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Abstract

We show that the dividend growth rate implied by the futures market is

informative about (i) the expected dividend growth rate and (ii) the expected

dividend risk premium. We model the dividend risk premium and explore

its implications for the predictability of dividend growth and aggregate stock

returns. We show that accounting for the dividend risk premium strengthens

the predictability of dividend growth and aggregate returns both in- and out-

of-sample. Economically, we find that a market timing investor who accounts

for the time varying dividend risk premium realizes an additional utility gain

of 1.43% per year.
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I Introduction

The dividend growth forecast implied by the futures market is informative about

the risk-adjusted expectations of future dividend growth. More specifically, the

implied dividend growth rate (ig) contains information about (i) the expected

dividend growth rate and (ii) the expected dividend risk premium. This insight

raises a number of questions. For instance, is ig mainly informative about the

expected dividend growth rate or the expected dividend risk premium? What are the

theoretical implications of the expected dividend risk premium for the predictability

of dividend growth rates and aggregate stock returns?

Addressing these questions is important because a time varying expected

dividend risk premium confounds the information content of ig for the expected

dividend growth rate. Thus, it might be important to account for these variations

when using ig to forecast dividend growth. Furthermore, the logic of present

value models suggests that the dividend price (dp) ratio reveals information about

the difference between expected stock returns and expected dividend growth rates

(Campbell and Shiller, 1988). To the extent that the expected dividend growth rate

is time-varying, we need to correct the standard dp ratio for these variations in order

to strengthen the predictability of stock returns (Campbell, 2008).

This paper makes three contributions to the literature. First, we formally

show that ig contains information about the future (i) dividend growth rate and

(ii) dividend risk premium. Using a dataset of intraday futures transaction prices

covering the period 1997–2014, we show that 29% and 71% of the fluctuations in ig

are related to the dividend growth and the dividend risk premium (drp), respectively.

This leads us to conclude that the drp does not only move over time but it is also

the main driving force of ig.

Second, we propose a model for the dynamics of the drp. In particular, we

assume it depends on the lagged ig and the lagged drp. Although admittedly

simple, this 2-factor model achieves a satisfactory empirical performance. This is

evidenced by an R2 of around 60%. We use this parsimonious model to analyze the
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predictability of dividend growth. We show that the lagged dividend risk premium

corrected implied growth rate (igcorr), a linear combination of the lagged ig and

the lagged drp, should predict dividend growth with a slope coefficient equal to 1.

We find empirical evidence in support of this prediction. A regression of 1-month

dividend growth rates on a constant and the lagged igcorr yields a positive and

statistically significant slope estimate (0.97). We test the hypothesis that the slope

parameter equals 1 and find that we cannot reject this null. Examining the predictive

power of ig and igcorr, we find that they yield R2s of 6.69% and 11.41%, respectively.

The superior forecasting performance of igcorr is discernible not only in-sample but

also out-of-sample. By accounting for the lagged drp, we are able to significantly

reduce the mean squared error (MSE) of ig by 7.45%.

Third, we develop a present value model to study the predictability of aggregate

stock returns. Our model predicts that the lagged corrected dividend price (dpcorr)

ratio, an affine function of (i) the lagged standard dp ratio, (ii) the lagged ig and

(iii) the lagged drp, forecasts returns with a positive sign. A regression of 1-month

returns on a constant and the lagged dpcorr ratio yields a positive and statistically

significant slope estimate (0.18). We compare the predictive power of the standard

dp ratio (which ignores the lagged values of ig and drp), the dpig ratio (which ignores

the lagged drp) and the dpcorr ratio. Our results reveal that the dpcorr ratio delivers

the highest R2 (1.91%) of all three forecasting variables in-sample. Out-of-sample,

we find that the dpig ratio reduces theMSE of the standard dp ratio by 1.17%. More

importantly, the dpcorr ratio leads to a reduction in the MSE that is twice larger

than afforded by the dpig. This improvement matters from economic standpoint.

Relative to a strategy based on the dpig ratio, an investor who uses the dpcorr ratio

as timing signal realizes additional utility gains of 1.43% per year. Collectively,

these results highlight the relevance of the lagged drp.

Our paper is most germane to the innovative work of Golez (2014), who uses ig

to correct the standard dp ratio. In a similar vein, Bilson et al. (2015) and Zhong

(2016) show that the dividend yield implied by derivatives prices predicts returns. A

common feature of these studies is that they assume that dividend risk is not priced.
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Our main contribution is to provide a formal treatment of the expected drp. We

develop a framework that allows us to study its implications for the predictability

of dividend growth and aggregate returns.

Our paper also relates to the literature on dividend forecasting. Lintner

(1956), Marsh and Merton (1987) and Garrett and Priestley (2000) propose to use

accounting data, e.g. earnings, to predict dividend growth rates. We complement

this body of works by showing how to obtain dividend growth forecasts from equity

futures prices. Because futures prices are (i) forward-looking and (ii) available at

high-frequencies (relative to accounting data), our framework could help researchers

obtain more timely dividend growth forecasts at fairly high frequencies, e.g. daily.

This could prove very useful when performing event studies for example.

Our work contributes to a broader research agenda emphasizing that derivatives

prices are informative about risk-neutral expectations, whereas for most practical

purposes, one is interested in the physical expectations. The risk premium drives

a wedge between the two expectations. Borovicka et al. (2015) and Ross (2015),

among others, discuss conditions under which it may or may not be possible to

“recover” the physical probability distribution from derivatives prices. Several

studies rely on historical data to pin down the dynamics of the risk premium.

For instance, Piazzesi and Swanson (2008) focus on the Fed fund futures market

and propose a parsimonious time-series model for the expected risk premium. They

then use their model to correct the forecasts implied by the Fed fund futures market.

Chernov (2007) and Prokopczuk and Wese Simen (2014) show how to correct for

the variance risk premium when using implied variance to predict realized variance.

Our paper is similar in spirit to these works. We posit a time-series model for the

expected drp and analyze its implications for the predictability of dividend growth

and aggregate returns.

The remainder of this paper proceeds as follows. Section II presents our theory

and describes the dataset. Sections III and IV discuss our main empirical results.

Finally, Section V concludes.
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II Methodology and Data

This section begins by presenting our methodology. We formally show that ig

contains information about (i) the expected dividend growth rate and (ii) the

expected drp. We then propose a parsimonious model to capture the dynamics

of the drp and present an empirically testable model of dividend growth rates and

returns. Finally, we introduce our dataset.

II.A. Methodology

The starting point of our methodology is the cost-of-carry relationship, which posits

that the market price of a futures contract can be obtained as follows:

Ft = Pte
rf t

− E
Q
t (Dt+1) (1)

where Ft is the price at time t of the futures contract that expires at the end of the

next period, i.e. t+ 1. Pt is the price of the underlying asset at time t. rf t denotes

the 1-period riskless rate observed at t.1 E
Q
t (Dt+1) is the dividend that a risk-neutral

(Q) investor expects to receive from the underlying security at expiration.

In order to clearly show the link between the futures price and the next-period

dividend, it is useful to introduce the dividend strip. This financial asset entitles

the holder to the dividends paid by the underlying index during the life of the strip

(van Binsbergen et al., 2012). We can obtain the market price of dividend strips

using two valuation methods: the martingale valuation approach and the standard

present value method.

According to the martingale valuation framework of Cox and Ross (1976) and

Harrison and Pliska (1981), we can price financial assets as if investors were risk-

neutral. A direct implication of this result is that the market price of the dividend

strip equals the cashflow that the risk-neutral investor expects to receive discounted

1Throughout this paper, we adopt the timing convention that interest rates are given the
subscripts for the time when they are observed. As a result, our notation indicates that the
interest rate is observed at t, even though it is realized at time t+ 1.
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to the present at the riskless rate:

STRIP t = e−rf tE
Q
t (Dt+1) (2)

where STRIP t is the time t market price of the dividend strip expiring at the end

of the next period. All other parameters are as previously defined.

Substituting Equation (1) into the expression above yields:

STRIP t = Pt − e−rf tFt (3)

The standard present value approach determines the market price of assets by

directly discounting the expected cashflows (under the physical probability measure)

at the expected rate of return. The following expression formalizes this idea:

STRIP t = e−Et(drpt+1)Et(Dt+1) (4)

where Et(drpt+1) denotes the conditional expectation of the future rate of return on

the dividend strip.2,3 E(Dt+1) is the dividend the investor expects the underlying

security to pay at t + 1.

