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Abstract

Prominent research argues that consumers often use personal budgets to man-
age self-control problems. This paper analyzes the link between budgeting and
self-control problems in consumption-saving decisions. It shows that the use of
good-specific budgets depends on the combination of a demand for commitment
and the demand for flexibility resulting from uncertainty about intratemporal
trade-offs between goods. It explains the subtle mechanism which renders bud-
gets useful commitments, their interaction with minimum-savings rules (another
widely-studied commitment technique), and how budgeting depends on the inten-
sity of self-control problems. This theory matches a number of empirical findings
and can guide marketing personal budgeting devices.
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1 Introduction
Many studies argue that personal budgeting is a pervasive part of consumer behavior.1
Personal budgeting denotes the practice of grouping expenditures into categories and
constraining each with an implicit or explicit spending limit that applies to a specified
time period (a week, a month, etc.).2 This practice cannot be explained by the classic
life-cycle theory of the consumer. Nonetheless, it has important consequences. It can
account for “mysterious” large differences in wealth accumulation between consumers,
which cannot be explained by time or risk preferences (Ameriks et al. (2003)). By
violating the principle of fungibility of money, it shapes consumer demand in ways which
cannot be explained by satiation and income effects (Heath and Soll (1996)). It affects
how firms promote their products so as to avoid falling into the same category with
other firms and thus compete for the same budget (Wertenbroch (2002)). It is at the
foundation of the economics of commitment devices (Bryan et al. (2010)) by creating a
demand for personal budgeting services.

Almost all existing studies informally suggest that consumers use personal budgets
to manage self-control problems, often caused by present bias, which interfere with their
saving goals. Thaler (1999) argues that households group expenditures into category-
specific budgets (housing, food, etc.) “to keep spending under control.” According to
Ameriks et al. (2003), “many households that set up regular budgets regard this activity
as contributing to a reduction in their spending. These results support a theory in which
the channel connecting wealth accumulation and the propensity to plan operates through
a form of effortful self-control.” Antonides et al. (2011) find a positive correlation between
budgeting and having savings goals.

Despite this consensus on the existence of a link between budgeting and self-control
problems, a formal investigation of such a link seems to be missing. The paper fills
this gap and offers a solid foundation for personal budgeting in a precise aspect of time
preferences: present bias. It shows, however, that present bias alone is not enough
to explain personal budgeting. Present bias induces consumers to value commitment
in the form of constraints on future choices. But for personal budgeting to emerge, this
preference for commitment has to be combined with a preference for flexibility of a specific
but plausible kind, namely, that resulting from uncertainty about intratemporal trade-
offs—for instance, due to shocks in the taste for or the price of some goods. Moreover, the
paper uncovers potential tensions between good-specific budgets and minimum-savings
rules, another commitment technique often studied in the literature. In turn, this leads
to a negative relationship between the intensity of present bias and the use of good-
specific budgets. These novel predictions help organize the existing evidence on personal

1See Bakke (1940), Rainwater et al. (1962), Thaler and Shefrin (1981), Thaler (1985), Henderson
and Peterson (1992), Baumeister et al. (1994), Heath and Soll (1996), Zelizer (1997), Thaler (1999),
Wertenbroch (2002), Ameriks et al. (2003), Bénabou and Tirole (2004), Antonides et al. (2011), Beshears
et al. (2016).

2This paper uses the term “personal budgeting” rather than “mental accounting” because the latter
has a much broader meaning, indicating a general process by which people frame and label events,
outcomes, and decisions. As such, mental accounting includes phenomena like choice bracketing, narrow
framing, and gain-loss utility, which differ from budgeting.
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budgeting and can guide future empirical studies.
The paper obtains these results using a simple planner-doer model of consumption

and savings.3 As usual, the planner and the doer have time-additive utility functions
with common per-period consumption utility; while the planner has time consistent pref-
erences, the doer is present biased (though not fully myopic). In each period, the doer
chooses how much to consume and save subject to the usual income constraint. The
paper modifies this standard setup in two minimal but crucial ways. First, consumption
involves a bundle of multiple goods, rather than a single uniform commodity. Second,
the optimal income allocation depends on a state of the world (capturing taste or price
shocks) which affects not only the rate of substitution between present and future utility,
but also the rates of substitution between goods within periods. This is key to introduce
the uncertainty about intratemporal trade-offs driving the results. The distribution of
the state components is allowed to be general within periods, but satisfies independence
across periods. At the beginning of each period, the planner can adopt a commitment
plan that dictates which income allocations the doer is allowed to choose. In line with its
motivation, the paper focuses on plans that can freely combine good-specific budgets as
well as an overall limit on consumption expenditures via a savings floor. A trade-off be-
tween commitment and flexibility is introduced by assuming that only the doer observes
the state.4

The core of this paper characterizes how the planner optimally uses good-specific
budgets and savings floors.5 Since the doer tends to overspend but always agrees with
the planner on how to divide every dollar across goods—recall that they have the same
per-period consumption utility—an intuitive conjecture is that the planner wants to set
only a limit on total consumption expenditures, that is, a savings floor. However, this is
not true. Under some conditions, the planner can benefit from setting binding budgets. It
is tempting to say that this is simply because budgets offer additional tools to commit and
they automatically increase savings. But things are significantly more subtle, as budgets
work differently than does the savings floor. A binding floor distorts the division of income
between spending and saving, but never distorts the chosen consumption bundle—in the
usual sense that marginal rates of substitutions equal price ratios. By contrast, a binding
budget also distorts such bundle. In particular, it can exacerbate the doer’s overspending
for some other goods, which may even reduce savings.

Nonetheless, in some cases the consumption distortions caused by budgets can result
in higher savings, precisely because they curtail how much the doer can gain in terms of

3Thaler and Shefrin (1981) were the first to propose a dual-self approach to study self-control prob-
lems. Other papers on dual-self models include Benabou and Pycia (2002), Bernheim and Rangel (2004),
Benhabib and Bisin (2005), Fudenberg and Levine (2006, 2012), Loewenstein and O’Donoghue (2007),
Brocas and Carrillo (2008), Chatterjee and Krishna (2009), and Ali (2011).

4This paper takes the process of noticing an expense and reporting it to the corresponding budget as
a defining aspect of budgeting itself. To focus on the issues of interest here, it also assumes that people
stick to their plans. This is not a trivial assumption, of course, and the paper motivates it accordingly
in Section 3.

5One may ask what properties characterize the optimal commitment plans if arbitrarily general plans
are allowed. This is an important, but very challenging, question in the presence of multidimensional
consumption and uncertainty, as explained in Section 6.2.
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present utility by undersaving; and this key mechanism can dominate those distortions
from the planner’s viewpoint. This is true, as we will see, if the goods satisfy appropriate
substitutability and normality conditions. In this case, optimal plans always involve
good-specific budgets when present bias is weak, but only a savings floor when present
bias is strong. Importantly, the optimality of such budgets crucially depends on the
uncertainty about intratemporal trade-offs. If we remove it, then under weak conditions
the optimal plans involve only a savings floor, so the extra tools offered by budgets are
in fact useless.

The intuition for these results is as follows. Suppose that there are only two goods
and that ex ante the individual is uncertain about his ex-post marginal utility of each
good, which can be high or low. He then realizes that a savings floor will help him
limit overconsumption if both marginal utilities will be high—which make him want to
consume a lot of both goods—but may be ineffective if only one marginal utility turns
out to be high. The latter is especially likely if he sets a relatively permissive floor
and present bias is weak. In this case, however, the individual realizes that the good
with high marginal utility will be the main determinant of his excessive spending; hence,
capping that good with a budget can increase savings because overspending will have to
occur inefficiently and on a good with low marginal utility. On the other hand, when
present bias is stronger, undersaving becomes more severe, but also less responsive to the
consumption distortions caused by budgets. As a result, ex ante the individual prefers
to set only a savings floor, for it limits undersaving without distorting consumption.

Several aspects of this paper’s results go against what one may expect at fist glance.
One may think that if a present-biased individual adds good-specific spending limits
to an aggregate limit, then a fortiori an individual with a stronger bias should do the
same; but this turns out to be false. One may think that optimal plans always feature a
savings floor, but we will see that in some settings they rely exclusively on good-specific
budgets. One may think that the results are driven by an underlying substitutability
between savings floor and good-specific budgets, but their interaction is more intricate.
For instance, people who use budgets may also set tighter savings floors, as the budgets’
distortions lower the value of leaving more income for consumption. This also means
that, once people are allowed to use good-specific budgets, it is not possible to conclude
that a stronger present bias always results in a stricter savings floor.

Other theories may give rise to personal budgeting, but struggle to account for some
related evidence. One theory may argue that people set budgets for those goods which
they find tempting (“vice goods”). This can be true in some cases, but cannot explain why
people set budgets for “unobjectionable goods like sports tickets and blue jeans” (as found
by Heath and Soll (1996)) or housing, food, and even charitable giving (as reported by
Thaler (1985, 1999)). Moreover, this theory runs the risk of assuming the answer: It can
always explain that an individual sets a budget for any good X by assuming that he finds
X tempting, which is ultimately a subjective aspect of his preference. Another plausible
theory is that some people use budgeting as a technique to simplify the complex matter
of household finance (Simon (1965), Johnson (1984)). This theory is complementary to
the one in this paper, but it again struggles to explain some evidence. For instance, it is
not clear why computational complexity would lead people to systematically set budgets
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which seem too strict and to cause underconsumption, as found by Heath and Soll (1996).
By contrast, these findings are consistent with the theory proposed here. Present

bias can lead people to set budgets on “unobjectionable goods,” because doing so helps
them manage that bias, and to optimally choose the budgets’ levels so that they system-
atically bind, which makes them appear too strict and cause underconsumption. This
also provides an argument against Heath and Soll’s (1996) conjecture that individuals
may benefit by allowing themselves to reallocate more freely. Another prediction which
speaks to the evidence on personal budgeting is that budgets should be used only by
individuals who have a weak present bias.6 Antonides et al. (2011) find that people
who exhibit a “short-term time orientation” (which according to their description corre-
sponds to strong present bias) are less likely to use budgets than people who exhibit a
“long-term time orientation” (a weak present bias). More generally, the paper suggests
caution when interpreting evidence on personal budgeting; for instance, observing that
a person uses rich commitment plans involving budgets need not suffice to conclude that
he is more present biased than other people who do not use such plans. The result that
present bias has to be weak to give rise to budgeting is also important for how we model
individuals with self-control problems: It offers another, empirically supported, reason
for modeling short-run selves as not completely myopic, as advocated by Fudenberg and
Levine (2012).

This paper contributes to our understanding of consumption-savings behavior in the
presence of self-control problems and of the resulting demand for commitment. According
to Bryan et al. (2010) the latter deserves more work especially on “soft commitments”
(like personal budgeting). Since Thaler and Shefrin’s (1981) and Laibson’s (1997) seminal
work, the literature7 has developed almost entirely assuming a per-period consumption
utility of a single commodity, “money,” which can be interpreted as an indirect util-
ity function.8 This paper not only shows that that assumption is not innocuous with
present-biased consumers (in contrast to settings with time-consistent consumers), but
also demonstrates that what renders the multiplicity of goods relevant is the uncertainty
about intratemporal trade-offs between them. Even though present bias does not create
a conflict between short- and long-run preferences regarding how to spend income within
a time period, it can lead—through budgeting or other personal rules—to non-standard
demand behavior. With regard to the demand for commitment, the literature has focused
on the consumers’ problem of curbing undersaving and often stressed the usefulness of
devices like illiquid assets and savings accounts. As we will see, however, under the re-
alistic assumption of multiple goods consumers can do strictly better by (also) adopting
good-specific budgets. This opens the door to a demand for other commitment devices,

6This prediction continues to hold for partially naive individuals who incorrectly think ex ante, when
choosing a plan, that their present bias is weak (O’Donoghue and Rabin (2001)).

7This literature has become so vast that it is impossible to list all relevant papers here.
8Brocas and Carrillo (2008) discuss a model where consumption involves two goods, only one good

has ex-ante uncertain utility, and the doer is fully myopic. In this case, the optimal commitment strategy
consists of a non-linear plan that punishes spending on one good by cutting spending on the other, which
is not a budgeting plan. Even if one focuses on budgeting plans, the planner never sets good-specific
budgets with a fully myopic doer (cf Proposition 2). Their model also does not allow for studying the
roles of uncertainty about intratemporal vs. intertemporal trade-offs and of the intensity of present bias.
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such as services that help people implement those budgets.9 The existence and regulation
of a market for personal budgeting services can have significant consequences on welfare,
for instance via the large effects that budgeting can have on wealth accumulation as
found by Ameriks et al. (2003). Moreover, the present paper offers predictions on which
type of consumers will demand which type of devices, and this can be used by third-party
providers to target their promotional efforts.10

To derive its results, the paper uses techniques which depart from the standard
mechanism-design approach. The main idea is to exploit the information contained
in the Lagrange multipliers for the constraints that budgets and savings floors add to
the doer’s optimization problem. Relying on sensitivity-analysis techniques (Luenberger
(1969)), we can use this information to quantify, after appropriately adjusting for the
doer’s bias, the marginal effects on the planner’s payoff of modifying a budget or a floor.

Finally, the insights of this paper are relevant beyond the consumption-savings ap-
plication. This application is an instance of situations where a principal delegates to
a better informed agent the allocation of finite resources across multiple categories.11

Section 7 outlines other instances in public finance, corporate governance, and workforce
management, where the results can take a more normative connotation. One takeaway is
that these multidimensional problems can introduce a novel economic rationale, absent
in unidimensional settings, for reducing the agent’s choice set: to change the trade-offs
he faces between choice dimensions causing no conflict of interests so as to alleviate—
through the resource constraint—the consequences of the conflict in other dimensions.
For such restrictions to be beneficial, however, it is crucial that the agent’s information
also affects those trade-offs.

2 Related Literature
Existing explanations of personal budgeting are based on Thaler’s (1985) seminal work.
Combining the notions of “transaction utility” and gain-loss utility, he argues that in-
dividuals treat the consequences of each transaction in isolation. In this case, he shows
that they can solve their consumption-savings problems by means of transaction-specific
budgets, a result which echoes Strotz’s (1957) explanation of budgeting based on sepa-
rable consumption utilities. In reality, however, people set budgets for sufficiently long
periods (a week or a month) so that each budget covers many transactions. Also, in his
(and Strotz’s) deterministic model, people can achieve the same utility with and without
budgets. But if people faced uncertainty, they would never impose ex ante budgets which
bind ex post; that is, they do not exhibit a strict demand for budgets as commitment
devices. Finally, transaction and gain-loss utility seem to have no direct link with self-

9This kind of services are currently offered by firms like Mint, Quicken, and StickK.
10Of course, in reality it may be hard to observe each consumer’s degree of present bias and offer

commitment devices accordingly. For an analysis of some of the issues that arise when that degree is
consumers’ private information, see Galperti (2015).

11Thaler and Shefrin (1981) were the first to draw a connection between self-control problems and
delegation problems.
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control problem, which the literature usually views as the underlying cause of personal
budgeting. Other papers have shown that gain-loss utility can explain other phenomena
commonly classified as mental accounting, such as choice bracketing (Koch and Nafziger
(2016)), which are however different from budgeting.

This paper relates to the mechanism-design literature on the trade-offs between com-
mitment and flexibility—in particular to Amador et al. (2006) and Halac and Yared
(2014).12 It departs from both papers by introducing multiple consumption goods and
uncertainty about intratemporal trade-offs, thus uncovering how this type of uncertainty
affects qualitatively the commitment-flexibility trade-off and its solutions. Amador et al.
(2006) showed that in a world with unidimensional consumption savings floors often co-
incide with the fully optimal commitment plans (within a very general class of plans).
Halac and Yared (2014) also differ from the present paper by focusing on the role of
information persistency. In their setting, optimal commitment plans can distort future
consumption choices, even though those choices cause no conflict of interests between the
individuals’ selves once today’s choice is fixed. The reason is that information persistency
creates a link between the doer’s expected utility from tomorrow’s choices and his infor-
mation today; hence those choices can be exploited to relax today’s incentive constraints,
as in other dynamic mechanism-design problems.13 The results of the present paper do
not depend on the correlation between the doer’s pieces of information.

This paper is also related to the literature that studies how rationing affects consumer
behavior (Howard (1977), Ellis and Naughton (1990), Madden (1991)). By imposing a
savings floor or a good-specific budget, an individual is essentially rationing his future
selves as the government of a centralized economy may ration its citizens. Unlike this
literature, however, here rationing assumes the function of a commitment device. The
rationing literature has shown that predicting the effects of good-specific budgets is far
from trivial. Its insights will be useful to identify conditions under which budgets can
help the individual.

Finally, this paper contributes to the rich literature on delegation following Holmström
(1977, 1984). One key difference from unidimensional delegation problems is that, in
those problems, the principal reduces the agent’s choice set in only two ways: She removes
extreme options that can badly hurt her or intermediate ones so as to render the agent’s
choice more sensitive to his information (Alonso and Matouschek (2008)). Regarding
the case of multidimensional delegation, few papers examine it and none in the setting
studied here.14 Koessler and Martimort (2012) consider specific settings which render
the delegation problem similar to a unidimensional screening exercise. In Frankel (2014),
the agent has the same bias for all dimensions of his choice, but the principal does not
know its properties (strength, direction, etc.). In this case, the best delegation policies
against the worst-case bias may require the agent’s average decision to meet some preset
target. Frankel (2016) focuses on policies that cap the gap between the agent’s and the

12This literature also includes Athey et al. (2005), Ambrus and Egorov (2013), and Amador and
Bagwell (2013b).

13See, for example, Courty and Li (2000), Battaglini (2005), Pavan et al. (2014).
14In Alonso et al. (2014), finite resources have to be allocated across multiple categories, but each

category is controlled by a distinct agent whose information is unidimensional.
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principal’s realized payoffs, not his specific decisions. For the settings in the present
paper, one can show that such policies can be implemented by imposing a limit only on
how much the agent can allocate to the dimension of his choice causing the conflict of
interest with the principal (for instance, only a savings floor but no budgets).

3 Baseline Consumption-Savings Model
This section introduces the baseline model of consumption and savings with imperfect
self-control. We will keep the model simple, with some admittedly strong assumptions, to
avoid distractions from issues that are of second-order importance for this paper and do
not distinguish it from the literature. Section 6 discusses how to relax these assumptions.

Allocations. Consider an individual who lives for two periods. In the first period,
he consumes a bundle of two goods c = (c1, c2) ∈ R2

+. He receives his entire income—
normalized to 1—at the beginning of the first period. To finance consumption in the
second period, he then has to save some amount s ∈ R+. Period-2 consumption involves
a single good and hence equals s. In the first period, the feasibility constraint is then
c1 + c2 + s ≤ 1. Think of each ci and s as the share of income allocated to good i and to
savings.15

Preferences and Information. As in existing dual-self models (cf Footnote 3),
the individual consists of a long-run self, called “planner” (she), and a short-run self,
called “doer” (he). Their preferences depend on some information represented by a state
(θ, r1, r2), where θ > 0 and r = (r1, r2) ∈ R2. In each period, both selves have the
same (concave) consumption utility: u(c; r) in period 1 and v(s) in period 2. In period 1,
however, for each state the planner and the doer evaluate streams (c, s) using respectively
the utility functions

θu(c; r) + v(s) and θu(c; r) + βv(s).

