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Abstract

Approximating stochastic processes by finite-state Markov chains is use-
ful for reducing computational complexity when solving dynamic economic
models. We provide a new method for accurately discretizing general Markov
processes by matching low order moments of the conditional distributions
using maximum entropy. In contrast to existing methods, our approach
is not limited to linear Gaussian autoregressive processes. We apply our
method to numerically solve asset pricing models with various underlying
stochastic processes for the fundamentals, including a rare disasters model.
Our method outperforms the solution accuracy of existing methods by or-
ders of magnitude, while drastically simplifying the solution algorithm. The
performance of our method is robust to parameters such as the number of
grid points and the persistence of the process.
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numerical methods, solution accuracy.
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1 Introduction

Many nonlinear dynamic economic models such as dynamic stochastic general
equilibrium (DSGE) models, asset pricing models, or optimal portfolio problems
imply a set of integral equations that do not admit explicit solutions. Finite-state
Markov chain approximations of stochastic processes are a useful way of reduc-
ing computational complexity when solving and estimating such models because
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integration is replaced by summation.1 However, existing methods only work on
a limited case by case basis, and apply mostly to linear Gaussian autoregressive
processes.

In this paper, we provide a new method for accurately discretizing general
nonlinear, non-Gaussian Markov processes. The dynamics of any Markov pro-
cess are characterized by its transition kernel, which summarizes the conditional
distribution of the subsequent state for all possible current states. We construct
a discrete approximation to the underlying Markov process by approximating a
finite set of its conditional distributions.2 Given a set of discrete points in the
state space, we construct a transition matrix, where each row corresponds to a
discrete probability measure which mimics the dynamics of the continuous process
in that particular state. This is accomplished by starting from a coarse approxi-
mation of the underlying process and modifying the transition probabilities so as
to exactly match a set of conditional moments, such as the mean and variance.
Because there are typically more grid points than there are conditional moments
of interest, there are infinitely many candidates for the approximate conditional
distribution. To deal with this underdetermined system, we obtain the discrete
approximation by minimizing the relative entropy (Kullback-Leibler information)
of the conditional distribution from an initial approximation, subject to the given
moment constraints. Although this primal problem is a high dimensional con-
strained optimization problem, its dual is a computationally tractable, low di-
mensional unconstrained optimization problem. We provide recommendations for
how to choose the initial approximation and the moments to match.

The two ingredients of our method—matching conditional moments to ap-
proximate a Markov process and using the maximum entropy principle to match
moments—have already been proposed separately in the literature. Our main con-
tribution is that we combine these two ingredients and show that this idea can be
used to discretize a wide variety of nonlinear, non-Gaussian Markov processes, for
which there is currently no systematic way of discretizing. Furthermore, we pro-
vide sufficient conditions for the existence of a discretization with exact moments
and study economic applications to which existing methods do not apply.

The closest papers to ours are Tanaka and Toda (2013, 2015) and Gospodinov
and Lkhagvasuren (2014). Tanaka and Toda (2013) construct discrete approxima-
tions of continuous probability distributions (as opposed to stochastic processes)
by modifying an initial discretization so as to exactly match low order moments
using the maximum entropy principle. While they briefly discuss how to apply
their method to discretize vector autoregressive processes (VARs), because they
need a closed-form expression for the ergodic distribution—which is not available

1Examples include heterogeneous-agent incomplete markets models (Aiyagari, 1994; Heaton
and Lucas, 1996), optimal taxation (Aiyagari, 1995; Dávila et al., 2012), portfolio problems
(Haliassos and Michaelides, 2003; Judd et al., 2011), asset pricing (Zhang, 2005; Guvenen, 2009),
DSGE models (Aruoba et al., 2006; Caldara et al., 2012), estimating dynamic games (Aguirre-
gabiria and Mira, 2007), inflation dynamics and monetary policy (Vavra, 2014), among many
others.

2For the remainder of the paper, “discrete” should be understood to refer to the state space
of the Markov process. Time is always discrete.
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in most situations—their method cannot be directly used for discretizing gen-
eral Markov processes. Tanaka and Toda (2015) prove that their approximation
method weakly converges to the true distribution as the number of grid points
tends to infinity. They also show that the integration error diminishes by a factor
proportional to the error when the integrand is approximated using the functions
defining the moments of interest as basis functions. Therefore, the approximation
quality of the Tanaka-Toda method depends on two factors, (i) the quality of the
initial discretization, and (ii) how well the moment defining functions approximate
the integrand.

Gospodinov and Lkhagvasuren (2014) (henceforth GL) propose a discretization
method of VARs that targets the first and second conditional moments. According
to their numerical results, the GL method seems to be the most accurate finite-
state Markov chain approximation for VARs currently available in the literature.
As in GL, we target the conditional moments in order to discretize VARs. However,
our method improves upon theirs in three important ways.

First, unlike the GL method, our approach is not limited to the approximation
of VARs. It applies to any Markov process for which we can compute conditional
moments and thus has a much wider range of applicability. For instance, we
can discretize stochastic processes with interesting nonlinear and non-Gaussian
conditional dynamics. Additionally, we do not require a parametric specification
of the Markov process to use our approach. Given sufficient data, we can estimate
the conditional moments and transition kernel nonparametrically, and use these
to construct our discrete approximation.

Second, GL adjust the transition probabilities to match moments directly,
whereas we solve the dual problem, which is a low dimensional unconstrained
convex minimization problem. The gradient and Hessian of the objective function
can be computed in closed form, which allows us to use a standard Newton-type
algorithm to find the minimum. Consequently, our method is computationally
tractable even when the number of grid points is large. This is an important
property, particularly for the case of high dimensional processes.

Finally, for general VARs (which may even feature stochastic volatility), under
certain regularity conditions we prove that our method matches all k-step ahead
conditional mean, variance, and covariance as well as the unconditional ones. This
property has been known only for the Rouwenhorst (1995) method for discretizing
univariate AR(1) processes. We further discuss the relation of our method to the
existing literature in Section 3.3.

In order to illustrate the general applicability of our method, we solve for the
price-dividend ratio in Lucas-tree asset pricing models, under different assump-
tions about the stochastic processes driving consumption and dividend growth,
including more standard AR(1) and VAR(1) processes with Gaussian shocks, an
AR(1) model with non-Gaussian shocks, and the variable rare disasters model
of Gabaix (2012), whose underlying stochastic process is highly nonlinear and
non-Gaussian. In each case, we show that our method produces more accurate
solutions than all existing discretization methods,3 often by several orders of mag-

3Several papers such as Aruoba et al. (2006) and Caldara et al. (2012) compare the accuracy of
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nitude, requiring only minor modifications between specifications and trivial com-
puting time. We also show that solving general asset pricing models (e.g., with
recursive utility and complicated dynamics) using discretization and projection
(Judd, 1992) is actually equivalent to solving a discrete-state model (which is a
matter of inverting a matrix) and interpolating. Therefore our method provides a
simple but systematic way for solving asset pricing models.

We emphasize that our method has many potential applications beyond the
asset pricing models considered here. For example, our method can be used to
facilitate the estimation of nonlinear state space models. In parallel work, Farmer
(2016) shows that by discretizing the dynamics of the state variables, one can
construct an approximate state space model with closed-form expressions for the
likelihood and filtering recursions, as in Hamilton (1989). The parameters of the
model can then be estimated using standard likelihood or Bayesian techniques.
This procedure offers an alternative to computationally expensive, simulation-
based methods like the particle filter, and simple but often inaccurate linearization
approaches like the extended Kalman filter. Our paper provides a computationally
tractable method for discretizing general nonlinear Markov processes governing the
state dynamics.

2 Maximum entropy method for discretizing Markov

processes

In this section we review the maximum entropy method for discretizing probability
distributions proposed by Tanaka and Toda (2013, 2015) and apply it to discretize
general Markov processes.

2.1 Discretizing probability distributions

2.1.1 Description of method

Suppose that we are given a continuous probability density function f : RK → R,
which we want to discretize. Let X be a random vector with density f , and
g : RK → R be any bounded continuous function. The first step is to pick a
quadrature formula

E[g(X)] =

∫
RK

g(x)f(x) dx ≈
N∑
n=1

wng(xn)f(xn), (2.1)

where N is the number of integration points, {xn}Nn=1, and wn > 0 is the weight on
the integration point xn.4 Let DN = {xn |n = 1, . . . , N} be the set of grid points.

various solution techniques (log-linearization, value function iteration, perturbation, projection,
etc.), given the discretization method. To the best of our knowledge, Kopecky and Suen (2010) is
the only paper that compares the solution accuracy across various discretization methods, fixing
the solution technique. However, they consider only Gaussian AR(1) processes.

4Since the grid points {xn} and weights {wn} may depend on the number of grid points N ,
a more precise notation might be xn,N and wn,N . Since there is no risk of confusion, we keep
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For example, if we let

DN = {(m1h, . . . ,mKh) |m1, . . . ,mK = 0,±1, . . . ,±M} ,

which consists of N = (2M+1)K lattice points with grid size h, setting the weight
wn = hK in quadrature formula (2.1) gives the trapezoidal formula.

For now, we do not take a stance on the choice of the initial quadrature formula,
but take it as given. Given the quadrature formula (2.1), a coarse but valid discrete
approximation of the density f would be to assign probability qn to the point xn
proportional to wnf(xn), so

qn =
wnf(xn)∑N
n=1wnf(xn)

. (2.2)

However, this is not necessarily a good approximation because the moments of the
discrete distribution {qn} do not generally match those of f .

Tanaka and Toda (2013) propose exactly matching a finite set of moments by
updating the probabilities {qn} in a particular way. Let T : RK → RL be a function
that defines the moments that we wish to match and let T̄ =

∫
RK T (x)f(x) dx be

the vector of exact moments. For example, if we want to match the first and second
moments in the one dimensional case (K = 1), then T (x) = (x, x2)′. Tanaka and
Toda (2013) update the probabilities {qn} by solving the optimization problem

minimize
{pn}

N∑
n=1

pn log
pn
qn

subject to
N∑
n=1

pnT (xn) = T̄ ,
N∑
n=1

pn = 1, pn ≥ 0. (P)

The objective function in the primal problem (P) is the Kullback and Leibler
(1951) information of {pn} relative to {qn}, which is also known as the relative
entropy. This method matches the given moments exactly while keeping the prob-
abilities {pn} as close to the initial approximation {qn} as possible in the sense of
the Kullback-Leibler information.5 Note that since (P) is a convex minimization
problem, the solution (if one exists) is unique.

The optimization problem (P) is a constrained minimization problem with a
large number (N) of unknowns ({pn}) with L + 1 equality constraints and N in-
equality constraints, which is in general computationally intensive to solve. How-
ever, it is well-known that entropy-like minimization problems are computationally

the simpler notation xn and wn.
5The Kullback-Leibler information is not the only possible loss function. One may also use

other criteria such as the L2 norm or other generalized entropies. However, the Kullback-Leibler
information has the unmatched feature that (i) the domain of the dual function is the entire
space, so the dual problem becomes unconstrained, and (ii) the constraint pn ≥ 0 never binds,
so the dual problem becomes low dimensional. See Borwein and Lewis (1991) for more details on
duality in entropy-like minimization problems and Owen (2001), Tsao (2004), Kitamura (2007),
and Tsao and Wu (2013) for discussions on the computational aspects of empirical likelihood
methods, which is mathematically related.
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tractable by using duality theory (Borwein and Lewis, 1991). Tanaka and Toda
(2013) convert the primal problem (P) to the dual problem

max
λ∈RL

[
λ′T̄ − log

(
N∑
n=1

qneλ
′T (xn)

)]
, (D)

which is a low dimensional (L unknowns) unconstrained concave maximization
problem and hence computationally tractable. The following theorem shows how
the solutions to the two problems (P) and (D) are related. Below, the symbols
“int” and “co” denote the interior and the convex hull of sets.

Theorem 2.1. 1. The primal problem (P) has a solution if and only if T̄ ∈
coT (DN). If a solution exists, it is unique.

2. The dual problem (D) has a solution if and only if T̄ ∈ int coT (DN). If a
solution exists, it is unique.

3. If the dual problem (D) has a (unique) solution λN , then the (unique) solu-
tion to the primal problem (P) is given by

pn =
qneλ

′
NT (xn)∑N

n=1 qneλ
′
NT (xn)

=
qneλ

′
N (T (xn)−T̄ )∑N

n=1 qneλ
′
N (T (xn)−T̄ )

. (2.3)

2.1.2 Practical implementation

Theorem 2.1 provides a practical way to implement the Tanaka-Toda method. Af-
ter choosing the initial discretization Q = {qn} and the moment defining function
T , one can numerically solve the unconstrained optimization problem (D). To this
end, we can instead solve

min
λ∈RL

N∑
n=1

qneλ
′(T (xn)−T̄ ) (D′)

because the objective function in (D′) is a monotonic transformation (−1 times
the exponential) of that in (D). Since (D′) is an unconstrained convex minimiza-
tion problem with a (relatively) small number (L) of unknowns (λ), solving it
is computationally simple. Letting JN(λ) be the objective function in (D′), its
gradient and Hessian can be analytically computed as

∇JN(λ) =
N∑
n=1

qneλ
′(T (xn)−T̄ )(T (xn)− T̄ ), (2.4a)

∇2JN(λ) =
N∑
n=1

qneλ
′(T (xn)−T̄ )(T (xn)− T̄ )(T (xn)− T̄ )′, (2.4b)
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respectively. In practice, we can quickly solve (D′) numerically using optimization
routines by supplying the analytical gradient and Hessian.6

If a solution to (D′) exists, it is unique, and we can compute the updated
discretization P = {pn} by (2.3). If a solution does not exist, it means that the
regularity condition T̄ ∈ int coT (DN) does not hold and we cannot match mo-
ments. Then one needs to select a smaller set of moments. Numerically checking
whether moments are matched is straightforward: by (2.3), (D′), and (2.4a), the
error is

N∑
n=1

pnT (xn)− T̄ =

∑N
n=1 qneλ

′
N (T (xn)−T̄ )(T (xn)− T̄ )∑N

n=1 qneλ
′
N (T (xn)−T̄ )

=
∇JN(λN)

JN(λN)
. (2.5)

2.1.3 Error estimate and convergence

Tanaka and Toda (2015) prove that whenever the quadrature approximation (2.1)
converges to the true value as the number of grid points N tends to infinity, the
discrete distribution {pn} in (2.3) also weakly converges to the true distribution f
and improves the integration error as follows. Let g be the integrand in (2.1) and
consider approximating g using T = (T1, . . . , TL) as basis functions:

g(x) ≈ ĝT (x) =
L∑
l=1

blTl(x),

where {bl}Ll=1 are coefficients. Let rg,T = g−ĝT
‖g−ĝT ‖∞

be the normalized remainder

term, where ‖·‖∞ denotes the supremum norm. Letting

E
(Q)
g,N =

∣∣∣∣∣
∫
RK

g(x)f(x) dx−
N∑
n=1

qng(xn)

∣∣∣∣∣
be the integration error under the initial discretization Q = {qn} and E

(P )
g,N be the

error under P = {pn}, Tanaka and Toda (2015) prove the error estimate

E
(P )
g,N ≤ ‖g − ĝT‖∞

(
E

(Q)
rg,T ,N

+
2√
C
E

(Q)
T,N

)
, (2.6)

where C is a constant explicitly given in the paper. Equation (2.6) says that the
integration error improves by the factor ‖g − ĝT‖∞, which is the approximation

error of the integrand g by the basis functions {Tl}Ll=1 that define the targeted
moments. It is clear from (2.6) that the approximation quality of the Tanaka-
Toda method depends on two factors, (i) the quality of the initial discretization

(how small E
(Q)
g,N is), and (ii) how well the moment defining functions approximate

the integrand (how small ‖g − ĝT‖∞ is).

