (columns 1, 3, 5 and 7) or season fixed effects 

(columns 2, 4, 6 and 8). Wct is a vector of weather controls as discussed in Section II. 

Columns 1 and 2 show the effect of thermal inversions on CO. The first column controls 

for seasonality using month effects, while the second one uses season indicators. There are several 

things to note. First, the interpretation of the magnitude of our coefficients should be made 

considering the dependent variable corresponds to monthly averages of air pollution while thermal 

inversions are measured in the number of mornings or afternoons in that month with a thermal 

inversion episode. Thus, an additional medium strength inversion in the afternoon per month 

increases monthly averages of CO concentrations by about 1 percent (column 1). However, this 

would amount to an increase of 33.7 percent of the average concentration on the day the inversion 

                                                           
8 See Section II for a further discussion of this choice. 



 
 

occurred. Second, there are important non-linearities in the relationship between our measure of 

inversion strength and CO concentrations, with the effect leveling off (and becoming more 

imprecise) for lapse rates above 30. Third, morning and afternoon inversions have independent 

effects on CO, and these effects are of different magnitudes. This is not surprising, as we can see 

from Figure 1 that these two types of inversions follow different seasonal patterns. They are also 

likely to emerge from different mechanisms: for example, radiation inversions are strongest at 

sunrise, while subsidence inversions are more common in the afternoon (Iacobellis et al., 2009). 

Fourth, using month controls instead of season controls reduces the residual variation in thermal 

inversions substantially. This can be observed by comparing the Kleibergen-Paap rk Wald F statistic 

reported in the second to last row between columns 1 and 2. This test statistic is akin to an F-test 

statistic of joint significance but also accounts for clustered errors, and is here forth referred to as 

the KP statistic.  

The seasonal nature of thermal inversions poses a challenge for estimation. Given that we 

are limiting the variation of thermal inversions by controlling for year, county, and seasonal fixed 

effects, much of the remaining variation in their occurrence is lost whenever we aggregate over 

months. Thus the predictive power of thermal inversions at the month level is limited. 9 Note, 

however, that the fact that we have different inversion indicators with independent effects on air 

pollution allows us to leverage multiple-instrument solutions to the weak instrument problem. As we 

discuss in Section V, all of our IV estimates will be performed using limited information maximum 

likelihood estimation (LIML), which makes the most efficient use of the multiple dimensions to our 

instrument. Thus, the KP test statistic reported in each column can be compared with a critical value 

of 4.45, which is the critical value for the weak instrument test based on the LIML size for a 

maximum bias of 10 percent, in order to test for weak instruments in our context. 

Columns 3 to 8 show the corresponding estimates for the remaining pollutants. Note, 

however, that the sample sizes for these other pollutants are much smaller. In these columns, not 

only is the number of counties covered different, but also the time frame varies. In the case of 

particulate matter under 10 µm (PM10), we only have observations after 1990. Aside from this being 

a regularity noted before in atmospheric science literature, sample size is surely one of the reasons 

                                                           
9 The F-stats on the joint significance of our thermal inversions at the week level are about twice as large whenever we 
aggregate over weeks as opposed to months. In future versions of this paper, we would like to exploit weekly variation in 
thermal inversions, which is the time window that has been previously used in the literature that documents the short-
run relationship between pollution and infant mortality (Arceo et al. 2015, Neidell and Currie, 2005). Aggregating 
mortality data at the week level would require us to know the exact date of birth (for infants) and the exact date of death. 
Thus, we will expand our analysis to the week level once we gain access to confidential data of this sort. 



 
 

why the relationship between thermal inversions and pollution is less strong in the case of PM10 and 

nitrogen oxides (NOx). In contrast with PM10 and NOx, ozone appears to have a much stronger 

relationship with thermal inversions. The atmospheric science literature has found a link between 

subsidence inversions and ozone pollution common in Southern California (Iacobellis, 2009) and 

between summer inversions and ozone (Finardi et al., 2001). However, some papers have also found 

negative correlations between inversions and ozone, presumably due the sunlight-blocking effect 

they often have (Janhall et al., 2006). Our results in Table 4 are consistent with both of these 

findings: afternoon inversions appear to be negatively correlated with ozone, while morning 

inversions appear to be positively correlated with ozone. We would like to explore the independent 

effect of inversions in these two pollutants in future versions of this paper, where we can expand 

our sample to counties with confidential mortality information and explore specifications at the 

week level to maximize the variation of our instrument.10 In this version, we restrict our estimates to 

CO in order to maximize the sample size. 

 

V. Empirical Framework 

Previous literature has explored air pollution as a mechanism in the pro-cyclicality of 

mortality rates by examining changes in the coefficient on unemployment after controlling for 

measures of air pollution in the specification. There are a couple of challenges with this approach. 

The first and most important one is that there are likely omitted determinants of mortality that are 

correlated with unemployment and air pollution. This may be true even when controlling for 

location-specific fixed effects and time fixed effects as the omitted variables may be time varying at 

the local level. The second challenge is that average air pollution readings are noisy proxies for air 

pollution exposure at the county level. Although this should not cause bias in the estimation of the 

unemployment coefficient, measurement error on the air pollution variable is akin to measurement 

error in the left-hand-side variable and increases standard errors of the estimates. 

In order to address these two empirical challenges, we propose using thermal inversions as 

an instrumental variable strategy that can shed light on the importance of air pollution as a causal 

mechanism behind the negative correlation between mortality and unemployment rates. The 

advantages of our empirical strategy are apparent through a careful examination of all possible causal 

relationships between omitted variables and the three variables of interest: air pollution, 

unemployment and mortality.  
                                                           
10 See footnote 9. 



 
 

In order to do see this, it is useful to think of a concrete example of a time-varying omitted 

factor that can exert an influence on all three variables; although in practice, many other omitted 

factors could be at play. Figures 2A and 2B illustrate the chain of causal events starting with a 

change in environmental regulations that could result in a biased air pollution coefficient estimate. 

The arrows in Figure 2A depict the causal relationships between a change in environmental 

regulation on one hand and air pollution and unemployment on the other. Note that in this example, 

we would expect both variables of interest to respond directly to the change in regulation, but they 

could also respond to changes in each other (for example, if reductions in economic activity 

decrease air pollution).  

Figure 2B adds mortality to the picture. Note that both air pollution and unemployment 

could have an effect on mortality. Although, the causal effect of unemployment on mortality could 

operate through several omitted mechanisms such as wage income, changes in health behaviors, etc. 

Importantly, omitted factors could also have direct effects on mortality that can be potentially 

correlated with both air pollution levels and unemployment. In our example, a change in 

environmental regulation could have effects on non-wage income, public service provision, and 

prices. Thus, the coefficient on air pollution in a fixed effects regression could pick up influences 

from a number of these mechanisms.  