To add clarity and tractability to the model, for now assume that

u(c; r) = u1(c1; r1) + u2(c2; r2) with ∂2ui(ci; ri)

∂ci∂ri
= ui

cr(ci; ri) > 0 for i = 1, 2.

Additive separability will be relaxed in Section 6.1. The parameter β ∈ (0, 1) captures the
doer’s present bias and hence the conflict with the planner, who knows the level of β.16

This formulation is consistent with the single-agent, quasi-hyperbolic discounting model
of Laibson (1997). It is also consistent with viewing the individual as a household, whose
members have time-consistent but heterogeneous time preferences. In this case, under
weak conditions the household’s aggregate preference exhibits present bias (Jackson and

15Nothing significant changes if the individual receives some income in period 2 and can borrow in
period 1, or if the consumption bundle c involve more than two goods. In fact, the proofs are carried
out for the general case with n ≥ 2 goods. Section 6.3 extends the analysis to the case in which the
individual consumes multiple goods also in future periods. Section 6.5 discusses the extension to more
than two periods.

16Allowing for partial naiveté (for example, as in O’Donoghue and Rabin (2001)) would not change
the message of the paper, as discussed in Section 4.
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Yariv (2015)). Finally, note that the component r of the state can be interpreted as
shocks in tastes, but also as shocks in prices, which determine how money spent on
good i translates into its physical units.17

A key, novel aspect of this model is that information affects intertemporal as well as
intratemporal trade-offs. While θ affects only the substitution rate between present and
future utility, r also affects the substitution rates between goods within period 1. This
structure involves some redundancy, as both an increase in θ and an increase in all com-
ponents of r render period-1 consumption more valuable. Nonetheless, it highlights the
difference between uncertainty about intratemporal and intertemporal trade-offs; it will
allow us to easily shut down the former kind of uncertainty and analyze its consequences;
it simplifies the comparison with the literature. Regarding the state distribution, denoted
by G, rich forms of dependence as well as full independence will be allowed across its
components θ, r1, r2. Hereafter, let ω = (θ, r) and let Ω denote the state space.

Commitment Plans. The planner delegates to the doer the choice of an income
allocation. Knowing his bias, she would like to design a commitment plan dictating which
allocations he is allowed to implement. In the case of budgeting, such a plan takes the
form of spending limits on specific consumption categories, denoted by bi (for budget),
or of an overall limit on consumption expenditures, which can be implemented through a
minimum-savings rule denoted by f (for savings floor). For instance, a plan can require
that consumption never exceed 80% of income and “going out” and “house expenses”
never exceed 10% and 15% each. Individuals and households typically commit to such
plans for a specified period of time, like a week or a month.18

To formalize this, let the set of feasible allocations in period 1 be

F = {(c, s) ∈ R3
+ : c1 + c2 + s ≤ 1}.

A budgeting plan, B, can then be expressed as follows:

B = {(c, s) ∈ F : s ≥ f, c1 ≤ b1, c2 ≤ b2},

where f ∈ [0, 1] and bi ∈ [0, 1] for i = 1, 2. Let B be the set of all budgeting plans. Note
that the savings floor f or some budget bi may never constrain the doer, or they may
do so only in some states. Therefore, from the ex-ante viewpoint, we will call f and bi
binding if they constrain the doer with strictly positive probability under G.

To focus on the issues of interest for this paper, it is assumed that people stick to
their plans. This is not a minor assumption, of course, but the literature has proposed
several mechanisms which can justify it. These mechanisms include people’s desire for
internal consistency (Festinger (1962)), the plans’ working as reference points (Heath
et al. (1999), Hsiaw (2013)), self-reputation mechanisms (Bénabou and Tirole (2004)),
internal control processes that prevent impulsive processes from breaking ex-ante rules

17For instance, for i = 1, 2, let ui(zi) =
z
1−γi
i

1−γi
with γi > 0 be the utility from zi units of good i, and

let ϑρi > 0 be its price, which has a common component (ϑ) and an idiosyncratic component (ρi). If
we define ci = ϑρizi for all i, we can write the usual resource constraint as c1 + c2 + s ≤ 1. Letting
θri = [ϑρi]

γi−1, we get θui(ci; ri) = θriu
i(ci).

18It is implicitly assumed here that people correctly notice and report every expense to the corre-
sponding budget, a process which defines budgeting itself.

9



(Benhabib and Bisin (2005)), and self enforcement sustained by threats of switching to
less desirable equilibria (Bernheim et al. (2015)). Perhaps in reality people are able to
carry out their plans on their own provided that such plans are not too stringent or too
costly ex post. Thus, they may set good-specific budgets or savings floors not as strict as
they would want to, yet still use them. Even in this case, it is worth understanding which
forces lead people to find budgets and floors useful despite their ex-post inefficiency. This
understanding can also be valuable for third parties which design commitment devices
to help people stick to their plans (such as firms like Mint, Quicken, and StickK). For
instance, some present-biased individuals may not use budgets not because they cannot
stick to them, but simply because they do not find them useful; it would then be pointless
to try to sell devices for implementing those budgets to such individuals.

Timing. In reality, individuals set their commitment plans prior to observing all the
necessary information for making a decision. This creates a non-trivial trade-off between
commitment and flexibility. To model this, we will assume that only the doer observes the
state realizations. This corresponds to the following timing: First the planner commits
to a plan B, then the doer observes ω and implements some allocation from B. The
planner designs her plan to maximize her expected payoff taking into account the doer’s
future decisions.19

The goal of the paper is to understand whether and how the planner sets minimum-
savings rules and good-specific budgets. In other words, it analyzes the problem of
choosing B ∈ B so as to maximize

U(B) =

ˆ
Ω

[θu(c(ω); r) + v(s(ω))]dG(ω) (1)

subject to
(c(ω), s(ω)) ∈ argmax

(c,s)∈B
θu(c; r) + βv(s), ω ∈ Ω. (2)

We will refer to a solution to this problem as an optimal plan, where “optimal” is of
course from the planner’s viewpoint.

Technical Assumptions.
Information distributions: Let Ω = [θ, θ] × [r1, r1] × [r2, r2], where 0 < θ < θ < +∞
and 0 < ri < ri < +∞ for all i = 1, 2. We will only assume that the joint probability
distribution G of (θ, r1, r2) has full support on Ω (that is, G(O) > 0 for every open
O ⊂ Ω). The conditions on θ and θ are meant to rule out the implausible situation in
which the individual does not care at all about the present or the future.20 The conditions
on ri and ri have bite only when combined with the properties of u listed next.
Differentiability, monotonicity, concavity: The function v is assumed to be twice con-
tinuously differentiable with v′ > 0 and v′′ < 0. For i = 1, 2 and all ri ∈ [ri, ri], the
function ui(·; ri) : R+ → R is twice differentiable with ui

c(·; ri) > 0 and ui
cc(·; ri) < 0;

19When period-2 consumption involves multiple goods or the future involves multiple periods, the
question arises of whether the planner may benefit by committing to plans that cover more than one
period. Section 6.4 discusses this issue.

20A similar assumption appears in Amador et al. (2006), who point out that with unbounded support
it may always be optimal to grant the doer full flexibility.
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also, ui
c and ui

cc are continuous on (0,+∞) × [ri, ri]. In particular, this implies that ui
c

is bounded above and away from zero; this seems plausible to the extent that i refers to
“food,” “housing,” or “entertainment” and a period corresponds to a week or a month.
Boundary conditions: lims→0 v

′(s) = +∞ and limc→0 u
i
c(c; ri) = +∞ for all ri ∈ [ri, ri]

and i = 1, 2. This will allow us to focus on interior solutions.

4 Optimal Budgeting Plans

4.1 Preliminaries

First of all, the planner’s problem has a solution.21

Lemma 1. There exists B that maximizes U(B) over B.

Every plan B induces the doer to choose an income allocation state by state. Two
allocation rules are focal benchmarks. First, for each ω, let (cd(ω), sd(ω)) be the al-
location that the doer would choose if granted full discretion, namely the solution to
max(c,s)∈F{θu(c; r) + βv(s)}. The second allocation, denoted by (cp(ω), sp(ω)), repre-
sents what the planner would like the doer to choose in ω, which is the solution to
max(c,s)∈F{θu(c; r)+ v(s)}. We will call (cd, sd) the full-discretion allocation and (cp, sp)
the first-best allocation. They satisfy some useful properties, summarized in the following
remark.
Remark 1.
1. (cp, sp) and (cd, sd) are continuous in ω;
2. Each component of (cp, sp) and of (cd, sd) takes values in a closed interval and is
2. bounded away from zero;
3. For all i = 1, 2, cpi and cdi are strictly increasing in ri and θ and strictly decreasing
3. in rj for j ̸= i;
4. sp and sd are strictly decreasing in θ, r1, and r2;
5. For all ω ∈ Ω, sd(ω) < sp(ω) and sd(ω) is continuous and strictly increasing in β;
6. For all ω ∈ Ω and i = 1, 2, cdi (ω) is continuous and strictly decreasing in β.

One last property of the model is worth noting. All consumption goods are normal:
For both selves higher spendable income, 1−s, always leads to a higher optimal allocation
to each good.22

As an illustration, Figure 1 represents the first-best and full-discretion allocations
for a model which is fully symmetric with respect to good 1 and 2. Since the doer
will always save whatever he does not consume (v′ > 0), we can focus on his choices
of c. Note that bundles which lie on negative-45◦ lines closer to the origin correspond
to higher levels of savings. Figure 1 describes cp and cd as the regions inside the dashed
and solid lines, whose shape follows from property 3 and 4 in Remark 1. To see this,

21The proofs of the main results are in the Appendix. All other proofs appear in the Online Appendix.
22This property follows, for instance, from Proposition 1 in Quah (2007).
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consider cp and suppose for the moment that θ takes only one value. Start from state
(θ, r1, r2), which corresponds to the highest savings level. If we raise, say, r1 continuously
up to r1, cp1 increases while cp2 as well as sp decrease, which means that we move along
the south portion of the dashed line. If we now start from (θ, r1, r2) and raise r2 up to r2,
cp2 increases while c

p
1 as well as sp decrease; that is, we move along the east portion of the

dashed line. Proceeding in this way, we can describe the entire dashed line; continuity
of cp implies that its range has to be connected and hence equal to the entire region
inside this line. Finally, the doer’s systematic undersaving corresponds to a shift of the
cd region away from the origin; the stronger his bias, the bigger the shift.

c1

c2

cd

10

1

cp

Figure 1: First-best and Full-discretion Allocations

4.2 Main Results

This section presents the main results of the paper, which relate the use of minimum-
savings rules and good-specific budgets to the intensity of present bias. It also shows that
reducing the uncertainty on intratemporal trade-offs renders the use of specific budgets
less likely to be optimal, thereby highlighting the role of this kind of uncertainty.

Due to his present bias, the doer tends to systematically overspend on consumption
and undersave from the planner’s viewpoint. The planner would like to limit these
departures from the first-best allocation. Therefore, it may seem straightforward that she
always sets a savings floor as well as good-specific budgets. After all, when consumption
involves multiple goods, more commitment tools should always help: The floor can limit
total consumption expenditures, while specific budgets can limit splurging good by good.

The following observations, however, suggest that things are not so simple. If we fix
savings, the planner and the doer always agree on how to divide the remaining income
between goods. Thus, without uncertainty, the planner can achieve the first best both by
relying exclusively on a savings floor and by using only good-specific budgets: Given ω,
both the plan which sets f = sp(ω) and b1 = b2 = 1 and the plan which sets f = 0,

12



b1 = cp1(ω), and b2 = cp2(ω) induce the doer to implement (cp(ω), sp(ω)). On the other
hand, with uncertainty, imposing only budgets cannot implement the same allocations
as imposing only a savings floor.23 Intuitively, when f binds, the doer continues to re-
act to r by changing how he spends 1 − f across goods. Thus, good-specific budgets
which are sufficiently strict to ensure that total spending never exceeds 1 − f will have
to constrain either c1 or c2 strictly below the largest amount spent on that good subject
to only f . Finally, a binding savings floor distorts the division of income between spend-
ing and saving, but never distorts the implemented consumption bundle; by contrast,
binding budgets also distort consumption. When f binds, the doer allocates 1 − f so
as to maximize u(·; r) and hence chooses a bundle c which equalizes marginal utilities
between goods. By contrast, a binding budget on good i mitigates the doer’s aggregate
overconsumption, but without other rules it exacerbates overconsumption in good j.24

Intuitively, overspending on good j comes at the cost of subtracting money from savings,
which the doer undervalues, or from good i, which he values on par with j. Capping
good i removes the second cost, so the doer overspends on j even more.

Despite these drawbacks of good-specific budgets, Proposition 1 shows that there
always exists a sufficiently weak present bias such that every optimal plan must include
them.
Proposition 1. There exists β∗ ∈ (0, 1) such that, if β > β∗, then every optimal B ∈ B
must include binding good-specific budgets.

The Appendix describes an algorithm to derive β∗. Note that the conclusion of Propo-
sition 1 does not hold only in the limit for β ≃ 1, and β∗ can be significantly smaller
than 1—for that matter, smaller than the levels of present bias usually considered plausi-
ble based on the empirical evidence. The next section explains the logic of Proposition 1,
which should also clarify that the economics behind it does not require β ≃ 1. Thus,
allowing (or enabling) the planner to use good-specific budgets on top of a savings floor
can have significant first-order effects on her payoff. Concretely, for example, recall that
Ameriks et al. (2003) find that detailed budgeting plans can contribute to increasing
significantly households’ wealth accumulation.

Although Proposition 1 says that good-specific budgets must be part of an optimal
plan, it does not say that they are always combined with a savings floor. Indeed, it is
possible to have situations in which they are as well as situations in which they are not.
Section 4.4 illustrates this.

Do optimal commitment plans always require good-specific budgets? The answer is
no. There always exists a sufficiently strong present bias such that, to be optimal, a plan
should impose only a savings floor.
Proposition 2. There exists β∗ ∈ (0, 1) such that, if β < β∗, then every optimal B ∈ B
involves only a binding savings floor.

The Appendix shows how to calculate β∗. Note that the conclusion of Proposition 2 does
not hold only in the limit for β ≃ 0 and β∗ can be significantly larger than 0. The logic

23See Lemma 8 in the Online Appendix.
24See Lemma 9 in the Online Appendix.
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behind Proposition 2, explained in the next section, should clarify this point. Also, β∗
depends on the properties of the utility functions and on the distribution G only through
its support. Given this, we can show that weaker biases suffice for the conclusion of
Proposition 2 to hold, if we reduce the uncertainty on intratemporal trade-offs in the
following sense.

Corollary 1. Consider two individuals who have the same utility functions u and v and
their uncertainty has supports [θ, θ] × [r1, r1] × [r2, r2] and [θ, θ] × [r′1, r

′
1] × [r′2, r

′
2]. Let

β∗ and β′
∗ be the thresholds in Proposition 2 corresponding to the two individuals. If

(r′1, r
′
2) ≩ (r1, r2) and (r′1, r

′
2) ≨ (r1, r2), then β′

∗ > β∗.

4.3 Intuition

Consider Proposition 1. The easiest way to understand it is to start by analyzing how
the planner would use a savings floor f and each budget bi in isolation. We can then
build on the insights of this thought experiment to understand how she combines f , b1,
and b2. It is important to keep in mind that f and some bi can simultaneously bind,
thereby affecting the doer’s choices in possibly complicated ways.

Suppose first that the planner could use only f . In this case, she would always set f
strictly between the largest and smallest first-best levels of savings, sp and sp.25 Moreover,
she would raise f in response to a stronger present bias.26 The intuition is simple. Under
full discretion the doer saves less than sp for some states, which is never justifiable for
the planner. And f never distorts the chosen bundle c, because the two selves have the
same consumption utility u. Consequently, the planner always sets f ≥ sp. She cannot
optimally set f = sp, because by marginally increasing f she suffers only a second-order
loss in states where sp(ω) = sp, but a first-order gain in states where sp(ω) > sp and f
binds. A similar logic explains why f < sp. Thus, the best f has to balance the benefits
of limiting undersaving in some states with the cost of causing inefficient oversaving in
others. Finally, regarding the dependence of f on β, a stronger tendency of the doer to
undersave (lower β) strengthens the benefits of raising f , but does not change its cost:
In states where sp(ω) < f , f binds for any bias because sd(ω) < sp(ω).

Now suppose that the planner can use only a single budget. It turns out that capping
spending on even only one good dominates granting the doer full discretion.27 To see
why, start from bi = cdi = maxω cdi (ω). Lowering bi a bit has two effects. First, when
binding, bi distorts the chosen bundle c. This negative effect, however, is initially of
second-order importance for the planner: Under full discretion the doer’s choice of c
is always efficient, in the sense that it equalizes marginal utilities between goods. To
quantify this effect, the proof relies on the Lagrange multiplier for the constraint that bi

25See Lemma 4 in the Appendix. Though reminiscent of Amador et al.’s (2006) main result, Lemma 4
differs in several respects. It assumes right away that plans can use only f , and its proof uses different
techniques from the clever mechanism-design approach in Amador et al. (2006). That approach does not
work in the present setting because consumption and information have multiple dimensions, as discussed
in Section 6.2.

26See Lemma 5 in the Appendix, which also deals with the case of multiple optimal floors.
27See Lemma 6 in the Appendix.
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adds to the doer’s optimization problem. The second effect of bi is to curtail the doer’s
undersaving with positive probability,28 which causes a first-order gain for the planner.
Overall bi should then benefit her, but there is a subtlety here: The doer should not
reallocate money to the unrestricted goods at a much faster rate than to savings, which
is not obvious and need not be true. The proof leverages the additive structure of u to
derive this key property, which however holds more generally (cf Section 6.1).

These observations bring to light the mechanism whereby the multidimensionality of
consumption can help to curb the consequences of present bias. A budget bi incentivizes
the doer to save more because it forces him to choose inefficient bundles—not just to
spend less money on good i, which he could fully shift to other goods—and these inef-
ficiencies limit how much he can gain in terms of present utility by undersaving. Not
all distorting rules work, however. For example, one can show that imposing a binding
minimum-spending rule on any good, though distorting c, never improves savings and
hence is never part of an optimal plan.29

Combining these insights leads to Proposition 1. To see this, consider Figure 2, which
reproduces Figure 1 for the cases of strong and weak biases (that is, low and high β).
Recall that the shape of the regions cp and cd follows from property 3 and 4 in Remark 1.
In particular, for i = 1, 2 and k = p, d, we have that

cki = cki (θ, ri, r−i) > cki (θ, ri, r−i) and sk = sk(θ, ri, r−i) < sk(θ, ri, r−i).

These properties imply that the states in which both selves want to spend the most on c1
or c2 are not the states in which they want to save the least; the latter states map to the
dark-shaded areas in Figure 2, the former to the light-shaded areas. Finally, in Figure 2
budgets correspond to vertical and horizontal lines, while f to a line with slope −1.