6Since the dual problem (D) is a concave maximization problem, one may also solve it directly.
However, according to our experience, solving (D′) is numerically more stable. This is because
the objective function in (D) is close to linear when ‖λ‖ is large, so the Hessian is close to
singular and not well-behaved. On the other hand, since the objective function in (D′) is the
sum of exponential functions, it is well-behaved.
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2.2 Discretizing general Markov processes

Next we show how to extend the Tanaka-Toda method to the case of time-
homogeneous Markov processes.

2.2.1 Description of method

Consider the time-homogeneous first-order Markov process

P (xt ≤ x′|xt−1 = x) = F (x′, x),

where xt is the vector of state variables and F (·, x) is a cumulative distribution
function (CDF) that determines the distribution of xt = x′ given xt−1 = x. The
dynamics of any Markov process are completely characterized by its Markov tran-
sition kernel. In the case of a discrete state space, this transition kernel is simply
a matrix of transition probabilities, where each row corresponds to a conditional
distribution. We can discretize the continuous process x by applying the Tanaka-
Toda method to each conditional distribution separately.

More concretely, suppose that we have a set of grid points DN = {xn}Nn=1

and an initial coarse approximation Q = (qnn′), which is an N × N probability
transition matrix. Suppose we want to match some conditional moments of x, rep-
resented by the moment defining function T (x). The exact conditional moments
when the current state is xt−1 = xn are

T̄n = E [T (xt) |xn] =

∫
T (x) dF (x, xn),

where the integral is over x, fixing xn. (If these moments do not have explicit
expressions, we can use highly accurate quadrature formulas to compute them.)
By Theorem 2.1, we can match these moments exactly by solving the optimization
problem

minimize
{pnn′}Nn′=1

N∑
n′=1

pnn′ log
pnn′

qnn′

subject to
N∑

n′=1

pnn′T (xn′) = T̄n,

N∑
n′=1

pnn′ = 1, pnn′ ≥ 0 (Pn)

for each n = 1, 2, . . . , N , or equivalently the dual problem

min
λ∈RL

N∑
n′=1

qnn′eλ
′(T (xn′ )−T̄n). (D′n)

(D′n) has a unique solution if and only if the regularity condition

T̄n ∈ int coT (DN) (2.7)

holds. We summarize our procedure in Algorithm 2.2 below.

8



Algorithm 2.2 (Discretization of Markov processes).

1. Select a discrete set of points DN = {xn}Nn=1 and an initial approximation
Q = (qnn′).

2. Select a moment defining function T (x) and corresponding exact condi-

tional moments
{
T̄n
}N
n=1

. If necessary, approximate the exact conditional
moments with a highly accurate numerical integral.

3. For each n = 1, . . . , N , solve minimization problem (D′n) for λn. Check
whether moments are matched using formula (2.5), and if not, select a
smaller set of moments. Compute the conditional probabilities corre-
sponding to row n of P = (pnn′) using (2.3).

The resulting discretization of the process is given by the transition probability
matrix P = (pnn′). Since the dual problem (D′n) is an unconstrained convex
minimization problem with a typically small number of variables, standard Newton
type algorithms can be applied. Furthermore, since the probabilities (2.3) are
strictly positive by construction, the transition probability matrix P = (pnn′) is a
strictly positive matrix, so the resulting Markov chain is stationary and ergodic.

2.2.2 The regularity condition

How stringent is the regularity condition (2.7)? Note that coT (DN) is the convex
hull of the image of the grid DN under the moment defining function T , so any
element of coT (DN) has the form

∑
n αnT (xn), where αn ≥ 0,

∑
n αn = 1, and

xn ∈ DN . Also, by definition T̄n = E [T (xt) |xt−1 = xn], which is a weighted
average of T (x)’s. Therefore in practice it is not hard to meet the regularity
condition T̄n ∈ int coT (DN). The only case difficulty arises is when xn is close
to the boundary of (the convex hull of) DN and the stochastic process is highly
persistent. Then T̄n also tends to be close to the boundary of coT (DN), and it may
happen to be outside the set, violating (2.7). But since the boundary of a convex
set has measure zero, for the vast majority of the grid points we are able to match
moments exactly. A practical solution to the potential failure of the regularity
condition is thus to match moments whenever we can by solving the minimization
problem (D′n), and if a solution fails to exist (which can be checked by computing
the error (2.5)), we can match only a subset of the moments T = (T1, . . . , TL).

2.2.3 How to choose the grid

In order to implement our method in practice, we need to overcome two issues:
(i) the choice of the grid, and (ii) the choice of the targeted moments.

According to the convergence analysis in Tanaka and Toda (2015), the grid
DN should be chosen as the integration points of the quadrature formula (2.1),
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which is used to obtain the initial coarse approximation in (2.2). For simplicity
we often choose the trapezoidal formula and therefore even-spaced grids. Alterna-
tively, we can place points using the Gaussian quadrature nodes as in Tauchen and
Hussey (1991), or, for that matter, any quadrature formula with positive weights
such as Simpson’s rule, low-degree Newton-Cotes type formulas, or the Clenshaw-
Curtis quadrature (see Davis and Rabinowitz (1984) for quadrature formulas); or
quantiles as in Adda and Cooper (2003).

Although tensor grids work well in low dimensional problems, in higher dimen-
sions they are not computationally tractable because the number of grid points
increases exponentially with the dimension.7 In such cases, one needs to use
sparse grids (Krueger and Kubler, 2004; Heiss and Winschel, 2008) or select the
grid points to delimit sets that the process visits with high probability (Maliar
and Maliar, 2015).

In practice, we find that the even-spaced grid (trapezoidal formula) works very
well and is robust across a wide range of different specifications. However, if
there is some special structure to the conditional distribution, such as normality,
a Gaussian quadrature approximation can result in better solution accuracy for
dynamic models.

2.2.4 How to choose the moments to match

Our method approximates a continuous Markov process by a discrete transition
matrix. A good approximation is one for which the integral of any bounded
continuous function using the discrete measure is close to the integral using the
original continuous measure. The quality of this approximation depends on how
accurately the integrand can be approximated by the moment defining functions
(see ‖g − ĝT‖∞ in (2.6)).

In the case of a single probability distribution, we can choose a grid over a set
with high probability and therefore match as many moments as we wish, up to
1 fewer than the number of grid points. In the case of stochastic processes, the
situation is more restrictive. As an illustration, consider the AR(1) process

xt = ρxt−1 + εt, εt ∼ N(0, 1),

with ρ close to 1.
Let DN = {x̄1, . . . , x̄N} be the grid, with x̄1 < · · · < x̄N . When xt−1 = x̄N , the

conditional distribution of xt is N(ρx̄N , 1). But when ρ is close to 1, this (true)
distribution has nearly 1/2 of its probability mass on the interval (x̄N ,∞), which
lies outside the grid. Since there is such a discrepancy between the location of
the grid points and the probability mass, we do not have the flexibility to match
many moments, because the regularity condition T̄n ∈ int coT (DN) may fail to
hold near the boundary. In the examples below, we consider matching up to 4
conditional moments whenever we can.

7Note that with our method, having a large number of grid points is not an issue for solving
the dual problem (D′n). The number of unknowns is equal to the number of targeted moments,
which is fixed. The issue with tensor grids is that the number of dual problems we need to solve
grows exponentially with the dimension.
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3 Discretizing VAR(1)s and stochastic volatility

models

Applied researchers often specify vector autoregressive processes (VARs) to de-
scribe the underlying shocks in their models. In this section we explain how our
method can be used to discretize general VARs and stochastic volatility models,
and prove some theoretical properties.

3.1 VAR(1)

Suppose we want to discretize a VAR(1) process

xt = (I −B)µ+Bxt−1 + ηt, ηt ∼ N(0,Ψ), (3.1)

where all vectors are in RK , µ is the unconditional mean of xt, Ψ is the condi-
tional variance matrix, and B is a K × K matrix with all eigenvalues smaller
than 1 in absolute value in order to guarantee stationarity. Using the Cholesky
decomposition, without loss of generality, we can rewrite (3.1) as

yt = Ayt−1 + εt, (3.2)

where yt = C−1(xt−µ), A = C−1BC, εt = C−1ηt ∼ N(0, D), C is lower triangular,
D is diagonal (typically D = I), and Ψ = CDC ′.8 Once we have a discretization
for yt, we have one for xt = µ+ Cyt.

3.1.1 Description of method

First we introduce some additional notation. Let yt = (y1t, . . . , yKt) and as-
sume that the discrete approximation of ykt takes Nk values denoted by Dk,Nk

=

{ȳkn}Nk

n=1. In total, there are J = N1 × · · · × NK states.9 Let j = 1, . . . , J
be an index of the state, corresponding to a particular combination of points

8Clearly there are infinitely many such decompositions. Experience tells that the quality of
discretization is best when each compoment of the yt process in (3.2) has the same unconditional
variance. We can do as follows to construct such a decomposition. First, take C̃ such that
Ψ = C̃C̃ ′, so D = I. Define ỹt = C̃−1(xt − µ), Ã = C̃−1BC̃, and ε̃t = C̃−1ηt ∼ N(0, I). Let
Σ̃ be the unconditional variance of the ỹ process. Let yt = U ′ỹt for some orthogonal matrix U ,
and define A = U ′ÃU , εt = U ′ε̃t, and C = C̃U ′. Then Var[εt] = U ′IU = I. The unconditional
variance of the y process is then Σ = U ′Σ̃U . Since tr Σ = tr Σ̃, the diagonal elements of Σ
become equal if Σkk = (U ′Σ̃U)kk = 1

K tr Σ̃. We can make this equation (approximately) true by
solving the optimization problem

minimize

K∑
k=1

(
(U ′Σ̃U)kk −

1

K
tr Σ̃

)2

subject to U ′U = I.

With this choice of U , the unconditional variances of the compoments of {yt} are close to each
other, and in fact equal if the objective function takes the value zero.

9In practice, we take N1 = N2 = · · · = NK = N , so J = NK .
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(ȳ1n(j), . . . , ȳKn(j)). Let pkn(j) be the probability that ykt = ȳkn conditional on
being in state j. Define the conditional mean and variance of ykt given state j
as µk(j) and σk(j)

2, respectively. We outline the procedure in Algorithm 3.1.
(Although we describe it for the case of two conditional moments, the case with
higher order moments is similar.)

Algorithm 3.1 (Discretization of VAR(1) processes).

1. For each component of yt = (y1t, . . . , yKt), select a discrete set of points
Dk,Nk

= {ȳkn}Nk

n=1.

2. For j = 1, . . . , J ,

(a) For k = 1, . . . , K (note that we can treat each component k sepa-
rately because the variance-covariance matrix D is diagonal),

i. Define the moment defining function and exact moments by

Tkj(x) =

[
x

(x− µk(j))2

]
and T̄kj =

[
µk(j)
σk(j)

2

]
.

ii. Select an initial approximation {qkn(j)}Nk

n=1, where qkn(j) is the
probability of moving to point ȳkn conditional on being in state
j.

iii. Solve minimization problem (D′n) for λkj and compute the con-

ditional probabilities {pkn(j)}Nk

n=1 using (2.3).

(b) Compute the conditional probabilities {pjj′}Jj′=1 by multiplying to-
gether the conditional probabilities pkn(j) that make up transitions
to elements of state j′.

3. Collect the conditional probabilities {pjj′}Jj′=1 into a matrix P = (pjj′).

In order to determine {pkn(j)} using Algorithm 3.1, we need an initial coarse
approximation {qkn(j)}. The simplest way is to take the grid points {ȳkn}Nk

n=1 to
be evenly spaced and assign qkn(j) to be proportional to the conditional density of
ykt given state j, which corresponds to choosing the trapezoidal rule for the initial
quadrature formula. Alternatively, we can use the nodes and weights of the Gauss-
Hermite quadrature as in Tauchen and Hussey (1991),10 or take the grid points
{ȳkn}Nk

n=1 as quantiles of the unconditional distribution and assign probabilities
according to the cumulative distribution function, as in Adda and Cooper (2003).11

10Following the original paper by Tauchen and Hussey (1991), we always use the conditional
variance matrix D to construct the Gauss-Hermite quadrature. This is the most logical way
since dynamic economic models involve conditional expectations (e.g., Euler equations), which
are integrals that use the conditional distributions.

11The specific procedure is as follows. Let the stationary distribution of ykt be N(0, σ2
k). Since
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Which grid/quadrature formula is best is a practical problem and we explore this
issue in subsequent sections.

This method can be generalized to VAR(p) processes, although the dimension
of the state space would grow exponentially in p unless we use a sparse grid.

3.1.2 Theoretical properties of the discretization

If a solution to the dual problem (D′n) exists, by construction our method generates
a finite-state Markov chain approximation of the VAR with exact 1-step ahead
conditional moments. But how about k-step ahead conditional moments and
unconditional moments? The following theorem provides an answer.