Putting together Equations (3) and (4), we derive the following result:

log(Et(Dt+1))− Et(drpt+1) = log(Pt − e−rf tFt) (5)

Next, we subtract log(Dt) from both sides of Equation (5) and ignore the Jensen

2Throughout this paper, we refer to the discount rate of the dividend strip as the dividend risk
premium (drp). Strictly speaking, the discount rate is the sum of the dividend risk premium and
the riskless rate. Because interest rates display very little variations in the time-series, we commit
this slight abuse of terminology. See Cochrane (2011) for a conceptually similar terminology. Note
also that in this paper, we take the drp to mean the realized (rather than expected) return of
the dividend strip. To denote the expected return of the dividend strip, we use the expression
“expected drp”.

3It is worth highlighting that, unlike the risk-free rate, the drp is only observed ex-post, i.e. at
time t+ 1.

5



inequality term:4

Et(∆dt+1)− Et(drpt+1) ≈ log(Pt − e−rf tFt)− log(Dt)
︸ ︷︷ ︸

Implied Growth

Et(∆dt+1)− Et(drpt+1) ≈ igt (6)

where Et(∆dt+1) denotes the time t expectation of the 1-period dividend growth

rate: Et(∆dt+1) = Et(log(Dt+1)) − log(Dt). igt denotes the dividend growth rate

implied by the futures market: igt = log(Pt− e−rf tFt)− log(Dt). All other variables

are as previously defined.

The expression above reveals that ig is the risk-adjusted expectation of future

dividend growth. In particular, ig is positively related to the expected dividend

growth and negatively related to the expected drp. An implication of this result is

that a time varying expected drp could potentially obscure the information content

of ig for the expected dividend growth.

Despite its clear insights, the expression above is merely an accounting identity

that is of limited practical use. The reason for this is that the terms on the left

of the equality sign are conditional expectations, which are not directly observable.

In order to obtain an empirically testable economic model, one needs to impose a

structure on how the conditional expectation of the drp is generated.5 We simply

assume that the drp depends on a constant, the lagged ig and the lagged drp (which

is included in the information set at time t):

drpt+1 = φ0 + φ1igt + φ2drpt + ǫ
drp
t+1 (7)

4It is standard in the literature to ignore the Jensen inequality term, e.g. Golez (2014). We
conduct a simple simulation exercise which reveals that the approximation error is small. Most
important for our purposes, it displays very little variations. A constant approximation error will
not materially affect our results since we include an intercept in all regression models.

5One may wonder why we do not use the expected dividend growth, derived from time-series
models for example, and recover the expected drp by manipulating the identity in Equation (6).
We do not pursue this approach because, if one already has an estimate of the expected dividend
growth, then there is no need to use ig (and correct for the drp). This is because the dividend
growth forecasts could be used directly in the present value model. Furthermore, Golez (2014)
shows that, in-sample, ig outperforms the model of Lacerda and Santa-Clara (2010), which relies
on historical dividend growth rates. Our aim is to further improve the forecasting ability of ig by
explicitly accounting for the expected drp.
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where φ0, φ1 and φ2 are constant parameters.

One may take the view that this 2-factor model is too simplistic. We agree.

We deliberately keep the model in Equation (7) simple in order to facilitate the

exposition of the paper. As we shall see later, this parsimonious model adequately

captures the dynamics of the drp. It is, however, worth pointing out that the

framework can easily accommodate additional forecasting variables. If one has a

view on other variables that could predict the drp, these forecasting variables could

be easily included in our framework. For instance, it might be that the default and

the term spreads are related to the expected drp. Including these variables could

improve the empirical results presented in this paper. In future work, it would be

interesting to explore this avenue.

We now motivate the choice of the 2 factors. Our assumption that ig

predicts the drp is directly motivated by Equation (6), which shows that ig is

negatively related to the expected drp. We also note that our assumption that

the drp depends on its lagged observation is in keeping with previous works.

Because the drp is essentially the return to a buy-and-hold trading strategy, our

modelling approach is consistent with previous studies, which typically assume

that returns have an autoregressive component (van Binsbergen and Koijen, 2010;

Lacerda and Santa-Clara, 2010; Golez, 2014). Armed with the model above and

the identity presented in Equation (6), we are now in a position to discuss our first

proposition.

Proposition 1: The lagged corrected implied growth rate (igcorr), an affine

function of (i) the lagged implied dividend growth (ig) and (ii) the lagged dividend

risk premium (drp), predicts the next-period dividend growth rate.

∆dt+1 = φ0 + (1 + φ1)igt + φ2drpt
︸ ︷︷ ︸

ig
corr
t

+ǫ∆d
t+1 (8)

Proof: See Appendix A.1.

This proposition presents our first empirically testable prediction: igcorr predicts
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dividend growth with a positive sign. Hence, we conduct our statistical inference

using a 1-sided alternative hypothesis. Moreover, the theory suggests that the

coefficient loading on igcorr is not statistically distinguishable from 1. Furthermore,

the proposition makes interesting predictions about the slope coefficients of an

unconstrained regression of dividend growth on a constant, the lagged ig and the

lagged drp. These slope parameters should not be statistically distinguishable from

1 + φ1 and φ2, respectively. We expect the first slope parameter to be lower

than 1 because φ1 should be negative. Indeed, economic theory posits a negative

relationship between ig and the expected drp (see Equation (6)). It is also reasonable

to expect that the drp, which is the return to a buy-and-hold strategy, is not driven

by an explosive or unit root process. This suggests that the magnitude of φ2 should

also be lower than 1. Using the estimates of φ1 and φ2 (see Equation (7)), we shall

empirically test these two theoretical restrictions.

As pointed out by Campbell (2008), the predictability of dividend growth has

important implications for forecasts of stock returns. We formally explore these

implications by developing a present value model.

We define the next-period return (rt+1) as follows:

rt+1 = log

(
Pt+1 +Dt+1

Pt

)

rt+1 = log
(

1 + edpt+1

)

+ pt+1 − pt

where Pt+1 and Dt+1 denote the stock price and dividend at time t+1, respectively.

Similarly, Pt represents the stock price at t. The lower case variables indicate a

logarithmic transformation: dt+1 = log(Dt+1), pt+1 = log(Pt+1) and pt = log(Pt).

Finally, dpt+1 is the dividend price ratio at time t + 1: dpt+1 = dt+1 − pt+1.

Log-linearizing as in Campbell and Shiller (1988), we obtain the following

expression:

rt+1 ≈ k +∆dt+1 + dpt − ρdpt+1
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where k is a constant and ρ is the linearization constant computed as follows:

ρ =
1

1 + ed−p
(9)

We exploit the linear recursion above to derive the link between the expected stock

return, the expected dividend growth rate and the dividend price ratio:

+∞∑

j=0

ρj
(
Et(rt+1+j)− Et(∆dt+1+j)

)
=

k

1− ρ
+ dpt (10)

Equation (10) reveals that, to the extent that the expected dividend growth rate

is time varying, the standard dividend price ratio is a noisy proxy for the expected

return. Thus, it is important to correct the standard dp ratio for fluctuations

in expected dividend growth in order to improve the predictability of returns

(Campbell, 2008).

We decompose the next-period return (rt+1) into an expected return component

(µt) and a forecast error (ǫrt+1). As is standard in the literature, e.g. Golez (2014), we

assume that expected returns and the implied growth rate follow AR(1) processes:

rt+1 = µt + ǫrt+1 (11)

µt+1 = α0 + α1µt + ǫ
µ
t+1 (12)

igt+1 = δ0 + δ1igt + ǫ
ig
t+1 (13)

where all error terms are i.i.d with zero mean. All other variables are as previously

defined.

Armed with these additional assumptions, it is straightforward to derive the

relationship between the 1-period return on the one hand and the lagged values of

the dp ratio, ig and drp on the other. Proposition 2 formalizes this link.

Proposition 2: The lagged corrected dividend price (dpcorr) ratio, which is an

affine function of (i) the lagged standard dividend price (dp) ratio, (ii) the lagged

implied dividend growth (ig) and (iii) the lagged dividend risk premium (drp)
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forecasts the next-period return.

rt+1 = Ψ+ (1− ρα1)







dpt +

(1 + φ1)igt
1− ρδ1

︸ ︷︷ ︸

dp
ig

+
ρ̄φ1φ2igt

(1− ρ̄δ1)(1− ρ̄φ2)
+

φ2drpt
1− ρφ2

︸ ︷︷ ︸

risk premium correction








︸ ︷︷ ︸

dp
corr
t

+ǫrt+1(14)

Proof: See Appendix A.2.