Optimal plans must impose good-specific budgets, when the bias is sufficiently weak,
because they help the planner improve savings when doing so via f would require an
excessively tight floor. Recall that if the planner can use only f , she relaxes it as the
bias weakens. In Figure 2, this corresponds to the f line moving farther away from the
origin. Consequently, f primarily targets the doer’s decisions in the dark-shaded area,
but becomes less likely to affect them in the light-shaded areas where only one good
is very valuable—compare panels (a) and (b). Undersaving also occurs in these states,
however. To curb it, the planner prefers not to use f for weak biases, but she can add a
budget bi for each good that binds when f does not (as in panel (b)). This bi will curb
undersaving when the marginal rate of substitution between good i and j is very high,
and despite distorting c, it benefits the planner.

Consider now Proposition 2. Its proof hinges on showing that, no matter how the
planner combines savings floor and budgets, she never lets the doer save less than sp.30

Intuitively, if plan B allows this, then raising f up to sp uniformly improves the planner’s
payoff with regard to savings. Now recall that all goods are normal. Therefore, the
resulting lower spendable income renders the budgets of B (if any) less likely to bind and
hence distort c. Thus, the planner also gains on this front.

28See Lemma 9 in the Online Appendix.
29See Example 10.6 in the Online Appendix.
30See Lemma 7 in the Appendix.
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Figure 2: Optimal Delegation Policy – Intuition

We can now see the intuition behind Proposition 2. When β is sufficiently small, the
doer wants to save less than sp, no matter what information he observes. Hence, when a
budget forces him to consume less of good i, he reallocates all the unspent money across
the other goods, but not to savings. Since binding budgets distort c, they cannot benefit
the planner if they do not increase s. This logic also leads to the following observation,
which is useful to immediately identify certain plans as strictly suboptimal.
Remark 2. Suppose that B ∈ B involves binding budgets and always induces the same
level of savings, say s′. Then B is strictly dominated by a plan which imposes only f = s′.

Concretely, suppose we observe a household that uses budgets which always bind, thereby
resulting in the same level of savings. According to this model, we can immediately
conclude that the household’s plan is suboptimal.

Corollary 1 offers insights into how reducing uncertainty on intratemporal trade-
offs affects the optimal plans. Shrinking the range of the doer’s information on those
trade-offs—without changing that on the intertemporal trade-off (θ)—expands the set of
strong biases for which optimal plans use only f . This is because budgets are useful to
curb undersaving in states with large asymmetry in the goods’ marginal utilities (recall
Figure 2). Thus, shrinking the range of this asymmetry reduces the scope for budgets to
be used. One may wonder what happens in the limit when uncertainty is only about θ,
but consumption continues to involves multiple goods. Do optimal plans always use
only f? If not, under which conditions? Section 5 will provide the answer.

As should be expected, the weakest bias for which optimal plans include good-specific
budgets depends on the details of the setting at hand. As β falls below β∗, for any B
it increases the probability that the doer ends up in a state where he is constrained by
B’s actual lower bound on savings, which prevents them from falling below some level
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σ ≥ sp. Since in these states binding budgets only create inefficiencies, their appeal for
the planner falls accordingly. How she balances the inefficiencies in those states with the
budgets’ benefits in other states ultimately depends on their distribution G. Nonetheless,
since she can always set f = σ, for biases below some level β̂ ≥ β∗ every optimal plan
will again involve only f .

One may think that these results are driven by the fact that good-specific budgets and
the savings floor are substitute tools—in the sense that, everything else equal, optimal
plans set a slacker floor when they can also use budgets. The interaction between these
tools is more subtle. By curbing undersaving in some states, binding budgets lower the
return of tightening f to affect the doer’s behavior in those states, which can result in
a slacker f . At the same time, however, the budgets also lower the return of loosening
f because they prevent the doer from consuming efficiently the extra spendable income,
which can result in a tighter f . Therefore, when individuals can freely combine specific
budgets and a savings floor, it is not possible to conclude that the floor’s level varies
monotonically with the intensity of present bias.

The prediction that good-specific budgets are part of an optimal commitment plan
only for weak present biases is consistent with the qualitative findings in Antonides et al.
(2011) on which kind of people adopt budgeting, discussed in the introduction.31 One
might wonder whether the finding that strongly present-biased individuals seem to not
use budgets simply indicates that such individuals are less sophisticated or less able
to commit than others. First, severe naiveté seems an implausible assumption in the
settings considered here: For similar settings (of course with many periods), Ali (2011)
concludes that an individual should learn his true bias through experimentation. Second,
we saw that once a strongly biased individual can rely on a savings floor, the reason why
good-specific budgets do not work for him is not that he cannot honor them: Even if
he could, a simple economic logic shows that using them would strictly lower his utility.
Finally, as long as an individual can commit to some degree of budgeting—however
small—the theory in this paper predicts that partial naiveté can actually result in him
setting up good-specific budgets.32 Intuitively, by underestimating his bias the individual
may incorrectly think ex ante that he faces the situation represented in Figure 2(b) (as
opposed to (a)). In this case, he concludes that he strictly benefits by combining a savings
floor with whatever budgets he can stick to.

More generally, allowing for partial naiveté would not change the message of the paper,
since the entire analysis is from the ex-ante viewpoint of the planner. As noted, a naive
individual may set up good-specific budgets ex ante only to realize, ex-post, that he should
have used only a savings floor. Therefore, in the present model naiveté can be detrimental
to the extent that it also leads individuals to adopt forms of commitment that rely on
consumption distortions where there should be none. This does not mean, however, that
naive individuals should be prevented from using budgets: Although ex ante they choose

31Note that Antonides et al. (2011) do not report evidence regarding how stringent budgets or floors
are in relation to the intensity of present bias. For that matter, the present theory suggests that the
relationship need not be monotonic. It would be interesting to run additional experiments designed
specifically to test the theory in the present paper.

32Partial naiveté can be modeled as in O’Donoghue and Rabin (2001), for example.
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a commitment plan that is strictly dominated (from the analyst’s viewpoint), ex post the
budgets may still provide some benefit in curbing the consequences of present bias. In
this case—and especially in the leading case of sophistication—helping individuals stick
to their voluntarily chosen budgets as well as savings floors can result in long-run welfare
gains.

4.4 Budgets with Savings Floor or Only Budgets?

This section examines whether optimal commitment plans always involve a binding sav-
ings floor. While this is the case in settings with a single consumption good,33 with
multiple goods there exist both settings in which the planner combines good-specific
budgets with a savings floor and settings in which she uses only the budgets. To
show this, throughout this section we will focus on the following symmetric model: Let
u1(c; r) = u2(c; r) = r ln(c), r1 = r2 = r > 0, r1 = r2 = r > r, and v(s) = ln(s).34

To develop the intuitions, we will first consider a setting with three states and later
extend the results to the general setting. Let ω0 = (θ, r1, r2), ω1 = (θ, r1, r2), and
ω2 = (θ, r1, r2), whose respective probabilities are g, 1

2
(1 − g), and 1

2
(1 − g). Remark 1

and symmetry imply that

sd(ω0) < sd(ω1) = sd(ω2), cd1(ω
2) = cd2(ω

1) < cd1(ω
1) = cd2(ω

2), cd1(ω
0) = cd2(ω

0);

similar properties hold for (cp, sp). By continuity, there exist β < 1 sufficiently high so
that sd(ω1) = sd(ω2) > sp(ω0); hereafter, fix β at such a value. There also exists θ < θ
sufficiently close to θ so that cp1(ω1) > cp1(ω

0) and cp2(ω
2) > cp2(ω

0). Figure 3(a) represents
such a situation, focussing on consumption as in Figure 2. Concretely, we can think
about this situation in the following terms. Imagine that Bob enjoys dining out (c1) and
live music (c2). In a given period, his best friend Ann may visit him (θ) or not (θ). If on
his own, depending on the circumstances Bob prefers either to dine at a fancy restaurant
with a piano bar (in ω1) or to grab a quick sandwich and attend a great concert (in ω2).
By contrast, when Ann is in town, Bob prefers to combine a good restaurant with a good
concert (in ω0), caring more about her company.

Letting g be the only free parameter, we obtain the following.

Proposition 3. There exists g∗ ∈ (0, 1) such that, if g > g∗, then the optimal B ∈ B
satisfies f = sp(ω0), b1 = cp1(ω

1), and b2 = cp2(ω
2).

The intuition is as follows. If Bob knew Ann was not visiting, he could set f so as to elim-
inate splurging in both ω1 and ω2—this f corresponds to the dotted line in Figure 3(a).
However, such an f is too stringent if Ann visits. Therefore, if Bob assigns high probabil-
ity to her visit, ex ante he views setting f high enough to affect his choices in ω1 and ω2

as too costly, and hence prefers f = sp(ω0). This f grants full discretion in ω1 and ω2.
In these states, however, by the same logic of Lemma 6 Bob can curb his undersaving by

33See Proposition 2 and 10 in Amador et al. (2006).
34The function ln(·) violates the continuity and differentiability assumptions of Section 3 at 0, but

this is irrelevant for the analysis.
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Figure 3: Three-State Example (cdi = cd(ωi) and cpi = cp(ωi))

setting good-specific budgets; moreover, here he can do so without affecting his choice
in ω0. The specific levels of b1 and b2 are just a byproduct of logarithmic payoffs.

A simple change of the previous setting suffices to show that optimal plans can involve
only good-specific budgets. Fix g > g∗ and all the other parameters, except θ. If we
increase θ, both selves want to consume more of each good in ω0. This eventually leads
to a situation as in Figure 3(b), where cp1(ω

0) > cp1(ω
1) and cp2(ω

0) > cp2(ω
2). Continuing

our story, suppose that now, when she visits, Ann always insists on going to the very
best restaurants and concerts and Bob caves in.

Proposition 4. There exists θ
′ such that in the optimal B ∈ B both b1 and b2 bind, but

f never binds. In particular, the optimal B satisfies b1 = b2 and cpi (ω
i) < bi < cpi (ω

0) for
every i = 1, 2.

Figure 3(b) helps us see the intuition. Now Bob is willing to spend more on both goods
when Ann is in town than when she is not. Therefore, the optimal budgets that he would
set to curb splurging in ω1 and ω2 already create an aggregate limit on consumption
which binds in ω0. As a result, Bob wants to relax such budgets; and if his first-best
consumption in ω0 is not too high, he may be able to keep them sufficiently low so as
to continue to curb splurging in ω1 and ω2. Since these budgets already push savings
above the first-best level in ω0, Bob cannot benefit by adding a binding f . Note that,
although Proposition 3 and 4 are intuitive, it takes some work to rule out the possibility
of multiple, perhaps asymmetric, optimal plans featuring different properties from those
stated in the propositions.35

35Some readers may wonder whether, with finitely many states, the planner could do better by defining
the doer’s choice set directly as a list of fully specified allocations, one for each state (for example, as the
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It remains to argue that the qualitative properties of the plans in Propositions 3 and 4
can arise in settings with a continuum of states. This should be the case if the planner
assigns sufficiently high probability to states that induce trade-offs similar to those in ω0,
ω1, and ω2. Corollary 2 in the Online Appendix formalizes and confirms this idea. One
comment is in order for Proposition 4. In contrast to the three-state setting, now there
will always be a set of states with positive probability where the optimal b1 and b2 do
not affect the doer’s choices. On the one hand, marginally increasing f above 1− b1 − b2
would curb undersaving in those states. On the other hand, doing so would force the
doer to save a bit more in states similar to ω0 than the level induced by b1 and b2, which
already exceeds the first best. Both effects cause first-order changes in the planner’s
payoff, but one can show that the latter dominates if she cares enough about the states
similar to ω0.

To sum up, a weakly present-biased individual may adopt plans that involve only
good-specific budgets for the following reasons. First of all, to limit undersaving in
states with large asymmetry in consumption marginal utilities she prefers to use the
budgets rather than a savings floor, since the latter would have to be too stringent.
Together the budgets then impose a cap on total expenditures. If this cap already
ensures that her savings will be sufficiently high in states where present consumption
is very valuable overall, then any binding floor will have to cause additional oversaving
(recall that for every optimal plan s exceeds sp) and this inefficiency can dominate the
floor’s commitment benefits.

5 The Role of Uncertainty about Intratemporal Trade-
offs

The previous results illustrate how the multiplicity of consumption goods and the un-
certainty about intratemporal trade-offs can render good-specific budgets useful commit-
ment tools. This section further demonstrates that such uncertainty plays a key role
in explaining budgeting and disentangles this role from the multidimensionality of con-
sumption. To this end, it shuts down that uncertainty, while keeping multiple goods and
uncertainty about the intertemporal utility trade-off. In this case, as we will see, most
of the time the optimal plan will involve a savings floor but no good-specific budgets.

For the sake of the argument, imagine that now the planner observes the component r
of the state (but not θ) before designing her plan, while only the doer continues to observe
the whole state (θ, r). We can then examine the planner’s problem defined by (1) and (2)
treating r as fixed. Thus, hereafter we will omit r and let G denote the distribution of
θ ∈ [θ, θ]. For this section, we will assume that G has a density function g which is strictly
positive and continuous on [θ, θ]. We will proceed in two steps. The first shows that, in
this setting, it is possible to focus on commitment plans which regulate only savings and

range of (cp, sp) itself). First, such a plan would induce the doer to implement the first best only if his
present bias is sufficiently weak; the logic is the same as that of Proposition 1 in Amador et al. (2006).
Second, in real settings, which probably involve many goods and states, commitment plans of this form
can become very complicated and (perhaps for this reason) people do not seem to adopt them.
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total consumption expenditures, but not how expenditures are divided between goods.
Thus, the multidimensionality of consumption becomes irrelevant. Given this, the second
step argues that plans which use only a savings floor are optimal.

The logic behind the first step is as follows. Recall that budgets curb the doer’s
tendency to undersave by forcing him to choose inefficient consumption bundles, thereby
lowering the utility he can get from the income he does not save, 1−s. However, another
method to lower this utility is simply to not let the doer spend all of 1 − s. In the
literature, this is called “money burning.”36 Burning part of 1 − s and spending the
rest efficiently can achieve any utility level obtained by spending 1 − s inefficiently: If
we let u∗(y) be the indirect utility of spending y ∈ [0, 1], then for every c ∈ R2

+ there
exists y ≤ c1 + c2 that yields u∗(y) = u(c). When intratemporal trade-offs are uncertain,
the way in which the planner wants to “punish” the doer for undersaving depends on
the configuration of those trade-offs, holding fixed the actual level of savings. Instead
without that uncertainty, there is only one optimal punishment and this punishment can
always be achieved with money burning, provided that it can flexibly depend on the level
of savings. This requires allowing for more general commitment plans than the simple
budgeting plans B. Formally, let F tc be the set of feasible allocations defined in terms of
total consumption y and savings s:

F tc = {(y, s) ∈ R2
+ : y + s ≤ 1}.

Given an arbitrary subset Dtc ⊂ F tc, for each θ the doer maximizes θu(c)+βv(s) subject
to c1 + c2 ≤ y and (y, s) ∈ Dtc.

Lemma 2. Suppose information affects only the intertemporal utility trade-off. There
exists an optimal D ⊂ F with U(D) = U∗ if and only if there exists an optimal Dtc ⊂ F tc

with U(Dtc) = U∗.

Thus, when uncertainty is only about the intertemporal trade-off, whether consumption
involves one or multiple goods is irrelevant, as long as we allow for general commitment
plans.

What is more remarkable is that, under some simple conditions, the multidimension-
ality of consumption is irrelevant even when the planner can use only budgeting plans—in
fact, only minimum-savings rules. To derive this second step, note that since the con-
straint c1 + c2 ≤ y will always bind for the doer, by Lemma 2 the planner’s problem
becomes to choose Dtc ⊂ F tc so as to maximizeˆ θ

θ

[θu∗(y(θ)) + v(s(θ))]g(θ)dθ

subject to
(y(θ), s(θ)) ∈ argmax

(y,s)∈Dtc
{θu∗(y) + βv(s)}, θ ∈ [θ, θ]. (3)

36One way to do this is to commit to some charitable donations and link their amount to the level
of savings. For such donations to qualify as “money burning,” they should not be an argument of the
individual’s utility function (for example, through altruism). Besides Amador et al. (2006), papers that
study money burning in delegation problems include Ambrus and Egorov (2009), Ambrus and Egorov
(2013), Amador and Bagwell (2013a), Amador and Bagwell (2013b).
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This problem coincides with that studied by Amador et al. (2006). To better understand
its solution, it is helpful to follow their analysis and rewrite the problem into an equivalent
formulation which (up to an additive scalar that is not essential at the moment) states
the planner’s objective as ˆ θ

θ

H(θ)u∗(y(θ))dθ,

where
H(θ) = 1−G(θ)− (1− β)θg(θ), θ ∈ [θ, θ].

To see what H(θ) captures, ignore feasibility and suppose that the planner lets the doer
spend a bit more in state θ. To keep his payoff unchanged in θ—so that he does not
pick another allocation—she also has to make him save a bit less. Overall this change
harms the planner when θ occurs, because she cares more about savings. This explains
the term −(1 − β)θg(θ). The new allocation in θ becomes more attractive for the doer
when he values present utility more, that is, in all states θ′ > θ whose mass is 1−G(θ).
To keep his behavior unchanged in those states, the planner can induce him to save more,
which is exactly what she wants. This explains the term 1−G(θ).

The solution to the planner’s problem hinges on the following condition, where θ∗ is
defined as

θ∗ = min
{
θ ∈ [θ, θ] : ∫ θθ′H(θ̂)dθ̂ ≤ 0 for all θ′ ≥ θ

}
. (4)

Condition 1. The function H is non-increasing over [θ, θ∗].

Also, let
Dtc(θ∗) = {(y, s) ∈ F tc : s ≥ sd(θ∗)},

which is essentially a plan that involves only the savings floor f = sd(θ∗).

Proposition 5 (Amador et al. (2006)). The plan Dtc(θ∗) is optimal among all subsets
of F tc if and only if Condition 1 holds.

As Amador et al. observed, many distributions—especially those commonly used in
applications—satisfy Condition 1 for all β ∈ [0, 1]. More generally, if the density g
is uniformly bounded away from 0 and changes at a bounded rate, then Condition 1 al-
ways holds when the doer’s bias is sufficiently weak (high β).37 It is worth noting that, by
Proposition 1, weak biases characterize those environments with uncertain intratemporal
trade-offs where good-specific budgets improve on plans using only a savings floor.

For the sake of completeness, consider briefly the case in which Condition 1 fails.
Intuitively this happens if, for instance, the density g suddenly drops over some interme-
diate interval (θ1, θ2) of states. Amador et al. (2006) argue that in this case the planner
may have to rely on money burning: Roughly speaking, this deters the doer from un-
dersaving when θ < θ1 by pretending that θ is in (θ1, θ2). Proposition 7 in the Online
Appendix shows that the planner can exploit the multidimensionality of consumption
to replace money burning (sometimes entirely) with rules that force the doer to choose
inefficient bundles. This may contribute to explaining why in reality we see less money

37Condition 1 is not necessary for the optimal B ∈ B to involve only a floor f because plans that
improve on Dtc(θ∗) may lie outside B (cf Amador et al. (2006) for an example).

22



burning than we might expect. Distortionary restrictions on consumption can entirely
replace money burning if, for instance, zero consumption of some good is very inefficient
and leads to a sufficiently low utility. Examples of such goods may include one’s favorite
drink or food, or going out with friends. One way to implement the necessary distortions
in consumption is again to use good-specific budgets, which however may now have to
vary based on how much the doer saves.