Theorem 3.2. Consider the VAR(1) process in (3.2), with grid DN . Suppose that
the regularity condition T̄n ∈ int coT (DN) holds, and hence our method matches
the conditional mean and variance. Then the method also matches any k-step
ahead conditional mean and variance, as well as the unconditional mean and all
autocovariances (hence spectrum).

This result holds even for a certain class of stochastic volatility models (The-
orem A.1). According to its proof, there is nothing specific to the choice of the
grid, the normality of the process, or the diagonalization. Therefore the result
holds for any non-Gaussian linear process.

So far, we have assumed that the regularity condition (2.7) holds, so that a
discrete approximation with exact conditional moments using our method exists.
As we see in the numerical examples below, such a discretization exists most of
the time, but not always. Therefore it is important to provide easily verifiable
conditions that guarantee existence. For general VARs, the following proposition
shows that it is always possible to match conditional means.

Proposition 3.3. Consider the VAR(1) process in (3.2) with coefficient matrix
A = (akk′). Let |A| = (|akk′ |) be the matrix obtained by taking the absolute value of
each element of A. If the spectral radius of |A| is less than 1 ( i.e., all eigenvalues
are less than 1 in absolute value), then there exists a tensor grid such that we can
match all conditional means.

How about the conditional mean and variance? Since addressing this issue for
general VAR processes is challenging, we restrict our analysis to the case of an
AR(1) process. The following proposition shows that a solution exists if the grid is
symmetric, sufficiently fine, and the grid points span more than one unconditional
standard deviation around 0.

there are Nk discrete points for ykt, we divide the real line R into Nk intervals using the n-th
Nk-quantile (n = 1, . . . , Nk − 1), which we denote by Ik1, . . . , IkN . The discrete points are then
the median of each interval, so ȳkn = F−1((2n−1)/2Nk) (n = 1, 2, . . . , Nk), where F is the CDF
of N(0, σ2

k). When the t−1 state is j, since the conditional distribution of ykt is N(µk(j), σ2
k(j)),

we assign initial probability qkn(j) = P (Ikn) to the point ȳkn under the conditional distribution
N(µk(j), σ2

k(j)).
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Proposition 3.4. Consider the AR(1) process

xt = ρxt−1 + εt, εt ∼ (0, 1),

where 0 ≤ ρ < 1. Suppose that (i) the grid {x̄n}Nn=1 is symmetric and spans more

than one unconditional standard deviation around 0, so maxn |x̄n| > 1/
√

1− ρ2,
and (ii) either the maximum distance between two neighboring grid points is less
than 2, or for each positive grid point x̄n > 0 there exists a grid point x̄n′ such
that

ρx̄n −
1

(1− ρ)x̄n
< x̄n′ ≤ ρx̄n. (3.3)

Then (D′n) has a unique solution for all n.

When the grid {x̄n} is even-spaced, we can obtain a simple sufficient condition
for existence.

Corollary 3.5. Let the grid points {x̄n}Nn=1 be symmetric and even-spaced, σ =

1/
√

1− ρ2 be the unconditional standard deviation, and M = maxn x̄n. Suppose
that either

1. ρ ≤ 1− 2
N−1

and σ < M ≤
√

2σ
√
N − 1, or

2. ρ > 1− 2
N−1

and σ < M ≤ σ
√
N − 1.

Then (D′n) has a unique solution for all n.

Interestingly, Kopecky and Suen (2010) show that the Rouwenhorst (1995)
method matches the first and second conditional moments when the grid span
is M = σ

√
N − 1, the upper bound in Corollary 3.5 for the case ρ > 1 − 2

N−1
.

Choosing a grid span of order
√
N can also be theoretically justified. In that case,

the grid spacing is of order N/
√
N = 1/

√
N . Since the grid gets finer while the

grid span tends to infinity, the trapezoidal formula converges to the true integral.
Therefore the approximation error can be made arbitrarily small by increasing
N . For general VARs, we do not have theoretical results for the existence of a
discretization that matches second moments. However, we recommend using a
grid span M = σ

√
N − 1 in each dimension, where σ is the square root of the

smallest eigenvalue of the unconditional variance of the VAR.
Theorem 3.2, Proposition 3.4, and Corollary 3.5 are significant. Note that

among all existing methods, the Rouwenhorst (1995) method for discretizing Gaus-
sian AR(1) processes is the only one known to match the first and second condi-
tional moments exactly.12

12Kopecky and Suen (2010) prove that the 1-step ahead conditional moments are exact. By
Theorem 3.2, all k-step ahead conditional moments are also exact.
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3.2 AR(1) with stochastic volatility

Consider an AR(1) process with stochastic volatility of the form

yt = λyt−1 + ut, ut ∼ N(0, ext), (3.4a)

xt = (1− ρ)µ+ ρxt−1 + εt, εt ∼ N(0, σ2), (3.4b)

where xt is the unobserved log variance process and yt is the observable, e.g., stock
returns. We assume that yt is mean zero without loss of generality.

Since the log variance process xt evolves independently of the level yt as an
AR(1) process, we can discretize it using Algorithm 3.1. For yt, note that the
unconditional variance is given by

σ2
y = E[y2

t ] =
E[ext ]

1− λ2
.

Since the unconditional distribution of xt is N
(
µ, σ2

1−ρ2

)
, we have

E[ext ] = exp

(
µ+

σ2

2(1− ρ2)

)
using the properties of lognormal random variables. We can then construct an
even-spaced grid for yt spanning some number of unconditional standard devia-
tions around 0.

With some more algebra, we can show that

yt|xt−1, yt−1 ∼ N
(
λyt−1, exp

(
(1− ρ)µ+ ρxt−1 + σ2/2

))
.

We discretize these conditional distributions for each (xt−1, yt−1) pair using our
method and combine them with the discretization obtained for xt|xt−1 above, to
come up with a joint transition matrix for the state (xt, yt).

3.3 Relation to the existing literature

In this section we discuss the existing literature in detail.
The standard method for approximating an AR(1) process is that of Tauchen

(1986), which divides the state space into evenly spaced intervals, with the grid
chosen as the midpoints of those intervals. Tauchen constructs each approxi-
mate conditional distribution by matching the probabilities of transitioning from
a particular point to each interval. The Tauchen method is intuitive, simple, and
reasonably accurate when the number of grid points is large enough. It is easily
generalized and widely used for the approximation of VAR processes. Variants of
the Tauchen method have been developed in the literature by using Gauss-Hermite
quadrature (Tauchen and Hussey, 1991), placing grid points using quantiles in-
stead of even-spaced intervals (Adda and Cooper, 2003), and using multivariate
normal integration techniques (Terry and Knotek, 2011). Rouwenhorst (1995)
proposes an alternative discretization method of a Gaussian AR(1) process that
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matches the unconditional first and second moments exactly. His idea is to ap-
proximate a normal distribution by binomial distributions.

VARs are highly persistent in typical macroeconomic applications. It has been
recognized that the Tauchen and Tauchen-Hussey methods often fail to give accu-
rate approximations to such processes (Zhang, 2005; Flodén, 2008),13 which has
spurred a renewed research interest in accurately discretizing autoregressive pro-
cesses. Kopecky and Suen (2010) prove that for a certain choice of the grid, the
Rouwenhorst method actually matches the autocorrelation and the conditional
mean and variance. This means that the Rouwenhorst method is suitable for dis-
cretizing highly persistent Gaussian AR(1) processes, for which earlier methods
failed. Applying it to typical macroeconomic models such as stochastic growth
and income fluctuation models, they show that the relative error in the solution
accuracy is less than 1% with the Rouwenhorst method, compared with 10–20%
with earlier methods.

Galindev and Lkhagvasuren (2010) generalize the Rouwenhorst method to the
multivariate case by transforming a VAR into a set of cross-correlated AR(1) pro-
cesses. However, their method works only when the AR(1) processes are equally
persistent (a knife-edge case), for otherwise the state space is not finite.

Gospodinov and Lkhagvasuren (2014) propose an alternative discretization
method of VARs by first discretizing independent AR(1) processes using the
Rouwenhorst method and then targeting the first and second conditional mo-
ments to mimic the conditional distributions of the actual VAR process. Solving a
stochastic growth model with a highly persistent bivariate VAR, they find that the
relative error in the solution accuracy is about 1–3% with their method, compared
with 10–30% with the Tauchen method.

Since our method matches conditional moments, it is similar in spirit to Rouwen-
horst (1995) (AR(1)) and Gospodinov and Lkhagvasuren (2014) (VAR(1)), though
our method is not limited to VARs. Here we contrast our method to these two in
more details. According to Proposition 3 in Kopecky and Suen (2010), the ergodic
distribution of the resulting Markov chain of the Rouwenhorst method is a stan-
dardized binomial distribution with parameter N−1 and s = 1/2, so by the central
limit theorem it converges to N(0, 1) as N →∞. This argument suggests that the
Rouwenhorst method is designed to discretize a Gaussian AR(1). It immediately
follows that neither our method (for AR(1)) nor the Rouwenhorst method is a
special case of the other: our method is not limited to Gaussian AR(1) processes
(Proposition 3.4 and Corollary 3.5 do not assume normality), and generally has a
different grid.

With regard to VARs, both the Gospodinov and Lkhagvasuren (2014) (GL)
method and ours target the first and second conditional moments. The GL method
uses the Rouwenhorst method to obtain a preliminary discretization and then
targets the moments. As GL acknowledge in their paper, the GL method has
fewer free variables than the number of targeted moments, and hence it is generally

13In the original paper, Tauchen (1986) himself admits that “[e]xperimentation showed that
the quality of the approximation remains good except when λ [the persistence parameter] is very
close to unity.”
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impossible to match all moments. While we do not have a proof that our method
matches all first and second conditional moments (Proposition 3.3 shows that it is
possible to match conditional means), according to our experience it seems that
for most applications we can indeed match all first two conditional moments when
we use the even-spaced grid. Again neither of the two methods is a special case
of the other.

We do not claim that our method is always preferable, although we emphasize
that our method is not limited to the discretization of linear Gaussian processes.
Whether our method is superior or not can only be answered by studying the
accuracy in specific problems. The Online Appendix compares the accuracy of
discretization and shows that our method outperforms existing ones by several
orders of magnitude. However, discretization is not an end in itself. A more
important question is whether different discretization methods lead to substantial
differences in the solution accuracy of dynamic economic models, and whether
these differences matter economically. We provide answers to these questions in
the next sections.

4 Solution accuracy of asset pricing models

Whenever one proposes a new numerical method for solving dynamic models, it
must be evaluated by two criteria: (i) Does the new method improve the solution
accuracy of well-known, standard dynamic economic models? (ii) Can the new
method be applied to solve more complicated models for which existing methods
are not readily available? In order for a new method to be useful, it must meet at
least one (preferably both) of these two criteria.

This section addresses these questions by solving simple asset pricing models
with or without Gaussian shocks. We use the closed-form solutions obtained by
Burnside (1998) for Gaussian shocks and Tsionas (2003) for non-Gaussian shocks
as comparison benchmarks.14

4.1 Model and numerical solution

Consider a representative agent with additive CRRA utility function

E0

∞∑
t=0

βt
C1−γ
t

1− γ
,

where Ct is consumption, β > 0 is the discount factor, and γ > 0 is the coefficient of
relative risk aversion. The agent is endowed with aggregate consumption {Ct}∞t=0,
and can trade assets in zero net supply. Let Dt be the dividend to an asset and
Pt be its price. When log consumption and dividend growth

xt = (log(Ct/Ct−1), log(Dt/Dt−1))

14Collard and Juillard (2001) and Schmitt-Grohé and Uribe (2004) also use this model in order
to evaluate the solution accuracy of the perturbation method.
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follow a VAR(1) process with i.i.d. shocks, it is possible to obtain a closed-form
solution for the price-dividend ratio Vt = Pt/Dt, which depends only on xt. See
the Online Appendix for details.

We obtain numerical solutions as follows. By the Euler equation, we have

Pt = Et[β(Ct+1/Ct)
−γ(Pt+1 +Dt+1)]. (4.1)

Dividing (4.1) by Dt, we obtain

Vt = β Et[exp(α′xt+1)(Vt+1 + 1)], (4.2)

where α = (−γ, 1)′. Suppose that the process for consumption and dividend
growth is discretized. Let s = 1, . . . , S be the states, xs be the vector of log con-
sumption/dividend growth in state s, and P = (πss′) be the transition probability
matrix. Then the discrete analog of (4.2) is

vs = β
S∑

s′=1

πss′e
α′xs′ (vs′ + 1), (4.3)

where vs is the price-dividend ratio in state s. Let v = (v1, . . . , vS)′ (S × 1) and
X = (x′1, . . . , x

′
S)′ (S×2) be the matrices of those values. Then (4.3) is equivalent

to the linear equation

v = βP diag(eXα)(v + 1) ⇐⇒ v = (I − βP diag(eXα))−1βP eXα. (4.4)

This formula gives the price-dividend ratio only at the grid points, and one
might be interested in computing the value at any point. In this case, we can
use the projection method (Judd, 1992). The idea of the projection method
with Chebyshev collocation is to approximate the unknown policy function us-
ing Chebyshev polynomials as a basis.15 Suppose we approximate V (x) as

V̂ (x; b) =
S∑
s=1

bsΨs(x),

where {Ψs}Ss=1 is a set of basis functions (Chebyshev polynomials) and b = {bs}Ss=1

is the vector of coefficients to be determined. We can solve for b that sets the
Euler equation (4.2) to exactly zero at each of the S grid points implied by each
discretization method, which leads to an exactly identified system. The equation
becomes

V̂ (xs; b) = β

S∑
s′=1

πss′e
α′xs′

(
V̂ (xs′ ; b) + 1

)
. (4.5)

However, if we set vs = V̂ (xs; b), then (4.5) becomes identical to (4.3)! Therefore
finding coefficients {bs} that solve (4.5) is equivalent to first solving the linear
equation (4.3) (whose solution is given by (4.4)) and then finding an interpolating
polynomial. We summarize the above discussion in the following proposition.

15Unlike standard Chebyshev collocation, we are constrained to solve for coefficients that set
the Euler equation residuals equal to 0 at the discretization points rather than the zeroes of the
Chebyshev polynomial. This in general means we are only guaranteed pointwise convergence of
our approximation rather than uniform convergence.
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Proposition 4.1. Solving an asset pricing model with a continuous state space
using discretization and projection is equivalent to solving a model with a discrete
state space, which can be done by inverting a matrix as in (4.4). The continuous
solution can be obtained by interpolating the discrete solution.