This proposition shows that the standard dividend price ratio alone cannot

satisfactorily predict returns. Two adjustments are needed. First, one needs to

account for ig to obtain the dpig ratio.6 Second, one also needs to exploit the

information content of the lagged drp. By making these two adjustments, we obtain

the dpcorr ratio. If one ignores the lagged drp, i.e. φ2 = 0, then the dpcorr and

dpig ratios are exactly the same. Thus, by comparing the performance of these two

forecasting variables, we can shed light on the information content of the lagged drp.

If the lagged drp plays an important role, then the dpcorr ratio should yield better

forecasts of returns than both the dp and dpig ratios.

A subtle implication of Proposition 2 is that, if the expected return process is not

an explosive or unit root process (as we would expect from an economic perspective),

i.e. −1 < α1 < 1, the dpcorr ratio should predict returns with a positive sign.7 As

a result, we conduct our statistical inference using a 1-sided alternative hypothesis.

Another implication of Proposition 2 relates to the slopes of an unconstrained

regression of 1-period returns, on a constant, the lagged dp, the lagged ig and

the lagged drp. These slope parameters should not be significantly different from

1− ρ̄α1, (1− ρ̄α1)
[

1+φ1

1−ρ̄δ1
+ ρ̄φ1φ2

(1−ρ̄δ1)(1−ρ̄φ2)

]

and (1− ρ̄α1)
φ2

1−ρ̄φ2
, respectively.

6Our definition of the dp
ig nests that of Golez (2014). The author implicitly imposes the

restriction that φ1 = 0. As we shall see later in the paper, this restriction is strongly rejected in
the data. This is discernible not only in our study but also in the original work of Golez (2014).
Although the author does not present evidence of out-of-sample predictability of dividend growth,
our own analysis indicates that imposing this restriction results in poor out-of-sample forecasts of
the dividend growth rate. Because the present value model relies on realistic dynamics for dividend
growth, we feel compelled to allow φ1 to enter the definition of dpig.

7To see this quickly, notice that the linearization constant (ρ̄) is bounded between 0 and 1 (see
Equation (9)). Thus, it is straightforward to show that the term 1− ρ̄α1 is positive.
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II.B. Data

We obtain intraday transaction prices (stamped to the minute) on S&P 500 futures

contracts and the underlying spot index from Thomson Reuters Tick History

(TRTH). Our sample covers the period from May 01, 1997 to December 31, 2014.

Although the database contains futures prices from January 1996, it is not until May

1997 that we observe futures contracts of time to maturity greater than 12-month

on a monthly basis. Since we are interested in ig of 12-month maturity, we start our

sample from May 1997.8 In doing so, we avoid potential biases in the estimation

of the autoregressive parameters induced by missing observations.9 The S&P 500

futures contracts trade on the Chicago Mercantile Exchange (CME). They expire in

March, June, September, December, and the following three Decembers.

We process the dataset as follows. First, we retain only transactions observed

between 10:00 and 14:00 local time (van Binsbergen et al., 2012). Notice that both

the futures and underlying prices are observed during these trading hours. Thus,

our analysis does not suffer from the wildcard feature of US derivatives markets.10

Second, we match each futures transaction price with the spot index price observed

on the same day and at the same time (up to the minute level). By taking this step,

we aim to tackle the measurement errors that would arise if the spot and futures

prices are observed at asynchronous times.11

We proxy the riskless rate with the LIBOR curve, which we also obtain from

TRTH. We then merge together the time-series of the riskless rate, the spot and

futures prices. For each 3-tuple (futures price, spot price and interest rate of

corresponding maturity), we obtain the dividend strip price by plugging the relevant

values in Equation (3). Thus, we recover the term structure of dividend strips at

8We focus on the 12-month maturity in order to avoid issues related to the seasonality
of dividend payments. This is standard in the literature. See Fama and French (1988) or
Ang and Bekaert (2007) for example.

9Untabulated results reveal, however, that starting the sample in January 1996 leads to similar
results.

10As discussed in Harvey and Whaley (1992), the S&P 500 spot market closes at 15:00 local
time, whereas trading in the derivatives market ends at 15:15, introducing biases in studies that
require synchronous observations of spot and derivatives prices.

11We refer the interested reader to Boguth et al. (2012) for a study of the impact of asynchronous
observations on the dynamics of dividend strips.
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the minute level. For each minute, we linearly interpolate the 12-month dividend

strip. In order to obtain the monthly dividend strip of annual maturity (STRIPA),

we average the prices of the 12-month dividend strips observed on the last five days

of each calendar month. By taking the average, we attempt to further mitigate the

impact of measurement errors (Golez, 2014).

We obtain the time-series of daily dividends and prices related to the S&P

500 index from Bloomberg.12 We sum all the intra-month dividends to obtain

monthly dividend payments (DM). The time-series of (annualized) monthly returns

is computed as:

rt+1 = 12× log

(

Pt+1 +DM
t+1

Pt

)

(15)

where rt+1 is the 1-period annualized return. For the purpose of our empirical

analysis, we take 1-period to mean 1-month. Pt+1 and DM
t+1 denote the stock price

and monthly dividend payment related to month t + 1, respectively. Finally Pt is

the stock price observed at the end of month t.

As is standard in the literature, e.g. Ang and Bekaert (2007), we base our

analysis on annual dividends (DA), computed by summing monthly dividends over

a trailing window of 12 months. Taking this step ensures we address the issue

of seasonality in the dividend series. We then compute the (annualized) 1-month

dividend growth rate as follows:

∆dt+1 = 12× log

(

DA
t+1

DA
t

)

(16)

where ∆dt+1 denotes the monthly growth rate of dividends at t+1. DA
t+1 and DA

t are

the annual dividends for the periods ending at t + 1 and t, respectively. Relatedly,

12By working with daily dividend payments, we follow existing studies and implicitly assume
that the investor “holds” the aggregate stock market index. It is however worth pointing out that,
if the investor holds the SPY ETF for example, then dividends are typically paid at a quarterly
frequency.
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we compute the standard dp ratio as:

dpt = log

(

DA
t

Pt

)

(17)

We then recover the time-series of ig, by computing the difference between the

logarithm of the 12-month dividend strip and that of the annual dividend:

igt = log(STRIPA
t )− log(DA

t ) (18)

Next, we obtain the time-series of the drp:

drpt+12 = log(DA
t+12)− log(STRIPA

t ) (19)

Finally, we use all sample information to estimate the parameters δ1, φ0, φ1 and

φ2.
13 In order to obtain the persistence of ig, i.e. δ1, we follow Golez (2014) and use

successive non-overlapping annual samples. Golez (2014) proposes this approach in

order to guard against biases induced by the (i) large overlap between consecutive

observations of ig and (ii) potential measurement errors in the implied growth series.

To be more specific, we calculate the persistence of ig at the monthly level as follows.

We sample all observations of ig observed on Januaries and estimate the model in

Equation (13). We repeat these steps for all 12 calendar months and save the

corresponding slope estimates. We then average the 12 slope estimates. Since this

average corresponds to the AR(12) persistence estimate, we then recover the AR(1)

parameter by raising it to the power 1/12. In the data, we find δ1 = 0.92.14

The estimation of φ0, φ1 and φ2 is based on Equation (7). As before, we use

non-overlapping annual samples to estimate the relevant parameters. We average

the parameter estimates across all 12 possible samples of annual data. Unlike the

13When we conduct our analysis out-of-sample, we recursively estimate all parameters. This
ensures that we only use the information contained in the training sample. The upshot of this is
that our out-of-sample analysis does not suffer from any look ahead bias.

14Thus, the monthly persistence (0.72) reported in Table 1, which is simply based on monthly
observations of ig and is thus subject to the issues discussed above, is much lower than the 0.92
based on samples of non-overlapping observations. This is consistent with Golez (2014).
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estimation of δ1, we do not convert the annual estimates to the monthly horizon.

This is because, each month, we are interested in the drp expected at the end of

the next 12 months.15 Thus, φ0, φ1 and φ2 relate to the 12-month rather than the

1-month horizon. We find that φ0 = 0.02, φ1 = −0.60 and φ2 = 0.26. Combining

these parameter estimates together with the monthly time-series of ig and realized

drp, we can recover igcorr (see Equation (8)). Next, we compute the linearization

constant ρ̄ using the whole sample period (see Equation (9)). We find ρ̄ = 0.98.