In summary, this section shows that uncertainty about intratemporal trade-offs plays
a crucial part in the explanation of why people may find good-specific budgets useful
commitment tools. This together with Corollary 1 suggests that the phenomenon of
budgeting should be more prominent in settings where that type of uncertainty is partic-
ularly strong. Perhaps, this is the case for younger households with children in the early
stages of their life, than for older households who settled down and whose children left
home. Another relevant dimension may be the time horizon of reference: A month may
entail more uncertainty than a week and this may lead people to set monthly, but not
weekly, budgets.

6 Extensions

6.1 Non-Additively-Separable Utilities

To stress the role of the resource constraint in linking dimensions of the doer’s choice and
to focus on the core message of the paper, interactions between goods at the preference
level were ruled out by assuming an additive consumption utility. This assumption can
be relaxed without changing that message. Continue to assume that u(c; r) is strictly
concave in c for all r and twice differentiable with continuous uci(c; r) > 0 and ucicj(c; r)
in both arguments for all i and j. We saw that good-specific budgets help the planner
curb the doer’s undersaving if (a) they increase savings and (b) there exist states which
call for high consumption of some good, but not of all goods. Property (b) holds if
some good is a sufficiently strong substitute of all other goods. Property (a) holds if
the capped good is a Hicks substitute of savings (Howard (1977)); in general, such a
good always exists (Madden (1991), Theorem 2). As noted, however, a budget has to
curb undersaving faster than it may exacerbate overspending on other goods, for it to
benefit the planner. Given space constraints, we state these properties directly in terms
of allocations.

Condition 2. Both (cp, sp) and (cd, sd) are interior for every state. Both sp and sd are
strictly decreasing in θ and ri for i = 1, 2. There exists some good j which satisfies the
following: (1) cpj and cdj are strictly increasing in θ and rj and decreasing in ri for i ̸= j;
(2) there exists ε > 0 such that, for every budget bj < maxω cdj (ω), the doer’s optimal
allocation (c∗, s∗) subject to plans involving only bj satisfies

s∗(ω)− sd(ω) ≥ ε[cdj (ω)− c∗j(ω)], for all ω ∈ Ω.

The Online Appendix presents an example which satisfies Condition 2.
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To state the next result, consider a more general class of budgeting plans, denoted
by B, which allow the planner to also set good-specific floors and a savings cap: Such a
plan is defined as

B = {(c, s) ∈ F : f0 ≤ s ≤ b0, f1 ≤ c1 ≤ b1, f2 ≤ c2 ≤ b2}, (5)

where fi, bi ∈ [0, 1] satisfy fi ≤ bi for i = 0, 1, 2 and f0 + f1 + f2 ≤ 1.

Proposition 6. Under Condition 2, there exists β∗ ∈ (0, 1) such that, if β > β∗, then
every optimal B ∈ B must use distorting good-specific restrictions.38

The proof is omitted, because using Condition 2, one can adapt the proof of Lemma 6 and
Proposition 1 to show that plans which use only f0 are strictly dominated for sufficiently
weak biases. Since imposing a binding b0 is never optimal, the result follows.

Do optimal good-specific restrictions always take the form of budgets? In general, the
answer depends on the substitutability and complementarity between goods and between
each good and savings, which can be affected by the plan restrictions themselves. A
sufficient condition for optimal plans to never use good-specific floors is that all goods are
Hicks substitutes and collectively sufficiently normal (see Ellis and Naughton (1990) for a
formal statement of this property). Under this condition, by Theorems 3 and 4 of Madden
(1991) two goods remain substitutes independently of which goods are restricted, and
Ellis and Naughton’s (1990) analysis implies that, given any set of binding good-specific
floors, relaxing them increases savings. Hence, since those floors distort consumption,
they strictly harm the planner. The property that optimal plans can involve only good-
specific budgets holds for the example presented in the Online Appendix.

6.2 General Commitment Plans

Motivated by the phenomenon of personal budgeting, the paper has focused on the class
of commitment plans B. From a normative perspective, one may wonder how the best
among all conceivable plans looks like and whether, perhaps in some cases, it belongs to
B. Answering these questions is obviously important; unfortunately, it is also hard in the
presence of multidimensional consumption and information. In general, a commitment
plan can be any D ⊂ F from which the doer is allowed to choose an allocation. The
problem is then to find a D ⊂ F that maximizes the planner’s expected utility from the
doer’s resulting choices. The usual mechanism-design approach is to turn this problem
into an equivalent problem of finding an optimal direct mechanism, which consists of an
incentive-compatible and resource-feasible allocation function of the state. The latter
problem is usually easier, but in the present setting, it remains intractable.

The main challenges come from the combination of the income constraint with the
complexity of the incentive constraints. It is well-known that, with multidimensional
types, one cannot focus on local incentive constraints—even if the doer cannot benefit
from misreporting his information locally, he may benefit from global misreports to the

38Existence of an optimal B can be established along the lines of the proof of Lemma 1.
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planner’s mechanism. One can try to apply the insights of the literature on multidi-
mensional screening (cf Rochet and Stole (2003) for a survey) to the present problem,
but substantive differences preclude this. First, in screening problems the mechanism
designer can use transfers. Here, one can view the expected continuation utility from
savings as a transfer and use Rochet and Choné’s (1998) dual approach to simplify the in-
centive constraints and the planner’s objective. But the state-wise income constraint, the
second key difference from screening problems, cannot be simplified. General techniques
exist for handling such constraints (for example, Luenberger (1969)). Unlike in the case
of unidimensional consumption (Amador et al. (2006)), however, here those techniques
do not help to characterize the optimal mechanisms, which requires to jointly deter-
mine the mechanism and the state-wise Lagrange multiplier for the income constraint.
The solution need not follow the logic of the unidimensional case or of multidimensional
screening, for which we know that solutions rarely exist in closed form and tend to have
quite intricate structures even for simple settings.

Despite the loss of generality, the class of “interval plans” B (or B) remains of in-
terest for several reasons. First, B is not fully general even in unidimensional settings,
but in these settings, under weak conditions there exist optimal D ⊂ F which belong
to B (Amador et al. (2006)).39 Hence, B represents a natural starting point to analyze
multidimensional settings. Second, in his seminal work on delegation problems—which
formally include the planner’s problem—Holmström (1977) noted that “one might want
to restrict D to [...] only certain simple forms of [policies], due to costs of using other
and more complicated forms or due to the fact that the delegation problem is too hard to
solve in general.” In his unidimensional settings, Holmström (1977) focused on interval
policies, because they “are simple to use with minimal amount of information and mon-
itoring needed to enforce them” and “are widely used in practice.” In a similar spirit,
discussing multidimensional delegation, Armstrong (1995) acknowledged that “in order
to gain tractable results it may be that ad hoc families of sets such as rectangles or circles
would need to be considered” (p. 20, emphasis in the original). Finally, for consumption-
savings problems, Thaler and Shefrin (1981) argued that commitment “rules by nature
must be simple.” Simplicity is a property of budgeting plans, which also makes it eas-
ier for people to stick to them40 and for third-party providers to market devices that
implement them.

It may be worth considering other subclasses of commitment plans. The task, how-
ever, will be to identify classes which not only are sensible, but also have enough structure
to render the search of an optimal plan tractable. For instance, one may consider com-
mitment plans defined by a binding boundary that smooths the kinks created by the
budgets and the savings floor in Figure 2(b). However, it is not obvious how to mathe-
matically describe such a class and optimize over it. It is also not immediate that this
class contains the overall optimal plan, because such a plan may involve interior bunching
regions as it often happens in multidimensional screening problems (Rochet and Choné

39Alonso and Matouschek (2008) and Amador and Bagwell (2013b) provide conditions for interval
policies to be globally optimal in other delegation settings with unidimensional decisions and information.

40Benhabib and Bisin (2005) provide a rationale for why people may prefer simple commitment rules,
based on higher psychological costs of complying with complex rules.
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(1998)). Finally, it may be hard for individuals to implement such complex plans, even
with the help of third-party commitment devices.

6.3 Multiple Goods in Each Period

It is straightforward to generalize the model of Section 3 so that the individual consumes a
bundle of multiple goods in each period. Suppose that the function u(c; r) now represents
the consumption utility of both the planner and the doer in each period, where r continues
to represent the information affecting the intratemporal trade-offs. A state now includes
the realization of r in period 2 and so is given by (θ, r1, r2), where the superscripts refer
to the time period. In period 1, for each state the planner and the doer evaluate streams
(c1, c2) using respectively the utility functions

θu(c1; r1) + u(c2; r2) and θu(c1; r1) + βu(c2; r2).
The set of feasible allocations in period 1 and in period 2 are

F = {(c1, s) ∈ R3
+ : c1 + c2 + s ≤ 1}

and
F (s) = {c2 ∈ R2

+ : c1 + c2 ≤ s}, s ∈ [0, 1].

The family of budgeting plans for period 1, B1, is the same as B defined in Section 3.
For period 2, a budgeting plan is defined as

B2 = {c ∈ F (s) : c1 ≤ b1, c2 ≤ b2},
where b1, b2 ∈ [0, 1].

As before, only the doer observes the state in each period. The timing changes as
follows. In period 1, first the planner commits to a plan B1, then the doer observes
(θ, r1) and implements some allocation from B1. Given the chosen s, in period 2, first
the planner commits to a plan B2, then the doer observes r2 and implements some
allocation from B2. As Halac and Yared (2014) showed, information persistency over
time plays an important role in consumption-savings problems with imperfect self-control.
However, to keep things simple, assume that here information is not persistent: r2 is
independently distributed from (θ, r1) according to the full-support probability measure
G2 over the space Ω2 = [r1, r1] × [r2, r2]. Note that the timing involves the assumption
that the individual has the power to commit within a period, but not across periods.
This assumption is not innocuous, even without information persistency: By committing
in period 1 to how B2 will depend on the chosen (c1, s), the planner may be able to
manage the doer’s bias in more effective ways. We will come back to this in Section 6.4.

Under these assumptions, it is easy to see that the planner will grant the doer full
flexibility in the last period. The reason is twofold: First, in period 2 both selves have
the same preferences; second, in period 1 the planner cannot commit to curtailing the
doer’s flexibility in period 2, so as to reward or punish his decisions in period 1. Formally,
for every s inherited from period 1, the plan B2 = F (s) is optimal in period 2. Because
of this, we can define the period-1 utility from savings v : [0, 1] → R by

v(s) =

ˆ
Ω2

[
max

c∈F (s)
u(c; r)

]
dG2(r). (6)
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This function satisfies some useful properties—summarized in Lemma 10 in the Online
Appendix—which lead to the same analysis as in the simpler model used throughout the
paper.

6.4 Multi-Period Commitments

Consider now a model in which consumption involves multiple goods in each period (as
in Section 6.3) and information is not persistent, but the planner can commit in period
1 to the plans she will impose in period 2. In principle, by linking her period-2 plan to
the doer’s entire choice in period 1, (c1, s), the planner could use future punishments and
rewards to better discipline him in the present; moreover, she could do so in ways that
are suboptimal ex post.

For such a model, one-period commitments entail no loss of generality if in each
period plans can be any set D of feasible allocations. This depends on two things (cf
also Amador et al. (2003)): (a) such plans can flexibly regulate how much the doer is
allowed to save, possibly via money burning; (b) information is not persistent over time.
To see this, imagine that for some (c1, s) the planner sets D(c1, s) ⊊ F (s) to punish the
doer in period 1. By (b), both selves assign the same expected payoff to D(c1, s), which
lies in the interval [u(0), v(s)]. Therefore, the planner can replace every (c1, s) in her
period-1 plan with (c1, s′) and D(c1, s) with F (s′) for some s′ ≤ s—by (a)—so that she
and the doer get the same payoff from (c1, s) and (c1, s′) for every state; it is then optimal
for the doer to pick (c1, s′) whenever he was choosing the corresponding (c1, s), thereby
producing the same overall payoff for the planner. This is because the doer’s expected
payoff from D(c1, s) does not depend on his period-1 information—by (b)—and hence
cannot be used, in addition to c1 itself, to incentivize him to pick (c1, s) in some states
but not in others. This point about one-period commitments is related to the finding
in models with unidimensional consumption that the ex-ante and sequentially optimal
plans coincide under non-persistent information (Amador et al. (2003, 2006)), but differ
under persistent information (Halac and Yared (2014)). Lack of information persistency,
however, is only part of the story here; property (a) also plays a key role, as it gives great
flexibility in managing continuation payoffs using one-period commitments. For instance,
Breig (2015) studies another class of dynamic delegation problems with non-persistent
information where ex-ante optimal mechanisms differ from the sequentially optimal ones.

If the planner can use only budgeting plans in B, the inability to commit for fu-
ture periods may prevent her from achieving higher payoffs. This is because B violates
property (a). Note, however, that in settings where information is not persistent and
affects only the intertemporal trade-off, weak conditions ensure that the sequentially op-
timal, unrestricted, plans D take the form of a minimum-savings rule in each period.41

Therefore, the main messages of the paper regarding good-specific budgets is unaffected.
Furthermore, if in the present model the ex-ante optimal budgeting plans differed from
the sequentially optimal ones, the substantive cause would again be the uncertainty about

41Amador et al. (2003) show this for the case of unidimensional consumption and the result can be
extended to the case of multidimensional consumption using the ideas in Section 5.
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intratemporal trade-offs.

6.5 Multiple Future Periods

Not surprisingly, extending the model beyond two periods adds intricacies to the analysis,
which however do not distinguish this paper from the literature. The following are the
most substantive.

When the future has multiple periods, the expected continuation utility from sav-
ing, v, depends on the future commitment plans as well as the intensity of present
bias, β. In each period (except possibly the last one), the planner commits to plans
that curtail the doer’s discretion and hence influence the value of entering that period
with savings s. Such a value also depends on β, as β affects the chosen plan as well as the
doer’s behavior. The dependence on β of the marginal value of having one extra dollar
next period ultimately affects the planner’s desire to curb undersaving in this period: A
stronger bias induces the doer to undersave more in the present, thereby strengthening
that desire; at the same time, it may also reduce the marginal value of savings—due to
worse future allocations—thereby weakening that desire.

Nonetheless, optimal budgeting plans should continue to involve good-specific bud-
gets for sufficiently weak biases, but only a savings floor f for sufficiently strong biases.
Consider any intermediate period. Intuitively, for β close to 1 the planner should again
want to set a very slack f when this is the only tool available. Such an f would again
grant the doer full discretion in states that call for high consumption of only some good.
In this case, setting a good-specific budget strictly improves on using only f for the same
reasons highlighted above. On the other hand, for β close to zero budgets cannot increase
savings but distort consumption; hence, plans which use budgets are strictly dominated
by those which use only f .

A second issue, discussed also by Amador et al. (2003), is that an infinite-horizon
model may have multiple equilibria of the game between the individual’s selves. This
issue is well-known and orthogonal to the message of the present paper. The point
remains valid that distorting restrictions on consumption (on top of savings restrictions)
can be useful tools to discipline the doer. Such distortions should therefore appear as a
novel feature in at least some equilibria of the multi-self game.

7 Other Applications
The insights offered by the planner-doer problem can be applied to other settings. For
these applications the theory can assume a more normative flavor, while keeping in mind
the limitations of the simple class of budgeting policies considered in this paper.

Public Finance. Consider first a public-finance application along the lines of Halac
and Yared (2014). In each period, a government chooses how much to spend on a list of
public goods and services, c, and how much to save or borrow, s, subject to the constraint
given by the tax revenues. The government may exhibit present bias as a consequence of
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aggregating the preferences of heterogeneous citizens (Jackson and Yariv (2015)) or due
to uncertainty in the political turnover (Aguiar and Amador (2011)). For this setting, the
theory developed in Section 4 can explain why governments often set limits on borrowing
(for example, via budget-deficit ceilings), but also specific limits on some good or service
expenses (for example, via fiscal budgets). The theory shows when and why combining
deficit ceilings with fiscal budgets can dominate policies that rely only on the ceilings. At
the same time, it shows that fiscal budgets are no free lunch: They can cause inefficiencies
in public spending, which however play a key role in curtailing overborrowing. Of course,
fiscal budgets can just be part of accounting techniques. This theory, however, adds a
different perspective on the functions that such budgets can have.

More generally, the problem studied in this paper can be viewed as an instance of
a multidimensional delegation problem where a principal delegates to a better-informed
agent the allocation of a finite amount of resources (money or time) to multiple categories
of expenditures. Also, it is not essential that the consequences of the agent’s allocation
happen at different dates: They can all happen within the same period, and the conflict
of interest between the principal and the agent need not stem from time preferences. The
following situations illustrate this.

Corporate Governance. The owner of a company appoints a manager, who each
period decides how to allocate some total resources between spending on sales activities, y,
and investment in R&D, x0. The company sells two products and the manager also
chooses which share of y goes to promoting which product (x1 and x2). Let F = {x ∈
R3

+ : x0+x1+x2 ≤ 1} be the set of all feasible allocations. The manager privately observes
information on the returns to marketing each product and from investing in R&D. Let
this information be represented by state ω = (ω0, ω1, ω2), where 0 < ωi ≤ ωi ≤ ωi < +∞
for all i. Finally, as a result of compensation schemes or career goals, the manager may
care more or less about cash flows—and hence about sales vs. R&D—than does the
owner.

We can express the owner’s problem of delegating to the manager the allocation of
resources as follows: Choose D ⊂ F to maximize

U(D) =

ˆ
Ω

[ω0u
0(x0(ω)) + ω1u

1(x1(ω)) + ω2u
2(x2(ω))]dG(ω) (7)

subject to

x(ω) ∈ argmax
x∈D

[
βω0u

0(x0) + ω1u
1(x1) + ω2u

2(x2)
]
, ω ∈ Ω. (8)

The parameter β > 0 represents the conflict of interest between parties. Note that, as
in the main model the planner and the doer disagreed on the importance of consuming
vs. savings within each period, here the owner and the manager disagree regarding the
importance of sales vs. R&D activities; but given R&D investment x0, they agree on how
to divide the remaining resources to promote each product.

To illustrate, suppose that the manager undervalues R&D (that is, β < 1) and that
delegation policies are restricted to B. This paper suggests that to best incentivize the
manager, the owner may have to impose limits on how much can be spent each period on
promoting specific products, possibly in addition to requiring a minimum investment in
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R&D. Due to these limits, the manager may end up promoting some product too little
and the other too much. This, however, is a risk the owner should take, as it is more
than compensated in expectation by better allocations to R&D. A detailed budget plan
with rules applying to specific products is more likely to benefit the owner when she
agrees sufficiently with the manager on how important R&D is. This may be true, for
instance, if the manager himself has significant stakes in the company. Otherwise, the
owners should simply demand only a minimum investment in R&D.

Fiscal-constitution Design. Society delegates a government to divide the economy
resources between private consumption, x0, and public spending, y. The government in-
corporates the preference of a representative agent in society, but is biased in favor of
public spending (β < 1).42 This bias may depend on incentives created by political insti-
tutions, for instance. The government spends y to fund two services (x1 and x2). Despite
its bias, at a first approximation it may not favor any service more than others, and thus
agrees with society on how to allocate any level of public spending between services.43

The government acts on non-contractible information, ω, which affects the social value
of each service (for example, the gravity of national-security threats or natural disas-
ters), as well as the overall trade-off between private consumption and public spending
(for example, the state of the business cycle). In this case, behind a veil of ignorance
society may want to design a fiscal constitution—a delegation policy D—that restricts
which allocations the government can choose. This problem can again be expressed by
(7) and (8).