Figures 3A and B illustrate our empirical strategy. As explained in Section III, thermal 

inversions are an arguably an exogenous source of variation for air pollution. They do not 

“produce” pollution, but instead trap existing pollution near the ground raising concentration rates. 

Using thermal inversions as an instrument for air pollution eliminates some of the causal channels in 

Figure 1: namely, those that run from unemployment to air pollution and from omitted factors to air 

pollution. Note, however, that the coefficient on unemployment will still pick up the effect of any 

pollution variation that is unrelated to thermal inversions (Figure 3A). Thus, comparing the 

coefficient on unemployment with and without the air pollution control is not a reliable test of the 

importance of the air pollution mechanism under this empirical strategy.  

Instead, we can use the exogenous variation provided by thermal inversions in a different 

way. We can test whether the unemployment coefficient changes in the presence of thermal 

inversions: i.e. does economic activity affect mortality more whenever a thermal inversion is present, 

as depicted in Figure 3B? This test can be easily implemented by looking at the sign and significance 

of the interaction between air pollution and unemployment, where we use the interaction of thermal 

inversions and unemployment as instruments. Equation (2) formalizes our research strategy  



 
 

 

𝑀𝑀𝑐𝑐𝑐𝑐 =  𝛼𝛼 + 𝛽𝛽1𝑈𝑈𝑐𝑐𝑐𝑐 + 𝛽𝛽2𝑃𝑃𝑐𝑐𝑐𝑐� + 𝛽𝛽3𝑃𝑃𝑐𝑐𝑐𝑐𝑈𝑈𝑐𝑐𝑐𝑐� + 𝑌𝑌𝑐𝑐 + 𝐶𝐶𝑐𝑐 + 𝑆𝑆𝑐𝑐 + 𝑓𝑓�W 𝑐𝑐𝑐𝑐� + 𝑢𝑢𝑐𝑐𝑐𝑐 (2) 

 

Here, Mct and Uct denote the mortality and unemployment rate for county c in month t, 

while 𝑃𝑃𝑐𝑐𝑐𝑐�  and 𝑃𝑃𝑐𝑐𝑐𝑐𝑈𝑈𝑐𝑐𝑐𝑐�  denote the first stage estimates of carbon monoxide concentration and its 

interaction with the unemployment rate using thermal inversions and the interaction of thermal 

inversions and unemployment rate as instruments. A negative sign on the coefficient of the 

interaction term, β3, would be consistent with stronger pro-cyclicality of mortality during thermal 

inversion episodes. Since thermal inversions can only accentuate air pollution but not any of the 

other mechanisms at play, this test is not subject to bias from alternative mechanisms that may be 

spuriously correlated with air pollution. 

Note that equation (2) controls for year fixed effects, Yt, and county fixed effects, Ct, to 

make the unemployment rate variation comparable to the previous literature, which uses panel 

methods at the year, county level. We also control for seasonality through either 12 month or 4 

season indicators, represented by St, for a few reasons as discussed previously. First, to reiterate, as 

the previous literature has conducted the analysis at the year level, we want to make sure that the 

estimates of β1 are not driven by seasonal variation in unemployment and mortality. Second, as 

discussed in Section IV, thermal inversions often follow seasonal patterns. Thus, if deaths follow a 

seasonal pattern independently of weather (which we control for), the seasonal variation in thermal 

inversions could pick up spurious variation in mortality. Finally, births, which constitute the 

denominator of our neonatal mortality measure in some specifications, could also follow a seasonal 

pattern. To further address the seasonality in births, as well as any effect of pollution on birth 

patterns, we also estimate equation (2) using log-deaths as a dependent variable and controlling for 

the number of births in either the current month (for neonatal deaths) or the last year (for post-

neonatal deaths). 

 

VI. Analysis and Results 

We start by documenting the procyclicality of mortality in our data set, which is restricted to 

the 212 counties with non-confidential births, deaths and population counts at the month level, and 



 
 

is derived from month level as opposed to year level data.11 Table 5 shows that the procyclicality in 

our data is of similar magnitude than what has been documented in previous studies: a one 

percentage point increase in unemployment reduces mortality by 0.8 percent.12 Also consistent with 

the previous literature, we find evidence that pro-cyclical mortality is stronger among infants and 

adults older than 70 years old and driven predominantly by the pre-1990 period.  

We disaggregate our main results for all age groups and for all causes of death in Table 6. 

First, we replicate the panel approach of Heutel and Ruhm (2014) for our sample. Columns 1, 2, 5, 

and 6 present the results of a fixed effects regression that controls for a flexible function of weather 

variables, year and county fixed effects, and seasonality controls (either month or season indicators). 

In contrast with Heutel and Ruhm (2014), we do not control for demographic characteristics, as the 

exclusion restriction in our research design should hold without them. We find that the reduction in 

the coefficient on unemployment when we control for carbon monoxide is generally very small (of 

about 4 percent with month controls and of about 5 percent with season controls). Note that unlike 

Heutel and Ruhm (2014), we are only controlling for a single pollutant.  

Columns 3 and 7 show the IV analogue of columns 2 and 6, respectively; where carbon 

monoxide is instrumented using our six indicator variables for thermal inversions. First, we find that 

our IV results are fairly sensitive to including month vs. season controls: while the effect of carbon 

monoxide on mortality appears to be positive and significant at the 1 percent level in column 7, the 

effect is negative and indistinguishable from zero in column 2. This is likely the result of weak 

instruments bias due to the aggregation of variation at the month level and the fact that a lot of the 

variation in thermal inversions is of seasonal nature: the KP statistic reported again in the second to 

last row of Table 6 is just below the critical value when including month FE and is substantially 

larger when including season FE.  

As discussed in Section IV, the seasonal nature of thermal inversions means that much of 

the variation in their occurrence can be swept out by month fixed effects. Recall, however, from 

Figure 1 that this seasonal variation is not constant across type of inversions, and variation across 

types of inversions should therefore yield variation across regions. Controlling for month fixed 

effects prevents us from exploiting all of these nuances in the variation. Thus, the tradeoff between 

columns 3 and 7 is best described as one between potential fortuitous correlation between the exact 

seasonal pattern in thermal inversions and mortality on one hand and weak instruments on the 
                                                           
11 We also restrict to those counties where CO information is available in order to keep samples consistent across 
specifications. 
12 Mean of overall mortality is 68.66 in our data set. 



 
 

other.  

Recall from Section V, that by using an IV we are restricting the variation in air pollution to 

that of an exogenous source, and we would not necessarily expect the coefficient on unemployment 

to change in response to the inclusion of pollution in the regression. This is because the coefficient 

on unemployment in columns 3 and 7 may still pick up the effect of air pollution on mortality to the 

extent that air pollution is correlated with the business cycle. Our test for the air pollution 

mechanism relies instead on testing for the magnitude and sign of the interaction between air 

pollution and unemployment. A negative interaction coefficient would be consistent with peaks in 

the business cycle being more deadly when combined with a thermal inversion episode prone to 

increase CO concentrations. As thermal inversions are unlikely to enhance any mechanism of pro-

cyclicality outside of the air pollution mechanism, this would constitute strong evidence for the 

importance of the air pollution mechanism. 