Proposition 4.1 is quite powerful. Note that there is nothing specific to the
preferences of the agent or the underlying stochastic process needed to apply the
proposition. For example, suppose that the agent has a general recursive utility
of the form

Ut = f(Ct,Mt(Ut+1)), (4.6)

where Ut is the utility at time t, Ct is consumption, f is the aggregator, and Mt

is the certainty equivalent of the continuation utility Ut+1.16 Suppose that f,M
are homogeneous of degree 1 (which is true for almost all applications) and the
underlying stochastic process is discretized. Dividing (4.6) by Ct, we can solve for
the S nonlinear equations in S unknowns

us = f(1,Ms(e
xss′us′)), (4.7)

where xss′ is log consumption growth from state s to s′ and us = (Ut/Ct)(s) is the
utility-consumption ratio in state s. After solving for these values {us}, one can
compute the pricing kernel and price any assets by inverting a matrix as in (4.4).
In practice, solving (4.7) and inverting a matrix to compute asset prices take only
a fraction of a second to carry out.17

4.2 Calibration

We calibrate the model at annual frequency. We select the preference parameters
β = 0.95 and γ = 2, which are relatively standard in the macro literature. We
consider three specifications for the law of motion of xt: Gaussian AR(1), Gaussian
VAR(1), and AR(1) with non-Gaussian shocks. We estimate the parameters of
each of these models using data on real personal consumption expenditures per
capita of nondurables from FRED, and 12-month moving sums of dividends paid
on the S&P 500 obtained from the spreadsheet in Welch and Goyal (2008).18 For
the two univariate specifications, we assume that Ct = Dt, i.e., x1,t = x2,t = xt,
and use the data on dividends to estimate the parameters.

The reason why we use dividend data instead of consumption data for the
univariate models is as follows. Given the mean µ and persistence ρ of the AR(1)
process, according to Tsionas (2003) the price-dividend ratio depends only on the
moment generating function (MGF) M(s) of the shock distribution in the range

16A typical example is f(c, v) = ((1−β)c1−1/ψ+βv1−1/ψ)
1

1−1/ψ (CES aggregator with elasticity

of intertemporal substitution ψ) and Mt(X) = Et[X
1−γ ]

1
1−γ (CRRA certainty equivalent with

relative risk aversion γ) in which case we obtain the Epstein-Zin preference.
17The idea of using discretization to solve asset pricing models is not particularly new: see,

for example, Mehra and Prescott (1985), Cecchetti et al. (1993), and Bonomo et al. (2011),
among others. The point is that there have been no systematic ways to accurately discretize the
underlying stochastic process in the literature to make discretization a viable option.

18http://www.hec.unil.ch/agoyal/
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1−γ
1−ρ ≤ s ≤ 1− γ (assuming γ > 1 and ρ > 0). But if two shock distributions have
identical mean and variance, then the Taylor expansion of their MGF around s = 0
will coincide up to the second order term. Therefore, in order to make a difference
for asset pricing, we either need to (i) move away from s = 0 by increasing γ,
(ii) make the domain of the MGF larger by increasing ρ, or (iii) make the MGF
more nonlinear by increasing the variance or skewness. Since dividend growth is
more persistent, volatile, and skewed than consumption growth, using dividend
growth will make the contrasts between methods more stark.

4.3 Solution accuracy

After computing the numerical and closed-form solutions as described in the On-
line Appendix, we evaluate the accuracy by the log10 relative errors

log10

∣∣∣V̂ (x)/V (x)− 1
∣∣∣ ,

where V (x) is the true price-dividend ratio at x and V̂ (x) is the approximate
(numerical) solution corresponding to each method obtained by the interpolating
polynomial as in Proposition 4.1. To compare the relative errors of each method,
we first take the largest common support across all discretization methods so that
the approximation is well defined, and then compute the relative errors on a fine
grid (say 1,001 points in each dimension) on this support. All methods beginning
with “ME” refer to the maximum entropy method developed in this paper with
different choices of the underlying grid and quadrature formula. For example,
“ME-Even” refers to the maximum entropy method using an even-spaced grid.

4.3.1 Gausian AR(1)

Modeling the dynamics of dividend growth by a Gaussian AR(1) is straightforward
and we relegate the details to the Online Appendix.

4.3.2 Gaussian VAR(1)

We next consider specifying the joint dynamics of dividend growth and consump-
tion growth as a Gaussian VAR(1)

xt = (I −B)µ+Bxt−1 + ηt, ηt ∼ N(0,Ψ)

where µ is a 2 × 1 vector of unconditional means, B is a 2 × 2 matrix with
eigenvalues less than 1 in absolute value, η is a 2× 1 vector of shocks, and Ψ is a
2×2 variance covariance matrix. The estimated parameters of the VAR(1) model
are

µ =

[
0.0128
0.0561

]
, B =

[
0.3237 −0.0537
0.2862 0.3886

]
, Ψ =

[
0.000203 0.000293
0.000293 0.003558

]
.

The eigenvalues of B are 0.3561± 0.1196i, with spectral radius ρ(B) = 0.3757, so
the VAR is moderately persistent.
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We consider eight different discretization methods. For our method, we con-
sider the even-spaced grid with 2 or 4 moments (ME-Even (2,4)), the quantile grid
(ME-Quant), and the Gauss-Hermite quadrature grid (ME-Quad). For existing
methods, we consider those of Tauchen (1986)(Tau), Tauchen and Hussey (1991)
(TH), and Gospodinov and Lkhagvasuren (2014) with (GL) and without (GL0)
moment matching. Figure 4.1 shows the graphs of log10 relative errors for the
VAR(1) model. Table 4.1 shows the mean and maximum log10 relative errors over
the entire grid.

Table 4.1: Mean and maximum log10 relative errors for the asset pricing model
with VAR(1) consumption/dividend growth.

ME methods Existing methods
N Even (2) Quant Quad Even (4) Tau TH GL0 GL

Mean log10 errors
5 -3.381 -2.963 -5.028 -3.570 -1.463 -2.964 -3.439 -2.191
7 -3.667 -3.066 -6.758 -5.134 -1.520 -4.920 -2.586 -2.618
9 -3.949 -3.146 -8.563 -6.739 -1.546 -6.900 -2.449 -3.106

Maximum log10 errors
5 -3.292 -2.865 -4.975 -3.485 -1.327 -2.890 -2.365 -1.982
7 -3.566 -2.954 -6.717 -4.891 -1.360 -4.838 -2.125 -2.140
9 -3.838 -3.022 -8.451 -5.730 -1.370 -6.581 -2.212 -2.471

For all choices of N , the Gaussian quadrature based methods, ME-Quad and
TH, perform the best, with ME-Quad being always about two orders of magni-
tude more accurate than TH. For even-spaced methods, the order of accuracy is
always ME-Even (4) > ME-Even (2) > GL0, GL > Tauchen, and ME-Even (4)
is as accurate as Tauchen-Hussey. ME-Quant is not particularly accurate but its
performance is similar to the GL methods. According to Table 4.1, the conclusions
drawn from Figure 4.1 are robust.

4.3.3 AR(1) with non-Gaussian shocks

Researchers often assume normality of the conditional shock distributions for an-
alytical and computational convenience. However, there is much evidence of non-
normality in financial data. One might prefer to specify a parametric distribution
with fatter tails, or refrain from parametric specifications altogether. For this
reason, we consider an AR(1) with i.i.d., but non-Gaussian shocks:

xt = (1− ρ)µ+ ρxt−1 + εt, εt ∼ F.

We model the shock distribution F by a Gaussian mixture, because it is flexible yet
analytically tractable (all moments and moment generating function have closed-
form expressions). Table 4.2 shows the parameter estimates.

Figure 4.2 plots the PDFs of εt fit to the dividend growth data under the
assumptions of normal and Gaussian mixture shocks, as well as the nonparametric
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(b) N = 5, fixed dividend.

Dividend Growth
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

lo
g 10

 R
el

at
iv

e 
E

rr
or

s

-7

-6

-5

-4

-3

-2

-1
Consumption growth fixed at unconditional mean

ME-Even (2)
ME-Quant
ME-Quad
ME-Even (4)

Tauchen
Tauchen-Hussey
GL0
GL

(c) N = 7, fixed consumption.
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(d) N = 7, fixed dividend.
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(e) N = 9, fixed consumption.
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(f) N = 9, fixed dividend.

Figure 4.1: log10 relative errors of price-dividend ratio with various discretization
methods and number of points for the VAR(1) model.

Note: each row corresponds to a certain number of grid points (N = 5, 7, 9). The left pan-
els show the accuracy along the dividend growth dimension, fixing consumption growth at its
unconditional mean. The right panels fix dividend growth at its unconditional mean and vary
consumption growth. The grids are demeaned so that the unconditional mean corresponds to 0
in the figures.

kernel density estimate. The Gaussian mixture with three components appears to
capture the skewness and kurtosis lacking in the normal specification by placing
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Table 4.2: Parameters of the AR(1) process with Gaussian mixture shocks.

Parameter Symbol Value

Mean dividend growth µ 0.0559
Persistence of dividend growth ρ 0.4049
Volatility of dividend growth σ 0.0589
Proportion of mixture components wj 0.0304, 0.8489, 0.1207
Mean of mixture components µj -0.2282, -0.0027, 0.0766
S.D. of mixture components σj 0.0513, 0.0316, 0.0454

Note: this table shows the parameter estimates of the AR(1) process with Gaussian mixture
shocks xt = (1 − ρ)µ + ρxt−1 + εt, where xt = log(Dt/Dt−1) is log dividend growth and εt ∼
N(µj , σ

2
j ) with probability wj , j = 1, . . . , J . µ, ρ are estimated by OLS. σ =

√
Var[εt] is

computed from the squared sum of residuals. The Gaussian mixture parameters are estimated
by maximum likelihood from the residuals, and the number of components J = 3 is chosen to
minimize the Akaike Information Criterion (AIC).

more weight on large negative realizations of the shock as well as ones close to
zero.
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Figure 4.2: Densities fitted to AR(1) OLS residuals.

We consider six different discretizations for the log dividend growth process.
The first two are the Rouwenhorst (1995) and the Tauchen and Hussey (1991)
methods, which can be thought of as a case where the researcher incorrectly be-
lieves the conditional density to be Gaussian. The other four methods are the ME
methods with even-spaced (ME-Even) or Gauss-Hermite quadrature grid (ME-
GH), each with 2 or 4 moments matched. For ME-Even, we implement the dis-
cretization exactly as in Algorithm 3.1, except that we use the Gaussian mixture
density instead of the normal density. We choose the grid spacing as the upper
bound in Corollary 3.5. For ME-GH, we take the following approach. Suppose
the true (Gaussian mixture) density at a given grid point is f(x). Let φ(x) be the
normal density with mean 0 and the same standard deviation as f(x). Then the
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expectation of a function g(x) is∫
g(x)f(x) dx =

∫
g(x)

f(x)

φ(x)
φ(x) dx ≈

N∑
n=1

wn
f(xn)

φ(xn)
g(xn),

where {xn} and {wn} are nodes and weights for the Gauss-Hermite quadrature
corresponding to φ(x). This argument suggests that we can use the Gauss-Hermite

quadrature grid with weights w′n = wn
f(xn)
φ(xn)

in order to discretize f(x). Figure 4.3

plots the log10 relative errors of the AR(1) model with Gaussian mixture shocks.
Table 4.3 shows the mean and maximum log10 relative errors.
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(b) N = 15, γ = 2.
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(c) N = 9, γ = 5.
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(d) N = 15, γ = 5.

Figure 4.3: log10 relative errors with various discretization methods and number
of points for the Gaussian mixture model.

Note: the top panels show the accuracy for approximations to the benchmark model with risk
aversion γ = 2 and different number of grid points N = 9, 15. The bottom panels show the
results for an alternative specification in which the risk aversion is higher at γ = 5.

As we can see from the figure and the table, the order of accuracy is always
ME-GH ≈ ME-Even > Rouwenhorst ≈ Tauchen-Hussey, and matching 4 mo-
ments instead of 2 increases the solution accuracy by about 1 to 2 orders of mag-
nitude. For low risk aversion (γ = 2), even the misspecified models (Rouwenhorst
and Tauchen-Hussey) have relative errors less than 10−2 or 1%, so the choice of
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Table 4.3: Mean and maximum log10 relative errors for the AR(1) asset pricing
model with Gaussian mixture shocks.

ME methods Existing methods
N γ Even (2) Even (4) GH (2) GH (4) R TH

Mean log10 errors
9 2 -3.381 -5.013 -3.602 -5.176 -2.602 -2.606

15 2 -4.264 -6.445 -5.189 -6.414 -2.604 -2.606
9 5 -1.466 -2.071 -1.602 -2.182 -0.909 -0.919

15 5 -2.137 -2.948 -2.774 -3.467 -0.913 -0.919

Maximum log10 errors
9 2 -3.239 -4.698 -3.406 -4.978 -2.587 -2.603

15 2 -3.935 -5.821 -4.748 -5.673 -2.591 -2.602
9 5 -1.307 -1.913 -1.413 -2.018 -0.874 -0.900

15 5 -1.854 -2.639 -2.464 -3.184 -0.875 -0.892

Note: Even (L): even-spaced grid with L moments; GH (L): Gauss-Hermite quadrature grid
with L moments; R: Rouwenhorst (1995) method; TH: Tauchen and Hussey (1991) method.

the discretization method does not matter so much. However, with higher risk
aversion (γ = 5), the misspecified models are off by more than 10−1 (10%), while
ME methods with 4 moments has errors less than 10−2 (1%) with 9 points and
10−3 (0.1%) with 15 points. Hence the choice of the discretization method makes
an economically significant difference when risk aversion is moderately high, which
is often the case for many asset pricing models in the literature.

5 Solution accuracy of a rare disasters model

To illustrate the general applicability of our method, in this section we solve
an asset pricing model with variable rare disasters (Gabaix, 2012). There are
several good reasons to consider this model. First, the dynamics of the underlying
stochastic process are nonlinear and non-Gaussian, which makes our method more
useful. Second, Gabaix’s model admits closed-form solutions, which makes the
accuracy comparison particularly simple. Finally, since rare disaster models have
recently become quite popular in the literature (Rietz, 1988; Barro, 2006; Gourio,
2012; Wachter, 2013), providing a simple yet accurate solution algorithm seems to
be useful, especially for the purpose of calibration and estimation.