Suppose society can choose only policies in B. The analysis shows that if the gov-
ernment’s bias is weak, then an optimal fiscal constitution must involve service-specific
spending caps. Such caps work because they cause inefficiencies in the composition of
public spending, thereby weakening the government’s desire to spend. But from society’s
viewpoint, these inefficiencies are more than compensated by the resulting higher level of
private consumption. On the other hand, if the government is strongly biased, the consti-
tution should involve only an aggregate spending cap (or a private-consumption floor).
This is because any binding specific cap distorts public spending without sufficiently
improving private consumption.

Workforce Management. An employer (she) hires a worker (he) under a contract
specifying a fixed wage and number of hours per workday. The worker performs two tasks
and chooses how to allocate time between them (x1 and x2). He can also take breaks,
represented by x0. The worker privately observes information on which task demands
more attention. Given this, the employer delegates to him his time allocation. However,
the worker weighs his break time more than does the employer (β > 1). Thus, she may
want to set up some rules to restrict his choices, modeled as a subset D of all feasible
time allocations. Expressions (7) and (8) again capture the employer’s problem.

Suppose that she can use only budgeting policies. An analysis similar to that above
42This hypothesis is supported by theoretical as well as empirical work in the political-economy liter-

ature (Niskanen (1975), Romer and Rosenthal (1979), Peltzman (1992), Funk and Gathmann (2011)).
43This property is arguably strong, but is consistent with some empirical evidence. For example,

Peltzman (1992) finds that U. S. voters penalize federal spending growth, but its composition seems
irrelevant, which suggests that “every extra dollar is equally bad.”
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leads to results in which caps and floors swap roles. A floor on task i induces the worker
to allocate less time to x0, but also less time to the other task. Nonetheless, if the
worker’s tendency to indulge in breaks is weak, an optimal policy must involve binding
task-specific floors. By contrast, if the worker’s bias is strong, the employer should
impose only a cap b0 on x0. In practice, it may be impossible to monitor the worker’s
breaks; however, b0 can be implemented via an overall minimum time that the worker
has to allocate to his tasks, which may be easier to monitor. The theory shows that the
possibility of monitoring each task individually may allow the employer to design strictly
superior policies by adding individual floors.

8 Concluding Remarks
This paper provides a theoretical analysis of the relationship between self-control prob-
lems and personal budgeting using a simple consumption-savings model which intro-
duces no “behavioral” or ad-hoc feature besides a standard form of present bias. Unlike
minimum-savings rules, good-specific spending caps help to curtail overspending because
they cause inefficiencies in consumption which lower the return from undersaving, thereby
counteracting present bias. Consequently, good-specific budgets are no free lunch and
are used only by consumers who are weakly biased and ex-ante uncertain about their
intratemporal trade-offs between goods. Those who are strongly biased or do not face
such uncertainty prefer to rely exclusively on a minimum-savings rule.

This theory offers solid insights into the subtle forces underlying a widely observed
phenomenon, which has far-reaching consequences for consumer behavior and welfare by
affecting demand in different ways from satiation and income effects and by significantly
contributing to households’ wealth accumulation. The theory matches existing empir-
ical findings, such as that many people set budgets for goods normally not viewed as
temptations and that only people who exhibit weak present bias seem to use budgets.
The theory also suggests new directions for enriching this limited evidence on personal
budgeting by demonstrating its key dependence on uncertain intratemporal trade-offs,
and for designing commitment devices whose functions are targeted to the right type of
present-biased individuals.

From a normative perspective, the paper does not show that optimal commitment
plans within the universe of all possible plans turn out to take the form of budgeting.
This result seems very unlikely to hold and was not the goal of the paper to begin
with. Technical difficulties aside, it seems more plausible that fully optimal plans are
quite complicated and sensitive to details of the environment. This complexity may
undermine an individual’s ability to stick to a plan and hence should be traded off
with its capacity of solving self-control problems. Analyzing this trade-off is beyond the
scope of this paper. In practice, individuals may have settled for personal budgeting
as a viable compromise based on robustness, learning, or some heuristics. Of course,
this explanation is less satisfactory for the application of the theory to other, formally
equivalent, delegation problems within organizations—which may, however, still value
simplicity. Future research may benefit from the insights of this paper to build a general
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normative theory of how to delegate multidimensional allocations of finite resources.

9 Appendix: Proofs

9.1 Proof of Proposition 1

The proof relies on the following four lemmas. Hereafter, for k = p, d, let sk = minω sk(ω) and
sk(ω) = maxω sk(ω).

For any floor f ∈ [sd, sp],44 denote by Bf the corresponding policy in B.

Lemma 3. Define Ω(f) = {ω ∈ Ω : sd(ω) ≤ f} and

cf (ω) = argmax
{c∈Rn

+:
∑n

i=1 ci≤1−f}
u(c; r), ω ∈ Ω.

The payoff U(Bf ) is differentiable in f over the domain [sd, sp] with

d

df
U(Bf ) =

ˆ
Ω(f)

[
v′(f)− θ

∂

∂ci
u(cf (ω); r)

]
dG,

for any i = 1, . . . , n.

Proof. For simplicity, let Ψ(f) = U(Bf ). Also, we will consider only f ∈ [sd, sp] without
repeating this every time. Given f and any ω, define

ũ(f ;ω) ≡ u(cf (ω); r) = max
{c∈Rn

+:
∑n

i=1 ci≤1−f}
u(c; r). (9)

and Ũ(f ;ω) = θũ(f ;ω)+v(f). Since u(·; r) is strictly concave in c, so is ũ(·; r) in f by standard
arguments. This implies that Ũ(·;ω) is also strictly concave in f .

Now consider the derivative of Ũ(f ;ω) with respect to f . Whenever it is defined, we have

Ũ ′(f ;ω) = θũ′(f ;ω) + v′(f).

The first-order conditions of the Lagrangian defining ũ(f ; r) say that ∂
∂ci

u(cf (ω); r) = λ(ω; f)
for i = 1, . . . , n, where λ(ω; f) is the Lagrange multiplier for the constraint

∑n
i=1 ci ≤ 1 − f .

Since cf (ω) is continuous in f for every ω, so is λ(ω; f) given our assumptions on u. By Theorem
1, p. 222, of Luenberger (1969), for every f ′, f ′′ ∈ (0, 1) we have

λ(ω; f ′)(f ′′ − f ′) ≤ ũ(f ′; r)− ũ(f ′′; r) ≤ λ(ω; f ′′)(f ′′ − f ′).

Continuity of λ(ω; ·) then implies that ∂
∂f ũ(f ; r) exists for every f ∈ (0, 1) and satisfies

∂

∂f
ũ(f ; r) = −λ(ω; f) = − ∂

∂ci
u(cf (ω); r).

Therefore,
Ũ ′(f ;ω) = v′(f)− θ

∂

∂ci
u(cf (ω); r), ω ∈ Ω. (10)

44Any other floor is dominated by one in this range.

32



For any f , denote by (cf , sf ) the doer’s behavior as a function of ω under policy Bf . Note
that (cf (ω), sf (ω)) is continuous in both f and ω by the Maximum Theorem. Since, given any
choice of s, the planner and the doer would choose the same c in every ω, by definition we have

Ψ(f) =

ˆ
Ω
Ũ(sf (ω);ω)dG.

Consider any f > f̂ and recall that Ω(f) = {ω : sd(ω) ≤ f}. Then,

Ψ(f)−Ψ(f̂) =

ˆ
Ω

[
Ũ(sf (ω);ω)− Ũ(sf̂ (ω);ω)

]
dG

=

ˆ
Ω(f)

[
Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

]
dG

=

ˆ
Ω(f)∩(Ω(f̂))

c

[
Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

]
dG

+

ˆ
Ω(f̂)

[
Ũ(f ;ω)− Ũ(f̂ ;ω)

]
dG.

where the second equality follows because sf (ω) = sf̂ (ω) for ω /∈ Ω(f) and sf (ω) = f for
ω ∈ Ω(f). Dividing both sides by f − f̂ , we get

lim
f↓f̂

Ψ(f)−Ψ(f̂)

f − f̂
= lim

f↓f̂

ˆ
Ω(f̂)

Ũ(f ;ω)− Ũ(f̂ ;ω)

f − f̂
dG (11)

+ lim
f↓f̂

ˆ
Ω(f)∩(Ω(f̂))

c

Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

f − f̂
dG.

Consider the first limit. For all ω, we have

lim
f↓f̂

Ũ(f ;ω)− Ũ(f̂ ;ω)

f − f̂
= Ũ ′(f̂ ;ω).

Since Ũ(·;ω) is concave,∣∣∣∣∣ Ũ(f ;ω)− Ũ(f̂ ;ω)

f − f̂

∣∣∣∣∣ ≤ max
{∣∣∣Ũ ′(f ;ω)

∣∣∣ , ∣∣∣Ũ ′(f̂ ;ω)
∣∣∣} .

Since Ũ ′(f ;ω) is continuous in ω and f as illustrated by (10),

max
{(f,ω)∈[sd,sp]×Ω}

∣∣∣Ũ ′(f ;ω)
∣∣∣ = M < +∞.

Therefore, by Lebesgue’s Bounded Convergence Theorem, we have

lim
f↓f̂

ˆ
Ω(f̂)

Ũ(f ;ω)− Ũ(f̂ ;ω)

f − f̂
dG =

ˆ
Ω(f̂)

Ũ ′(f̂ ;ω)dG.

Consider now the second limit in (11). Again, by concavity of Ũ(·;ω) and since sf (ω) ∈
[sd, sp] for f ∈ [sd, sp], we have that∣∣∣∣∣ Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

f − sf̂ (ω)

∣∣∣∣∣ ≤ M.
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Therefore,∣∣∣∣∣
ˆ
Ω(f)∩(Ω(f̂))

c

Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

f − f̂
dG

∣∣∣∣∣ ≤
ˆ
Ω(f)∩(Ω(f̂))

c

∣∣∣∣∣ Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

f − f̂

∣∣∣∣∣ dG
≤
ˆ
Ω(f)∩(Ω(f̂))

c

∣∣∣∣∣ Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

f − sf̂ (ω)

∣∣∣∣∣ dG
≤ M

ˆ
Ω(f)∩(Ω(f̂))

c
dG.

Now, observe that Ω(f) ∩
(
Ω(f̂)

)c
= {ω : f̂ < sf̂ (ω) ≤ f} which converges to an empty set as

f ↓ f̂ . It follows that the second limit in (11) converges to zero as f ↓ f̂ . We conclude that for
every f̂ ∈ [sd, sp), we have

Ψ′(f̂+) =

ˆ
Ω(f̂)

Ũ ′(f̂ ;ω)dG.

Now consider any f < f̂ . Then,

Ψ(f)−Ψ(f̂) =

ˆ
Ω

[
Ũ(sf (ω);ω)− Ũ(sf̂ (ω);ω)

]
dG

=

ˆ
Ω(f̂)

[
Ũ(sf (ω);ω)− Ũ(f̂ ;ω)

]
dG

=

ˆ
Ω(f̂)

[
Ũ(f ;ω)− Ũ(f̂ ;ω)

]
dG+

ˆ
Ω(f̂)

[
Ũ(sf (ω);ω)− Ũ(f ;ω)

]
dG

=

ˆ
Ω(f̂)

[
Ũ(f ;ω)− Ũ(f̂ ;ω)

]
dG+

ˆ
Ω(f̂)∩(Ω(f))

c

[
Ũ(sf (ω);ω)− Ũ(f ;ω)

]
dG,

where the second equality follows because sf (ω) = sf̂ (ω) for ω /∈ Ω(f̂) and sf̂ (ω) = f̂ for
ω ∈ Ω(f̂), and the last equality follows because sf (ω) = f for ω ∈ Ω(f). By the same argument
as before,

lim
f↑f̂

ˆ
Ω(f̂)

Ũ(f ;ω)− Ũ(f̂ ;ω)

f − f̂
dG =

ˆ
Ω(f̂)

Ũ ′(f̂ ;ω)dG,

lim
f↑f̂

ˆ
Ω(f̂)∩(Ω(f))

c

Ũ(sf (ω);ω)− Ũ(f ;ω)

f − f̂
dG = 0.

We conclude that for everyf̂ ∈ (sd, sp], we have

Ψ′(f̂−) =

ˆ
Ω(f̂)

Ũ ′(f̂ ;ω)dG.

Hence, Ψ(f) is differentiable over the restricted domain [sd, sp].

We now consider how the planner would use only the floor f .

Lemma 4. When the planner can set only a floor on s, every optimal f lies strictly between
sp and sp.
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Proof. We will show that Ψ′(f) > 0 for all f ∈ (sd, sp] and Ψ′(f−) < 0 for f = sp. Recall that
(cf , sf ) is continuous in f for every ω and therefore Ψ(f) is continuous in f . These observations
will imply that every optimal f∗ is in (sp, sp).

For any f ∈ (sd, sp], define

Ω+(f) = {ω : sp(ω) > f} and Ω−(f) = {ω : sp(ω) ≤ f}.

For ω ∈ Ω+(f), consider the the following fictitious problem in which the planner is forced to
save less than f :

max
(c,s)∈Rn+1

+

{θu(c; r) + v(s)}

subject to s+
∑

i ci ≤ 1 and s ≤ f . The associated Lagrangian is

θu(c; r) + v(s) + µ(ω)

[
1− s−

n∑
i=1

ci

]
+ ϕ+(ω)[f − s].

Hence, the first-order conditions are45

v′(s) = µ(ω) + ϕ+(ω) and θ
∂

∂ci
u(c; r) = µ(ω) for all i.

Clearly, the constraint s ≤ f must bind for ω ∈ Ω+(f), which implies that s = f and ϕ+(ω) > 0.
Also, conditional on choosing s = f , the planner and the doer would choose the same c in state
ω, which therefore equals cf (ω). Using (10), it follows that, for every i,

ϕ+(ω) = v′(f)− θ
∂

∂ci
u(cf (ω);ω) = Ũ ′(f ;ω) (12)

when ω ∈ Ω+(f).
For ω ∈ Ω−(f), consider the following fictitious problem in which the planner is forced to

save more than f :
max

(c,s)∈Rn+1
+

{θu(c; r) + v(s)}

subject to s+
∑

i ci ≤ 1 and s ≥ f . Again, the associated Lagrangian is

θu(c; r) + v(s) + µ(ω)

[
1− s−

n∑
i=1

ci

]
+ ϕ−(ω)[s− f ].

Hence, the first-order conditions are

v′(s) = µ(ω)− ϕ−(ω) and θ
∂

∂ci
u(c; r) = µ(ω) for all i,

Clearly, the constraint s ≥ f must bind for ω ∈ Ω−(f) except when sp(ω) = f , which implies
that s = f and ϕ−(ω) ≥ 0. Also, conditional on choosing s = f , the planner and the doer
would choose the same c in state ω, which therefore equals cf (ω). Using (10), it follows that,
for every i,

ϕ−(ω) = θ
∂

∂ci
u(cf (ω); r)− v′(f) = −Ũ ′(f ;ω)

45Here, as well as in the other proofs, the complementary slackness conditions are omitted for sim-
plicity.
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when ω ∈ Ω−(f).
Consider any f ∈ (sd, sp]. Recall that Ω(f) = {ω : sd(ω) ≤ f}. Using Lemma 3, we have

Ψ′(f) =

ˆ
Ω(f)

Ũ ′(f ;ω)dG

=

ˆ
Ω(f)∩Ω+(f)

Ũ ′(f ;ω)dG+

ˆ
Ω(f)∩Ω−(f)

Ũ ′(f ;ω)dG

=

ˆ
Ω(f)∩Ω+(f)

ϕ+(ω)dG,

where the last equality follows because either Ω−(f) = ∅ or ϕ−(ω) = 0 for ω ∈ Ω−(f). The
function ϕ+(ω) is strictly positive over Ω(f)∩Ω+(f). We need to show that this set has strictly
positive measure, which implies Ψ′(f) > 0. This is immediate if f ∈ (sd, sp), because in this
case Ω+(f) = Ω. Consider f = sp. Clearly, Ω(sp) ∩ Ω+(sp) contains the open set

Ω
◦
(sp) ∩ Ω+(sp) = {ω : sd(ω) < sp < sp(ω)}.

If we can show that this set is non-empty, we are done because G assigns strictly positive
probability to it. Both Ω

◦
(sp) and Ω+(sp) are nonempty. Suppose that there is no ω ∈ Ω+(sp)

such that we also have ω ∈ Ω
◦
(sp). Then, it means that for every ω ∈ Ω+(sp), we have

sd(ω) ≥ sp and that Ω◦
(sp) ⊂ Ω−(sp) = {ω : sp(ω) = sp}. Now, consider ω̂ ∈ Ω

◦
(sp) and any

sequence {ωn} in Ω+(sp) converging to ω̂. We have that

lim
ωn→ω̂

inf sd(ωn) ≥ sp > sd(ω̂).

But this violates the continuity of sd and hence leads to a contradiction.
Now consider f = sp. Using again Lemma 3, we have

Ψ′(sp−) =

ˆ
Ω(sp)

Ũ ′(sp;ω)dG =

ˆ
Ω
Ũ ′(sp;ω)dG = −

ˆ
Ω
ϕ−(ω)dG,

where ϕ−(ω) > 0 for all ω such that sp(ω) < sp. Therefore, Ψ′(sp−) < 0.46

We now consider how an optimal f varies with β. Recall that u∗(y; r) is the indirect utility
of spending y ∈ [0, 1] on consumption.

Lemma 5. The set of optimal floors, denoted by E(β), is decreasing in β in the strong
set order.47 In particular, the largest optimal floor converges monotonically to sp as β ↑ 1.
Moreover, there exists β > 0 such that E(β) = {f} for all β ≤ β, where f satisfies f < sp and

U(Bf ) = max
f∈[sp,sp]

ˆ
Ω
[θu∗(1− f ; r) + v(f)]dG.

46It is easy to see that the optimal f satisfies f ≤ sp. Suppose f ∈ (sp, 1). Then, for all ω, the doer
chooses s(ω) = f and c(ω) = cf (ω). Take any f ′ ∈ (sp, f). Then, for every ω, f ′ = ζ(ω)f + (1 −
ζ(ω))sp(ω) for some ζ(ω) ∈ (0, 1). Therefore, for every ω, Ũ(f ′;ω) > Ũ(f ;ω) because Ũ(sp(ω);ω) >
Ũ(f ;ω) and Ũ(·;ω) is strictly concave. It follows that the planner’s payoff is strictly larger under f ′

than under f .
47Given two sets E and E′ in R, E ≥ E′ in the strong set order if, for every f ∈ E and

f ′ ∈ E′, min{f, f ′} ∈ E′ and max{f, f ′} ∈ E (Milgrom and Shannon (1994)).
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Proof. Fix f ∈ [sd, sp]. The set Ω(f) in Lemma 3 depends on β via (cd, sd). By standard
arguments, if β < β′ < 1, then sd(ω;β) < sd(ω;β′) for every ω and hence Ω(f ;β′) ⊂ Ω(f ;β).
On the other hand, for every β < 1, we have Ω−(f) ⊂ Ω(f ;β) because sd(ω;β) < sp(ω) for
every ω. So, if β < β′ < 1, we have

Ψ′(f ;β)−Ψ′(f ;β′) =

ˆ
(Ω(f ;β)\Ω(f ;β′))∩Ω+(f)

ϕ+(ω)dG ≥ 0,

where the inequality follows from (12). Standard monotone-comparative-static results then
imply that E(b) is increasing in the strong set order.

