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Abstract

I study how the structure of a social network affects the diffusion of a new product
or technology. The model deals explicitly with the network’s discrete structure, in
contrast with most extant work that uses a mean-field approximation. My findings
highlight important qualitative differences in predicted diffusion patterns: long-run
outcomes are stochastic, individuals can remain isolated, and the likelihood of a large
cascade is sensitive to early adoption patterns. The analysis requires technical advances
that leverage recent mathematical work on random graphs. A key contribution is a set
of structural results for a large class of random graph models that can exhibit observed
features of real networks—features like homophily and clustering. These results allow
us to characterize the extent and rate of diffusion as a function of network structure.

1 Introduction

New technologies often require time to reach everyone who would benefit from them,
even if the benefits are clear. Despite supportive evidence that is decades old in some cases,
adoption rates of many medical interventions, such as the prescription of beta blockers fol-
lowing a heart attack, remain surprisingly low in certain regions of the United States (Jencks
et al., 2003). Economic models going back to Griliches (1957) emphasize the importance of
profitability and risk in technology adoption decisions. More recent empirical work shows
that education and other measures of social capital are often predictive of adoption (Caselli
and Coleman, 2001; Skinner and Staiger, 2005). However, such considerations fail to pro-
vide a compelling explanation for the slow rate of adoption in many instances. Physicians
undergo two decades of formal education, and there are few economic incentives involved in
the decision to prescribe a particular drug. Why do these innovations diffuse so slowly?
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This phenomenon is hardly unique to medicine. From agricultural technologies in devel-
oping countries to virally marketed products in developed countries, diffusion is often slow,
uneven, and difficult to predict.1 Similar products have vastly different adoption trajecto-
ries, and even the same product can experience variance across different countries or regions.
Lack of awareness offers one appealing explanation why people lag in their adoption of new
technologies—it seems unlikely that many doctors knowingly provide substandard care.

Nevertheless, formal diffusion models typically preclude the possibility of long-term un-
awareness. This feature is rarely a deliberate choice. Rather, it is an artifact of the available
modeling technology. For the sake of tractability, most diffusion models use some version
of a mean-field approximation: we assume that the neighbors who influence our choices are
always representative of the population. In essence, these models assume that the social
network gets completely reshuffled each period, implying that no one can remain isolated
from adopters for very long. If we account for the stability of real relationships, different
patterns can emerge. Small insular groups may never become aware of a product. People in
loosely connected groups might not adopt because those at the boundary are unreceptive.
One set of seeds might lead to viral spread while another results in a small niche of users.

I present a framework to study diffusion with strategic interactions in large populations.
Players are connected in a network, represented as an undirected graph, and a few random
seeds are aware of a new product. Those who are aware choose whether to adopt. Neighbors
of adopters become aware and subsequently make decisions themselves. A player’s choice
may depend on what she expects her neighbors to do because of local complementarities.
My main results characterize the extent and rate of adoption as a function of the network.

The diffusion patterns we find are qualitatively different from those in mean-field models.
Long-run outcomes are stochastic, rather than deterministic: the same product in the same
network will reach more or less of the population depending on who the initial seeds are. The
likelihood, extent, and speed of a large cascade depend on details of the network structure
beyond density, and there are always pockets of individuals who remain unaware. The early
stages of a cascade can tell us a lot about whether it will continue to grow. Greater breadth,
rather than depth, is much more likely to produce a large cascade, a finding that agrees
with empirical studies (Cheng et al., 2014). In contrast, mean-field models have difficulty
generating variance and say nothing about how early patterns correlate with eventual size.
These features limit the applicability of mean-field models—a marketer evaluating a viral
campaign will care about upside potential and making predictions based on early results.

Studying diffusion in fixed graphs is technically challenging. A central contribution of this
paper is a toolkit flexible enough to tackle the diversity of applications that the mean-field
literature explores. Two key pieces are the configuration model of random graphs and the
use of a branching process to approximate local network structure. The configuration model
is a widely-used generative model of random graphs.2 In its basic version, we start with a

1Skinner and Staiger (2005) document large variation in adoption rates of several technologies across
geographic regions.

2See Bollobás (1980) and Molloy and Reed (1995). There are many other random graph models we could
choose, but we can encompass most of them within some version of the configuration model. For instance, the
Erdos-Rényi model is asymptotically equivalent to a configuration model with a Poisson degree distribution,
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collection of vertices and assign link stubs to each. These link stubs are paired uniformly
at random to form links. We can capture realistic network features, like homophily and
clustering, if we allow multiple types of vertices or links. Recent mathematical work shows
how we can use a branching process to approximate the structure of the basic configuration
model (Bollobás and Riordan, 2015). I extend these findings to multi-type graphs, allowing
a much wider range of applications.

These tools facilitate new insights on old questions. A more centralized network leads to
faster diffusion and makes large cascades more likely, but it may also reduce the long-run
extent of adoption. Clustering can inhibit diffusion because each adoption informs fewer
new players, but it can also enhance the effects of complementarities, encouraging more
adoption. The latter effect is more significant in a dense network. We can decompose
the impact of homophily into two distinct effects. Holding behavior fixed, an increase in
homophily increases the rate of diffusion because it concentrates connections among those
most inclined to adopt. Adoption complementarities create a second effect: homophily
exacerbates differences in types’ propensities to adopt. Individuals with high (low) valuations
become more (less) willing to adopt because neighbors’ valuations are positively correlated.
With more homophily, large cascades become more common and grow faster, but they are
limited to smaller niche communities.

A pair of applications shows how diffusion patterns can impact broader economic out-
comes. In a model of Bertrand competition with word-of-mouth communcation among con-
sumers, the network structure affects the level of competitive pressure. A firm might charge
above its marginal cost if it expects many customers to purchase before learning about its
competitor. However, if the network is large and sparse, the need to spread awareness before
the other firm leads to intense competition on price. In a second application, I adapt the
model of Lobel et al. (2015) to study the optimal design of referral rewards. The authors
abstract away from the dynamics of diffusion to make the analysis tractable. I show that
key findings are robust: a monopolist can use referral rewards to price discriminate, and the
monopolist prefers to offer lower effective prices to high-degree consumers.

1.1 Related Literature

Models making some version of a mean-field approximation dominate the literature on
diffusion processes. The simplest are variants of the SIS model widely used to study the
spread of infectious diseases. In one example, Jackson and Rogers (2007) model diffusion
using a degree-based mean-field approximation. Individuals become infected and recover at
rates that depend on their degrees and the average infection rate among neighbors. The
degree distribution in the network uniquely characterizes the steady-state infection rate, and
the authors derive comparative statics based on stochastic dominance of degree distributions.
The SIS framework is especially tractable, allowing numerous extensions and applications.3

and generalized random graphs are asymptotically equivalent to configuration models with appropriately
specified degree distributions. See Janson (2010) for a more formal discussion of asymptotic equivalence.

3Not all diffusion models using a mean-field assumption fall into the SIS framework. For example, Jackson
and Yariv (2007) model diffusion through a version of best response dynamics, leading to steady states that
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For instance, López-Pintado (2008) allows infection probabilities following a more general
functional form, Jackson and López-Pintado (2013) incorporate multiple types of players,
and Galeotti and Rogers (2012) consider how immunization impacts the steady state

An important feature of these models is that adoption decisions are easily reversed: at
steady state, many players adopt and an equal number abandon in each period. While rapid
turnover makes sense in some contexts, individual use of a product or technology is typically
persistent over time. In many cases, adoption is irreversible—at least in the short run—
or adoption constitutes a one-time consumption (e.g. watching a video or reading a news
story). Making adoption irreversible is a straightforward change, but then steady states
become insensitive to the network structure because all players are eventually exposed to
neighborhoods comprised entirely of adopters. In this context, Young (2009) motivates dif-
ferent infection functions based on different influence mechanisms—contagion, social utility,
social learning—and explores how the mechanisms affect the shape of the adoption curve.

A growing body of empirical research reveals patterns that fail to match the predictions
of mean-field models. Studies of recommendation networks (Leskovec et al., 2006) and
link sharing (Goel et al., 2012) find widely varying cascade structures, even among similar
products, and the size distribution is heavy-tailed. In contrast, cascade sizes in a mean-
field model should concentrate around a mean value. No individual in a mean-field model
can detectably influence the aggregate outcome, but a large marketing literature documents
the outsized role of opinion leaders (e.g Feick and Price, 1987; Tucker, 2008). Recent field
experiments use centrality measures to choose more effective seedings (Banerjee et al., 2013,
2016), but these measures have no natural analog in a mean-field setting. A mean-field
assumption makes a lot of sense when studying infectious diseases, where exposure can occur
inadvertently in a public place, and a person’s contacts today may be completely different
from those tomorrow. Social relationships, geographic neighbors, and business connections
are far less fleeting, making the assumption more questionable in other settings.

Morris (2000) stands out as an early study of diffusion in a fixed network. In each period,
players adopt a behavior if a sufficiently high fraction of their neighbors did in the previous
period. The central question is when can behavior spread from a finite group to the whole
infinite network. The analysis reveals how tightly knit subgroups act as barriers to diffusion,
but some degree of clustering—expressed through the “low neighbor growth” condition—
facilitates diffusion. Watts (2002) and Campbell (2013) are among the closest precursors
to the present paper. Both use the basic configuration model to generate a network and
apply older percolation results to study cascade patterns and the extent of diffusion. Watts
(2002) assumes each player has a random threshold and will adopt if the fraction of adopting
neighbors exceeds this threshold. Due to the tree-like structure of the basic configuration
model, cascades depend crucially on players who adopt after a single neighbor does so.

Campbell (2013) goes a step further, studying monopoly pricing when individuals learn
about a good through word-of-mouth. In a baseline model, he characterizes demand elastici-
ties and shows that prices should be set lower than the standard monopoly price. Extensions

correspond to Bayes-Nash equilibria in a static network game, and Galeotti and Goyal (2009) study a two-
period model in which an agent outside the network chooses seeds to maximize an objective.
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show that the qualitative findings are robust to a particular kind of clustering, but homophily
might lead to an optimal price higher than the standard monopoly price. The present paper
can furnish alternative proofs of these results and make further extensions feasible, like the
treatment of Bertrand competition in section 5.

Beyond models of diffusion, I rely on recent studies of network games to endogenize adop-
tion probabilities. Sundararajan (2007) and Galeotti et al. (2010) study one-shot network
games in which payoffs can depend on neighbors’ choices. I adapt these results to describe
individual behavior in the diffusion model, adding a strategic component to the analysis.

1.2 Moving Away from Mean-Field

Before proceeding with technical preliminaries, I present an example to highlight chal-
lenges involved in moving away from mean-field models. Suppose a new product is available.
Consumer values are independent and uniform on [0, 1], and there is a fixed price p. There
are no complementarities, so adoption decisions are very simple: purchase if and only if your
value is above p. Purchasing is irreversible, and it may induce awareness among neighbors.

First, consider first a mean-field approach. The population is large, and an initial fraction
q0 is aware of the product. For simplicity, assume everyone has degree d. In each period, a
player draws her neighbors uniformly from the population. If at least one of these neighbors
has purchased, she becomes aware and makes a decision. If a fraction x of the population
has purchased at the beginning of a period, then an unaware player becomes aware with
probability 1 − (1 − x)d. Regardless of the density d, all players eventually become aware,
and the long-run fraction who purchase is 1− p.

Now consider the same diffusion process on a fixed graph. Players’ degrees no longer
provide all the information we need, and small changes to the graph can have a large impact
on demand. Figure 1 depicts two graphs with the same degree distribution. Suppose one
player is seeded at random. In the left graph, with any initial seed many players will never
learn about the product. In the right graph, there is a chance that everyone becomes aware.
Nevertheless, if the red player happens to have a low valuation, the two graphs produce
similar results. In both graphs, there is a wide distribution of possible outcomes, and this
distribution is highly sensitive to individual players’ decisions.

To get away from mean-field assumptions, we need to make choices about how to represent
the network. It seems too ambitious to characterize outcomes in every possible graph. While
we can gain insights from looking at special cases—star networks, ring networks, lattices—
these often do not at all resemble the complex networks we observe in the real world. Realistic
networks have heavy tailed degree distributions, short path lengths, and a high degree of
clustering. As long as we are modeling the network’s discrete structure, we should strive to
capture realistic features as best we can.

Instead of looking at particular graphs, I focus on a class of random graphs—configuration
models—with well-understood statistical properties. Versions of the configuration model
generate realistic networks, and the model primitives correspond directly to features we can
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Figure 1: Two graphs with the same degree distribution

measure, so it can be calibrated for applications.4 Using a random graph model means
that any claims we make are about what happens in typical realizations of the graph. We
therefore need results that characterize what a typical realization looks like.