Equipped with this information, we then compute the time-series of the dpig and

dpcorr ratios (see Equation (14)).

Table 1 summarizes the key statistics of various time-series. For the purpose

of predictability, the drp matters only if it varies over time. Table 1 shows that

the volatility of the drp (14%) is twice larger than the magnitude of its mean.

We notice that a buy-and-hold investor who purchases a dividend strip of 12-month

maturity realizes a negative return (−6%). The magnitude and sign of this estimate

are broadly comparable to those of the 6-month strip (−4.34%) reported in Golez

(2014).16

Although consistent with the results of Golez (2014), the negative dividend risk

premium is somewhat surprising. One possible explanation for this result might be

that our dividend risk premium is essentially an ex-post quantity constructed over a

short sample period and dividend surprises could contaminate the results. It may be

that investors overestimated the future dividends to be paid by S&P 500 firms and

were disappointed by subsequent dividend payments for most of our sample. This

could be due to the fact that, on aggregate, there has been a shift from dividends to

share repurchases (Fama and French, 2001; Grullon and Michaely, 2002). Another

possible explanation may be that investors who hold a long position in dividend

strips are typically net short dividend risk. If this is the case, then the dividend

15Remember that ig is informative about the risk-adjusted growth rate expected over the next
12-month period. Therefore, we need the dividend risk premium expected over the following
12-month.

16It is worth highlighting that Tables 1 (Panel B) and 3 of Golez (2014) reveal that the 6-month
realized and implied growth rates average around 2.97% and 7.31%, respectively. Thus, the
author’s own figures indicate a negative and economically large annualized dividend risk premium
of −4.34% at the 6-month maturity.
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strip could be a good hedging instrument. Consequently, these investors may be

willing to pay a premium, i.e. accept a loss on the dividend strip, to hedge their

dividend risk. Testing this hypothesis requires very detailed data about the dividend

risk exposure of key market participants. Alas, such dataset is not yet available.

III Dividend Growth Predictability

The discussion in Section II.A. shows that, if we have a good model for the drp, we

should be able to improve our dividend growth forecasts. Thus, a natural starting

point would be to assess the empirical performance of the 2-factor model for the

drp (see Equation (7)). If the model does a good job, the expected drp should be

positively and highly correlated with the subsequently realized drp.

Figure 1 displays the dynamics of the realized and expected drp. The expected

drp is the forecast generated by the following equation: Et(drpt+12) = 0.02−0.60igt+

0.26drpt. We observe that the two series comove strongly. Our untabulated analysis

reveals that a regression of the realized drp on a constant and the expected drp

yields a satisfactory R2 of 59.96%.

Additionally, we estimate the following forecasting model:

drpt+12 = γ0 + γ1Xt + ǫ
drp
t+12 (20)

We consider three distinct cases. First, we assume Xt = igt. Second, we assume

Xt = drpt. Third, we assume that X is a matrix that contains observations of

both ig and drp. Table 2 presents these results. Throughout this paper, we use a

significance level of 5%. The results of the univariate regression models suggest that

each of the two factors contains information about the future drp. Furthermore, the

explanatory power of the multivariate model (60.42%) confirms that the 2-factor

model does a satisfactory job. We next proceed to analyze its implications for the

predictability of dividend growth rates.
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III.A. In-Sample Analysis

We start with the in-sample analysis. This investigation is motivated by Proposition

1, which posits that the lagged igcorr, a linear combination of the lagged ig and

the lagged drp, predicts the dividend growth rate with a positive sign. We test

this prediction by regressing the time-series of 1-month dividend growth rates on a

constant and the lagged predictive variable Xt:

∆dt+1 = γ0 + γ1Xt + ǫ∆d
t+1 (21)

where γ0 and γ1 are the intercept and slope parameters, respectively. X is the

forecasting variable. We first consider the scenario where X = ig. Then, we analyze

the case X = igcorr. By comparing the regression results of the two forecasting

models, we are able to shed light on the importance of the lagged drp. Figure 2

displays the dynamics of both forecasting variables.

Table 3 summarizes the regression results. The figures in brackets correspond

to the Newey–West corrected test statistics.17 We test H0: γ1 = 0 against the

alternative hypothesis H1: γ1 > 0. The 1-sided t-test is interesting for at least

two reasons. From a theoretical point of view, our model predicts a positive

relationship between the forecasting variable and next-period’s dividend growth

rate. For instance, Proposition 1 posits a positive relationship between the lagged

igcorr and dividend growth. From a statistical standpoint, Inoue and Kilian (2004)

show that 1-sided t-tests substantially improve the power of tests of predictability.

Examining the t-statistic, we can see that the null hypothesis is always rejected,

suggesting that each of the two variables predicts the dividend growth rate.

The regression results reveal that ig predicts the dividend growth rate with a

slope of 0.29. This result is consistent with Golez (2014), whose analysis suggests a

17We follow earlier studies, e.g. Rangvid (2006) and Ang and Bekaert (2007), and set the lag
length equal to h+1, where h denotes the forecasting horizon in months. Since we are forecasting
monthly returns, we set the lag length equal to 2. Our results are robust to the choice of the lag
length.
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slope of 0.19.18 This slope coefficient has an important interpretation. It reveals the

share of variations in ig that is attributable to the dividend growth rate. Exploiting

Equation (6), we can show that:

V ar(igt) = Cov(igt, igt)

= Cov(Et(∆dt+1)− Et(drpt+1), igt)

V ar(igt) = Cov(Et(∆dt+1), igt)− Cov(Et(drpt+1), igt)

Dividing both sides of the Equation above by Var(igt), we obtain:

1 =
Cov(Et(∆dt+1), igt)

V ar(igt)
−

Cov(Et(drpt+1), igt)

V ar(igt)
(22)

The expression above shows that we can decompose the variation in ig into two

components related to (i) the expected dividend growth and (ii) the expected drp.

The first term to the right of the equality sign is essentially the slope coefficient of a

regression of the dividend growth rate on a constant and the lagged implied growth

rate.19 If ig is mainly informative about the dividend growth rate, we would expect

to see a very large slope estimate. The second term to the right of the equality sign

is the slope estimate of a regression of the drp on a constant and the lagged ig (see

Table 2).

Table 3 reveals that only 29% of variations in ig can be linked to news about

expected cashflows. As already discussed, this estimate is broadly similar to that of

Golez (2014) who studies the 6-month ig and find a figure of around 19%. These

figures indicate that it is the expected drp, rather than the expected dividend growth

rate, that is the main driving force of ig. This conclusion holds irrespective of

whether one studies the 12-month ig as we do or the 6-month ig as Golez (2014)

18In comparing our results to those of Golez (2014), it is worth keeping in mind that the author
regresses the monthly dividend growth rate on implied growth, which is an annualized quantity.
Thus, the adapted estimate of the 0.0157 loading on ig at the 1-month horizon shown in Table 4
of Golez (2014) corresponds to 0.0157× 12 ≈ 0.19 in our set-up.

19As Proposition 1 shows, we can express the dividend growth rate as the sum of the expected
dividend growth rate and an independent shock. Assuming that the shock is independent of ig,
the slope estimate is the same regardless of whether the dependent variable in the regression model
is the realized dividend growth or the expected dividend growth.
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does.

If Proposition 1 holds, then we would expect to find that igcorr predicts the

next-period dividend growth with a slope of 1. Table 3 reports that igcorr enters the

regression model with a positive and statistically significant slope of 0.97. Clearly,

the estimated slope is very close to the value of 1 predicted by the theory. Using

the t-statistic, we can formally test the hypothesis that the slope equals 1. Our

untabulated analysis reveals that the slope estimate is not significantly different

from 1, thus supporting the model’s prediction. Comparing the two forecasting

models, we observe that including the lagged drp lifts the R2 from 6.69% (ig) to

11.41% (igcorr). This result further establishes the relevance of the lagged drp.

The preceding analysis directly imposes the restrictions implied by theory.

Recognizing that the two forecasting models discussed above are restricted versions

of a more general model, one could estimate the unconstrained model first and then

test the restrictions imposed by theory. The unconstrained model is as follows:

∆dt+1 = γ0 + γ1igt + γ2drpt + ǫ∆d
t+1 (23)

where γ0, γ1 and γ2 are the parameters to estimate.