Define f(β) = max{f : f ∈ E(β)}. Since f(β) ≥ sp for all β and f(·) is decreasing,
limβ↑1 f(β) exists; denote it by f(1−) ≥ sp. Clearly, f(1) = sp. Now suppose that f(1−) >
f(1). By a similar argument, for any f > sp, limβ↑1Ψ

′(f ;β) exists and satisfies

lim
β↑1

Ψ′(f ;β) = −
ˆ
Ω−(f)

ϕ(ω)dG < 0.

This implies that for β close enough to 1, f(β) ≥ f(1−) cannot be optimal, a contradiction
which implies that f(1−) = f(1).

It is easy to see that, for all ω ∈ Ω, sd(ω;β) → 0 as β ↓ 0. Therefore, sd(β) = maxΩ sd(s;β)
also decreases monotonically to 0 as β ↓ 0. Let β = max{β ∈ [0, 1] : sd(β) ≤ sp} which is
strictly positive because sp > 0. Then, Ω(f) = Ω for all β ≤ β and f ∈ [sp, sp], which implies
that

Ψ(f ;β) =

ˆ
Ω
[θu(cf (ω); r) + v(f)]dG. (13)

From the proof of Lemma 3, we have that u(cf (ω); r) = ũ(f ;ω) is strictly concave in f for all
ω ∈ Ω. This implies that the maximizer of (13) is unique. From the proof of Lemma 4, we
know that the derivative of (13) is negative at sp and hence f < sp.

We now show that the planner benefits from imposing only one budget on any good.

Lemma 6. Fix i and consider plans Bbi with bj = 1 for all j ̸= i and f = 0. There exists bi <
maxω cdi (ω) ≡ cdi such that the planner strictly benefits from it, that is, U(Bbi) > U(F ).

Proof. Fix i = 1 and consider any b1 ∈ (0, cd1]. Let (cb1 , sb1) describe the doer’s choices under
cap b1. Then, let

Φ(b1) =

ˆ
Ω
[θu(cb1(ω); r) + v(sb1(ω))]dG.

Let Ω(b1) = {ω : cd1(ω) > b1}. Note that for any b1 < cd1, since cd1 is continuous, Ω(c1) is
non-empty and open, and hence has strictly positive probability under G. We have

Φ(b1)− Φ(cd1) =

ˆ
Ω(b1)

{[θu(cb1(ω); r) + v(sb1(ω))]− [θu(cd(ω); r) + v(sd(ω))]}dG

= (1− β)

ˆ
Ω(b1)

[
v(sb1(ω))− v(sd(ω))

]
dG

+

ˆ
Ω(b1)

[
Ṽ (cb11 (ω);ω)− Ṽ (cd1(ω);ω)

]
dG,
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where
Ṽ (b̂1;ω) = max

{(c,s)∈Rn+1
+ :

∑n
j=1 cj≤1,c1≤b̂1}

{θu(c; r) + βv(s)}.

Clearly, Ṽ (cd1(ω);ω) ≥ Ṽ (b1;ω) for every ω. From the first-order conditions of the Lagrangian
defining Ṽ (b̂1;ω), we have λ1(ω; b̂1) = θu1c(c

b̂1
1 (ω); r1) − βv′(sb̂1(ω)), where λ1(ω; b̂1) is the

Lagrange multiplier on the constraint c1 ≤ b̂1. Since (cb̂1(ω), sb̂1(ω)) is continuous in b̂1 as well
as ω, so is λ1(ω; b̂1). Relying again on Theorem 1, p. 222, of Luenberger (1969), we conclude
that Ṽ ′(b̂1;ω) exists for every b̂1 and equals λ1(ω; b̂1). It follows that Ṽ ′(cd1(ω);ω) = 0 for every
ω by the definition of (cd, sd). Therefore, by the Mean Value Theorem (MVT),

Ṽ (cb11 (ω);ω)− Ṽ (cd1(ω);ω) = Ṽ ′(χ(ω);ω)(cb11 (ω)− cd1(ω)),

v(sb1(ω))− v(sd(ω)) = v′(ξ(ω))(sb1(ω)− sd(ω)),

where χ(ω) ∈ [cb11 (ω), cd1(ω)] and ξ(ω) ∈ [sd(ω), sb1(ω)].
Let bε1 = cd1 − ε for some small ε > 0. Fix any ω ∈ Ω(bε1) and, for now, suppress the

dependence on ω for simplicity. Recall that sbε1 +
∑

i c
bε1
i = sd +

∑
i c

d
i = 1. Since sb

ε
1 > sd for

any ε > 0 (cf Lemma 9), we can write

− c
bε1
1 − cd1
sb

ε
1 − sd

= 1 +
∑
j ̸=1

c
bε1
j − cdj

sb
ε
1 − sd

. (14)

Now, for any bε1, the following first order condition must hold for every j ̸= 1:

βv′(s)− θujc(cj ; rj) = 0.

Therefore, using again the MVT, for all j ̸= 1 we have

c
bε1
j − cdj =

β[v′(sb
ε
1)− v′(sd)]

θujcc(ζj ; rj)
(15)

for some ζ ∈ [cdj , c
bε1
j ]. Now, since v′′ is continuous, we have that v′(y) − v′(ŷ) ≥ v′′[y − ŷ] for

every y > ŷ ≥ sd, where v′′ = minξ∈[sd,1] v′′(ξ) < 0. Therefore, using (14) and (15), we have
that

− c
bε1
1 − cd1
sb

ε
1 − sd

= 1 +
1

sb
ε
1 − sd

∑
j ̸=1

β

θujcc(ζj ; rj)
[v′(sb

ε
1)− v′(sd)]

≤ 1 +
1

sb
ε
1 − sd

∑
j ̸=1

βv′′

θujcc(ζj ; rj)
[sb

ε
1 − sd]

≤ 1 +
βv′′

θ

∑
j ̸=1

1

ujcc
,

where the first inequality uses the fact that ujcc < 0 and ujcc = maxξ∈[sd,1],rj∈[rj ,rj ] u
j
cc(ξ; rj) < 0

(which is well defined by continuity of ujcc). Thus, letting K =
[
1 + βv′′

θ

∑
j ̸=1

1

uj
cc

]−1
> 0, it

follows that for every ω ∈ Ω(bε1),

sb
ε
1(ω)− sd(ω) ≥ K

[
cd1(ω)− c

bε1
1 (ω)

]
.
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Using these observations, we have that Φ(bε1)− Φ(cd1) is bounded below by
ˆ
Ω(bε1)

[
K(1− β)v′(ξ(ω))− Ṽ ′(χ(ω);ω)

]
(cd1(ω)− bε1)dG. (16)

Since v′ is continuous and strictly positive everywhere and ξ(ω) ∈ [sd, 1] with sd > 0 for all
ω ∈ Ω(bε1), there exists a finite κ > 0 such that v′(ξ(ω)) ≥ κ for all ω ∈ Ω(bε1).

Next let Ω(bε1) = {ω : cd1(ω) ≥ bε1} which is a closed and bounded set by continuity of cd1
and hence is compact. As a function of bε1, the correspondence Ω(·) is continuous by continuity
of cd1. Note that, if cd1(ω) = bε1, then Ṽ ′(χ(ω);ω) = Ṽ ′(cd1(ω);ω) = 0. We have

sup
ω∈Ω(bε1)

Ṽ ′(χ(ω);ω) = sup
ω∈Ω(bε1)

Ṽ ′(χ(ω);ω) ≤ max
bε1≤ζ≤cd1,ω∈Ω(bε1)

Ṽ ′(ζ;ω) ≡ κ(bε1).

Clearly, κ(bε1) ≥ 0 for every ε > 0, ε′ > ε > 0 implies that κ(bε1) ≤ κ(bε
′
1 ), and limε→0 κ(b

ε
1) = 0

because κ(·) is also continuous. Therefore, there exists ε∗ > 0 such that

κ(bε
∗
1 ) < κ(1− β)K.

It follows that for ε∗, expression (16) is strictly positive, and hence Φ(bε
∗
1 ) > Φ(cd1). This also

holds for all ε ∈ (0, ε∗).

We can now complete the proof of Proposition 1. By Lemma 5, f(β) decreases monoton-
ically to sp when β ↑ 1. Also, for every i = 1, . . . , n, we have that sd(θ, ri, r−i;β) increases
monotonically to sp(θ, ri, r−i) as β ↑ 1. By Remark 1, sp(θ, ri, r−i) > sp. Given this, define

β∗ = inf{β ∈ (0, 1) : f(β) < max
i

sd(θ, ri, r−i;β)}.

Clearly, β∗ < 1 and, for every β > β∗, we have sd(θ, ri, r−i;β) > f(β) for at least some
i = 1, . . . , n. Hereafter, fix β > β∗ and any i that satisfies this last condition.

For ε ≥ 0, consider bεi = cdi − ε as in Lemma 6 where cdi = cdi (θ, ri, r−i) by Remark 1. Let
Φ(bεi , f(β)) be the planner’s expected payoff from adding bεi to the existing optimal floor f(β).
We will show that there exists ε > 0 such that Φ(bεi , f(β)) > Φ(b0i , f(β)) where Φ(b0i , f(β)) =
U(Bf(β)). To do so, for any ε ≥ 0, let (cε, sε) be the doer’s allocation function under (bεi , f(β))
and Ω(bεi ) = {ω ∈ Ω : c0i (ω) > bεi}. Then,

Φ(bεi , f(β))− Φ(b0i , f(β)) =

ˆ
Ω(bεi )

{[θu(cε(ω); r) + v(sε(ω))]− [θu(c0(ω); r) + v(s0(ω))]}dG.

Note that, if there exists ε > 0 such that for all 0 < ε < ε we have (cε(ω), sε(ω)) = (cd(ω), sd(ω))
for all ω ∈ Ω(bεi ), then for such ε’s the previous difference equals Φ(bεi ) − Φ(cdi ) in the proof
of Lemma 6. The conclusion of that proof then implies that there exists ε∗∗ ∈ (0, ε) such that
Φ(bε

∗∗
i , f(β)) > Φ(b0i , f(β)).
Thus we only need to prove the existence of ε. Let Ω(f(β)) = {ω ∈ Ω : sd(ω) ≤ f(β)},

which is compact by continuity of sd. Define c̃i = maxΩ(f(β)) c
0
i (ω) which is well defined by

continuity of c0. Since sd(θ, ri, r−i) > f(β), it follows that (θ, ri, r−i) /∈ Ω(f(β)) and hence
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c0i (θ, ri, r−i) = cdi (θ, ri, r−i) where cdi (θ, ri, r−i) = cdi by Remark 1. We must also have c̃i < cdi :
for all ω ∈ Ω(f(β)), optimality requires

θuic(ci(ω); ri) = βv′(f(β)) + λ0(ω) > βv′(sd(θ, ri, r−i)) = θuic(c
d
i ; ri),

where λ0(ω) ≥ 0 is the Lagrange multiplier for constraint s ≥ f(β). If ω ∈ Ω is such that
c0i (ω) > c̃i, then ω /∈ Ω(f(β))—otherwise it would contradict the definition of c̃i—and therefore
c0(ω) = cd(ω). Now define ε = cdi − c̃i > 0. By construction for every ε ∈ (0, ε), c0i (ω) > bεi
implies that c0(ω) = cd(ω), as desired.

9.2 Proof of Proposition 2 and Corollary 1

Lemma 7. For every β ∈ (0, 1), if B ∈ B is optimal, then max{f, 1−
∑n

i=1 bi} ≥ minω∈Ω sp(ω).

Proof. Define

σ = max{f, 1−
n∑

i=1

bi}

Given this, we have that s(ω) +
∑n

i=1 ci(ω) = 1, and hence s(ω) ≥ σ for all ω ∈ Ω. Without
loss of generality, we can let σ = minΩ s(ω): If minΩ s(ω) > σ, we could simply raise f to the
level minΩ s(ω) and nothing would change.
Now fix β ∈ (0, 1). Suppose B′ is optimal, but σ′ < sp. Consider B′′ ∈ B identical to B′, except
that f ′′ = sp. Since B′ is convex and compact, the ensuing allocation (c′, s′) is a continuous
function of ω. Hence, the set Ω(sp) = {ω ∈ Ω : s′(ω) < sp} contains an open subset and hence
has strictly positive probability under G.
Consider any ω ∈ Ω(sp). Suppose the planner faces the following problem:

max
(c,s)∈Rn+1

+

{θu(c; r) + v(s)}

subject to ci ≤ b′i, and s ≤ f . For any f < sp, the latter constraint must bind because, by the
same logic of Lemma 9, the planner would want to save at least sp(ω) ≥ sp if facing only the
constraints ci ≤ b′i for i = 1, . . . , n. Therefore, the planner’s payoff from this fictitious problem
is strictly increasing in f for f ≤ sp. When the doer faces B′′, the constraint s ≥ sp must bind.
Hence, his allocation (c′′(ω), sp) solves maxu(c; r) subject to c ∈ Rn

+, ci ≤ b′i, and
∑n

i=1 ci ≤
1− sp. This allocation coincides with the planner’s allocation under the fictitious problem with
f = sp. Hence, in ω, (c′′(ω), sp) is strictly better for the planner than (c′′(ω), s′(ω)).
We conclude that, for all ω ∈ Ω(sp), the planner’s payoff is strictly larger under B′′ than under
B′. Since for ω /∈ Ω(sp) the doer’s allocation is unchanged, we must have U(B′′) > U(B′),
which contradicts the optimality of B′.

Given Lemma 7, we can complete the proof of Proposition 2. We first show that there
exists β∗∗ > 0 such that, if β < β∗∗, then for any B ∈ B with σ ≥ sp the resulting allocation
(c, s) satisfies s(ω) = σ for all ω ∈ Ω. It is enough to show that s(θ, r) = s = maxΩ s(ω) must
equal σ. By strict concavity of v, v′(s) ≤ v′(sp) < +∞ because sp > 0. By considering the
Lagrangian of the doer’s problem in ω = (ω, r), we have that (c(ω), s(ω)) must satisfy

βv′(s) + ϕ0(ω) + γi(ω) = θuic(ci(ω); ri) for all i = 1, . . . , n,
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where ϕ0(ω) ≥ 0 and γi(ω) ≥ 0 are the Lagrange multipliers for constraints s ≥ f and ci ≤ bi.
For every i = 1, . . . , n, since ci(ω) ≤ 1 and ui(·; ri) is strictly concave, uic(ci(ω); ri) ≥ uic(1; ri) >
0. Now let

β∗∗ = min
i

θuic(1; ri)

v′(sp)
> 0. (17)

Then, for every β < β∗∗, we have βv′(s(ω)) < θuic(ci(ω); ri) for all i = 1, . . . , n. Therefore,
ϕ0(ω) + γi(ω) > 0 for all i = 1, . . . , n. Hence, either ϕ0(ω) > 0, in which case s = f = σ; or
γi(ω) > 0 for all i = 1, . . . , n, in which case s = 1−

∑n
i=1 ci(ω) = 1−

∑n
i=1 bi = σ.

Finally, let β < β∗ = min{β, β∗∗} where β > 0 was defined in Lemma 5. Let Bβ ∈ B be an
optimal plan for β. By Lemma 7, σβ ≥ sp. The previous result then implies that

U(Bβ) =

ˆ
Ω
[θu(c(ω); r) + v(σβ)]dG.

Hence,

U(Bβ) ≤
ˆ
Ω
[θu(cσβ

(ω); r) + v(σβ)]dG ≤
ˆ
Ω
[θu(cf (ω); r) + v(f)]dG = U(Bf ),

where the first inequality follows since u(c(ω); r) ≤ max{c∈Rn
+:

∑n
i=1 ci≤σβ} u(c; r) = u(cσβ

(ω); r)
for all ω ∈ Ω and from the definition of f in Lemma 5. It is immediate to see that if Bβ

involves budgets that bind for a set Ω′ whose probability is strictly positive, then u(c(ω); r) <
u(cσβ

(ω); r) for all ω ∈ Ω′, and hence U(Bβ) < U(Bf ). Therefore, optimal plans can only
involve a savings floor.

Finally, let r′, r, r′, and r satisfy the properties in Proposition 2. It follows that sp′ =
sp(θ, r′) ≥ sp(θ, r) = sp with strict inequality if r ̸= r′ (Remark 1). Similarly, for each β ∈ (0, 1),
sd′(β) = sd(θ, r′;β) ≤ sd(θ, r;β) = sd(β) again with strict inequality if r′ ̸= r. Using the
definition of β∗∗ in (17), the strict concavity of the function v, and that r′i ≥ ri, we have that
β′
∗∗ > β∗∗. Using the definition of β in the proof of Lemma 5 and that sd is strictly increasing

in β, we have that β′ > β. Therefore β′
∗ > β∗.

9.3 Proof of Proposition 3

By an argument similar to the proof of Lemma 1, we can conclude that an optimal plan B∗ ∈ B
exists in this three-state setting. The following claims characterize its properties.
Claim 1. There exists g∗ ∈ (0, 1) such that, if g > g∗ and the planner can impose only f , she
sets f = sp(ω0).

Proof. If B can use only f , we can focus on f ∈ [sd(ω1), sp(ω1)] ∪ {sp(ω0)}. For simplicity, let
U(c, s;ω) = θu(c; r) + v(s). If f = sp(ω0), by symmetry the planner’s payoff is

gU(cp(ω0), sp(ω0);ω0) + (1− g)U(cd(ω1), sd(ω1);ω1);

if f ∈ [sd(ω1), sp(ω1)], her payoff is

gU(cf (ω0), f ;ω0) + (1− g)U(cf (ω1), f ;ω1),
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where cf (ω) is defined in Lemma 3. Thus, f = sp(ω0) identifies the best policy that involves
only f if

g

1− g
> max

f∈[sd(ω1),sp(ω1)]

U(cf (ω1), f ;ω1)− U(cd(ω1), sd(ω1);ω1)

U(cp(ω0), sp(ω0);ω0)− U(cf (ω0), f ;ω0)
≥ 0. (18)

The term on the right-hand side is well defined; also, for all f ∈ [sd(ω1), sp(ω1)] we have
U(cp(ω1), sp(ω1);ω1) ≥ U(cf (ω1), f ;ω1) ≥ U(cd(ω1), sd(ω1);ω1) and U(cp(ω0), sp(ω0);ω0) >
U(cf (ω0), f ;ω0) because sd(ω1) > sp(ω0).

Hereafter, assume that g > g∗.
Claim 2. Fix i ∈ {1, 2}. Suppose the planner knows that the state is ωi and can only impose
a budget bi. Then, it is optimal to set bi = cpi (ω

i).

Proof. Let i = 1—the other case is similar. Replicating the argument in the proof of Lemma 6,
we can conclude that it is optimal to set b1 < cd1(ω

1). To find the optimal b1 ∈ (0, cd1(ω
1)),

consider first the doer’s problem to maximize θ[r ln(c1)+r ln(c2)]+β ln(s) subject to s+c1+c2 ≤
1 and c1 ≤ b1. Since both constraints must bind, this problem becomes

max
s∈[0,1]

{θ r ln(1− b1 − s) + β ln(s)}.