2 Preliminaries

This section presents the main technical contribution of the paper. I define several versions
of the configuration model, introduce the approximating branching process, and state the
key theorem. The proof is given in an appendix. Since the requisite background material
may be unfamiliar, appendices also present standard results on branching processes and
configuration models.

Any configuration model is generated in two steps. Starting with n vertices, we first
assign link stubs to each vertex. Next, we specify a process to randomly join link stubs
to form links. Different versions vary the details of these two steps. In the first, we might
label vertices or link stubs with types, using these types to restrict which links can form. In
the second, we might pair link stubs together, or we might join them in groups of k to add
clustering. As long as we have sufficient independence in the joining process, we can apply
the same techniques to analyze any version of the configuration model.

Definition 1 (Standard Configuration Model). Let d = (d1, d2, ..., dn) denote an n-vector
of positive integers. Given n vertices, assign di link stubs to vertex i. Successively pick pairs
of stubs uniformly at random, and join the two stubs to form a link. This process produces a
distribution over graphs G that we call the configuration model with degree sequence
d, written CMn,d.

Let D denote a distribution on N with finite expectation. Given n vertices, realize a degree
sequence d via n independent draws from D. Given this sequence, realize a graph according

4Chandrasekhar and Jackson (2015) present methods to estimate the structural parameters of a closely
related random graph model.
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to CMn,d. This process produces a distribution over graphs G that we call the configuration
model with degree distribution D.5

The standard configuration model CMn,D assigns a degree to each vertex independently
according to D and takes a uniform draw of all possible graphs with the resulting degree
sequence. As stated, the definition allows graphs that contain self links or multiple links
between the same pair of vertices. When studying diffusion, I condition the configuration
model on realizing a simple graph—a graph with no self links and at most one link between
any two vertices. Results in the appendix show that this conditioning has essentially no
impact on the graph’s asymptotic structure.

A complication in economic models is that diffusion patterns depend on both the network
structure and on individual decisions to adopt. Equilibrium decisions induce a subnetwork of
potential adopters who will adopt if they become aware of the product. It is the structure of
this subnetwork, rather than that of the broader network, that determines diffusion patterns.
Consequently, we require the following non-standard result for our analysis.

Suppose we select a subgraph of CMn,D by including each degree d node with independent
probability qd. Write CMn,q,D for the model in which we realize a graph according to
CMn,D, select nodes according to the probabilities qd, and retain the subgraph of links
between the selected nodes. Let S denote the collection of nodes in a realization of CMn,q,D.
The subgraph has a realized degree sequence d(|S|). Conditional on selecting |S| nodes and
realizing the sequence d(|S|), the distribution of CMn,q,D is exactly that of CM|S|,d(|S|) : the
subgraph is itself a configuration model.

As n grows, the degree distribution of the subgraph approaches a natural limit. Define
the distribution Dq in two stages. First, draw k ∈ N according to a distribution taking the
value i with probability qipi∑∞

j=0 qjpj
. This is the degree distribution for a random node that

gets selected according to q. After drawing k, draw the degree d according to a binomial

distribution with k trials and success probability
∑∞
i=0 ipiqi∑∞
i=0 ipi

, the probability that a random

link stub is attached to a node selected according to q. In essence, we draw the degree of
a selected node, and we retain each link stub according to the probability that it links to
another selected node. Let pq,d denote P(Dq = d).

Proposition 1. For any ε > 0, there exists δ > 0 such that

PCMn,q,D

(
sup
d

∣∣∣nd(G)

|S|
− pq,d

∣∣∣ ≥ ε

)
< e−δn.

Proof. See Appendix.

Proposition 1 tells us that selecting a subgraph of CMn,D according to q is asymptotically
equivalent to the model CMn,Dq . This means that we can apply our structural results for
the configuration model to any subgraph generated in this manner—we simply replace the

5We need to ensure that d has an even number of link stubs. There are many ways to make a correction—
condition on realizing an even number, add one stub to the last vertex if needed—that are asymptotically
equivalent.
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degree distribution D with Dq.6 Using an identical argument, we can show that analogs of
Proposition 1 hold for more general configuration models that we use through most of the
paper.

The main result concerns a version of the configuration model in which multiple types of
vertices can have different propensities to link with one another. Let Θ denote a finite set of
types. In a multi-type configuration model, we assign to each vertex i a type θi and a degree
tuple d(i) = (d

(i)
1 , d

(i)
2 , ..., d

(i)
|Θ|). The element d

(i)
θ in the degree tuple indicates the number of

link stubs that can connect with type θ vertices.

Definition 2 (Multi-type Configuration Model). Let θ = (θ1, θ2, ..., θn) denote an n-vector
of types, and let d denote an n-vector of degree tuples. Given n vertices, assign type θi and
degree tuple d(i) to vertex i. Successively pick pairs of compatible stubs uniformly at random
(e.g. a type θ stub attached to a type θ′ vertex and a type θ′ stub attached to a type θ vertex)
and join the two stubs to form a link. This process produces a distribution over graphs G
that we call the multi-type configuration model with type sequence θ and degree
sequence d, written CMn,θ,d.

Let (T,D) denote a joint distribution on types and degree tuples. Given n vertices, realize
a type and degree sequence (θ,d) via n independent draws from (T,D). Given this sequence,
realize a graph according to CMn,θ,d. This process produces a distribution over graphs G
that we call the multi-type configuration model with distribution (T,D), written
CMn,(T,D).

We can use branching processes to characterize the asymptotic structure of CMn,D and
CMn,(T,D). For the standard model CMn,D, define the branching process TD in two stages.
There is a single root that realizes offspring according to D. Each subsequent node in the
branching process realizes offspring independently according to the forward distribution D′,
satisfying

P(D′ = d) =
(d+ 1)P(D = d+ 1)

E[D]
. (1)

We write νD = E[D′] for the average forward degree, which captures important properties
of TD. To get an intuition for the forward distribution, consider a breadth first search start-
ing from a random vertex in CMn,D. The vertex has neighbors distributed approximately
according to D. To get the distribution of neighbors’ neighbors, we need to make two adjust-
ments to D. First, higher degree vertices are disproportionately represented as neighbors: a
degree d vertex has d chances to connect with a given link stub. We must also avoid counting
the link back to the original vertex, so we shift the distribution by one.

We can define the multi-type branching process T(T,D) analogously. The root realizes
a type according to T and a tuple of offspring according to Dθ. The forward distribution
depends on the type of the parent and the type of the child, so properly specifying the
behavior of T(T,D) after the root requires |Θ|2 types, one for each parent and offspring pair.

6Combining this Proposition with the main theorem effectively generalizes percolation results to cases
with arbitrary heterogeneity in how permeable different links are.
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I refer to a type θ vertex with a type θ′ parent as a type θθ′ vertex. A type θθ′ vertex will
realize the tuple of offspring d = (d1, d2, ..., dΘ) with probability

P(D′θθ′ = d) =
(dθ′ + 1)P(Dθ = d+ eθ′)

µθ,θ′
. (2)

The entry dθ̃ in d denotes the number of type θ̃θ offspring, the symbol µθ,θ′ is the expected
number of type θ′ neighbors of a type θ vertex according to (T,D), and eθ′ is a vector of
zeros with a one in the entry corresponding to θ′. The number of type θ̃θ′ offspring is zero
whenever θ′ 6= θ.

To obtain the parameter analogous to νD, define νθ1,θ2,θ3 = E
[
(D′θ2θ1)θ3

]
as the expected

number of type θ3θ2 offspring of a type θ2θ1 vertex. We use the collection {νθ1,θ2,θ3} to
populate the entries of the mean offspring matrix M(T,D). The matrix M(T,D) is a |Θ|2 by
|Θ|2 matrix, and we set the entry in row θ3θ2 and column θ2θ1 equal to νθ1,θ2,θ3 . While M(T,D)

contains |Θ|4 entries, note only |Θ|3 are nonzero.
Given a graph G, write Nk(G) for the number of vertices in components of size k, write

L1(G) for the number of vertices in the largest component, and write L2(G) for the number of
vertices in the second largest component. Moreover, let H(G) be a random variable denoting
the length of the shortest path between two vertices chosen uniformly at random. Let ν(T,D)

denote the spectral radius of M(T,D), and let ρk denote the probability that |T(T,D)| = k.

Theorem 1. Suppose T(T,D) is irreducible and non-singular. For any ε > 0, we have

lim
n→∞

PCMn,(T,D)

(∣∣∣Nk(G)

n
− ρk

∣∣∣ ≥ ε

)
= 0,

lim
n→∞

PCMn,(T,D)

(∣∣∣L1(G)

n
− ρ∞

∣∣∣ ≥ ε

)
= 0, and

lim
n→∞

PCMn,(T,D)

(
L2(G)

n
≥ ε

)
= 0.

Suppose ν(T,D) is finite. For any ε > 0, we have

lim
n→∞

PCMn,(T,D)

(∣∣∣ H(G)

logν(T,D)
n
− 1
∣∣∣ ≥ ε

∣∣H(G) <∞

)
= 0.

Additionally, each of these statements continues to hold if we condition CMn,(T,D) on realizing
a simple graph.

Proof. See Appendix.

The probability that a random vertex in CMn,(T,D) is in a component of size k is approx-
imately the probability that T(T,D) realizes a tree of size k. As n grows, there is at most
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one giant component in CMn,(T,D), and the portion of the network it covers is equal to the
survival probability of T(T,D). These results allow us to characterize the extent of diffusion
in latter sections. If a giant component exists, the distance between two random vertices in
the component is approximately logν(T,D)

n. As a result, the parameter ν(T,D) tells us how

fast diffusion spreads through the network.7

Real networks exhibit far more clustering than either CMn,D or CMn,(T,D)—two individ-
uals with friends in common are more likely to be friends themselves. To add clustering,
we can introduce multiple types of link stubs. Modify the standard configuration model by
assigning a tuple of link stubs (d

(i)
2 , d

(i)
3 , ..., d

(i)
k , ...) to each vertex, indicating that vertex i

has d
(i)
k link stubs of type k. Instead of pairing all stubs, we match link stubs of type k

uniformly at random in groups of size k, establishing links between all associated vertices.
In the standard model, we have only type 2 stubs. Adding type k > 2 creates k-cliques in
the graph. Vertex i has total degree di =

∑∞
k=2(k − 1)d

(i)
k .

In section 3.3, I use a particular version of the configuration model that allows 3-cliques.
Vertices have degree pairs (d2, d3), where d2 is the number of normal stubs and d3 is the
number of triangle stubs. The extent of clustering varies with a single parameter γ.

Definition 3 (Configuration Model with γ-clustering). Let D denote a degree distribution
taking even values with probability one, and fix γ ∈ [0, 1]. In the model CMn,D,γ, for each
of the n vertices we first realize a degree independently according to D and group the link
stubs into pairs. For each pair of link stubs, with independent probability γ merge them into
a single triangle stub; otherwise they remain normal stubs. Pair normal stubs uniformly at
random into links, and join triangle stubs in groups of three uniformly at random.

The proof of Theorem 1 applies for the configuration model with γ-clustering, and I use
the analogous result in section 3.3.

3 Diffusion in a Random Network

There are n players situated in a network G, which is realized according to the model
CMn,(T,D), where D has finite variance.8 Time is discrete, and initially all players are unaware
of some new available product. In period 0, players in a subset S0 become aware. In period
1, players in S0 decide whether to adopt. Adoption is irreversible, and any neighbor of an
adopter becomes aware. In each period t ≥ 2, those who are aware and have not yet adopted
decide whether to adopt, and any neighbor of an adopter becomes aware.

7Bollobás and Riordan (2015) prove an analogous result for component sizes in the standard configuration
model. The proof I give closely mirrors their argument. van der Hofstad et al. (2005) prove an analogous
result for typical distances in the standard configuration model. My proof is substantially different from
theirs, taking advantage of the techniques developed by Bollobás and Riordan (2015). van der Hofstad et al.
(2007) give a similar result for the infinite variance case in the standard configuration model, showing that
typical distances are much smaller, on the order of log log n. The proof of Theorem 1 in fact implies a much
stronger result than what I state. We can characterize any local property of the configuration model using
the branching process T(T,D).

8Finite variance is necessary for the results on the rate of diffusion but not the extent.
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Our main questions concern the trajectory of adoption over time—its extent, its rate,
and its relationship to individual choices and network structure. In a population with n
players, write Xn(t) for the number adopting at time t. Define

αn = lim
t→∞

Xn(t)

n
, and τn(x) = min

{
t :

Xn(t)

n
≥ x

}
.

The random variable αn is the long-run fraction of the population that adopts, and τn(x) is
the (random) time it takes for a fraction x of the population to adopt. By convention, we
set τn(x) =∞ whenever x > αn. Our results are statements about the limiting distributions
of αn and τn as n→∞.