 Columns 4 and 8 show the results of estimating specification (2) using our six thermal 

inversion indicators and their interaction with unemployment rate as instruments.13 The interaction 

term is close to zero in both cases and negative in column 8, although insignificant. In terms of the 

magnitude, column 8 suggests that a series of thermal inversion episodes capable of increasing 

monthly mean CO concentrations by 10% (increasing the monthly average by 0.1 ppm) would result 

in an increase in the pro-cyclicality of mortality by approximately 13%.   

Results turn more definitive when looking at mortality causes associated with air pollution 

exposure. Table 7 presents IV estimates for cardiorespiratory and all internal causes of death. As the 

previous literature shows, restricting to cardiovascular and respiratory causes of death, can reduce 

estimation error and improve estimate precision (Arceo et al., 2015). Consistent with this, Table 7 

shows a negative and significant coefficient on the interaction term in Column 4. The magnitude of 

the interaction is quite large: a series of thermal inversion episodes capable of doubling monthly 

mean CO concentrations (increasing the monthly average by 1 ppm), would increase pro-cyclicality 

of mortality by close to 220 percent. Note, of course, that “doubling the CO concentration” is just a 

mental exercise to assess the magnitude, as a thermal inversions effect of that magnitude is 

implausible (or at least out of sample). We find similar results when looking at all internal causes of 

death (all causes except for homicides, suicides and accidents), but standard errors are much larger 

yielding non-significant coefficients. 

We also estimate results for external causes (homicides, suicides and accidents) (Table 8). 
                                                           
13 The estimates of the first stage equations for columns 4 and 8 are reported in Appendix Table 3. 



 
 

These results are somewhat puzzling. Consistent with previous findings for non-suicide external 

deaths (Ruhm, 2015; Miller et al., 2015), external deaths in our sample are also pro-cyclical, 

particularly in the early period. However, in contrast with previous literature that uses the same 

research design (Arceo et al., 2015), we find that pollution has a negative effect on external deaths. In 

contrast with our results for cardiovascular and respiratory diseases, which are mainly driven by 

elderly, this result is persistent in younger age groups. We also find a positive interaction effect of 

pollution and unemployment, which would suggest that pro-cyclicality in external deaths is weaker in 

the presence of thermal inversions.  

As we mentioned in the introduction, previous literature has found that the age-groups that 

drive pro-cyclicality are young children and elderly. These also have been the groups whose death 

rates are most responsive to air pollution (Currie and Neidell 2005, Schwartz and Dockery, 1992). 

We therefore estimate equation (2) by age-group in Table 9. For succinctness, we show only the 

results with season as opposed to month fixed effects, although results are fairly similar across these 

two specifications. Panel A shows the results for non-elderly and non-infants (2-59 year olds) as well 

as elderly groups. Consistent with the previous literature, we find increasing effects of air pollution 

on mortality by age, with the largest and most significant results for adults older than 80 years. For 

this group, an increase in CO concentrations of one standard deviation (0.64 ppm) would lead to a 

8.6 percent increase in mortality (mean mortality in this group is 920.29). This effect is substantially 

higher than its FE counterpart: a 1.5 percent increase that is not significantly different from zero.14 

We also find negative interaction effects for all age groups, although the effects for the oldest group 

is again the largest and most significant. With a baseline pro-cyclicality of 3.269, a thermal inversion 

episode capable of increasing CO by one unit (about a 100% increase) would increase pro-cyclicality 

by 300%. 

Panel B of Table 9 shows the infant mortality estimates. When using mortality rates with 

births in the last month and births in the last year as denominators (except for the previous month), 

we find a negative effect of air pollution on neonatal mortality. This is true whether we control for 

month fixed effects (results not shown) or season fixed effects. We also find that thermal inversions 

decrease the pro-cyclicality of neonatal (column 2) and post-neonatal mortality (column 4). We 

suspect these opposite signs are related to pollution affecting birth patterns (such as increasing pre-

term births) and composition of births (such as positive selection, or survival of the healthiest). Thus 

in columns 5 to 8 we estimate a slightly different specification: we use log of deaths as the 
                                                           
14 Result not reported. 



 
 

dependent variable and we control for the log of births (in either the previous month or the 

remaining months of last year). This specification would isolate the effect of deaths from the effect 

on birth patterns. However, it would not get rid of composition effects induced by air pollution. 

Our log results still show a negative effect of pollution on neonatal deaths, but a positive and 

significant effect on post-neonatal deaths. The interaction with thermal inversions, however, is 

positive and non-significant in both cases. 

Another way of using the variation in thermal inversions to uncover the air pollution 

mechanism in the pro-cyclicality of mortality is through the reduced form. This alternative 

specification has the advantage of encompassing the effect of pollutants other than carbon 

monoxide. Note, however, that our afternoon thermal inversion indicators have a negative effect on 

ozone. As the functional form on the reduced form effect of thermal inversions does not try to 

mimic the variation in any pollutant in particular, the interaction results will confound these two 

opposing effects even more so than the IV.  Although, our IV results should also be subject to bias 

from omitting ozone.  

Table 10 shows the reduced form results by cause of death. The last two rows report the 

joint test for all interactions between thermal inversion indicators and unemployment. The 

interaction effects are negative for the most part, especially for afternoon inversions (which are the 

most predictive of CO) and cardiovascular and respiratory deaths (columns 5 and 6). A negative 

interaction effect is consistent with thermal inversions being positively associated with air pollution 

and mortality being more pro-cyclical during thermal inversion episodes. Note, however, that low 

strength morning inversions have a negative effect on mortality and their interaction with 

unemployment is positive. The sign could be explained by the fact that low strength morning 

inversion episodes are shown to have a negative effect on several pollutants in Table 4. The statistic 

for the joint test of significance of the interaction terms as well as its p-value are given in the last two 

rows of Table 10. In most cases, the null hypothesis of joint non-significance can be rejected at high 

levels of confidence. 

The last thing we explore is whether or not the air pollution mechanism is still present in the 

post-1990 period. As noted at the beginning of this section the overall pro-cyclicality of mortality is 

driven by the data in the pre-1990 period. This could be because either air pollution is no-longer a 

health concern or because other sources of counter-cyclicality have strengthened. By estimating 

equation (2) by period, we can test whether the air pollution mechanism is still present after 1990 

even if overall pro-cyclicality is not. Table 11 presents these results. We find that the interaction 



 
 

effect between carbon monoxide and thermal inversions is still negative and of similar magnitude in 

the post-1990 period, although less precisely estimated (with the exception of monthly 

cardiorespiratory causes). We also find a strong effect of carbon monoxide whenever we control for 

seasonal fixed effects instead of month fixed effects in the post-1990 period. This suggests that the 

air pollution mechanism is still very much present in the post-1990 years. 