The solution is characterized by the first-order condition, which leads to

s(b1) =
β

θ r + β
(1− b1) and c2(b1) =

θ r

θ r + β
(1− b1).

Given this, we can compute the planner’s payoff in ω1 as a function of b1, which equals (up
to a constant)

θ[r ln(b1) + r ln(1− b1)] + ln(1− b1). (19)
The optimal b1 is again characterized by the first-order condition, which leads to

b1 =
θr

1 + θ[r + r]
. (20)

To complete the proof, we need to find cp1(ω
1), which results from maximizing θ[r ln(c1) +

r ln(c2)] + ln(s) subject to s + c1 + c2 ≤ 1. Substituting s = 1 − c1 − c2, taking first-order
conditions, and combining them, we get

cp1(ω
1) =

θr

1 + θ[r + r]
.

Claim 3. Fix i ∈ {1, 2}. Suppose the planner knows that the state is ωi. Then, she strictly
prefers to impose only bi than only b−i.

Proof. Let i = 1—the other case is similar. Mimicking the calculations in the proof of Claim 2,
one can show that if the planner can impose only b2, then she sets

b2 =
θ r

1 + θ[r + r]
. (21)
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We want to argue that her payoff in ω1 is strictly larger if she imposes only b1 as in (20) than
if she imposes only b2 as in (21). Substituting the allocations implied by b1 and b2 into the
planner’s utility function and simplifying, one can show that b1 in (20) is strictly better than
b2 in (21) if and only if

(1 + θr) ln(β + θr)− (1 + θ r) ln(β + θ r) > (1 + θr) ln(1 + θr)− (1 + θ r) ln(1 + θ r).

To show that this condition holds, consider the function φ(β, r) = (1 + θr) ln(β + θr), where
0 < β < 1 and r > 0. This function satisfies

φβr(β, r) =
∂

∂r

(
1 + θr

β + θr

)
=

θ(β − 1)

(β + θr)2
< 0.

Therefore, φ(β, r)− φ(β, r) is strictly decreasing in β. Continuity gives the result.

Claim 4. If B is optimal, then f can bind at most in ω0.

Proof. If f binds in all states, then B is weakly dominated by a policy that involves only f
and no budgets, as the budgets distort consumption without improving savings. Given g > g∗,
by Claim 1 the latter plan is strictly dominated by one imposing only the floor sp(ω0). Clearly,
if f binds in ω1 and ω2, then it must also bind in ω0.

Now suppose that f binds only in ω0 and another state, say, ω1—the same argument applies
for ω2. There are two cases to consider:
Case 1: b1 does not bind in ω2. Then, removing b1 leads to a weakly superior policy in which
f binds only in ω0 and ω1. Given g > g∗, however, the gain from raising f above sp(ω0) to
improve the doer’s allocation only in ω1 does not justify the loss created in ω0. Therefore, B is
again strictly dominated by the policy obtained if we remove b1 and set the floor at sp(ω0).
Case 2: b1 binds also in ω2. This implies that f has to bind in all states. Indeed, since b1 binds
in both ω1 and ω2, the doer chooses c1 = b1 in both states; moreover, since in ω2 good 2 is
more valuable than in ω1, he wants to allocate more income to good 2 than to savings relative
to ω1, and therefore f also binds in ω2. However, we have already argued that such a policy is
strictly dominated by one that imposes only the floor sp(ω0).

Claim 5. If B involves binding budgets, then bi can bind at most in ωi for i = 1, 2.

Proof. Without loss, consider b1. Suppose first that b1 binds in all states, which implies that
c1(ω

i) = b1 for all i = 0, 1, 2. There are five cases to consider:
Case 1: Neither b2 nor f bind in any state. Since θ > θ, we have c2(ω

0) > c2(ω
2). The plan

cannot be optimal because, given b1, the planner would be strictly better off by adding a floor
that binds only in ω0: Even if b1 were binding for her in ω0, she would strictly prefer a level
c2 < c2(ω

0) of good 2.
Case 2: b2 binds in all states. Then, c2(ωi) = b2 and s(ωi) = 1− b1 − b2 for all i = 0, 1, 2. This
plan is strictly dominated by one that imposes only a floor equal to 1−b1−b2—because budgets
are distorting—which is in turn strictly dominated by the plan with only the floor sp(ω0) given
g > g∗.
Case 3: b2 binds in no state. Then, as in case 1, for B to be optimal f must bind at least
in ω0 and only in that state by Claim 4. Since by assumption b1 binds in all states, it must
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be that b1 < cp1(ω
1). Indeed, if b1 ≥ cp1(ω

1), the optimal f equals sp(ω0); since by assumption
cp1(ω

0) < cp1(ω
1), b1 cannot bind in ω0. It follows that, with regard to ω0 and ω1, the planner

would be strictly better off replacing b1 and f with b̂1 = cp1(ω
1) and f̂ = sp(ω0). With regard

to ω2, the planner would be better off by replacing b2 with b̂2 = cp2(ω
2): By Claim 3, even if b1

were perfectly tailored for ω2, it would be strictly dominated in that state by b̂2.
Case 4: b2 binds only in ω0. Since the doer’s choices satisfy c2(ω

0) > c2(ω
2) if the plan used

only b1, it follows that the planner can obtain in all states the same allocations induced by B
if she imposes a floor that binds only in ω0. Such a plan, however, is again strictly dominated
for the same reasons as in case 3.
Case 5: b2 binds in ω0 and in ω2. Since the doer’s choices satisfy c2(ω

0) > c2(ω
2) if the plan

used only b1, the planner could again obtain the same allocation in all states with a floor that
binds only in ω0 and ω2. By Claim 4, however, such a plan cannot be optimal.

Now suppose that b1 binds in only two states. If b1 binds only in ω1 and in ω0, then by the
same argument as in case 3 above the planner is strictly better off by replacing b1 and f with
b̂1 = cp1(ω

1) and f̂ = sp(ω0) as well as b2 with b̂2 = cp2(ω
2). If b1 binds in ω1 and ω2, then it

must also bind in ω0—which is the case we considered before. Indeed, if b1 binds in ω2, then it
will also bind at the fictitious state (θ, r, r) and hence in ω0 where both consumption goods are
more valuable. The case left is if b1 binds only in ω0 and ω2, but this is impossible: It would
have to bind also in ω1, since in that state good 1 is more valuable than in ω2.

Finally, suppose that b1 binds in only one state. We have just argued that if b1 binds in
ω2, then it must also bind in ω1. Thus, we only have to rule out the case in which b1 binds
only in ω0. This property is possible only if in ω0 the budget b2 also binds, inducing the doer
to overconsume in good 1. However, such a b2 must also bind in ω2; hence, it cannot be part
of an optimal B, because we just showed that a budget cannot bind in more than one state.

Combining Claims 1-5, we conclude that the optimal policy B ∈ B satisfies f = sp(ω0),
b1 = cp1(ω

1), and b2 = cp2(ω
2).

9.4 Proof of Proposition 4

Start from the value of θ which implies that cp1(ω
1) > cp1(ω

0) and cp2(ω
2) > cp2(ω

0) and hence
leads to the optimal plan in Proposition 3. If we increase θ, both cp1(ω

0) and cp2(ω
0) increase

continuously while always satisfying cp1(ω
0) = cp2(ω

0). Therefore, there exists a unique θ† such
that, when θ = θ

†, we have cp1(ω1) = cp1(ω
0) and cp2(ω

2) = cp2(ω
0). For every θ ≤ θ

†, the optimal
B ∈ B remains b1 = cp1(ω

1), b2 = cp2(ω
2), and f = sp(ω0), where the latter of course falls

continuously as θ rises towards θ†.
Now, let B(θ) ⊂ B be the nonempty set of optimal plans as a function of θ. By Proposition

3 and the previous argument, B(θ) is singleton for θ ≤ θ
†. Define the distance between any two

plans B and B′ as the Euclidean distance between the vector (f, b1, b2) describing B and the
vector (f ′, b′1, b

′
2) describing B′. By the Maximum Theorem, B(θ) is upper hemicontinuous in

θ.48 Hence, by choosing θ > θ
† sufficiently close to θ

†, we can render the distance between B(θ
†
)

48Although the planner’s and doer’s utility functions are not continuous at the boundary of R3
+ due

to their logarithmic form, this is irrelevant because it is never optimal to choose B ∈ B that forces 0
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and every B ∈ B(θ) arbitrarily small. Thus, there exists ε > 0 such that, if θ ∈ (θ
†
, θ

†
+ ε),

then for every B ∈ B(θ) the following holds: (1) bi(θ) < cdi (ω
i) for i = 1, 2; and (2) f(θ) can

bind neither in ω1 nor in ω2. To see property (2), note that B(θ†) contains the plan defined by
bi(θ

†
) = cpi (ω

i) for i = 1, 2 and f(θ
†
) = sp(ω0), where f(θ

†
) = 1 − b1(θ

†
) − b2(θ

†
) and hence

f is actually redundant. Thus, B(θ) contains no plan with f(θ) > 1 − b1(θ) − b2(θ), because
such plans are strictly dominated for the same argument that rules them out in the proof of
Proposition 3. Since the largest value of f(θ) must be close to f(θ

†
) for θ ∈ (θ

†
, θ

†
+ ε), it

follows that f(θ) cannot bind in ω1 and ω2 as well.

Hereafter, fix θ ∈ (θ
†
, θ

†
+ ε). The following claims characterize the properties of every

B ∈ B(θ).
Claim 6. For every B ∈ B(θ), both b1(θ) and b2(θ) must bind in ω0—that is, ci(ω0) = bi(θ)
for i = 1, 2. Given this, s(ω0) = 1− b1(θ)− b2(θ), and hence f can be removed.

Proof. Note that the planner’s objective in state ωi as a function of bi is strictly concave and
decreasing for bi > cpi (ω

i) (see equation (19)). Thus, if for example b1(θ) is not binding for the
doer in state ω0—that is, b1(θ) > c1(ω

0)—the planner can lower b1 without affecting the doer’s
choice in ω0 and ω2 and strictly improve her payoff in ω1. Hence, the initial plan would not be
optimal.

Claim 7. b1(θ) = b2(θ) for every B ∈ B(θ).

Proof. Without loss, suppose that b1(θ) > b2(θ). Note that b2(θ) < cd2(ω
0) because, otherwise,

we would have b1(θ) > cd1(ω
0) = cd2(ω

0), which contradicts the previous point. Consider the
alternative plan with bε1 = b1(θ) − ε and bε2 = b2(θ) + ε, where ε > 0. For ε sufficiently small,
both bε1 and bε2 continue to be binding in ω0, and hence 1− bε1− bε2 = s(ω0). In ω0, the planner’s
payoff is higher, because given s(ω0) the consumption bundle is closer to being symmetric and
hence to the best one according to the planner’s preference. Due to symmetry and the strict
concavity in the planner’s payoff induced by bi in ωi for i = 1, 2 (see (19)), we have that the
decrease in the her payoff in ω2 resulting from the slacker b2 is more than compensated by the
increase in her payoff in ω1 resulting from the tighter b1. Hence, overall the planner’s payoff
is strictly larger with (bε1, b

ε
2) than with (b1(θ), b2(θ)), which contradicts the optimality of the

latter plan.

Claim 8. 1− b1(θ)− b2(θ) > sp(ω0) for every B ∈ B(θ).

Proof. If 1− b1(θ)− b2(θ) < sp(ω0), then the planner can set f = sp(ω0) and achieve a strictly
higher payoff in ω0 without affecting the doer’s choices in ω1 and ω2. If 1−b1(θ)−b2(θ) = sp(ω0),
then bi = cpi (ω

0) for i = 1, 2, which means that (c(ω0), s(ω0)) = (cp(ω0), sp(ω0)). Therefore, it
would be possible to lower both b1(θ) and b2(θ) by the same small amount ε, in order to induce
a first-oder gain in the planner’s payoff for both ω1 and ω2 because bi(θ) > cpi (ω

i) for i = 1, 2,
while causing only a second-order loss in ω0.

allocation to some dimension. Formally, there exists ε > 0 such that, if we required f ≤ 1− ε and bi ≥ ε
for all i = 1, 2, we would never affect the planner’s problem.
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Claim 9. Every B ∈ B(θ) is unique as far as b1 and b2 are concerned and satisfies the properties
in Proposition 4.

Proof. Let b1 = b2 = b. The planner’s payoff in ω1 and ω2 is given by (19) up to a constant:

θ[r ln(b) + r ln(1− b)] + ln(1− b).

Her payoff in ω0 is given, up to a constant, by

2θr ln(b) + ln(1− 2b).

Therefore, the optimal b maximizes

(1− g) {θ[r ln(b) + r ln(1− b)] + ln(1− b)}+ g {2θr ln(b) + ln(1− 2b)} .

Since this function is strictly concave, there is a unique optimal b. To see that cpi (ω
i) > bi >

cpi (ω
0) for every i = 1, 2, consider the following observations. Note that bi > cpi (ω

i) would be
strictly dominated by bi = cpi (ω

i) for every i, because this is the optimal level of the budget
in the corresponding state. Consequently, we must have bi < cpi (ω

i) because by assumption
1− cp1(ω

1)− cp2(ω
2) > sp(ω0) for θ > θ

†, and hence reducing bi below cpi (ω
i) by the same small

amount for all i = 1, 2 causes a first-order gain in ω0 and only a second-oder loss in ω1 and ω2.

9.5 Proof of Lemma 2

Recall the definition of U(D) in (1) and that (c(θ), s(θ)) represents the doer’s optimal choice in
state θ. There exists D ⊂ F such that U(D) ≥ U(D′) for all D′ ⊂ F if and only if there exist
functions χ : [θ, θ] → Rn

+ and t : [θ, θ] → R+ that satisfy two conditions:
(1) for all θ, θ′ ∈ [θ, θ]

θu(χ(θ)) + βv(t(θ)) ≥ θu(χ(θ′)) + βv(t(θ′))

and
n∑

i=1

χi(θ) + t(θ) ≤ 1;

(2) the pair (χ, t) maximizes
ˆ θ

θ
[θu(χ(θ)) + v(t(θ))] ĝ(θ)dθ.

On the other hand, there exists Dtc ⊂ F tc such that U(Dtc) ≥ U(D̂tc) for all D̂tc ⊂ F tc if
and only if there exist functions φ : [θ, θ] → R+ and τ : [θ, θ] → R+ that satisfy two conditions:
(1’) for all θ, θ′ ∈ [θ, θ]

θu∗(φ(θ)) + βv(τ(θ)) ≥ θu∗(φ(θ′)) + βv(τ(θ′)),

where u∗(y) = max{c′∈Rn
+:

∑n
i=1 c

′
i≤y} u(c

′), and

φ(θ) + τ(θ) ≤ 1;
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(2’) the pair (φ, τ) maximizes
ˆ θ

θ
[θu∗(φ(θ)) + v(τ(θ))] ĝ(θ)dθ.

Suppose (χ, t) that satisfies condition (1) and (2). Then, by our discussion on money
burning before the statement of Lemma 2, there exists a function φ : [θ, θ] → R+ such that
u∗(φ(θ)) = u(χ(θ)) and φ(θ) ≤

∑n
i=1 χi(θ) for all θ ∈ [θ, θ]. Hence, letting τ ≡ t, we have that

(φ, τ) satisfies both (1’) and (2’).
Suppose (φ, τ) satisfy conditions (1’) and (2’). For every θ ∈ [θ, θ], let

χ(θ) = argmax
{c∈Rn

+:
∑n

i=1 ci≤φ(θ)}
u(c).

Then, by definition, u(χ(θ)) = u∗(φ(θ)) for all θ ∈ [θ, θ]. Letting t ≡ τ , we have that (χ, t)
satisfy both (1) and (2).
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10 Online Appendix: Supplementary Material (FOR
ONLINE PUBLICATION ONLY)

10.1 Proof of Lemma 1

Each B ∈ B can be viewed as an element (f,b) of the compact set [0, 1]n+1. Thus, we can think
that the planner chooses (f,b) ∈ [0, 1]n+1.

Given any such (f,b), let (c(ω|f,b), s(ω|f,b)) be the doer’s optimal allocation in state ω
from the compact set Bf,b defined by (f,b). Since Bf,b is convex (Theorem 2.1 in Rockafellar
(1997)), (c(ω|f,b), s(ω|f,b)) is unique for every ω ∈ Ω by strict concavity of the doer’s utility
function. Clearly, the correspondence that for each (f,b) ∈ [0, 1]n+1 maps to Bf,b is non-empty,
compact valued, and continuous. It follows from the Maximum Theorem that (c(ω|·, ·), s(ω|·, ·))
is continuous for every ω ∈ Ω.

We can now show that the planner’s payoff is continuous in (f,b). For each (f,b) ∈ [0, 1]n+1,
let

U(f,b) =
ˆ
Ω
[θu(c(ω|f,b); r) + v(s(ω|f,b)]dG(ω).

Since the integrand is continuous in (f,b) for every ω ∈ Ω and is uniformly bounded over B(f,b),
Lebesgue’s Dominated Convergence Theorem implies the claimed property of U(·, ·).

A second application of the Maximum Theorem gives the result.
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10.2 Lemma 8

Lemma 8. Fix f̂ > sd = minω sd(ω). Let Bf̂ be a plan that satisfies f = f̂ and bi = 1 for
all i; let B′ ∈ B be a plan that satisfies

∑n
i=1 bi = 1− f̂ . Every B′ implements allocations that

differ with positive probability from those implemented by Bf̂ .

Proof. Fix f̂ > sd. Let r = (r1, . . . , rn). It is easy to see that sd(θ, r) = sd. Therefore, f̂ must
bind in ω = (θ, r). Since (cd, sd) is continuous in ω, there exists ε > 0 such that, if |r − r| < ε,
then sd(θ, r) > f̂ , and hence f̂ is still binding. When f̂ binds, the doer’s consumption allocation
ĉ must maximize

∑n
i=1 u

i(ci; ri) subject to
∑n

i=1 ci ≤ 1 − f̂ . So, for all r with |r − r| < ε, we
must have

uic(ĉi(θ, r); ri) = ujc(ĉj(θ, r); rj) for all i, j.
Hence, there exists r′ with |r′ − r| < ε such that ĉ(θ, r′) ̸= ĉ(θ, r). Since

∑n
i=1 ĉi(θ, r′) =∑n

i=1 ĉi(θ, r) = 1 − f̂ , there exists i ̸= j such that ĉi(θ, r′) > ĉi(θ, r) and ĉj(θ, r′) < ĉj(θ, r).
Now let Ω(f̂) be the set of states for which ŝ(ω) = f̂ . By the previous argument, ĉi and ĉj
cannot be constant over Ω(f̂).

For each k = 1, . . . , n, let b̂k = maxΩ ĉk(ω). When ĉi(ω) = b̂i, we must have ĉj(ω) < b̂j ,
and when ĉj(ω) = b̂j , we must have ĉi(ω) < b̂i. Therefore,

∑n
i=1 b̂i > 1 − f̂ . It follows that

any collection of caps b = {bi}ni=1 satisfying
∑n

i=1 bi = 1 − f̂ must involve bi < b̂i for some
i = 1, . . . , n. So, when the doer faces the constraints b, for some i and state ω, ci(ω) ≤ bi for all
states ω such that the doer chooses ci > bi when facing only f̂ . Since (ĉ, ŝ) is continuous in ω,
the set Ω(b) = {ω : ĉi(ω) > bi} is open and hence it has strictly positive probability under G.