If a player adopts the product in period t, she earns a payoff that depends on the number
of her neighbors Ai who adopt by the end of period t+ 1.9 Following the model CMn,(T,D),
player i has type θ drawn independently according to T . Conditional on this type, she has
valuation vi ∈ [0, 1], drawn independently according to a distribution Vθ, and total degree di
derived from the configuration model. Player i’s payoff from adoption is

ui = u(vi, di, Ai).

I assume u is strictly increasing in v and non-decreasing in A—adoption can exhibit comple-
mentarities. I normalize the payoff from non-adoption to zero, so player i adopts in period
t if

E[u(vi, di, Ai)] > 0.

I first present a baseline model in which each player i observes only her valuation vi and
degree di. Subsequently, I extend the framework to include information about neighbors.
In one example, I suppose players receive signals about neighbors’ valuations. In another,
players observe whether neighbors have already adopted and may wait for more neighbors
to adopt before making a choice.

3.1 Diffusion with Limited Information

Each player i observes her valuation vi and her degree di. Using the distributions (T,D)
and {Vθ}θ∈Θ as a prior, player i uses the information contained in (vi, di) to update her beliefs
over neighbors’ valuations and degrees.10 Upon becoming aware, player i presumes that none
of her neighbors have adopted yet, but if she adopts, all will make a decision in the following

9This assumption seems innoucuous in situations where players realize payoffs quickly (e.g. reading a
news article, downloading a song), make choices quickly (e.g. in response to a limited time offer), or heavily
discount the future. If payoffs are realized slowly over time, and these payoffs depend on ongoing interactions
with neighbors, the assumption becomes more questionable. However, if we can expect a neighbor who
refrains from adopting in period t + 1 to take a significant amount of time before reconsidering, this can
reasonably approximate a player’s true discounted payoff.

10For finite n, these beliefs deviate from the true distribution, but the differences vanish at an exponential
rate as n grows.

11



period.11 A symmetric strategy profile is a mapping σ(v, d) : [0, 1] × N → {0, 1} giving an
adoption decision for each possible valuation and degree. The profile σ is an equilibrium if

Eσ [σ(v, d)u(v, d, A)] ≥ Eσ [xu(v, d, A)]

for all pairs (v, d) and all x ∈ {0, 1}. Since adoption exhibits complementarities, best re-
sponses are monotone in σ, and the existence of minimal and maximal equilibria follows
from Tarski’s fixed point theorem. Having some examples in mind will help with intuition.

Example 1 (Payoffs linear in number of neighbors). Generate the network according to the
single type model CMn,D with a uniform valuation distribution. Payoffs are

u(v, d, A) = Av − c

for some c > 0.

Example 2 (Payoffs linear in fraction of neighbors). Generate the network according to the
single type model CMn,D with a uniform valuation distribution. Payoffs are

u(v, d, A) =
Av

d
− c

for some c > 0.

In each of these examples, we can characterize equilibria via the probability Pσ =
E[σ(V,D′ + 1)] that a random neighbor is a potential adopter. In example 1, we have
E[u(v, d, A)] = dvPσ − c, and every equilibrium corresponds to a solution of

Pσ = P
(
V >

c

Pσ(D′ + 1)

)
.

Equilibrium strategies are clearly increasing in degree, and the results of Galeotti et al. (2010)
give comparative statics: if the degree distribution D1 first order stochastically dominates
(FOSD) D2, then the set of equilibria under D1 is higher than that under D2.

In example 2, we can explicitly solve for the set of equilibria. The expected payoff from
adoption is Eσ[u(v, d, A)] = vPσ − c, implying

Pσ = P
(
V >

c

Pσ

)
= max

(
0, 1− c

Pσ

)
.

11This avoids the need to treat initial seeds separately from other players. In the early stages of diffusion,
any newly aware player has exactly one adopting neighbor, and adjusting for this has no qualitative impact
on the results. If adoption spreads to a positive fraction of the network, many newly aware players will have
multiple adopting neighbors. These expectations then understate the value of adoption, and the equilibrium
I define gives a lower bound on adoption behavior.
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Best replies are always independent of degree, and the set of equilibria is independent of D.
The profile in which σ(v, d) = 0 uniformly is always an equilibrium. If c < 1

4
, there are two

equilibria with positive adoption, corresponding to

Pσ =
1±
√

1− 4c

2
.

In the maximal equilibrium, a player adopts if v > 1−
√

1−4c
2

.
Given an equilibrium, the results from section 2 let us characterize diffusion outcomes.

Define the probabilities qθ,d,σ = E[σ(Vθ, d)]; the model CMn,qσ ,(T,D) describes the subnetwork
of potential adopters. The set of people who end up adopting are precisely those in con-
nected components of CMn,qσ ,(T,D) that contain an initial seed. Define πσ = E[qT,D,σ] as the
probability that a random player is a potential adopter, write Tσ for the branching process
that approximates CMn,qσ ,(T,D) (see section 2), write ξσ for the extinction probability of Tσ,
and write νσ for the spectral radius of the mean offspring matrix.

Theorem 2. Suppose S0 consists of k individuals chosen uniformly at random. As n→∞,
the random variables αn converge in distribution to ασ satisfying

ασ =

{
πσ(1− ξσ) with probability 1− ξkσ
0 with probability ξkσ.

In particular, if νσ ≤ 1, we have ασ = 0 with probability one, and if νσ > 1, we have
ασ > 0 with positive probability. Furthermore, for any x with 0 < x < max supp(α) and any
sufficiently small ε > 0, we have

lim
n→∞

P
(∣∣∣ τn(x)

logνσ n
− 1
∣∣∣ ≥ ε

∣∣αn > ε

)
= 0.

Proof. A player is contained in the network of potential adopters with probability πσ, and
is in the giant component of this network with probability 1 − ξσ. The definition of τn(x)
means that a fraction x of players are at distance less than or equal to τn(x) from an initial
seed. Both claims now follow from Theorem 1.

With finitely many seeds, the level of adoption is inherently stochastic. Remarkably, the
fraction ασ can only ever take one positive value. More seeds increases the probability of
a large cascade but does not affect its reach: we have a better chance of seeding the giant
component, but the size of this component remains the same. Just as the first generations
in a branching process tell us a lot about whether it will survive, the first steps in a diffusion
tell us a lot about the whether we will get a large cascade. Each adoption among a seed’s
neighbors is another chance to connect to the giant component. If we see an equal number
of adoptions in a long chain, the chances are no larger than in the first step.

Even when there is a large cascade, some individuals never learn about the product. In
the event that E[σ(Vθ, Dθ)] < 1 for each type θ, we are guaranteed to have ξσ > 0. In this
case, the first part of Theorem 1 implies there are many small components in the network
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of potential adopters. Each of these small components avoids getting seeded with positive
probability. In fact, even if we seed a positive fraction of the network, many players must
remain uninformed.

Proposition 2. Suppose that for each individual i we have i ∈ S0 with independent proba-
bility 1− p. We then have

ασ
πσ

= 1− ξσ +
∞∑
m=1

P(|Tσ| = m)(1− pm)

with probability one. In particular, if m = E
[
|Tσ|

∣∣ |Tσ| <∞], we have

ασ
πσ
≤ 1− ξσ + ξσ(1− pm) < 1.

Proof. The first part of Theorem 1 tells us that the fraction of potential adopters in connected
components of size m converges to the probability that |Tσ| = m. A component of size m
contains an initial seed with probability (1−pm), and the first part follows. The second part
is an immediate application of Jensen’s inequality.

The close connection to the branching process Tσ facilitates a comparative statics analysis.
I decompose this analysis into two parts: the effect of equilibrium shifts and the direct effect
of changes in network.12 The effect of a change in σ is straightforward: higher strategies add
players to the network of potential adopters, which increases the extent and rate of diffusion.
If we remove some potential adopters and replace them with others who have more neighbors,
this also increases the extent and rate of diffusion. Diffusion proceeds further and faster when
there are more potential adopters or when potential adopters are more connected.

Corollary 1. If σ ≥ σ′, then ασ FOSD ασ′ and νσ ≥ νσ′.

If σ and σ′ are such that πσ = πσ′, and Dqσ FOSD Dqσ′
, then ασ FOSD ασ′ and νσ ≥ νσ′.

Proof. Either condition implies that the offspring distribution for Tσ first order stochastically
dominates that of Tσ′ , and the result is immediate.

The network effect is more nuanced as it depends on the strategies players are using. Fix
a strategy profile σ. Given two degree distributions D1 and D2, write α

(1)
σ , ν

(1)
σ , α

(2)
σ , ν

(2)
σ for

the variables ασ, νσ corresponding to the two respective distributions.

Corollary 2. Suppose the profile σ is weakly increasing in d. If D1 FOSD D2, then α
(1)
σ

FOSD α
(2)
σ and ν

(1)
σ ≥ ν

(2)
σ .

Suppose the profile σ is weakly convex in d. If D1 is a mean preserving spread of D2, then
ν

(1)
σ ≥ ν

(2)
σ .

12A complete analysis would also include how changes in the network shift the equilibrium. The findings
of Galeotti et al. (2010) apply directly in the single-type version of this model and could be extended for the
multi-type version.
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Proof. The assumption that σ is increasing in d implies that an FOSD shift in the degree
distribution adds players to the network of potential adopters and gives them more links.
This implies an FOSD shift in the offspring distribution of the corresponding branching
process, and the first part follows. Similarly, if σ is convex in d, a mean preserving spread
in the degree distribution produces a FOSD shift in the forward distribution, implying the
second part.

These corollaries apply directly in examples 1 and 2. In the first example, strategies
are increasing in degree, so Corollary 2 implies that FOSD shifts in the degree distribution
should increase the extent and rate of diffusion. The results of Galeotti et al. (2010) imply
this shift also leads to an increase in equilibrium strategies, which exaggerates the change.
In the second example, strategies are independent of degree, and FOSD shifts in the degree
distribution should again increase the extent and rate of diffusion, but without affecting
equilibrum strategies. In this example, Corollary 2 also implies that a mean preserving spread
increases the speed of diffusion, but the effect on extent is ambiguous. Information spreads
faster with more central hubs, but more peripheral players means more small components.

3.2 Diffusion with Signals

Suppose each player i observes a signal si ∈ S taking one of finitely many values. The
distribution of si may depend on vi and di, and it may be correlated with the valuations of
player i’s neighbors. Again using (T,D) as a prior, player i uses the information in (vi, di, si)
to update her beliefs over neighbors’ valuations and degrees. A symmetric strategy profile is
now a mapping σ(v, d, s) : [0, 1]× N× S → {0, 1} giving a decision for each possible triple
(v, d, s). The profile σ is an equilibrium if for all (v, d, s) and all x ∈ {0, 1}, we have

Eσ[σ(v, d, s)u(v, d, A)] ≥ Eσ[xu(v, d, A)].

Just as before, best replies are increasing in σ, so Tarski’s fixed point theorem ensures
existence of minimal and maximal equilibria.

Signals introduce correlations not captured via the types in Θ. In order to apply The-
orem 1, we must augment each player’s type with her signal: write θ̃ = (θ, s), and write T̃
for the joint distribution of T and S. The configuration model CMn,(T̃ ,D) is entirely equiv-
alent to CMn,(T,D), except with an extra label attached to each vertex indicating the signal
that player receives. A strategy profile determines probabilities qθ̃,d,σ = E[σ(Vθ, d, s)] with
which each augmented type and degree of player will adopt, conditional on becoming aware.
The subgraph of potential adopters follows the model CMn,qσ ,(T̃ ,D). Our problem is now
equivalent to that in the previous section, and the earlier results apply.

I give one example to illustrate how signals can impact diffusion.

Example 3. Generate the network according to the single type model CMn,D with a uniform
valuation distribution. Payoffs are

u(v, d, A) = Av − c
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for some c > 0. Player i observes a binary signal sij{0, 1} for each neighbor j, with

P
(
sij = 1 | vj >

1

2

)
= P

(
sij = 0 | vj ≤

1

2

)
= g,

for some g > 1
2
. These signals are conditionally independent given neighbors’ valuations.

Since neighbors are otherwise indistinguishable, we aggregate the signals {sij} into a single
random variable si denoting the number of 1 signals player i receives.

We can exploit the structure of this example to reduce the size of the augmented type
space. Regardless of the signal precision g, the unconditional signal si is a binomial random
variable with di trials and success probability 1

2
. For this example, I assume a newly aware

player observes who informed her and counts this neighbor as a certain adopter in her
utility calculation. This implies that, conditional on adopting, player i has no information
about her neighbors’ signals, and we do not need to augment the type space at all.13 The
forward distribution in the relevant branching process realizes offspring according to D′ and
retains each with independent probability Pσ = E [σ(V,D′ + 1, BD′,.5)], where Bn,p denotes
a binomal distribution with n trials and success probability p.