Proposition 1 makes several empirically testable predictions regarding the slope

of the more general model: γ1 = 1 + φ1 and γ2 = φ2. As discussed in the previous

section, our estimation results suggest that φ1 = −0.60 and φ2 = 0.26. Thus, the

theory predicts that γ1 = 0.40 and γ2 = 0.26. Estimating the regression model

above, we obtain γ1 = 0.38 and γ2 = 0.28. Table 4 summarizes these results. We

can see that there is very little to distinguish between the estimated and theoretical

sets of coefficients. Using the t-statistic, we formally test each of the two theoretical

predictions. If the null hypothesis related to the loading on the variable [name in row]

cannot be rejected, we report a checkmark (X) on the last column of Table 4. We do

not reject any of the two hypotheses, lending credence to our model’s predictions.

We also implement an F -test to jointly test both hypotheses. The (untabulated)

F -statistic indicates that we fail to reject the null hypothesis. Overall, this set
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of results reveals that our model adequately describes the dynamics of monthly

dividend growth.

The R2s of the restricted (Table 3) and unrestricted (Table 4) models provide

useful information. If our model provides an accurate description of the data, the

R2 of the restricted model should be similar to that of the unrestricted model. We

observe that the unconstrained and constrained models yield very similar R2s of

11.49% and 11.41%, respectively. This indicates that the theoretical restrictions—

that the lagged ig and the lagged drp predict dividend growth with coefficients 1+φ1

and φ2, respectively—do little damage to the forecast ability.

III.B. Out-of-Sample Evidence

We now explore the predictability of dividend growth in an out-of-sample setting.

Similar to Campbell and Thompson (2008), we implement a recursive forecasting

scheme. We use the first 6 years of data to estimate φ0, φ1 and φ2 (see Equation (7)).

Thus, there are no look-ahead biases. We consider two distinct forecasting models.

Model 1 is given by Xt = φ0+(1+φ1)igt.
20 Model 2 uses the insights of Proposition

1 to derive the dividend growth forecast: Xt = φ0 + (1 + φ1)igt + φ2drpt. A neat

feature of this out-of-sample analysis is that it directly imposes the discipline of the

theory and avoids the estimation errors typically associated with dividend growth

forecasting regressions. We repeat the steps above for each month (except the last

month), expanding the training sample by 1 month each time. We then compute

the MSE of each forecasting model:

MSE =
1

N

N∑

t=1

(∆dt+1 −Xt)
2 (24)

20One may instead want to assume that ig provides an unbiased forecast of dividend growth,
i.e. Xt = igt, as in Golez (2014). We do not focus on this model because the null that ig predicts
dividend growth with a slope of 1 is strongly rejected in the data. As Section III.A. of this paper
shows, we find a slope (0.29) that is significantly different from 1. This is consistent with the
in-sample results of Golez (2014). Thus, the assumption of unbiasedness is an important source of
misspecification, which results in poor forecasting performance. Our untabulated analysis reveals
that the forecasting model Xt = φ0+(1+φ1)igt, which allows for departures from the unbiasedness
restriction, reduces the MSE of the model based on Xt = igt by a striking 26.89%. This sheds
light on the extent of the misspecification.
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where all variables are as previously defined.

Table 5 summarizes the evidence. We observe that Model 2, which is based on

igcorr, performs better than its rival as it yields a lower MSE. The magnitude of

the improvement is noteworthy. In relative terms, igcorr reduces the MSE of Model

1 by 7.45%. We attribute this improvement in forecasting performance directly to

the lagged drp.

The entries in Table 5 allow us to compute the MSE−F statistic of McCracken

(2007):

MSE–F = N ×

MSEB −MSEC

MSEC

(25)

where N is the total number of 1-step ahead forecasts. MSEB is the MSE of the

benchmark model, i.e. the restricted model. MSEC is the MSE of the competing

model, i.e. the unrestricted model.

This test statistic enables us to formally test the null that the MSE of the

restricted model, i.e. Model 1, is smaller than or equal to that of the unrestricted

model, i.e. Model 2. The alternative hypothesis is that the MSE associated with

the unrestricted model is lower than that of the restricted model. We find that

MSE − F = 10.30. Clearly, the large and positive magnitude of the statistic

indicates that we can reject the null hypothesis. This highlights the relevance of the

lagged drp.

Up to this point, our out-of-sample results are based on an initial training

sample of 6 years. One may wonder how robust are the results to the length of

the initial training sample? In order to shed light on this question, we consider

different initial sample split dates ranging from our initial 6-year period to 10 years.

Figure 3 shows by how much Model 2 is able to reduce the MSE of Model 1. We

observe that, irrespective of the split date, Model 2 yields more accurate forecasts

of dividend growth.
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IV Stock Return Predictability

Having established the importance of the lagged drp for the predictability of dividend

growth, we now explore the implications for return predictability. This analysis

is guided by Proposition 2, which makes several empirically testable predictions.

We start by examining the predictability of returns in-sample and then turn our

attention to the out-of-sample evidence.

IV.A. In-Sample Evidence

We regress the time-series of monthly returns on a constant and the lagged

forecasting variable Xt:

rt+1 = γ0 + γ1Xt + ǫrt+1 (26)

where γ0 and γ1 are the intercept and slope coefficients, respectively. Xt is the

return forecasting variable. We examine the following variables in turn: dp, dpig

and dpcorr. Comparing the results for the first two forecasting variables sheds light

on the importance of accounting for ig. Similarly, by contrasting the results for

the last two forecasting variables, we can learn about the relevance of the lagged

drp. Figure 4 shows the dynamics of all 3 variables. We notice that both dpig and

dpcorr are more volatile than the standard dp ratio. It is also worth noticing that

these two forecasting variables behave in a manner that is reminiscent of ig. This is

mainly due to the high magnitude of δ1 (0.92), which amplifies any shock to ig (see

Proposition 2).

Table 6 reports our regression results. We test H0: γ1 = 0 against the

1-sided alternative hypothesis suggested by theory, i.e. γ1 > 0. We reject the

null hypothesis for both dpig and dpcorr. This indicates that both variables predict

returns. Economically, the slope parameter is informative about the persistence of

expected returns, i.e. α1 (see Equation 12). As Proposition 2 shows, the slope

γ1 = 1 − ρ̄α1. Since ρ̄ = 0.98, the loadings on dpig and dpcorr imply that the
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persistence of expected returns is close to 0.92 and 0.83, respectively.21 We also

observe that dpcorr displays the highest explanatory power (1.91%), suggesting

that the lagged drp helps improve the predictability of returns. We note that the

improvement for the (in-sample) predictability of returns is not as striking as in the

case of dividend growth.

Intuitively, the return forecasting models discussed above may be viewed as

special cases of an unrestricted regression of monthly returns on a constant and the

lagged values of dp, ig and drp:

rt+1 = γ0 + γ1dpt + γ2igt + γ3drpt + ǫrt+1 (27)

Proposition 2 yields the following testable hypotheses: γ1 = 1− ρ̄α1 and γ2 = (1−

ρ̄α1)
[

1+φ1

1−ρ̄δ1
+ ρ̄φ1φ2

(1−ρ̄δ1)(1−ρ̄φ2)

]

and γ3 = (1− ρ̄α1)
φ2

1−φ2
. Note that 1− ρ̄α1 corresponds

to the slope parameter (0.18) of the regression of future returns on a constant and

the lagged dpcorr ratio presented in Table 6. Recall also that φ1 = −0.60, ρ̄ = 0.98,

δ1 = 0.92 and φ2 = 0.26. Thus, the model yields the following predictions for the

slope parameters of Equation (27): γ1 = 0.18, γ2 = 0.48 and γ3 = 0.06.

Table 7 reports the estimated slope parameters. Using the t-test, we separately

test each of the 3 hypotheses mentioned above. If the null hypothesis related to the

loading on the variable [name in row] cannot be rejected, we report a checkmark

(X) in the last column of Table 7. We observe checkmarks for each slope parameter,

indicating that we cannot reject any hypothesis. We also perform a joint hypothesis

test, simultaneously imposing all 3 restrictions. We obtain an F -statistic of 1.32,

indicating that we fail to reject the null. This suggests that imposing the theoretical

restrictions does not materially affect the performance of the unrestricted model.