 

VII. Conclusion 

 An existing literature has documented pro-cyclical mortality in the US. We extend this 

literature by measuring the causal influence of air quality on pro-cyclical mortality. To disentangle 

the air-pollution mechanism from other forces which may link business cycles and health, we 

construct an instrumental variable (IV) based on thermal inversions and compare mortality rates 

across counties that experienced similar business cycles, but were subject to different intensity and 

frequency of inversions. 

 Our analysis confirms several features of the previous literature at the month county level of 

analysis, including that observed pro-cyclicality is primarily driven by co-movement in the economy 

and mortality rates for the elderly and infants, and is stronger in the 1980s and 1990s. At the month 

level of analysis, the inclusion of controls for carbon monoxide do little by themselves to attenuate 

the strength of pro-cyclical mortality. This may be partially attributable to measurement error in 

pollution, measurement error in county level unemployment statistics, or both. It may also represent 

the fact that the unemployment coefficient itself may pick up some of the effect of air pollution on 

health outcomes. 

 We show that thermal inversions are significant predictors of air pollution concentrations. 

When we instrument for carbon monoxide and interact this instrument with unemployment, we find 

that air pollution attenuates pro-cyclicality. Importantly, restricting to either to cardiovascular and 

respiratory cases of death produces evidence of an economically significant and meaningful role for 

air pollution in influencing mortality over the business cycle. These impacts are concentrated largely 

among the elderly. Finally, we find evidence of an effect of carbon monoxide in the post-1990 

period suggesting that despite the general decline in atmospheric concentrations of many pollutants, 

the air pollution mechanism is still very much a salient health concern. 

Given that we are limiting the variation of thermal inversions by controlling for year, county, 

and month or seasonal fixed effects, much of the remaining variation in their occurrence is lost 

whenever we aggregate over months. Thus the predictive power of thermal inversions at the month 



 
 

level is limited. In future analysis we intend to expand our sample to counties with confidential 

mortality information and explore specifications at the week level to maximize the variation of our 

instrument. In addition to using more disaggregated mortality and pollution evidence to precisely 

uncover the role of air pollution in driving mortality, we would also like to explore the independent 

effect of inversions across separate pollutants in future versions of this paper. 
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Figure 1: Seasonality in Inversions
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Air Pollution Obs Mean  Std. Dev.

Carbon Monoxide (ppm) 49,899 1.03 0.64

Ozone (ppm) 29,503 0.02 0.01

Nitrogen Oxides (ppb) 15,623 41.02 25.53

Particulate Matter 10 (μg/m
3
) 4,982 26.06 10.46

County Characteristics Obs Mean  Std. Dev.

Population 49,899 704,372   902,783    

Unemployment Rate (%) 49,899 6.06 2.91

County Meterological Averages Obs Mean  Std. Dev.

Temperature (Morning) 49,899 11.65 9.18

Temperature (Afternoon) 49,899 13.22 9.41

Temperature (Max Daily) 49,899 17.17 9.63

Temperature (Min Daily) 49,899 8.82 8.93

Humidity (Morning) 49,899 47.00 16.25

Humidity (Afternoon) 49,899 47.96 16.66

Cloudcover (Morning) 49,899 75.28 15.03

Cloudcover (Afternoon) 49,899 69.29 12.67

Precipitation (Morning) 49,899 0.29 0.25

Precipitation (Afternoon) 49,899 0.26 0.24

Windspeed (Morning) 49,899 3.77 0.96

Windspeed (Afternoon) 49,899 4.08 1.06

Table 1: Summary Statistics

Notes: Analysis sample, 1980-2004. County-month means. County characteristics and

meteorological summary statistics are presented for all counties with concurrently available

carbon monixide data and publicly available mortality data.



Monthly Mortality Rates as deaths per 100,000 Obs Mean  Std. Dev.

Neonatal (28 Days and Younger)

All Causes 49,899 586.67 478.48

Non-External Causes 49,899 569.86 469.40

External Causes 49,899 16.81 79.99

Respiratory & Cardiovascular Causes 49,899 137.61 222.62

Infant Mortality (1 Month to 1 Year)

All Causes 49,896 33.57 33.10

Non-External Causes 49,896 26.61 28.21

External Causes 49,899 6.95 14.44

Respiratory & Cardiovascular Causes 49,894 5.01 11.25

Mortality (60-69 Years)

All Causes 49,899 143.09 37.73

Non-External Causes 49,899 138.53 37.05

External Causes 49,899 4.57 4.83

Respiratory & Cardiovascular Causes 49,899 65.44 24.46

Mortality (70-79 Years)

All Causes 49,899 325.19 67.54

Non-External Causes 49,899 317.79 66.53

External Causes 49,899 7.40 8.85

Respiratory & Cardiovascular Causes 49,899 176.04 51.87

Mortality (80-89 Years)

All Causes 49,899 920.29 165.87

Non-External Causes 49,899 901.45 163.50

External Causes 49,899 18.85 19.64

Respiratory & Cardiovascular Causes 49,899 602.15 145.88

All Other Age Groups

All Causes 49,899 16.22 5.26

Non-External Causes 49,899 12.25 4.30

External Causes 49,899 3.97 1.95

Respiratory & Cardiovascular Causes 49,899 4.44 1.98

Table 2: Mortality Rates by Age Group

Notes: Analysis sample, 1980-2004; All counties with available carbon monoxide data and

publicly available mortality data. Appendix table A4 provides the ICD code classifications

associated with each broad category of mortality.



Obs Mean  Std. Dev.

Morning Thermal Inversions per Month

Low Strength 49,899 11.86 6.15

Medium Strength 49,899 11.55 6.13

High Strength 49,899 3.70 3.91

Afternoon Thermal Inversions per Month

Low Strength 49,899 17.30 7.29

Medium Strength 49,899 2.14 3.51

High Strength 49,899 0.83 1.68

Table 3: Inversion Summary Stats

Notes: Analysis sample, 1980-2004; All counties with available carbon monixide data and

publicly available mortality data.