Proposition 3. Assume c ∈ (0, 1) in example 3, and let σ denote the maximal equilibrium.
The total population of potential adopters πσ, the extent of adoption ασ, and the rate νσ are
decreasing in the signal precision g.

Proof. I refer to players with valuations above 1
2

as high types, and those with valuations
below 1

2
as low types. Write P−σ and P+

σ for the probabilities that a random low and high
type neighbor respectively will adopt. We have

P−σ = E
[
σ(U[0,.5], D

′ + 1, BD′,.5)
]
, and P+

σ = E
[
σ(U[.5,1], D

′ + 1, BD′,.5)
]
,

where U[a,b] denotes a uniform distribution on [a, b]. Player i’s expected payoff from adoption
is (

1 + si(gP
+
σ + (1− g)P−σ ) + (di − si)(gP−σ + (1− g)P+

σ )
)
vi − c.

For any realization of s, best responses are increasing in v, which implies that P+
σ ≥ P−σ in

any equilibrium. The last equation then implies equilibrium strategies are increasing in s.
Fixing d and s, there is a threshold valuation

vd,s =
c

1 + si(gP+
σ + (1− g)P−σ ) + (di − si)(gP−σ + (1− g)P+

σ )

at which a player is indifferent between her two choices. Note the degree and signal pairs
(d, s) and (d, d − s − 1) are equally likely. Suppose s ≤ d−1

2
, so vd,s ≥ vd,d−s−1. Taking

the partial derivative of vd,s and vd,d−s−1 with respect to g, we find vd,s is increasing in g,
and vd,d−s−1 is decreasing. The magnitude of this change is larger for vd,s, which means the

reduction in P+
σ is larger than the increase in P−σ . Since Pσ = P−σ +P+

σ

2
, the claim follows.

13With a different assumption, we would need two types in the augmented space, corresponding to whether
the neighbor who informed player i has valuation above or below 1

2 .
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Information affects diffusion through the equilibrium, not through the network itself.
Intuitively, an increase in g leads to offsetting effects when a player has signal s versus signal
d − s: those whose neighbors have high valuations become more likely to adopt, and those
whose neighbors have low valuations become less likely. With a linear payoff function, the
latter effect is more pronounced, suggesting that players who are better informed become
more selective and less likely to adopt overall.

3.3 Diffusion with Observable Choices

Suppose each player i observes the number of neighbors a
(t)
i who have adopted at the

beginning of the current period. A Bayesian analysis in this case is intractable. Rather than
assume an ad hoc decision rule, in this section I take as given a symmetric strategy profile
σ(v, d, a) : [0, 1]× N2 → {0, 1} that is time invariant. I am deliberately agnostic about how
σ arises.14 Our concern is how the network structure affects diffusion for a given σ.

Due to the tree-like local structure of the configuration model, players with (v, d) such
that σ(v, d, 1) = 1 play a special role. If the number of initial seeds is small, then players have
at most one adopting neighbor until a significant portion of the network adopts. Whether
diffusion can spread to a positive fraction of the network depends on the subnetwork of
players willing to adopt when only one neighbor has done so. I refer to these players as
potential early adopters. Define

q̂θ,d = E[σ(Vθ, d, 1)].

The network of potential early adopters follows the model CMn,q̂,(T,D), and we can apply
Theorem 1 as before. An important difference from the baseline model is that CMn,q̂,(T,D)

fails to capture the full extent of adoption: not all potential adopters are potential early
adopters. The size of the giant component in CMn,q̂,(T,D) gives a lower bound on the extent
of adoption when there is a large cascade. We can refine this bound by iteratively computing
the probability that players have multiple adopting neighbors.

When players wait for multiple neighbors to adopt, clustering can have a positive impact
on diffusion. In the baseline model, clustering would only slow diffusion because it reduces
the number of newly informed players at each step. Here, clustering can also give us more
early adopters, which may more than offset the first effect.

To illustrate, recall the configuration model with γ-clustering CMn,D,γ. Players realize
an even number of link stubs according to D. With independent probability γ, each pair of
stubs is collapsed to a single triangle stub, and otherwise the stubs remain normal. Normal
stubs are paired uniformly at random, while triangle stubs are joined uniformly at random
in triples. Higher values of γ correspond to more triangles and hence more clustering in the
network.

In the approximating branching process, the forward degree distribution depends on the
type of link to the parent. Conditional on being reached through a normal link, the forward
degree distribution is D′. Conditional on being reached through a triangle link, the forward

14The network level diffusion results apply regardless of how we specify σ. This is already enough to make
predictions about aggregate outcomes if we have data on individual adoption decisions.
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degree distribution is D′−1—we remove the neighbor that is common to parent and offspring.
Define Pσ,1 = E[σ(V,D, 1)], and for a > 1 define Pσ,a = E[σ(V,D, a)] − Pσ,a−1. To simplify
what follows, assume that σ does not depend on d.

First, suppose Pσ,a = 0 for all a > 1. This corresponds to a profile that could arise
in the baseline model: either a player adopts right after becoming aware, or she never
adopts. In the network of potential adopters, a player reached through a normal link has
in expectation Pσ,1 (γ + (1− γ)νD) additional neighbors reached through normal links, and
Pσ,1γ (νD − 1) neighbors reached through triangle links. A player reached through a triangle
link has in expectation Pσ,1(1 − γ) (νD − 1) neighbors reached through normal links, and
Pσ,1γ(νD − 1) additional neighbors reached through triangle links. The corresponding mean
offspring matrix is

Mσ = Pσ,1

 γ + (1− γ)νD γ(νD − 1)

(1− γ)(νD − 1) γ(νD − 1)

 . (3)

We can compute the spectral radius of Mσ as

νσ =
Pσ,1

2

(
νD +

√
ν2
D − 4γ(νD − 1)2

)
.

The effect of an increase in γ, is unambiguous: the likelihood of a large cascade, and the
rate of diffusion in a large cascade, goes down. This may change if Pσ,2 > 0.

Proposition 4. Suppose the network follows the model CMn,D,γ, and fix a strategy profile
σ that is independent of d. The parameter νσ is increasing in γ if and only if Pσ,2 >

1
νD−1

.

Proof. A neighbor j reached through a normal link will adopt if and only if σ(vj, dj, 1) = 1.
A neighbor j reached through a triangle link will adopt if either σ(vj, dj, 1) = 1, or if
σ(vj, dj, 2) = 1 and the other player reached through that triangle link is a potential early
adopter. Carrying out a similar exercise as before, we compute the mean offspring matrix
M ′

σ for the corresponding branching process

M ′
σ =

Pσ,1 (γ + (1− γ)νD) Pσ,1(1 + Pσ,2)γ(νD − 1)

Pσ,1(1− γ)(νD − 1) Pσ,1(1 + Pσ,2)γ(νD − 1)

 (4)

with spectral radius

νσ =
Pσ,1

2

(
(νD + Pσ,2γ(νD − 1)) +

√
(νD + Pσ,2γ(νD − 1))2 − 4(1 + Pσ,2)γ(νD − 1)

)
.

Differentiating gives

∂νσ
∂γ

=
Pσ,1(νD − 1)

2

Pσ,2 +
Pσ,2 (νD + Pσ,2γ(νD − 1))− 2(1 + Pσ,2)√

(νD + Pσ,2γ(νD − 1))2 − 4(1 + Pσ,2)γ(νD − 1)

 ,

which is positive if and only if Pσ,2 >
1

νD−1
.
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When Pσ,2 > 0, an increase in γ has two effects: it decreases the forward degree of a
typical neighbor, but it increases the likelihood that a neighbor will adopt. If the average
forward degree in the network is too low (νD ≤ 2) the first effect always dominates. As
the νD increases, there are more chances to get additional adopting neighbors, and the rate
parameter may increase with γ. We could carry out the same analysis for a more general
model with clustering—adding k-cliques for any k will have the same qualitative effect.

4 Homophily

Among the most ubiquitous features of social networks is that people disproportionately
link to those like themselves. Sociologists call this phenomenon homophily, and many studies
document homophily along numerous dimensions like race, religion, political beliefs, and
other interests (McPherson et al., 2001). How does varying the extent of homophily affect
diffusion? The results of the previous section give us the tools to explore this question.

We start from the model in section 3.1. Suppose there are two types, low and high.
Low-type players have uniform valuations on

[
0, 1

2

]
, and high-type players have uniform

valuations on
[

1
2
, 1
]
. The population is evenly split between the two types, and all have total

degree drawn independently according to D. Each link is an own-type link with independent
probability h ∈

[
1
2
, 1
]

and an other-type link otherwise. If h = 1
2
, we get a single type model

with uniform valuations and degree distribution D. For h > 1
2
, we have homophily along

valuations. Assume u(v, d, A) = vA
d
− c for some c ∈ [0, 1]: there is a constant cost to

adoption, and a benefit proportional to the fraction of adopting neighbors. As in example
2, this utility ensures that strategies are independent of degree.

A player adopts if her neighbors are potential adopters with probability at least c
v
. Given

σ, let P+
σ = E[σ(U[.5,1], D)] denote the probability that a high-type player adopts, and let

P−σ = E[σ(U[0,.5], D)] denote the probability that a low-type player adopts. For a high-type
player, neighbors adopt with probability hP+

σ + (1 − h)P−σ and for a low type player, with
probability hP−σ + (1 − h)P+

σ . Expected payoffs are increasing in v and in the neighbor
adoption probability. This implies that in the maximal equilibrium, strategies are increasing
in v, and we can characterize equilibrium behavior via a single threshold v.

Proposition 5. In the maximal equlibrium:

(a) If c > h
2
, then P+

σ = P−σ = 0.

(b) If 1
8h
< c ≤ h

2
, then P+

σ = 1 and P−σ = 0.

(c) If c ≤ 1
8h

, then P+
σ = 1 and P−σ = 1− 1−

√
1−8hc
2h

.

Proof. Suppose there exists an equilibrium with positive adoption and c > h
2
. Consider the

corresponding threshold v. If v ≥ 1
2
, this implies that

h

2v
< hP+

σ + (1− h)P−σ = h(2− 2v),
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or that

2v +
1

2v
< 2,

which is impossible. If v < 1
2
, it implies

h

2v
< (1− h)P+

σ + hP−σ = 1− h+ h(1− 2v) = 1− 2hv.

This can only hold if 2v + 1
2v
< 1

h
< 2, and we conclude that no one adopts in equilibrium.

Now suppose 1
8h

< c ≤ h
2
. I first show that an equilibrium exists with P+

σ = 1 and
P−σ = 0. This corresponds to a threshold v = 1

2
, and for this to be a best reply, we must

have
(1− h)P+

σ + hP−σ = 1− h ≤ 2c ≤ h = hP+
σ (1− h)P−σ .

Observe that 1
4h
≥ 1−h with h > 0 is equivalent to 4h2− 4h+ 1 = (2h− 1)2 ≥ 0, so P+

σ = 1
and P−σ = 0 constitutes an equilibrium when c is in this range.

To finish part (b), we need to show that no equilibrium exists with P−σ > 0 when c > 1
8h

.
If such an equilibrium exists, there is v < 1

2
satisfying

1

8hv
< 1− 2hv.

This is equivalent to 0 > 1− 8hv + 16(hv)2 = (4hv − 1)2, which is never true.
For part (c), suppose we have an equilibrium with v < 1

2
. This implies

c

v
= 1− 2hv,

which we can solve for

v =
1±
√

1− 8hc

4h
.

For the solution to be defined, we must have c ≤ 1
8h

as we would expect from part (b). The
smaller root will correspond to a maximal equilibrium with

P−σ = 1− 2v = 1− 1−
√

8hc

2h

as desired.

Homophily exacerbates the difference in preferences because it reinforces complementar-
ities for high types while dampening this effect for low types. As h increases, the interval(

1
8h
, h

2

)
expands on both sides. This increases the cost that high types are willing to pay, and

it reduces the cost at which low types start adopting. In the region c ≤ 1
8h

, differentiating
(c) shows that P−σ is strictly decreasing in h. At any fixed c, adoption among high types
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is weakly increasing in h, and adoption among low types is weakly decreasing in h. This
suggests that homophily tends to limit adoption to niche communities with high valuations.15

Changing h changes the network of potential adopters apart from the effects on equilib-
rium strategies. In this particular example, the forward distribution in the branching process
is independent of the parent’s type. The forward degree distribution for both types is D′, and
each link connects to an own-type neighbor with probability h. As a result, we can collapse
the four types in Tσ into two types. In the network of potential adopters, the average forward
degree tuple for a low-type player is (νDhP

−
σ , νD(1− h)P+

σ ), and for a high-type player it is
(νD(1− h)P−σ , νDhP

+
σ ). The mean offspring matrix is

Mσ = νD

 hP−σ (1− h)P+
σ

(1− h)P−σ hP+
σ

 , (5)

with spectral radius

νσ =
νD
2

(
h(P−σ + P+

σ ) +
√
h2(P−σ + P+

σ )2 − 4(2h− 1)P−σ P
+
σ

)
.