5.1 Model

Gabaix (2012) considers a representative-agent asset pricing model in an endow-
ment economy. The representative agent has CRRA preferences

E0

∞∑
t=0

e−ρt
C1−γ
t

1− γ
,
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where ρ > 0 is the discount rate and γ > 0 is relative risk aversion. Disasters
occur with probability pt at time t+ 1. The consumption growth is given by

Ct+1

Ct
= egC ×

{
1, (no disaster)

Bt+1, (disaster)

where gC is the growth rate in normal times and Bt+1 ∈ (0, 1] is the consumption
recovery rate after a disaster. Similarly, the dividend growth is

Dt+1

Dt

= egD ×

{
1, (no disaster)

Ft+1, (disaster)

where gD is the growth rate in normal times and Ft+1 ∈ (0, 1] is the dividend
recovery rate after a disaster. Gabaix (2012) defines the following quantity, which
he calls “resilience”:

Ht = pt ED
t [B−γt+1Ft+1 − 1], (5.1)

where ED
t denotes the expectation conditional on d isaster. Instead of specifying

the dynamics of the fundamentals pt, Bt, Ft individually, Gabaix directly specifies
the dynamics of Ht = H∗ + Ĥt as follows:

Ĥt+1 =
1 +H∗
1 +Ht

e−φHĤt + εHt+1, (5.2)

where H∗ is a constant, φH > 0 is the speed of mean reversion at Ht = H∗, and
εHt+1 is an innovation. Since 1 +Ht appears in the denominator of the right-hand
side, (5.2) is a highly nonlinear process. It turns out that the price-dividend ratio

at time t depends only on Ĥt independent of the distribution of εHt+1, and Gabaix
obtains a closed-form solution (see Eq. (13) in his paper).

5.2 Solution accuracy

To compare numerical solutions obtained by our method to the exact solution, we
need to discretize the process (5.2). Since the distribution of the innovation εHt+1

does not matter, and since Gabaix shows that the process
{
Ĥt

}
must be bounded,

we assume that the distribution of Ĥt+1 given Ĥt is a beta distribution (properly
rescaled) with mean and variance implied by (5.2). Once we specify the conditional
distribution this way, it is straightforward to discretize the Markov process using
our method. See the Online Appendix for the details on discretization and the
computation of the numerical solution. Although there are no accepted standard
ways for solving the rare disasters model, we also compare the solution accuracy
of our method to the perturbation method proposed in Levintal (2014).19

For the parameter values, following Gabaix (2012) we set the discount rate
ρ = 0.0657, relative risk aversion γ = 4, consumption and dividend growth rate
gC = gD = 0.025, disaster probability p = 0.0363, consumption recovery rate

19https://sites.google.com/site/orenlevintal/5th-order-perturbation
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B = 0.66, and the speed of mean reversion φH = 0.13. The implied value for
the constant H∗ in (5.2) is 0.09. Figure 5.1 shows the ergodic distribution of

the variable part of resilience Ĥ computed from the discrete approximation with
N = 201 points. The distribution is bimodal.
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-0.1 -0.05 0 0.05

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

0

2

4

6

8

10

12

Figure 5.1: Ergodic distribution of the variable part of resilience Ĥ.

For our method, we consider the even-spaced grid, Gauss-Legendre quadrature
grid, and the Clenshaw-Curtis quadrature grid, which are the most natural choices
since the integration is over a bounded interval. The number of points are N =
5, 11, 21, 41, 81. For the perturbation method in Levintal (2014), we consider up
to the fifth-order approximation (the maximum allowed). In order to apply the
perturbation method, we need to supply the unconditional standard deviation
of the innovation in resilience, εHt+1. We compute this number using the ergodic
distribution in Figure 5.1, which is 0.0174. We also simulated the true process
(5.2) for a long time and verified that we obtain the same number up to four
decimal places. Figure 5.2 shows the log10 relative errors of the price-dividend
ratio. Table 5.1 shows the mean and maximum log10 relative errors over the entire
grid.

Because the resilience process (5.2) is highly nonlinear, we need many grid
points in order to obtain an accurate solution. Overall using the Gauss-Legendre
quadrature grid (Figure 5.2b) is the most accurate, with relative errors about 10−3

with N = 11 points, 10−5 with N = 21 points, and 10−10 with N = 41 points.
Hence for practical purposes 11 points are enough. Clenshaw-Curtis quadrature
(Figure 5.2c) is similar to Gauss-Legendre, as documented in Trefethen (2008).
The performance of the even-spaced grid (Figure 5.2a) is worse near the bound-
ary points. This is because the conditional variance of the resilience process (5.2)
approaches zero near the boundary, which makes it hard to match the conditional
variance. Since there are many grid points near the boundary for Gauss-Legendre
and Clenshaw-Curtis, a low variance is not a problem. The perturbation method
(Figure 5.2d) is not so accurate, with about 10% error with 3rd-order approxima-
tion and 2.6% error with 5th-order. Even the 5-point Gauss-Legendre discretiza-
tion is more accurate than the 5th-order perturbation in terms of both mean and
maximum log10 errors.
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(a) Even-spaced grid.
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(b) Gauss-Legendre quadrature grid.
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(c) Clenshaw-Curtis quadrature grid.
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(d) Perturbation method.

Figure 5.2: log10 relative errors of price-dividend ratio with various methods and
number of points or order of approximation for the variable rare disaster model.

Table 5.1: Mean and maximum log10 relative errors for the variable disaster model.

ME methods Perturbation
N Even Gauss-Legendre Clenshaw-Curtis Order

Mean log10 errors
5 -1.187 -1.982 -1.218 1 -0.422

11 -2.582 -3.451 -2.676 2 -0.856
21 -5.383 -5.560 -5.354 3 -1.007
41 -8.007 -9.679 -9.040 4 -1.268
81 -9.228 -11.23 -9.873 5 -1.590

Maximum log10 errors
5 -0.107 -1.353 -0.182 1 -0.356

11 -0.365 -2.422 -0.841 2 -0.501
21 -0.628 -2.291 -1.430 3 -0.715
41 -1.053 -3.567 -1.447 4 -0.765
81 -1.503 -5.245 -2.003 5 -0.992
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Do these differences in solution accuracy economically matter? To address
this question, we simulate the resilience process (5.2) for T = 100, 000 periods and
compute some financial moments from the true solution as well as the numerical
solutions. Table 5.2 shows the results. As expected from Figure 5.2 and Table
5.1, the 11-point Gauss-Legendre discretization gives accurate results up to the
third significant digit (0.1%). The perturbation method does not fare well: with
the 1st-order approximation, the stock return is 4 percentage points higher than
the true value; the 3rd order approximation is off by 10–20%, and the 5th-order
approximation is off by about 10% for the standard deviation.

Table 5.2: Financial moments.

ME methods Perturbation
N Even Gauss-Legendre Clenshaw-Curtis Order

Mean P/D True = 16.7330
5 17.5101 16.9876 17.8134 1 9.9614

11 16.8498 16.7268 16.6894 2 13.6059
21 16.7523 16.7330 16.7329 3 14.2745
41 16.7351 16.7330 16.7330 4 15.6998
81 16.7331 16.7330 16.7330 5 16.3267

Standard deviation of log(P/D) True = 0.3366
5 0.2432 0.3467 0.2955 1 0.2640

11 0.3129 0.3371 0.3342 2 0.1859
21 0.3309 0.3366 0.3366 3 0.2718
41 0.3359 0.3366 0.3366 4 0.2717
81 0.3366 0.3366 0.3366 5 0.3020

Mean stock returns (%) True = 6.9574
5 6.2558 6.9003 6.3332 1 11.4419

11 6.7882 6.9627 6.9637 2 7.9205
21 6.9187 6.9575 6.9577 3 7.8651
41 6.9527 6.9574 6.9574 4 7.1212
81 6.9572 6.9574 6.9574 5 6.9676

Standard deviation of stock returns (%) True = 11.8058
5 10.2217 12.1749 11.3956 1 9.9833

11 11.5335 11.8175 11.7561 2 6.7575
21 11.7549 11.8062 11.8069 3 9.7367
41 11.8003 11.8058 11.8058 4 9.6381
81 11.8055 11.8058 11.8058 5 10.6445

Note: this table shows the financial moments from T = 100, 000 simulations. “True” indicates
the values from the exact solution. The numbers are slightly different from Table III of Gabaix
(2012) because (i) we simulate at the annual frequency, while he simulates at the monthly
frequency, and (ii) in Gabaix’s calibration, the stock resilience volatility is σH = 0.019 while we
have σH = 0.0174 because we specify beta distributions for the conditional dynamics.

Based on the numerical results in the last two sections, we provide some rec-
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ommendations to allow the reader to make an informed decision on what kind
of computational strategy to adopt. The perturbation method is fast but it is
inherently a local approximation. When the model is highly nonlinear and shocks
are large, the solution accuracy can be poor. Discretization is easy to implement
and seems to be accurate enough for most problems. For Gaussian VARs, our
method (with even-spaced or quadrature grid) seems best. Numerical results in
the appendix suggest that for univariate Gaussian AR(1) process, ME-Quad is
most accurate for persistence less than 0.8, ME-Even is most accurate for persis-
tence between 0.8 and 0.99, and the Rouwenhorst method is best for persistence
0.99 and beyond (because the Rouwenhorst method is error-free, i.e., it does not
involve any numerical optimization). However, for persistence beyond 0.99, it may
be better to use the projection method. Pohl et al. (2015) suggest that for solving
the long run risk model (Bansal and Yaron, 2004), which features very persistent
processes, using the projection method makes an economically meaningful differ-
ence in the solution accuracy. For nonlinear or non-Gaussian processes, as in the
rare disasters model, our discretization method would be the first choice since
there may not be any readily available quadrature formulas to use along with the
projection method.

6 Conclusion

In this paper, we provide a new method for discretizing a general class of stochastic
processes by matching low order conditional moments. Our method is computa-
tionally tractable and allows researchers to approximate a wide variety of nonlinear
non-Gaussian Markov processes. We demonstrate that our method produces dis-
crete approximations which are often several orders of magnitude more accurate
than existing methods for both linear and nonlinear stochastic processes. This is
the case whether we consider the relative bias of unconditional moments implied
by the discretization or the accuracy of solutions to asset pricing models.

Our maximum entropy procedure has a wide range of potential applications
beyond asset pricing models. It is common in the quantitative macro literature to
use an AR(1) specification for technology or income. We believe that researchers
use AR(1) specifications because existing methods do not easily allow for more
realistic assumptions. Recent work on the dynamics of the income distribution
has shown that while income shocks have roughly constant variance, skewness and
kurtosis display significant time-variation (Guvenen et al., 2014). Our method can
be used to solve a life cycle model with a realistic income process by matching
the dynamics of these higher order moments. Our method can also be used for
estimating nonlinear, non-Gaussian state space models (Farmer, 2016). In this
paper we considered only tensor grids since our applications involved only one
or two state variables. An interesting and important future research topic is to
explore the performance of our method in conjunction with sparse grids for solving
dynamic models with many state variables.
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Online Appendix

A Proofs

Proof of Theorem 2.1. 1. The constraint set in (P) is nonempty if and only
if T̄ ∈ coT (DN). Since coT (DN) is nonempty, compact, convex, and the
objective function in (P) is strictly convex (a well-known property of the
Kullback-Leibler information), the claim is trivial.

2. The “if” part is Theorem 2 of Tanaka and Toda (2013). To show the “only
if” part, suppose that λN is a solution to (D). Since the objective function
is differentiable, by taking the derivative we get

T̄ −
N∑
n=1

qneλ
′
NT (xn)∑N

n=1 qneλ
′
NT (xn)

T (xn) = 0.

Letting pn as in (2.3), this equation shows T̄ =
∑N

n=1 pnT (xn),
∑N

n=1 pn = 1,
and pn > 0 for all n. Therefore T̄ ∈ int coT (DN).

3. This is Theorem 1 of Tanaka and Toda (2013).

Proof of Theorem 3.2. Special case of the following theorem by setting Σt = D
(constant).

Theorem A.1. Let {yt} be a VAR with stochastic volatility

yt = Ayt−1 + εt, εt ∼ (0,Σt−1),

where all eigenvalues of A are less than 1 in absolute value and {Σt} is an ex-
ogenous, stationary, ergodic finite-state Markov chain. Let zt = (yt,Σt). Suppose
that zdt = (ydt ,Σt) is a stationary and ergodic Markov chain approximation of zt
such that the conditional mean and variance of yt are exact, so

E
[
ydt
∣∣ zdt−1

]
= E

[
yt
∣∣ zdt−1

]
= Aydt−1,

Var
[
ydt
∣∣ zdt−1

]
= Var

[
yt
∣∣ zdt−1

]
= Σt−1.

Then the unconditional mean, variance, and all autocovariance (hence the spec-
trum) of {yt} and

{
ydt
}

are identical, and so are all k-step ahead conditional mean
and variance.

Proof. By assumption, Σ := E[Σt] exists and E[yt] = 0.
Define the discretized error term εdt := ydt −Aydt−1. First we prove that the first

two unconditional moments are exact. Since by assumption the conditional mean
is exact, we have

E
[
εdt
∣∣ zdt−1

]
= E

[
ydt
∣∣ zdt−1

]
− Aydt−1 = Aydt−1 − Aydt−1 = 0,
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and hence E[εdt ] = 0. Since by assumption
{
ydt
}

is stationary and the eigenvalues
of A are less than 1 in absolute value, taking the unconditional expectation of
both sides of ydt = Aydt−1 +εdt , we get E[ydt ] = 0. Therefore the unconditional mean
is exact. To compute the variance, note that

ydt (y
d
t )
′ = (Aydt−1 + εdt )(Ay

d
t−1 + εdt )

′

= Aydt−1(ydt−1)′A′ + Aydt−1(εdt )
′ + εdt (y

d
t−1)′A′ + εdt (ε

d
t )
′.