Dependent Variable: 

(1) (2) (3) (4) (5) (6) (7) (8)

Full Period (except for PM10)

Morning Thermal Inversions per Month

Low Strength 0.00384 -0.00297 0.15403* 0.12924* -0.05443 -0.55651 0.00017* 0.00030***

(0.00255) (0.00351) (0.09216) (0.07430) (0.26653) (0.35486) (0.00010) (0.00009)

Medium Strength 0.00691** 0.00223 0.17391 0.17036 0.00301 -0.26718 0.00031*** 0.00042***

(0.00284) (0.00355) (0.14591) (0.12928) (0.28226) (0.33784) (0.00011) (0.00010)

High Strength 0.00630 -0.00006 0.28114 0.27851* 0.32591 -0.10405 0.00027** 0.00039***

(0.00460) (0.00558) (0.18716) (0.16630) (0.40494) (0.54910) (0.00012) (0.00012)

Afternoon Thermal Inversions per Month

Low Strength -0.00138 0.00270* -0.04308 -0.01634 0.27526 0.40784*** -0.00014*** -0.00020***

(0.00180) (0.00146) (0.05943) (0.05672) (0.16995) (0.14786) (0.00005) (0.00004)

Medium Strength 0.01133** 0.02113*** -0.14804 -0.12492 1.07866*** 1.68001*** -0.00047*** -0.00061***

(0.00443) (0.00542) (0.09942) (0.09586) (0.35950) (0.44696) (0.00013) (0.00011)

High Strength 0.01584 0.03215** -0.46180* -0.43553* 1.35340* 2.73245*** -0.00086*** -0.00105***

(0.01078) (0.01402) (0.27695) (0.23337) (0.80723) (0.99997) (0.00016) (0.00019)

Seasonality controls Month FE Season FE Month FE Season FE Month FE Season FE Month FE Season FE

Mean of dependent variable 1.0339 1.0339 26.0572 26.0572 41.0153 41.0153 0.0248 0.0248

Std. dev. of dependent variable 0.6378 0.6378 10.4556 10.4556 25.5283 25.5283 0.0097 0.0097

Weak Instruments (KP) Statistic 4.478 6.472 1.695 2.401 1.809 4.84 8.683 13.57

Observations 49,899 49,899 4,982 4,982 15,623 15,623 29,503 29,503

Notes: Dependent variable is the air pollution concentration in parts per million (for carbon monoxide, nitrogen oxides, and oxone) or µg per cubic meter (for particulate

matter). Regression are run at the county-month level. Controls include year fixed effects, county fixed effects, morning and afternoon temperature (each up to a 4th degree

polynomial), daily max temperature, daily min temperature, morning and afternoon humidity, precipitation, windspeed. The first column in each pair includes month

indicators as seasonality controls, while the second column includes season fixed effects. Standard errors are clustered at the county level. Estimates are weighted by total

population. The second to last row reports the Weak Instruments Kleibergen-Paap rk Wald F statistic. This statistic can be compared with a critical value of 4.45, which is

10% maximal LIML size critical value for the weak instrument test (Stock and Yogo, 2001). Columns 3 and 4 for PM10 only include observations post-1990.

   *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

Table 4: Thermal Inversions and Pollution

Pollution Concentration

Carbon Monoxide Particulate Matter 10µm Nitrogen Oxides Ozone



Dependent Variable: 

All age groups 1-59 Neonatal Infant 60-69 70-79 80+

(1) (2) (3) (4) (5) (6) (7)0 1 2 3 4 5

Full Period -0.50711*** -0.06577** -5.11544 -0.87868*** -0.03660 -0.73612*** -1.46390

County Unemployment Rate (%) (0.10650) (0.02868) (3.41144) (0.23496) (0.14026) (0.27910) (0.93347)

Pre-1990 -0.28510*** -0.08959*** 1.89074 -0.38583 0.00053 -0.09336 -2.33673**

County Unemployment Rate (%) (0.08622) (0.02654) (4.51875) (0.28183) (0.26815) (0.38969) (0.98774)

Post-1990 0.19452** 0.11778** 8.82125*** -0.01735 0.05407 -0.20379 -2.63599**

County Unemployment Rate (%) (0.09455) (0.05112) (2.70922) (0.10600) (0.18046) (0.37069) (1.06438)

Table 5: Mortality over the Business Cycle

Age-Specific Mortality Rates

Notes: Dependent variable is the log of age-specific mortality rates. Regression are run at the county-month level. Number of observations range from 49,899 for the

full period to 18,632 for the Pre-1990 period, and 31,267 for the post 1990 period. Controls include month fixed effects, year fixed effects, county fixed effects, morning

and afternoon temperature (each up to a 4th degree polynomial), daily max temperature, daily min temperature, morning and afternoon humidity, precipitation,

windspeed. Standard errors are clustered at the county level. Estimates are weighted by the population of the relevant age group. 

   *** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level.



(1) (2) (3) (4) (5) (6) (7) (8)

Unemp Rate (%) -0.49485*** -0.47560*** -0.51738*** -0.55680 -0.50711*** -0.48005*** -0.47121*** -0.18074

(0.10578) (0.10639) (0.10006) (0.34166) (0.10650) (0.10594) (0.10644) (0.38648)

CO 1.49624** -1.75082 -3.42013 1.95460*** 2.59345** 3.38739

(0.74053) (1.72911) (2.89365) (0.69588) (1.17582) (2.12397)

CO * Unemp Rate 0.01601 -0.25096

(0.23443) (0.26684)

Seasonality controls Month FE Month FE Month FE Month FE Season FE Season FE Season FE Season FE

Weak Instruments (KP) Statistic 4.478 5.739 6.472 5.791

LIML 10% Bias Critical Value 4.450 3.58 4.450 3.58

Notes: Dependent variable is the log of the mortality rate. There are 49,899 observations in all specifications. Table 4 presents the first stage IV regression

results. Controls include year fixed effects, county fixed effects, morning and afternoon temperature (each up to a 4th degree polynomial), daily max

temperature, daily min temperature, morning and afternoon humidity, precipitation, windspeed. Standard errors are clustered at the county level. Estimates are

population weighted. 

   *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

Table 6: Estimates of the Relationship between Mortality, the Macroeconomy, and Pollution

Fixed Effects IV Estimates Fixed Effects IV Estimates



Cause of Death:

(1) (2) (3) (4) (5) (6) (7) (8)

Unemp Rate (%) -0.20333*** -0.08246 -0.16920*** 0.15184 -0.47394*** -0.44904 -0.42993*** -0.10012

(0.05707) (0.19524) (0.06291) (0.20852) (0.09593) (0.31603) (0.10318) (0.35823)

CO 0.06853 0.14652 3.17419*** 4.54451*** -1.17880 -2.27515 3.02055*** 4.10061**

(0.96858) (1.64932) (0.68718) (1.18467) (1.53365) (2.60240) (1.05553) (1.96340)

CO * Unemp Rate -0.10698 -0.27125* -0.03481 -0.28273

(0.13506) (0.14404) (0.21647) (0.24596)

Seasonality controls Month FE Month FE Season FE Season FE Month FE Month FE Season FE Season FE

Weak Instruments (KP) Statistic 4.478 5.739 6.472 5.791 4.478 5.739 6.472 5.791

Table 7: IV Estimates of the Relationship between Mortality, the Macroeconomy, and Pollution

Notes: Dependent variable is the log of the mortality rate. There are 49,899 observations in all specifications. Appendix table A3 presents the first stage IV

regression results. Controls include year fixed effects, county fixed effects, morning and afternoon temperature (each up to a 4th degree polynomial), daily max

temperature, daily min temperature, morning and afternoon humidity, precipitation, windspeed. Standard errors are clustered at the county level. Estimates are

population weighted. 