From this we can derive comparative statics in homophily.

Proposition 6. Holding σ fixed, the parameter νσ is increasing in h.

Proof. We compute

∂νσ
∂h

=
νD
2

(
P−σ + P+

σ +
h(P−σ + P+

σ )2 − 4P−σ P
+
σ√

h2(P−σ + P+
σ )2 − 4(2h− 1)P−σ P

+
σ

)
This non-negative if

(P−σ + P+
σ )2

(
h2(P−σ + P+

σ )2 − 4(2h− 1)P−σ P
+
σ

)
≥
(
4P−σ P

+
σ − h(P−σ + P+

σ )2
)2

or
4P−σ P

+
σ (P−σ + P+

σ )2 − 16(P−σ P
+
σ )2 = 4P−σ P

+
σ

(
P+
σ − P−σ

)2 ≥ 0,

implying the result.

When we increase homophily, the typical potential adopter has more neighbors who are
themselves potential adopters. Homophily therefore makes diffusion faster and makes large
cascades more likely. This insight is independent of the valuation distribution and the payoff
function, so long as P+

σ > P−σ . The effect is similar to that of a mean-preserving spread in
the degree distribution. The network of potential adopters becomes more centralized with
denser connections among high types and sparser connections among low types. When we
do get a large cascade, the effect on the extent of diffusion is ambiguous.

15We find a similar pattern with more general payoff functions. Since P+
σ ≥ P−σ in the maximal equilibrium,

an increase in homophily will tend to increase the neighbor adoption probability for high-type players and
decrease it for low-type ones. However, there may be a countervailing effect. If the increase in P+

σ is
sufficiently great, it may induce more low-type players to adopt; likewise if a decrease in P−σ is sufficiently
great, it may cause fewer high-type players to adopt. Therefore, it is possible for both P+

σ and P−σ to increase
(decrease) together, but the corresponding shift in the neighbor adoption probability is greater for high-type
(low-type) players.

21



5 Applications

5.1 Bertrand Competition with Word-of-Mouth Communcation

Two firms sell identical products and have the same marginal cost c. Potential consumers
are initially unaware of the products, but they learn about a firm’s product if a neighbor
purchases it. Each consumer has the same value for both products, drawn uniformly on
[0, 1]. If a firm charges p, a purchasing consumer earns v − p. Consumers are myopic: as
soon as one learns of a product offering positive utility, she purchases. I assume that both
firms choose prices low enough that a giant component of potential adopters exists, and each
firm has one random seed in the giant component who is aware of its product. Campbell
(2013) studys a monopolist’s pricing policy in this setting. The second part of Theorem 1
allows us to proceed a step further and consider the effects of competition.

Proposition 7. In the equilibrium between the firms, for any ε > 0 we have

lim
n→∞

P (p1 ≥ c+ ε) = lim
n→∞

P (p2 ≥ c+ ε) = 0.

Proof. Consider demand for each product when the firms choose prices p1 < p2. The network
of potential adopters for firm 1 contains that for firm 2. If D is the degree distribution, the
typical distance between potential adopters of product 1 is log(1−p1)νD

n, and for firm 2 it
is log(1−p2)νD

n > log(1−p1)νD
n. Theorem 1 implies that for large n, essentially all potential

adopters will learn of product 1 first, so the demand for firm 2 converges to zero as n grows.
The standard argument characterizing equilibrium for a game of Bertrand competition im-
plies the result.

The proof of Proposition 7 offers more insight than the result. When consumers learn
about products through word-of-mouth, the size and structure of the network among con-
sumers has a direct effect on the level of competition between firms. A firm can earn profits
when pricing higher than the competition because some consumers are unaware of the alter-
native. However, setting a low price helps more consumers learn about a product faster. In
a small network, a firm loses relatively less from pricing above its competition because all
purchases happen close to an initial seed. Differences in diffusion rates do not have time to
create significant differences in demand. In a large network, the high priced firm loses out
because the vast majority of the population learns about the lower priced alternative first.

The structure of the network, expressed through the average forward degree νD, also
influences competitive prices. When p1 < p2, the difference in typical distances is

log(1−p2)νD
n− log(1−p1)νD

n =
lnn

ln(1− p2)νD
− lnn

ln(1− p1)νD
.

Since the natural logarithm is concave, this difference shrinks with νD, indicating that the
pressure to lower prices is weaker in a dense network. Intuitively, when density is high, more
diffusion takes place close to an initial seed, so again differences in rates matter less.
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5.2 Referral Marketing

Consider a monopolist selling a good to a networked population. However, when a
consumer makes a purchase, her neighbors do not automatically become aware of the product.
Instead, the consumer has the option to send referrals to each of her neighbors, and the firm
can offer a reward for each referral that results in a purchase. Assume making referrals is
costless, so as long as the firm offers a positive reward, consumers make all possible referrals.
Consumer valuations are uniform, and the degree distribution takes one of two values d < d
with equal probability. A single seed is initially aware of the product, and consumers follow
the equilibrium from section 3.1.

A referral program allows the monopolist to price discriminate between consumers based
on the number of neighbors they can refer. The monopolist chooses a price p and a referral
reward r. Since high-degree consumers have more referrals they can send, and they tend to
learn about the product earlier, they can extract a larger reward from the referral program.
Through an appropriate choice of p and r, the firm can charge any pair of effective prices
(p, p) to low and high-degree consumers respectively, as long as p < p. If the firm could
perfectly discriminate, it would choose to charge a lower price to high-degree consumers, so
the referral program is as good as perfect price discrimination.

Proposition 8. For any pair of effective prices (p, p) with p ≤ p there exists a price and
referral reward pair (p, r) that implements them. The optimal pair of effective prices (p, p)
satisfies p ≤ p.

Proof. See Appendix

Lobel et al. (2015) study a similar referral design problem, allowing more general degree
distributions, referral payments, and costs of making referrals. However, to make their
analysis tractable, the authors abstract away from the dynamics of the process. Proposition 8
shows that key insights carry over when we fully account for the dynamics: referral programs
provide a mechanism for price discrimination, and we generally wish to offer lower effective
prices to those who can make more referrals. The latter result is more subtle than it first
appears. High-degree consumers make more referrals than low-degree ones, but they are also
disproportionately represented among those who become aware of the product. Lowering p
adds more referrals than a similar decrease in p, but it is also more costly since the discount
applies to a larger fraction of customers. Proposition 8 shows that the first effect is more
important for pricing decisions.

6 Remarks

Recent mathematical advances provide tools to study diffusion without making mean-field
assumptions. In a large class of random graph models—a class that can capture realistic
network features—a branching process closely approximates the local structure. This allows
us to explore in detail how the network and individual decisions affect diffusion paths. We
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can study the randomness in outcomes, understand when a product can “go viral,” and
relate both the extent and rate of spread to network properties.

The diffusion patterns we found are quite different from what mean-field models predict.
Outcomes are inherently stochastic. In generic instances of the model, many individuals
never learn about the product. To mimic this, a mean-field model must assume that certain
groups never interact, which eliminates the network’s role in this phenomenon. In this model,
the probability of a large cascade, the extent of adoption, and the set of people who remain
uninformed are all tied to the underlying degree distribution. Because we model the discrete
network structure, we can make more detailed statements about diffusion paths. Early stages
provide information about future growth, and we can replicate the variance in cascade sizes
that empirical work documents.

Beyond these differences, the results shed light on how networks interact with economic
decisions. A centralized network, or one with more homophily, results in a higher chance for
large cascades and a faster rate of spread. As technology makes it easier to sort ourselves into
homophilous groups, this suggests an increased incidence of viral phenomena. The Bertrand
competition example highlights a mechanism through which the consumer network can affect
competition between firms. A large, sparsely connected population of consumers results in
the lowest competitive prices.

The key technical contribution should prove useful beyond studies of diffusion. Research
on the economics of networks more broadly can benefit from a tractable random graph
model that generates realistic networks. These techniques may also aid a closer relationship
between theory and empirical work. Explicitly modeling link structure makes it easier to
interpret theoretical models. The primitives correspond to things we can measure, and given
recent work on methods to estimate random graph models (Chandrasekhar and Jackson,
2015), this raises the possibility of calibration using empirical data.
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A Appendix

A.1 Branching Processes

A Galton-Watson process is a sequence of random variables {Zn}∞n=0, with Z0 = 1 by
convention, and

Zn =

Zn−1∑
i=1

Xn,i,

where {Xn,i}n,i∈N is a collection of i.i.d. random variables taking non-negative integer values.
Write X for the common distribution. We can interpret the sequence {Zn} as a population
growing and shrinking over time, with Zn the number of individuals in the nth generation.
To obtain the next generation, each member of the nth generation has a random number of
offspring, generated according to the distribution X.

Standard questions about the Galton-Watson process include: What is the probability of
extinction η = P(∃n : Zn = 0)? What is the distribution of the total population size? How
fast does Zn grow over time? A fundamental tool in the analysis of branching processes is
the generating function of X. Write pi = P(X = i) for the probability that an individual
has exactly i offspring. The generating function is

GX(s) = E[sX ] =
∞∑
i=0

pis
i.

The following standard result uses the generating function to characterize the extinction
probability.

Proposition 9. The extinction probability η is the smallest solution in [0, 1] of

η = GX(η).

In particular, if E[X] < 1, then η = 1; if E[X] > 1, then η < 1. If E[X] = 1, then η = 1 if
p1 < 1 and η = 0 if p1 = 1.

Proof. See the first chapter in Athreya and Ney (1972).

Let µ = E[X]. One can easily verify that E[Zn] = µn, and the sequence Zn
µn

forms a
martingale. This gives us additional information about the size of the branching process,
the rate of growth, and implicitly the distribution of the extinction time.

Proposition 10. Let T =
∑∞

n=0 Zn denote the total progeny of the branching process. If
µ < 1, then E[T ] = 1

1−µ .

The sequence Zn
µn

converges almost surely to a non-negative random variable W .

Proof. The first claim follows by summing the geometric sequence of expected values; the
second is immediate from the martingale convergence theorem.
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We will require generalizations of these results for multi-type branching processes. Sup-
pose there are r types of individuals in the population. The random variable Zn denotes
an r-tuple (Zn,1, Zn,2, ..., Zn,r), giving the number of individuals of each type in the nth
generation. Given an initial population Z0, we recursively define the sequence Zn as

Zn =
r∑
i=1

Zn−1,i∑
j=1

X
(i)
j ,

where the X
(i)
j are mutually independent, and for each i the X

(i)
j have the same distribution

X(i). Put differently, each type is characterized by its own offspring distribution, where the
distribution X(i) is a distribution over r-tuples of non-negative integers.

We can define an analogous generating function for the multi-type branching process.
Let p(i)(j1, j2, ..., jr) denote the probability that X(i) = (j1, j2, ..., jr), and define

G
(i)
X (s) =

∑
(j1,j2,...,jr)∈Nr

p(i)(j1, j2, ..., jr)s
j1
1 s

j2
2 ...s

jr
r .

The multi-type generating function is the vector GX(s) =
(
G

(1)
X (s), G

(2)
X (s), ..., G

(r)
X (s)

)
. Let

η(i) denote the probability of extinction if Z0 consists of a single individual of type i, and let
η = (η(1), η(2), ..., η(r)) denote the vector of extinction probabilities.

In the single type case, we used µ = E[X] to characterize whether the branching process
goes extinct with probability one. In the multi-type case, we can write an analogous result
using the mean offspring matrix. Define mi,j = E[X

(i)
j ] as the expected number of type j

children from a type i parent. The mean offspring matrix M is simply the matrix with
entries mi,j; let ρ denote its spectral radius. We say that a multi-type branching process
is irreducible if every type of individual has descendants of all other types with positive
probability. This is equivalent to M being an irreducible matrix. We say that a multi-type
branching process is non-singular is there exists a type that does not have a single offspring
with probability one.

Proposition 11. The vector η is the only solution in the unit cube of GX(η) = η.

Suppose the branching process is irreducible and non-singular. If ρ ≤ 1, then η = 1. If
ρ > 1, then η(i) < 1 for all i.

Proof. See chapter 5 in Athreya and Ney (1972).

The spectral radius ρ of the mean offspring matrix also characterizes the growth rate of
the branching process.

Proposition 12. There exists a non-negative random vector W such that Zn
ρn

converges to
W almost surely.

Proof. Again, see chapter 5 in Athreya and Ney (1972).

ii



More detailed results on the distribution of T , the distribution of extinction times, and
other features are available in the literature, but are beyond what is needed in the present
paper. I would direct an interested reader to Athreya and Ney (1972) and Jagers (1975).