Since E
[
εdt
∣∣ zdt−1

]
= 0 and the conditional variance is exact, taking the conditional

expectation we obtain

E
[
ydt (y

d
t )
′ ∣∣ zdt−1

]
= Aydt−1(ydt−1)′A′ + Σt−1.

Taking the unconditional expectation, using the law of iterated expectations, and
noting that

{
ydt
}

is stationary, we get

Var[ydt ] = E
[
E
[
ydt (y

d
t )
′ ∣∣ zdt−1

]]
= AE[ydt−1(ydt−1)′]A′ + E[Σt−1]

= AVar[ydt−1]A′ + Σ = AVar[ydt ]A
′ + Σ.

But the variance matrix of the true process {yt} satisfies the same equation. Since
the eigenvalues of A are less than 1 in absolute value, the solution is unique.
Therefore Var[ydt ] = Var[yt].

Let Γ(k) = E[yt+ky
′
t] be the true k-th order autocovariance matrix and Γd(k) =

E[ydt+k(y
d
t )
′] be that of the discretized process. Multiplying (ydt )

′ from the right
to both sides of ydt+k+1 = Aydt+k + εdt+k+1 and taking expectations, we obtain
Γd(k + 1) = AΓd(k). By iteration, we get Γd(k) = AkΓd(0). Similarly, Γ(k) =
AkΓ(0). Since Γ(0) = Var[yt] = Var[ydt ] = Γd(0), it follows that Γd(k) = Γ(k) for
all k. Therefore all autocovariances of {yt} are exact, and so is the spectrum.

To evaluate the k-step ahead conditional moments, note that

ydt+k = εdt+k + · · ·+ Ak−1εdt+1 + Akydt .

Since
{
ydt
}

is a Markov process, we have

E
[
εdt+j

∣∣ zdt ] = E
[
E
[
εdt+j

∣∣ ydt+j−1

] ∣∣ zdt ] = 0

for any j ≥ 1. Therefore E
[
ydt+k

∣∣ zdt ] = Akydt , so the k-step ahead conditional
mean is exact. The proof for the conditional variance is analogous.

Remark. If the conditional variance of εt is unknown at t − 1, say εt ∼ (0,Σt),
then the same result holds by replacing Σt−1 in the proof by E [Σt |Σt−1].

Proof of Proposition 3.3. Let ρ(M) denote the spectral radius of the matrix
M . Since ρ(|A|) < 1, there exists δ > 0 such that α := ρ(δI + |A|) < 1. By
the Perron-Frobenius theorem, δI + |A| has a strictly positive eigenvector v =
(v1, . . . , vK) � 0. Take a tensor grid DN with convex hull coDN = [−v1, v1] ×
· · · × [−vK , vK ]. Let ȳn be any grid point of DN , and let T (x) = x be the moment
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defining function for the conditional mean (therefore it is the identity map). Then
T (DN) = DN , and

T̄n := E [T (yt) | yt−1 = ȳn] = E [yt | yt−1 = ȳn] = Aȳn.

Taking absolute values element-by-element, since 0 < α < 1 we get∣∣T̄n∣∣ ≤ |A| |ȳn| ≤ |A| v ≤ (δI + |A|)v = αv � v,

so T̄n ∈ int coT (DN).

Proof of Proposition 3.4. Let D = {x̄n}Nn=1 be the set of grid points and
M = maxn |x̄n|. Suppose xt−1 = x, where x ∈ D. By symmetry, without
loss of generality we may assume x ≥ 0. Then the conditional first and sec-
ond (uncentered) moments of xt are ρx and (ρx)2 + 1, respectively. The moment
defining function is T (x) = (x, x2). By Theorem 2.1, it suffices to show that
(ρx, (ρx)2 + 1) ∈ int coT (D).

Define the points P = (M,M2), Q = (−M,M2), X = (x, x2), and X ′ =
(ρx, (ρx)2 + 1). If x = M , in order for X ′ ∈ int coT (D) it is necessary that X ′ lies
below the segment PQ, so we need

(ρM)2 + 1 < M2 ⇐⇒ M >
1√

1− ρ2
,

which is condition (i) in Proposition 3.4. Therefore X ′ lies below PQ. Now
take any x ∈ D and set µ = ρx. Take two grid points a1 < a2 ∈ D such that
µ ∈ [a1, a2]. Let A1 = (a1, a

2
1) and A2 = (a2, a

2
2). If X ′ lies above the segment

A1A2, then X ′ is in the interior of the quadrilateral A1A2PQ, which is a subset of
coT (D). Therefore it suffices to show that X ′ lies above A1A2. The equation of
the straight line A1A2 is

y =
a2

2 − a2
1

a2 − a1

(x− a1) + a2
1 = (a1 + a2)(x− a1) + a2

1.

Therefore X ′ lies above A1A2 if and only if

µ2 + 1 > (a1 + a2)(µ− a1) + a2
1 ⇐⇒ (µ− a1)(a2 − µ) < 1. (A.1)

First, consider the case in which the maximum distance between neighboring
points is d < 2. Take a1, a2 as neighboring points. By the arithmetic mean-
geometric mean inequality, we have

(µ− a1)(a2 − µ) ≤
(

(µ− a1) + (a2 − µ)

2

)2

=

(
a2 − a1

2

)2

≤ (d/2)2 < 1,

so (A.1) holds. Next, we show (3.3). Setting a2 = x and µ = ρx in (A.1) and
solving the inequality, a sufficient condition for existence is

ρx = µ ≥ a1 > ρx− 1

(1− ρ)x
,

which is (3.3) by setting x = x̄n and a1 = x̄n′ .
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Proof of Corollary 3.5. Since the grid {x̄n}Nn=1 spans from −M to M and is

even-spaced, the grid size is d = 2M
N−1

. Suppose that M > σ = 1/
√

1− ρ2, so
condition (i) of Proposition 3.4 holds. Note that the grid has at least three points
0,±M , so N ≥ 3.

Case 1: ρ ≤ 1 − 2
N−1

. By Proposition 3.4, it suffices to show d < 2 ⇐⇒ M <

N − 1. Since M ≤
√

2σ
√
N − 1 by assumption, it suffices to show

√
2
√
N − 1√

1− ρ2
< N − 1 ⇐⇒ ρ2 < 1− 2

N − 1
.

But this inequality is trivial because ρ2 < ρ ≤ 1− 2
N−1

.

Case 2: ρ > 1 − 2
N−1

. Let −M = x̄1 < · · · < x̄N = M be the grid points.

By Proposition 3.4, it suffices to show that (3.3) holds for all n such that x̄n > 0,

which means that the interval
(
ρx̄n − 1

(1−ρ)x̄n
, ρx̄n

)
contains a grid point. Since

the length of this interval is dn := 1
(1−ρ)x̄n

, if d < dn, then the interval contains a

grid point. Furthermore, since dn = 1
(1−ρ)x̄n

is decreasing in x̄n, it follows that if

d < dn for some n, then d < dn′ for all n′ < n such that x̄n′ > 0.
Consider the point n = N−1. Since d = 2M

N−1
, we have x̄N−1 = M−d = M N−3

N−1
.

Hence dN−1 = 1
M(1−ρ)

N−1
N−3

. Therefore

d < dN−1 ⇐⇒
2M

N − 1
<

1

M(1− ρ)

N − 1

N − 3
⇐⇒ M <

N − 1√
2(1− ρ)(N − 3)

.

Since M ≤ σ
√
N − 1 by assumption, to show d < dN−1, it suffices to show

√
N − 1√
1− ρ2

<
N − 1√

2(1− ρ)(N − 3)
⇐⇒ 1 + ρ >

2(N − 3)

N − 1
⇐⇒ ρ > 1− 4

N − 1
,

which trivially holds because ρ > 1− 2
N−1

.
Therefore it remains to show that the two inequalities in (3.3) also hold for

n = N , the boundary point. Take n′ = N − 1. Since x̄N−1 = M N−3
N−1

, the right
inequality holds because

x̄N−1 ≤ ρx̄N ⇐⇒ M
N − 3

N − 1
≤ ρM ⇐⇒ ρ ≥ 1− 2

N − 1
,

which is trivial. The left inequality is equivalent to

ρx̄N −
1

(1− ρ)x̄N
< x̄N−1 ⇐⇒ ρM − 1

(1− ρ)M
< M

N − 3

N − 1

⇐⇒ M2

(
ρ− N − 3

N − 1

)
<

1

1− ρ
.

Since M ≤ σ
√
N − 1, it suffices to show

N − 1

1− ρ2

(
ρ− N − 3

N − 1

)
<

1

1− ρ
⇐⇒ (N − 1)ρ− (N − 3) < 1 + ρ ⇐⇒ ρ < 1,

which is trivial.
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B Accuracy of discretization

The accuracy of discretization has traditionally been evaluated by simulating the
resulting Markov chain (Tauchen, 1986; Gospodinov and Lkhagvasuren, 2014).
However, we think that such simulations have limited value, for the following
reason. According to Theorem 3.2, for VARs the first two population moments—
both k-step ahead conditional and unconditional—are exact whenever the 1-step
ahead conditional moments are exact. Since the population moments will be
identical for such discretizations, any difference in the simulation performance
must be due to sampling error.

A better approach is to directly compare the population moments of interest
of the true process with those of the discretized Markov chains. For example,
suppose that (xt, yt)

∞
t=0 ⊂ RK × R is generated by some covariance stationary

process such that
yt = β′xt + εt,

where E[xtεt] = 0. Then the population OLS coefficient is

β = E[xtx
′
t]
−1 E[xtyt].

If (xdt , y
d
t )
∞
t=0 is a discretized Markov chain, then we can define its OLS coefficient

by
βd = E[xdt (x

d
t )
′]−1 E[xdt y

d
t ],

where the expectation is taken under the ergodic distribution of the Markov chain.
Then the bias of the discretization is βd − β. Here we used the OLS coefficient
as an example, but it can be any quantity that is defined through the population
moments.

B.1 VAR(1)

As a concrete example, following Gospodinov and Lkhagvasuren (2014), consider
the two-dimensional VAR(1) process

xt = Bxt−1 + ηt,

where

xt =

[
zt
gt

]
, ηt =

[
ez,t
eg,t

]
, B =

[
0.9809 0.0028
0.0410 0.9648

]
and the shocks ez,t, eg,t are uncorrelated, i.i.d. over time, and have standard de-
viations 0.0087 and 0.0262, respectively. The implied unconditional variance-
covariance matrix is [

σ2
z σzg

σzg σ2
g

]
=

[
0.00235 0.00241
0.00241 0.01274

]
and the eigenvalues of the coefficient matrix B are ζ1 = 0.9863 and ζ2 = 0.9594.

To evaluate the accuracy of discretization, we compute the Markov chain
counterpart θd of the parameter θ = σ2

z , σ
2
g , σzg, 1 − ζ1, 1 − ζ2 and calculate the

40



log10 relative bias log10

∣∣θd/θ − 1
∣∣ for various number of nodes in each dimension,

N = 5, 9, 15, 21. For our method, we consider the even-spaced, quantile, and
Gauss-Hermite quadrature grids, which we label as “ME-Even,” “ME-Quant,”
and “ME-Quad,” respectively. As a comparison, we consider the existing meth-
ods of Tauchen (1986), Tauchen and Hussey (1991) (TH), and Gospodinov and
Lkhagvasuren (2014) (GL).20 The GL method has two versions, one that is the
VAR generalization of the Rouwenhorst method (referred to as GL0) and another
that fine-tunes this method by targeting the first and second conditional moments
(referred to as GL). Table B.1 shows the results.

Table B.1: log10 relative bias of VAR discretization.

Existing Methods ME Methods
N Param. Tauchen TH GL0 GL Even Quant Quad

5

σ2
z -0.106 -0.052 -1.061 -1.500 -3.062 -1.465 -0.138
σ2
g -0.106 -0.087 -0.918 -1.331 -2.369 -0.772 -0.138

σzg -0.001 -0.006 -4.394 -1.015 -2.408 -0.811 -0.138
1− ζ1 1.641 1.178 -1.100 -1.235 -7.932 -8.178 -7.604
1− ζ2 1.158 0.657 -1.865 -1.949 -9.303 -8.554 -8.538

9

σ2
z -0.106 -0.098 -1.004 -2.342 -9.321 -8.126 -0.379
σ2
g -0.106 -0.166 -0.859 -2.156 -8.918 -9.372 -0.372

σzg -0.001 -0.021 -1.024 -1.915 -9.337 -7.787 -0.373
1− ζ1 1.639 0.950 -1.904 -2.171 -8.690 -7.694 -8.410
1− ζ2 1.157 0.396 -2.487 -2.713 -9.271 -9.077 -8.292

15

σ2
z -0.106 -0.170 -1.093 -3.730 -8.712 -9.085 -1.454
σ2
g -0.106 -0.285 -0.944 -3.545 -8.783 -9.086 -0.760

σzg -0.001 -0.059 -1.052 -3.357 -10.015 -9.082 -0.800
1− ζ1 1.639 0.696 -3.188 -3.664 -8.424 -8.774 -8.846
1− ζ2 1.156 0.093 -3.650 -4.106 -8.729 -9.627 -9.790

21

σ2
z -0.106 -0.244 -1.174 -4.369 -9.539 -9.171 -8.966
σ2
g -0.106 -0.403 -1.025 -4.140 -9.694 -8.538 -11.359

σzg -0.001 -0.114 -1.129 -4.240 -10.124 -8.524 -8.672
1− ζ1 1.638 0.494 -4.517 -5.195 -9.373 -9.202 -8.589
1− ζ2 1.156 -0.157 -4.894 -5.563 -9.665 -9.226 -9.301

Note: N : number of discrete points in each dimension; TH: Tauchen and Hussey (1991) method;
GL, GL0: Gospodinov and Lkhagvasuren (2014) methods with or without moment targeting;
ME: maximum entropy methods. The ME methods target the first two conditional moments.
For ME-Even, the grid for the {yt} process (3.1) spans [−σ

√
N − 1, σ

√
N − 1] in each dimension,

where σ2 is the smallest eigenvalue of the unconditional variance of {yt}.

We can make a few observations from Table B.1. First, as is well-known,

20For the Tauchen method, we need to specify the grid spacing. To give it the best chance,
following Kopecky and Suen (2010) we set the grid size proportional to the unconditional stan-
dard deviation of the VAR, and choose the constant of proportionality in order to make the
unconditional variance as close to the true VAR as possible.
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the accuracy of discretization for the Tauchen and Tauchen-Hussey methods are
poor, with relative bias of order about 100. Consistent with Gospodinov and
Lkhagvasuren (2014), the GL methods improve upon earlier methods by several
orders of magnitude.