IV.B. Out-of-sample Evidence

We now conduct our analysis out-of-sample. We estimate φ1, φ2, δ1 and ρ̄ recursively.

We use the first 6 years of data as our initial training sample period. We exploit all

21To get α1, we look at the slope coefficient of the return forecasting regression. Since theory
predicts that the slope equals 1− ρ̄α1, we rearrange the expression to recover α1.
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the information in our training sample to estimate the return forecasting regression

shown in Equation (26). Equipped with the intercept and slope estimates, we use

the last observation of the forecasting variable (in the training sample) to predict

the next-period return. We repeat these steps for each month and for each of the

two forecasting variables: dpig and dpcorr.

Table 8 reports the MSE (expressed in basis points) of each return forecasting

model. We find that augmenting the dp ratio with ig helps reduce the MSE of

the standard dp ratio by 1.17%. Thus, accounting for implied growth improves the

forecasting performance of the standard dp ratio. This finding echoes the result of

Golez (2014). Analyzing the results for dpcorr, we find that it yields the lowest MSE

of all three forecasting variables. Indeed, it reduces the MSE of the standard dp

ratio by 2.88%. We test whether the difference between theMSE of the dpcorr model

and that of the dpig forecasting model is significant. Our (untabulated) calculation

yields an MSE − F statistic equal to 2.21, which is larger than the corresponding

critical value. This result is consistent with our model’s prediction.

We also consider alternative initial sample split dates. The blue line of Figure

5 tells us by how much, in %, an agent who uses a forecasting model based on dpig

would be able to reduce the MSE of the model based on the standard dp ratio for

different sample split dates. There is a clear improvement regardless of the length

of the initial sample split date. The red line relates to a similar analysis with the

difference that it focuses on dpcorr rather than dpig. We can see that the dpcorr ratio

delivers the highest improvement in forecast accuracy. This is true for all sample

split dates considered. The upshot of this analysis is that our results are not driven

by the choice of the initial sample split date.

IV.C. The Economic Value of Return Predictability

We explore the implications of the evidence of return predictability for the portfolio

choice of an investor willing to use the dpcorr ratio as a timing signal for a quantitative

strategy. In particular, the market timing strategy allocates a fraction of wealth wt

to the risky stock and the remainder to the riskless asset. The risky asset has
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expected return µt and expected volatility σ̂t. The riskless asset yields a return rf t.

We assume that the investor has a quadratic utility function, thus giving rise to the

following optimization problem:22

max
wt

wtµt + (1− wt)rf t −
γ

2
w2

t σ̂
2
t (28)

The optimal allocation to the risky asset is given by:

wt =
µt − rf t

γσ̂2
t

(29)

For each return forecasting model, we compute the expected return on the risky

asset and determine the allocation to the risky and riskless assets, respectively. In

computing the portfolio weights, we use the 1-month LIBOR rate as our proxy for

the riskless rate.23 Following Campbell and Thompson (2008), we use the previous

5 years of monthly returns data to estimate the variance of the stock returns. We

also impose the restriction that the weight has to be positive and not greater than

1.5 (Campbell and Thompson, 2008). Finally, we consider different values for the

coefficient of risk aversion, e.g. 4, 6, 8 and 10. Equipped with the portfolio weights

and the time series of realized stock returns, we finally compute the time series of

realized portfolio returns.

We analyze the certainty equivalent rate (CE) of return, which is the risk-free

rate of return that the investor is willing to accept rather than following a risky

22The optimization problem of an investor with quadratic utility is equivalent to maximizing
a linear combination of mean and variance. This is true irrespective of the distribution of asset
returns. We refer the interested reader to Campbell and Viceira (2002) for an excellent treatment
of this topic.

23As previously discussed, it is standard in the derivatives pricing community to proxy the
riskless rate with the LIBOR rate. Consistent with this practice, and thus the earlier part of our
study, we use the 1-month LIBOR rate as the risk-free rate proxy. Because the return predictability
literature also analyzes the 3-month Treasury bill rate, e.g. Goyal and Welch (2003), one may
wonder what impact, if any, does the proxy for the riskless rate have on our portfolio results. To
investigate this, we obtain the time series of 3-month T-bill from the website of the Federal Reserve
of St. Louis and repeat our analysis. Unreported tabulations show that the riskless rate proxy has
very little bearing on our core results.
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market timing strategy:

CE = r̄p −
γ

2
σ2
p (30)

where r̄p is the average of the realized portfolio returns. σp is the realized volatility

of the portfolio returns. All other variables are as previously defined.

Several results emerge from Table 9. We observe that an investor who uses the

dpcorr ratio achieves the highest certainty equivalent. How much would an investor

pay in order to switch from a quantitative strategy that is based on the standard

dp ratio to a timing strategy that relies on the novel dpcorr ratio? Our results

indicate that an investor with a risk aversion coefficient equal to 4 would pay up to

1.56% per year. This fee speaks directly to the importance of accounting for (i) the

implied growth rate and (ii) the dividend risk premium. In order to understand the

contribution of each component to this result, we also examine the timing strategy

based on the dpig ratio. Computing the difference between the certainty equivalent

rate of return of the timing strategy based on the dpig ratio and that of the strategy

based on the standard dp ratio, we find that, for that same investor, the dpig ratio

leads to a utility gain of 0.13% per year. This result reveals that accounting for the

drp further elevates the utility gain from 0.13% to 1.56%.

In summary, our evidence suggests that an investor who uses the dpcorr

ratio instead of the standard dp ratio substantially improves the out-of-sample

performance of her portfolio. Dissecting the empirical evidence, we find that a

sizable proportion of this improvement is related to the correction for the drp.

V Conclusion

We show that the dividend growth rate implied by the futures market contains

information about (i) the expected dividend growth rate and (ii) the expected

drp. We propose a simple model for the drp and study its implications for the

predictability of dividend growth and aggregate returns.

Our empirical analysis establishes that accounting for the expected drp
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strengthens the predictability of dividend growth and returns. Our main results hold

both in- and out-of-sample. Analyzing the implication of our results for the portfolio

choice of an investor, we find that a market timing investor who accounts for the time

varying dividend risk premium realizes an additional utility gain of 1.43% per year.

Overall, our study highlights, both theoretically and empirically, the importance of

the dividend risk premium for the predictability of dividend growth and returns.
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Figure 1: Realized v.s. Expected drp

This figure shows the dynamics of the realized and expected drp during our sample period. The

expected drp is the forecast generated by the following equation: Et(drpt+12) = 0.02 − 0.60igt +

0.26drpt. For ease of exposition, we align the realized and expected drp. The horizontal axis

displays the observation date of the realized drp. The vertical axis shows the magnitude of the risk

premia. All figures are annualized.
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Figure 2: The Dynamics of ig and igcorr

This figure plots the time-series dynamics of annualized ig and ig
corr, where ig

corr
t = φ0 + (1 +

φ1)igt +φ2drpt. In the data, we find that φ0 = 0.02, φ1 = −0.60 and φ2 = 0.26. Armed with these

parameters, we can construct igcorr. The horizontal axis shows the observation date. The vertical

axis indicates the (annualized) implied dividend growth rate.
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Figure 3: Improvement in MSE by Sample Split Date

This figure sheds light on the importance of the lagged drp. The vertical axis tells us by how much,

in %, Model 2 reduces the MSE of Model 1 for different initial sample split dates. The forecast

generated by Model 1 is given by Xt = φ0 + (1 + φ1)igt. The forecast generated by Model 2 takes

into account the drp: Xt = φ0 +(1+φ1)igt+φ2drpt. The parameters φ0, φ1 and φ2 are estimated

recursively for each training sample.