A.2 Configuration Models

Many basic results on the configuration model concern limits as n approaches infinity. For
CMn,D, these limits are well-defined. To make sense of a limit for a sequence CMn,d(n) , the

degree vectors d(n) must converge in an appropriate sense. For an n-vector d(n) of degrees,
let nd(d

(n)) denote the number of entries equal to d, and let m(d(n)) =
∑n

i=1 d
(n)
i denote the

total number of stubs, or twice the number of edges. There are two standard conditions:

(a) There exists {pd}d∈N such that for each d we have

lim
n→∞

nd(d
(n))

n
= pd.

(b) We have

lim
n→∞

m(d(n))

n
=
∞∑
d=0

dpd <∞.

The sequence {pd}d∈N describes a limiting degree distribution that takes the value d with
probability pd. These two conditions ensure that d(n) converges to {pd} in distribution and
in expectation.16 For a sequence {d(n)}n∈N, we always assume that (a) and (b) hold, and we
write D for the limiting distribution.

The model CMn,d may realize a multigraph: it can have self link and multiple links
between the same pair of vertices. If there are no self loops, and each pair of nodes has at
most one link between them, the graph is simple. When we study diffusion, we condition
the configuration model on realizing a simple graph. This is equivalent to taking a uniform
draw among all graphs with the given degree sequence.

Proposition 13. Conditional on realizing a simple graph, the model CMn,d selects a graph
uniformly at random from those with n verticies and degree sequence d.

Proof. This is immediate from the definition as each possible pairing of link stubs that results
in a simple graph is equally likely.

A recurring challenge is translating results for the configuration model to simple graphs.
We often wish to show that some function of graphs f(G) concentrates around its mean µ
as n grows. Independent link formation makes it relatively easy to show for any ε > 0 that

lim
n→∞

PCMn,d
(|f(G)− µ| ≥ ε) = 0, (6)

16At first glance, the second condition might appear redundant, but it is necessary to rule out pathological
cases. For instance, suppose d(n) contains n − 1 entries equal to 1 and a single entry equal to n − 1. The
sequence converges in distribution to a random variable taking the value 1 with probability 1, which would
suggest n

2 edges in expectation, but the actual number of edges is always n− 1.
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but we need to show that

lim
n→∞

PCMn,d

(
|f(G)− µ| ≥ ε

∣∣G is simple
)

= 0. (7)

Since the probability of realizing a simple graph declines subexponentially in n, if we can
establish exponential concentration bounds on (6), the bounds translate directly to (7).

Proposition 14. Fix any γ > 0. For all sufficiently large n we have

PCM
n,d(n)

(G is simple) > e−γn.

Proof. This is equivalent to Lemma 21 of Bollobás and Riordan (2015).

Corollary 3. Suppose that for any ε > 0, there exists δ such that for all sufficiently large n
we have

PCMn,d
(|f(G)− µ| ≥ ε) < e−δn.

Then, for any ε > 0, there exists δ′ such that for all sufficiently large n we have

PCM
n,d(n)

(
|f(G)− µ| ≥ ε

∣∣G is simple
)
< e−δ

′n.

Proof. Choose γ = δ
2

in Proposition 14. We have for large n

PCM
n,d(n)

(
|f(G)− µ| ≥ ε

∣∣G is simple
)
≤

PCM
n,d(n)

(|f(G)− µ| ≥ ε)

PCM
n,d(n)

(G is simple)

<
e−δn

e−
δ
2
n

= e−
δ
2
n.

Corollary 3 allows us to show that conditioning on simple graphs does not distort the
limiting degree distribution.

Proposition 15. Let nd(G) denote the number of degree d vertices in the graph G and let
pd = P(D = d). For any ε > 0, there exists δ > 0 such that

PCMn,D

(
sup
d

∣∣∣nd(G)

n
− pd

∣∣∣ ≥ ε
∣∣G is simple

)
< e−δn.

Proof. The corresponding inequality without conditioning on simple G is immediate from
the Dvoretzky-Kiefer-Wolfowitz inequality. The result then follows from Corollary 3.

Moving to the multi-type configuration model, we require similar conditions on the se-
quence (θ,d)(n) to state limit results. Define rθ = P(T = θ) and pθ,d = P(D = d |T = θ). Let
µθ,θ′ denote the expected number of type θ′ neighbors of a type θ vertex according to (T,D).
Given a sequence (θ,d)(n), let nθ,d

(
(θ,d)(n)

)
denote the number of type θ entries with cor-

responding degree tuple d, and let mθ,θ′
(
(θ,d)(n)

)
denote the number of edges between type

θ and θ′ nodes. The analogous conditions are
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(a)

lim
n→∞

nθ,d
(
(θ,d)(n)

)
n

= rθpθ,d.

(b)

lim
n→∞

mθ,θ′
(
(θ,d)(n)

)
n

= rθµθ,θ′ <∞.

Observe for any pair of types θ and θ′, we must have rθµθ,θ′ = rθ′µθ′,θ. We often also impose
an irreducibility condition: for any pair of types θ and θ′, there exists some sequence of types
θ0, θ1, ..., θl such that

• θ0 = θ and θl = θ′

•
∏l

i=1 µθi−1,θi > 0.

This ensures that a path can exist between any two types with positive probability. Direct
analogs to Propositions 1, 13, 14, and 15 , and Corollary 3 hold via identical arguments.

A.3 Proofs of Technical Results

Proof of Proposition 1

From the construction of Dq, we can compute the probabilities pq,d as

pq,d =
∑
k≥d

qkpk∑∞
i=0 qipi

(
k

d

)(∑∞
i=0 iqipi∑∞
i=0 ipi

)d(∑∞
i=0 i(1− qi)pi∑∞

i=0 ipi

)k−d
.

I first show that ECMn,q,D

[
nd(G)
|S|

]
converges to pq,d. Let nd,q(G) denote the number of degree

d nodes in CMn,D that get selected according to q, let mq(G) denote the number of link
stubs attached to nodes selected according to q, and let m(G) denote the total number of
link stubs. The Dvoretzky-Kiefer-Wolfowitz inequality implies that for any ε > 0 there exists
δ > 0 such that

PCMn,D

(
sup
d

∣∣∣nd,q(G)

|S|
− qdpd∑∞

i=0 qipi

∣∣∣ ≥ ε

)
<

1

3
e−δn.

An application of Hoeffding’s inequality ensures we can choose this δ so that also

PCMn,D

(∣∣∣mq(G)

n
−
∞∑
i=0

iqipi

∣∣∣ ≥ ε

2

)
<

1

3
e−δn, and PCMn,D

(∣∣∣m(G)

n
−
∞∑
i=0

ipi

∣∣∣ ≥ ε

2

)
<

1

3
e−δn.

Write A for the event that none of the three inequalities hold, which happens with probability
at least 1− e−δn.

The expected fraction of nodes in CMn,q,D with degree d is the probability that a random
vertex in S has degree d. Write Dv for the degree of a vertex in CMn,q,D chosen uniformly
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at random, and D+
v for the degree of this vertex in the graph CMn,D before removing the

vertices that were not selected. Also, write πd,k for the set of vectors in {0, 1}k with exactly
d entries equal to 1. We have

P(Dv = d) =
∑
k≥d

P(D+
v = k)E

 ∑
π∈πd,k

∏k−1
i=0 (mq(G)− i)πi(m(G)−mq(G)− i)1−πi∏k−1

i=0 (m(G)− i)

 .
In event A, with n sufficiently large, we have∣∣∣P(D+

v = k)− qkpk∑∞
i=0 qipi

∣∣∣ < ε,

∣∣∣∏k−1
i=0 (mq(G)− i)πi(m(G)−mq(G)− i)1−πi

nk
−

(
∞∑
i=0

iqipi

)d( ∞∑
i=0

i(1− qi)pi

)k−d ∣∣∣
< (1 + ε)k − 1, and

∣∣∣∏k−1
i=0 (m(G)− i)

nk
−

(
∞∑
i=0

ipi

)k ∣∣∣ < (1 + ε)k − 1.

Choosing ε sufficiently small, and letting n tend to infinity, we see that P(Dv = d) must
converge to pq,d.

To complete the argument, we need to show that nd(G)
|S| concentrates around its mean.

To see this, we define a sequence of random variables that slowly reveal the realized value
of nd(G)

|S| . Given a realization of CMn,D, let X0 denote the expected value of nd(G)
|S| . Label

the vertices 1 through n, and one vertex at a time, reveal whether that vertex is selected
according to q; let Xi for i = 1, 2, ..., n denote the conditional expectation of nd(G)

|S| after the

ith revelation. By definition, Xn = nd(G)
|S| , and the sequence Xi is a martingale with bounded

increments. The Azuma-Hoeffding inequality finishes the proof.

Proof of Theorem 1

For the first part of Theorem 1, I prove a stronger result which immediately implies it.
To state the result, I must define a few terms and notation. I use d = {(d1, d2, ..., dΘ)i,θi}Ni=1

to denote the sequence of realized types and degree tuples. Fixing d, I write mθ,θ′(d) for
the number of edges connecting type θ nodes and type θ′ nodes, and I write nθ,d(d) for the
number of type θ nodes with degree tuple d. Finally, I define the configuration distance as

l(d, D) = max

{
1

N
,

Θ∑
θ=1

∑
d

∣∣∣dnθ,d(d)

N
− dpθP(Dθ = d)

∣∣∣} ,
vi



where d =
∑Θ

θ=1 dθ is the total degree associated with d. This is a measure of how much
the realized degree sequence deviates from that prescribed by the distribution D. It is
straightforward to check that l(d, D) converges to zero as N grows if and only if the realized
degree sequence converges to D both in distribution and in expectation. Hence, the law of
large numbers implies that the configuration distance converges to zero almost surely as N
goes to infinity.

Theorem 3. For any ε > 0 and any k ≥ 1, there exists δ > 0 such that if l(d, D) < δ we
have

P
(∣∣Nk(G)−NP(|T | = k)

∣∣ ≥ εN
)
≤ e−δN . (8)

If additionally the degree distribution D assigns positive probability to some type having 3 or
more neighbors, then there exists δ > 0 such that if l(d, D) < δ we have

P
(∣∣L1(G)−NP(|T | =∞)

∣∣ ≥ εN
)
≤ e−δN , and P (L2(G) ≥ εN) < e−δN . (9)

I prove Theorem 3 for a configuration model that allows multigraphs. That is, we generate
the network as described, but we do not condition on realizing a simple graph: we permit
self-links and multiple links between the same pair of nodes. This version of the configuration
model is easier to work with because we can allow the stubs to be paired uniformly at random
without any further conditioning. The multi-type analog of Corollary 3 implies the result
also holds conditional on realizing a simple graph.

I will use G∗ to denote a graph realized according to the multigrah configuration model,
and I use G to denote a generic graph. I use v to denote a generic node in G, and Gv to
denote the graph G rooted on v. I use T to refer both to the branching process defined in
section 2 and the corresponding tree, viewed as a rooted graph. For a positive integer r, I
write Gv,r for the subgraph of radius r rooted on v (i.e. the graph comprising only nodes
at distance r or less from v), and similarly I write Tr for the tree T truncated after the rth
generation. I will occasionally abuse notation, writing Gv,r = Tr to indicate that Tr, viewed
as a rooted graph, is isomorphic to Gv,r.

There are two major steps in the proof. The first step is to show that the distribution of
component sizes converges to the distribution of tree sizes generated by the branching process
T . We can prove this for the multigraph case using a straightforward coupling argument,
matching the branching process with a breadth first search process starting at a random
node. However, passing to simple graphs later requires a more powerful concentration result,
giving exponential bounds on the rate of convergence. We obtain these bounds by applying
the Azuma-Hoeffding inequality to a martingale that arises through a process that explores
possible link stub pairings.

Once we establish the correspondence between component sizes and tree sizes, we show
that essentially all “large” components are connected in one “giant” component. This relies
on a coloring and sprinkling argument in which we first retain links independently with some
probability p ∈ (0, 1), and then sprinkle the remaining links back in, taking advantage of
conditional independence between the retained links and the sprinkled links. Large compo-
nents that exist in the thinned graph are likely to be connected by the additional links. The
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assumption that at least one type has three or more neighbors with positive probability is
necessary for this step. It ensures that the survival probability of the thinned tree converges
to that of T as p approaches 1. An argument showing that the results carry over if we
condition on realizing a simple graph completes the proof.

The Branching Process Approximation

The first part of the proof establishes a coupling between rooted graphs of finite size
G∗v,r and truncated trees Tr. This in turn implies that any property of the rooted graph G∗v,
which depends only on those vertices within distance r of v, is asymptotically characterized
by the branching process T . This is the sense in which T captures the “local” properties of
G∗. The bulk of this section is devoted to proving bounds on the probability of deviations.

Lemma 1. Let v be a vertex of G∗ chosen uniformly at random, and suppose {dN}N∈N
is a sequence for which l(dN , D) converges to zero. For any finite r, we can couple the
random graphs G∗v,r and Tr so that they are isomorphic with probability approaching 1 as N
approaches infinity.