Second, the relative bias of ME-Even and ME-Quant is substantially smaller
(of order about 10−9, except when N = 5), which makes our method about 4 to
6 orders of magnitude more accurate than the GL methods. The reason why the
bias is not exactly zero—although it should theoretically be zero if the regularity
condition (2.7) holds—is because our method involves the numerical minimization
of the dual function in (D′n), in which we set the error tolerance to 10−10.21 There-
fore this result suggests that for this particular example, ME-Even and ME-Quant
match all first and second conditional moments of the VAR.

Third, our method with Gauss-Hermite quadrature grid (ME-Quad) is poor
for N = 5, 9, 15, especially for the unconditional variance. This is because, by
construction, the quadrature method uses the Gauss-Hermite quadrature nodes
of the conditional variance. When the process is highly persistent (as in this case
since the spectral radius is ζ1 = 0.9863, which is close to 1), the unconditional
variance is much larger than the conditional variance. Since the grid is much
smaller than typical values of the true process, the regularity condition (2.7) may
be violated and a solution to the dual problem may not exist. Note that ME-Quad
is still quite accurate for the parameters θ = 1−ζ1, 1−ζ2. The reason is that since
1− ζ1, 1− ζ2 depend only on the coefficient matrix B and not on the variance, if
the discretization method is able to match all first conditional moments, then the
coefficient matrix will be exact. But B in this example satisfies the assumption of
Proposition 3.3, so we can match 1− ζ1, 1− ζ2 exactly.

While Table B.1 shows the high accuracy of discretization by ME methods, is
it computationally efficient? Table B.2 shows the computing time for discretizing
the VAR(1) process using various methods and number of grid points in each
dimension. The TH and GL0 methods, which require no optimization, are clearly
very fast. All other methods involve solving optimization problems. According to
the table, the ME methods are faster than the GL method, probably because we
solve the unconstrained dual problem using the Newton algorithm by supplying
the analytical gradient and Hessian.

B.2 AR(1) with stochastic volatility

Next, we consider the accuracy of the stochastic volatility discretization in Section
3.2. As a comparison, we construct an alternative approximation which uses the
Rouwenhorst method to discretize the xt process and the Tauchen method to dis-
cretize the conditional distributions yt|xt−1, yt−1. This is the most logical choice
since x is just and AR(1) process (for which the Rouwenhorst method is accurate)

21This point also explains why the accuracy does not monotonically improve as N gets larger
for ME-Even and ME-Quant: since the relative bias is essentially the error tolerance (which is
constant), it need not be monotonic in N . In contrast, since the relative bias is not zero for
existing methods and ME-Quad, the accuracy of these methods monotonically improves with
larger N .
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Table B.2: Computation time for discretizing the VAR(1) process in seconds.

Existing Methods ME Methods
N Tauchen TH GL0 GL Even Quant Quad

5 0.490 0.008 0.013 0.559 0.684 0.616 1.017
9 1.198 0.016 0.047 2.107 1.397 1.268 1.851

15 3.487 0.049 0.265 5.910 3.212 3.031 3.525
21 8.324 0.078 0.730 12.074 5.561 5.616 6.301

Note: the table shows the computing time in seconds for discretizing the VAR(1) process in this
section using a Windows 10 laptop computer with 2.2GHz Intel Core i5 processor. The Tauchen
method matches the unconditional variance. The codes for the ME methods are available on
our website discussed in Appendix E. The GL methods use the codes supplied in the online
appendix of Gospodinov and Lkhagvasuren (2014).

and there is no obvious way to discretize the y process except by the Tauchen
method. We choose the spacing of the y process to target the unconditional vari-
ance σ2

y. As in the simple autoregressive case, when discretizing the log variance

process (xt), we use
√
N − 1 standard deviations for the Rouwenhorst method and

either the even-spaced grid, Gauss-Hermite quadrature grid, or the quantile grid
for our method. A similar type of discretization is considered in Caldara et al.
(2012), although they use Tauchen’s method to discretize both the log variance
and the level of the process.

Following Caldara et al. (2012), we set the parameter values to λ = 0.95,
ρ = 0.9, σ = 0.06, and choose µ = −9.9426 to make the conditional standard
deviation of the y process equal to 0.007. As a robustness check, we also vary λ, the
persistence of technology shocks, between 0 and 0.99. We focus on characteristics
of the time series of yt (the OLS coefficient λ and the unconditional variance σ2

y),
because the component approximations of xt are just the standard autoregressive
processes we studied before. For each discretization procedure, we vary N (the
number of log variance and technology points) between 9, 15, and 21. Table B.3
shows the results.

Since the state space of the volatility process is continuous, Theorem A.1 does
not apply, so the unconditional moments need not be exact. However, Table B.3
shows that our method is highly accurate, with a relative bias on the order of
10−8 or less for 1−λ and 10−5 or less for σ2

y. This is likely because the finite-state
Markov chain approximation of the volatility process is so accurate that Theorem
A.1 “almost” applies. As expected, the Tauchen-Rouwenhorst (TR) method does
extremely well for the unconditional variance because it is designed to match by
construction. However, it does very poorly compared to the ME methods for the
persistence, and this gap widens as λ gets closer to 1.
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Table B.3: log10 relative bias of stochastic volatility discretization.

N λ TR ME-Even ME-Quant ME-Quad

Parameter 1− λ σ2
y 1− λ σ2

y 1− λ σ2
y 1− λ σ2

y

9

0 −∞ -9.781 −∞ -6.101 −∞ -5.034 −∞ -5.282
0.5 -1.819 -9.352 -9.556 -6.102 -9.997 -5.034 -8.755 -5.281
0.9 -0.982 -8.265 -9.458 -6.102 -9.790 -5.034 -8.857 -5.281
0.95 -0.718 -9.666 -9.117 -6.102 -9.153 -5.034 -9.409 -5.281
0.99 -1.381 -8.034 -8.390 -6.102 -8.091 -5.034 -8.455 -5.281

15

0 −∞ -11.15 −∞ -7.371 -14.33 -5.203 -14.70 -6.060
0.5 -2.189 -8.943 -9.079 -7.367 -9.647 -5.203 -9.630 -6.060
0.9 -1.337 -8.502 -9.376 -7.364 -9.845 -5.203 -9.269 -6.060
0.95 -1.061 -8.334 -9.902 -7.363 -9.245 -5.203 -9.158 -6.060
0.99 -0.540 -8.112 -8.652 -7.399 -7.777 -5.204 -8.059 -6.067

21

0 −∞ -9.336 -14.78 -8.625 -15.96 -5.317 -15.66 -6.898
0.5 -2.436 -9.821 -10.09 -8.668 -9.813 -5.317 -10.46 -6.900
0.9 -1.575 -8.693 -9.663 -8.700 -9.556 -5.317 -9.725 -6.900
0.95 -1.296 -9.755 -10.44 -8.645 -9.993 -5.317 -10.24 -6.899
0.99 -0.705 -8.193 -9.537 -8.750 -7.823 -5.319 -8.974 -6.909

C Solving asset pricing models

C.1 Analytical solution with AR(1)/VAR(1) shocks

Burnside (1998) iterates (4.2) forward and obtains a closed-form solution as fol-
lows. In order to be consistent with the notation in Section 3, let

xt = (I −B)µ+Bxt−1 + ηt,

where µ is the unconditional mean of {xt}, and ηt ∼ N(0,Ψ). Let

Ψ̃ = (I −B)−1Ψ(I −B′)−1,

Ψn =
n∑
k=1

BkΨ̃(B′)k,

Cn = B(I −Bn)(I −B)−1,

Ωn = nΨ̃− CnΨ̃− Ψ̃C ′n + Ψn.

Then we have

V (x) =
∞∑
n=1

βn exp

(
nα′µ+ α′Cn(x− µ) +

1

2
α′Ωnα

)
. (C.1)

A similar formula can be derived even if the shock distribution is non-Gaussian.
For example, for the AR(1) case (so Ct = Dt), Tsionas (2003) shows that the price-
dividend ratio is

V (x) =
∞∑
n=1

βn exp(an + bn(x− µ)), (C.2)
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where

bn = (1− γ)ρ
1− ρn

1− ρ
,

an = (1− γ)µn+
n∑
k=1

logM

(
(1− γ)

1− ρk

1− ρ

)
,

and M(·) is the moment generating function of εt.
In general, the infinite series (C.1) or (C.2) have to be approximated. Burnside

(1999) notes that truncating the series (C.1) may not be accurate when α is close
to zero since each term would have order βn, so for β close to 1 the truncation error
is substantial. A better way is to use the exact terms up to some large number
N , and for n > N we can replace Cn,Ψn by their limits C∞ = B(I − B)−1,
Ψ∞ =

∑∞
k=1 B

kΨ̃(B′)k, and Ωn by

nΨ̃− C∞Ψ̃− Ψ̃C ′∞ + Ψ∞,

in which case the infinite sum can be calculated explicitly. The result is

V (x) ≈
N∑
n=1

βn exp

(
nα′µ+ α′Cn(x− µ) +

1

2
α′Ωnα

)
+
rN+1

1− r
exp

(
α′C∞(x− µ) +

1

2
α′(Ψ∞ − C∞Ψ̃− Ψ̃C ′∞)α

)
, (C.3)

where r = β exp
(
α′µ+ 1

2
α′Ψ̃α

)
< 1. If r ≥ 1, the price-dividend ratio is infinite.

Proposition C.1 shows that the approximation error of (C.3) is O((rρ)N), where
ρ is the absolute value of the largest eigenvalue of B. On the other hand, if we
simply truncate the series (C.1) at N , the error would be O(rN), which is much
larger.

Proposition C.1. Consider the asset pricing formula (C.2). Let VN(x) be the
value of V (x), where ρn is replaced by 0 for n > N . Let an, bn be as in (C.2),
mn = logM((1 − γ)(1 − ρn)/(1 − ρ)), Sn =

∑n
k=1mn, b = lim bn = 1−γ

1−ρρ, m =

limmn = logM(1−γ
1−ρ ), and assume r = β((1− γ)µ+m) < 1. Then

VN(x) =
N∑
n=1

βn exp(an + bn(x− µ)) +
rN+1

1− r
exp(SN −mN + b(x− µ)).

Furthermore, the approximation error |V (x)− VN(x)| is of order (rρ)N .

Proof. Let a′n be the value of an, where ρk is set to 0 for k > N . Since a′n =
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(1− γ)µn+ SN +m(n−N), we get

VN(x)−
N∑
n=1

βn exp(an + bn(x− µ)) =
∞∑

n=N+1

βn exp(a′n + b(x− µ))

=
∞∑

n=N+1

βn exp((1− γ)µn+ SN +m(n−N) + b(x− µ))

=
∞∑

n=N+1

rn exp(SN −mN + b(x− µ)) =
rN+1

1− r
exp(SN −mN + b(x− µ)).

If we replace ρn by 0 for n > N , since logM(·) is differentiable and the domain of
M for the asset pricing formula is bounded (hence logM is Lipschitz continuous),
|mn −m| and |bn − b| are both of the order ρn. Since an contains the sum of mn’s,
we have |an − a′n| ≈

∑n
k=N+1 ρ

k = O(ρN). Since |ρ| < 1, letting cn = an+bn(x−µ)
and c′n = a′n + b(x − µ), we have |cn − c′n| < 1 eventually, so by the mean value
theorem |exp(cn − c′n)− 1| ≤ e |cn − c′n| = O(ρN). Therefore

|V (x)− VN(x)| ≤
∞∑

n=N+1

βn |exp(an + bn(x− µ))− exp(a′n + b(x− µ))|

=
∞∑

n=N+1

βn exp(a′n + b(x− µ)) |exp(cn − c′n)− 1|

≈
∞∑

n=N+1

rnρN = O((rρ)N).

C.2 Discretizing the rare disasters model

In this appendix we provide the details of the discretization of the resilience process
(5.2). The discussion is partly based on footnote 9 in Gabaix (2012) and his online
appendix. First, in order for (5.2) to be stable, we need

1 +H∗
1 +Ht

e−φH ≤ 1 ⇐⇒ Ĥt ≥ (1 +H∗)(e
−φH − 1). (C.4)

Since in Gabaix (2012) pt = p and Bt+1 = B are constant, and by definition
0 ≤ Ft+1 ≤ 1, from (5.1) we obtain

− p ≤ H∗ + Ĥt ≤ p(B−γ − 1). (C.5)

We can take H∗ = p(B1−γ−1) because Gabaix assumes that the average dividend
recovery rate is the same as consumption. The inequalities (C.4) and (C.5) define

bounds for Ĥt, which we denote by [Ĥmin, Ĥmax]. In order for the process to remain
within this bound, Gabaix assumes that the conditional variance of εHt+1 shrinks
to 0 as we approach the boundary. Namely, he assumes

σ2(Ĥ) = 2K(1− Ĥ/Ĥmin)2(1− Ĥ/Ĥmax)2,
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where K = 0.2φH

∣∣∣ĤminĤmax

∣∣∣. See Eq. (59) in the online appendix of Gabaix

(2012). We use the exact same functional form.

We define the grid of discretization to be [Ĥmin + ε, Ĥmax − ε], where ε > 0

is a small number which we set to be ε = 10−3 × (Ĥmax − Ĥmin). The reason
for shrinking the interval slightly is because otherwise the conditional variance
becomes exactly zero at the boundary points, which is impossible for a discrete
Markov chain. Once we have defined the end points of the grid this way, we
put grid points and discretize the beta distribution at each point by matching
the conditional moments using our method. We consider the even-spaced grid
(trapezoidal formula), Clenshaw-Curtis quadrature (Clenshaw and Curtis, 1960;
Trefethen, 2008), and Gauss-Legendre quadrature, which are the most natural
choices since the integration is over a bounded interval.

C.3 Solving the rare disasters model

In this appendix we explain how to numerically solve the variable rare disaster
model using discretization. We follow the notation in Gabaix (2012).