   *** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level.

Cardiorespiratory Causes Internal Causes



Cause of Death:

(1) (2) (3) (4)

Unemp Rate (%) -0.04298*** -0.10279** -0.04009*** -0.08092*

(0.01236) (0.04853) (0.01208) (0.04730)

CO -0.53592** -1.00677*** -0.34176** -0.61754**

(0.21663) (0.35364) (0.13957) (0.26281)

CO * Unemp Rate 0.04797 0.03323

(0.03515) (0.03464)

Seasonality controls Month FE Month FE Season FE Season FE

Weak Instruments (KP) Statistic 4.478 5.739 6.472 5.791

10% Bias 4.450 3.58 4.450 3.58

Table 8: IV Estimates of the Relationship between Mortality, the 

Macroeconomy, and Pollution

External Deaths

Notes: Dependent variable is the log of the mortality rate. There are 49,899 observations in all

specifications. Appendix table 4 presents the first stage IV regression results. Controls include

year fixed effects, county fixed effects, morning and afternoon temperature (each up to a 4th

degree polynomial), daily max temperature, daily min temperature, morning and afternoon

humidity, precipitation, windspeed. Standard errors are clustered at the county level. Estimates

are population weighted. 

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the

10 percent level.



(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Adults and Elderly

Unemp Rate (%) -0.06649** 0.03684 0.04440 1.47055** -0.44112 2.43512* 0.56196 16.40355***

(0.02828) (0.11296) (0.14173) (0.73904) (0.30027) (1.39353) (1.38077) (4.98211)

CO -0.05267 0.41452 5.80582** 13.61087*** 21.15153*** 36.09016*** 123.83032*** 212.28835***

(0.31897) (0.45808) (2.27414) (3.99562) (5.08206) (9.62762) (22.39838) (36.93255)

CO * Unemp Rate -0.08703 -1.16742** -2.40465** -13.26597***

(0.08500) (0.57122) (1.03403) (3.71928)

Panel B: Neonatal and Infant

Unemp Rate (%) -5.62008 -11.36871 -0.85484*** -2.83503*** -0.00040 0.00435 -0.00994*** -0.00994

(3.42539) (10.84137) (0.21563) (0.66474) (0.00307) (0.01078) (0.00313) (0.01017)

CO -41.75158** -79.34951 1.74539 -10.62087** -0.07914** -0.04850 0.11486*** 0.10528*

(19.86026) (48.37269) (2.46105) (5.17654) (0.03327) (0.06210) (0.03987) (0.06278)

CO * Unemp Rate 4.72043 1.63365*** -0.00393 -0.00012

(6.92272) (0.55118) (0.00820) (0.00717)

Table 9: The Relationship between Mortality, the Macroeconomy, and Pollution by Age Group

Notes: Dependent variable is the log of the mortality rate or log of deaths as detailed (includes all causes of dealth). There are 50,492 observations in all

specifications in Panel A and specifications in Panel B range from 49,505 to 50,225 observations. Appendix table A3 presents the first stage IV regression

results. Controls include year fixed effects, county fixed effects, season fixed effects morning and afternoon temperature (each up to a 4th degree polynomial),

daily max temperature, daily min temperature, morning and afternoon humidity, precipitation, windspeed. Population of the resprecitve age group is also

included as a control in Panel B, columns 7 and 8. Standard errors are clustered at the county level. Estimates are population weighted. The Weak Instruments

Kleibergen-Paap rk Wald F statistic exceeds 4.45, the 10% maximal LIML size critical value, in all specifications. *** Significant at the 1 percent level. **

Significant at the 5 percent level. * Significant at the 10 percent level.

1-59 60-69 70-79 80+

Neonatal Rate Infant Mortality Rate Neonatal (Ln Deaths) Infant Mortality (Ln Deaths)



Dependent Variable: 

(1) (2) (3) (4) (5) (6)

Unemployment Rate -0.52933** -0.72969** -0.43773* -0.62539* -0.00996 -0.12332

(0.26473) (0.36340) (0.23786) (0.33833) (0.21729) (0.27302)

Morning Thermal Inversions per Month Interacted 

Low Strength * Unemp 0.01324 0.02118* 0.01025 0.01759 -0.00073 0.00375

(0.00888) (0.01201) (0.00809) (0.01133) (0.00833) (0.01025)

Medium Strength  * Unemp -0.00045 0.00162 0.00013 0.00190 -0.00240 -0.00168

(0.00826) (0.01072) (0.00777) (0.01034) (0.00792) (0.00932)

High Strength  * Unemp -0.01408* -0.00842 -0.01328* -0.00806 -0.01225 -0.00894

(0.00822) (0.01144) (0.00776) (0.01098) (0.00785) (0.00966)

Afternoon Thermal Inversions per Month Interacted

Low Strength  * Unemp -0.00471 -0.00176 -0.00580 -0.00293 -0.00576 -0.00382

(0.00682) (0.00715) (0.00610) (0.00642) (0.00381) (0.00406)

Medium Strength  * Unemp 0.01000 0.00627 0.00722 0.00369 -0.00106 -0.00388

(0.01003) (0.00970) (0.00898) (0.00876) (0.00567) (0.00568)

High Strength * Unemp -0.03230* -0.02744 -0.03164* -0.02652 -0.01563 -0.01145

(0.01853) (0.02549) (0.01706) (0.02362) (0.01022) (0.01466)

Morning Thermal Inversions per Month Interacted 

Low Strength -0.11290 0.09528 -0.09055 0.10114 -0.01543 0.09423

(0.07819) (0.09163) (0.07167) (0.08912) (0.06381) (0.08056)

Medium Strength -0.03086 0.19488** -0.02765 0.18264** 0.00483 0.13114*

(0.07320) (0.08223) (0.06880) (0.08078) (0.06059) (0.07207)

High Strength 0.06203 0.25981*** 0.06274 0.24536*** 0.06792 0.16848**

(0.06907) (0.08587) (0.06466) (0.08426) (0.05837) (0.07510)

Afternoon Thermal Inversions per Month Interacted

Low Strength 0.07843 0.03534 0.07906* 0.04148 0.06271** 0.03972

(0.04800) (0.04892) (0.04483) (0.04594) (0.03052) (0.03208)

Medium Strength -0.05321 -0.02760 -0.03433 -0.00310 0.02199 0.05776

(0.07678) (0.07748) (0.07197) (0.07429) (0.04781) (0.05179)