32



Dec99 Dec02 Dec05 Dec08 Dec11 Dec13

Date

-7

-6

-5

-4

-3

-2

D
iv

id
en

d 
P

ric
e 

R
at

io
dp

dp ig

dpcorr

Figure 4: The Dynamics of dp, dpig and dpcorr

This figure plots the time-series dynamics of dp, dp
ig and dp

corr. dp is the logarithm of the

trailing sum of 12-month dividends over the stock index price. dp
ig = dpt +

(1+φ1)igt

1−ρδ1
and dp

corr =

dpt +
(1+φ1)igt

1−ρδ1
+ ρ̄φ1φ2igt

(1−ρ̄δ1)(1−ρ̄φ2)
+ φ2drpt

1−ρφ2

. In the data, we find that φ1 = −0.60, ρ̄ = 0.98, δ1 = 0.92

and φ2 = 0.26. With these parameter values, we can construct the relevant time-series. The

horizontal axis shows the observation date. The vertical axis shows the magnitude of the ratios.
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Figure 5: Improvement in MSE by Sample Split Date

This figure shows the reduction (in relative terms) of the MSE of the forecasting model based

on the dp ratio achieved when the forecaster relies on (i) the dp
ig (blue line) and (ii) the dp

corr

(red line) ratios for different initial sample split dates. dp is the logarithm of the trailing sum of

12-month dividends over the stock index price. dp
ig = dpt+

(1+φ1)igt

1−ρδ1
and dp

corr = dpt+
(1+φ1)igt

1−ρδ1
+

ρ̄φ1φ2igt

(1−ρ̄δ1)(1−ρ̄φ2)
+ φ2drpt

1−ρφ2

. For each training sample, we recursively estimate the parameters φ1, ρ̄,

δ1 and φ2. We use these parameters to compute the relevant forecasting variables dp, dp
ig and

dp
corr. We estimate a return forecasting regression using all information from the training sample.

We then use the estimated parameters together with the most recent observation of the forecasting

variable to generate the forecast for the next-period.
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Table 1: Summary Statistics

This table reports the summary statistics of several time-series. ∆d denotes the time-series of

(annualized) monthly dividend growth. r denotes the time-series of (annualized) monthly S&P 500

returns. ig relates to the implied growth rate. drp refers to the dividend risk premium. dp is the

standard dividend price ratio. ig
corr is the dividend risk premium corrected implied growth rate.

dp
ig relates to the growth adjusted dividend price ratio. dp

corr denotes the corrected dividend price

ratio. The column entitled “Mean” reports the average of the time-series [name in row]. Similarly,

“Std”, “Skew” and “Kurt” relate to the standard deviation, skewness and kurtosis of the series

[name in row]. AR(1) reports the first order autocorrelation. Finally, “Nobs” shows the number

of observations.

Mean Std Skew Kurt AR(1) Nobs

∆d 0.06 0.16 -0.56 5.21 0.19 188
r 0.07 0.55 -0.84 4.45 0.09 188
ig 0.11 0.15 -1.22 6.83 0.72 188
drp -0.06 0.14 0.58 5.24 0.69 188
dp -4.05 0.23 0.36 3.83 0.98 188
ig

corr 0.03 0.06 -1.57 8.60 0.66 188

dp
ig -3.57 0.73 -1.08 6.06 0.80 188

dp
corr -3.84 0.43 -1.04 5.10 0.86 188

Table 2: The Predictability of the Dividend Risk Premium

This table summarizes the results of the predictability of the dividend risk premium. We first regress

the time-series of the drp on a constant and the 12-period lagged ig. Next, we regress the time-series

of the drp on a constant and the 12-period lagged drp. Finally, we regress the time-series of the

drp on a constant and the 12-period lagged ig and drp. Although all regressions are estimated with

an intercept, we report the slope estimates only. The entries in brackets indicate the Newey–West

(1987) adjusted t-statistics computed with 13 lags.

ig
-0.70 -0.65

(-11.04) (-7.74)

drp
0.41 0.19
(3.93) (1.96)

R
2 57.10% 16.75% 60.42%
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Table 3: The (In-Sample) Predictability of Dividend Growth

This table summarizes the results of the predictability of monthly dividend growth. We regress

the time-series of monthly dividend growth on a constant and the lagged predictive variable. We

consider two distinct predictive variables. The first one, ig, is the implied dividend growth rate.

The second predictor, igcorr, is the dividend risk premium corrected implied growth rate: ig
corr
t =

φ0 + (1 + φ1)igt + φ2drpt. In the data, we find that φ0 = 0.02, φ1 = −0.60 and φ2 = 0.26.

Armed with these parameters, we can construct igcorr. Although all regressions are estimated with

an intercept, we report the slope estimates only. The entries in brackets indicate the Newey–West

(1987) adjusted t-statistics computed with 2 lags.

ig
0.29
(4.30)

ig
corr 0.97

(5.05)

R
2 6.69% 11.41%

Table 4: Unconstrained Dividend Growth Forecasting Regression

This table shows the results of the unconstrained regression of monthly dividend growth on a

constant, the lagged ig, and the lagged drp. We report the point estimates of the regression model.

We also show in square brackets the values predicted by our theory. The model predicts that

γ1 = 1 + φ1 and γ2 = φ2. In the data, we find that φ1 = −0.60 and φ2 = 0.26. Thus, the

theoretical values of the slope are γ1 = 0.40 and γ2 = 0.26. We conduct a t-test to test the null that

the estimated parameter [name in row] equals its theoretical value. Entries marked “X” indicate

that we cannot reject the null hypothesis.

Parameters Hypothesis Test

ig
0.38

X
[0.40]

drp
0.28

X
[0.26]

R
2 11.49%
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Table 5: The (Out-of-Sample) Predictability of Dividend Growth

This table presents out-of-sample evidence on the predictability of monthly dividend growth. We

consider two forecasting models. Model 1 derives the forecast as follows: Xt = φ0 + (1 + φ1)igt.

Model 2 derives the forecast as: Xt = φ0 + (1 + φ1)igt + φ2drpt. This forecast corresponds exactly

to ig
corr
t . We use a recursive window to estimate the parameters φ0, φ1 and φ2. We report the

mean squared error (MSE) of each model in basis points.

Model 1 Model 2

310.17 287.07

Table 6: The (In-Sample) Predictability of Returns

This table summarizes the results of the predictability of monthly returns. We regress the time-series

of monthly returns on a constant and the lagged predictive variable. We consider three distinct

predictive variables. The first one, dp, is the standard dividend price ratio. The second predictor,

dp
ig, is the implied growth augmented dividend price ratio: dp

ig = dpt +
(1+φ1)igt

1−ρδ1
. The third

predictor, dpcorr, is the corrected dividend price ratio: dp
corr = dpt +

(1+φ1)igt

1−ρδ1
+ ρ̄φ1φ2igt

(1−ρ̄δ1)(1−ρ̄φ2)
+

φ2drpt

1−ρφ2

. Using the following information, φ1 = −0.60, ρ̄ = 0.98, δ1 = 0.92 and φ2 = 0.26, we

compute the relevant forecasting variables. Although all regressions are estimated with an intercept,

we report the slope estimates only. The entries in brackets indicate the Newey–West (1987) adjusted

t-statistics computed with 2 lags.

dp
0.19
(0.74)

dp
ig 0.10

(1.72)

dp
corr 0.18

(1.67)

R
2 0.67% 1.86% 1.91%
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Table 7: Unconstrained Return Forecasting Regression

This table summarizes the results of the predictability of monthly returns. We regress the time-series

of monthly returns on a constant and the lagged dp, the lagged ig and the lagged drp.

rt+1 = γ0 + γ1dpt + γ2igt + γ3drpt + ǫ
r
t+1

The present value model yields the following testable hypotheses: γ1 = 1 − ρ̄α1 and γ2 = (1 −

ρ̄α1)
[

1+φ1

1−ρ̄δ1
+ ρ̄φ1φ2

(1−ρ̄δ1)(1−ρ̄φ2)

]

and γ3 = (1−ρ̄α1)
φ2

1−φ2

. It is worth noticing that 1−ρ̄α1 corresponds

to the slope parameter of the regression of future returns on a constant and the lagged dp
corr ratio

presented in Table 6. Recall also that φ1 = −0.60, ρ̄ = 0.98, δ1 = 0.92 and φ2 = 0.26. Thus,

the model yields the following predictions for the slope parameters: γ1 = 0.18, γ2 = 0.48 and

γ3 = 0.06. We show in square brackets the values predicted by the theory. Although all regressions

are estimated with an intercept, we report the slope estimates only. Entries marked “X” indicate

that we cannot reject the null hypothesis that the estimated slope parameter associated with the

variable [name in row] is equal to its theoretical value presented in square brackets.