The stochastic discount factor between time t and t+ 1 is

Mt+1 = e−ρ(Ct+1/Ct)
−γ = e−δ ×

{
1, (no disaster)

B−γt+1, (disaster)

where δ = ρ + γgC . Letting Pt be the cum-dividend price of the stock and Vt =
Pt/Dt be the price-dividend ratio, it follows from the Euler equation that

Pt = Dt + Et[Mt+1Pt+1]

=⇒ Vt = 1 + Et

[
Mt+1

Dt+1

Dt

Vt+1

]
= 1 + e−δ+gD

(
(1− pt) END

t [Vt+1] + pt ED
t [B−γt+1Ft+1Vt+1]

)
,

where pt is the disaster probability and END
t ,ED

t denote the expectation conditional
on no disaster or disaster. By the structure of the model, Vt+1 depends only
on the resilience (5.1), which evolves independently from disasters. Therefore
END
t [Vt+1] = ED

t [Vt+1] = Et[Vt+1]. Using the definition of resilience, it follows that

Vt = 1 + e−δ+gD(1 +Ht) Et[Vt+1].

To solve for the price-dividend ration using discretization, suppose the state
space of resilience Ht is discretized, and let s = 1, . . . , S be the states. Since the
disaster probability is constant, it follows that

vs = 1 + e−δ+gD(1 + hs)
S∑

s′=1

πss′vs′ ,

where vs is the price-dividend ratio in state s, hs is the resilience in state s, and
πss′ is the transition probability from state s to s′. Letting v = (v1, . . . , vS) and
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h = (h1, . . . , hS) be the vectors of those values, and P = (πss′) be the transition
probability matrix, it follows that

v = 1 + e−δ+gD diag(1 + h)Pv ⇐⇒ v = (I − e−δ+gD diag(1 + h)P )−11.

The continuous solution is obtained by interpolating these values over the entire
grid (see Proposition 4.1).

D Asset pricing with Gaussian AR(1) shocks

In this appendix we solve the simple asset pricing model with Gaussian AR(1)
shocks

xt = (1− ρ)µ+ ρxt−1 + εt, εt ∼ N(0, σ2),

where xt is log dividend growth. Using postwar data, the OLS estimates are
µ = 0.0559, ρ = 0.405, and σ = 0.0589. Preference parameters are risk aversion
γ = 2 and discount factor β = 0.95. In order to avoid cherry-picking, we consider
all major existing methods, Tauchen (1986),22 Tauchen and Hussey (1991), and
Rouwenhorst (1995). For the ME methods, we consider ME-Even, ME-Quant,
ME-Quad (all with two moments) as well as ME-Even with 4 moments.23 We
consider two robustness checks, (i) changing the number of grid points N , and
(ii) changing the persistence of dividend growth ρ.24 The number of grid points is
always N = 9 unless otherwise stated.

Figure D.1 shows the log10 relative errors of the price-dividend ratio with var-
ious discretization methods and number of points N . We can make a few ob-
servations. First, as we increase N , all methods become more accurate, as ex-
pected. This is especially true for Tauchen-Hussey, whose performance is sensitive
to N . Second, for methods other than Tauchen-Hussey, the order of the perfor-
mance is generally ME-Quad > ME-Even (4) > ME-Even (2) > Rouwenhorst >
ME-Quant > Tauchen. ME-Quad and ME-Even (4 moments) give a solution
accuracy of order 10−4 to 10−9. Third, the performance of ME-Quad does not
improve beyond N = 9. This is because since ME methods involve a numerical
optimization, in which we set the error tolerance to 10−10, the theoretical lower
bound for the log10 errors is about −10.

Figure D.2 shows the log10 relative errors when we increase the persistence
ρ, fixing the number of points at N = 9. Not surprisingly, the performance

22For the Tauchen method, we need to specify the grid spacing. To give it the best chance,
following Kopecky and Suen (2010) we choose the grid spacing in order to match the uncondi-
tional variance exactly. We also experimented with

√
N − 1 standard deviations (as in ME-Even

and Rouwenhorst) or 1.2 logN (as in Flodén (2008)) but the performance was worse.
23As discussed below, ME-Quant is uniformly dominated by other ME methods, so there is no

point in considering ME-Quant with 4 moments. The results for ME-Quad with 4 moments are
similar to 2 moments. We also considered matching 6 moments, but the performance is similar
to 4 moments.

24Collard and Juillard (2001) perform robustness checks across other parameters such as the
discount factor, risk aversion, and volatility. They find that the solution accuracy is most
susceptible to turning up the persistence.
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(c) N = 15.
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(d) N = 21.

Figure D.1: log10 relative errors of price-dividend ratio with various discretization
methods and number of points for the Gaussian AR(1) model. ME-Even (L)
shows the result with L moments.

worsens for all methods as we make the dividend process more persistent. How-
ever, the performance of the Tauchen-Hussey method deteriorates quickly, as is
well-known. ME-Quad, which uses the same Gauss-Hermite quadrature grid as
Tauchen-Hussey, also gets poorer, but it is still the best performer along with
ME-Even (4 moments). The performance of the Rouwenhorst method is robust,
although it is uniformly dominated by ME-Even (2 or 4 moments) and ME-Quad.

It is well-known that existing methods except Rouwenhorst are poor when the
process is persistent (Flodén, 2008; Kopecky and Suen, 2010). However, since the
price-dividend ratio is infinite (i.e., the series (C.1) diverges) beyond ρ = 0.8 with
the baseline specification γ = 2 and β = 0.95, the performance of the ME methods
when persistence is high is still unanswered. In order to see what happens when the
AR(1) process is very persistent, we set (ρ, γ) = (0.9, 1.5), (0.95, 1.3), for which
the price-dividend ratio is finite. Figure D.3 shows the results. With ρ = 0.9,
Tauchen-Hussey is one of the worst performers. ME-Quad also deteriorates, and
is slightly worse (better) than Rouwenhorst with N = 9 (N = 15) grid points. The
best performers are ME-Even, with comparable performance with 2 or 4 moments.

To get a better idea of the solution accuracy, consider an investor purchasing
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(a) ρ = 0.5.
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(b) ρ = 0.6.
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(c) ρ = 0.7.
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(d) ρ = 0.8.

Figure D.2: log10 relative errors of price-dividend ratio with various discretization
methods and persistence for the Gaussian AR(1) model.

$1 Million worth of the asset. If the investor uses each discretization method to
compute the fair price of the asset, what is the mistake in dollar amounts? Table
D.1 shows the mispricing using the average log10 relative errors. With the baseline
specification (N = 9, ρ = 0.405), the mispricing for $1M investment is only 1 cent
with ME-Even (4 moments). With ME-Quad and Tauchen-Hussey, the pricing
error is virtually zero. Even with the Rouwenhorst method, the mispricing is only
$18, so it does not make a material difference across methods except the Tauchen
method, which is off by more than $3,000. However, the choice of the discretization
method matters as we increase the persistence of the dividend process. With
ρ = 0.8, the Tauchen method is off by 12%, Tauchen-Hussey by 2.6%, Rouwenhorst
by 0.6%, as opposed to 0.16% with ME-Even (4 moments). The result is even more
stark with ρ = 0.9, 0.95.

In summary, we find that for discretizing a Gaussian AR(1) process, (i) Tauchen-
Hussey is best if there are many points (N ≥ 15) and the process is not so persis-
tent (ρ ≤ 0.4), (ii) ME-Quad is best if the process is moderately persistent (0.4 ≤
ρ ≤ 0.8), with ME-Even (4 moments) comparable, (iii) ME-Even and Rouwen-
horst perform well over all choices of grid points N and persistence ρ (especially
ρ > 0.8), with solution accuracy ME-Even (4) > ME-Even (2) > Rouwenhorst,
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(a) ρ = 0.9, γ = 1.5, N = 9.
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(b) ρ = 0.9, γ = 1.5, N = 15.
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(c) ρ = 0.95, γ = 1.3, N = 15.
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(d) ρ = 0.95, γ = 1.3, N = 21.

Figure D.3: log10 relative errors of price-dividend ratio with various discretiza-
tion methods for the highly persistent Gaussian AR(1) model with (ρ, γ) =
(0.9, 1.5), (0.95, 1.3).

and (iv) ME-Quant is poor.
Finally, one may be interested in how the discretization solution fares against

conventional methods such as projection, and how the performance of discretiza-
tion deteriorates as the persistence increases. To address this issue, we fix the
preference parameters at β = 0.2 and γ = 1.3, number of points N = 9, and
consider the autocorrelation ρ = 0.8, 0.9, 0.95, 0.99. (It is necessary to reduce the
discount factor β to an unrealistically small number so that the analytical solution
exists even for high persistence.) For this exercise, we only consider ME-Even (2),
ME-Quad, Rouwenhorst, and the projection method. For the projection method,
we make the Euler equation errors zero at the Chebyshev collocation points, and
the conditional expectation is computed using a highly accurate Gauss-Hermite
quadrature (see Pohl et al. (2015) for details). Figure D.4 shows the results.

Unsurprisingly, the projection method is extremely accurate, since a highly
accurate Gauss-Hermite quadrature nodes are chosen for each Chebyshev colloca-
tion point. The performance of discretization methods deteriorates as we increase
the persistence. The maximum entropy methods are more accurate for persistence
less than 0.95, but beyond that the Rouwenhorst method becomes more accurate.
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Table D.1: Mispricing in dollars when investing $1 Million.

ME methods Existing methods

N ρ Even (2) Quant Quad Even (4) R Tauchen TH

Changing number of grid points (γ = 2)
5

0.405

31.6 103 10.1 23.3 33.8 3,161 58.9
9 7.27 71.1 0 0.011 18.1 3,136 0.006

15 0.767 51.7 0 0.005 11.2 3,380 0
21 0.065 39.8 0 0.03 7.89 3,363 0

Changing persistence (γ = 2)

9

0.5 16.1 172 0.009 0.051 43.6 7.2K 0.393
0.6 46.6 507 0.491 0.235 127 17K 18.3
0.7 185 2.1K 21.4 92.3 501 39K 652
0.8 2.0K 21K 2.0K 1.6K 6.1K 120K 26K

Highly persistent case (γ = 1.5)
9

0.9
8.3K 53K 36K 7.4K 17K 218K 280K

15 0.89K 41K 9.3K 0.82K 9.9K 218K 77K

Highly persistent case (γ = 1.3)
15

0.95
13K 70K 67K 9.8K 32K 1.3M 1.4M

21 2.7K 65K 50K 2.2K 25K 1.3M 1.1M

Note: Even (L): ME-Even method with L moments; R: Rouwenhorst (1995) method; TH:
Tauchen and Hussey (1991) method. K, M denote thousands and millions of dollars.

This is probably because the Rouwenhorst method does not involve any numerical
optimization.

E Matlab files

We implement the discretization of various stochastic processes in the Matlab files
posted on our website.25

E.1 Subroutines

entropyObjective.m computes the objective function (D′) for minimizing the
Kullback-Leibler information and its gradient (2.4a) as well as the Hessian (2.4b).
discreteApproximation.m solves the minimization problem (D′) and computes
the moment error (2.5). Writing a code for discretizing a particular process is
straightforward by using these subroutines and imitating the files listed below.

25https://sites.google.com/site/discretevar/
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(a) ρ = 0.8.
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(c) ρ = 0.95.
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(d) ρ = 0.99.

Figure D.4: log10 relative errors of price-dividend ratio with discretization and
projection methods for the highly persistent Gaussian AR(1) model with β = 0.2,
γ = 1.3, and N = 9. “Chebyshev-GH” refers to the projection method with
Chebyshev collocation and Gauss-Hermite quadrature.

E.2 VAR

discreteVAR.m requires four input arguments, the parameters b, B,Ψ in (3.1)
and N , the number of discrete points in each dimension. It outputs the grid and
the transition probability matrix. There are three optional arguments, nMoments,
method, and nSigmas. The argument nMoments specifies the number of conditional
moments to target (default: 2). The argument method specifies the method for
choosing the grid, which has to be either ’even’ (even-spaced grid), ’quadrature’
(Gauss-Hermite quadrature grid and weights as in Tauchen and Hussey (1991))
or ’quantile’ (quantile grid as in Adda and Cooper (2003)). The default is
’even’. If the method is ’even’, then the optional argument nSigmas specifies
the number of unconditional standard deviations over which the grid points span
around the unconditional mean (default:

√
N − 1). discreteVAR.m tries to match

the first nMoments conditional moments of the VAR, so nMoments = 2 means the
conditional mean and variance. If a solution to the dual problem (D′n) fails to exist
(which sometimes happens when the VAR is highly persistent and the process is
close to a boundary point), then it tries to match low order moments. Furthermore,
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since the discretization of highly persistent VAR is poor with the quadrature grid,
when the method ’quadrature’ is chosen, the file returns a warning message if
B has an eigenvalue with absolute value exceeding 0.9.

E.3 Stochastic volatility model

discreteSV.m discretizes the stochastic volatility model in (3.4). It requires seven
input arguments, lambda, rho, sigmaU, sigmaE, Ny, Nx, method. lambda, rho,
sigmaE are λ, ρ, σ in (3.4). σu = sigmaU is the unconditional volatility of the yt
process, so σ2

u = E[ext ]. Ny, Nx are the number of grid points for the yt, xt processes.
method specifies the method to discretize the AR(1) xt process, which has to
be either ’even’, ’quadrature’, or ’quantile’. (The yt process is discretized
using an even-spaced grid that spans

√
Ny − 1 unconditional standard deviations

because the explicit density is unknown.)

E.4 AR(1) with non-Gaussian shocks

discreteARGM.m discretizes the AR(1) process with Gaussian mixture shocks,
xt = (1 − ρ)µ + µxt−1 + εt. It requires four input arguments mu, rho, gmObj,
Nm, and three optional arguments nMoments, method, nSigmas. mu, rho are the
AR(1) parameters µ, ρ. gmObj is the Matlab Gaussian mixture object,26 typically
obtained by running fitgmdist.m on the OLS residuals. nMoments and nSigmas

are the same as in the VAR. method must be either ’even’, ’gauss-legendre’,
’clenshaw-curtis’, or ’gauss-hermite’. ’even’ is the usual even-spaced grid
(trapezoidal formula). The others are quadrature formulas corresponding to each
name. (In the paper we discuss only the even-spaced and Gauss-Hermite quadra-
ture grid because the solution accuracy using the Gauss-Legendre and Clenshaw-
Curtis quadrature are about the same as even-spaced grid.)

26http://www.mathworks.com/help/stats/gmdistribution-class.html
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