10.3 Lemma 9

Lemma 9. Fix some i ∈ {1, . . . , n} and consider B ∈ B with bj = 1 for all j ̸= i. In any state
ω, if bi < cdi (ω), then the doer chooses s > sd(ω), but also cj > cdj (ω) for all j ̸= i.

Proof. Without loss of generality, let i = 1 and take any b1 ∈ (0, cd1(ω)). Consider the doer’s
problem in state ω subject to b1:

max
{(c,s)∈F :c1≤b1}

θu(c, r) + βv(s).

The first-order conditions of the associated Lagrangian are

βv′(s(ω)) = µ(ω),

θu1c(c1(ω); r1) = µ(ω) + λ1(ω),

θuic(ci(ω); ri) = µ(ω) for all i ̸= 1,

where µ(ω) ≥ 0 and λ1(ω) ≥ 0 are the Lagrange multipliers for constraints
∑n

i=1 ci ≤ 1 and
c1 ≤ b1.

Suppose s(ω) ≤ sd(ω). Since c1(ω) = b1 < cd1(ω) and s(ω)+
∑

j cj(ω) = sd(ω)+
∑

j c
d
j (ω) = 1

by strong monotonicity of preferences, cj(ω) > cdj (ω) for some j ̸= 0, 1. By strict concavity of
uj and v,

θujc(cj(ω); rj) < θujc(c
d
j (ω); rj) = βv′(sd(ω)) ≤ βv′(s(ω)).
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This violates the first-order conditions for c(ω). So we must have s(ω) > sd(ω). This in turn
implies that for j ̸= i

θujc(cj(ω); rj) = βv′(s(ω)) < βv′(sd(ω)) = θujc(c
d
j (ω); rj).

By concavity, we have cj(ω) > cdj (ω) for j ̸= 0, 1.

10.4 Budgets with Savings Floor or Only Budgets: General Setting

Let Gfb be a distribution over (ω0, ω1, ω2) that leads to Proposition 3 and G the uniform
distribution over [θ, θ] × [r, r]2. Similarly, let Gb be a distribution that leads to Proposition 4
and G

′ the uniform distribution over [θ, θ′]× [r, r]2, where θ
′ is as in Proposition 4. Finally, let

Gfb
α = αGfb + (1− α)G and Gb

α = αGb + (1− α)G
′
, α ∈ [0, 1].

Corollary 2.
(1) There exists α ∈ (0, 1) such that, given Gfb

α , every optimal B ∈ B involves a binding f
(1) as well as a binding bi for both goods.
(2) There exists α′ ∈ (0, 1) such that, given Gb

α′, for every optimal B ∈ B both b1 and b2
(2) bind, but f never binds.

Proof. Let Bf ⊂ B contain all plans that can use only f , Bb ⊂ B contain all plans that can
use both b1 and b2, and Bbi ⊂ B contain all plans that can use only ci for i = 1, 2. To indicate
that the planner’s expected payoff from B is computed using some distribution Ĝ, we will use
the notation U(B; Ĝ).

Part 1: Consider Gfb
α . For every B ∈ B and α ∈ [0, 1], the planner’s expected payoff is

given by
U(B;Gfb

α ) = αU(B;Gfb) + (1− α)U(B;G).

Now define

W fb
f (α) = max

B∈Bf

U(B;Gfb
α ) and W fb

b (α) = max
B∈Bb

U(B;Gfb
α ), α ∈ [0, 1].

Both W fb
f and W fb

b are well defined by the same argument as in the proof of Lemma 1; moreover,
by the Maximum Theorem, they are continuous functions of α.49 Let Bfb denote the optimal
plan in Proposition 3. Note that U(Bfb;G) is finite since the doer’s resulting allocations are
bounded away from 0 in all dimensions. We have that limα↑1 U(Bfb;Gfb

α ) − W fb
j (α) > 0 for

both j = f and j = b. Therefore, there exists α̂ ∈ (0, 1) such that Bfb strictly dominates every
B ∈ Bf ∪ Bb given the distribution Gfb

α̂ .
Part 2: Consider Gb

α. For every B ∈ B and α ∈ [0, 1], the planner’s expected payoff is
given by

U(B;Gb
α) = αU(B;Gb) + (1− α)U(B;G

′
).

Let Bb denote the optimal plan in Proposition 4. By the same logic of the proof of Part
1, there exists α′′ ∈ (0, 1) such that, for every α ∈ (α′′, 1), the policy Bb strictly dominates

49Recall Footnote 48.
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every B ∈ Bf ∪ Bb ∪ Bb1 ∪ Bb2 given the distribution Gb
α. It remains to show that there exists

α′ ∈ (α′′, 1) such that Bb strictly dominates every B ∈ B given Gb
α′ .

To this end, define
B(α) = argmax

B∈B
U(B;Gb

α).

Another application of the Maximum Theorem implies that B(·) is upper hemicontinuous. Note
that B(1) is characterized by vectors (f∗, b∗1, b

∗
2) such that b∗1 and b∗2 are unique and satisfy the

properties in Proposition 4, and f∗ ∈ [0, f ] where f = 1− b∗1 − b∗2. Therefore, for every η > 0,
there exists ε > 0 such that, if α ∈ (1 − ε, 1], then f ∈ [0, f + η], b1 ∈ (b∗1 − η, b∗1 + η), and
b2 ∈ (b∗2 − η, b∗2 + η) for every (f, b1, b2) corresponding to some B ∈ B(α). This means that, by
choosing η sufficiently small, we can ensure that for every B ∈ B(α) the following holds: (1)
1− b1 − b2 > sp(ω0); (2) removing f leads to a plan such that both b1 and b2 bind in ω0; and
(3) f cannot bind in ω1 and ω2, since f is strictly smaller than the doer’s choice of s in those
states under every plan in B(1).

Take any B ∈ B(α) and fix its b1 and b2. The f that completes B must be optimally chosen
given b1 and b2. We claim that such an f must satisfy f ≤ 1 − b1 − b2 = k for α sufficiently
close to 1. Suppose this is not true and consider the gain in the planner’s expected payoff from
imposing f > k. Her gain in ω0 would be

(1− β)[v(f)− v(k)] + V (f ;ω0)− V (k;ω0), (22)

and her expected gain under the distribution G
′ isˆ

Ω(f)

{
(1− β)[v(f)− v(ŝ(ω))] + V (f ;ω)− V (ŝ(ω);ω)

}
dG

′
, (23)

where Ω(f) ⊂ Ω′ = [θ, θ
′
]× [r, r]2 is the set of states in which f affects the doer’s choices, (ĉ, ŝ)

is the doer’s allocation function under the policy that involves only b1 and b2, and

V (k;ω) = max
{(c,s)∈B:c1≤b1,c2≤b2,s≥k}

{θu(c; r) + βv(s)}, k ∈ [k, 1], ω ∈ Ω′.

Note that V (f ;ω) ≤ V (ŝ(ω);ω) and ŝ(ω) ≥ k for all ω ∈ Ω′; therefore, for every f ≥ k, the
quantity (23) is bounded above byˆ

Ω(f)
(1− β)[v(f)− v(ŝ(ω))]dG′ ≤ (1− β)[v(f)− v(k)].

Note that the right-hand side of the previous expression depends on α only via k.
Now focus on V (k;ω0). For every f > k, the following holds: (1) f always binds, because

k > sp(ω0) and hence the doer wants to save strictly less than f ; (2) only one budget can bind,
because if both bind, then s(ω0) = k < f , which is impossible; (3) one budget never binds,
because consumption goods are normal, so for every f > k the doer’s chooses ci(ω0) < bi for at
least one i = 1, 2. Without loss, suppose that the budget that never binds is b2. Therefore, if we
remove b2, V (k;ω0) coincides with the doer’s indirect utility under the plan defined by k ∈ [k, 1]
and b1 only, which we denote by V (k;ω0, b1). By the same argument as in the proof of Lemma 3,
V (k;ω0, b1) is continuously differentiable in k for k ∈ (0, 1] and V

′
(k;ω0, b1) = −λ(ω0; k), where

λ(ω0; k) is the Lagrange multiplier associated to the constraint s ≥ k. Using the Lagrangian
defining V (k;ω0, b1), we have that

λ(ω0; k) = θ
′
u2c(c2(ω

0; k); r)− βv′(k).
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Note that λ(ω0; k) > 0 for all k ∈ [k, 1], because such levels of the floor must always bind for the
doer. Moreover, λ(ω0; k) is strictly increasing in k ∈ [k, 1] because v is strictly concave, uicc < 0,
and c2(ω

0; k) is non-increasing in k by normality of goods. We conclude that V
′
(k;ω0) =

−λ(ω0; k) for every k ∈ (k, 1] and V
′
(k+;ω0) = −λ(ω0; k), where the plus denotes the right

derivative.50 Moreover, V ′
(k;ω0) is strictly decreasing in k.

Observe that
(1− β)v′(k) + V

′
(k;ω0) = v′(k)− θ

′
u2c(c2(ω

0; k); r), (24)
which is strictly negative. This is because b1 < cp1(ω

0) and b2 < cp2(ω
0) by Proposition 4 since

α is close to 1, which implies that both budgets must bind for the planner; consequently, f = k
and b1 must also bind for the planner. The right-hand side of (24) coincides with the negative
of the Lagrange multiplier associated with the constraint s ≥ k in the planner’s problem that
also includes the constraint c1 ≤ b1.

Recall that k depends on α—hence denote it by kα—and consider the quantity

gV
′
(kα;ω

0) + [αg + (1− α)](1− β)v′(kα). (25)

This quantity is strictly negative for α = 1, which corresponds to k1 = 1−b∗1−b∗2. By continuity
of (25) as a function of (α, k) and upper hemicontinuity of B(α), there exists ε > 0 such that
(25) remains strictly negative for all α ∈ (1− ε, 1]. Given the monotonicity properties of v′ and
V

′
(·;ω0), (25) is strictly decreasing for all k ≥ kα.
Finally, for every α ∈ (1− ε, 1] and f > kα, we have that

[αg + (1− α)](1− β)[v(f)− v(kα)] + g[V (f ;ω0)− V (kα;ω
0)]

=

ˆ f

kα

{
[αg + (1− α)](1− β)v′(k) + gV

′
(k;ω0)

}
dk

<
{
[αg + (1− α)](1− β)v′(kα) + gV

′
(kα;ω

0)
}
(f − kα) < 0.

We conclude that the planner is strictly worse off by imposing a binding savings floor in addition
to the budgets b1 and b2, and hence every optimal plan must involve binding budgets for both
goods, but no binding floor on savings.

10.5 Proposition 7

To state the result, define

u∗(y) = min
{c∈R2

+:c1+c2=y}
u(c), y ∈ [0, 1].

Proposition 7. Suppose that the optimal Dtc ⊂ F tc induces money burning over some set
Θ ⊂ [θ, θ] and positive consumption: y(θ) < 1− s(θ) for θ ∈ Θ and y(θ) > 0 for θ ∈ [θ, θ].
(1) There exists an optimal D′ ⊂ F which uses less money burning: The induced allocation
satisfies s′(θ) = s(θ) and c′1(θ) + c′2(θ) ≥ y(θ) for all θ, with strict inequality over all Θ.
(2) If u∗(1− s(θ)) ≤ u∗(y(θ)) for all θ ∈ Θ, then D′ can be chosen so that money burning never
occurs: c′1(θ) + c′2(θ) = 1− s(θ) for θ ∈ [θ, θ].

50In fact, V (k;ω0) is not differentiable at k = k since V (k;ω0) is constant for k < k and hence
V

′
(k−;ω0) = 0.
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Proof. Let Dtc ⊂ F tc satisfy the premise of Proposition 7. Then, as noted in the proof of
Lemma 2, we can describe the doer’s allocation from Dtc with the functions (φ, τ) that satisfy
condition (1’) and such that 0 < φ(θ) < 1− τ(θ) for all θ ∈ Θ and

U(Dtc) =

ˆ θ

θ
[θu∗(φ(θ)) + v(τ(θ))] ĝ(θ)dθ.

Now, since u is continuous and Ey = {c ∈ Rn
+ :

∑n
i=1 ci = y} is connected, u(Ey) =

[u∗(y), u
∗(y)]. Since u is strictly concave, u∗(y) < u∗(y) for y > 0. Since u is strictly in-

creasing, so are u∗ and u∗. Clearly, u∗ is continuous.
These properties imply that, for every θ ∈ Θ, there exists y(θ) ∈ (φ(θ), 1 − τ(θ)] and

c(θ) ∈ Ey(θ) such that u(c(θ)) = u∗(φ(θ)). So, for every θ ∈ [θ, θ], define t(θ) = τ(θ) and

χ(θ) =

{
c(θ) if θ ∈ Θ

argmax{c∈Rn
+:

∑n
i=1 ci≤φ(θ)} u(c) if θ /∈ Θ

.

Then, by construction the pair (χ, t) satisfy conditions (1) and (2) in the proof of Lemma
2. Now, let D′ = {(c, s) ∈ Rn

+ : (c, s) = (χ(θ), t(θ)), for some θ ∈ [θ, θ]}. We have D′ ⊂ F ,
U(D′) = U(Dtc), and the doer’s allocation satisfies c′(θ) = χ(θ) and s′(θ) = τ(θ) for all
θ ∈ [θ, θ]. By construction, (c′, s′) satisfies the stated relationship with (c, s).

The last part is immediate because we can choose y(θ) = 1 − τ(θ) for all θ ∈ Θ in the
previous construction.

10.6 Example of Non-Additive Utility

Suppose that

u(c; r) = 1

1− γ

(
r1c

e−1
e

1 + r2c
e−1
e

2

) e
e−1

(1−γ)

and v(s) =
s1−γ

1− γ
.

Assume that e > 1, 0 < γ < 1, and e ≤ 1
γ . By standard calculations, given total expenditures

y ∈ [0, 1] in a period, the optimal allocation to good i is

ci(r; y) = y
rei

re1 + re2
. (26)

We now show that (cd, sd) satisfies Condition 2—similar steps establish the desired proper-
ties of (cp, sp). For every ω ∈ Ω, maximizing θτ(r)

1−γ (1− s)1−γ + β
1−γ s

1−γ yields

sd(ω) =
β

1
γ

[θτ(r)]
1
γ + β

1
γ

.

Clearly, sd(s) is always interior and strictly decreasing in θ, r1, and r2. Replacing y with
1− sd(ω) into (26), we get that cdi (ω) is strictly increasing in θ and ri and satisfies

∂

∂rj
cdi (ω) ∝ sd(ω)

1− γ

γ(e− 1)
− 1.
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Thus, for ∂
∂rj

cdi (ω) (and similarly ∂
∂rj

cpi (ω)) to be strictly negative for all ω, a sufficient condition
is that 1−γ

γ(e−1) <
1
sp , because sd(ω) < sd < sp < 1.51

Now consider setting only a budget on good 1 (or equivalently on good 2). We will show
that, whenever b1 binds, increasing it leads to lower savings and that part (2) of Condition 2
holds. Suppose b1 binds in state ω. Then, the doer’s choice satisfies c∗2(ω) = 1− s∗(ω)− b1 and
the optimal s∗(ω) solves the first-order condition

θu2(b1, 1− s∗(ω)− b1; r) = β [s∗(ω)]−γ .

Therefore,
∂

∂b1
s∗(ω) =

θ[u21(c; r)− u22(c; r)]
θu22(c; r)− γβ

s1+γ

∣∣∣∣∣
(c,s)=(c∗(ω),s∗(ω))

.

A sufficient condition for this to be strictly negative is that u21(c; r) ≥ 0, which holds under
our assumptions since u21(c; r) ∝ 1 − γe. Finally, since the doer’s allocation to s and c2 is
bounded away from zero for every b1 ≤ cd1 and u22(c; r) and u21(c; r) are continuous in both
arguments, it follows that ∂s∗

∂b1
is uniformly bounded away from zero. Therefore, part (2) of

Condition 2 holds. Note that in the previous argument we can replace b1 with f1. Therefore, in
this example, binding good-specific floors lead to lower savings, and hence they are never part
of optimal plans.

10.7 Lemma 10

Lemma 10. The function v : [0, 1] → R defined in (6) is differentiable with v′ > 0 and strictly
concave. Moreover, v′ is continuous on (0, 1]. Finally, for every s > 0, there exists y < 0 such
that v′(s)− v′(ŝ) ≥ y[s− ŝ] whenever s > ŝ ≥ s.

Proof. For every s ∈ [0, 1] and r ∈ Ω2, let ũ(s; r) = maxc∈F (s) u(c; r) and cs(r) the unique
solution to this problem, which is continuous in s and r by the Maximum Theorem. Since u(·; r)
is strictly concave in c, so is ũ(·; r) in s by standard arguments, which implies strict concavity
of v.

Consider now differentiability of v at s > 0. The first-order conditions of the Lagrangian
defining ũ(s; r) say that ∂

∂ci
u(cs(r); r) = λ(r; s) for i = 1, . . . , n, where λ(r; s) is the Lagrange

multiplier for the constraint
∑n

i=1 ci ≤ s. Since cs(r) is continuous in s for every r, so is
λ(r; s) given our assumptions on u. By Theorem 1, p. 222, of Luenberger (1969), for every
s′, s′′ ∈ (0, 1] we have

λ(r; s′)(s′ − s′′) ≤ ũ(s′; r)− ũ(s′′; r) ≤ λ(r; s′′)(s′ − s′′).

Continuity of λ(r; ·) then implies that ∂
∂s ũ(s; r) exists for every s > 0 and satisfies

∂

∂s
ũ(s; r) = ∂

∂ci
u(cs(r); r) > 0.

Continuity of ∂u
∂ci

in both arguments implies that ∂ũ
∂s is continuous in both arguments as well.

Using continuity of ũ and ∂ũ
∂s , it is immediate to show that, for every s > 0,

v′(s) =

ˆ
Ω2

∂

∂s
ũ(s; r)dG2 > 0. (27)

51Recall that sk = maxω sk(ω) for k = d, p.
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Finally, since ∂ũ
∂s is continuous over (0,+∞) for every r, it follows that v′ is also continuous at

every s > 0.
Finally, using (27), note that for every s > ŝ ≥ s > 0,

v′(s)− v′(ŝ) =

ˆ
Ω2

[
uic(c

s
i (r); ri)− uic(c

ŝ
i (r); ri)

]
dG2 =

ˆ
Ω2

uicc(ξ(r); ri)
[
csi (r)− cŝi (r)

]
dG2

≥ uicc

ˆ
Ω2

[
csi (r)− cŝi (r)

]
dG2 ≥ uicc[s− ŝ],

where the first equality uses the MVT (with ξ(r) ∈ [csi (r), cŝi (r)]), the first inequality uses
uicc = minξ∈[s,1],ri∈[ri,ri] u

i
cc(ξ; ri) < 0 (which is well defined and bounded by continuity of uicc),

and the second inequality uses the observation that increasing savings from ŝ to s can increase
the optimal consumption of good i in period 2 at most by s− ŝ.
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