High Strength 0.25050*** 0.32087*** 0.24298*** 0.31586*** 0.12599*** 0.19584***

(0.08924) (0.11301) (0.08183) (0.10287) (0.04813) (0.05873)

Joint Significance Test for the Interactions

Chi-Squared Statistic 27.38 25.91 24.30 20.74 13.27 10.72

P-value 0.000123 0.000231 0.000461 0.00204 0.0389 0.0975

Notes: Controls include unemployment rate, un-interacted morning and afternoon thermal inversion indicators, year fixed effects,

county fixed effects, morning and afternoon temperature (each up to a 4th degree polynomial), daily max temperature, daily min

temperature, morning and afternoon humidity, precipitation, and windspeed. The first column in each pair includes month

indicators as seasonality controls, while the second column includes season fixed effects. Standard errors are clustered at the

county level. Estimates are weighted by total population. The last two rows report the test statistic for the joint significance of the

interaction terms as well as the associated p-values. *** Significant at the 1 percent level, ** Significant at the 5 percent level, *

Significant at the 10 percent level.

Table 10: Reduced Form

All Causes Internal Cardio Resp



Cause of Death:

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Pre 1990

Unemp Rate (%) -0.10286 0.29067 -0.12013* 0.28734 -0.18873** -0.15170 -0.21711** -0.28468

(0.06493) (0.24750) (0.06701) (0.27363) (0.08311) (0.22051) (0.08512) (0.26403)

CO 0.40764 1.98335* 1.86950*** 3.61288*** -1.04079 -1.25480 1.22369 0.92053

(0.82164) (1.12053) (0.64958) (0.97249) (1.28313) (1.38480) (1.02081) (1.31310)

CO * Unemp Rate -0.26547** -0.27506* -0.02400 0.04563

(0.13348) (0.15264) (0.12872) (0.16978)

Seasonality controls Month FE Month FE Season FE Season FE Month FE Month FE Season FE Season FE

Panel B: Post 1990

Unemp Rate (%) 0.00654 0.02740 0.04255 0.24764 0.12558 0.42854 0.16503* 0.76886**

(0.04916) (0.15881) (0.05226) (0.17371) (0.08980) (0.31657) (0.09190) (0.36728)

CO -0.31923 -0.55687 4.62669*** 5.47439*** -0.75055 1.06162 5.55299*** 9.26707***

(1.13004) (1.66455) (0.83555) (1.41762) (1.58528) (2.86198) (1.31863) (2.61278)

CO * Unemp Rate -0.02329 -0.20677 -0.30047 -0.59948*

(0.14352) (0.14532) (0.28028) (0.31467)

Seasonality controls Month FE Month FE Season FE Season FE Month FE Month FE Season FE Season FE

Table 11: The Relationship between Mortality, the Macroeconomy, and Pollution by Time Period

Cardiorespiratory Causes Internal Causes

Notes: Dependent variable is the log of the mortality rate. There are 18,632 observations in all specifications in Panel A and 31,267 observations in all

specifications in Panel B. Appendix table A2 presents the first stage IV regression results. Controls include year fixed effects, county fixed effects, morning

and afternoon temperature (each up to a 4th degree polynomial), daily max temperature, daily min temperature, morning and afternoon humidity,

precipitation, windspeed. Standard errors are clustered at the county level. Estimates are population weighted.

   *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.



Dependent Variable: CO CO NO2 NO2 O3 O3

(1) (2) (5) (6) (3) (4)

Full Period, 1980-2004 -0.01076* -0.01173* -0.00902 -0.00942 0.00972 0.00738

County Unemployment Rate (%) (0.00643) (0.00629) (0.00813) (0.00805) (0.01069) (0.01029)

Seasonality controls Month FE Season FE Month FE Season FE Month FE Season FE

Mean of dependent variable 1.03 1.03 40.50 40.50 0.02 0.02

Std. dev. of dependent variable 0.64 0.64 25.26 25.26 0.01 0.01

Number of observations 53,182 53,182 33,976 33,976 19,206 19,206

Table A1: Estimates of the Association between

 Air Pollution and Economic Activity

Notes: Controls include year fixed effects, county fixed effects, season or month fixed effects, morning and afternoon temperature (each up

to a 4th degree polynomial), daily max temperature, daily min temperature, morning and afternoon humidity, precipitation, windspeed. ***

Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.



Dependent Variable: 

(1) (2) (3) (4) (5) (6) (7) (8)

Pre-1990

Morning Thermal Inversions per Month

Low Strength 0.01112*** -0.00103 0.45832 -0.27031 0.00011 0.00030***

(0.00375) (0.00436) (0.41521) (0.41864) (0.00011) (0.00011)

Medium Strength 0.01457*** 0.00549 0.64779 0.23224 0.00027** 0.00043***

(0.00426) (0.00496) (0.44517) (0.46668) (0.00012) (0.00011)

High Strength 0.01531** 0.00418 1.07633 0.55884 0.00022 0.00038**

(0.00731) (0.00845) (0.74946) (0.89280) (0.00015) (0.00015)

Afternoon Thermal Inversions per Month

Low Strength 0.00031 0.00610*** 0.12925 0.29111 -0.00012*** -0.00020***

(0.00237) (0.00201) (0.25780) (0.23774) (0.00005) (0.00004)

Medium Strength 0.02206*** 0.03758*** 1.24084** 1.93957*** -0.00044*** -0.00062***

(0.00752) (0.00980) (0.48946) (0.64073) (0.00013) (0.00012)

High Strength 0.02238* 0.04376*** 1.77087* 3.04473*** -0.00092*** -0.00115***

(0.01285) (0.01670) (1.04106) (1.15685) (0.00014) (0.00015)

Mean of dependent variable 1.3898 1.3898 47.7957 47.7957 0.0237 0.0237

Std. dev. of dependent variable 0.7653 0.7653 28.9307 28.9307 0.0103 0.0103

Weak Instruments (KP) Statistic 5.264 7.325 2.344 5.944 10.74 23.25

Observations 19,206 19,206 4,928 4,928 14,202 14,202

Post-1990

Morning Thermal Inversions per Month

Small Intensity 0.00244 -0.00249 0.15727* 0.13128* -0.12799 -0.55689 0.00020** 0.00029***

(0.00244) (0.00334) (0.09141) (0.07354) (0.26499) (0.38787) (0.00008) (0.00007)

Medium Intensity 0.00534** 0.00205 0.17549 0.17108 -0.12281 -0.36026 0.00032*** 0.00039***

(0.00256) (0.00326) (0.14549) (0.12881) (0.26690) (0.36304) (0.00010) (0.00009)

Table A2: Thermal Inversions and Pollution by Period

Pollution Concentration

Carbon Monoxide Particulate Matter 10µm Nitrogen Oxides Ozone



Large Intensity 0.00386 -0.00075 0.27783 0.27379* 0.12836 -0.26701 0.00030*** 0.00038***