Proof. Begin with a realized sequence d, and suppose that l(d, D) < ε for some ε > 0.
We will reveal the rooted graph G∗v,r one node at a time, following a breadth first search
procedure, coupling it with Tr at each step and bounding the probability that the coupling
fails. Given our assumption on the configuration distance, we can couple the degree d of the
root v with the offspring distribution of the root of Tr with probability at least 1− ε.

At each subsequent step, we start with a node of some type θ and reveal a partner for a
link of another type θ′. At the jth step, the probability that this is an unvisited node with
degree tuple d is precisely

dθ (nθ′,d(d)− uθ′,d,j)
mθ,θ′(d)− uθ,θ′,j

,

where uθ′,d,j is the number of type θ′ nodes with degree vector d that have been visited
before the jth step, and uθ,θ′,j is the number of completed edges between type θ and type
θ′ nodes before the jth step. Note that uθ′,d,j ≤ j and uθ,θ′,j ≤ j. This implies that for any
fixed j, the difference between this quantity and P(D′θ,θ′ = d) is no more than ε + o(1), so
the coupling succeeds with probability 1− ε− o(1).

To complete the proof, note that for any ε > 0, there is a constant M such that |Tr| ≤M
with probability at least 1 − ε, and for sufficiently large N , we have l(d, D) < ε with
probability at least 1 − ε. For N larger than this, the probability that the coupling fails is
no more than 2ε+M(ε+ o(1)), and the conclusion follows.

One immediate consequence of this lemma is that the rooted graphs G∗v,r are trees with
probability approaching 1. More generally, the branching process T characterizes any “local”
property of the graph G∗. Let P be a property of rooted graphs, meaning a set of rooted
graphs that is closed under isomorphisms. We can also think of P as a property of vertices,
taking the root of the graph as the relevant vertex. We write Gv ∈ P to say that the graph G
rooted on v has the property P and we write NP(G) for the number of vertices with property
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P . For any positive integer r, we say that P is r-local if whether Gv ∈ P depends only on
Gv,r. The following corollary is immediate from Lemma 1

Corollary 4. Let P be a r-local property of rooted graphs, let v be a vertex of G∗ chosen
uniformly at random, and suppose {dN}N∈N is a sequence for which l(dN , D) converges to
zero. Then,

lim
N→∞

P (G∗v ∈ P) = P (T ∈ P) .

Equivalently, for any ε > 0, there exists Nε such that if N ≥ Nε we have∣∣E[NP(G∗)]−NP(T ∈ P)
∣∣ ≤ εN.

We require a slightly modified version of this result, which follows from the previous
corollary.

Corollary 5. Let P be a r-local property of rooted graphs, and let v be a vertex of G∗ chosen
uniformly at random. For any ε > 0, there exists δ > 0 such that if l(d, D) < δ, then
conditional on the degree sequence d we have∣∣E[NP(G∗)]−NP(T ∈ P)

∣∣ ≤ εN.

We focus on the k-local property Pk that a vertex is in a graph component with exactly
k nodes, meaning

NPk(G) = Nk(G), and P(T ∈ Pk) = P(|T | = k).

Corollary 4 of course implies convergence of Nk(G∗)
N

to P(|T | = k), but we require a stronger
bound on the rate of convergence. We make repeated use of the following concentration
result.

Proposition 16. Let P be a r-local property of rooted graphs. For any ε > 0, there exists
δ > 0 such that if l(d, D) < δ then

P
(∣∣NP(G∗)−NP(T ∈ P)

∣∣ ≥ εN
)
≤ e−δN .

The first step to obtain this bound is a lemma using the Azuma-Hoeffding inequality.
Fixing a degree sequence d, we can consider different pairings of stubs. We say that two
pairings π1 and π2 are related by a switching if we can obtain π2 from π1 by deleting two
pairs of the same type {a, b} and {c, d} and replacing them with the pairs {a, d} and {c, b}.
Let f be a real-valued function defined on pairings of d. We say that f is C-Lipschitz if for
any π1 and π2 related by a switching, we have |f(π1)− f(π2)| ≤ C.

Lemma 2. Let f be a C-Lipschitz function of pairings of some degree sequence d, let M
denote the total number of pairs. If π is chosen uniformly at random from all pairings of d,
then for any r ≥ 0 we have

P
(∣∣f(π)− E[f(π)]

∣∣ ≥ r
)
≤ 2e−

r2

2C2M .
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Proof. Let Sθ
′

θ = {s1, s2, ..., sm} denote the set of stubs leading from type θ nodes to type
θ′ nodes, with Sθθ′ = {s′1, s′2, ..., s′m} the set of potential partners. We consider a random
process in which we sequentially reveal the pairing. Conditional on the partners of s1, ..., si,
let Ω denote the set of pairings between Sθ

′

θ and Sθθ′ that are consistent with the information
revealed so far. For any possible partner b of si+1, let Ωb denote the subset of Ω containing
all possible pairings in which si+1 is matched to b. For any two potential partners b and c,
there is a bijection between Ωb and Ωc in which each π1 ∈ Ωb is related by a switching to its
image π2 ∈ Ωc: just switch the pairs {si+1, b} and {sj, c} to {si+1, c} and {sj, b}.

Iterate the revelation process over each type of link, and let Fi be the sigma-field gener-
ated by the sequential revelation process up to si. The process Xi = E [f(π) | Fi] is clearly
a martingale. The bijection together with the Lipschitz property implies that∣∣E [f(π) | Fi]− E [f(π) | Fi+1]

∣∣ ≤ C.

The sequence {Xi}Mi=0, with X0 = E[f(π)] and XM = f(π), is a martingale with differences
bounded by C, and the result follows from the Azuma-Hoeffding inequality.

This lemma is sufficient to prove our concentration result for a local property P if NP(G)
is C-Lipschitz for some C, but this is not universally true for all local properties. However, if
we modify the property to avoid high-degree vertices, we can obtain a C-Lipschitz function
of the graph and use it to prove the concentration bounds. For ∆ ≥ 2 and r ≥ 0, let M∆,r

be the property of rooted graphs that every node within distance r of the root has degree at
most ∆. This is a r + 1-local property.

Lemma 3. Let P be a r-local property, and let Q = P ∩M∆,r. The number of vertices
NQ(G) with property Q is 16∆r-Lipschitz.

Proof. Suppose v is a vertex of G such that exactly one of Gv and (G+ e)v has property Q,
for some edge e. This implies that Gv has property M∆,r since removing an edge can only
reduce the degree of a vertex. Suppose x and y are the endpoints of e. Since only one of
Gv and (G + e)v has property Q, one of x and y is connected through a path of length at
most r to v in G, and each vertex along this path has degree at most ∆. For each endpoint
of e, there can be at most (1 + ∆ + ... + ∆r) ≤ 2∆r such paths, so adding or removing an
edge can change the number of vertices with property Q by at most 4∆r. Since a switching
corresponds to removing two edges and adding two edges, the result follows.

The next lemma formalizes the idea that we can safely ignore high-degree vertices.

Lemma 4. For any r ≥ 0 and ε > 0, there exist δ > 0 and an integer ∆ such that whenever
l(d, D) < δ we have

P(T ∈ M∆,r) ≥ 1− ε

4
, and

P
(
NM∆,r

(G∗) ≤ N (1− ε)
)
≤ e−δN .
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Proof. The first part is immediate since the total number of offspring in T within distance
r of the root is finite with probability one. For δ sufficiently small, Corollary 5 then implies
that E

[
NM∆,r

(G∗)
]
≥ N

(
1− ε

2

)
. Apply Lemma 3 to the trivial r-local property (i.e. the

property that always holds), which shows that NM∆,r
(G∗) is a C-Lipschitz function for some

C. The second part now follows from Lemma 2.

We can now complete the proof of Proposition 16. Choose ∆ sufficiently large so that∣∣P(T ∈ P)− P(T ∈ P ∩M∆,r)
∣∣ ≤ P(T /∈M∆,r) ≤

ε

4
. (10)

Let B = N −NM∆,r
(G∗) denote the number of high-degree vertices in the graph G∗. Since∣∣NP(G∗)−NP∩M∆,r

(G∗)
∣∣ ≤ B, Lemma 4 implies that for some δ1 > 0, whenever l(d, D) < δ1

we have

P
(∣∣NP(G∗)−NP∩M∆,r

(G∗)
∣∣ ≥ εN

2

)
≤ e−δ1N . (11)

Lemma 3 implies that NP∩M∆,r
(G∗) is C-Lipschitz for some C, so Corollary 5 and Lemma

2 together imply that for another δ2 > 0, whenever l(d, D) < δ2 we have

P
(∣∣NP∩M∆,r

(G∗)−NP(T ∈ P ∩M∆,r)
∣∣ ≥ εN

4

)
≤ e−δ2N (12)

The inequalities (10), (11), and (12), with an application of the triangle inequality, now
imply that for some δ < min(δ1, δ2), whenever l(d, D) < δ we have

P
(∣∣NP(G∗)−NP(T ∈ P)

∣∣ ≤ εN
)
≥ 1− e−δN ,

proving the result.
Proposition 16 immediately proves (8) for the multigraph configuration model. Summing

over component sizes above some lower bound, we also find that the number of vertices in
“large” components concentrates around NP(|T | =∞).

Corollary 6. Fix ε > 0. For all sufficiently large K, there exists δ > 0 such that if
l(d, D) < δ we have

P

(∣∣∣∑
k≥K

Nk(G
∗)−NP(|T | =∞)

∣∣∣ ≥ εN

)
≤ e−δN . (13)

Proof. For sufficiently large K, we have
∑K

k=1 P(|T | = k) ≥ 1− ε
2
−P(|T | =∞). The result

follows from (8), replacing ε with ε
2K

.

Corollary 6 implies (9) if P(|T | = ∞) = 0, and it will also play a key role in the next
section as we address the case in which P(|T | =∞) > 0.

Coloring and Sprinkling
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Having established branching process approximation results for component sizes, we now
show that essentially all “large” components are connected. I assume throughout this section
that P(|T | = ∞) > 0. The basic idea of the argument is to thin the graph G∗ by retaining
edges with some probability p. For p close to 1, the component structure of the thinned
graph is similar to that of G∗. When we “sprinkle” back in the remaining edges, any large
components are very likely joined together.

I choose only one type of edge to thin. By assumption there exists a type θ1 which
has three or more neighbors with positive probability. Since the graph is irreducible and T
survives with positive probability, there exists a type θ2 that connects to type θ1 nodes with
positive probability and has 2 or more neighbors with positive probability. These conditions
ensure that in the branching process T , with positive probability we will encounter both type
θ1 parents with type θ2 offspring and type θ2 parents with type θ1 offspring. Let G′ denote
the subgraph of G∗ that we obtain by deleting edges between type θ1 and type θ2 nodes
independently with some probability p ∈ (0, 1), and let G′′ denote the subgraph formed by
the deleted edges. We can also view G∗ as a colored graph, in which the edges of G′ are
red and those of G′′ are blue. I will sometimes write G∗(p) to emphasize that I am talking
about the colored version of G∗. Let d′ denote the degree sequence of G′, and let d′′ denote
the degree sequence of G′′. The sprinkling argument relies on the following lemma.

Lemma 5. For any d and any 0 < p < 1, the random graphs G′ and G′′ are conditionally
independent given d′.

Proof. This follows from the definition of the configuration model. The graph G∗ is a uniform
random pairing of the stubs determined by d. Color each pair red, except color edges between
type θ1 and type θ2 nodes blue with independent probability 1− p. Given the set of stubs in
red pairs, which determines d′ and d′′, the pairing of these stubs is uniformly random, and
similarly the blue stubs are paired uniformly at random.

The method used to prove Proposition 16 allows us to state similar concentration results
for the colored subgraphs. Let T (p) denote the branching process T in which we color edges
between type θ1 and type θ2 nodes blue with independent probability 1−p. Let T ′(p) denote
the red subtree containing the root, and let Dp denote the thinned degree distribution. Note
that Dp is the asymptotic degree distribution of G′, and T ′(p) is the corresponding branching
process that approximates rooted graphs in G′. I omit the proof of the following result as it
is essentially identical to that of Proposition 16.

Proposition 17. Let P be a r-local property of colored rooted graphs, and fix ε > 0 and
p ∈ (0, 1). There exists δ > 0 such that if l(d, D) < δ then

P
(∣∣NP (G∗(p))−NP(T (p) ∈ P)

∣∣ ≥ εN
)
≤ e−δN .