Parameters Hypothesis Test

dp
0.13

X
[0.18]

ig
0.48

X
[0.37]

drp
0.21

X
[0.06]

R
2 2.10%

Table 8: The (Out-of-Sample) Predictability of Returns

This table summarizes the evidence of the predictability of returns out-of-sample. We consider the

dp, the dp
ig and the dp

corr ratios, in turn. The last two forecasting variables are computed using

the following formulas: dp
ig = dpt +

(1+φ1)igt

1−ρδ1
and dp

corr = dpt +
(1+φ1)igt

1−ρδ1
+ ρ̄φ1φ2igt

(1−ρ̄δ1)(1−ρ̄φ2)
+

φ2drpt

1−ρφ2

. For each training sample, we recursively estimate the parameters φ1, ρ̄, δ1 and φ2. We use

these parameters to compute the relevant forecasting variables. We estimate a return forecasting

regression using all information from the training sample. We then use the estimated parameters

together with the most recent observation of the forecasting variable to generate the forecast for the

next-period, which we subsequently compare to the realized return. For each of the three models, we

compute and report the mean squared error (MSE). These values are expressed in basis points.

dp dp
ig

dp
corr

18.74 18.52 18.20
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Table 9: The Economic Value of Return Predictability

This table presents results of the out-of-sample portfolio performance of an investor who attempts

to exploit the predictability of returns by devising market timing strategies. We assume that the

investor has a quadratic utility function with a coefficient of relative risk aversion equal to γ. The

first column shows the different values of γ, i.e. γ = 4, 6, 8 or 10. At the end of each month,

we compute the optimal allocation of the investor to the risky stock and the riskless asset. These

weights depend on the forecasting model for expected returns. The investor considers three distinct

forecasting variables: dp, dp
ig and dp

corr. Given these weights, we compute the realized return

on the portfolio. We do this for each calendar month and return forecasting variable. We then

compute and report the annualized certainty equivalent (CE) of the strategy based on the predictive

variable [name in column].

γ dp dp
ig

dp
corr

4 0.25% 0.38% 1.81%
6 0.79% 0.87% 1.83%
8 1.06% 1.12% 1.84%
10 1.22% 1.27% 1.85%
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Appendix

A Proofs

This appendix presents the detailed proof of the propositions presented in the main

text. In order to facilitate the exposition of the derivations, it is useful to re-state

our main assumptions:

rt+1 = µt + ǫrt+1 (A.1)

µt+1 = α0 + α1µt + ǫ
µ
t+1 (A.2)

igt+1 = δ0 + δ1igt + ǫ
ig
t+1 (A.3)

drpt+1 = φ0 + φ1igt + φ2drpt + ǫ
drp
t+1 (A.4)

where all error terms are i.i.d with zero mean.

A.1 Proposition 1

To derive the first proposition of our model, we start from the accounting identity

linking together the expected dividend growth rate, the expected drp and the implied

growth rate:

Et(∆dt+1 − drpt+1) = igt

This implies that

Et(∆dt+1) = Et(drpt+1) + igt

= Et(φ0 + φ1igt + φ2drpt + ǫ
drp
t+1) + igt

Et(∆dt+1) = φ0 + (1 + φ1)igt + φ2drpt (A.5)
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Recall that the realized dividend growth can be decomposed into an expected

component and a shock:

∆dt+1 = Et(∆dt+1) + ǫ∆d
t+1 (A.6)

∆dt+1 = φ0 + (1 + φ1)igt + φ2drpt + ǫ∆d
t+1 (A.7)

This completes the proof of Proposition 1. �

A.2 Proposition 2:

For ease of exposition, let us restate Equation (10):

+∞∑

j=0

ρjEt(rt+1+j)− ρjEt(∆dt+1+j) =
k

1− ρ
+ dpt (A.8)

Using Equations (A.1) and (A.2), we can compute the first summation term on

the left-hand side of Equation (A.8):

+∞∑

j=0

ρjEt(rt+1+j) ≡ kr +

+∞∑

j=0

ρjα
j
1µt

+∞∑

j=0

ρjEt(rt+1+j) ≡ kr +
µt

1− ρα1

(A.9)

where kr is a constant that depends on α0 and α1.

Similarly, we combine the result of Proposition 1 together with Equations (A.3)

and (A.4) to compute the infinite sum of expected dividend growth rates:

+∞∑

j=0

ρjEt(∆dt+1+j) = k∆d +

+∞∑

j=0

ρj

[

δ
j
1(1 + φ1) + φ1φ2

δ
j
1 − φ

j
2

δ1 − φ2

]

igt +

+∞∑

j=0

ρjφ
j+1
2 drpt

+∞∑

j=0

ρjEt(∆dt+1+j) ≡ k∆d +

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

igt +
φ2drpt
1− ρφ2

(A.10)

where k∆d is a constant that depends on δ0, δ1, φ0, φ1 and φ2.
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Substituting Equations (A.9) and (A.10) into Equation (A.8) yields:

dpt = −

k

1− ρ
+

+∞∑

j=0

ρj
(
Et(rt+1+j)− Et(∆dt+1+j)

)

= −

k

1− ρ
+ kr − k∆d

︸ ︷︷ ︸

k1

+
µt

1− ρα1

−

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

igt −
φ2drpt
1− ρφ2

dpt ≡ k1 +
µt

1− ρα1

−

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

igt −
φ2

1− ρφ2

drpt (A.11)

Similarly, we can express the next-period dividend price ratio as:

dpt+1 = k1 +
µt+1

1− ρα1

−

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

igt+1 −
φ2

1− ρφ2

drpt+1

Using Equations (A.3) and (A.4), we can show that:

dpt+1 = k1 +
µt+1

1− ρα1

−

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

igt+1 −
φ2

1− ρφ2

drpt+1

= k1 +
α0 + α1µt + ǫ

µ
t+1

1− ρα1

−

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

(δ0 + δ1igt + ǫ
ig
t+1)

−

φ2

1− ρφ2

(φ0 + φ1igt + φ2drpt + ǫ
drp
t+1)

= k1 +
α0

1− ρα1

−

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

δ0 −
φ0φ2

1− ρφ2
︸ ︷︷ ︸

k2

+
α1µt + ǫ

µ
t+1

1− ρα1

−

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

(δ1igt + ǫ
ig
t+1)−

φ1φ2igt
1− ρφ2

−

φ2
2drpt + φ2ǫ

drp
t+1

1− ρφ2

≡ k1 + k2 +
α1µt

1− ρα1

−

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

δ1igt −
φ1φ2igt
1− ρφ2

−

φ2
2drpt

1− ρφ2

+
ǫ
µ
t+1

1− ρα1

−

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

ǫ
ig
t −

φ2ǫ
drp
t+1

1− ρφ2
︸ ︷︷ ︸

ǫ
dp
t+1

≡ α1k1 +
α1µt

1− ρα1

−

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

(α1 + δ1 − α1)igt

−

φ1φ2igt
1− ρφ2

−

α1 + φ2 − α1

1− ρφ2

φ2drpt + k2 + (1− α1)k1 + ǫ
dp
t+1
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dpt+1 = k2 + (1− α1)k1 + α1dpt −

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

(δ1 − α1)igt

−

φ1φ2igt
1 − ρφ2

−

φ2 − α1

1− ρφ2

φ2drpt + ǫ
dp
t+1 (A.12)

Following the steps of Campbell and Shiller (1988), it is straightforward to show

that

rt+1 ≈ k +∆dt+1 + dpt − ρdpt+1 (A.13)

The final step of the proof consists in substituting Equations (A.7), (A.11) and

(A.12) in Equation (A.13):

rt+1 = Et

(
k +∆dt+1 + dpt − ρdpt+1

)
+ ǫrt+1

= k + φ0 + (1 + φ1)igt + φ2drpt + dpt − ρ (k2 + (1− α1)k1) + ǫrt+1

−ρ

(

α1dpt −

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

(δ1 − α1)igt −
φ1φ2igt
1− ρφ2

−

φ2 − α1

1− ρφ2

φ2drpt

)

= k + φ0 − ρ (k2 + (1− α1)k1)
︸ ︷︷ ︸

Ψ

+(1− ρα1)

(

dpt +

[
1 + φ1

1− ρδ1
+

ρ̄φ1φ2

(1− ρ̄δ1)(1− ρ̄φ2)

]

igt

)

+(1− ρα1)

(
φ2drpt
1− ρφ2

)

+ ǫrt+1

rt+1 ≡ Ψ+ (1− ρα1)

(

dpt +
1 + φ1

1− ρδ1
igt +

ρ̄φ1φ2igt
(1− ρ̄δ1)(1− ρ̄φ2)

+
φ2

1− ρφ2

drpt

)

︸ ︷︷ ︸

dp
corr

+ǫrt+1 (A.14)

This completes the proof of Proposition 2. �
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