(0.00353) (0.00439) (0.18655) (0.16568) (0.35360) (0.50071) (0.00010) (0.00009)

Afternoon Thermal Inversions per Month

Small Intensity -0.00260 0.00076 -0.04138 -0.01455 0.24982* 0.35801*** -0.00016*** -0.00019***

(0.00163) (0.00129) (0.05909) (0.05638) (0.15061) (0.12911) (0.00005) (0.00004)

Medium Intensity 0.00540* 0.01300*** -0.14137 -0.11739 0.89568*** 1.45387*** -0.00046*** -0.00058***

(0.00300) (0.00311) (0.09922) (0.09582) (0.30032) (0.35835) (0.00011) (0.00010)

Large Intensity 0.01302 0.02660** -0.46005* -0.43313* 1.25702 2.59201*** -0.00075*** -0.00091***

(0.00889) (0.01156) (0.27645) (0.23325) (0.78308) (0.98237) (0.00018) (0.00021)

Mean of dependent variable 0.8278 0.8278 26.1653 26.1653 37.3583 37.3583 0.0258 0.0258

Std. dev. of dependent variable 0.4509 0.4509 10.3475 10.3475 22.7891 22.7891 0.0091 0.0091

Weak Instruments (KP) Statistic 5.376 7.297 1.679 2.381 1.604 4.422 6.040 9.476

Observations 33,976 33,976 5,665 5,665 11,428 11,428 16,749 16,749

Notes: Dependent variable is the air pollution concentration in parts per million (for carbon monoxide, nitrogen oxides and oxone) or µg per cubic meter (for particulate

matter). Regression are run at the county-month level. Controls include year fixed effects, county fixed effects, morning and afternoon temperature (each up to a 4th degree

polynomial), daily max temperature, daily min temperature, morning and afternoon humidity, precipitation, windspeed. The first column in each pair includes month

indicators as seasonality controls, while the second column includes season fixed effects. Standard errors are clustered at the county level. Estimates are weighted by total

population. The second to last row reports the Weak Instruments Kleibergen-Paap rk Wald F statistic. This statistic can be compared with a critical value of 4.45, which is

10% maximal LIML size critical value for the weak instrument test (Stock and Yogo, 2001).

   *** Significant at the 1 percent level.

   ** Significant at the 5 percent level.

   * Significant at the 10 percent level.



Dependent Variable: 

(1) (2) (3) (4)

Morning Thermal Inversions per Month

Low Strength -0.00173 -0.00762 -0.00105 -0.03908

(0.00588) (0.00719) (0.04606) (0.04589)

Medium Strength -0.00213 -0.00534 -0.02416 -0.04605

(0.00596) (0.00655) (0.04823) (0.04605)

High Strength 0.00266 -0.00297 0.10794*** 0.07198*

(0.00678) (0.00828) (0.03911) (0.03853)

Afternoon Thermal Inversions per Month

Low Strength -0.00083 0.00251 -0.01635 0.00567

(0.00320) (0.00312) (0.03916) (0.03760)

Medium Strength 0.01653*** 0.02744*** -0.06397 0.00205

(0.00605) (0.00683) (0.06224) (0.05949)

High Strength -0.02455*** -0.01369 -0.59962*** -0.53600***

(0.00879) (0.00953) (0.17754) (0.17205)

Morning Thermal Inversions per Month Interacted 

Low Strength × Unemployment 0.00090 0.00076 0.00550 0.00440

(0.00089) (0.00092) (0.00851) (0.00807)

Medium Strength × Unemployment 0.00148* 0.00123 0.01154 0.00988

(0.00083) (0.00085) (0.00744) (0.00717)

High Strength × Unemployment 0.00062 0.00047 -0.01125 -0.01231*

(0.00089) (0.00097) (0.00753) (0.00736)

Afternoon Thermal Inversions per Month Interacted

Low Strength × Unemployment -0.00009 0.00003 0.00213 0.00284

(0.00042) (0.00042) (0.00619) (0.00613)

Medium Strength × Unemployment -0.00080 -0.00096 0.02435** 0.02357**

(0.00077) (0.00080) (0.01051) (0.01043)

High Strength × Unemployment 0.00650*** 0.00738*** 0.11820*** 0.12373***

(0.00194) (0.00239) (0.03715) (0.04009)

8.79 9.76 9.31 9.24

Weak Instruments (KP) Statistic for Both Endogenous Variables 5.681 5.632

Conditional F-Statistic of Excluded 

Instruments 

Notes: Dependent variable is the air pollution concentration in parts per million for carbon monoxide. Controls include 

unemployment rate, year fixed effects, county fixed effects, morning and afternoon temperature (each up to a 4th degree 

polynomial), daily max temperature, daily min temperature, morning and afternoon humidity, precipitation, windspeed. The first 

column in each pair includes month indicators as seasonality controls, while the second column includes season fixed effects. 

Standard errors are clustered at the county level. Estimates are weighted by total population. The second to last row reports the 

Sanderson-Windmeijer F-Statistic, which partials out a linear projection of the other endogenous regressor to test for weak 

instruments in each first stage.  The last row reports the overall Weak Instruments Kleibergen-Paap rk Wald F statistic. Both test 

statistics should be compared with a critical value of 3.58, which is 10% maximal LIML size critical value for the weak 

instrument test (Stock and Yogo, 2001). Columns 3 and 4 for PM10 only include observations post-1990.    *** Significant at the 

1 percent level.    ** Significant at the 5 percent level.    * Significant at the 10 percent level.

Appendix Table 3: First Stage for Equation (2)

Carbon Monoxide Carbon Monoxide × Unemployment



Category

1979-1998

 ICD-9 Codes 

1999-2004

 ICD-10 Codes

1 Respiratory
030, 040, 050, 060, 070, 500, 510, 520, 

530, 540, 550, 560, 570, 580

004, 005, 006, 007, 076, 077, 078, 079, 

080, 081, 082, 083, 084, 085, 086

2 Cardiovascular

090, 280, 300, 310, 320, 330, 340, 350, 

360, 370, 380, 390, 400, 410, 420, 430, 

440, 450, 460, 470, 480, 490

010, 045, 053, 054, 055, 056, 057, 058, 

059, 060, 061, 062, 063, 064, 065, 066, 

067, 068, 069, 070, 071, 072, 073, 074, 075

3 External 790, 800, 810, 820, 830, 840

112, 113, 114, 115, 116, 117, 118, 119, 

120, 121, 122, 123, 124, 125, 126, 127, 

128, 129, 130, 131, 132, 133, 134, 135

4 Internal All causes not included in category 3 All causes not included in category 3

Table A4: Reclassification of ICD Categorizations

Note: Classifications are based on CDC coding for non-infant mortality: 72 (ICD-9) or 113 (ICD-10).