We also require a simple lemma bounding the probability that no links are formed between
sets of stubs. Recall that mθ1,θ2(d) is the number of edges connecting type θ1 and type θ2

nodes, given the degree sequence d.
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Lemma 6. Let {Ai}2
i=1 and {Bi}2

i=1 be disjoint sets of stubs, with A1 and B1 containing
stubs attached to type θ1 nodes leading to type θ2 nodes, and vice verse for A2 and B2. The
probability that no stubs in A1 ∪ A2 are paired to stubs in B1 ∪B2 is no more then

e
− |A1||B1|+|A2||B2|

2mθ1,θ2
(d) .

Proof. Without loss of generality, assume |A1| ≤ |B1|, and conduct the following exercise.
One at a time, select a random unpaired stub in A1 and reveal its partner. Conditional on
having no matches in B1 yet, the probability of finding a partner in B1 is at least |B1|

mθ1,θ2 (d)
.

Hence, the probability that we have no matches in B1 is at most(
1− |B1|

mθ1,θ2(d)

)|A1|

≤ e
− |A1||B1|

2mθ1,θ2
(d) .

Repeat the argument for A2 and B2, and the result follows.

We are now ready to prove (9) for the multigraph configuration model. Let Li = Li(G
∗)

denote the number of vertices in the ith largest component of G∗, and fix ε > 0. By Corollary
6, there are constants K and δ > 0 such that if l(d, D) < δ, then

P

(∑
k≥K

Nk(G
∗) ≥ N

(
P(|T | =∞) +

ε

4

))
≤ e−δN .

Trivially, we know L1 +L2 ≤ 2K+
∑

k≥K Nk(G
∗). For sufficiently large N , we have K ≤ εN

8
,

implying

P
(
L1 + L2 ≥ N

(
P(|T | =∞) +

ε

2

))
≤ P

(∑
k≥K

Nk(G
∗) ≥ N

(
P(|T | =∞) +

ε

4

))
≤ e−δN . (14)

To complete the proof for the multigraph G∗, it suffices to show for some δ′, with 0 < δ′ ≤ δ,
that if l(d, D) < δ′ we have

P
(
L1 ≥ N

(
P(|T | =∞)− ε

2

))
≥ 1− e−δ′N . (15)

As p approaches 1, the distribution Dp converges to the distribution D. Here we make
use of the assumption that at least one type has three or more neighbors with positive
probability. This means that in the forward distribution D′′ for the branching process T ,
there is a positive probability of having two or more offspring. This rules out the case in
which a node in T always has one child, and one can check that under this assumption, the
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survival probability P(|T ′(p)| =∞) converges to P(|T | =∞). For the rest of the proof, fix
a p such that P(|T ′(p)| =∞) ≥ P(|T | =∞)− ε

8
.

We need a lower bound on the number of stubs in G′′ that are attached to large compo-
nents of G′. Given ∆ ≥ 2 and r ≥ 0, for a vertex v, we define the r-local property H∆,r,
which is satisfied if two conditions hold. First, no vertex within distance r of v has more
than ∆ neighbors in G′. Second, at least one of the following statements is true:

(a) In the component of G′ containing v, no vertex lies at distance r or greater from v

(b) Within distance r of v in G′, there exists both a type θ1 node with a stub in G′′ and a
type θ2 node with a stub in G′′.

Lemma 7. Fix ε > 0. We can choose ∆ and r for which there exists δ1 > 0 such that if
l(d, D) < δ1 we have

P
(
NH∆,r

(G∗(p)) ≤ N
(

1− ε

8

))
≤ e−δ1N .

Proof. Choosing r sufficiently large ensures that, conditional on surviving until the rth
generation, the red subtree T ′r (p) has blue stubs of both types with probability at least
1 − ε

24
. By Lemma 4 we can find ∆ so that P (T ′(p) ∈M∆,r) ≥ 1 − ε

24
. Consequently, we

have
P (T (p) ∈ H∆,r) ≥ 1− ε

12
.

The result follows from Proposition 17.

Fix the ∆ and r obtained in Lemma 7, let Sk denote the set of vertices in components of G′

with at least k vertices, and let M = Npθ1E[Dθ1 ·eθ2 ] be the expected number of links between
type θ1 and type θ2 nodes. By Corollary 6 (or rather, the analog based on Proposition 17),

there exists k ≥ max
(
K, M

N
16∆2r

ε2

)
and δ2 > 0 such that whenever l(d, D) < δ2 we have

P
(
|Sk| ≤ N

(
P(|T | =∞)− ε

4

))
≤ P

(
|Sk| ≤ N

(
P(|T ′(p)| =∞)− ε

8

))
≤ e−δ2N . (16)

Call a partition (X, Y ) of Sk a potentially bad cut if both |X| ≥ εN
4

and |Y | ≥ εN
4

, and there
are no edges of G′ connecting X and Y . The partition is a bad cut if additionally no edge
in G′′ connects X and Y . Each component of G′ in Sk must lie entirely in X or in Y , so in
any realization there are at most

2
|Sk|
k ≤ 2

N
k ≤ e

N
k

potentially bad cuts.
Fix a realization of d′ and G′ such that

NH∆,r
(G∗(p)) ≥ N

(
1− ε

8

)
.

Suppose that (X, Y ) is a potentially bad cut. Both X and Y contain at least εN
8

vertices
with property H∆,r. Since k ≥ ∆r, and no vertex in H∆,r can reach more than ∆r other
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vertices within r links in G′, we know that each of these vertices satisfies condition (b). For
any particular stub in G′′, there are no more than 2∆r paths of length r connecting it to a
vertex in H∆,r. Therefore, both X and Y contain at least αN = εN

16∆r stubs of each type in
G′′.

For small enough δ, the graph G′′ contains no more than M edges. By Lemma 6, the
probability that no edges in G′′ connect X and Y is no more than

e−
α2N
M ≤ e−

2N
k .

This implies that the exepected number of bad cuts, given d′ and G′, is at most e−
N
k , and

the probability of having any bad cuts is at most e−
N
k . If there are no bad cuts, then

L1 ≥ |Sk| −
εN

4
≥ N

(
P(|T | =∞)− ε

2

)
.

Taking δ′ < min
(
δ, δ1, δ2,

1
k

)
completes the proof for the multigraph configuration model.

Typical Distances

The results above allow a simple proof of the typical distance claim. We do not require
the path counting arguments of van der Hofstad et al. (2005). I drop the subscript from
ν(T,D) in what follows for notational convenience. In essence, we show that the neighborhood
Gv,r is well approximated by Tr for r of order 1

2
logν n, implying that for a random vertex

in the giant component, we have |Gv,r| of order
√
n. Lemma 6 then implies that two such

neighborhoods are connected with high probability, giving typical distances of order logν n.
First, we establish the lower bound:

lim
n→∞

P (H(G) ≤ (1− ε) logν n) = 0.

Let v denote a randomly chosen vertex. From the branching process approximation we have

E[|Gv,r| ≤ E[|Tr|] = 1 +
r∑
i=1

E[|D|]νi−1 = 1 + E[|D|]ν
r − 1

ν − 1
.

We can bound our probability as

P (H(G) ≤ (1− ε) logν n) ≤
E
[
|Gv,(1−ε) logν n|

]
n

≤ 1

n
+

E[|D|]
n(ν − 1)

(n1−ε − 1),

which converges to zero as n→∞.
For the upper bound, we need a more precise estimate of |Gv,r|. Write Zr for the rth

generation of T , and write Nv,r for the set of vertices at distance exactly r from v. An
implication of Proposition 12 is that, given any ε > 0 and conditional on survival, there
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exists 0 < cε < Cε < ∞ such that P(cεν
k < |Zk| < Cεν

k, ∀ k) > 1 − ε. Consequently for
r̃ = 1+ε

2
logν n we have with probability at least 1− ε that

cε
ν r̃ − 1

ν − 1
≤ |Tr̃−1| ≤ Cε

ν r̃ − 1

ν − 1

or
cε

ν − 1

(
n

1+ε
2 − 1

)
≤ |Tr̃−1| ≤

Cε
ν − 1

(
n

1+ε
2 − 1

)
.

The upper bound applies to |Gv,r̃| as well since vertices in Nv,r might link to each other,
or link to the same new vertex in the next extended neighborhood. However, as long as |Gv,r|
is small relative to n, the distribution of neighborhoods Nv,r will closely track that of Zr. In

particular, as long as |Gv,r| < cn
1+ε

2 , the probability that a link stub from a vertex in Nv,r

connects to a redundant vertex is at most c′n−
1−ε

2 for some constant c′. Hence, conditional
on Nv,r̃ 6= ∅, with probability at least 1− ε, we have

|Nv,r| ≥ cεν
r
(

1− c′n−
1−ε

2

)r
≥ cεν

r
(

1− c′n−
1−ε

2

)n 1−ε
2

≥ cε
ec′
νr,

for r ≤ r̃ and n sufficiently large.
Take two random vertices v and w, and consider Gv,r̃ and Gw,r̃. Conditional on Nv,r̃ 6= ∅

and Nw,r̃ 6= ∅, with probability at least 1 − ε we have |Nv,r̃| ≥ Cn
1+ε

2 and Nw,r̃ ≥ Cn
1+ε

2 .
Moreover, the law of large numbers implies that we can choose two types θ and θ′ and a
constant C ′ such that |Nv,r̃| has at least C ′n

1+ε
2 type θθ′ link stubs leading away, and |Nw,r̃|

has at least C ′n
1+ε

2 type θ′θ link stubs leading away, with probability at least 1− ε. Lemma
6 implies that the probability that there is no link between Nv,r̃ and Nw,r̃ is at most e−cn

ε

for another constant c. Taking n large, we see that with arbitrarily high probability, the
distance between v and w is at most 2r̃ = (1 + ε) logν n.

Proof of Proposition 8

Given a pair of effective prices (p, p), the giant component in the network of potential
adopters contains some number q of low-degree consumers and q of high-degree ones. A
random consumer in the giant component on average will make one successful referral, with
high-degree (low-degree) consumers making r (r) successful referrals in expectation, with
r > r. If ρ is the referral reward, a low-degree consumer expects to earn ρr from making
referrals, and a high-degree consumer expects ρr. If p < p, the firm can implement the
effective prices (p, p) by choosing

ρ =
p− p
r − r

, p = p+ ρr.

I now show that an optimal pair of effective prices satisfies p ≤ p. Define p̃ =
dp+dp

d+d
as

the expected price a random neighbor faces. Let X denote the degree distribution in the
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network of potential adopters, and let Bn,p denote a binomial distribution with n trials and
success probability p. The branching process TX has extinction probability ξ that solves
E[X]ξ = G′X(ξ). A low-degree potential adopter is connected to the giant component with
probability

1− E[ξBd,1−p̃ ] = 1− (p̃+ (1− p̃)ξ)d ,

and a high-degree potential adopter is connected to the giant component with probability

1− E[ξBd,1−p̃ ] = 1− (p̃+ (1− p̃)ξ)d .

The profit the firm expects to earn from offering effective prices (p, p) is then

π(p, p) =
1

2

[
p(1− p)

(
1− (p̃+ (1− p̃)ξ)d

)
+ p(1− p)

(
1− (p̃+ (1− p̃)ξ)d

)]
.

Define x = p̃+ (1− p̃)ξ. First order conditions for optimal pricing imply that

∂π

∂p
= (1− 2p)(1− xd)−

[
p(1− p)dxd−1 + p(1− p)dxd−1

] ∂x
∂p

= 0, and

∂π

∂p
= (1− 2p)(1− xd)−

[
p(1− p)dxd−1 + p(1− p)dxd−1

] ∂x
∂p

= 0.

This implies at an optimum we have

∂x
∂p

∂x
∂p

=
(1− 2p)(1− xd)
(1− 2p)(1− xd)

.

To finish the proof, we show that the ratio
∂x
∂p

∂x
∂p

is always less than d

d
. Since 1−xd

1−xd
≥ d

d
, this

implies that p < p at an optimum.
To prove the claim, we can compute from the definition

∂x

∂p
=

d

d+ d
(1− ξ) + (1− p̃)∂ξ

∂p
,

∂x

∂p
=

d

d+ d
(1− ξ) + (1− p̃)∂ξ

∂p
.

From the equation E[X]ξ = G′X(ξ), we compute

(1− p̃)
(1− p)d+ (1− p)d

2− p− p
ξ =

(1− p)d
2− p− p

ξd−1 +
(1− p)d
2− p− p

ξd−1,

or equivalently

(1− p̃)
(
(1− p)d+ (1− p)d

)
= (1− p)dξd−2 + (1− p)dξd−2.
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Differentiating, along with a little algebra, yields

∂ξ
∂p

∂ξ
∂p

=

d
d+d

(
(1− p)d+ (1− p)d

)
+ d(1− p̃)− dξd−2

d

d+d

(
(1− p)d+ (1− p)d

)
+ d(1− p̃)− dξd−2

>
d

d
,

which in turn implies
∂x
∂p

∂x
∂p

>
d

d

as desired.
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